comparison gcc/ada/libgnarl/s-tassta.adb @ 111:04ced10e8804

gcc 7
author kono
date Fri, 27 Oct 2017 22:46:09 +0900
parents
children 84e7813d76e9
comparison
equal deleted inserted replaced
68:561a7518be6b 111:04ced10e8804
1 ------------------------------------------------------------------------------
2 -- --
3 -- GNAT RUN-TIME LIBRARY (GNARL) COMPONENTS --
4 -- --
5 -- S Y S T E M . T A S K I N G . S T A G E S --
6 -- --
7 -- B o d y --
8 -- --
9 -- Copyright (C) 1992-2017, Free Software Foundation, Inc. --
10 -- --
11 -- GNARL is free software; you can redistribute it and/or modify it under --
12 -- terms of the GNU General Public License as published by the Free Soft- --
13 -- ware Foundation; either version 3, or (at your option) any later ver- --
14 -- sion. GNAT is distributed in the hope that it will be useful, but WITH- --
15 -- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY --
16 -- or FITNESS FOR A PARTICULAR PURPOSE. --
17 -- --
18 -- As a special exception under Section 7 of GPL version 3, you are granted --
19 -- additional permissions described in the GCC Runtime Library Exception, --
20 -- version 3.1, as published by the Free Software Foundation. --
21 -- --
22 -- You should have received a copy of the GNU General Public License and --
23 -- a copy of the GCC Runtime Library Exception along with this program; --
24 -- see the files COPYING3 and COPYING.RUNTIME respectively. If not, see --
25 -- <http://www.gnu.org/licenses/>. --
26 -- --
27 -- GNARL was developed by the GNARL team at Florida State University. --
28 -- Extensive contributions were provided by Ada Core Technologies, Inc. --
29 -- --
30 ------------------------------------------------------------------------------
31
32 pragma Polling (Off);
33 -- Turn off polling, we do not want ATC polling to take place during tasking
34 -- operations. It causes infinite loops and other problems.
35
36 pragma Partition_Elaboration_Policy (Concurrent);
37 -- This package only implements the concurrent elaboration policy. This pragma
38 -- will enforce it (and detect conflicts with user specified policy).
39
40 with Ada.Exceptions;
41 with Ada.Unchecked_Deallocation;
42
43 with System.Interrupt_Management;
44 with System.Tasking.Debug;
45 with System.Address_Image;
46 with System.Task_Primitives;
47 with System.Task_Primitives.Operations;
48 with System.Tasking.Utilities;
49 with System.Tasking.Queuing;
50 with System.Tasking.Rendezvous;
51 with System.OS_Primitives;
52 with System.Secondary_Stack;
53 with System.Restrictions;
54 with System.Standard_Library;
55 with System.Stack_Usage;
56 with System.Storage_Elements;
57
58 with System.Soft_Links;
59 -- These are procedure pointers to non-tasking routines that use task
60 -- specific data. In the absence of tasking, these routines refer to global
61 -- data. In the presence of tasking, they must be replaced with pointers to
62 -- task-specific versions. Also used for Create_TSD, Destroy_TSD, Get_Current
63 -- _Excep, Finalize_Library_Objects, Task_Termination, Handler.
64
65 with System.Tasking.Initialization;
66 pragma Elaborate_All (System.Tasking.Initialization);
67 -- This insures that tasking is initialized if any tasks are created
68
69 package body System.Tasking.Stages is
70
71 package STPO renames System.Task_Primitives.Operations;
72 package SSL renames System.Soft_Links;
73 package SSE renames System.Storage_Elements;
74
75 use Ada.Exceptions;
76
77 use Parameters;
78 use Secondary_Stack;
79 use Task_Primitives;
80 use Task_Primitives.Operations;
81
82 -----------------------
83 -- Local Subprograms --
84 -----------------------
85
86 procedure Free is new
87 Ada.Unchecked_Deallocation (Ada_Task_Control_Block, Task_Id);
88
89 procedure Trace_Unhandled_Exception_In_Task (Self_Id : Task_Id);
90 -- This procedure outputs the task specific message for exception
91 -- tracing purposes.
92
93 procedure Task_Wrapper (Self_ID : Task_Id);
94 pragma Convention (C, Task_Wrapper);
95 -- This is the procedure that is called by the GNULL from the new context
96 -- when a task is created. It waits for activation and then calls the task
97 -- body procedure. When the task body procedure completes, it terminates
98 -- the task.
99 --
100 -- The Task_Wrapper's address will be provided to the underlying threads
101 -- library as the task entry point. Convention C is what makes most sense
102 -- for that purpose (Export C would make the function globally visible,
103 -- and affect the link name on which GDB depends). This will in addition
104 -- trigger an automatic stack alignment suitable for GCC's assumptions if
105 -- need be.
106
107 -- "Vulnerable_..." in the procedure names below means they must be called
108 -- with abort deferred.
109
110 procedure Vulnerable_Complete_Task (Self_ID : Task_Id);
111 -- Complete the calling task. This procedure must be called with
112 -- abort deferred. It should only be called by Complete_Task and
113 -- Finalize_Global_Tasks (for the environment task).
114
115 procedure Vulnerable_Complete_Master (Self_ID : Task_Id);
116 -- Complete the current master of the calling task. This procedure
117 -- must be called with abort deferred. It should only be called by
118 -- Vulnerable_Complete_Task and Complete_Master.
119
120 procedure Vulnerable_Complete_Activation (Self_ID : Task_Id);
121 -- Signal to Self_ID's activator that Self_ID has completed activation.
122 -- This procedure must be called with abort deferred.
123
124 procedure Abort_Dependents (Self_ID : Task_Id);
125 -- Abort all the direct dependents of Self at its current master nesting
126 -- level, plus all of their dependents, transitively. RTS_Lock should be
127 -- locked by the caller.
128
129 procedure Vulnerable_Free_Task (T : Task_Id);
130 -- Recover all runtime system storage associated with the task T. This
131 -- should only be called after T has terminated and will no longer be
132 -- referenced.
133 --
134 -- For tasks created by an allocator that fails, due to an exception, it is
135 -- called from Expunge_Unactivated_Tasks.
136 --
137 -- Different code is used at master completion, in Terminate_Dependents,
138 -- due to a need for tighter synchronization with the master.
139
140 ----------------------
141 -- Abort_Dependents --
142 ----------------------
143
144 procedure Abort_Dependents (Self_ID : Task_Id) is
145 C : Task_Id;
146 P : Task_Id;
147
148 -- Each task C will take care of its own dependents, so there is no
149 -- need to worry about them here. In fact, it would be wrong to abort
150 -- indirect dependents here, because we can't distinguish between
151 -- duplicate master ids. For example, suppose we have three nested
152 -- task bodies T1,T2,T3. And suppose T1 also calls P which calls Q (and
153 -- both P and Q are task masters). Q will have the same master id as
154 -- Master_of_Task of T3. Previous versions of this would abort T3 when
155 -- Q calls Complete_Master, which was completely wrong.
156
157 begin
158 C := All_Tasks_List;
159 while C /= null loop
160 P := C.Common.Parent;
161
162 if P = Self_ID then
163 if C.Master_of_Task = Self_ID.Master_Within then
164 pragma Debug
165 (Debug.Trace (Self_ID, "Aborting", 'X', C));
166 Utilities.Abort_One_Task (Self_ID, C);
167 C.Dependents_Aborted := True;
168 end if;
169 end if;
170
171 C := C.Common.All_Tasks_Link;
172 end loop;
173
174 Self_ID.Dependents_Aborted := True;
175 end Abort_Dependents;
176
177 -----------------
178 -- Abort_Tasks --
179 -----------------
180
181 procedure Abort_Tasks (Tasks : Task_List) is
182 begin
183 Utilities.Abort_Tasks (Tasks);
184 end Abort_Tasks;
185
186 --------------------
187 -- Activate_Tasks --
188 --------------------
189
190 -- Note that locks of activator and activated task are both locked here.
191 -- This is necessary because C.Common.State and Self.Common.Wait_Count have
192 -- to be synchronized. This is safe from deadlock because the activator is
193 -- always created before the activated task. That satisfies our
194 -- in-order-of-creation ATCB locking policy.
195
196 -- At one point, we may also lock the parent, if the parent is different
197 -- from the activator. That is also consistent with the lock ordering
198 -- policy, since the activator cannot be created before the parent.
199
200 -- Since we are holding both the activator's lock, and Task_Wrapper locks
201 -- that before it does anything more than initialize the low-level ATCB
202 -- components, it should be safe to wait to update the counts until we see
203 -- that the thread creation is successful.
204
205 -- If the thread creation fails, we do need to close the entries of the
206 -- task. The first phase, of dequeuing calls, only requires locking the
207 -- acceptor's ATCB, but the waking up of the callers requires locking the
208 -- caller's ATCB. We cannot safely do this while we are holding other
209 -- locks. Therefore, the queue-clearing operation is done in a separate
210 -- pass over the activation chain.
211
212 procedure Activate_Tasks (Chain_Access : Activation_Chain_Access) is
213 Self_ID : constant Task_Id := STPO.Self;
214 P : Task_Id;
215 C : Task_Id;
216 Next_C, Last_C : Task_Id;
217 Activate_Prio : System.Any_Priority;
218 Success : Boolean;
219 All_Elaborated : Boolean := True;
220
221 begin
222 -- If pragma Detect_Blocking is active, then we must check whether this
223 -- potentially blocking operation is called from a protected action.
