comparison gcc/cp/init.c @ 111:04ced10e8804

gcc 7
author kono
date Fri, 27 Oct 2017 22:46:09 +0900
parents
children 84e7813d76e9
comparison
equal deleted inserted replaced
68:561a7518be6b 111:04ced10e8804
1 /* Handle initialization things in C++.
2 Copyright (C) 1987-2017 Free Software Foundation, Inc.
3 Contributed by Michael Tiemann (tiemann@cygnus.com)
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 /* High-level class interface. */
22
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "target.h"
27 #include "cp-tree.h"
28 #include "stringpool.h"
29 #include "varasm.h"
30 #include "gimplify.h"
31 #include "c-family/c-ubsan.h"
32 #include "intl.h"
33 #include "stringpool.h"
34 #include "attribs.h"
35 #include "asan.h"
36
37 static bool begin_init_stmts (tree *, tree *);
38 static tree finish_init_stmts (bool, tree, tree);
39 static void construct_virtual_base (tree, tree);
40 static void expand_aggr_init_1 (tree, tree, tree, tree, int, tsubst_flags_t);
41 static void expand_default_init (tree, tree, tree, tree, int, tsubst_flags_t);
42 static void perform_member_init (tree, tree);
43 static int member_init_ok_or_else (tree, tree, tree);
44 static void expand_virtual_init (tree, tree);
45 static tree sort_mem_initializers (tree, tree);
46 static tree initializing_context (tree);
47 static void expand_cleanup_for_base (tree, tree);
48 static tree dfs_initialize_vtbl_ptrs (tree, void *);
49 static tree build_field_list (tree, tree, int *);
50 static int diagnose_uninitialized_cst_or_ref_member_1 (tree, tree, bool, bool);
51
52 static GTY(()) tree fn;
53
54 /* We are about to generate some complex initialization code.
55 Conceptually, it is all a single expression. However, we may want
56 to include conditionals, loops, and other such statement-level
57 constructs. Therefore, we build the initialization code inside a
58 statement-expression. This function starts such an expression.
59 STMT_EXPR_P and COMPOUND_STMT_P are filled in by this function;
60 pass them back to finish_init_stmts when the expression is
61 complete. */
62
63 static bool
64 begin_init_stmts (tree *stmt_expr_p, tree *compound_stmt_p)
65 {
66 bool is_global = !building_stmt_list_p ();
67
68 *stmt_expr_p = begin_stmt_expr ();
69 *compound_stmt_p = begin_compound_stmt (BCS_NO_SCOPE);
70
71 return is_global;
72 }
73
74 /* Finish out the statement-expression begun by the previous call to
75 begin_init_stmts. Returns the statement-expression itself. */
76
77 static tree
78 finish_init_stmts (bool is_global, tree stmt_expr, tree compound_stmt)
79 {
80 finish_compound_stmt (compound_stmt);
81
82 stmt_expr = finish_stmt_expr (stmt_expr, true);
83
84 gcc_assert (!building_stmt_list_p () == is_global);
85
86 return stmt_expr;
87 }
88
89 /* Constructors */
90
91 /* Called from initialize_vtbl_ptrs via dfs_walk. BINFO is the base
92 which we want to initialize the vtable pointer for, DATA is
93 TREE_LIST whose TREE_VALUE is the this ptr expression. */
94
95 static tree
96 dfs_initialize_vtbl_ptrs (tree binfo, void *data)
97 {
98 if (!TYPE_CONTAINS_VPTR_P (BINFO_TYPE (binfo)))
99 return dfs_skip_bases;
100
101 if (!BINFO_PRIMARY_P (binfo) || BINFO_VIRTUAL_P (binfo))
102 {
103 tree base_ptr = TREE_VALUE ((tree) data);
104
105 base_ptr = build_base_path (PLUS_EXPR, base_ptr, binfo, /*nonnull=*/1,
106 tf_warning_or_error);
107
108 expand_virtual_init (binfo, base_ptr);
109 }
110
111 return NULL_TREE;
112 }
113
114 /* Initialize all the vtable pointers in the object pointed to by
115 ADDR. */
116
117 void
118 initialize_vtbl_ptrs (tree addr)
119 {
120 tree list;
121 tree type;
122
123 type = TREE_TYPE (TREE_TYPE (addr));
124 list = build_tree_list (type, addr);
125
126 /* Walk through the hierarchy, initializing the vptr in each base
127 class. We do these in pre-order because we can't find the virtual
128 bases for a class until we've initialized the vtbl for that
129 class. */
130 dfs_walk_once (TYPE_BINFO (type), dfs_initialize_vtbl_ptrs, NULL, list);
131 }
132
133 /* Return an expression for the zero-initialization of an object with
134 type T. This expression will either be a constant (in the case
135 that T is a scalar), or a CONSTRUCTOR (in the case that T is an
136 aggregate), or NULL (in the case that T does not require
137 initialization). In either case, the value can be used as
138 DECL_INITIAL for a decl of the indicated TYPE; it is a valid static
139 initializer. If NELTS is non-NULL, and TYPE is an ARRAY_TYPE, NELTS
140 is the number of elements in the array. If STATIC_STORAGE_P is
141 TRUE, initializers are only generated for entities for which
142 zero-initialization does not simply mean filling the storage with
143 zero bytes. FIELD_SIZE, if non-NULL, is the bit size of the field,
144 subfields with bit positions at or above that bit size shouldn't
145 be added. Note that this only works when the result is assigned
146 to a base COMPONENT_REF; if we only have a pointer to the base subobject,
147 expand_assignment will end up clearing the full size of TYPE. */
148
149 static tree
150 build_zero_init_1 (tree type, tree nelts, bool static_storage_p,
151 tree field_size)
152 {
153 tree init = NULL_TREE;
154
155 /* [dcl.init]
156
157 To zero-initialize an object of type T means:
158
159 -- if T is a scalar type, the storage is set to the value of zero
160 converted to T.
161
162 -- if T is a non-union class type, the storage for each nonstatic
163 data member and each base-class subobject is zero-initialized.
164
165 -- if T is a union type, the storage for its first data member is
166 zero-initialized.
167
168 -- if T is an array type, the storage for each element is
169 zero-initialized.
170
171 -- if T is a reference type, no initialization is performed. */
172
173 gcc_assert (nelts == NULL_TREE || TREE_CODE (nelts) == INTEGER_CST);
174
175 if (type == error_mark_node)
176 ;
177 else if (static_storage_p && zero_init_p (type))
178 /* In order to save space, we do not explicitly build initializers
179 for items that do not need them. GCC's semantics are that
180 items with static storage duration that are not otherwise
181 initialized are initialized to zero. */
182 ;
183 else if (TYPE_PTR_OR_PTRMEM_P (type))
184 init = fold (convert (type, nullptr_node));
185 else if (SCALAR_TYPE_P (type))
186 init = fold (convert (type, integer_zero_node));
187 else if (RECORD_OR_UNION_CODE_P (TREE_CODE (type)))
188 {
189 tree field;
190 vec<constructor_elt, va_gc> *v = NULL;
191
192 /* Iterate over the fields, building initializations. */
193 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
194 {
195 if (TREE_CODE (field) != FIELD_DECL)
196 continue;
197
198 if (TREE_TYPE (field) == error_mark_node)
199 continue;
200
201 /* Don't add virtual bases for base classes if they are beyond
202 the size of the current field, that means it is present
203 somewhere else in the object. */
204 if (field_size)
205 {
206 tree bitpos = bit_position (field);
207 if (TREE_CODE (bitpos) == INTEGER_CST
208 && !tree_int_cst_lt (bitpos, field_size))
209 continue;
210 }
211
212 /* Note that for class types there will be FIELD_DECLs
213 corresponding to base classes as well. Thus, iterating
214 over TYPE_FIELDs will result in correct initialization of
215 all of the subobjects. */
216 if (!static_storage_p || !zero_init_p (TREE_TYPE (field)))
217 {
218 tree new_field_size
219 = (DECL_FIELD_IS_BASE (field)
220 && DECL_SIZE (field)
221 && TREE_CODE (DECL_SIZE (field)) == INTEGER_CST)
222 ? DECL_SIZE (field) : NULL_TREE;
223 tree value = build_zero_init_1 (TREE_TYPE (field),
224 /*nelts=*/NULL_TREE,
225 static_storage_p,
226 new_field_size);
227 if (value)
228 CONSTRUCTOR_APPEND_ELT(v, field, value);
229 }
230
231 /* For unions, only the first field is initialized. */
232 if (TREE_CODE (type) == UNION_TYPE)
233 break;
234 }
235
236 /* Build a constructor to contain the initializations. */
237 init = build_constructor (type, v);
238 }
239 else if (TREE_CODE (type) == ARRAY_TYPE)
240 {
241 tree max_index;
242 vec<constructor_elt, va_gc> *v = NULL;
243
244 /* Iterate over the array elements, building initializations. */
245 if (nelts)
246 max_index = fold_build2_loc (input_location,
247 MINUS_EXPR, TREE_TYPE (nelts),
248 nelts, integer_one_node);
249 else
250 max_index = array_type_nelts (type);
251
252 /* If we have an error_mark here, we should just return error mark
253 as we don't know the size of the array yet. */
254 if (max_index == error_mark_node)
255 return error_mark_node;
256 gcc_assert (TREE_CODE (max_index) == INTEGER_CST);
257
258 /* A zero-sized array, which is accepted as an extension, will
259 have an upper bound of -1. */
260 if (!tree_int_cst_equal (max_index, integer_minus_one_node))
261 {
262 constructor_elt ce;
263
264 /* If this is a one element array, we just use a regular init. */
265 if (tree_int_cst_equal (size_zero_node, max_index))
266 ce.index = size_zero_node;
267 else
268 ce.index = build2 (RANGE_EXPR, sizetype, size_zero_node,
269 max_index);
270
271 ce.value = build_zero_init_1 (TREE_TYPE (type),
272 /*nelts=*/NULL_TREE,
273 static_storage_p, NULL_TREE);
274 if (ce.value)
275 {
276 vec_alloc (v, 1);
277 v->quick_push (ce);
278 }
279 }
280
281 /* Build a constructor to contain the initializations. */
282 init = build_constructor (type, v);
283 }
284 else if (VECTOR_TYPE_P (type))
285 init = build_zero_cst (type);
286 else
287 gcc_assert (TREE_CODE (type) == REFERENCE_TYPE);
288
289 /* In all cases, the initializer is a constant. */
290 if (init)
291 TREE_CONSTANT (init) = 1;
292
293 return init;
294 }
295
296 /* Return an expression for the zero-initialization of an object with
297 type T. This expression will either be a constant (in the case
298 that T is a scalar), or a CONSTRUCTOR (in the case that T is an
299 aggregate), or NULL (in the case that T does not require
300 initialization). In either case, the value can be used as
301 DECL_INITIAL for a decl of the indicated TYPE; it is a valid static
302 initializer. If NELTS is non-NULL, and TYPE is an ARRAY_TYPE, NELTS
303 is the number of elements in the array. If STATIC_STORAGE_P is
304 TRUE, initializers are only generated for entities for which
305 zero-initialization does not simply mean filling the storage with
306 zero bytes. */
307
308 tree
309 build_zero_init (tree type, tree nelts, bool static_storage_p)
310 {
311 return build_zero_init_1 (type, nelts, static_storage_p, NULL_TREE);
312 }
313
314 /* Return a suitable initializer for value-initializing an object of type
315 TYPE, as described in [dcl.init]. */
316
317 tree
318 build_value_init (tree type, tsubst_flags_t complain)
319 {
320 /* [dcl.init]
321
322 To value-initialize an object of type T means:
323
324 - if T is a class type (clause 9) with either no default constructor
325 (12.1) or a default constructor that is user-provided or deleted,
326 then the object is default-initialized;
327
328 - if T is a (possibly cv-qualified) class type without a user-provided
329 or deleted default constructor, then the object is zero-initialized
330 and the semantic constraints for default-initialization are checked,
331 and if T has a non-trivial default constructor, the object is
332 default-initialized;
333
334 - if T is an array type, then each element is value-initialized;
335
336 - otherwise, the object is zero-initialized.
337
338 A program that calls for default-initialization or
339 value-initialization of an entity of reference type is ill-formed. */
340
341 /* The AGGR_INIT_EXPR tweaking below breaks in templates. */
342 gcc_assert (!processing_template_decl
343 || (SCALAR_TYPE_P (type) || TREE_CODE (type) == ARRAY_TYPE));
344
345 if (CLASS_TYPE_P (type)
346 && type_build_ctor_call (type))
347 {
348 tree ctor =
349 build_special_member_call (NULL_TREE, complete_ctor_identifier,
350 NULL, type, LOOKUP_NORMAL,
351 complain);
352 if (ctor == error_mark_node)
353 return ctor;
354 tree fn = NULL_TREE;
355 if (TREE_CODE (ctor) == CALL_EXPR)
356 fn = get_callee_fndecl (ctor);
357 ctor = build_aggr_init_expr (type, ctor);
358 if (fn && user_provided_p (fn))
359 return ctor;
360 else if (TYPE_HAS_COMPLEX_DFLT (type))
361 {
362 /* This is a class that needs constructing, but doesn't have
363 a user-provided constructor. So we need to zero-initialize
364 the object and then call the implicitly defined ctor.
