view src/main/java/ac/ryukyu/treevnc/server/MyRfbProtoProxy.java @ 11:57ae9fbb1245

add files
author Taninari YU <you@cr.ie.u-ryukyu.ac.jp>
date Tue, 21 Aug 2012 14:02:05 +0900
parents
children
line wrap: on
line source

package ac.ryukyu.treevnc.server;

import static org.junit.Assert.*;

import java.awt.Graphics;
import java.awt.Image;
import java.awt.image.BufferedImage;
import java.io.BufferedOutputStream;
import java.io.BufferedReader;
import java.io.ByteArrayInputStream;
import java.io.ByteArrayOutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.net.BindException;
import java.net.ServerSocket;
import java.net.Socket;
import java.nio.ByteBuffer;
import java.util.Iterator;
import java.util.LinkedList;

import javax.imageio.ImageIO;

import org.junit.Test;

import ac.ryukyu.treevnc.MulticastQueue;

//import myVncProxy.MulticastQueue.Client;

import java.util.concurrent.ExecutorService;
import java.util.concurrent.atomic.AtomicInteger;
import java.util.zip.DataFormatException;
import java.util.zip.Deflater;
import java.util.zip.Inflater;
import java.io.OutputStream;

public class MyRfbProtoProxy {
	final static String versionMsg_3_855 = "RFB 003.855\n";
	/**
	 * CheckMillis is one of new msgType for RFB 3.855.
	 */
	final static byte SpeedCheckMillis = 4;

	// Secyrity type of OS X
	final static int SecTypeReqAccess = 32;

	// Supported authentication types
	final static int AuthAccess = 32;

	private static final int INFLATE_BUFSIZE = 1024 * 100;
	boolean printStatusFlag = false;
	long startCheckTime;
	private int messageType;
	private int rectangles;
	private int rectX;
	private int rectY;
	private int rectW;
	private int rectH;
	private int encoding;
	private int zLen;
	private boolean clicomp = false;

	private ServerSocket servSock;
	protected int acceptPort;
	// private byte initData[];
	byte initData[];
	private LinkedList<Socket> cliListTmp;
	private LinkedList<Socket> cliList;
	boolean createBimgFlag;
	boolean proxyFlag = true;

	ExecutorService executor;

	byte[] pngBytes;

	// private MulticastQueue<LinkedList<ByteBuffer>> multicastqueue = new
	// MostRecentMultiCast<LinkedList<ByteBuffer>>(10);
	private MulticastQueue<LinkedList<ByteBuffer>> multicastqueue = new MulticastQueue<LinkedList<ByteBuffer>>();
	private int clients = 0;
	private Inflater inflater = new Inflater();
	private Deflater deflater = new Deflater();
	private CreateThread geth;
	// private Thread requestThread;
	private RequestScreenThread rThread;
	private Thread requestThread;

	public MyRfbProtoProxy() throws IOException {
	}


	void initServSock(int port) throws IOException {
		servSock = new ServerSocket(port);
		acceptPort = port;
	}

	void authenticationRequestAccess() throws IOException {

		byte[] headBuf = new byte[2];
		is.read(headBuf);
		if (headBuf[1] == 2) {
			byte[] b = new byte[258];
			is.read(b);

			byte[] outBuf = new byte[256];
			os.write(outBuf);
			os.flush();
		} else if (headBuf[1] == 23) {
			byte[] b = new byte[130];
			is.read(b);
			byte[] outBuf = new byte[192];
			os.write(outBuf);
			os.flush();
		}

		int result = readU32();
		if (result != 0) {
			System.out.println("faild authentication  ");
			throw new IOException();
		}

	}

	/*
	 * default port number is 5999.
	 */
	public void selectPort(int p) {
		if (servSock != null)
			return;
		int port = p;
		while (true) {
			try {
				initServSock(port);
				break;
			} catch (BindException e) {
				port++;
				continue;
			} catch (IOException e) {