224
225 if System.Tasking.Detect_Blocking
226 and then Self_ID.Common.Protected_Action_Nesting > 0
227 then
228 raise Program_Error with "potentially blocking operation";
229 end if;
230
231 pragma Debug
232 (Debug.Trace (Self_ID, "Activate_Tasks", 'C'));
233
234 Initialization.Defer_Abort_Nestable (Self_ID);
235
236 pragma Assert (Self_ID.Common.Wait_Count = 0);
237
238 -- Lock RTS_Lock, to prevent activated tasks from racing ahead before
239 -- we finish activating the chain.
240
241 Lock_RTS;
242
243 -- Check that all task bodies have been elaborated
244
245 C := Chain_Access.T_ID;
246 Last_C := null;
247 while C /= null loop
248 if C.Common.Elaborated /= null
249 and then not C.Common.Elaborated.all
250 then
251 All_Elaborated := False;
252 end if;
253
254 -- Reverse the activation chain so that tasks are activated in the
255 -- same order they're declared.
256
257 Next_C := C.Common.Activation_Link;
258 C.Common.Activation_Link := Last_C;
259 Last_C := C;
260 C := Next_C;
261 end loop;
262
263 Chain_Access.T_ID := Last_C;
264
265 if not All_Elaborated then
266 Unlock_RTS;
267 Initialization.Undefer_Abort_Nestable (Self_ID);
268 raise Program_Error with "Some tasks have not been elaborated";
269 end if;
270
271 -- Activate all the tasks in the chain. Creation of the thread of
272 -- control was deferred until activation. So create it now.
273
274 C := Chain_Access.T_ID;
275 while C /= null loop
276 if C.Common.State /= Terminated then
277 pragma Assert (C.Common.State = Unactivated);
278
279 P := C.Common.Parent;
280 Write_Lock (P);
281 Write_Lock (C);
282
283 Activate_Prio :=
284 (if C.Common.Base_Priority < Get_Priority (Self_ID)
285 then Get_Priority (Self_ID)
286 else C.Common.Base_Priority);
287
288 System.Task_Primitives.Operations.Create_Task
289 (C, Task_Wrapper'Address,
290 Parameters.Size_Type
291 (C.Common.Compiler_Data.Pri_Stack_Info.Size),
292 Activate_Prio, Success);
293
294 -- There would be a race between the created task and the creator
295 -- to do the following initialization, if we did not have a
296 -- Lock/Unlock_RTS pair in the task wrapper to prevent it from
297 -- racing ahead.
298
299 if Success then
300 C.Common.State := Activating;
301 C.Awake_Count := 1;
302 C.Alive_Count := 1;
303 P.Awake_Count := P.Awake_Count + 1;
304 P.Alive_Count := P.Alive_Count + 1;
305
306 if P.Common.State = Master_Completion_Sleep and then
307 C.Master_of_Task = P.Master_Within
308 then
309 pragma Assert (Self_ID /= P);
310 P.Common.Wait_Count := P.Common.Wait_Count + 1;
311 end if;
312
313 for J in System.Tasking.Debug.Known_Tasks'Range loop
314 if System.Tasking.Debug.Known_Tasks (J) = null then
315 System.Tasking.Debug.Known_Tasks (J) := C;
316 C.Known_Tasks_Index := J;
317 exit;
318 end if;
319 end loop;
320
321 if Global_Task_Debug_Event_Set then
322 Debug.Signal_Debug_Event
323 (Debug.Debug_Event_Activating, C);
324 end if;
325
326 C.Common.State := Runnable;
327
328 Unlock (C);
329 Unlock (P);
330
331 else
332 -- No need to set Awake_Count, State, etc. here since the loop
333 -- below will do that for any Unactivated tasks.
334
335 Unlock (C);
336 Unlock (P);
337 Self_ID.Common.Activation_Failed := True;
338 end if;
339 end if;
340
341 C := C.Common.Activation_Link;
342 end loop;
343
344 if not Single_Lock then
345 Unlock_RTS;
346 end if;
347
348 -- Close the entries of any tasks that failed thread creation, and count
349 -- those that have not finished activation.
350
351 Write_Lock (Self_ID);
352 Self_ID.Common.State := Activator_Sleep;
353
354 C := Chain_Access.T_ID;
355 while C /= null loop
356 Write_Lock (C);
357
358 if C.Common.State = Unactivated then
359 C.Common.Activator := null;
360 C.Common.State := Terminated;
361 C.Callable := False;
362 Utilities.Cancel_Queued_Entry_Calls (C);
363
364 elsif C.Common.Activator /= null then
365 Self_ID.Common.Wait_Count := Self_ID.Common.Wait_Count + 1;
366 end if;
367
368 Unlock (C);
369 P := C.Common.Activation_Link;
370 C.Common.Activation_Link := null;
371 C := P;
372 end loop;
373
374 -- Wait for the activated tasks to complete activation. It is
375 -- unsafe to abort any of these tasks until the count goes to zero.
376
377 loop
378 exit when Self_ID.Common.Wait_Count = 0;
379 Sleep (Self_ID, Activator_Sleep);
380 end loop;
381
382 Self_ID.Common.State := Runnable;
383 Unlock (Self_ID);
384
385 if Single_Lock then
386 Unlock_RTS;
387 end if;
388
389 -- Remove the tasks from the chain
390
391 Chain_Access.T_ID := null;
392 Initialization.Undefer_Abort_Nestable (Self_ID);
393
394 if Self_ID.Common.Activation_Failed then
395 Self_ID.Common.Activation_Failed := False;
396 raise Tasking_Error with "Failure during activation";
397 end if;
398 end Activate_Tasks;
399
400 -------------------------
401 -- Complete_Activation --
402 -------------------------
403
404 procedure Complete_Activation is
405 Self_ID : constant Task_Id := STPO.Self;
406
407 begin
408 Initialization.Defer_Abort_Nestable (Self_ID);
409
410 if Single_Lock then
411 Lock_RTS;
412 end if;
413
414 Vulnerable_Complete_Activation (Self_ID);
415
416 if Single_Lock then
417 Unlock_RTS;
418 end if;
419
420 Initialization.Undefer_Abort_Nestable (Self_ID);
421
422 -- ??? Why do we need to allow for nested deferral here?
423
424 end Complete_Activation;
425
426 ---------------------
427 -- Complete_Master --
428 ---------------------
429
430 procedure Complete_Master is
431 Self_ID : constant Task_Id := STPO.Self;
432 begin
433 pragma Assert
434 (Self_ID.Deferral_Level > 0
435 or else not System.Restrictions.Abort_Allowed);
436 Vulnerable_Complete_Master (Self_ID);
437 end Complete_Master;
438
439 -------------------
440 -- Complete_Task --
441 -------------------
442
443 -- See comments on Vulnerable_Complete_Task for details
444
445 procedure Complete_Task is
446 Self_ID : constant Task_Id := STPO.Self;
447
448 begin
449 pragma Assert
450 (Self_ID.Deferral_Level > 0
451 or else not System.Restrictions.Abort_Allowed);
452
453 Vulnerable_Complete_Task (Self_ID);
454
455 -- All of our dependents have terminated, never undefer abort again
456
457 end Complete_Task;
458
459 -----------------
460 -- Create_Task --
461 -----------------
462
463 -- Compiler interface only. Do not call from within the RTS. This must be
464 -- called to create a new task.
465
466 procedure Create_Task
467 (Priority : Integer;
468 Stack_Size : System.Parameters.Size_Type;
469 Secondary_Stack_Size : System.Parameters.Size_Type;
470 Task_Info : System.Task_Info.Task_Info_Type;
471 CPU : Integer;
472 Relative_Deadline : Ada.Real_Time.Time_Span;
473 Domain : Dispatching_Domain_Access;
474 Num_Entries : Task_Entry_Index;
475 Master : Master_Level;
476 State : Task_Procedure_Access;
477 Discriminants : System.Address;
478 Elaborated : Access_Boolean;
479 Chain : in out Activation_Chain;
480 Task_Image : String;
481 Created_Task : out Task_Id)
482 is
483 T, P : Task_Id;
484 Self_ID : constant Task_Id := STPO.Self;
485 Success : Boolean;
486 Base_Priority : System.Any_Priority;
487 Len : Natural;
488 Base_CPU : System.Multiprocessors.CPU_Range;
489
490 use type System.Multiprocessors.CPU_Range;
491
492 pragma Unreferenced (Relative_Deadline);
493 -- EDF scheduling is not supported by any of the target platforms so
494 -- this parameter is not passed any further.
495
496 begin
497 -- If Master is greater than the current master, it means that Master
498 -- has already awaited its dependent tasks. This raises Program_Error,
499 -- by 4.8(10.3/2). See AI-280. Ignore this check for foreign threads.
500
501 if Self_ID.Master_of_Task /= Foreign_Task_Level
502 and then Master > Self_ID.Master_Within
503 then
504 raise Program_Error with
505 "create task after awaiting termination";
506 end if;
507
508 -- If pragma Detect_Blocking is active must be checked whether this
509 -- potentially blocking operation is called from a protected action.
510
511 if System.Tasking.Detect_Blocking
512 and then Self_ID.Common.Protected_Action_Nesting > 0
513 then
514 raise Program_Error with "potentially blocking operation";
515 end if;
516
517 pragma Debug (Debug.Trace (Self_ID, "Create_Task", 'C'));
518
519 Base_Priority :=
520 (if Priority = Unspecified_Priority
521 then Self_ID.Common.Base_Priority
522 else System.Any_Priority (Priority));
523
524 -- Legal values of CPU are the special Unspecified_CPU value which is
525 -- inserted by the compiler for tasks without CPU aspect, and those in
526 -- the range of CPU_Range but no greater than Number_Of_CPUs. Otherwise
527 -- the task is defined to have failed, and it becomes a completed task
528 -- (RM D.16(14/3)).