365 This will be handled in simplify_aggr_init_expr. */
366 AGGR_INIT_ZERO_FIRST (ctor) = 1;
367 return ctor;
368 }
369 }
370
371 /* Discard any access checking during subobject initialization;
372 the checks are implied by the call to the ctor which we have
373 verified is OK (cpp0x/defaulted46.C). */
374 push_deferring_access_checks (dk_deferred);
375 tree r = build_value_init_noctor (type, complain);
376 pop_deferring_access_checks ();
377 return r;
378 }
379
380 /* Like build_value_init, but don't call the constructor for TYPE. Used
381 for base initializers. */
382
383 tree
384 build_value_init_noctor (tree type, tsubst_flags_t complain)
385 {
386 if (!COMPLETE_TYPE_P (type))
387 {
388 if (complain & tf_error)
389 error ("value-initialization of incomplete type %qT", type);
390 return error_mark_node;
391 }
392 /* FIXME the class and array cases should just use digest_init once it is
393 SFINAE-enabled. */
394 if (CLASS_TYPE_P (type))
395 {
396 gcc_assert (!TYPE_HAS_COMPLEX_DFLT (type)
397 || errorcount != 0);
398
399 if (TREE_CODE (type) != UNION_TYPE)
400 {
401 tree field;
402 vec<constructor_elt, va_gc> *v = NULL;
403
404 /* Iterate over the fields, building initializations. */
405 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
406 {
407 tree ftype, value;
408
409 if (TREE_CODE (field) != FIELD_DECL)
410 continue;
411
412 ftype = TREE_TYPE (field);
413
414 if (ftype == error_mark_node)
415 continue;
416
417 /* We could skip vfields and fields of types with
418 user-defined constructors, but I think that won't improve
419 performance at all; it should be simpler in general just
420 to zero out the entire object than try to only zero the
421 bits that actually need it. */
422
423 /* Note that for class types there will be FIELD_DECLs
424 corresponding to base classes as well. Thus, iterating
425 over TYPE_FIELDs will result in correct initialization of
426 all of the subobjects. */
427 value = build_value_init (ftype, complain);
428 value = maybe_constant_init (value);
429
430 if (value == error_mark_node)
431 return error_mark_node;
432
433 CONSTRUCTOR_APPEND_ELT(v, field, value);
434
435 /* We shouldn't have gotten here for anything that would need
436 non-trivial initialization, and gimplify_init_ctor_preeval
437 would need to be fixed to allow it. */
438 gcc_assert (TREE_CODE (value) != TARGET_EXPR
439 && TREE_CODE (value) != AGGR_INIT_EXPR);
440 }
441
442 /* Build a constructor to contain the zero- initializations. */
443 return build_constructor (type, v);
444 }
445 }
446 else if (TREE_CODE (type) == ARRAY_TYPE)
447 {
448 vec<constructor_elt, va_gc> *v = NULL;
449
450 /* Iterate over the array elements, building initializations. */
451 tree max_index = array_type_nelts (type);
452
453 /* If we have an error_mark here, we should just return error mark
454 as we don't know the size of the array yet. */
455 if (max_index == error_mark_node)
456 {
457 if (complain & tf_error)
458 error ("cannot value-initialize array of unknown bound %qT",
459 type);
460 return error_mark_node;
461 }
462 gcc_assert (TREE_CODE (max_index) == INTEGER_CST);
463
464 /* A zero-sized array, which is accepted as an extension, will
465 have an upper bound of -1. */
466 if (!tree_int_cst_equal (max_index, integer_minus_one_node))
467 {
468 constructor_elt ce;
469
470 /* If this is a one element array, we just use a regular init. */
471 if (tree_int_cst_equal (size_zero_node, max_index))
472 ce.index = size_zero_node;
473 else
474 ce.index = build2 (RANGE_EXPR, sizetype, size_zero_node, max_index);
475
476 ce.value = build_value_init (TREE_TYPE (type), complain);
477 ce.value = maybe_constant_init (ce.value);
478 if (ce.value == error_mark_node)
479 return error_mark_node;
480
481 vec_alloc (v, 1);
482 v->quick_push (ce);
483
484 /* We shouldn't have gotten here for anything that would need
485 non-trivial initialization, and gimplify_init_ctor_preeval
486 would need to be fixed to allow it. */
487 gcc_assert (TREE_CODE (ce.value) != TARGET_EXPR
488 && TREE_CODE (ce.value) != AGGR_INIT_EXPR);
489 }
490
491 /* Build a constructor to contain the initializations. */
492 return build_constructor (type, v);
493 }
494 else if (TREE_CODE (type) == FUNCTION_TYPE)
495 {
496 if (complain & tf_error)
497 error ("value-initialization of function type %qT", type);
498 return error_mark_node;
499 }
500 else if (TREE_CODE (type) == REFERENCE_TYPE)
501 {
502 if (complain & tf_error)
503 error ("value-initialization of reference type %qT", type);
504 return error_mark_node;
505 }
506
507 return build_zero_init (type, NULL_TREE, /*static_storage_p=*/false);
508 }
509
510 /* Initialize current class with INIT, a TREE_LIST of
511 arguments for a target constructor. If TREE_LIST is void_type_node,
512 an empty initializer list was given. */
513
514 static void
515 perform_target_ctor (tree init)
516 {
517 tree decl = current_class_ref;
518 tree type = current_class_type;
519
520 finish_expr_stmt (build_aggr_init (decl, init,
521 LOOKUP_NORMAL|LOOKUP_DELEGATING_CONS,
522 tf_warning_or_error));
523 if (type_build_dtor_call (type))
524 {
525 tree expr = build_delete (type, decl, sfk_complete_destructor,
526 LOOKUP_NORMAL
527 |LOOKUP_NONVIRTUAL
528 |LOOKUP_DESTRUCTOR,
529 0, tf_warning_or_error);
530 if (expr != error_mark_node
531 && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type))
532 finish_eh_cleanup (expr);
533 }
534 }
535
536 /* Return the non-static data initializer for FIELD_DECL MEMBER. */
537
538 static GTY(()) hash_map<tree, tree> *nsdmi_inst;
539
540 tree
541 get_nsdmi (tree member, bool in_ctor, tsubst_flags_t complain)
542 {
543 tree init;
544 tree save_ccp = current_class_ptr;
545 tree save_ccr = current_class_ref;
546
547 if (DECL_LANG_SPECIFIC (member) && DECL_TEMPLATE_INFO (member))
548 {
549 init = DECL_INITIAL (DECL_TI_TEMPLATE (member));
550 location_t expr_loc
551 = EXPR_LOC_OR_LOC (init, DECL_SOURCE_LOCATION (member));
552 tree *slot;
553 if (TREE_CODE (init) == DEFAULT_ARG)
554 /* Unparsed. */;
555 else if (nsdmi_inst && (slot = nsdmi_inst->get (member)))
556 init = *slot;
557 /* Check recursive instantiation. */
558 else if (DECL_INSTANTIATING_NSDMI_P (member))
559 {
560 if (complain & tf_error)
561 error_at (expr_loc, "recursive instantiation of default member "
562 "initializer for %qD", member);
563 init = error_mark_node;
564 }
565 else
566 {
567 int un = cp_unevaluated_operand;
568 cp_unevaluated_operand = 0;
569
570 location_t sloc = input_location;
571 input_location = expr_loc;
572
573 DECL_INSTANTIATING_NSDMI_P (member) = 1;
574
575 inject_this_parameter (DECL_CONTEXT (member), TYPE_UNQUALIFIED);
576
577 start_lambda_scope (member);
578
579 /* Do deferred instantiation of the NSDMI. */
580 init = (tsubst_copy_and_build
581 (init, DECL_TI_ARGS (member),
582 complain, member, /*function_p=*/false,
583 /*integral_constant_expression_p=*/false));
584 init = digest_nsdmi_init (member, init, complain);
585
586 finish_lambda_scope ();
587
588 DECL_INSTANTIATING_NSDMI_P (member) = 0;
589
590 if (init != error_mark_node)
591 {
592 if (!nsdmi_inst)
593 nsdmi_inst = hash_map<tree,tree>::create_ggc (37);
594 nsdmi_inst->put (member, init);
595 }
596
597 input_location = sloc;
598 cp_unevaluated_operand = un;
599 }
600 }
601 else
602 init = DECL_INITIAL (member);
603
604 if (init && TREE_CODE (init) == DEFAULT_ARG)
605 {
606 if (complain & tf_error)
607 {
608 error ("default member initializer for %qD required before the end "
609 "of its enclosing class", member);
610 inform (location_of (init), "defined here");
611 DECL_INITIAL (member) = error_mark_node;
612 }
613 init = error_mark_node;
614 }
615
616 if (in_ctor)
617 {
618 current_class_ptr = save_ccp;
619 current_class_ref = save_ccr;
620 }
621 else
622 {
623 /* Use a PLACEHOLDER_EXPR when we don't have a 'this' parameter to
624 refer to; constexpr evaluation knows what to do with it. */
625 current_class_ref = build0 (PLACEHOLDER_EXPR, DECL_CONTEXT (member));
626 current_class_ptr = build_address (current_class_ref);
627 }
628
629 /* Strip redundant TARGET_EXPR so we don't need to remap it, and
630 so the aggregate init code below will see a CONSTRUCTOR. */
631 bool simple_target = (init && SIMPLE_TARGET_EXPR_P (init));
632 if (simple_target)
633 init = TARGET_EXPR_INITIAL (init);
634 init = break_out_target_exprs (init);
635 if (simple_target && TREE_CODE (init) != CONSTRUCTOR)
636 /* Now put it back so C++17 copy elision works. */
637 init = get_target_expr (init);
638
639 current_class_ptr = save_ccp;
640 current_class_ref = save_ccr;
641 return init;
642 }
643
644 /* Diagnose the flexible array MEMBER if its INITializer is non-null
645 and return true if so. Otherwise return false. */
646
647 bool
648 maybe_reject_flexarray_init (tree member, tree init)
649 {
650 tree type = TREE_TYPE (member);
651
652 if (!init
653 || TREE_CODE (type) != ARRAY_TYPE
654 || TYPE_DOMAIN (type))
655 return false;
656
657 /* Point at the flexible array member declaration if it's initialized
658 in-class, and at the ctor if it's initialized in a ctor member
659 initializer list. */
660 location_t loc;
661 if (DECL_INITIAL (member) == init
662 || !current_function_decl
663 || DECL_DEFAULTED_FN (current_function_decl))
664 loc = DECL_SOURCE_LOCATION (member);
665 else
666 loc = DECL_SOURCE_LOCATION (current_function_decl);
667
668 error_at (loc, "initializer for flexible array member %q#D", member);
669 return true;
670 }
671
672 /* Initialize MEMBER, a FIELD_DECL, with INIT, a TREE_LIST of
673 arguments. If TREE_LIST is void_type_node, an empty initializer
674 list was given; if NULL_TREE no initializer was given. */
675
676 static void
677 perform_member_init (tree member, tree init)
678 {
679 tree decl;
680 tree type = TREE_TYPE (member);
681
682 /* Use the non-static data member initializer if there was no
683 mem-initializer for this field. */
684 if (init == NULL_TREE)
685 init = get_nsdmi (member, /*ctor*/true, tf_warning_or_error);
686
687 if (init == error_mark_node)
688 return;
689
690 /* Effective C++ rule 12 requires that all data members be
691 initialized. */
692 if (warn_ecpp && init == NULL_TREE && TREE_CODE (type) != ARRAY_TYPE)
693 warning_at (DECL_SOURCE_LOCATION (current_function_decl), OPT_Weffc__,
694 "%qD should be initialized in the member initialization list",
695 member);
696
697 /* Get an lvalue for the data member. */
698 decl = build_class_member_access_expr (current_class_ref, member,
699 /*access_path=*/NULL_TREE,
700 /*preserve_reference=*/true,
701 tf_warning_or_error);
702 if (decl == error_mark_node)
703 return;
704
705 if (warn_init_self && init && TREE_CODE (init) == TREE_LIST
706 && TREE_CHAIN (init) == NULL_TREE)
707 {
708 tree val = TREE_VALUE (init);
709 /* Handle references. */
710 if (REFERENCE_REF_P (val))
711 val = TREE_OPERAND (val, 0);
712 if (TREE_CODE (val) == COMPONENT_REF && TREE_OPERAND (val, 1) == member
713 && TREE_OPERAND (val, 0) == current_class_ref)
714 warning_at (DECL_SOURCE_LOCATION (current_function_decl),
715 OPT_Winit_self, "%qD is initialized with itself",
716 member);
717 }
718
719 if (init == void_type_node)
720 {
721 /* mem() means value-initialization. */
722 if (TREE_CODE (type) == ARRAY_TYPE)
723 {
724 init = build_vec_init_expr (type, init, tf_warning_or_error);
725 init = build2 (INIT_EXPR, type, decl, init);
726 finish_expr_stmt (init);
727 }
728 else
729 {
730 tree value = build_value_init (type, tf_warning_or_error);
731 if (value == error_mark_node)
732 return;
733 init = build2 (INIT_EXPR, type, decl, value);
734 finish_expr_stmt (init);
735 }
736 }
737 /* Deal with this here, as we will get confused if we try to call the
738 assignment op for an anonymous union. This can happen in a
739 synthesized copy constructor. */
740 else if (ANON_AGGR_TYPE_P (type))
741 {
742 if (init)
743 {
744 init = build2 (INIT_EXPR, type, decl, TREE_VALUE (init));
745 finish_expr_stmt (init);
746 }
747 }
748 else if (init
749 && (TREE_CODE (type) == REFERENCE_TYPE
750 /* Pre-digested NSDMI. */
751 || (((TREE_CODE (init) == CONSTRUCTOR
752 && TREE_TYPE (init) == type)
753 /* { } mem-initializer. */
754 || (TREE_CODE (init) == TREE_LIST
755 && DIRECT_LIST_INIT_P (TREE_VALUE (init))))
756 && (CP_AGGREGATE_TYPE_P (type)
757 || is_std_init_list (type)))))
758 {
759 /* With references and list-initialization, we need to deal with
760 extending temporary lifetimes. 12.2p5: "A temporary bound to a
761 reference member in a constructor’s ctor-initializer (12.6.2)
762 persists until the constructor exits." */
763 unsigned i; tree t;
764 vec<tree, va_gc> *cleanups = make_tree_vector ();
765 if (TREE_CODE (init) == TREE_LIST)
766 init = build_x_compound_expr_from_list (init, ELK_MEM_INIT,
767 tf_warning_or_error);
768 if (TREE_TYPE (init) != type)
769 {
770 if (BRACE_ENCLOSED_INITIALIZER_P (init)
771 && CP_AGGREGATE_TYPE_P (type))
772 init = reshape_init (type, init, tf_warning_or_error);
773 init = digest_init (type, init, tf_warning_or_error);
774 }
775 if (init == error_mark_node)
776 return;
777 /* A FIELD_DECL doesn't really have a suitable lifetime, but
778 make_temporary_var_for_ref_to_temp will treat it as automatic and
779 set_up_extended_ref_temp wants to use the decl in a warning. */
780 init = extend_ref_init_temps (member, init, &cleanups);
781 if (TREE_CODE (type) == ARRAY_TYPE
782 && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (TREE_TYPE (type)))
783 init = build_vec_init_expr (type, init, tf_warning_or_error);
784 init = build2 (INIT_EXPR, type, decl, init);
785 finish_expr_stmt (init);
786 FOR_EACH_VEC_ELT (*cleanups, i, t)
787 push_cleanup (decl, t, false);
788 release_tree_vector (cleanups);
789 }
790 else if (type_build_ctor_call (type)
791 || (init && CLASS_TYPE_P (strip_array_types (type))))
792 {
793 if (TREE_CODE (type) == ARRAY_TYPE)
794 {
795 if (init)
796 {
797 /* Check to make sure the member initializer is valid and
798 something like a CONSTRUCTOR in: T a[] = { 1, 2 } and
799 if it isn't, return early to avoid triggering another
800 error below. */
801 if (maybe_reject_flexarray_init (member, init))
802 return;
803
804 if (TREE_CODE (init) != TREE_LIST || TREE_CHAIN (init))
805 init = error_mark_node;
806 else
807 init = TREE_VALUE (init);
808
809 if (BRACE_ENCLOSED_INITIALIZER_P (init))
810 init = digest_init (type, init, tf_warning_or_error);
811 }
812 if (init == NULL_TREE
813 || same_type_ignoring_top_level_qualifiers_p (type,
814 TREE_TYPE (init)))
815 {
816 if (TYPE_DOMAIN (type) && TYPE_MAX_VALUE (TYPE_DOMAIN (type)))
817 {
818 /* Initialize the array only if it's not a flexible
819 array member (i.e., if it has an upper bound). */
820 init = build_vec_init_expr (type, init, tf_warning_or_error);
821 init = build2 (INIT_EXPR, type, decl, init);
822 finish_expr_stmt (init);
823 }
824 }
825 else
826 error ("invalid initializer for array member %q#D", member);
827 }
828 else
829 {
830 int flags = LOOKUP_NORMAL;
831 if (DECL_DEFAULTED_FN (current_function_decl))
832 flags |= LOOKUP_DEFAULTED;
833 if (CP_TYPE_CONST_P (type)
834 && init == NULL_TREE
835 && default_init_uninitialized_part (type))
836 {
837 /* TYPE_NEEDS_CONSTRUCTING can be set just because we have a
838 vtable; still give this diagnostic. */
839 if (permerror (DECL_SOURCE_LOCATION (current_function_decl),
840 "uninitialized const member in %q#T", type))
841 inform (DECL_SOURCE_LOCATION (member),
842 "%q#D should be initialized", member );
843 }
844 finish_expr_stmt (build_aggr_init (decl, init, flags,
845 tf_warning_or_error));
846 }
847 }
848 else
849 {
850 if (init == NULL_TREE)
851 {
852 tree core_type;
853 /* member traversal: note it leaves init NULL */
854 if (TREE_CODE (type) == REFERENCE_TYPE)
855 {
856 if (permerror (DECL_SOURCE_LOCATION (current_function_decl),
857 "uninitialized reference member in %q#T", type))
858 inform (DECL_SOURCE_LOCATION (member),
859 "%q#D should be initialized", member);
860 }
861 else if (CP_TYPE_CONST_P (type))
862 {
863 if (permerror (DECL_SOURCE_LOCATION (current_function_decl),
864 "uninitialized const member in %q#T", type))
865 inform (DECL_SOURCE_LOCATION (member),
866 "%q#D should be initialized", member );
867 }
868
869 core_type = strip_array_types (type);
870
871 if (CLASS_TYPE_P (core_type)
872 && (CLASSTYPE_READONLY_FIELDS_NEED_INIT (core_type)
873 || CLASSTYPE_REF_FIELDS_NEED_INIT (core_type)))
874 diagnose_uninitialized_cst_or_ref_member (core_type,
875 /*using_new=*/false,
876 /*complain=*/true);
877 }
878 else if (TREE_CODE (init) == TREE_LIST)
879 /* There was an explicit member initialization. Do some work
880 in that case. */
881 init = build_x_compound_expr_from_list (init, ELK_MEM_INIT,
882 tf_warning_or_error);
883
884 /* Reject a member initializer for a flexible array member. */
885 if (init && !maybe_reject_flexarray_init (member, init))
886 finish_expr_stmt (cp_build_modify_expr (input_location, decl,
887 INIT_EXPR, init,
888 tf_warning_or_error));
889 }
890
891 if (type_build_dtor_call (type))
892 {
893 tree expr;
894
895 expr = build_class_member_access_expr (current_class_ref, member,
896 /*access_path=*/NULL_TREE,
897 /*preserve_reference=*/false,
898 tf_warning_or_error);
899 expr = build_delete (type, expr, sfk_complete_destructor,
900 LOOKUP_NONVIRTUAL|LOOKUP_DESTRUCTOR, 0,
901 tf_warning_or_error);
902
903 if (expr != error_mark_node
904 && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type))
905 finish_eh_cleanup (expr);
906 }
907 }
908
909 /* Returns a TREE_LIST containing (as the TREE_PURPOSE of each node) all
910 the FIELD_DECLs on the TYPE_FIELDS list for T, in reverse order. */
911
912 static tree
913 build_field_list (tree t, tree list, int *uses_unions_or_anon_p)
914 {
915 tree fields;
916
917 /* Note whether or not T is a union. */
918 if (TREE_CODE (t) == UNION_TYPE)
919 *uses_unions_or_anon_p = 1;
920
921 for (fields = TYPE_FIELDS (t); fields; fields = DECL_CHAIN (fields))
922 {
923 tree fieldtype;
924
925 /* Skip CONST_DECLs for enumeration constants and so forth. */
926 if (TREE_CODE (fields) != FIELD_DECL || DECL_ARTIFICIAL (fields))
927 continue;
928
929 fieldtype = TREE_TYPE (fields);
930
931 /* For an anonymous struct or union, we must recursively
932 consider the fields of the anonymous type. They can be
933 directly initialized from the constructor. */
934 if (ANON_AGGR_TYPE_P (fieldtype))
935 {
936 /* Add this field itself. Synthesized copy constructors
937 initialize the entire aggregate. */
938 list = tree_cons (fields, NULL_TREE, list);
939 /* And now add the fields in the anonymous aggregate. */
940 list = build_field_list (fieldtype, list, uses_unions_or_anon_p);
941 *uses_unions_or_anon_p = 1;
942 }
943 /* Add this field. */
944 else if (DECL_NAME (fields))
945 list = tree_cons (fields, NULL_TREE, list);
946 }
947
948 return list;
949 }
950
951 /* Return the innermost aggregate scope for FIELD, whether that is
952 the enclosing class or an anonymous aggregate within it. */
953
954 static tree
955 innermost_aggr_scope (tree field)
956 {
957 if (ANON_AGGR_TYPE_P (TREE_TYPE (field)))
958 return TREE_TYPE (field);
959 else
960 return DECL_CONTEXT (field);
961 }
962
963 /* The MEM_INITS are a TREE_LIST. The TREE_PURPOSE of each list gives
964 a FIELD_DECL or BINFO in T that needs initialization. The
965 TREE_VALUE gives the initializer, or list of initializer arguments.
966
967 Return a TREE_LIST containing all of the initializations required
968 for T, in the order in which they should be performed. The output
969 list has the same format as the input. */
970
971 static tree
972 sort_mem_initializers (tree t, tree mem_inits)
973 {
974 tree init;
975 tree base, binfo, base_binfo;
976 tree sorted_inits;
977 tree next_subobject;
978 vec<tree, va_gc> *vbases;
979 int i;
980 int uses_unions_or_anon_p = 0;
981
982 /* Build up a list of initializations. The TREE_PURPOSE of entry
983 will be the subobject (a FIELD_DECL or BINFO) to initialize. The
984 TREE_VALUE will be the constructor arguments, or NULL if no
985 explicit initialization was provided. */
986 sorted_inits = NULL_TREE;
987
988 /* Process the virtual bases. */
989 for (vbases = CLASSTYPE_VBASECLASSES (t), i = 0;
990 vec_safe_iterate (vbases, i, &base); i++)
991 sorted_inits = tree_cons (base, NULL_TREE, sorted_inits);
992
993 /* Process the direct bases. */
994 for (binfo = TYPE_BINFO (t), i = 0;
995 BINFO_BASE_ITERATE (binfo, i, base_binfo); ++i)
996 if (!BINFO_VIRTUAL_P (base_binfo))
997 sorted_inits = tree_cons (base_binfo, NULL_TREE, sorted_inits);
998
999 /* Process the non-static data members. */
1000 sorted_inits = build_field_list (t, sorted_inits, &uses_unions_or_anon_p);
1001 /* Reverse the entire list of initializations, so that they are in
1002 the order that they will actually be performed. */
1003 sorted_inits = nreverse (sorted_inits);
1004
1005 /* If the user presented the initializers in an order different from
1006 that in which they will actually occur, we issue a warning. Keep
1007 track of the next subobject which can be explicitly initialized
1008 without issuing a warning. */
1009 next_subobject = sorted_inits;
1010
1011 /* Go through the explicit initializers, filling in TREE_PURPOSE in
1012 the SORTED_INITS. */
1013 for (init = mem_inits; init; init = TREE_CHAIN (init))
1014 {
1015 tree subobject;
1016 tree subobject_init;
1017
1018 subobject = TREE_PURPOSE (init);
1019
1020 /* If the explicit initializers are in sorted order, then
1021 SUBOBJECT will be NEXT_SUBOBJECT, or something following
1022 it. */
1023 for (subobject_init = next_subobject;
1024 subobject_init;
1025 subobject_init = TREE_CHAIN (subobject_init))
1026 if (TREE_PURPOSE (subobject_init) == subobject)
1027 break;
1028
1029 /* Issue a warning if the explicit initializer order does not
1030 match that which will actually occur.