			}
		}
		System.out.println("accept port = " + port);
	}

	int getAcceptPort() {
		return acceptPort;
	}

	void setSoTimeout(int num) throws IOException {
		servSock.setSoTimeout(num);
	}

	public Socket accept() throws IOException {
		return servSock.accept();
	}

	void addSock(Socket sock) {
		cliList.add(sock);
	}

	void addSockTmp(Socket sock) {
		System.out.println("connected " + sock.getInetAddress());
		cliListTmp.add(sock);
	}

	boolean markSupported() {
		return is.markSupported();
	}

	synchronized void changeStatusFlag() {
		printStatusFlag = true;
	}

	void printMills() {
		if (printStatusFlag) {

			changeStatusFlag();
		} else {
			changeStatusFlag();
		}
	}


	void requestThreadStart() {
		requestThread.start();
	}

	public synchronized void requestThreadNotify() {
		rThread.reStart();
	}

	/**
	 * gzip byte arrays
	 * 
	 * @param deflater
	 * @param inputs
	 *            byte data[]
	 * @param inputIndex
	 * @param outputs
	 *            byte data[]
	 * @return byte length in last byte array
	 * @throws IOException
	 */
	public int zip(Deflater deflater, LinkedList<ByteBuffer> inputs,
			int inputIndex, LinkedList<ByteBuffer> outputs) throws IOException {
		int len = 0;
		ByteBuffer c1 = ByteBuffer.allocate(INFLATE_BUFSIZE);
		while (inputIndex < inputs.size()) {
			ByteBuffer b1 = inputs.get(inputIndex++);
			deflater.setInput(b1.array(), b1.position(), b1.remaining());
			/**
			 * If we finish() stream and reset() it, Deflater start new gzip
			 * stream, this makes continuous zlib reader unhappy. if we remove
			 * finish(), Deflater.deflate() never flushes its output. The
			 * original zlib deflate has flush flag. I'm pretty sure this a kind
			 * of bug of Java library.
			 */
			if (inputIndex == inputs.size())
				deflater.finish();
			int len1 = 0;
			do {
				len1 = deflater.deflate(c1.array(), c1.position(),
						c1.remaining());
				if (len1 > 0) {
					len += len1;
					c1.position(c1.position() + len1);
					if (c1.remaining() == 0) {
						c1.flip();
						outputs.addLast(c1);
						c1 = ByteBuffer.allocate(INFLATE_BUFSIZE);
					}
				}
			} while (len1 > 0 || !deflater.needsInput()); // &&!deflater.finished());
		}
		if (c1.position() != 0) {
			c1.flip();
			outputs.addLast(c1);
		}
		deflater.reset();
		return len;
	}

	/**
	 * gunzip byte arrays
	 * 
	 * @param inflater
	 * @param inputs
	 *            byte data[]
	 * @param outputs
	 *            byte data[]
	 * @return number of total bytes
	 * @throws IOException
	 */
	public int unzip(Inflater inflater, LinkedList<ByteBuffer> inputs,
			int inputIndex, LinkedList<ByteBuffer> outputs, int bufSize)
			throws DataFormatException {
		int len = 0;
		ByteBuffer buf = ByteBuffer.allocate(bufSize);
		while (inputIndex < inputs.size()) {
			ByteBuffer input = inputs.get(inputIndex++);
			inflater.setInput(input.array(), input.position(), input.limit());
			// if (inputIndex==inputs.size()) if inflater/deflater has symmetry,
			// we need this
			// inflater.end(); but this won't work
			do {
				int len0 = inflater.inflate(buf.array(), buf.position(),
						buf.remaining());
				if (len0 > 0) {
					buf.position(buf.position() + len0);
					len += len0;
					if (buf.remaining() == 0) {
						buf.flip();
						outputs.addLast(buf);
						buf = ByteBuffer.allocate(bufSize);
					}
				}
			} while (!inflater.needsInput());
		}
		if (buf.position() != 0) {
			buf.flip();
			outputs.addLast(buf);
		}
		return len;
	}

	float maxMag = 1;