529
530 if CPU /= Unspecified_CPU
531 and then (CPU < Integer (System.Multiprocessors.CPU_Range'First)
532 or else
533 CPU > Integer (System.Multiprocessors.Number_Of_CPUs))
534 then
535 raise Tasking_Error with "CPU not in range";
536
537 -- Normal CPU affinity
538
539 else
540 -- When the application code says nothing about the task affinity
541 -- (task without CPU aspect) then the compiler inserts the value
542 -- Unspecified_CPU which indicates to the run-time library that
543 -- the task will activate and execute on the same processor as its
544 -- activating task if the activating task is assigned a processor
545 -- (RM D.16(14/3)).
546
547 Base_CPU :=
548 (if CPU = Unspecified_CPU
549 then Self_ID.Common.Base_CPU
550 else System.Multiprocessors.CPU_Range (CPU));
551 end if;
552
553 -- Find parent P of new Task, via master level number. Independent
554 -- tasks should have Parent = Environment_Task, and all tasks created
555 -- by independent tasks are also independent. See, for example,
556 -- s-interr.adb, where Interrupt_Manager does "new Server_Task". The
557 -- access type is at library level, so the parent of the Server_Task
558 -- is Environment_Task.
559
560 P := Self_ID;
561
562 if P.Master_of_Task <= Independent_Task_Level then
563 P := Environment_Task;
564 else
565 while P /= null and then P.Master_of_Task >= Master loop
566 P := P.Common.Parent;
567 end loop;
568 end if;
569
570 Initialization.Defer_Abort_Nestable (Self_ID);
571
572 begin
573 T := New_ATCB (Num_Entries);
574 exception
575 when others =>
576 Initialization.Undefer_Abort_Nestable (Self_ID);
577 raise Storage_Error with "Cannot allocate task";
578 end;
579
580 -- RTS_Lock is used by Abort_Dependents and Abort_Tasks. Up to this
581 -- point, it is possible that we may be part of a family of tasks that
582 -- is being aborted.
583
584 Lock_RTS;
585 Write_Lock (Self_ID);
586
587 -- Now, we must check that we have not been aborted. If so, we should
588 -- give up on creating this task, and simply return.
589
590 if not Self_ID.Callable then
591 pragma Assert (Self_ID.Pending_ATC_Level = 0);
592 pragma Assert (Self_ID.Pending_Action);
593 pragma Assert
594 (Chain.T_ID = null or else Chain.T_ID.Common.State = Unactivated);
595
596 Unlock (Self_ID);
597 Unlock_RTS;
598 Initialization.Undefer_Abort_Nestable (Self_ID);
599
600 -- ??? Should never get here
601
602 pragma Assert (False);
603 raise Standard'Abort_Signal;
604 end if;
605
606 Initialize_ATCB (Self_ID, State, Discriminants, P, Elaborated,
607 Base_Priority, Base_CPU, Domain, Task_Info, Stack_Size, T, Success);
608
609 if not Success then
610 Free (T);
611 Unlock (Self_ID);
612 Unlock_RTS;
613 Initialization.Undefer_Abort_Nestable (Self_ID);
614 raise Storage_Error with "Failed to initialize task";
615 end if;
616
617 if Master = Foreign_Task_Level + 2 then
618
619 -- This should not happen, except when a foreign task creates non
620 -- library-level Ada tasks. In this case, we pretend the master is
621 -- a regular library level task, otherwise the run-time will get
622 -- confused when waiting for these tasks to terminate.
623
624 T.Master_of_Task := Library_Task_Level;
625
626 else
627 T.Master_of_Task := Master;
628 end if;
629
630 T.Master_Within := T.Master_of_Task + 1;
631
632 for L in T.Entry_Calls'Range loop
633 T.Entry_Calls (L).Self := T;
634 T.Entry_Calls (L).Level := L;
635 end loop;
636
637 if Task_Image'Length = 0 then
638 T.Common.Task_Image_Len := 0;
639 else
640 Len := 1;
641 T.Common.Task_Image (1) := Task_Image (Task_Image'First);
642
643 -- Remove unwanted blank space generated by 'Image
644
645 for J in Task_Image'First + 1 .. Task_Image'Last loop
646 if Task_Image (J) /= ' '
647 or else Task_Image (J - 1) /= '('
648 then
649 Len := Len + 1;
650 T.Common.Task_Image (Len) := Task_Image (J);
651 exit when Len = T.Common.Task_Image'Last;
652 end if;
653 end loop;
654
655 T.Common.Task_Image_Len := Len;
656 end if;
657
658 -- Note: we used to have code here to initialize T.Commmon.Domain, but
659 -- that is not needed, since this is initialized in System.Tasking.
660
661 Unlock (Self_ID);
662 Unlock_RTS;
663
664 -- The CPU associated to the task (if any) must belong to the
665 -- dispatching domain.
666
667 if Base_CPU /= System.Multiprocessors.Not_A_Specific_CPU
668 and then
669 (Base_CPU not in T.Common.Domain'Range
670 or else not T.Common.Domain (Base_CPU))
671 then
672 Initialization.Undefer_Abort_Nestable (Self_ID);
673 raise Tasking_Error with "CPU not in dispatching domain";
674 end if;
675
676 -- To handle the interaction between pragma CPU and dispatching domains
677 -- we need to signal that this task is being allocated to a processor.
678 -- This is needed only for tasks belonging to the system domain (the
679 -- creation of new dispatching domains can only take processors from the
680 -- system domain) and only before the environment task calls the main
681 -- procedure (dispatching domains cannot be created after this).
682
683 if Base_CPU /= System.Multiprocessors.Not_A_Specific_CPU
684 and then T.Common.Domain = System.Tasking.System_Domain
685 and then not System.Tasking.Dispatching_Domains_Frozen
686 then
687 -- Increase the number of tasks attached to the CPU to which this
688 -- task is being moved.
689
690 Dispatching_Domain_Tasks (Base_CPU) :=
691 Dispatching_Domain_Tasks (Base_CPU) + 1;
692 end if;
693
694 -- Create the secondary stack for the task as early as possible during
695 -- in the creation of a task, since it may be used by the operation of
696 -- Ada code within the task.
697
698 begin
699 SSL.Create_TSD (T.Common.Compiler_Data, null, Secondary_Stack_Size);
700 exception
701 when others =>
702 Initialization.Undefer_Abort_Nestable (Self_ID);
703 raise Storage_Error with "Secondary stack could not be allocated";
704 end;
705
706 T.Common.Activation_Link := Chain.T_ID;
707 Chain.T_ID := T;
708 Created_Task := T;
709 Initialization.Undefer_Abort_Nestable (Self_ID);
710
711 pragma Debug
712 (Debug.Trace
713 (Self_ID, "Created task in " & T.Master_of_Task'Img, 'C', T));
714 end Create_Task;
715
716 --------------------
717 -- Current_Master --
718 --------------------
719
720 function Current_Master return Master_Level is
721 begin
722 return STPO.Self.Master_Within;
723 end Current_Master;
724
725 ------------------
726 -- Enter_Master --
727 ------------------
728
729 procedure Enter_Master is
730 Self_ID : constant Task_Id := STPO.Self;
731 begin
732 Self_ID.Master_Within := Self_ID.Master_Within + 1;
733 pragma Debug
734 (Debug.Trace
735 (Self_ID, "Enter_Master ->" & Self_ID.Master_Within'Img, 'M'));
736 end Enter_Master;
737
738 -------------------------------
739 -- Expunge_Unactivated_Tasks --
740 -------------------------------
741
742 -- See procedure Close_Entries for the general case
743
744 procedure Expunge_Unactivated_Tasks (Chain : in out Activation_Chain) is
745 Self_ID : constant Task_Id := STPO.Self;
746 C : Task_Id;
747 Call : Entry_Call_Link;
748 Temp : Task_Id;
749
750 begin
751 pragma Debug
752 (Debug.Trace (Self_ID, "Expunge_Unactivated_Tasks", 'C'));
753
754 Initialization.Defer_Abort_Nestable (Self_ID);
755
756 -- ???
757 -- Experimentation has shown that abort is sometimes (but not always)
758 -- already deferred when this is called.
759
760 -- That may indicate an error. Find out what is going on
761
762 C := Chain.T_ID;
763 while C /= null loop
764 pragma Assert (C.Common.State = Unactivated);
765
766 Temp := C.Common.Activation_Link;
767
768 if C.Common.State = Unactivated then
769 Lock_RTS;
770 Write_Lock (C);
771
772 for J in 1 .. C.Entry_Num loop
773 Queuing.Dequeue_Head (C.Entry_Queues (J), Call);
774 pragma Assert (Call = null);
775 end loop;
776
777 Unlock (C);
778
779 Initialization.Remove_From_All_Tasks_List (C);
780 Unlock_RTS;
781
782 Vulnerable_Free_Task (C);
783 C := Temp;
784 end if;
785 end loop;
786
787 Chain.T_ID := null;
788 Initialization.Undefer_Abort_Nestable (Self_ID);
789 end Expunge_Unactivated_Tasks;
790
791 ---------------------------
792 -- Finalize_Global_Tasks --
793 ---------------------------
794
795 -- ???
796 -- We have a potential problem here if finalization of global objects does
797 -- anything with signals or the timer server, since by that time those
798 -- servers have terminated.
799
800 -- It is hard to see how that would occur
801
802 -- However, a better solution might be to do all this finalization
803 -- using the global finalization chain.