1031 ??? Are all these on the correct lines? */
1032 if (warn_reorder && !subobject_init)
1033 {
1034 if (TREE_CODE (TREE_PURPOSE (next_subobject)) == FIELD_DECL)
1035 warning_at (DECL_SOURCE_LOCATION (TREE_PURPOSE (next_subobject)),
1036 OPT_Wreorder, "%qD will be initialized after",
1037 TREE_PURPOSE (next_subobject));
1038 else
1039 warning (OPT_Wreorder, "base %qT will be initialized after",
1040 TREE_PURPOSE (next_subobject));
1041 if (TREE_CODE (subobject) == FIELD_DECL)
1042 warning_at (DECL_SOURCE_LOCATION (subobject),
1043 OPT_Wreorder, " %q#D", subobject);
1044 else
1045 warning (OPT_Wreorder, " base %qT", subobject);
1046 warning_at (DECL_SOURCE_LOCATION (current_function_decl),
1047 OPT_Wreorder, " when initialized here");
1048 }
1049
1050 /* Look again, from the beginning of the list. */
1051 if (!subobject_init)
1052 {
1053 subobject_init = sorted_inits;
1054 while (TREE_PURPOSE (subobject_init) != subobject)
1055 subobject_init = TREE_CHAIN (subobject_init);
1056 }
1057
1058 /* It is invalid to initialize the same subobject more than
1059 once. */
1060 if (TREE_VALUE (subobject_init))
1061 {
1062 if (TREE_CODE (subobject) == FIELD_DECL)
1063 error_at (DECL_SOURCE_LOCATION (current_function_decl),
1064 "multiple initializations given for %qD",
1065 subobject);
1066 else
1067 error_at (DECL_SOURCE_LOCATION (current_function_decl),
1068 "multiple initializations given for base %qT",
1069 subobject);
1070 }
1071
1072 /* Record the initialization. */
1073 TREE_VALUE (subobject_init) = TREE_VALUE (init);
1074 next_subobject = subobject_init;
1075 }
1076
1077 /* [class.base.init]
1078
1079 If a ctor-initializer specifies more than one mem-initializer for
1080 multiple members of the same union (including members of
1081 anonymous unions), the ctor-initializer is ill-formed.
1082
1083 Here we also splice out uninitialized union members. */
1084 if (uses_unions_or_anon_p)
1085 {
1086 tree *last_p = NULL;
1087 tree *p;
1088 for (p = &sorted_inits; *p; )
1089 {
1090 tree field;
1091 tree ctx;
1092
1093 init = *p;
1094
1095 field = TREE_PURPOSE (init);
1096
1097 /* Skip base classes. */
1098 if (TREE_CODE (field) != FIELD_DECL)
1099 goto next;
1100
1101 /* If this is an anonymous aggregate with no explicit initializer,
1102 splice it out. */
1103 if (!TREE_VALUE (init) && ANON_AGGR_TYPE_P (TREE_TYPE (field)))
1104 goto splice;
1105
1106 /* See if this field is a member of a union, or a member of a
1107 structure contained in a union, etc. */
1108 ctx = innermost_aggr_scope (field);
1109
1110 /* If this field is not a member of a union, skip it. */
1111 if (TREE_CODE (ctx) != UNION_TYPE
1112 && !ANON_AGGR_TYPE_P (ctx))
1113 goto next;
1114
1115 /* If this union member has no explicit initializer and no NSDMI,
1116 splice it out. */
1117 if (TREE_VALUE (init) || DECL_INITIAL (field))
1118 /* OK. */;
1119 else
1120 goto splice;
1121
1122 /* It's only an error if we have two initializers for the same
1123 union type. */
1124 if (!last_p)
1125 {
1126 last_p = p;
1127 goto next;
1128 }
1129
1130 /* See if LAST_FIELD and the field initialized by INIT are
1131 members of the same union (or the union itself). If so, there's
1132 a problem, unless they're actually members of the same structure
1133 which is itself a member of a union. For example, given:
1134
1135 union { struct { int i; int j; }; };
1136
1137 initializing both `i' and `j' makes sense. */
1138 ctx = common_enclosing_class
1139 (innermost_aggr_scope (field),
1140 innermost_aggr_scope (TREE_PURPOSE (*last_p)));
1141
1142 if (ctx && (TREE_CODE (ctx) == UNION_TYPE
1143 || ctx == TREE_TYPE (TREE_PURPOSE (*last_p))))
1144 {
1145 /* A mem-initializer hides an NSDMI. */
1146 if (TREE_VALUE (init) && !TREE_VALUE (*last_p))
1147 *last_p = TREE_CHAIN (*last_p);
1148 else if (TREE_VALUE (*last_p) && !TREE_VALUE (init))
1149 goto splice;
1150 else
1151 {
1152 error_at (DECL_SOURCE_LOCATION (current_function_decl),
1153 "initializations for multiple members of %qT",
1154 ctx);
1155 goto splice;
1156 }
1157 }
1158
1159 last_p = p;
1160
1161 next:
1162 p = &TREE_CHAIN (*p);
1163 continue;
1164 splice:
1165 *p = TREE_CHAIN (*p);
1166 continue;
1167 }
1168 }
1169
1170 return sorted_inits;
1171 }
1172
1173 /* Callback for cp_walk_tree to mark all PARM_DECLs in a tree as read. */
1174
1175 static tree
1176 mark_exp_read_r (tree *tp, int *, void *)
1177 {
1178 tree t = *tp;
1179 if (TREE_CODE (t) == PARM_DECL)
1180 mark_exp_read (t);
1181 return NULL_TREE;
1182 }
1183
1184 /* Initialize all bases and members of CURRENT_CLASS_TYPE. MEM_INITS
1185 is a TREE_LIST giving the explicit mem-initializer-list for the
1186 constructor. The TREE_PURPOSE of each entry is a subobject (a
1187 FIELD_DECL or a BINFO) of the CURRENT_CLASS_TYPE. The TREE_VALUE
1188 is a TREE_LIST giving the arguments to the constructor or
1189 void_type_node for an empty list of arguments. */
1190
1191 void
1192 emit_mem_initializers (tree mem_inits)
1193 {
1194 int flags = LOOKUP_NORMAL;
1195
1196 /* We will already have issued an error message about the fact that
1197 the type is incomplete. */
1198 if (!COMPLETE_TYPE_P (current_class_type))
1199 return;
1200
1201 if (mem_inits
1202 && TYPE_P (TREE_PURPOSE (mem_inits))
1203 && same_type_p (TREE_PURPOSE (mem_inits), current_class_type))
1204 {
1205 /* Delegating constructor. */
1206 gcc_assert (TREE_CHAIN (mem_inits) == NULL_TREE);
1207 perform_target_ctor (TREE_VALUE (mem_inits));
1208 return;
1209 }
1210
1211 if (DECL_DEFAULTED_FN (current_function_decl)
1212 && ! DECL_INHERITED_CTOR (current_function_decl))
1213 flags |= LOOKUP_DEFAULTED;
1214
1215 /* Sort the mem-initializers into the order in which the
1216 initializations should be performed. */
1217 mem_inits = sort_mem_initializers (current_class_type, mem_inits);
1218
1219 in_base_initializer = 1;
1220
1221 /* Initialize base classes. */
1222 for (; (mem_inits
1223 && TREE_CODE (TREE_PURPOSE (mem_inits)) != FIELD_DECL);
1224 mem_inits = TREE_CHAIN (mem_inits))
1225 {
1226 tree subobject = TREE_PURPOSE (mem_inits);
1227 tree arguments = TREE_VALUE (mem_inits);
1228
1229 /* We already have issued an error message. */
1230 if (arguments == error_mark_node)
1231 continue;
1232
1233 /* Suppress access control when calling the inherited ctor. */
1234 bool inherited_base = (DECL_INHERITED_CTOR (current_function_decl)
1235 && flag_new_inheriting_ctors
1236 && arguments);
1237 if (inherited_base)
1238 push_deferring_access_checks (dk_deferred);
1239
1240 if (arguments == NULL_TREE)
1241 {
1242 /* If these initializations are taking place in a copy constructor,
1243 the base class should probably be explicitly initialized if there
1244 is a user-defined constructor in the base class (other than the
1245 default constructor, which will be called anyway). */
1246 if (extra_warnings
1247 && DECL_COPY_CONSTRUCTOR_P (current_function_decl)
1248 && type_has_user_nondefault_constructor (BINFO_TYPE (subobject)))
1249 warning_at (DECL_SOURCE_LOCATION (current_function_decl),
1250 OPT_Wextra, "base class %q#T should be explicitly "
1251 "initialized in the copy constructor",
1252 BINFO_TYPE (subobject));
1253 }
1254
1255 /* Initialize the base. */
1256 if (!BINFO_VIRTUAL_P (subobject))
1257 {
1258 tree base_addr;
1259
1260 base_addr = build_base_path (PLUS_EXPR, current_class_ptr,
1261 subobject, 1, tf_warning_or_error);
1262 expand_aggr_init_1 (subobject, NULL_TREE,
1263 cp_build_indirect_ref (base_addr, RO_NULL,
1264 tf_warning_or_error),
1265 arguments,
1266 flags,
1267 tf_warning_or_error);
1268 expand_cleanup_for_base (subobject, NULL_TREE);
1269 }
1270 else if (!ABSTRACT_CLASS_TYPE_P (current_class_type))
1271 /* C++14 DR1658 Means we do not have to construct vbases of
1272 abstract classes. */
1273 construct_virtual_base (subobject, arguments);
1274 else
1275 /* When not constructing vbases of abstract classes, at least mark
1276 the arguments expressions as read to avoid
1277 -Wunused-but-set-parameter false positives. */
1278 cp_walk_tree (&arguments, mark_exp_read_r, NULL, NULL);
1279
1280 if (inherited_base)
1281 pop_deferring_access_checks ();
1282 }
1283 in_base_initializer = 0;
1284
1285 /* Initialize the vptrs. */
1286 initialize_vtbl_ptrs (current_class_ptr);
1287
1288 /* Initialize the data members. */
1289 while (mem_inits)
1290 {
1291 perform_member_init (TREE_PURPOSE (mem_inits),
1292 TREE_VALUE (mem_inits));
1293 mem_inits = TREE_CHAIN (mem_inits);
1294 }
1295 }
1296
1297 /* Returns the address of the vtable (i.e., the value that should be
1298 assigned to the vptr) for BINFO. */
1299
1300 tree
1301 build_vtbl_address (tree binfo)
1302 {
1303 tree binfo_for = binfo;
1304 tree vtbl;
1305
1306 if (BINFO_VPTR_INDEX (binfo) && BINFO_VIRTUAL_P (binfo))
1307 /* If this is a virtual primary base, then the vtable we want to store
1308 is that for the base this is being used as the primary base of. We
1309 can't simply skip the initialization, because we may be expanding the
1310 inits of a subobject constructor where the virtual base layout
1311 can be different. */
1312 while (BINFO_PRIMARY_P (binfo_for))
1313 binfo_for = BINFO_INHERITANCE_CHAIN (binfo_for);
1314
1315 /* Figure out what vtable BINFO's vtable is based on, and mark it as
1316 used. */
1317 vtbl = get_vtbl_decl_for_binfo (binfo_for);
1318 TREE_USED (vtbl) = true;
1319
1320 /* Now compute the address to use when initializing the vptr. */
1321 vtbl = unshare_expr (BINFO_VTABLE (binfo_for));
1322 if (VAR_P (vtbl))
1323 vtbl = build1 (ADDR_EXPR, build_pointer_type (TREE_TYPE (vtbl)), vtbl);
1324
1325 return vtbl;
1326 }
1327
1328 /* This code sets up the virtual function tables appropriate for
1329 the pointer DECL. It is a one-ply initialization.
1330
1331 BINFO is the exact type that DECL is supposed to be. In
1332 multiple inheritance, this might mean "C's A" if C : A, B. */
1333
1334 static void
1335 expand_virtual_init (tree binfo, tree decl)
1336 {
1337 tree vtbl, vtbl_ptr;
1338 tree vtt_index;
1339
1340 /* Compute the initializer for vptr. */
1341 vtbl = build_vtbl_address (binfo);
1342
1343 /* We may get this vptr from a VTT, if this is a subobject
1344 constructor or subobject destructor. */
1345 vtt_index = BINFO_VPTR_INDEX (binfo);
1346 if (vtt_index)
1347 {
1348 tree vtbl2;
1349 tree vtt_parm;
1350
1351 /* Compute the value to use, when there's a VTT. */
1352 vtt_parm = current_vtt_parm;
1353 vtbl2 = fold_build_pointer_plus (vtt_parm, vtt_index);
1354 vtbl2 = cp_build_indirect_ref (vtbl2, RO_NULL, tf_warning_or_error);
1355 vtbl2 = convert (TREE_TYPE (vtbl), vtbl2);
1356
1357 /* The actual initializer is the VTT value only in the subobject
1358 constructor. In maybe_clone_body we'll substitute NULL for
1359 the vtt_parm in the case of the non-subobject constructor. */
1360 vtbl = build_if_in_charge (vtbl, vtbl2);
1361 }
1362
1363 /* Compute the location of the vtpr. */
1364 vtbl_ptr = build_vfield_ref (cp_build_indirect_ref (decl, RO_NULL,
1365 tf_warning_or_error),
1366 TREE_TYPE (binfo));
1367 gcc_assert (vtbl_ptr != error_mark_node);
1368
1369 /* Assign the vtable to the vptr. */
1370 vtbl = convert_force (TREE_TYPE (vtbl_ptr), vtbl, 0, tf_warning_or_error);
1371 finish_expr_stmt (cp_build_modify_expr (input_location, vtbl_ptr, NOP_EXPR,
1372 vtbl, tf_warning_or_error));
1373 }
1374
1375 /* If an exception is thrown in a constructor, those base classes already
1376 constructed must be destroyed. This function creates the cleanup
1377 for BINFO, which has just been constructed. If FLAG is non-NULL,
1378 it is a DECL which is nonzero when this base needs to be
1379 destroyed. */
1380
1381 static void
1382 expand_cleanup_for_base (tree binfo, tree flag)
1383 {
1384 tree expr;
1385
1386 if (!type_build_dtor_call (BINFO_TYPE (binfo)))
1387 return;
1388
1389 /* Call the destructor. */
1390 expr = build_special_member_call (current_class_ref,
1391 base_dtor_identifier,
1392 NULL,
1393 binfo,
1394 LOOKUP_NORMAL | LOOKUP_NONVIRTUAL,
1395 tf_warning_or_error);
1396
1397 if (TYPE_HAS_TRIVIAL_DESTRUCTOR (BINFO_TYPE (binfo)))
1398 return;
1399
1400 if (flag)
1401 expr = fold_build3_loc (input_location,
1402 COND_EXPR, void_type_node,
1403 c_common_truthvalue_conversion (input_location, flag),
1404 expr, integer_zero_node);
1405
1406 finish_eh_cleanup (expr);
1407 }
1408
1409 /* Construct the virtual base-class VBASE passing the ARGUMENTS to its
1410 constructor. */
1411
1412 static void
1413 construct_virtual_base (tree vbase, tree arguments)
1414 {
1415 tree inner_if_stmt;
1416 tree exp;
1417 tree flag;
1418
1419 /* If there are virtual base classes with destructors, we need to
1420 emit cleanups to destroy them if an exception is thrown during
1421 the construction process. These exception regions (i.e., the
1422 period during which the cleanups must occur) begin from the time
1423 the construction is complete to the end of the function. If we
1424 create a conditional block in which to initialize the
1425 base-classes, then the cleanup region for the virtual base begins
1426 inside a block, and ends outside of that block. This situation
1427 confuses the sjlj exception-handling code. Therefore, we do not
1428 create a single conditional block, but one for each
1429 initialization. (That way the cleanup regions always begin
1430 in the outer block.) We trust the back end to figure out
1431 that the FLAG will not change across initializations, and
1432 avoid doing multiple tests. */
1433 flag = DECL_CHAIN (DECL_ARGUMENTS (current_function_decl));
1434 inner_if_stmt = begin_if_stmt ();
1435 finish_if_stmt_cond (flag, inner_if_stmt);
1436
1437 /* Compute the location of the virtual base. If we're
1438 constructing virtual bases, then we must be the most derived
1439 class. Therefore, we don't have to look up the virtual base;
1440 we already know where it is. */
1441 exp = convert_to_base_statically (current_class_ref, vbase);
1442
1443 expand_aggr_init_1 (vbase, current_class_ref, exp, arguments,
1444 0, tf_warning_or_error);
1445 finish_then_clause (inner_if_stmt);
1446 finish_if_stmt (inner_if_stmt);
1447
1448 expand_cleanup_for_base (vbase, flag);
1449 }
1450
1451 /* Find the context in which this FIELD can be initialized. */
1452
1453 static tree
1454 initializing_context (tree field)
1455 {
1456 tree t = DECL_CONTEXT (field);
1457
1458 /* Anonymous union members can be initialized in the first enclosing
1459 non-anonymous union context. */
1460 while (t && ANON_AGGR_TYPE_P (t))
1461 t = TYPE_CONTEXT (t);
1462 return t;
1463 }
1464
1465 /* Function to give error message if member initialization specification
1466 is erroneous. FIELD is the member we decided to initialize.