	/**
	 * send data to clients
	 * 
	 * @param dataLen
	 * @throws IOException
	 * @throws DataFormatException
	 * 
	 *             Zlibed packet is compressed in context dependent way, that
	 *             is, it have to send from the beginning. But this is
	 *             impossible. So we have to compress it again for each clients.
	 *             Separate deflater for each clients is necessary.
	 * 
	 *             Java's deflater does not support flush. This means to get the
	 *             result, we have to finish the compression. Reseting start new
	 *             compression, but it is not accepted well in zlib continuous
	 *             reading. So we need new Encoding ZRLEE which reset decoder
	 *             for each packet. ZRLEE can be invisible from user, but it
	 *             have to be implemented in the clients. ZRLEE compression is
	 *             not context dependent, so no recompression is necessary.
	 */

	void readSendData(int dataLen) throws IOException, DataFormatException {
		LinkedList<ByteBuffer> bufs = new LinkedList<ByteBuffer>();
		ByteBuffer header = ByteBuffer.allocate(16);
		readFully(header.array(), 0, 16);
		header.limit(16);
		if (header.get(0) == RfbProto.FramebufferUpdate) {
			int encoding = header.getInt(12);
			if (encoding == RfbProto.EncodingZRLE
					|| encoding == RfbProto.EncodingZlib) { // ZRLEE is already
															// recompressed
				ByteBuffer len = ByteBuffer.allocate(4);
				readFully(len.array(), 0, 4);
				len.limit(4);
				ByteBuffer inputData = ByteBuffer.allocate(dataLen - 20);

				startTiming();
				readFully(inputData.array(), 0, inputData.capacity());
//				System.out.println(dataLen);
				inputData.limit(dataLen - 20);
				stopTiming();

				LinkedList<ByteBuffer> inputs = new LinkedList<ByteBuffer>();
				inputs.add(inputData);

				header.putInt(12, RfbProto.EncodingZRLEE); // means recompress
															// every time
				// using new Deflecter every time is incompatible with the
				// protocol, clients have to be modified.
				Deflater nDeflater = deflater; // new Deflater();
				LinkedList<ByteBuffer> out = new LinkedList<ByteBuffer>();
				unzip(inflater, inputs, 0, out, INFLATE_BUFSIZE);
				// dump32(inputs);
				int len2 = zip(nDeflater, out, 0, bufs);
				ByteBuffer blen = ByteBuffer.allocate(4);
				blen.putInt(len2);
				blen.flip();
				bufs.addFirst(blen);

				bufs.addFirst(header);
			//	if(dataLen<=64000)
					multicastqueue.put(bufs);
				// is.reset();

				/*
				 * System.out.println("ZRLE = "+dataLen);
				 * System.out.println("ZRLEE = "+(len2+20)); float mag =
				 * (float)dataLen / (float)(len2 + 20);
				 * System.out.println("ZRLE / ZRLEE = "+ mag); if(mag > maxMag)
				 * maxMag = mag; System.out.println("maxMag = "+maxMag);
				 */
				return;
			}
			bufs.add(header);
			if (dataLen > 16) {
				ByteBuffer b = ByteBuffer.allocate(dataLen - 16);
				startTiming();
				readFully(b.array(), 0, dataLen - 16);
				b.limit(dataLen - 16);
				stopTiming();
				bufs.add(b);
			}
			multicastqueue.put(bufs);
			// is.reset();
			return;
		}
		is.reset();