804
805 procedure Finalize_Global_Tasks is
806 Self_ID : constant Task_Id := STPO.Self;
807
808 Ignore_1 : Boolean;
809 Ignore_2 : Boolean;
810
811 function State
812 (Int : System.Interrupt_Management.Interrupt_ID) return Character;
813 pragma Import (C, State, "__gnat_get_interrupt_state");
814 -- Get interrupt state for interrupt number Int. Defined in init.c
815
816 Default : constant Character := 's';
817 -- 's' Interrupt_State pragma set state to System (use "default"
818 -- system handler)
819
820 begin
821 if Self_ID.Deferral_Level = 0 then
822 -- ???
823 -- In principle, we should be able to predict whether abort is
824 -- already deferred here (and it should not be deferred yet but in
825 -- practice it seems Finalize_Global_Tasks is being called sometimes,
826 -- from RTS code for exceptions, with abort already deferred.
827
828 Initialization.Defer_Abort_Nestable (Self_ID);
829
830 -- Never undefer again
831 end if;
832
833 -- This code is only executed by the environment task
834
835 pragma Assert (Self_ID = Environment_Task);
836
837 -- Set Environment_Task'Callable to false to notify library-level tasks
838 -- that it is waiting for them.
839
840 Self_ID.Callable := False;
841
842 -- Exit level 2 master, for normal tasks in library-level packages
843
844 Complete_Master;
845
846 -- Force termination of "independent" library-level server tasks
847
848 Lock_RTS;
849
850 Abort_Dependents (Self_ID);
851
852 if not Single_Lock then
853 Unlock_RTS;
854 end if;
855
856 -- We need to explicitly wait for the task to be terminated here
857 -- because on true concurrent system, we may end this procedure before
858 -- the tasks are really terminated.
859
860 Write_Lock (Self_ID);
861
862 -- If the Abort_Task signal is set to system, it means that we may
863 -- not have been able to abort all independent tasks (in particular,
864 -- Server_Task may be blocked, waiting for a signal), in which case, do
865 -- not wait for Independent_Task_Count to go down to 0. We arbitrarily
866 -- limit the number of loop iterations; if an independent task does not
867 -- terminate, we do not want to hang here. In that case, the thread will
868 -- be terminated when the process exits.
869
870 if State (System.Interrupt_Management.Abort_Task_Interrupt) /= Default
871 then
872 for J in 1 .. 10 loop
873 exit when Utilities.Independent_Task_Count = 0;
874
875 -- We used to yield here, but this did not take into account low
876 -- priority tasks that would cause dead lock in some cases (true
877 -- FIFO scheduling).
878
879 Timed_Sleep
880 (Self_ID, 0.01, System.OS_Primitives.Relative,
881 Self_ID.Common.State, Ignore_1, Ignore_2);
882 end loop;
883 end if;
884
885 -- ??? On multi-processor environments, it seems that the above loop
886 -- isn't sufficient, so we need to add an additional delay.
887
888 Timed_Sleep
889 (Self_ID, 0.01, System.OS_Primitives.Relative,
890 Self_ID.Common.State, Ignore_1, Ignore_2);
891
892 Unlock (Self_ID);
893
894 if Single_Lock then
895 Unlock_RTS;
896 end if;
897
898 -- Complete the environment task
899
900 Vulnerable_Complete_Task (Self_ID);
901
902 -- Handle normal task termination by the environment task, but only
903 -- for the normal task termination. In the case of Abnormal and
904 -- Unhandled_Exception they must have been handled before, and the
905 -- task termination soft link must have been changed so the task
906 -- termination routine is not executed twice.
907
908 SSL.Task_Termination_Handler.all (Ada.Exceptions.Null_Occurrence);
909
910 -- Finalize all library-level controlled objects
911
912 if not SSL."=" (SSL.Finalize_Library_Objects, null) then
913 SSL.Finalize_Library_Objects.all;
914 end if;
915
916 -- Reset the soft links to non-tasking
917
918 SSL.Abort_Defer := SSL.Abort_Defer_NT'Access;
919 SSL.Abort_Undefer := SSL.Abort_Undefer_NT'Access;
920 SSL.Lock_Task := SSL.Task_Lock_NT'Access;
921 SSL.Unlock_Task := SSL.Task_Unlock_NT'Access;
922 SSL.Get_Jmpbuf_Address := SSL.Get_Jmpbuf_Address_NT'Access;
923 SSL.Set_Jmpbuf_Address := SSL.Set_Jmpbuf_Address_NT'Access;
924 SSL.Get_Sec_Stack := SSL.Get_Sec_Stack_NT'Access;
925 SSL.Set_Sec_Stack := SSL.Set_Sec_Stack_NT'Access;
926 SSL.Check_Abort_Status := SSL.Check_Abort_Status_NT'Access;
927 SSL.Get_Stack_Info := SSL.Get_Stack_Info_NT'Access;
928
929 -- Don't bother trying to finalize Initialization.Global_Task_Lock
930 -- and System.Task_Primitives.RTS_Lock.
931
932 end Finalize_Global_Tasks;
933
934 ---------------
935 -- Free_Task --
936 ---------------
937
938 procedure Free_Task (T : Task_Id) is
939 Self_Id : constant Task_Id := Self;
940
941 begin
942 if T.Common.State = Terminated then
943
944 -- It is not safe to call Abort_Defer or Write_Lock at this stage
945
946 Initialization.Task_Lock (Self_Id);
947
948 Lock_RTS;
949 Initialization.Finalize_Attributes (T);
950 Initialization.Remove_From_All_Tasks_List (T);
951 Unlock_RTS;
952
953 Initialization.Task_Unlock (Self_Id);
954
955 System.Task_Primitives.Operations.Finalize_TCB (T);
956
957 else
958 -- If the task is not terminated, then mark the task as to be freed
959 -- upon termination.
960
961 T.Free_On_Termination := True;
962 end if;
963 end Free_Task;
964
965 ---------------------------
966 -- Move_Activation_Chain --
967 ---------------------------
968
969 procedure Move_Activation_Chain
970 (From, To : Activation_Chain_Access;
971 New_Master : Master_ID)
972 is
973 Self_ID : constant Task_Id := STPO.Self;
974 C : Task_Id;
975
976 begin
977 pragma Debug
978 (Debug.Trace (Self_ID, "Move_Activation_Chain", 'C'));
979
980 -- Nothing to do if From is empty, and we can check that without
981 -- deferring aborts.
982
983 C := From.all.T_ID;
984
985 if C = null then
986 return;
987 end if;
988
989 Initialization.Defer_Abort_Nestable (Self_ID);
990
991 -- Loop through the From chain, changing their Master_of_Task fields,
992 -- and to find the end of the chain.
993
994 loop
995 C.Master_of_Task := New_Master;
996 exit when C.Common.Activation_Link = null;
997 C := C.Common.Activation_Link;
998 end loop;
999
1000 -- Hook From in at the start of To
1001
1002 C.Common.Activation_Link := To.all.T_ID;
1003 To.all.T_ID := From.all.T_ID;
1004
1005 -- Set From to empty
1006
1007 From.all.T_ID := null;
1008
1009 Initialization.Undefer_Abort_Nestable (Self_ID);
1010 end Move_Activation_Chain;
1011
1012 ------------------
1013 -- Task_Wrapper --
1014 ------------------
1015
1016 -- The task wrapper is a procedure that is called first for each task body
1017 -- and which in turn calls the compiler-generated task body procedure.
1018 -- The wrapper's main job is to do initialization for the task. It also
1019 -- has some locally declared objects that serve as per-task local data.
1020 -- Task finalization is done by Complete_Task, which is called from an
1021 -- at-end handler that the compiler generates.
1022
1023 procedure Task_Wrapper (Self_ID : Task_Id) is
1024 use System.Standard_Library;
1025 use System.Stack_Usage;
1026
1027 Bottom_Of_Stack : aliased Integer;
1028
1029 Task_Alternate_Stack :
1030 aliased SSE.Storage_Array (1 .. Alternate_Stack_Size);
1031 -- The alternate signal stack for this task, if any
1032
1033 Use_Alternate_Stack : constant Boolean := Alternate_Stack_Size /= 0;
1034 -- Whether to use above alternate signal stack for stack overflows
1035
1036 SEH_Table : aliased SSE.Storage_Array (1 .. 8);
1037 -- Structured Exception Registration table (2 words)
1038
1039 procedure Install_SEH_Handler (Addr : System.Address);
1040 pragma Import (C, Install_SEH_Handler, "__gnat_install_SEH_handler");
1041 -- Install the SEH (Structured Exception Handling) handler
1042
1043 Cause : Cause_Of_Termination := Normal;
1044 -- Indicates the reason why this task terminates. Normal corresponds to
1045 -- a task terminating due to completing the last statement of its body,
1046 -- or as a result of waiting on a terminate alternative. If the task
1047 -- terminates because it is being aborted then Cause will be set
1048 -- to Abnormal. If the task terminates because of an exception
1049 -- raised by the execution of its task body, then Cause is set
1050 -- to Unhandled_Exception.
1051
1052 EO : Exception_Occurrence;
1053 -- If the task terminates because of an exception raised by the
1054 -- execution of its task body, then EO will contain the associated
1055 -- exception occurrence. Otherwise, it will contain Null_Occurrence.
1056
1057 TH : Termination_Handler := null;
1058 -- Pointer to the protected procedure to be executed upon task
1059 -- termination.
1060
1061 procedure Search_Fall_Back_Handler (ID : Task_Id);
1062 -- Procedure that searches recursively a fall-back handler through the
1063 -- master relationship. If the handler is found, its pointer is stored
1064 -- in TH. It stops when the handler is found or when the ID is null.