1467 TYPE is the type for which the initialization is being performed.
1468 FIELD must be a member of TYPE.
1469
1470 MEMBER_NAME is the name of the member. */
1471
1472 static int
1473 member_init_ok_or_else (tree field, tree type, tree member_name)
1474 {
1475 if (field == error_mark_node)
1476 return 0;
1477 if (!field)
1478 {
1479 error ("class %qT does not have any field named %qD", type,
1480 member_name);
1481 return 0;
1482 }
1483 if (VAR_P (field))
1484 {
1485 error ("%q#D is a static data member; it can only be "
1486 "initialized at its definition",
1487 field);
1488 return 0;
1489 }
1490 if (TREE_CODE (field) != FIELD_DECL)
1491 {
1492 error ("%q#D is not a non-static data member of %qT",
1493 field, type);
1494 return 0;
1495 }
1496 if (initializing_context (field) != type)
1497 {
1498 error ("class %qT does not have any field named %qD", type,
1499 member_name);
1500 return 0;
1501 }
1502
1503 return 1;
1504 }
1505
1506 /* NAME is a FIELD_DECL, an IDENTIFIER_NODE which names a field, or it
1507 is a _TYPE node or TYPE_DECL which names a base for that type.
1508 Check the validity of NAME, and return either the base _TYPE, base
1509 binfo, or the FIELD_DECL of the member. If NAME is invalid, return
1510 NULL_TREE and issue a diagnostic.
1511
1512 An old style unnamed direct single base construction is permitted,
1513 where NAME is NULL. */
1514
1515 tree
1516 expand_member_init (tree name)
1517 {
1518 tree basetype;
1519 tree field;
1520
1521 if (!current_class_ref)
1522 return NULL_TREE;
1523
1524 if (!name)
1525 {
1526 /* This is an obsolete unnamed base class initializer. The
1527 parser will already have warned about its use. */
1528 switch (BINFO_N_BASE_BINFOS (TYPE_BINFO (current_class_type)))
1529 {
1530 case 0:
1531 error ("unnamed initializer for %qT, which has no base classes",
1532 current_class_type);
1533 return NULL_TREE;
1534 case 1:
1535 basetype = BINFO_TYPE
1536 (BINFO_BASE_BINFO (TYPE_BINFO (current_class_type), 0));
1537 break;
1538 default:
1539 error ("unnamed initializer for %qT, which uses multiple inheritance",
1540 current_class_type);
1541 return NULL_TREE;
1542 }
1543 }
1544 else if (TYPE_P (name))
1545 {
1546 basetype = TYPE_MAIN_VARIANT (name);
1547 name = TYPE_NAME (name);
1548 }
1549 else if (TREE_CODE (name) == TYPE_DECL)
1550 basetype = TYPE_MAIN_VARIANT (TREE_TYPE (name));
1551 else
1552 basetype = NULL_TREE;
1553
1554 if (basetype)
1555 {
1556 tree class_binfo;
1557 tree direct_binfo;
1558 tree virtual_binfo;
1559 int i;
1560
1561 if (current_template_parms
1562 || same_type_p (basetype, current_class_type))
1563 return basetype;
1564
1565 class_binfo = TYPE_BINFO (current_class_type);
1566 direct_binfo = NULL_TREE;
1567 virtual_binfo = NULL_TREE;
1568
1569 /* Look for a direct base. */
1570 for (i = 0; BINFO_BASE_ITERATE (class_binfo, i, direct_binfo); ++i)
1571 if (SAME_BINFO_TYPE_P (BINFO_TYPE (direct_binfo), basetype))
1572 break;
1573
1574 /* Look for a virtual base -- unless the direct base is itself
1575 virtual. */
1576 if (!direct_binfo || !BINFO_VIRTUAL_P (direct_binfo))
1577 virtual_binfo = binfo_for_vbase (basetype, current_class_type);
1578
1579 /* [class.base.init]
1580
1581 If a mem-initializer-id is ambiguous because it designates
1582 both a direct non-virtual base class and an inherited virtual
1583 base class, the mem-initializer is ill-formed. */
1584 if (direct_binfo && virtual_binfo)
1585 {
1586 error ("%qD is both a direct base and an indirect virtual base",
1587 basetype);
1588 return NULL_TREE;
1589 }
1590
1591 if (!direct_binfo && !virtual_binfo)
1592 {
1593 if (CLASSTYPE_VBASECLASSES (current_class_type))
1594 error ("type %qT is not a direct or virtual base of %qT",
1595 basetype, current_class_type);
1596 else
1597 error ("type %qT is not a direct base of %qT",
1598 basetype, current_class_type);
1599 return NULL_TREE;
1600 }
1601
1602 return direct_binfo ? direct_binfo : virtual_binfo;
1603 }
1604 else
1605 {
1606 if (identifier_p (name))
1607 field = lookup_field (current_class_type, name, 1, false);
1608 else
1609 field = name;
1610
1611 if (member_init_ok_or_else (field, current_class_type, name))
1612 return field;
1613 }
1614
1615 return NULL_TREE;
1616 }
1617
1618 /* This is like `expand_member_init', only it stores one aggregate
1619 value into another.
1620
1621 INIT comes in two flavors: it is either a value which
1622 is to be stored in EXP, or it is a parameter list
1623 to go to a constructor, which will operate on EXP.
1624 If INIT is not a parameter list for a constructor, then set
1625 LOOKUP_ONLYCONVERTING.
1626 If FLAGS is LOOKUP_ONLYCONVERTING then it is the = init form of
1627 the initializer, if FLAGS is 0, then it is the (init) form.
1628 If `init' is a CONSTRUCTOR, then we emit a warning message,
1629 explaining that such initializations are invalid.
1630
1631 If INIT resolves to a CALL_EXPR which happens to return
1632 something of the type we are looking for, then we know
1633 that we can safely use that call to perform the
1634 initialization.
1635
1636 The virtual function table pointer cannot be set up here, because
1637 we do not really know its type.
1638
1639 This never calls operator=().
1640
1641 When initializing, nothing is CONST.
1642
1643 A default copy constructor may have to be used to perform the
1644 initialization.
1645
1646 A constructor or a conversion operator may have to be used to
1647 perform the initialization, but not both, as it would be ambiguous. */
1648
1649 tree
1650 build_aggr_init (tree exp, tree init, int flags, tsubst_flags_t complain)
1651 {
1652 tree stmt_expr;
1653 tree compound_stmt;
1654 int destroy_temps;
1655 tree type = TREE_TYPE (exp);
1656 int was_const = TREE_READONLY (exp);
1657 int was_volatile = TREE_THIS_VOLATILE (exp);
1658 int is_global;
1659
1660 if (init == error_mark_node)
1661 return error_mark_node;
1662
1663 location_t init_loc = (init
1664 ? EXPR_LOC_OR_LOC (init, input_location)
1665 : location_of (exp));
1666
1667 TREE_READONLY (exp) = 0;
1668 TREE_THIS_VOLATILE (exp) = 0;
1669
1670 if (TREE_CODE (type) == ARRAY_TYPE)
1671 {
1672 tree itype = init ? TREE_TYPE (init) : NULL_TREE;
1673 int from_array = 0;
1674
1675 if (VAR_P (exp) && DECL_DECOMPOSITION_P (exp))
1676 {
1677 from_array = 1;
1678 if (init && DECL_P (init)
1679 && !(flags & LOOKUP_ONLYCONVERTING))
1680 {
1681 /* Wrap the initializer in a CONSTRUCTOR so that build_vec_init
1682 recognizes it as direct-initialization. */
1683 init = build_constructor_single (init_list_type_node,
1684 NULL_TREE, init);
1685 CONSTRUCTOR_IS_DIRECT_INIT (init) = true;
1686 }
1687 }
1688 else
1689 {
1690 /* An array may not be initialized use the parenthesized
1691 initialization form -- unless the initializer is "()". */
1692 if (init && TREE_CODE (init) == TREE_LIST)
1693 {
1694 if (complain & tf_error)
1695 error ("bad array initializer");
1696 return error_mark_node;
1697 }
1698 /* Must arrange to initialize each element of EXP
1699 from elements of INIT. */
1700 if (cv_qualified_p (type))
1701 TREE_TYPE (exp) = cv_unqualified (type);
1702 if (itype && cv_qualified_p (itype))
1703 TREE_TYPE (init) = cv_unqualified (itype);
1704 from_array = (itype && same_type_p (TREE_TYPE (init),
1705 TREE_TYPE (exp)));
1706
1707 if (init && !from_array
1708 && !BRACE_ENCLOSED_INITIALIZER_P (init))
1709 {
1710 if (complain & tf_error)
1711 permerror (init_loc, "array must be initialized "
1712 "with a brace-enclosed initializer");
1713 else
1714 return error_mark_node;
1715 }
1716 }
1717
1718 stmt_expr = build_vec_init (exp, NULL_TREE, init,
1719 /*explicit_value_init_p=*/false,
1720 from_array,
1721 complain);
1722 TREE_READONLY (exp) = was_const;
1723 TREE_THIS_VOLATILE (exp) = was_volatile;
1724 TREE_TYPE (exp) = type;
1725 /* Restore the type of init unless it was used directly. */
1726 if (init && TREE_CODE (stmt_expr) != INIT_EXPR)
1727 TREE_TYPE (init) = itype;
1728 return stmt_expr;
1729 }
1730
1731 if (init && init != void_type_node
1732 && TREE_CODE (init) != TREE_LIST
1733 && !(TREE_CODE (init) == TARGET_EXPR
1734 && TARGET_EXPR_DIRECT_INIT_P (init))
1735 && !DIRECT_LIST_INIT_P (init))
1736 flags |= LOOKUP_ONLYCONVERTING;
1737
1738 if ((VAR_P (exp) || TREE_CODE (exp) == PARM_DECL)
1739 && !lookup_attribute ("warn_unused", TYPE_ATTRIBUTES (type)))
1740 /* Just know that we've seen something for this node. */
1741 TREE_USED (exp) = 1;
1742
1743 is_global = begin_init_stmts (&stmt_expr, &compound_stmt);
1744 destroy_temps = stmts_are_full_exprs_p ();
1745 current_stmt_tree ()->stmts_are_full_exprs_p = 0;
1746 expand_aggr_init_1 (TYPE_BINFO (type), exp, exp,
1747 init, LOOKUP_NORMAL|flags, complain);
1748 stmt_expr = finish_init_stmts (is_global, stmt_expr, compound_stmt);
1749 current_stmt_tree ()->stmts_are_full_exprs_p = destroy_temps;
1750 TREE_READONLY (exp) = was_const;
1751 TREE_THIS_VOLATILE (exp) = was_volatile;
1752
1753 return stmt_expr;
1754 }
1755
1756 static void
1757 expand_default_init (tree binfo, tree true_exp, tree exp, tree init, int flags,
1758 tsubst_flags_t complain)
1759 {
1760 tree type = TREE_TYPE (exp);
1761
1762 /* It fails because there may not be a constructor which takes
1763 its own type as the first (or only parameter), but which does
1764 take other types via a conversion. So, if the thing initializing
1765 the expression is a unit element of type X, first try X(X&),
1766 followed by initialization by X. If neither of these work
1767 out, then look hard. */
1768 tree rval;
1769 vec<tree, va_gc> *parms;
1770
1771 /* If we have direct-initialization from an initializer list, pull
1772 it out of the TREE_LIST so the code below can see it. */
1773 if (init && TREE_CODE (init) == TREE_LIST
1774 && DIRECT_LIST_INIT_P (TREE_VALUE (init)))
1775 {
1776 gcc_checking_assert ((flags & LOOKUP_ONLYCONVERTING) == 0
1777 && TREE_CHAIN (init) == NULL_TREE);
1778 init = TREE_VALUE (init);
1779 /* Only call reshape_init if it has not been called earlier
1780 by the callers. */
1781 if (BRACE_ENCLOSED_INITIALIZER_P (init) && CP_AGGREGATE_TYPE_P (type))
1782 init = reshape_init (type, init, complain);
1783 }
1784
1785 if (init && BRACE_ENCLOSED_INITIALIZER_P (init)
1786 && CP_AGGREGATE_TYPE_P (type))
1787 /* A brace-enclosed initializer for an aggregate. In C++0x this can
1788 happen for direct-initialization, too. */
1789 init = digest_init (type, init, complain);
1790
1791 /* A CONSTRUCTOR of the target's type is a previously digested
1792 initializer, whether that happened just above or in
1793 cp_parser_late_parsing_nsdmi.
1794
1795 A TARGET_EXPR with TARGET_EXPR_DIRECT_INIT_P or TARGET_EXPR_LIST_INIT_P
1796 set represents the whole initialization, so we shouldn't build up
1797 another ctor call. */
1798 if (init
1799 && (TREE_CODE (init) == CONSTRUCTOR
1800 || (TREE_CODE (init) == TARGET_EXPR
1801 && (TARGET_EXPR_DIRECT_INIT_P (init)
1802 || TARGET_EXPR_LIST_INIT_P (init))))
1803 && same_type_ignoring_top_level_qualifiers_p (TREE_TYPE (init), type))
1804 {
1805 /* Early initialization via a TARGET_EXPR only works for
1806 complete objects. */
1807 gcc_assert (TREE_CODE (init) == CONSTRUCTOR || true_exp == exp);
1808
1809 init = build2 (INIT_EXPR, TREE_TYPE (exp), exp, init);
1810 TREE_SIDE_EFFECTS (init) = 1;
1811 finish_expr_stmt (init);
1812 return;
1813 }
1814
1815 if (init && TREE_CODE (init) != TREE_LIST
1816 && (flags & LOOKUP_ONLYCONVERTING))
1817 {
1818 /* Base subobjects should only get direct-initialization. */
1819 gcc_assert (true_exp == exp);
1820
1821 if (flags & DIRECT_BIND)
1822 /* Do nothing. We hit this in two cases: Reference initialization,
1823 where we aren't initializing a real variable, so we don't want
1824 to run a new constructor; and catching an exception, where we
1825 have already built up the constructor call so we could wrap it
1826 in an exception region. */;
1827 else
1828 init = ocp_convert (type, init, CONV_IMPLICIT|CONV_FORCE_TEMP,
1829 flags, complain);
1830
1831 if (TREE_CODE (init) == MUST_NOT_THROW_EXPR)
1832 /* We need to protect the initialization of a catch parm with a
1833 call to terminate(), which shows up as a MUST_NOT_THROW_EXPR
1834 around the TARGET_EXPR for the copy constructor. See
1835 initialize_handler_parm. */
1836 {
1837 TREE_OPERAND (init, 0) = build2 (INIT_EXPR, TREE_TYPE (exp), exp,
1838 TREE_OPERAND (init, 0));
1839 TREE_TYPE (init) = void_type_node;
1840 }
1841 else
1842 init = build2 (INIT_EXPR, TREE_TYPE (exp), exp, init);
1843 TREE_SIDE_EFFECTS (init) = 1;
1844 finish_expr_stmt (init);
1845 return;
1846 }
1847
1848 if (init == NULL_TREE)
1849 parms = NULL;
1850 else if (TREE_CODE (init) == TREE_LIST && !TREE_TYPE (init))
1851 {
1852 parms = make_tree_vector ();
1853 for (; init != NULL_TREE; init = TREE_CHAIN (init))
1854 vec_safe_push (parms, TREE_VALUE (init));
1855 }
1856 else
1857 parms = make_tree_vector_single (init);
1858
1859 if (exp == current_class_ref && current_function_decl
1860 && DECL_HAS_IN_CHARGE_PARM_P (current_function_decl))
1861 {
1862 /* Delegating constructor. */
1863 tree complete;
1864 tree base;
1865 tree elt; unsigned i;
1866
1867 /* Unshare the arguments for the second call. */
1868 vec<tree, va_gc> *parms2 = make_tree_vector ();
1869 FOR_EACH_VEC_SAFE_ELT (parms, i, elt)
1870 {
1871 elt = break_out_target_exprs (elt);
1872 vec_safe_push (parms2, elt);
1873 }
1874 complete = build_special_member_call (exp, complete_ctor_identifier,
1875 &parms2, binfo, flags,
1876 complain);
1877 complete = fold_build_cleanup_point_expr (void_type_node, complete);
1878 release_tree_vector (parms2);
1879
1880 base = build_special_member_call (exp, base_ctor_identifier,
1881 &parms, binfo, flags,
1882 complain);
1883 base = fold_build_cleanup_point_expr (void_type_node, base);
1884 rval = build_if_in_charge (complete, base);
1885 }
1886 else
1887 {
1888 tree ctor_name = (true_exp == exp
1889 ? complete_ctor_identifier : base_ctor_identifier);
1890
1891 rval = build_special_member_call (exp, ctor_name, &parms, binfo, flags,
1892 complain);
1893 }
1894
1895 if (parms != NULL)
1896 release_tree_vector (parms);
1897
1898 if (exp == true_exp && TREE_CODE (rval) == CALL_EXPR)
1899 {
1900 tree fn = get_callee_fndecl (rval);
1901 if (fn && DECL_DECLARED_CONSTEXPR_P (fn))
1902 {
1903 tree e = maybe_constant_init (rval, exp);
1904 if (TREE_CONSTANT (e))
1905 rval = build2 (INIT_EXPR, type, exp, e);
1906 }
1907 }
1908
1909 /* FIXME put back convert_to_void? */
1910 if (TREE_SIDE_EFFECTS (rval))
1911 finish_expr_stmt (rval);
1912 }
1913
1914 /* This function is responsible for initializing EXP with INIT
1915 (if any).
1916
1917 BINFO is the binfo of the type for who we are performing the
1918 initialization. For example, if W is a virtual base class of A and B,
1919 and C : A, B.
1920 If we are initializing B, then W must contain B's W vtable, whereas
1921 were we initializing C, W must contain C's W vtable.