		// It may be compressed. We can inflate here to avoid repeating clients
		// decompressing here,
		// but it may generate too many large data. It is better to do it in
		// each client.
		// But we have do inflation for all input data, so we have to do it
		// here.
	}

	public void newClient(AcceptThread acceptThread, final Socket newCli,
			final OutputStream os, final InputStream is) throws IOException {
		// createBimgFlag = true;
		// rfb.addSockTmp(newCli);
		// addSock(newCli);
		final int myId = clients;
		final MulticastQueue.Client<LinkedList<ByteBuffer>> c = multicastqueue
				.newClient();
		final AtomicInteger writerRunning = new AtomicInteger();
		writerRunning.set(1);
		/**
		 * Timeout thread. If a client is suspended, it has top of queue
		 * indefinitely, which caused memory overflow. After the timeout, we
		 * poll the queue and discard it. Start long wait if writer is running.
		 */
		final Runnable timer = new Runnable() {
			public void run() {
				int count = 0;
				for (;;) {
					long timeout = 50000 / 8;
					try {
						synchronized (this) {
							int state, flag;
							writerRunning.set(0);
							wait(timeout);
							flag = 0;
							while ((state = writerRunning.get()) == 0) {
								c.poll(); // discard, should be timeout
								count++;
								if (flag == 0) {
									System.out.println("Discarding " + myId
											+ " count=" + count);
									flag = 1;
								}
								wait(10); // if this is too short, writer cannot
											// take the poll, if this is too
											// long, memory will overflow...
							}
							if (flag == 1)
								System.out.println("Resuming " + myId
										+ " count=" + count);
							if (state != 1) {
								System.out.println("Client died " + myId);
								break;
							}
						}
					} catch (InterruptedException e) {
					}
				}
			}
		};
		new Thread(timer).start();
		/**
		 * discard all incoming from clients
		 */
		final Runnable reader = new Runnable() {
			public void run() {
				byte b[] = new byte[4096];
				for (;;) {
					try {
						int c = is.read(b);
						if (c <= 0)
							throw new IOException();
						// System.out.println("client read "+c);
					} catch (IOException e) {
						try {
							writerRunning.set(2);
							os.close();
							is.close();
						} catch (IOException e1) {
						}
						return;
					}
				}
			}
		};
		/**
		 * send packets to a client
		 */
		Runnable sender = new Runnable() {
			public void run() {
				writerRunning.set(1);
				try {
					requestThreadNotify();
					// rThread.checkDelay();

					/**
					 * initial connection of RFB protocol
					 */
					sendRfbVersion(os);
					// readVersionMsg(is);
					int rfbMinor = readVersionMsg(is, os);
					sendSecurityType(os);
					readSecType(is);
					sendSecResult(os);
					readClientInit(is);
					sendInitData(os);
					new Thread(reader).start(); // discard incoming packet here
												// after.
					// writeFramebufferUpdateRequest(0,0, framebufferWidth,
					// framebufferHeight, false );
					int i  = 0;
					for (;;) {
						LinkedList<ByteBuffer> bufs = c.poll();
						int inputIndex = 0;
						ByteBuffer header = bufs.get(inputIndex);
						if (header == null)
							continue;
						else if (header.get(0) == RfbProto.CheckDelay) {
							writeToClient(os, bufs, inputIndex);
							continue;
						} else if (header.get(0) == RfbProto.FramebufferUpdate) {
							// System.out.println("client "+ myId);
						}
						/*
						if(i%20==0){
							sendDataCheckDelay();
						}
						i++;
						*/
						writeToClient(os, bufs, inputIndex);
						writerRunning.set(1); // yes my client is awaking.
					}
				} catch (IOException e) {
					try {
						writerRunning.set(2);
						os.close();
					} catch (IOException e1) {
					}
					/* if socket closed cliList.remove(newCli); */
				}
			}

			public void writeToClient(final OutputStream os,
					LinkedList<ByteBuffer> bufs, int inputIndex)
					throws IOException {
				while (inputIndex < bufs.size()) {
					ByteBuffer b = bufs.get(inputIndex++);
					os.write(b.array(), b.position(), b.limit());
				}
				os.flush();
			}
		};
		clients++;
		new Thread(sender).start();