1065
1066 ------------------------------
1067 -- Search_Fall_Back_Handler --
1068 ------------------------------
1069
1070 procedure Search_Fall_Back_Handler (ID : Task_Id) is
1071 begin
1072 -- A null Task_Id indicates that we have reached the root of the
1073 -- task hierarchy and no handler has been found.
1074
1075 if ID = null then
1076 return;
1077
1078 -- If there is a fall back handler, store its pointer for later
1079 -- execution.
1080
1081 elsif ID.Common.Fall_Back_Handler /= null then
1082 TH := ID.Common.Fall_Back_Handler;
1083
1084 -- Otherwise look for a fall back handler in the parent
1085
1086 else
1087 Search_Fall_Back_Handler (ID.Common.Parent);
1088 end if;
1089 end Search_Fall_Back_Handler;
1090
1091 -- Start of processing for Task_Wrapper
1092
1093 begin
1094 pragma Assert (Self_ID.Deferral_Level = 1);
1095
1096 Debug.Master_Hook
1097 (Self_ID, Self_ID.Common.Parent, Self_ID.Master_of_Task);
1098
1099 if Use_Alternate_Stack then
1100 Self_ID.Common.Task_Alternate_Stack := Task_Alternate_Stack'Address;
1101 end if;
1102
1103 -- Set the guard page at the bottom of the stack. The call to unprotect
1104 -- the page is done in Terminate_Task
1105
1106 Stack_Guard (Self_ID, True);
1107
1108 -- Initialize low-level TCB components, that cannot be initialized by
1109 -- the creator. Enter_Task sets Self_ID.LL.Thread.
1110
1111 Enter_Task (Self_ID);
1112
1113 -- Initialize dynamic stack usage
1114
1115 if System.Stack_Usage.Is_Enabled then
1116 declare
1117 Guard_Page_Size : constant := 16 * 1024;
1118 -- Part of the stack used as a guard page. This is an OS dependent
1119 -- value, so we need to use the maximum. This value is only used
1120 -- when the stack address is known, that is currently Windows.
1121
1122 Small_Overflow_Guard : constant := 12 * 1024;
1123 -- Note: this used to be 4K, but was changed to 12K, since
1124 -- smaller values resulted in segmentation faults from dynamic
1125 -- stack analysis.
1126
1127 Big_Overflow_Guard : constant := 64 * 1024 + 8 * 1024;
1128 Small_Stack_Limit : constant := 64 * 1024;
1129 -- ??? These three values are experimental, and seem to work on
1130 -- most platforms. They still need to be analyzed further. They
1131 -- also need documentation, what are they and why does the logic
1132 -- differ depending on whether the stack is large or small???
1133
1134 Pattern_Size : Natural :=
1135 Natural (Self_ID.Common.
1136 Compiler_Data.Pri_Stack_Info.Size);
1137 -- Size of the pattern
1138
1139 Stack_Base : Address;
1140 -- Address of the base of the stack
1141
1142 begin
1143 Stack_Base := Self_ID.Common.Compiler_Data.Pri_Stack_Info.Base;
1144
1145 if Stack_Base = Null_Address then
1146
1147 -- On many platforms, we don't know the real stack base
1148 -- address. Estimate it using an address in the frame.
1149
1150 Stack_Base := Bottom_Of_Stack'Address;
1151
1152 -- Adjustments for inner frames
1153
1154 Pattern_Size := Pattern_Size -
1155 (if Pattern_Size < Small_Stack_Limit
1156 then Small_Overflow_Guard
1157 else Big_Overflow_Guard);
1158 else
1159 -- Reduce by the size of the final guard page
1160
1161 Pattern_Size := Pattern_Size - Guard_Page_Size;
1162 end if;
1163
1164 STPO.Lock_RTS;
1165 Initialize_Analyzer
1166 (Self_ID.Common.Analyzer,
1167 Self_ID.Common.Task_Image (1 .. Self_ID.Common.Task_Image_Len),
1168 Natural (Self_ID.Common.Compiler_Data.Pri_Stack_Info.Size),
1169 SSE.To_Integer (Stack_Base),
1170 Pattern_Size);
1171 STPO.Unlock_RTS;
1172 Fill_Stack (Self_ID.Common.Analyzer);
1173 end;
1174 end if;
1175
1176 -- We setup the SEH (Structured Exception Handling) handler if supported
1177 -- on the target.
1178
1179 Install_SEH_Handler (SEH_Table'Address);
1180
1181 -- Initialize exception occurrence
1182
1183 Save_Occurrence (EO, Ada.Exceptions.Null_Occurrence);
1184
1185 -- We lock RTS_Lock to wait for activator to finish activating the rest
1186 -- of the chain, so that everyone in the chain comes out in priority
1187 -- order.
1188
1189 -- This also protects the value of
1190 -- Self_ID.Common.Activator.Common.Wait_Count.
1191
1192 Lock_RTS;
1193 Unlock_RTS;
1194
1195 if not System.Restrictions.Abort_Allowed then
1196
1197 -- If Abort is not allowed, reset the deferral level since it will
1198 -- not get changed by the generated code. Keeping a default value
1199 -- of one would prevent some operations (e.g. select or delay) to
1200 -- proceed successfully.
1201
1202 Self_ID.Deferral_Level := 0;
1203 end if;
1204
1205 if Global_Task_Debug_Event_Set then
1206 Debug.Signal_Debug_Event (Debug.Debug_Event_Run, Self_ID);
1207 end if;
1208
1209 begin
1210 -- We are separating the following portion of the code in order to
1211 -- place the exception handlers in a different block. In this way,
1212 -- we do not call Set_Jmpbuf_Address (which needs Self) before we
1213 -- set Self in Enter_Task
1214
1215 -- Call the task body procedure
1216
1217 -- The task body is called with abort still deferred. That
1218 -- eliminates a dangerous window, for which we had to patch-up in
1219 -- Terminate_Task.
1220
1221 -- During the expansion of the task body, we insert an RTS-call
1222 -- to Abort_Undefer, at the first point where abort should be
1223 -- allowed.
1224
1225 Self_ID.Common.Task_Entry_Point (Self_ID.Common.Task_Arg);
1226 Initialization.Defer_Abort_Nestable (Self_ID);
1227
1228 exception
1229 -- We can't call Terminate_Task in the exception handlers below,
1230 -- since there may be (e.g. in the case of GCC exception handling)
1231 -- clean ups associated with the exception handler that need to
1232 -- access task specific data.
1233
1234 -- Defer abort so that this task can't be aborted while exiting
1235
1236 when Standard'Abort_Signal =>
1237 Initialization.Defer_Abort_Nestable (Self_ID);
1238
1239 -- Update the cause that motivated the task termination so that
1240 -- the appropriate information is passed to the task termination
1241 -- procedure. Task termination as a result of waiting on a
1242 -- terminate alternative is a normal termination, although it is
1243 -- implemented using the abort mechanisms.
1244
1245 if Self_ID.Terminate_Alternative then
1246 Cause := Normal;
1247
1248 if Global_Task_Debug_Event_Set then
1249 Debug.Signal_Debug_Event
1250 (Debug.Debug_Event_Terminated, Self_ID);
1251 end if;
1252 else
1253 Cause := Abnormal;
1254
1255 if Global_Task_Debug_Event_Set then
1256 Debug.Signal_Debug_Event
1257 (Debug.Debug_Event_Abort_Terminated, Self_ID);
1258 end if;
1259 end if;
1260
1261 when others =>
1262 -- ??? Using an E : others here causes CD2C11A to fail on Tru64
1263
1264 Initialization.Defer_Abort_Nestable (Self_ID);
1265
1266 -- Perform the task specific exception tracing duty. We handle
1267 -- these outputs here and not in the common notification routine
1268 -- because we need access to tasking related data and we don't
1269 -- want to drag dependencies against tasking related units in the
1270 -- the common notification units. Additionally, no trace is ever
1271 -- triggered from the common routine for the Unhandled_Raise case
1272 -- in tasks, since an exception never appears unhandled in this
1273 -- context because of this handler.
1274
1275 if Exception_Trace = Unhandled_Raise then
1276 Trace_Unhandled_Exception_In_Task (Self_ID);
1277 end if;
1278
1279 -- Update the cause that motivated the task termination so that
1280 -- the appropriate information is passed to the task termination
1281 -- procedure, as well as the associated Exception_Occurrence.
1282
1283 Cause := Unhandled_Exception;
1284
1285 Save_Occurrence (EO, SSL.Get_Current_Excep.all.all);
1286
1287 if Global_Task_Debug_Event_Set then
1288 Debug.Signal_Debug_Event
1289 (Debug.Debug_Event_Exception_Terminated, Self_ID);
1290 end if;
1291 end;
1292
1293 -- Look for a task termination handler. This code is for all tasks but
1294 -- the environment task. The task termination code for the environment
1295 -- task is executed by SSL.Task_Termination_Handler.
1296
1297 if Single_Lock then
1298 Lock_RTS;
1299 end if;
1300
1301 Write_Lock (Self_ID);
1302
1303 if Self_ID.Common.Specific_Handler /= null then
1304 TH := Self_ID.Common.Specific_Handler;
1305
1306 -- Independent tasks should not call the Fall_Back_Handler (of the
1307 -- environment task), because they are implementation artifacts that
1308 -- should be invisible to Ada programs.