1922
1923 TRUE_EXP is nonzero if it is the true expression being initialized.
1924 In this case, it may be EXP, or may just contain EXP. The reason we
1925 need this is because if EXP is a base element of TRUE_EXP, we
1926 don't necessarily know by looking at EXP where its virtual
1927 baseclass fields should really be pointing. But we do know
1928 from TRUE_EXP. In constructors, we don't know anything about
1929 the value being initialized.
1930
1931 FLAGS is just passed to `build_new_method_call'. See that function
1932 for its description. */
1933
1934 static void
1935 expand_aggr_init_1 (tree binfo, tree true_exp, tree exp, tree init, int flags,
1936 tsubst_flags_t complain)
1937 {
1938 tree type = TREE_TYPE (exp);
1939
1940 gcc_assert (init != error_mark_node && type != error_mark_node);
1941 gcc_assert (building_stmt_list_p ());
1942
1943 /* Use a function returning the desired type to initialize EXP for us.
1944 If the function is a constructor, and its first argument is
1945 NULL_TREE, know that it was meant for us--just slide exp on
1946 in and expand the constructor. Constructors now come
1947 as TARGET_EXPRs. */
1948
1949 if (init && VAR_P (exp)
1950 && COMPOUND_LITERAL_P (init))
1951 {
1952 vec<tree, va_gc> *cleanups = NULL;
1953 /* If store_init_value returns NULL_TREE, the INIT has been
1954 recorded as the DECL_INITIAL for EXP. That means there's
1955 nothing more we have to do. */
1956 init = store_init_value (exp, init, &cleanups, flags);
1957 if (init)
1958 finish_expr_stmt (init);
1959 gcc_assert (!cleanups);
1960 return;
1961 }
1962
1963 /* List-initialization from {} becomes value-initialization for non-aggregate
1964 classes with default constructors. Handle this here when we're
1965 initializing a base, so protected access works. */
1966 if (exp != true_exp && init && TREE_CODE (init) == TREE_LIST)
1967 {
1968 tree elt = TREE_VALUE (init);
1969 if (DIRECT_LIST_INIT_P (elt)
1970 && CONSTRUCTOR_ELTS (elt) == 0
1971 && CLASSTYPE_NON_AGGREGATE (type)
1972 && TYPE_HAS_DEFAULT_CONSTRUCTOR (type))
1973 init = void_type_node;
1974 }
1975
1976 /* If an explicit -- but empty -- initializer list was present,
1977 that's value-initialization. */
1978 if (init == void_type_node)
1979 {
1980 /* If the type has data but no user-provided ctor, we need to zero
1981 out the object. */
1982 if (!type_has_user_provided_constructor (type)
1983 && !is_really_empty_class (type))
1984 {
1985 tree field_size = NULL_TREE;
1986 if (exp != true_exp && CLASSTYPE_AS_BASE (type) != type)
1987 /* Don't clobber already initialized virtual bases. */
1988 field_size = TYPE_SIZE (CLASSTYPE_AS_BASE (type));
1989 init = build_zero_init_1 (type, NULL_TREE, /*static_storage_p=*/false,
1990 field_size);
1991 init = build2 (INIT_EXPR, type, exp, init);
1992 finish_expr_stmt (init);
1993 }
1994
1995 /* If we don't need to mess with the constructor at all,
1996 then we're done. */
1997 if (! type_build_ctor_call (type))
1998 return;
1999
2000 /* Otherwise fall through and call the constructor. */
2001 init = NULL_TREE;
2002 }
2003
2004 /* We know that expand_default_init can handle everything we want
2005 at this point. */
2006 expand_default_init (binfo, true_exp, exp, init, flags, complain);
2007 }
2008
2009 /* Report an error if TYPE is not a user-defined, class type. If
2010 OR_ELSE is nonzero, give an error message. */
2011
2012 int
2013 is_class_type (tree type, int or_else)
2014 {
2015 if (type == error_mark_node)
2016 return 0;
2017
2018 if (! CLASS_TYPE_P (type))
2019 {
2020 if (or_else)
2021 error ("%qT is not a class type", type);
2022 return 0;
2023 }
2024 return 1;
2025 }
2026
2027 tree
2028 get_type_value (tree name)
2029 {
2030 if (name == error_mark_node)
2031 return NULL_TREE;
2032
2033 if (IDENTIFIER_HAS_TYPE_VALUE (name))
2034 return IDENTIFIER_TYPE_VALUE (name);
2035 else
2036 return NULL_TREE;
2037 }
2038
2039 /* Build a reference to a member of an aggregate. This is not a C++
2040 `&', but really something which can have its address taken, and
2041 then act as a pointer to member, for example TYPE :: FIELD can have
2042 its address taken by saying & TYPE :: FIELD. ADDRESS_P is true if
2043 this expression is the operand of "&".
2044
2045 @@ Prints out lousy diagnostics for operator <typename>
2046 @@ fields.
2047
2048 @@ This function should be rewritten and placed in search.c. */
2049
2050 tree
2051 build_offset_ref (tree type, tree member, bool address_p,
2052 tsubst_flags_t complain)
2053 {
2054 tree decl;
2055 tree basebinfo = NULL_TREE;
2056
2057 /* class templates can come in as TEMPLATE_DECLs here. */
2058 if (TREE_CODE (member) == TEMPLATE_DECL)
2059 return member;
2060
2061 if (dependent_scope_p (type) || type_dependent_expression_p (member))
2062 return build_qualified_name (NULL_TREE, type, member,
2063 /*template_p=*/false);
2064
2065 gcc_assert (TYPE_P (type));
2066 if (! is_class_type (type, 1))
2067 return error_mark_node;
2068
2069 gcc_assert (DECL_P (member) || BASELINK_P (member));
2070 /* Callers should call mark_used before this point. */
2071 gcc_assert (!DECL_P (member) || TREE_USED (member));
2072
2073 type = TYPE_MAIN_VARIANT (type);
2074 if (!COMPLETE_OR_OPEN_TYPE_P (complete_type (type)))
2075 {
2076 if (complain & tf_error)
2077 error ("incomplete type %qT does not have member %qD", type, member);
2078 return error_mark_node;
2079 }
2080
2081 /* Entities other than non-static members need no further
2082 processing. */
2083 if (TREE_CODE (member) == TYPE_DECL)
2084 return member;
2085 if (VAR_P (member) || TREE_CODE (member) == CONST_DECL)
2086 return convert_from_reference (member);
2087
2088 if (TREE_CODE (member) == FIELD_DECL && DECL_C_BIT_FIELD (member))
2089 {
2090 if (complain & tf_error)
2091 error ("invalid pointer to bit-field %qD", member);
2092 return error_mark_node;
2093 }
2094
2095 /* Set up BASEBINFO for member lookup. */
2096 decl = maybe_dummy_object (type, &basebinfo);
2097
2098 /* A lot of this logic is now handled in lookup_member. */
2099 if (BASELINK_P (member))
2100 {
2101 /* Go from the TREE_BASELINK to the member function info. */
2102 tree t = BASELINK_FUNCTIONS (member);
2103
2104 if (TREE_CODE (t) != TEMPLATE_ID_EXPR && !really_overloaded_fn (t))
2105 {
2106 /* Get rid of a potential OVERLOAD around it. */
2107 t = OVL_FIRST (t);
2108
2109 /* Unique functions are handled easily. */
2110
2111 /* For non-static member of base class, we need a special rule
2112 for access checking [class.protected]:
2113
2114 If the access is to form a pointer to member, the
2115 nested-name-specifier shall name the derived class
2116 (or any class derived from that class). */
2117 bool ok;
2118 if (address_p && DECL_P (t)
2119 && DECL_NONSTATIC_MEMBER_P (t))
2120 ok = perform_or_defer_access_check (TYPE_BINFO (type), t, t,
2121 complain);
2122 else
2123 ok = perform_or_defer_access_check (basebinfo, t, t,
2124 complain);
2125 if (!ok)
2126 return error_mark_node;
2127 if (DECL_STATIC_FUNCTION_P (t))
2128 return t;
2129 member = t;
2130 }
2131 else
2132 TREE_TYPE (member) = unknown_type_node;
2133 }
2134 else if (address_p && TREE_CODE (member) == FIELD_DECL)
2135 {
2136 /* We need additional test besides the one in
2137 check_accessibility_of_qualified_id in case it is
2138 a pointer to non-static member. */
2139 if (!perform_or_defer_access_check (TYPE_BINFO (type), member, member,
2140 complain))
2141 return error_mark_node;
2142 }
2143
2144 if (!address_p)
2145 {
2146 /* If MEMBER is non-static, then the program has fallen afoul of
2147 [expr.prim]:
2148
2149 An id-expression that denotes a nonstatic data member or
2150 nonstatic member function of a class can only be used:
2151
2152 -- as part of a class member access (_expr.ref_) in which the
2153 object-expression refers to the member's class or a class
2154 derived from that class, or
2155
2156 -- to form a pointer to member (_expr.unary.op_), or
2157
2158 -- in the body of a nonstatic member function of that class or
2159 of a class derived from that class (_class.mfct.nonstatic_), or
2160
2161 -- in a mem-initializer for a constructor for that class or for
2162 a class derived from that class (_class.base.init_). */
2163 if (DECL_NONSTATIC_MEMBER_FUNCTION_P (member))
2164 {
2165 /* Build a representation of the qualified name suitable
2166 for use as the operand to "&" -- even though the "&" is
2167 not actually present. */
2168 member = build2 (OFFSET_REF, TREE_TYPE (member), decl, member);
2169 /* In Microsoft mode, treat a non-static member function as if
2170 it were a pointer-to-member. */
2171 if (flag_ms_extensions)
2172 {
2173 PTRMEM_OK_P (member) = 1;
2174 return cp_build_addr_expr (member, complain);
2175 }
2176 if (complain & tf_error)
2177 error ("invalid use of non-static member function %qD",
2178 TREE_OPERAND (member, 1));
2179 return error_mark_node;
2180 }
2181 else if (TREE_CODE (member) == FIELD_DECL)
2182 {
2183 if (complain & tf_error)
2184 error ("invalid use of non-static data member %qD", member);
2185 return error_mark_node;
2186 }
2187 return member;
2188 }
2189
2190 member = build2 (OFFSET_REF, TREE_TYPE (member), decl, member);
2191 PTRMEM_OK_P (member) = 1;
2192 return member;
2193 }
2194
2195 /* If DECL is a scalar enumeration constant or variable with a
2196 constant initializer, return the initializer (or, its initializers,
2197 recursively); otherwise, return DECL. If STRICT_P, the
2198 initializer is only returned if DECL is a
2199 constant-expression. If RETURN_AGGREGATE_CST_OK_P, it is ok to
2200 return an aggregate constant. */
2201
2202 static tree
2203 constant_value_1 (tree decl, bool strict_p, bool return_aggregate_cst_ok_p)
2204 {
2205 while (TREE_CODE (decl) == CONST_DECL
2206 || decl_constant_var_p (decl)
2207 || (!strict_p && VAR_P (decl)
2208 && CP_TYPE_CONST_NON_VOLATILE_P (TREE_TYPE (decl))))
2209 {
2210 tree init;
2211 /* If DECL is a static data member in a template
2212 specialization, we must instantiate it here. The
2213 initializer for the static data member is not processed
2214 until needed; we need it now. */
2215 mark_used (decl, tf_none);
2216 init = DECL_INITIAL (decl);
2217 if (init == error_mark_node)
2218 {
2219 if (TREE_CODE (decl) == CONST_DECL
2220 || DECL_INITIALIZED_BY_CONSTANT_EXPRESSION_P (decl))
2221 /* Treat the error as a constant to avoid cascading errors on
2222 excessively recursive template instantiation (c++/9335). */
2223 return init;
2224 else
2225 return decl;
2226 }
2227 /* Initializers in templates are generally expanded during
2228 instantiation, so before that for const int i(2)
2229 INIT is a TREE_LIST with the actual initializer as
2230 TREE_VALUE. */
2231 if (processing_template_decl
2232 && init
2233 && TREE_CODE (init) == TREE_LIST
2234 && TREE_CHAIN (init) == NULL_TREE)
2235 init = TREE_VALUE (init);
2236 /* Instantiate a non-dependent initializer for user variables. We
2237 mustn't do this for the temporary for an array compound literal;
2238 trying to instatiate the initializer will keep creating new
2239 temporaries until we crash. Probably it's not useful to do it for
2240 other artificial variables, either. */
2241 if (!DECL_ARTIFICIAL (decl))
2242 init = instantiate_non_dependent_or_null (init);
2243 if (!init
2244 || !TREE_TYPE (init)
2245 || !TREE_CONSTANT (init)
2246 || (!return_aggregate_cst_ok_p
2247 /* Unless RETURN_AGGREGATE_CST_OK_P is true, do not
2248 return an aggregate constant (of which string
2249 literals are a special case), as we do not want
2250 to make inadvertent copies of such entities, and
2251 we must be sure that their addresses are the
2252 same everywhere. */
2253 && (TREE_CODE (init) == CONSTRUCTOR
2254 || TREE_CODE (init) == STRING_CST)))
2255 break;
2256 /* Don't return a CONSTRUCTOR for a variable with partial run-time
2257 initialization, since it doesn't represent the entire value. */
2258 if (TREE_CODE (init) == CONSTRUCTOR
2259 && !DECL_INITIALIZED_BY_CONSTANT_EXPRESSION_P (decl))
2260 break;
2261 /* If the variable has a dynamic initializer, don't use its
2262 DECL_INITIAL which doesn't reflect the real value. */
2263 if (VAR_P (decl)
2264 && TREE_STATIC (decl)
2265 && !DECL_INITIALIZED_BY_CONSTANT_EXPRESSION_P (decl)
2266 && DECL_NONTRIVIALLY_INITIALIZED_P (decl))
2267 break;
2268 decl = unshare_expr (init);
2269 }
2270 return decl;
2271 }
2272
2273 /* If DECL is a CONST_DECL, or a constant VAR_DECL initialized by constant
2274 of integral or enumeration type, or a constexpr variable of scalar type,
2275 then return that value. These are those variables permitted in constant
2276 expressions by [5.19/1]. */
2277
2278 tree
2279 scalar_constant_value (tree decl)
2280 {
2281 return constant_value_1 (decl, /*strict_p=*/true,
2282 /*return_aggregate_cst_ok_p=*/false);
2283 }
2284
2285 /* Like scalar_constant_value, but can also return aggregate initializers. */
2286
2287 tree
2288 decl_really_constant_value (tree decl)
2289 {
2290 return constant_value_1 (decl, /*strict_p=*/true,
2291 /*return_aggregate_cst_ok_p=*/true);
2292 }
2293
2294 /* A more relaxed version of scalar_constant_value, used by the
2295 common C/C++ code. */
2296
2297 tree
2298 decl_constant_value (tree decl)
2299 {
2300 return constant_value_1 (decl, /*strict_p=*/processing_template_decl,
2301 /*return_aggregate_cst_ok_p=*/true);
2302 }
2303
2304 /* Common subroutines of build_new and build_vec_delete. */
2305
2306 /* Build and return a NEW_EXPR. If NELTS is non-NULL, TYPE[NELTS] is
2307 the type of the object being allocated; otherwise, it's just TYPE.
2308 INIT is the initializer, if any. USE_GLOBAL_NEW is true if the
2309 user explicitly wrote "::operator new". PLACEMENT, if non-NULL, is
2310 a vector of arguments to be provided as arguments to a placement
2311 new operator. This routine performs no semantic checks; it just
2312 creates and returns a NEW_EXPR. */
2313
2314 static tree
2315 build_raw_new_expr (vec<tree, va_gc> *placement, tree type, tree nelts,
2316 vec<tree, va_gc> *init, int use_global_new)
2317 {
2318 tree init_list;
2319 tree new_expr;
2320
2321 /* If INIT is NULL, the we want to store NULL_TREE in the NEW_EXPR.