	}

	public void dump32(LinkedList<ByteBuffer> bufs) {
		int len = 0;
		for (ByteBuffer b : bufs)
			len += b.remaining();
		ByteBuffer top = bufs.getFirst();
		ByteBuffer end = bufs.getLast();
		System.err.println("length: " + len);
		System.err.print("head 0: ");
		for (int i = 0; i < 16 && i < top.remaining(); i++) {
			System.err.print(" " + top.get(i));
		}
		System.err.print("tail 0: ");
		for (int i = 0; i < 16 && i < end.remaining(); i++) {
			System.err.print(" " + end.get(i));
		}
		System.err.println();
	}

	@Test
	public void test1() {
		try {
			LinkedList<ByteBuffer> in = new LinkedList<ByteBuffer>();
			LinkedList<ByteBuffer> out = new LinkedList<ByteBuffer>();
			LinkedList<ByteBuffer> out2 = new LinkedList<ByteBuffer>();
			// if (false) {
			// for(int i=0;i<10;i++) {
			// in.add(ByteBuffer.wrap("test1".getBytes()));
			// in.add(ByteBuffer.wrap("test2".getBytes()));
			// in.add(ByteBuffer.wrap("test3".getBytes()));
			// in.add(ByteBuffer.wrap("test44".getBytes()));
			// }
			// } else
			{
				String t = "";
				for (int i = 0; i < 10; i++) {
					t += "test1";
					t += "test2";
					t += "test3";
					t += "test44";
				}
				in.add(ByteBuffer.wrap(t.getBytes()));
			}

			LinkedList<ByteBuffer> in1 = clone(in);

			Deflater deflater = new Deflater();
			zip(deflater, in, 0, out);
			// LinkedList<ByteBuffer> out3 = clone(out); zipped result is depend
			// on deflator's state
			unzip(inflater, out, 0, out2, INFLATE_BUFSIZE);
			// inflater.reset();
			equalByteBuffers(in1, out2);
			LinkedList<ByteBuffer> out4 = new LinkedList<ByteBuffer>();
			deflater = new Deflater();
			zip(deflater, out2, 0, out4);
			LinkedList<ByteBuffer> out5 = new LinkedList<ByteBuffer>();
			unzip(inflater, out4, 0, out5, INFLATE_BUFSIZE);
			int len = equalByteBuffers(in1, out5);

			System.out.println("Test Ok. " + len);
		} catch (Exception e) {
			assertEquals(0, 1);
		}
	}

	private LinkedList<ByteBuffer> clone(LinkedList<ByteBuffer> in) {
		LinkedList<ByteBuffer> copy = new LinkedList<ByteBuffer>();
		for (ByteBuffer b : in) {
			ByteBuffer c = b.duplicate();
			copy.add(c);
		}
		return copy;
	}

	public int equalByteBuffers(LinkedList<ByteBuffer> in,
			LinkedList<ByteBuffer> out2) {
		int len = 0;
		Iterable<Byte> i = byteBufferIterator(in);
		Iterator<Byte> o = byteBufferIterator(out2).iterator();

		for (int b : i) {
			len++;
			if (o.hasNext()) {
				int c = o.next();
				assertEquals(b, c);
			} else
				assertEquals(0, 1);
		}
		if (o.hasNext())
			assertEquals(0, 1);
		// System.out.println();
		return len;
	}

	private Iterable<Byte> byteBufferIterator(final LinkedList<ByteBuffer> in) {
		return new Iterable<Byte>() {
			public Iterator<Byte> iterator() {
				return new Iterator<Byte>() {
					int bytes = 0;
					int buffers = 0;

					public boolean hasNext() {
						for (;;) {
							if (buffers >= in.size())
								return false;
							ByteBuffer b = in.get(buffers);
							if (!(bytes < b.remaining())) {
								buffers++;
								bytes = 0;
							} else
								return true;
						}
					}

					public Byte next() {
						ByteBuffer bf = in.get(buffers);
						byte b = bf.get(bytes++);
						if (bf.remaining() <= bytes) {
							buffers++;
							bytes = 0;
						}
						// System.out.print(b);
						return b;
					}

					public void remove() {
					}
				};
			}
		};
	}

}