1309
1310 elsif Self_ID.Master_of_Task /= Independent_Task_Level then
1311
1312 -- Look for a fall-back handler following the master relationship
1313 -- for the task. As specified in ARM C.7.3 par. 9/2, "the fall-back
1314 -- handler applies only to the dependent tasks of the task". Hence,
1315 -- if the terminating tasks (Self_ID) had a fall-back handler, it
1316 -- would not apply to itself, so we start the search with the parent.
1317
1318 Search_Fall_Back_Handler (Self_ID.Common.Parent);
1319 end if;
1320
1321 Unlock (Self_ID);
1322
1323 if Single_Lock then
1324 Unlock_RTS;
1325 end if;
1326
1327 -- Execute the task termination handler if we found it
1328
1329 if TH /= null then
1330 begin
1331 TH.all (Cause, Self_ID, EO);
1332
1333 exception
1334
1335 -- RM-C.7.3 requires all exceptions raised here to be ignored
1336
1337 when others =>
1338 null;
1339 end;
1340 end if;
1341
1342 if System.Stack_Usage.Is_Enabled then
1343 Compute_Result (Self_ID.Common.Analyzer);
1344 Report_Result (Self_ID.Common.Analyzer);
1345 end if;
1346
1347 Terminate_Task (Self_ID);
1348 end Task_Wrapper;
1349
1350 --------------------
1351 -- Terminate_Task --
1352 --------------------
1353
1354 -- Before we allow the thread to exit, we must clean up. This is a delicate
1355 -- job. We must wake up the task's master, who may immediately try to
1356 -- deallocate the ATCB from the current task WHILE IT IS STILL EXECUTING.
1357
1358 -- To avoid this, the parent task must be blocked up to the latest
1359 -- statement executed. The trouble is that we have another step that we
1360 -- also want to postpone to the very end, i.e., calling SSL.Destroy_TSD.
1361 -- We have to postpone that until the end because compiler-generated code
1362 -- is likely to try to access that data at just about any point.
1363
1364 -- We can't call Destroy_TSD while we are holding any other locks, because
1365 -- it locks Global_Task_Lock, and our deadlock prevention rules require
1366 -- that to be the outermost lock. Our first "solution" was to just lock
1367 -- Global_Task_Lock in addition to the other locks, and force the parent to
1368 -- also lock this lock between its wakeup and its freeing of the ATCB. See
1369 -- Complete_Task for the parent-side of the code that has the matching
1370 -- calls to Task_Lock and Task_Unlock. That was not really a solution,
1371 -- since the operation Task_Unlock continued to access the ATCB after
1372 -- unlocking, after which the parent was observed to race ahead, deallocate
1373 -- the ATCB, and then reallocate it to another task. The call to
1374 -- Undefer_Abort in Task_Unlock by the "terminated" task was overwriting
1375 -- the data of the new task that reused the ATCB. To solve this problem, we
1376 -- introduced the new operation Final_Task_Unlock.
1377
1378 procedure Terminate_Task (Self_ID : Task_Id) is
1379 Environment_Task : constant Task_Id := STPO.Environment_Task;
1380 Master_of_Task : Integer;
1381 Deallocate : Boolean;
1382
1383 begin
1384 Debug.Task_Termination_Hook;
1385
1386 -- Since GCC cannot allocate stack chunks efficiently without reordering
1387 -- some of the allocations, we have to handle this unexpected situation
1388 -- here. Normally we never have to call Vulnerable_Complete_Task here.
1389
1390 if Self_ID.Common.Activator /= null then
1391 Vulnerable_Complete_Task (Self_ID);
1392 end if;
1393
1394 Initialization.Task_Lock (Self_ID);
1395
1396 if Single_Lock then
1397 Lock_RTS;
1398 end if;
1399
1400 Master_of_Task := Self_ID.Master_of_Task;
1401
1402 -- Check if the current task is an independent task If so, decrement
1403 -- the Independent_Task_Count value.
1404
1405 if Master_of_Task = Independent_Task_Level then
1406 if Single_Lock then
1407 Utilities.Independent_Task_Count :=
1408 Utilities.Independent_Task_Count - 1;
1409
1410 else
1411 Write_Lock (Environment_Task);
1412 Utilities.Independent_Task_Count :=
1413 Utilities.Independent_Task_Count - 1;
1414 Unlock (Environment_Task);
1415 end if;
1416 end if;
1417
1418 -- Unprotect the guard page if needed
1419
1420 Stack_Guard (Self_ID, False);
1421
1422 Utilities.Make_Passive (Self_ID, Task_Completed => True);
1423 Deallocate := Self_ID.Free_On_Termination;
1424
1425 if Single_Lock then
1426 Unlock_RTS;
1427 end if;
1428
1429 pragma Assert (Check_Exit (Self_ID));
1430
1431 SSL.Destroy_TSD (Self_ID.Common.Compiler_Data);
1432 Initialization.Final_Task_Unlock (Self_ID);
1433
1434 -- WARNING: past this point, this thread must assume that the ATCB has
1435 -- been deallocated, and can't access it anymore (which is why we have
1436 -- saved the Free_On_Termination flag in a temporary variable).
1437
1438 if Deallocate then
1439 Free_Task (Self_ID);
1440 end if;
1441
1442 if Master_of_Task > 0 then
1443 STPO.Exit_Task;
1444 end if;
1445 end Terminate_Task;
1446
1447 ----------------
1448 -- Terminated --
1449 ----------------
1450
1451 function Terminated (T : Task_Id) return Boolean is
1452 Self_ID : constant Task_Id := STPO.Self;
1453 Result : Boolean;
1454
1455 begin
1456 Initialization.Defer_Abort_Nestable (Self_ID);
1457
1458 if Single_Lock then
1459 Lock_RTS;
1460 end if;
1461
1462 Write_Lock (T);
1463 Result := T.Common.State = Terminated;
1464 Unlock (T);
1465
1466 if Single_Lock then
1467 Unlock_RTS;
1468 end if;
1469
1470 Initialization.Undefer_Abort_Nestable (Self_ID);
1471 return Result;
1472 end Terminated;
1473
1474 ----------------------------------------
1475 -- Trace_Unhandled_Exception_In_Task --
1476 ----------------------------------------
1477
1478 procedure Trace_Unhandled_Exception_In_Task (Self_Id : Task_Id) is
1479 procedure To_Stderr (S : String);
1480 pragma Import (Ada, To_Stderr, "__gnat_to_stderr");
1481
1482 use System.Soft_Links;
1483
1484 function To_Address is new
1485 Ada.Unchecked_Conversion
1486 (Task_Id, System.Task_Primitives.Task_Address);
1487
1488 Excep : constant Exception_Occurrence_Access :=
1489 SSL.Get_Current_Excep.all;
1490
1491 begin
1492 -- This procedure is called by the task outermost handler in
1493 -- Task_Wrapper below, so only once the task stack has been fully
1494 -- unwound. The common notification routine has been called at the
1495 -- raise point already.
1496
1497 -- Lock to prevent unsynchronized output
1498
1499 Initialization.Task_Lock (Self_Id);
1500 To_Stderr ("task ");
1501
1502 if Self_Id.Common.Task_Image_Len /= 0 then
1503 To_Stderr
1504 (Self_Id.Common.Task_Image (1 .. Self_Id.Common.Task_Image_Len));
1505 To_Stderr ("_");
1506 end if;
1507
1508 To_Stderr (System.Address_Image (To_Address (Self_Id)));
1509 To_Stderr (" terminated by unhandled exception");
1510 To_Stderr ((1 => ASCII.LF));
1511 To_Stderr (Exception_Information (Excep.all));
1512 Initialization.Task_Unlock (Self_Id);
1513 end Trace_Unhandled_Exception_In_Task;
1514
1515 ------------------------------------
1516 -- Vulnerable_Complete_Activation --
1517 ------------------------------------
1518
1519 -- As in several other places, the locks of the activator and activated
1520 -- task are both locked here. This follows our deadlock prevention lock
1521 -- ordering policy, since the activated task must be created after the
1522 -- activator.
1523
1524 procedure Vulnerable_Complete_Activation (Self_ID : Task_Id) is
1525 Activator : constant Task_Id := Self_ID.Common.Activator;
1526
1527 begin
1528 pragma Debug (Debug.Trace (Self_ID, "V_Complete_Activation", 'C'));
1529
1530 Write_Lock (Activator);
1531 Write_Lock (Self_ID);
1532
1533 pragma Assert (Self_ID.Common.Activator /= null);
1534
1535 -- Remove dangling reference to Activator, since a task may outlive its
1536 -- activator.
1537
1538 Self_ID.Common.Activator := null;
1539
1540 -- Wake up the activator, if it is waiting for a chain of tasks to
1541 -- activate, and we are the last in the chain to complete activation.
1542
1543 if Activator.Common.State = Activator_Sleep then
1544 Activator.Common.Wait_Count := Activator.Common.Wait_Count - 1;
1545
1546 if Activator.Common.Wait_Count = 0 then
1547 Wakeup (Activator, Activator_Sleep);
1548 end if;
1549 end if;
1550
1551 -- The activator raises a Tasking_Error if any task it is activating
1552 -- is completed before the activation is done. However, if the reason
1553 -- for the task completion is an abort, we do not raise an exception.
1554 -- See RM 9.2(5).
1555
1556 if not Self_ID.Callable and then Self_ID.Pending_ATC_Level /= 0 then
1557 Activator.Common.Activation_Failed := True;
1558 end if;
1559
1560 Unlock (Self_ID);
1561 Unlock (Activator);
1562
1563 -- After the activation, active priority should be the same as base
1564 -- priority. We must unlock the Activator first, though, since it
1565 -- should not wait if we have lower priority.