2322 If INIT is not NULL, then we want to store VOID_ZERO_NODE. This
2323 permits us to distinguish the case of a missing initializer "new
2324 int" from an empty initializer "new int()". */
2325 if (init == NULL)
2326 init_list = NULL_TREE;
2327 else if (init->is_empty ())
2328 init_list = void_node;
2329 else
2330 init_list = build_tree_list_vec (init);
2331
2332 new_expr = build4 (NEW_EXPR, build_pointer_type (type),
2333 build_tree_list_vec (placement), type, nelts,
2334 init_list);
2335 NEW_EXPR_USE_GLOBAL (new_expr) = use_global_new;
2336 TREE_SIDE_EFFECTS (new_expr) = 1;
2337
2338 return new_expr;
2339 }
2340
2341 /* Diagnose uninitialized const members or reference members of type
2342 TYPE. USING_NEW is used to disambiguate the diagnostic between a
2343 new expression without a new-initializer and a declaration. Returns
2344 the error count. */
2345
2346 static int
2347 diagnose_uninitialized_cst_or_ref_member_1 (tree type, tree origin,
2348 bool using_new, bool complain)
2349 {
2350 tree field;
2351 int error_count = 0;
2352
2353 if (type_has_user_provided_constructor (type))
2354 return 0;
2355
2356 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
2357 {
2358 tree field_type;
2359
2360 if (TREE_CODE (field) != FIELD_DECL)
2361 continue;
2362
2363 field_type = strip_array_types (TREE_TYPE (field));
2364
2365 if (type_has_user_provided_constructor (field_type))
2366 continue;
2367
2368 if (TREE_CODE (field_type) == REFERENCE_TYPE)
2369 {
2370 ++ error_count;
2371 if (complain)
2372 {
2373 if (DECL_CONTEXT (field) == origin)
2374 {
2375 if (using_new)
2376 error ("uninitialized reference member in %q#T "
2377 "using %<new%> without new-initializer", origin);
2378 else
2379 error ("uninitialized reference member in %q#T", origin);
2380 }
2381 else
2382 {
2383 if (using_new)
2384 error ("uninitialized reference member in base %q#T "
2385 "of %q#T using %<new%> without new-initializer",
2386 DECL_CONTEXT (field), origin);
2387 else
2388 error ("uninitialized reference member in base %q#T "
2389 "of %q#T", DECL_CONTEXT (field), origin);
2390 }
2391 inform (DECL_SOURCE_LOCATION (field),
2392 "%q#D should be initialized", field);
2393 }
2394 }
2395
2396 if (CP_TYPE_CONST_P (field_type))
2397 {
2398 ++ error_count;
2399 if (complain)
2400 {
2401 if (DECL_CONTEXT (field) == origin)
2402 {
2403 if (using_new)
2404 error ("uninitialized const member in %q#T "
2405 "using %<new%> without new-initializer", origin);
2406 else
2407 error ("uninitialized const member in %q#T", origin);
2408 }
2409 else
2410 {
2411 if (using_new)
2412 error ("uninitialized const member in base %q#T "
2413 "of %q#T using %<new%> without new-initializer",
2414 DECL_CONTEXT (field), origin);
2415 else
2416 error ("uninitialized const member in base %q#T "
2417 "of %q#T", DECL_CONTEXT (field), origin);
2418 }
2419 inform (DECL_SOURCE_LOCATION (field),
2420 "%q#D should be initialized", field);
2421 }
2422 }
2423
2424 if (CLASS_TYPE_P (field_type))
2425 error_count
2426 += diagnose_uninitialized_cst_or_ref_member_1 (field_type, origin,
2427 using_new, complain);
2428 }
2429 return error_count;
2430 }
2431
2432 int
2433 diagnose_uninitialized_cst_or_ref_member (tree type, bool using_new, bool complain)
2434 {
2435 return diagnose_uninitialized_cst_or_ref_member_1 (type, type, using_new, complain);
2436 }
2437
2438 /* Call __cxa_bad_array_new_length to indicate that the size calculation
2439 overflowed. Pretend it returns sizetype so that it plays nicely in the
2440 COND_EXPR. */
2441
2442 tree
2443 throw_bad_array_new_length (void)
2444 {
2445 if (!fn)
2446 {
2447 tree name = get_identifier ("__cxa_throw_bad_array_new_length");
2448
2449 fn = get_global_binding (name);
2450 if (!fn)
2451 fn = push_throw_library_fn
2452 (name, build_function_type_list (sizetype, NULL_TREE));
2453 }
2454
2455 return build_cxx_call (fn, 0, NULL, tf_warning_or_error);
2456 }
2457
2458 /* Attempt to find the initializer for field T in the initializer INIT,
2459 when non-null. Returns the initializer when successful and NULL
2460 otherwise. */
2461 static tree
2462 find_field_init (tree t, tree init)
2463 {
2464 if (!init)
2465 return NULL_TREE;
2466
2467 unsigned HOST_WIDE_INT idx;
2468 tree field, elt;
2469
2470 /* Iterate over all top-level initializer elements. */
2471 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (init), idx, field, elt)
2472 {
2473 /* If the member T is found, return it. */
2474 if (field == t)
2475 return elt;
2476
2477 /* Otherwise continue and/or recurse into nested initializers. */
2478 if (TREE_CODE (elt) == CONSTRUCTOR
2479 && (init = find_field_init (t, elt)))
2480 return init;
2481 }
2482 return NULL_TREE;
2483 }
2484
2485 /* Attempt to verify that the argument, OPER, of a placement new expression
2486 refers to an object sufficiently large for an object of TYPE or an array
2487 of NELTS of such objects when NELTS is non-null, and issue a warning when
2488 it does not. SIZE specifies the size needed to construct the object or
2489 array and captures the result of NELTS * sizeof (TYPE). (SIZE could be
2490 greater when the array under construction requires a cookie to store
2491 NELTS. GCC's placement new expression stores the cookie when invoking
2492 a user-defined placement new operator function but not the default one.
2493 Placement new expressions with user-defined placement new operator are
2494 not diagnosed since we don't know how they use the buffer (this could
2495 be a future extension). */
2496 static void
2497 warn_placement_new_too_small (tree type, tree nelts, tree size, tree oper)
2498 {
2499 location_t loc = EXPR_LOC_OR_LOC (oper, input_location);
2500
2501 /* The number of bytes to add to or subtract from the size of the provided
2502 buffer based on an offset into an array or an array element reference.
2503 Although intermediate results may be negative (as in a[3] - 2) the final
2504 result cannot be. */
2505 HOST_WIDE_INT adjust = 0;
2506 /* True when the size of the entire destination object should be used
2507 to compute the possibly optimistic estimate of the available space. */
2508 bool use_obj_size = false;
2509 /* True when the reference to the destination buffer is an ADDR_EXPR. */
2510 bool addr_expr = false;
2511
2512 STRIP_NOPS (oper);
2513
2514 /* Using a function argument or a (non-array) variable as an argument
2515 to placement new is not checked since it's unknown what it might
2516 point to. */
2517 if (TREE_CODE (oper) == PARM_DECL
2518 || VAR_P (oper)
2519 || TREE_CODE (oper) == COMPONENT_REF)
2520 return;
2521
2522 /* Evaluate any constant expressions. */
2523 size = fold_non_dependent_expr (size);
2524
2525 /* Handle the common case of array + offset expression when the offset
2526 is a constant. */
2527 if (TREE_CODE (oper) == POINTER_PLUS_EXPR)
2528 {
2529 /* If the offset is comple-time constant, use it to compute a more
2530 accurate estimate of the size of the buffer. Since the operand
2531 of POINTER_PLUS_EXPR is represented as an unsigned type, convert
2532 it to signed first.
2533 Otherwise, use the size of the entire array as an optimistic
2534 estimate (this may lead to false negatives). */
2535 tree adj = TREE_OPERAND (oper, 1);
2536 if (CONSTANT_CLASS_P (adj))
2537 adjust += tree_to_shwi (convert (ssizetype, adj));
2538 else
2539 use_obj_size = true;
2540
2541 oper = TREE_OPERAND (oper, 0);
2542
2543 STRIP_NOPS (oper);
2544 }
2545
2546 if (TREE_CODE (oper) == TARGET_EXPR)
2547 oper = TREE_OPERAND (oper, 1);
2548 else if (TREE_CODE (oper) == ADDR_EXPR)
2549 {
2550 addr_expr = true;
2551 oper = TREE_OPERAND (oper, 0);
2552 }
2553
2554 STRIP_NOPS (oper);
2555
2556 if (TREE_CODE (oper) == ARRAY_REF
2557 && (addr_expr || TREE_CODE (TREE_TYPE (oper)) == ARRAY_TYPE))
2558 {
2559 /* Similar to the offset computed above, see if the array index
2560 is a compile-time constant. If so, and unless the offset was
2561 not a compile-time constant, use the index to determine the
2562 size of the buffer. Otherwise, use the entire array as
2563 an optimistic estimate of the size. */
2564 const_tree adj = TREE_OPERAND (oper, 1);
2565 if (!use_obj_size && CONSTANT_CLASS_P (adj))
2566 adjust += tree_to_shwi (adj);
2567 else
2568 {
2569 use_obj_size = true;
2570 adjust = 0;
2571 }
2572
2573 oper = TREE_OPERAND (oper, 0);
2574 }
2575
2576 /* Refers to the declared object that constains the subobject referenced
2577 by OPER. When the object is initialized, makes it possible to determine
2578 the actual size of a flexible array member used as the buffer passed
2579 as OPER to placement new. */
2580 tree var_decl = NULL_TREE;
2581 /* True when operand is a COMPONENT_REF, to distinguish flexible array
2582 members from arrays of unspecified size. */
2583 bool compref = TREE_CODE (oper) == COMPONENT_REF;
2584
2585 /* Descend into a struct or union to find the member whose address
2586 is being used as the argument. */
2587 if (TREE_CODE (oper) == COMPONENT_REF)
2588 {
2589 tree op0 = oper;
2590 while (TREE_CODE (op0 = TREE_OPERAND (op0, 0)) == COMPONENT_REF);
2591 if (VAR_P (op0))
2592 var_decl = op0;
2593 oper = TREE_OPERAND (oper, 1);
2594 }
2595
2596 if ((addr_expr || !POINTER_TYPE_P (TREE_TYPE (oper)))
2597 && (VAR_P (oper)
2598 || TREE_CODE (oper) == FIELD_DECL
2599 || TREE_CODE (oper) == PARM_DECL))
2600 {
2601 /* A possibly optimistic estimate of the number of bytes available
2602 in the destination buffer. */
2603 unsigned HOST_WIDE_INT bytes_avail = 0;
2604 /* True when the estimate above is in fact the exact size
2605 of the destination buffer rather than an estimate. */
2606 bool exact_size = true;
2607
2608 /* Treat members of unions and members of structs uniformly, even
2609 though the size of a member of a union may be viewed as extending
2610 to the end of the union itself (it is by __builtin_object_size). */
2611 if ((VAR_P (oper) || use_obj_size)
2612 && DECL_SIZE_UNIT (oper)
2613 && tree_fits_uhwi_p (DECL_SIZE_UNIT (oper)))
2614 {
2615 /* Use the size of the entire array object when the expression
2616 refers to a variable or its size depends on an expression
2617 that's not a compile-time constant. */
2618 bytes_avail = tree_to_uhwi (DECL_SIZE_UNIT (oper));
2619 exact_size = !use_obj_size;
2620 }
2621 else if (TYPE_SIZE_UNIT (TREE_TYPE (oper))
2622 && tree_fits_uhwi_p (TYPE_SIZE_UNIT (TREE_TYPE (oper))))
2623 {
2624 /* Use the size of the type of the destination buffer object
2625 as the optimistic estimate of the available space in it. */
2626 bytes_avail = tree_to_uhwi (TYPE_SIZE_UNIT (TREE_TYPE (oper)));
2627 }
2628 else if (var_decl)
2629 {
2630 /* Constructing into a buffer provided by the flexible array
2631 member of a declared object (which is permitted as a G++
2632 extension). If the array member has been initialized,
2633 determine its size from the initializer. Otherwise,
2634 the array size is zero. */
2635 bytes_avail = 0;
2636
2637 if (tree init = find_field_init (oper, DECL_INITIAL (var_decl)))
2638 bytes_avail = tree_to_uhwi (TYPE_SIZE_UNIT (TREE_TYPE (init)));
2639 }
2640 else
2641 {
2642 /* Bail if neither the size of the object nor its type is known. */
2643 return;
2644 }
2645
2646 tree_code oper_code = TREE_CODE (TREE_TYPE (oper));
2647
2648 if (compref && oper_code == ARRAY_TYPE)
2649 {
2650 /* Avoid diagnosing flexible array members (which are accepted
2651 as an extension and diagnosed with -Wpedantic) and zero-length
2652 arrays (also an extension).
2653 Overflowing construction in one-element arrays is diagnosed
2654 only at level 2. */
2655 if (bytes_avail == 0 && !var_decl)
2656 return;
2657
2658 tree nelts = array_type_nelts_top (TREE_TYPE (oper));
2659 tree nelts_cst = maybe_constant_value (nelts);
2660 if (TREE_CODE (nelts_cst) == INTEGER_CST
2661 && integer_onep (nelts_cst)
2662 && !var_decl
2663 && warn_placement_new < 2)
2664 return;
2665 }
2666
2667 /* The size of the buffer can only be adjusted down but not up. */
2668 gcc_checking_assert (0 <= adjust);
2669
2670 /* Reduce the size of the buffer by the adjustment computed above
2671 from the offset and/or the index into the array. */
2672 if (bytes_avail < static_cast<unsigned HOST_WIDE_INT>(adjust))
2673 bytes_avail = 0;
2674 else
2675 bytes_avail -= adjust;
2676
2677 /* The minimum amount of space needed for the allocation. This
2678 is an optimistic estimate that makes it possible to detect
2679 placement new invocation for some undersize buffers but not
2680 others. */
2681 unsigned HOST_WIDE_INT bytes_need;
2682
2683 if (CONSTANT_CLASS_P (size))
2684 bytes_need = tree_to_uhwi (size);
2685 else if (nelts && CONSTANT_CLASS_P (nelts))
2686 bytes_need = tree_to_uhwi (nelts)
2687 * tree_to_uhwi (TYPE_SIZE_UNIT (type));
2688 else if (tree_fits_uhwi_p (TYPE_SIZE_UNIT (type)))
2689 bytes_need = tree_to_uhwi (TYPE_SIZE_UNIT (type));
2690 else
2691 {
2692 /* The type is a VLA. */
2693 return;
2694 }
2695
2696 if (bytes_avail < bytes_need)
2697 {
2698 if (nelts)
2699 if (CONSTANT_CLASS_P (nelts))
2700 warning_at (loc, OPT_Wplacement_new_,
2701 exact_size ?
2702 "placement new constructing an object of type "
2703 "%<%T [%wu]%> and size %qwu in a region of type %qT "
2704 "and size %qwi"
2705 : "placement new constructing an object of type "
2706 "%<%T [%wu]%> and size %qwu in a region of type %qT "
2707 "and size at most %qwu",
2708 type, tree_to_uhwi (nelts), bytes_need,
2709 TREE_TYPE (oper),
2710 bytes_avail);
2711 else
2712 warning_at (loc, OPT_Wplacement_new_,
2713 exact_size ?
2714 "placement new constructing an array of objects "
2715 "of type %qT and size %qwu in a region of type %qT "
2716 "and size %qwi"
2717 : "placement new constructing an array of objects "
2718 "of type %qT and size %qwu in a region of type %qT "
2719 "and size at most %qwu",
2720 type, bytes_need, TREE_TYPE (oper),
2721 bytes_avail);
2722 else
2723 warning_at (loc, OPT_Wplacement_new_,
2724 exact_size ?
2725 "placement new constructing an object of type %qT "
2726 "and size %qwu in a region of type %qT and size %qwi"
2727 : "placement new constructing an object of type %qT "
2728 "and size %qwu in a region of type %qT and size "
2729 "at most %qwu",
2730 type, bytes_need, TREE_TYPE (oper),
2731 bytes_avail);
2732 }
2733 }
2734 }
2735
2736 /* True if alignof(T) > __STDCPP_DEFAULT_NEW_ALIGNMENT__. */
2737
2738 bool
2739 type_has_new_extended_alignment (tree t)
2740 {
2741 return (aligned_new_threshold
2742 && TYPE_ALIGN_UNIT (t) > (unsigned)aligned_new_threshold);
2743 }
2744
2745 /* Return the alignment we expect malloc to guarantee. This should just be
2746 MALLOC_ABI_ALIGNMENT, but that macro defaults to only BITS_PER_WORD for some
2747 reason, so don't let the threshold be smaller than max_align_t_align. */
2748
2749 unsigned
2750 malloc_alignment ()
2751 {
2752 return MAX (max_align_t_align(), MALLOC_ABI_ALIGNMENT);
2753 }
2754
2755 /* Determine whether an allocation function is a namespace-scope
2756 non-replaceable placement new function. See DR 1748.
2757 TODO: Enable in all standard modes. */
2758 static bool
2759 std_placement_new_fn_p (tree alloc_fn)
2760 {
2761 if ((cxx_dialect > cxx14) && DECL_NAMESPACE_SCOPE_P (alloc_fn))
2762 {
2763 tree first_arg = TREE_CHAIN (TYPE_ARG_TYPES (TREE_TYPE (alloc_fn)));
2764 if ((TREE_VALUE (first_arg) == ptr_type_node)
2765 && TREE_CHAIN (first_arg) == void_list_node)
2766 return true;
2767 }
2768 return false;
2769 }
2770
2771 /* Generate code for a new-expression, including calling the "operator
2772 new" function, initializing the object, and, if an exception occurs
2773 during construction, cleaning up. The arguments are as for
2774 build_raw_new_expr. This may change PLACEMENT and INIT.