1566
1567 if Get_Priority (Self_ID) /= Self_ID.Common.Base_Priority then
1568 Write_Lock (Self_ID);
1569 Set_Priority (Self_ID, Self_ID.Common.Base_Priority);
1570 Unlock (Self_ID);
1571 end if;
1572 end Vulnerable_Complete_Activation;
1573
1574 --------------------------------
1575 -- Vulnerable_Complete_Master --
1576 --------------------------------
1577
1578 procedure Vulnerable_Complete_Master (Self_ID : Task_Id) is
1579 C : Task_Id;
1580 P : Task_Id;
1581 CM : constant Master_Level := Self_ID.Master_Within;
1582 T : aliased Task_Id;
1583
1584 To_Be_Freed : Task_Id;
1585 -- This is a list of ATCBs to be freed, after we have released all RTS
1586 -- locks. This is necessary because of the locking order rules, since
1587 -- the storage manager uses Global_Task_Lock.
1588
1589 pragma Warnings (Off);
1590 function Check_Unactivated_Tasks return Boolean;
1591 pragma Warnings (On);
1592 -- Temporary error-checking code below. This is part of the checks
1593 -- added in the new run time. Call it only inside a pragma Assert.
1594
1595 -----------------------------
1596 -- Check_Unactivated_Tasks --
1597 -----------------------------
1598
1599 function Check_Unactivated_Tasks return Boolean is
1600 begin
1601 if not Single_Lock then
1602 Lock_RTS;
1603 end if;
1604
1605 Write_Lock (Self_ID);
1606
1607 C := All_Tasks_List;
1608 while C /= null loop
1609 if C.Common.Activator = Self_ID and then C.Master_of_Task = CM then
1610 return False;
1611 end if;
1612
1613 if C.Common.Parent = Self_ID and then C.Master_of_Task = CM then
1614 Write_Lock (C);
1615
1616 if C.Common.State = Unactivated then
1617 return False;
1618 end if;
1619
1620 Unlock (C);
1621 end if;
1622
1623 C := C.Common.All_Tasks_Link;
1624 end loop;
1625
1626 Unlock (Self_ID);
1627
1628 if not Single_Lock then
1629 Unlock_RTS;
1630 end if;
1631
1632 return True;
1633 end Check_Unactivated_Tasks;
1634
1635 -- Start of processing for Vulnerable_Complete_Master
1636
1637 begin
1638 pragma Debug
1639 (Debug.Trace (Self_ID, "V_Complete_Master(" & CM'Img & ")", 'C'));
1640
1641 pragma Assert (Self_ID.Common.Wait_Count = 0);
1642 pragma Assert
1643 (Self_ID.Deferral_Level > 0
1644 or else not System.Restrictions.Abort_Allowed);
1645
1646 -- Count how many active dependent tasks this master currently has, and
1647 -- record this in Wait_Count.
1648
1649 -- This count should start at zero, since it is initialized to zero for
1650 -- new tasks, and the task should not exit the sleep-loops that use this
1651 -- count until the count reaches zero.
1652
1653 -- While we're counting, if we run across any unactivated tasks that
1654 -- belong to this master, we summarily terminate them as required by
1655 -- RM-9.2(6).
1656
1657 Lock_RTS;
1658 Write_Lock (Self_ID);
1659
1660 C := All_Tasks_List;
1661 while C /= null loop
1662
1663 -- Terminate unactivated (never-to-be activated) tasks
1664
1665 if C.Common.Activator = Self_ID and then C.Master_of_Task = CM then
1666
1667 -- Usually, C.Common.Activator = Self_ID implies C.Master_of_Task
1668 -- = CM. The only case where C is pending activation by this
1669 -- task, but the master of C is not CM is in Ada 2005, when C is
1670 -- part of a return object of a build-in-place function.
1671
1672 pragma Assert (C.Common.State = Unactivated);
1673
1674 Write_Lock (C);
1675 C.Common.Activator := null;
1676 C.Common.State := Terminated;
1677 C.Callable := False;
1678 Utilities.Cancel_Queued_Entry_Calls (C);
1679 Unlock (C);
1680 end if;
1681
1682 -- Count it if directly dependent on this master
1683
1684 if C.Common.Parent = Self_ID and then C.Master_of_Task = CM then
1685 Write_Lock (C);
1686
1687 if C.Awake_Count /= 0 then
1688 Self_ID.Common.Wait_Count := Self_ID.Common.Wait_Count + 1;
1689 end if;
1690
1691 Unlock (C);
1692 end if;
1693
1694 C := C.Common.All_Tasks_Link;
1695 end loop;
1696
1697 Self_ID.Common.State := Master_Completion_Sleep;
1698 Unlock (Self_ID);
1699
1700 if not Single_Lock then
1701 Unlock_RTS;
1702 end if;
1703
1704 -- Wait until dependent tasks are all terminated or ready to terminate.
1705 -- While waiting, the task may be awakened if the task's priority needs
1706 -- changing, or this master is aborted. In the latter case, we abort the
1707 -- dependents, and resume waiting until Wait_Count goes to zero.
1708
1709 Write_Lock (Self_ID);
1710
1711 loop
1712 exit when Self_ID.Common.Wait_Count = 0;
1713
1714 -- Here is a difference as compared to Complete_Master
1715
1716 if Self_ID.Pending_ATC_Level < Self_ID.ATC_Nesting_Level
1717 and then not Self_ID.Dependents_Aborted
1718 then
1719 if Single_Lock then
1720 Abort_Dependents (Self_ID);
1721 else
1722 Unlock (Self_ID);
1723 Lock_RTS;
1724 Abort_Dependents (Self_ID);
1725 Unlock_RTS;
1726 Write_Lock (Self_ID);
1727 end if;
1728 else
1729 pragma Debug
1730 (Debug.Trace (Self_ID, "master_completion_sleep", 'C'));
1731 Sleep (Self_ID, Master_Completion_Sleep);
1732 end if;
1733 end loop;
1734
1735 Self_ID.Common.State := Runnable;
1736 Unlock (Self_ID);
1737
1738 -- Dependents are all terminated or on terminate alternatives. Now,
1739 -- force those on terminate alternatives to terminate, by aborting them.
1740
1741 pragma Assert (Check_Unactivated_Tasks);
1742
1743 if Self_ID.Alive_Count > 1 then
1744 -- ???
1745 -- Consider finding a way to skip the following extra steps if there
1746 -- are no dependents with terminate alternatives. This could be done
1747 -- by adding another count to the ATCB, similar to Awake_Count, but
1748 -- keeping track of tasks that are on terminate alternatives.
1749
1750 pragma Assert (Self_ID.Common.Wait_Count = 0);
1751
1752 -- Force any remaining dependents to terminate by aborting them
1753
1754 if not Single_Lock then
1755 Lock_RTS;
1756 end if;
1757
1758 Abort_Dependents (Self_ID);
1759
1760 -- Above, when we "abort" the dependents we are simply using this
1761 -- operation for convenience. We are not required to support the full
1762 -- abort-statement semantics; in particular, we are not required to
1763 -- immediately cancel any queued or in-service entry calls. That is
1764 -- good, because if we tried to cancel a call we would need to lock
1765 -- the caller, in order to wake the caller up. Our anti-deadlock
1766 -- rules prevent us from doing that without releasing the locks on C
1767 -- and Self_ID. Releasing and retaking those locks would be wasteful
1768 -- at best, and should not be considered further without more
1769 -- detailed analysis of potential concurrent accesses to the ATCBs
1770 -- of C and Self_ID.
1771
1772 -- Count how many "alive" dependent tasks this master currently has,
1773 -- and record this in Wait_Count. This count should start at zero,
1774 -- since it is initialized to zero for new tasks, and the task should
1775 -- not exit the sleep-loops that use this count until the count
1776 -- reaches zero.
1777
1778 pragma Assert (Self_ID.Common.Wait_Count = 0);
1779
1780 Write_Lock (Self_ID);
1781
1782 C := All_Tasks_List;
1783 while C /= null loop
1784 if C.Common.Parent = Self_ID and then C.Master_of_Task = CM then
1785 Write_Lock (C);
1786
1787 pragma Assert (C.Awake_Count = 0);
1788
1789 if C.Alive_Count > 0 then
1790 pragma Assert (C.Terminate_Alternative);
1791 Self_ID.Common.Wait_Count := Self_ID.Common.Wait_Count + 1;
1792 end if;
1793
1794 Unlock (C);
1795 end if;
1796
1797 C := C.Common.All_Tasks_Link;
1798 end loop;
1799
1800 Self_ID.Common.State := Master_Phase_2_Sleep;
1801 Unlock (Self_ID);
1802
1803 if not Single_Lock then
1804 Unlock_RTS;
1805 end if;
1806
1807 -- Wait for all counted tasks to finish terminating themselves
1808
1809 Write_Lock (Self_ID);
1810
1811 loop
1812 exit when Self_ID.Common.Wait_Count = 0;
1813 Sleep (Self_ID, Master_Phase_2_Sleep);
1814 end loop;
1815
1816 Self_ID.Common.State := Runnable;
1817 Unlock (Self_ID);
1818 end if;
1819
1820 -- We don't wake up for abort here. We are already terminating just as
1821 -- fast as we can, so there is no point.
1822
1823 -- Remove terminated tasks from the list of Self_ID's dependents, but
1824 -- don't free their ATCBs yet, because of lock order restrictions, which
1825 -- don't allow us to call "free" or "malloc" while holding any other
1826 -- locks. Instead, we put those ATCBs to be freed onto a temporary list,
1827 -- called To_Be_Freed.