2775 TYPE is the type of the object being constructed, possibly an array
2776 of NELTS elements when NELTS is non-null (in "new T[NELTS]", T may
2777 be an array of the form U[inner], with the whole expression being
2778 "new U[NELTS][inner]"). */
2779
2780 static tree
2781 build_new_1 (vec<tree, va_gc> **placement, tree type, tree nelts,
2782 vec<tree, va_gc> **init, bool globally_qualified_p,
2783 tsubst_flags_t complain)
2784 {
2785 tree size, rval;
2786 /* True iff this is a call to "operator new[]" instead of just
2787 "operator new". */
2788 bool array_p = false;
2789 /* If ARRAY_P is true, the element type of the array. This is never
2790 an ARRAY_TYPE; for something like "new int[3][4]", the
2791 ELT_TYPE is "int". If ARRAY_P is false, this is the same type as
2792 TYPE. */
2793 tree elt_type;
2794 /* The type of the new-expression. (This type is always a pointer
2795 type.) */
2796 tree pointer_type;
2797 tree non_const_pointer_type;
2798 /* The most significant array bound in int[OUTER_NELTS][inner]. */
2799 tree outer_nelts = NULL_TREE;
2800 /* For arrays with a non-constant number of elements, a bounds checks
2801 on the NELTS parameter to avoid integer overflow at runtime. */
2802 tree outer_nelts_check = NULL_TREE;
2803 bool outer_nelts_from_type = false;
2804 /* Number of the "inner" elements in "new T[OUTER_NELTS][inner]". */
2805 offset_int inner_nelts_count = 1;
2806 tree alloc_call, alloc_expr;
2807 /* Size of the inner array elements (those with constant dimensions). */
2808 offset_int inner_size;
2809 /* The address returned by the call to "operator new". This node is
2810 a VAR_DECL and is therefore reusable. */
2811 tree alloc_node;
2812 tree alloc_fn;
2813 tree cookie_expr, init_expr;
2814 int nothrow, check_new;
2815 /* If non-NULL, the number of extra bytes to allocate at the
2816 beginning of the storage allocated for an array-new expression in
2817 order to store the number of elements. */
2818 tree cookie_size = NULL_TREE;
2819 tree placement_first;
2820 tree placement_expr = NULL_TREE;
2821 /* True if the function we are calling is a placement allocation
2822 function. */
2823 bool placement_allocation_fn_p;
2824 /* True if the storage must be initialized, either by a constructor
2825 or due to an explicit new-initializer. */
2826 bool is_initialized;
2827 /* The address of the thing allocated, not including any cookie. In
2828 particular, if an array cookie is in use, DATA_ADDR is the
2829 address of the first array element. This node is a VAR_DECL, and
2830 is therefore reusable. */
2831 tree data_addr;
2832 tree init_preeval_expr = NULL_TREE;
2833 tree orig_type = type;
2834
2835 if (nelts)
2836 {
2837 outer_nelts = nelts;
2838 array_p = true;
2839 }
2840 else if (TREE_CODE (type) == ARRAY_TYPE)
2841 {
2842 /* Transforms new (T[N]) to new T[N]. The former is a GNU
2843 extension for variable N. (This also covers new T where T is
2844 a VLA typedef.) */
2845 array_p = true;
2846 nelts = array_type_nelts_top (type);
2847 outer_nelts = nelts;
2848 type = TREE_TYPE (type);
2849 outer_nelts_from_type = true;
2850 }
2851
2852 /* Lots of logic below. depends on whether we have a constant number of
2853 elements, so go ahead and fold it now. */
2854 if (outer_nelts)
2855 outer_nelts = maybe_constant_value (outer_nelts);
2856
2857 /* If our base type is an array, then make sure we know how many elements
2858 it has. */
2859 for (elt_type = type;
2860 TREE_CODE (elt_type) == ARRAY_TYPE;
2861 elt_type = TREE_TYPE (elt_type))
2862 {
2863 tree inner_nelts = array_type_nelts_top (elt_type);
2864 tree inner_nelts_cst = maybe_constant_value (inner_nelts);
2865 if (TREE_CODE (inner_nelts_cst) == INTEGER_CST)
2866 {
2867 bool overflow;
2868 offset_int result = wi::mul (wi::to_offset (inner_nelts_cst),
2869 inner_nelts_count, SIGNED, &overflow);
2870 if (overflow)
2871 {
2872 if (complain & tf_error)
2873 error ("integer overflow in array size");
2874 nelts = error_mark_node;
2875 }
2876 inner_nelts_count = result;
2877 }
2878 else
2879 {
2880 if (complain & tf_error)
2881 {
2882 error_at (EXPR_LOC_OR_LOC (inner_nelts, input_location),
2883 "array size in new-expression must be constant");
2884 cxx_constant_value(inner_nelts);
2885 }
2886 nelts = error_mark_node;
2887 }
2888 if (nelts != error_mark_node)
2889 nelts = cp_build_binary_op (input_location,
2890 MULT_EXPR, nelts,
2891 inner_nelts_cst,
2892 complain);
2893 }
2894
2895 if (variably_modified_type_p (elt_type, NULL_TREE) && (complain & tf_error))
2896 {
2897 error ("variably modified type not allowed in new-expression");
2898 return error_mark_node;
2899 }
2900
2901 if (nelts == error_mark_node)
2902 return error_mark_node;
2903
2904 /* Warn if we performed the (T[N]) to T[N] transformation and N is
2905 variable. */
2906 if (outer_nelts_from_type
2907 && !TREE_CONSTANT (outer_nelts))
2908 {
2909 if (complain & tf_warning_or_error)
2910 {
2911 pedwarn (EXPR_LOC_OR_LOC (outer_nelts, input_location), OPT_Wvla,
2912 typedef_variant_p (orig_type)
2913 ? G_("non-constant array new length must be specified "
2914 "directly, not by typedef")
2915 : G_("non-constant array new length must be specified "
2916 "without parentheses around the type-id"));
2917 }
2918 else
2919 return error_mark_node;
2920 }
2921
2922 if (VOID_TYPE_P (elt_type))
2923 {
2924 if (complain & tf_error)
2925 error ("invalid type %<void%> for new");
2926 return error_mark_node;
2927 }
2928
2929 if (abstract_virtuals_error_sfinae (ACU_NEW, elt_type, complain))
2930 return error_mark_node;
2931
2932 is_initialized = (type_build_ctor_call (elt_type) || *init != NULL);
2933
2934 if (*init == NULL && cxx_dialect < cxx11)
2935 {
2936 bool maybe_uninitialized_error = false;
2937 /* A program that calls for default-initialization [...] of an
2938 entity of reference type is ill-formed. */
2939 if (CLASSTYPE_REF_FIELDS_NEED_INIT (elt_type))
2940 maybe_uninitialized_error = true;
2941
2942 /* A new-expression that creates an object of type T initializes
2943 that object as follows:
2944 - If the new-initializer is omitted:
2945 -- If T is a (possibly cv-qualified) non-POD class type
2946 (or array thereof), the object is default-initialized (8.5).
2947 [...]
2948 -- Otherwise, the object created has indeterminate
2949 value. If T is a const-qualified type, or a (possibly
2950 cv-qualified) POD class type (or array thereof)
2951 containing (directly or indirectly) a member of
2952 const-qualified type, the program is ill-formed; */
2953
2954 if (CLASSTYPE_READONLY_FIELDS_NEED_INIT (elt_type))
2955 maybe_uninitialized_error = true;
2956
2957 if (maybe_uninitialized_error
2958 && diagnose_uninitialized_cst_or_ref_member (elt_type,
2959 /*using_new=*/true,
2960 complain & tf_error))
2961 return error_mark_node;
2962 }
2963
2964 if (CP_TYPE_CONST_P (elt_type) && *init == NULL
2965 && default_init_uninitialized_part (elt_type))
2966 {
2967 if (complain & tf_error)
2968 error ("uninitialized const in %<new%> of %q#T", elt_type);
2969 return error_mark_node;
2970 }
2971
2972 size = size_in_bytes (elt_type);
2973 if (array_p)
2974 {
2975 /* Maximum available size in bytes. Half of the address space
2976 minus the cookie size. */
2977 offset_int max_size
2978 = wi::set_bit_in_zero <offset_int> (TYPE_PRECISION (sizetype) - 1);
2979 /* Maximum number of outer elements which can be allocated. */
2980 offset_int max_outer_nelts;
2981 tree max_outer_nelts_tree;
2982
2983 gcc_assert (TREE_CODE (size) == INTEGER_CST);
2984 cookie_size = targetm.cxx.get_cookie_size (elt_type);
2985 gcc_assert (TREE_CODE (cookie_size) == INTEGER_CST);
2986 gcc_checking_assert (wi::ltu_p (wi::to_offset (cookie_size), max_size));
2987 /* Unconditionally subtract the cookie size. This decreases the
2988 maximum object size and is safe even if we choose not to use
2989 a cookie after all. */
2990 max_size -= wi::to_offset (cookie_size);
2991 bool overflow;
2992 inner_size = wi::mul (wi::to_offset (size), inner_nelts_count, SIGNED,
2993 &overflow);
2994 if (overflow || wi::gtu_p (inner_size, max_size))
2995 {
2996 if (complain & tf_error)
2997 error ("size of array is too large");
2998 return error_mark_node;
2999 }
3000
3001 max_outer_nelts = wi::udiv_trunc (max_size, inner_size);
3002 max_outer_nelts_tree = wide_int_to_tree (sizetype, max_outer_nelts);
3003
3004 size = size_binop (MULT_EXPR, size, fold_convert (sizetype, nelts));
3005
3006 if (INTEGER_CST == TREE_CODE (outer_nelts))
3007 {
3008 if (tree_int_cst_lt (max_outer_nelts_tree, outer_nelts))
3009 {
3010 /* When the array size is constant, check it at compile time
3011 to make sure it doesn't exceed the implementation-defined
3012 maximum, as required by C++ 14 (in C++ 11 this requirement
3013 isn't explicitly stated but it's enforced anyway -- see
3014 grokdeclarator in cp/decl.c). */
3015 if (complain & tf_error)
3016 error ("size of array is too large");
3017 return error_mark_node;
3018 }
3019 }
3020 else
3021 {
3022 /* When a runtime check is necessary because the array size
3023 isn't constant, keep only the top-most seven bits (starting
3024 with the most significant non-zero bit) of the maximum size
3025 to compare the array size against, to simplify encoding the
3026 constant maximum size in the instruction stream. */
3027
3028 unsigned shift = (max_outer_nelts.get_precision ()) - 7
3029 - wi::clz (max_outer_nelts);
3030 max_outer_nelts = (max_outer_nelts >> shift) << shift;
3031
3032 outer_nelts_check = fold_build2 (LE_EXPR, boolean_type_node,
3033 outer_nelts,
3034 max_outer_nelts_tree);
3035 }
3036 }
3037
3038 tree align_arg = NULL_TREE;
3039 if (type_has_new_extended_alignment (elt_type))
3040 align_arg = build_int_cst (align_type_node, TYPE_ALIGN_UNIT (elt_type));
3041
3042 alloc_fn = NULL_TREE;
3043
3044 /* If PLACEMENT is a single simple pointer type not passed by
3045 reference, prepare to capture it in a temporary variable. Do
3046 this now, since PLACEMENT will change in the calls below. */
3047 placement_first = NULL_TREE;
3048 if (vec_safe_length (*placement) == 1
3049 && (TYPE_PTR_P (TREE_TYPE ((**placement)[0]))))
3050 placement_first = (**placement)[0];
3051
3052 bool member_new_p = false;
3053
3054 /* Allocate the object. */
3055 tree fnname;
3056 tree fns;
3057
3058 fnname = cp_operator_id (array_p ? VEC_NEW_EXPR : NEW_EXPR);
3059
3060 member_new_p = !globally_qualified_p
3061 && CLASS_TYPE_P (elt_type)
3062 && (array_p
3063 ? TYPE_HAS_ARRAY_NEW_OPERATOR (elt_type)
3064 : TYPE_HAS_NEW_OPERATOR (elt_type));
3065
3066 if (member_new_p)
3067 {
3068 /* Use a class-specific operator new. */
3069 /* If a cookie is required, add some extra space. */
3070 if (array_p && TYPE_VEC_NEW_USES_COOKIE (elt_type))
3071 size = size_binop (PLUS_EXPR, size, cookie_size);
3072 else
3073 {
3074 cookie_size = NULL_TREE;
3075 /* No size arithmetic necessary, so the size check is
3076 not needed. */
3077 if (outer_nelts_check != NULL && inner_size == 1)
3078 outer_nelts_check = NULL_TREE;
3079 }
3080 /* Perform the overflow check. */
3081 tree errval = TYPE_MAX_VALUE (sizetype);
3082 if (cxx_dialect >= cxx11 && flag_exceptions)
3083 errval = throw_bad_array_new_length ();
3084 if (outer_nelts_check != NULL_TREE)
3085 size = fold_build3 (COND_EXPR, sizetype, outer_nelts_check,
3086 size, errval);
3087 /* Create the argument list. */
3088 vec_safe_insert (*placement, 0, size);
3089 /* Do name-lookup to find the appropriate operator. */
3090 fns = lookup_fnfields (elt_type, fnname, /*protect=*/2);
3091 if (fns == NULL_TREE)
3092 {
3093 if (complain & tf_error)
3094 error ("no suitable %qD found in class %qT", fnname, elt_type);
3095 return error_mark_node;
3096 }
3097 if (TREE_CODE (fns) == TREE_LIST)
3098 {
3099 if (complain & tf_error)
3100 {
3101 error ("request for member %qD is ambiguous", fnname);
3102 print_candidates (fns);
3103 }
3104 return error_mark_node;
3105 }
3106 tree dummy = build_dummy_object (elt_type);
3107 alloc_call = NULL_TREE;
3108 if (align_arg)
3109 {
3110 vec<tree, va_gc> *align_args
3111 = vec_copy_and_insert (*placement, align_arg, 1);
3112 alloc_call
3113 = build_new_method_call (dummy, fns, &align_args,
3114 /*conversion_path=*/NULL_TREE,
3115 LOOKUP_NORMAL, &alloc_fn, tf_none);
3116 /* If no matching function is found and the allocated object type
3117 has new-extended alignment, the alignment argument is removed
3118 from the argument list, and overload resolution is performed
3119 again. */
3120 if (alloc_call == error_mark_node)
3121 alloc_call = NULL_TREE;
3122 }
3123 if (!alloc_call)
3124 alloc_call = build_new_method_call (dummy, fns, placement,
3125 /*conversion_path=*/NULL_TREE,
3126 LOOKUP_NORMAL,
3127 &alloc_fn, complain);
3128 }
3129 else
3130 {
3131 /* Use a global operator new. */
3132 /* See if a cookie might be required. */
3133 if (!(array_p && TYPE_VEC_NEW_USES_COOKIE (elt_type)))
3134 {
3135 cookie_size = NULL_TREE;
3136 /* No size arithmetic necessary, so the size check is
3137 not needed. */
3138 if (outer_nelts_check != NULL && inner_size == 1)
3139 outer_nelts_check = NULL_TREE;
3140 }
3141
3142 alloc_call = build_operator_new_call (fnname, placement,
3143 &size, &cookie_size,
3144 align_arg, outer_nelts_check,
3145 &alloc_fn, complain);
3146 }
3147
3148 if (alloc_call == error_mark_node)
3149 return error_mark_node;
3150
3151 gcc_assert (alloc_fn != NULL_TREE);
3152
3153 /* Now, check to see if this function is actually a placement
3154 allocation function. This can happen even when PLACEMENT is NULL
3155 because we might have something like:
3156
3157 struct S { void* operator new (size_t, int i = 0); };
3158
3159 A call to `new S' will get this allocation function, even though
3160 there is no explicit placement argument. If there is more than
3161 one argument, or there are variable arguments, then this is a
3162 placement allocation function. */
3163 placement_allocation_fn_p
3164 = (type_num_arguments (TREE_TYPE (alloc_fn)) > 1
3165 || varargs_function_p (alloc_fn));
3166
3167 if (warn_aligned_new
3168 && !placement_allocation_fn_p
3169 && TYPE_ALIGN (elt_type) > malloc_alignment ()
3170 && (warn_aligned_new > 1
3171 || CP_DECL_CONTEXT (alloc_fn) == global_namespace)
3172 && !aligned_allocation_fn_p (alloc_fn))
3173 {
3174 if (warning (OPT_Waligned_new_, "%<new%> of type %qT with extended "
3175 "alignment %d", elt_type, TYPE_ALIGN_UNIT (elt_type)))
3176 {
3177 inform (input_location, "uses %qD, which does not have an alignment "
3178 "parameter", alloc_fn);
3179 if (!aligned_new_threshold)
3180 inform (input_location, "use %<-faligned-new%> to enable C++17 "
3181 "over-aligned new support");
3182 }
3183 }
3184
3185 /* If we found a simple case of PLACEMENT_EXPR above, then copy it
3186 into a temporary variable. */
3187 if (!processing_template_decl
3188 && TREE_CODE (alloc_call) == CALL_EXPR
3189 && call_expr_nargs (alloc_call) == 2
3190 && TREE_CODE (TREE_TYPE (CALL_EXPR_ARG (alloc_call, 0))) == INTEGER_TYPE
3191 && TYPE_PTR_P (TREE_TYPE (CALL_EXPR_ARG (alloc_call, 1))))
3192 {
3193 tree placement = CALL_EXPR_ARG (alloc_call, 1);
3194
3195 if (placement_first != NULL_TREE
3196 && (INTEGRAL_OR_ENUMERATION_TYPE_P (TREE_TYPE (TREE_TYPE (placement)))
3197 || VOID_TYPE_P (TREE_TYPE (TREE_TYPE (placement)))))
3198 {
3199 placement_expr = get_target_expr (placement_first);
3200 CALL_EXPR_ARG (alloc_call, 1)
3201 = fold_convert (TREE_TYPE (placement), placement_expr);
3202 }
3203
3204 if (!member_new_p
3205 && VOID_TYPE_P (TREE_TYPE (TREE_TYPE (CALL_EXPR_ARG (alloc_call, 1)))))
3206 {
3207 /* Attempt to make the warning point at the operator new argument. */
3208 if (placement_first)
3209 placement = placement_first;
3210
3211 warn_placement_new_too_small (orig_type, nelts, size, placement);
3212 }
3213 }
3214
3215 /* In the simple case, we can stop now. */
3216 pointer_type = build_pointer_type (type);
3217 if (!cookie_size && !is_initialized)
3218 return build_nop (pointer_type, alloc_call);
3219
3220 /* Store the result of the allocation call in a variable so that we can
3221 use it more than once. */
3222 alloc_expr = get_target_expr (alloc_call);
3223 alloc_node = TARGET_EXPR_SLOT (alloc_expr);
3224
3225 /* Strip any COMPOUND_EXPRs from ALLOC_CALL. */
3226 while (TREE_CODE (alloc_call) == COMPOUND_EXPR)
3227 alloc_call = TREE_OPERAND (alloc_call, 1);
3228
3229 /* Preevaluate the placement args so that we don't reevaluate them for a
3230 placement delete. */
3231 if (placement_allocation_fn_p)
3232 {
3233 tree inits;
3234 stabilize_call (alloc_call, &inits);
3235 if (inits)
3236 alloc_expr = build2 (COMPOUND_EXPR, TREE_TYPE (alloc_expr), inits,
3237 alloc_expr);
3238 }
3239
3240 /* unless an allocation function is declared with an empty excep-
3241 tion-specification (_except.spec_), throw(), it indicates failure to
3242 allocate storage by throwing a bad_alloc exception (clause _except_,
3243 _lib.bad.alloc_); it returns a non-null pointer otherwise If the allo-
3244 cation function is declared with an empty exception-specification,
3245 throw(), it returns null to indicate failure to allocate storage and a
3246 non-null pointer otherwise.