1828
1829 if not Single_Lock then
1830 Lock_RTS;
1831 end if;
1832
1833 C := All_Tasks_List;
1834 P := null;
1835 while C /= null loop
1836
1837 -- If Free_On_Termination is set, do nothing here, and let the
1838 -- task free itself if not already done, otherwise we risk a race
1839 -- condition where Vulnerable_Free_Task is called in the loop below,
1840 -- while the task calls Free_Task itself, in Terminate_Task.
1841
1842 if C.Common.Parent = Self_ID
1843 and then C.Master_of_Task >= CM
1844 and then not C.Free_On_Termination
1845 then
1846 if P /= null then
1847 P.Common.All_Tasks_Link := C.Common.All_Tasks_Link;
1848 else
1849 All_Tasks_List := C.Common.All_Tasks_Link;
1850 end if;
1851
1852 T := C.Common.All_Tasks_Link;
1853 C.Common.All_Tasks_Link := To_Be_Freed;
1854 To_Be_Freed := C;
1855 C := T;
1856
1857 else
1858 P := C;
1859 C := C.Common.All_Tasks_Link;
1860 end if;
1861 end loop;
1862
1863 Unlock_RTS;
1864
1865 -- Free all the ATCBs on the list To_Be_Freed
1866
1867 -- The ATCBs in the list are no longer in All_Tasks_List, and after
1868 -- any interrupt entries are detached from them they should no longer
1869 -- be referenced.
1870
1871 -- Global_Task_Lock (Task_Lock/Unlock) is locked in the loop below to
1872 -- avoid a race between a terminating task and its parent. The parent
1873 -- might try to deallocate the ACTB out from underneath the exiting
1874 -- task. Note that Free will also lock Global_Task_Lock, but that is
1875 -- OK, since this is the *one* lock for which we have a mechanism to
1876 -- support nested locking. See Task_Wrapper and its finalizer for more
1877 -- explanation.
1878
1879 -- ???
1880 -- The check "T.Common.Parent /= null ..." below is to prevent dangling
1881 -- references to terminated library-level tasks, which could otherwise
1882 -- occur during finalization of library-level objects. A better solution
1883 -- might be to hook task objects into the finalization chain and
1884 -- deallocate the ATCB when the task object is deallocated. However,
1885 -- this change is not likely to gain anything significant, since all
1886 -- this storage should be recovered en-masse when the process exits.
1887
1888 while To_Be_Freed /= null loop
1889 T := To_Be_Freed;
1890 To_Be_Freed := T.Common.All_Tasks_Link;
1891
1892 -- ??? On SGI there is currently no Interrupt_Manager, that's why we
1893 -- need to check if the Interrupt_Manager_ID is null.
1894
1895 if T.Interrupt_Entry and then Interrupt_Manager_ID /= null then
1896 declare
1897 Detach_Interrupt_Entries_Index : constant Task_Entry_Index := 1;
1898 -- Corresponds to the entry index of System.Interrupts.
1899 -- Interrupt_Manager.Detach_Interrupt_Entries. Be sure
1900 -- to update this value when changing Interrupt_Manager specs.
1901
1902 type Param_Type is access all Task_Id;
1903
1904 Param : aliased Param_Type := T'Access;
1905
1906 begin
1907 System.Tasking.Rendezvous.Call_Simple
1908 (Interrupt_Manager_ID, Detach_Interrupt_Entries_Index,
1909 Param'Address);
1910 end;
1911 end if;
1912
1913 if (T.Common.Parent /= null
1914 and then T.Common.Parent.Common.Parent /= null)
1915 or else T.Master_of_Task > Library_Task_Level
1916 then
1917 Initialization.Task_Lock (Self_ID);
1918
1919 -- If Sec_Stack_Ptr is not null, it means that Destroy_TSD
1920 -- has not been called yet (case of an unactivated task).
1921
1922 if T.Common.Compiler_Data.Sec_Stack_Ptr /= null then
1923 SSL.Destroy_TSD (T.Common.Compiler_Data);
1924 end if;
1925
1926 Vulnerable_Free_Task (T);
1927 Initialization.Task_Unlock (Self_ID);
1928 end if;
1929 end loop;
1930
1931 -- It might seem nice to let the terminated task deallocate its own
1932 -- ATCB. That would not cover the case of unactivated tasks. It also
1933 -- would force us to keep the underlying thread around past termination,
1934 -- since references to the ATCB are possible past termination.
1935
1936 -- Currently, we get rid of the thread as soon as the task terminates,
1937 -- and let the parent recover the ATCB later.
1938
1939 -- Some day, if we want to recover the ATCB earlier, at task
1940 -- termination, we could consider using "fat task IDs", that include the
1941 -- serial number with the ATCB pointer, to catch references to tasks
1942 -- that no longer have ATCBs. It is not clear how much this would gain,
1943 -- since the user-level task object would still be occupying storage.
1944
1945 -- Make next master level up active. We don't need to lock the ATCB,
1946 -- since the value is only updated by each task for itself.
1947
1948 Self_ID.Master_Within := CM - 1;
1949
1950 Debug.Master_Completed_Hook (Self_ID, CM);
1951 end Vulnerable_Complete_Master;
1952
1953 ------------------------------
1954 -- Vulnerable_Complete_Task --
1955 ------------------------------
1956
1957 -- Complete the calling task
1958
1959 -- This procedure must be called with abort deferred. It should only be
1960 -- called by Complete_Task and Finalize_Global_Tasks (for the environment
1961 -- task).
1962
1963 -- The effect is similar to that of Complete_Master. Differences include
1964 -- the closing of entries here, and computation of the number of active
1965 -- dependent tasks in Complete_Master.
1966
1967 -- We don't lock Self_ID before the call to Vulnerable_Complete_Activation,
1968 -- because that does its own locking, and because we do not need the lock
1969 -- to test Self_ID.Common.Activator. That value should only be read and
1970 -- modified by Self.
1971
1972 procedure Vulnerable_Complete_Task (Self_ID : Task_Id) is
1973 begin
1974 pragma Assert
1975 (Self_ID.Deferral_Level > 0
1976 or else not System.Restrictions.Abort_Allowed);
1977 pragma Assert (Self_ID = Self);
1978 pragma Assert
1979 (Self_ID.Master_Within in
1980 Self_ID.Master_of_Task + 1 .. Self_ID.Master_of_Task + 3);
1981 pragma Assert (Self_ID.Common.Wait_Count = 0);
1982 pragma Assert (Self_ID.Open_Accepts = null);
1983 pragma Assert (Self_ID.ATC_Nesting_Level = 1);
1984
1985 pragma Debug (Debug.Trace (Self_ID, "V_Complete_Task", 'C'));
1986
1987 if Single_Lock then
1988 Lock_RTS;
1989 end if;
1990
1991 Write_Lock (Self_ID);
1992 Self_ID.Callable := False;
1993
1994 -- In theory, Self should have no pending entry calls left on its
1995 -- call-stack. Each async. select statement should clean its own call,
1996 -- and blocking entry calls should defer abort until the calls are
1997 -- cancelled, then clean up.
1998
1999 Utilities.Cancel_Queued_Entry_Calls (Self_ID);
2000 Unlock (Self_ID);
2001
2002 if Self_ID.Common.Activator /= null then
2003 Vulnerable_Complete_Activation (Self_ID);
2004 end if;
2005
2006 if Single_Lock then
2007 Unlock_RTS;
2008 end if;
2009
2010 -- If Self_ID.Master_Within = Self_ID.Master_of_Task + 2 we may have
2011 -- dependent tasks for which we need to wait. Otherwise we just exit.
2012
2013 if Self_ID.Master_Within = Self_ID.Master_of_Task + 2 then
2014 Vulnerable_Complete_Master (Self_ID);
2015 end if;
2016 end Vulnerable_Complete_Task;
2017
2018 --------------------------
2019 -- Vulnerable_Free_Task --
2020 --------------------------
2021
2022 -- Recover all runtime system storage associated with the task T. This
2023 -- should only be called after T has terminated and will no longer be
2024 -- referenced.
2025
2026 -- For tasks created by an allocator that fails, due to an exception, it
2027 -- is called from Expunge_Unactivated_Tasks.
2028
2029 -- For tasks created by elaboration of task object declarations it is
2030 -- called from the finalization code of the Task_Wrapper procedure.
2031
2032 procedure Vulnerable_Free_Task (T : Task_Id) is
2033 begin
2034 pragma Debug (Debug.Trace (Self, "Vulnerable_Free_Task", 'C', T));
2035
2036 if Single_Lock then
2037 Lock_RTS;
2038 end if;
2039
2040 Write_Lock (T);
2041 Initialization.Finalize_Attributes (T);
2042 Unlock (T);
2043
2044 if Single_Lock then
2045 Unlock_RTS;
2046 end if;
2047
2048 System.Task_Primitives.Operations.Finalize_TCB (T);
2049 end Vulnerable_Free_Task;
2050
2051 -- Package elaboration code
2052
2053 begin
2054 -- Establish the Adafinal softlink
2055
2056 -- This is not done inside the central RTS initialization routine
2057 -- to avoid with'ing this package from System.Tasking.Initialization.
2058
2059 SSL.Adafinal := Finalize_Global_Tasks'Access;
2060
2061 -- Establish soft links for subprograms that manipulate master_id's.
2062 -- This cannot be done when the RTS is initialized, because of various
2063 -- elaboration constraints.
2064
2065 SSL.Current_Master := Stages.Current_Master'Access;
2066 SSL.Enter_Master := Stages.Enter_Master'Access;
2067 SSL.Complete_Master := Stages.Complete_Master'Access;
2068 end System.Tasking.Stages;