3247
3248 So check for a null exception spec on the op new we just called. */
3249
3250 nothrow = TYPE_NOTHROW_P (TREE_TYPE (alloc_fn));
3251 check_new
3252 = flag_check_new || (nothrow && !std_placement_new_fn_p (alloc_fn));
3253
3254 if (cookie_size)
3255 {
3256 tree cookie;
3257 tree cookie_ptr;
3258 tree size_ptr_type;
3259
3260 /* Adjust so we're pointing to the start of the object. */
3261 data_addr = fold_build_pointer_plus (alloc_node, cookie_size);
3262
3263 /* Store the number of bytes allocated so that we can know how
3264 many elements to destroy later. We use the last sizeof
3265 (size_t) bytes to store the number of elements. */
3266 cookie_ptr = size_binop (MINUS_EXPR, cookie_size, size_in_bytes (sizetype));
3267 cookie_ptr = fold_build_pointer_plus_loc (input_location,
3268 alloc_node, cookie_ptr);
3269 size_ptr_type = build_pointer_type (sizetype);
3270 cookie_ptr = fold_convert (size_ptr_type, cookie_ptr);
3271 cookie = cp_build_indirect_ref (cookie_ptr, RO_NULL, complain);
3272
3273 cookie_expr = build2 (MODIFY_EXPR, sizetype, cookie, nelts);
3274
3275 if (targetm.cxx.cookie_has_size ())
3276 {
3277 /* Also store the element size. */
3278 cookie_ptr = fold_build_pointer_plus (cookie_ptr,
3279 fold_build1_loc (input_location,
3280 NEGATE_EXPR, sizetype,
3281 size_in_bytes (sizetype)));
3282
3283 cookie = cp_build_indirect_ref (cookie_ptr, RO_NULL, complain);
3284 cookie = build2 (MODIFY_EXPR, sizetype, cookie,
3285 size_in_bytes (elt_type));
3286 cookie_expr = build2 (COMPOUND_EXPR, TREE_TYPE (cookie_expr),
3287 cookie, cookie_expr);
3288 }
3289 }
3290 else
3291 {
3292 cookie_expr = NULL_TREE;
3293 data_addr = alloc_node;
3294 }
3295
3296 /* Now use a pointer to the type we've actually allocated. */
3297
3298 /* But we want to operate on a non-const version to start with,
3299 since we'll be modifying the elements. */
3300 non_const_pointer_type = build_pointer_type
3301 (cp_build_qualified_type (type, cp_type_quals (type) & ~TYPE_QUAL_CONST));
3302
3303 data_addr = fold_convert (non_const_pointer_type, data_addr);
3304 /* Any further uses of alloc_node will want this type, too. */
3305 alloc_node = fold_convert (non_const_pointer_type, alloc_node);
3306
3307 /* Now initialize the allocated object. Note that we preevaluate the
3308 initialization expression, apart from the actual constructor call or
3309 assignment--we do this because we want to delay the allocation as long
3310 as possible in order to minimize the size of the exception region for
3311 placement delete. */
3312 if (is_initialized)
3313 {
3314 bool stable;
3315 bool explicit_value_init_p = false;
3316
3317 if (*init != NULL && (*init)->is_empty ())
3318 {
3319 *init = NULL;
3320 explicit_value_init_p = true;
3321 }
3322
3323 if (processing_template_decl && explicit_value_init_p)
3324 {
3325 /* build_value_init doesn't work in templates, and we don't need
3326 the initializer anyway since we're going to throw it away and
3327 rebuild it at instantiation time, so just build up a single
3328 constructor call to get any appropriate diagnostics. */
3329 init_expr = cp_build_indirect_ref (data_addr, RO_NULL, complain);
3330 if (type_build_ctor_call (elt_type))
3331 init_expr = build_special_member_call (init_expr,
3332 complete_ctor_identifier,
3333 init, elt_type,
3334 LOOKUP_NORMAL,
3335 complain);
3336 stable = stabilize_init (init_expr, &init_preeval_expr);
3337 }
3338 else if (array_p)
3339 {
3340 tree vecinit = NULL_TREE;
3341 if (vec_safe_length (*init) == 1
3342 && DIRECT_LIST_INIT_P ((**init)[0]))
3343 {
3344 vecinit = (**init)[0];
3345 if (CONSTRUCTOR_NELTS (vecinit) == 0)
3346 /* List-value-initialization, leave it alone. */;
3347 else
3348 {
3349 tree arraytype, domain;
3350 if (TREE_CONSTANT (nelts))
3351 domain = compute_array_index_type (NULL_TREE, nelts,
3352 complain);
3353 else
3354 /* We'll check the length at runtime. */
3355 domain = NULL_TREE;
3356 arraytype = build_cplus_array_type (type, domain);
3357 vecinit = digest_init (arraytype, vecinit, complain);
3358 }
3359 }
3360 else if (*init)
3361 {
3362 if (complain & tf_error)
3363 permerror (input_location,
3364 "parenthesized initializer in array new");
3365 else
3366 return error_mark_node;
3367 vecinit = build_tree_list_vec (*init);
3368 }
3369 init_expr
3370 = build_vec_init (data_addr,
3371 cp_build_binary_op (input_location,
3372 MINUS_EXPR, outer_nelts,
3373 integer_one_node,
3374 complain),
3375 vecinit,
3376 explicit_value_init_p,
3377 /*from_array=*/0,
3378 complain);
3379
3380 /* An array initialization is stable because the initialization
3381 of each element is a full-expression, so the temporaries don't
3382 leak out. */
3383 stable = true;
3384 }
3385 else
3386 {
3387 init_expr = cp_build_indirect_ref (data_addr, RO_NULL, complain);
3388
3389 if (type_build_ctor_call (type) && !explicit_value_init_p)
3390 {
3391 init_expr = build_special_member_call (init_expr,
3392 complete_ctor_identifier,
3393 init, elt_type,
3394 LOOKUP_NORMAL,
3395 complain);
3396 }
3397 else if (explicit_value_init_p)
3398 {
3399 /* Something like `new int()'. NO_CLEANUP is needed so
3400 we don't try and build a (possibly ill-formed)
3401 destructor. */
3402 tree val = build_value_init (type, complain | tf_no_cleanup);
3403 if (val == error_mark_node)
3404 return error_mark_node;
3405 init_expr = build2 (INIT_EXPR, type, init_expr, val);
3406 }
3407 else
3408 {
3409 tree ie;
3410
3411 /* We are processing something like `new int (10)', which
3412 means allocate an int, and initialize it with 10. */
3413
3414 ie = build_x_compound_expr_from_vec (*init, "new initializer",
3415 complain);
3416 init_expr = cp_build_modify_expr (input_location, init_expr,
3417 INIT_EXPR, ie, complain);
3418 }
3419 /* If the initializer uses C++14 aggregate NSDMI that refer to the
3420 object being initialized, replace them now and don't try to
3421 preevaluate. */
3422 bool had_placeholder = false;
3423 if (!processing_template_decl
3424 && TREE_CODE (init_expr) == INIT_EXPR)
3425 TREE_OPERAND (init_expr, 1)
3426 = replace_placeholders (TREE_OPERAND (init_expr, 1),
3427 TREE_OPERAND (init_expr, 0),
3428 &had_placeholder);
3429 stable = (!had_placeholder
3430 && stabilize_init (init_expr, &init_preeval_expr));
3431 }
3432
3433 if (init_expr == error_mark_node)
3434 return error_mark_node;
3435
3436 /* If any part of the object initialization terminates by throwing an
3437 exception and a suitable deallocation function can be found, the
3438 deallocation function is called to free the memory in which the
3439 object was being constructed, after which the exception continues
3440 to propagate in the context of the new-expression. If no
3441 unambiguous matching deallocation function can be found,
3442 propagating the exception does not cause the object's memory to be
3443 freed. */
3444 if (flag_exceptions)
3445 {
3446 enum tree_code dcode = array_p ? VEC_DELETE_EXPR : DELETE_EXPR;
3447 tree cleanup;
3448
3449 /* The Standard is unclear here, but the right thing to do
3450 is to use the same method for finding deallocation
3451 functions that we use for finding allocation functions. */
3452 cleanup = (build_op_delete_call
3453 (dcode,
3454 alloc_node,
3455 size,
3456 globally_qualified_p,
3457 placement_allocation_fn_p ? alloc_call : NULL_TREE,
3458 alloc_fn,
3459 complain));
3460
3461 if (!cleanup)
3462 /* We're done. */;
3463 else if (stable)
3464 /* This is much simpler if we were able to preevaluate all of
3465 the arguments to the constructor call. */
3466 {
3467 /* CLEANUP is compiler-generated, so no diagnostics. */
3468 TREE_NO_WARNING (cleanup) = true;
3469 init_expr = build2 (TRY_CATCH_EXPR, void_type_node,
3470 init_expr, cleanup);
3471 /* Likewise, this try-catch is compiler-generated. */
3472 TREE_NO_WARNING (init_expr) = true;
3473 }
3474 else
3475 /* Ack! First we allocate the memory. Then we set our sentry
3476 variable to true, and expand a cleanup that deletes the
3477 memory if sentry is true. Then we run the constructor, and
3478 finally clear the sentry.
3479
3480 We need to do this because we allocate the space first, so
3481 if there are any temporaries with cleanups in the
3482 constructor args and we weren't able to preevaluate them, we
3483 need this EH region to extend until end of full-expression
3484 to preserve nesting. */
3485 {
3486 tree end, sentry, begin;
3487
3488 begin = get_target_expr (boolean_true_node);
3489 CLEANUP_EH_ONLY (begin) = 1;
3490
3491 sentry = TARGET_EXPR_SLOT (begin);
3492
3493 /* CLEANUP is compiler-generated, so no diagnostics. */
3494 TREE_NO_WARNING (cleanup) = true;
3495
3496 TARGET_EXPR_CLEANUP (begin)
3497 = build3 (COND_EXPR, void_type_node, sentry,
3498 cleanup, void_node);
3499
3500 end = build2 (MODIFY_EXPR, TREE_TYPE (sentry),
3501 sentry, boolean_false_node);
3502
3503 init_expr
3504 = build2 (COMPOUND_EXPR, void_type_node, begin,
3505 build2 (COMPOUND_EXPR, void_type_node, init_expr,
3506 end));
3507 /* Likewise, this is compiler-generated. */
3508 TREE_NO_WARNING (init_expr) = true;
3509 }
3510 }
3511 }
3512 else
3513 init_expr = NULL_TREE;
3514
3515 /* Now build up the return value in reverse order. */
3516
3517 rval = data_addr;
3518
3519 if (init_expr)
3520 rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), init_expr, rval);
3521 if (cookie_expr)
3522 rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), cookie_expr, rval);
3523
3524 if (rval == data_addr)
3525 /* If we don't have an initializer or a cookie, strip the TARGET_EXPR
3526 and return the call (which doesn't need to be adjusted). */
3527 rval = TARGET_EXPR_INITIAL (alloc_expr);
3528 else
3529 {
3530 if (check_new)
3531 {
3532 tree ifexp = cp_build_binary_op (input_location,
3533 NE_EXPR, alloc_node,
3534 nullptr_node,
3535 complain);
3536 rval = build_conditional_expr (input_location, ifexp, rval,
3537 alloc_node, complain);
3538 }
3539
3540 /* Perform the allocation before anything else, so that ALLOC_NODE
3541 has been initialized before we start using it. */
3542 rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), alloc_expr, rval);
3543 }
3544
3545 if (init_preeval_expr)
3546 rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), init_preeval_expr, rval);
3547
3548 /* A new-expression is never an lvalue. */
3549 gcc_assert (!obvalue_p (rval));
3550
3551 return convert (pointer_type, rval);
3552 }
3553
3554 /* Generate a representation for a C++ "new" expression. *PLACEMENT
3555 is a vector of placement-new arguments (or NULL if none). If NELTS
3556 is NULL, TYPE is the type of the storage to be allocated. If NELTS
3557 is not NULL, then this is an array-new allocation; TYPE is the type
3558 of the elements in the array and NELTS is the number of elements in
3559 the array. *INIT, if non-NULL, is the initializer for the new
3560 object, or an empty vector to indicate an initializer of "()". If
3561 USE_GLOBAL_NEW is true, then the user explicitly wrote "::new"
3562 rather than just "new". This may change PLACEMENT and INIT. */
3563
3564 tree
3565 build_new (vec<tree, va_gc> **placement, tree type, tree nelts,
3566 vec<tree, va_gc> **init, int use_global_new, tsubst_flags_t complain)
3567 {
3568 tree rval;
3569 vec<tree, va_gc> *orig_placement = NULL;
3570 tree orig_nelts = NULL_TREE;
3571 vec<tree, va_gc> *orig_init = NULL;
3572
3573 if (type == error_mark_node)
3574 return error_mark_node;
3575
3576 if (nelts == NULL_TREE
3577 /* Don't do auto deduction where it might affect mangling. */
3578 && (!processing_template_decl || at_function_scope_p ()))
3579 {
3580 tree auto_node = type_uses_auto (type);
3581 if (auto_node)
3582 {
3583 tree d_init = NULL_TREE;
3584 if (vec_safe_length (*init) == 1)
3585 {
3586 d_init = (**init)[0];
3587 d_init = resolve_nondeduced_context (d_init, complain);
3588 }
3589 type = do_auto_deduction (type, d_init, auto_node);
3590 }
3591 }
3592
3593 if (processing_template_decl)
3594 {
3595 if (dependent_type_p (type)
3596 || any_type_dependent_arguments_p (*placement)
3597 || (nelts && type_dependent_expression_p (nelts))
3598 || (nelts && *init)
3599 || any_type_dependent_arguments_p (*init))
3600 return build_raw_new_expr (*placement, type, nelts, *init,
3601 use_global_new);
3602
3603 orig_placement = make_tree_vector_copy (*placement);
3604 orig_nelts = nelts;
3605 if (*init)
3606 {
3607 orig_init = make_tree_vector_copy (*init);
3608 /* Also copy any CONSTRUCTORs in *init, since reshape_init and
3609 digest_init clobber them in place. */
3610 for (unsigned i = 0; i < orig_init->length(); ++i)
3611 {
3612 tree e = (**init)[i];
3613 if (TREE_CODE (e) == CONSTRUCTOR)
3614 (**init)[i] = copy_node (e);
3615 }
3616 }
3617
3618 make_args_non_dependent (*placement);
3619 if (nelts)
3620 nelts = build_non_dependent_expr (nelts);
3621 make_args_non_dependent (*init);
3622 }
3623
3624 if (nelts)
3625 {
3626 if (!build_expr_type_conversion (WANT_INT | WANT_ENUM, nelts, false))
3627 {
3628 if (complain & tf_error)
3629 permerror (input_location, "size in array new must have integral type");
3630 else
3631 return error_mark_node;
3632 }
3633
3634 /* Try to determine the constant value only for the purposes
3635 of the diagnostic below but continue to use the original
3636 value and handle const folding later. */
3637 const_tree cst_nelts = maybe_constant_value (nelts);
3638
3639 /* The expression in a noptr-new-declarator is erroneous if it's of
3640 non-class type and its value before converting to std::size_t is
3641 less than zero. ... If the expression is a constant expression,
3642 the program is ill-fomed. */
3643 if (INTEGER_CST == TREE_CODE (cst_nelts)
3644 && tree_int_cst_sgn (cst_nelts) == -1)
3645 {
3646 if (complain & tf_error)
3647 error ("size of array is negative");
3648 return error_mark_node;
3649 }
3650
3651 nelts = mark_rvalue_use (nelts);
3652 nelts = cp_save_expr (cp_convert (sizetype, nelts, complain));
3653 }
3654
3655 /* ``A reference cannot be created by the new operator. A reference
3656 is not an object (8.2.2, 8.4.3), so a pointer to it could not be
3657 returned by new.'' ARM 5.3.3 */
3658 if (TREE_CODE (type) == REFERENCE_TYPE)
3659 {
3660 if (complain & tf_error)
3661 error ("new cannot be applied to a reference type");
3662 else
3663 return error_mark_node;
3664 type = TREE_TYPE (type);
3665 }
3666
3667 if (TREE_CODE (type) == FUNCTION_TYPE)
3668 {
3669 if (complain & tf_error)
3670 error ("new cannot be applied to a function type");
3671 return error_mark_node;
3672 }
3673
3674 /* The type allocated must be complete. If the new-type-id was
3675 "T[N]" then we are just checking that "T" is complete here, but
3676 that is equivalent, since the value of "N" doesn't matter. */
3677 if (!complete_type_or_maybe_complain (type, NULL_TREE, complain))
3678 return error_mark_node;
3679
3680 rval = build_new_1 (placement, type, nelts, init, use_global_new, complain);
3681 if (rval == error_mark_node)
3682 return error_mark_node;
3683
3684 if (processing_template_decl)
3685 {
3686 tree ret = build_raw_new_expr (orig_placement, type, orig_nelts,
3687 orig_init, use_global_new);
3688 release_tree_vector (orig_placement);
3689 release_tree_vector (orig_init);
3690 return ret;
3691 }
3692
3693 /* Wrap it in a NOP_EXPR so warn_if_unused_value doesn't complain. */
3694 rval = build1 (NOP_EXPR, TREE_TYPE (rval), rval);
3695 TREE_NO_WARNING (rval) = 1;
3696
3697 return rval;
3698 }
3699
3700 static tree
3701 build_vec_delete_1 (tree base, tree maxindex, tree type,
3702 special_function_kind auto_delete_vec,
3703 int use_global_delete, tsubst_flags_t complain)
3704 {
3705 tree virtual_size;
3706 tree ptype = build_pointer_type (type = complete_type (type));
3707 tree size_exp;
3708
3709 /* Temporary variables used by the loop. */
3710 tree tbase, tbase_init;
3711
3712 /* This is the body of the loop that implements the deletion of a
3713 single element, and moves temp variables to next elements. */
3714 tree body;
3715
3716 /* This is the LOOP_EXPR that governs the deletion of the elements. */
3717 tree loop = 0;
3718
3719 /* This is the thing that governs what to do after the loop has run. */
3720 tree deallocate_expr = 0;
3721
3722 /* This is the BIND_EXPR which holds the outermost iterator of the
3723 loop. It is convenient to set this variable up and test it before
3724 executing any other code in the loop.
3725 This is also the containing expression returned by this function. */
3726 tree controller = NULL_TREE;
3727 tree tmp;
3728
3729 /* We should only have 1-D arrays here. */
3730 gcc_assert (TREE_CODE (type) != ARRAY_TYPE);
3731
3732 if (base == error_mark_node || maxindex == error_mark_node)
3733 return error_mark_node;
3734
3735 if (!COMPLETE_TYPE_P (type))
3736 {
3737 if ((complain & tf_warning)
3738 && warning (OPT_Wdelete_incomplete,
3739 "possible problem detected in invocation of "
3740 "delete [] operator:"))
3741 {
3742 cxx_incomplete_type_diagnostic (base, type, DK_WARNING);
3743 inform (input_location, "neither the destructor nor the "
3744 "class-specific operator delete [] will be called, "
3745 "even if they are declared when the class is defined");
3746 }
3747 /* This size won't actually be used. */
3748 size_exp = size_one_node;
3749 goto no_destructor;
3750 }
3751
3752 size_exp = size_in_bytes (type);
3753
3754 if (! MAYBE_CLASS_TYPE_P (type))
3755 goto no_destructor;
3756 else if (TYPE_HAS_TRIVIAL_DESTRUCTOR (type))
3757 {
3758 /* Make sure the destructor is callable. */
3759 if (type_build_dtor_call (type))
3760 {
3761 tmp = build_delete (ptype, base, sfk_complete_destructor,
3762 LOOKUP_NORMAL|LOOKUP_DESTRUCTOR, 1,
3763 complain);
3764 if (tmp == error_mark_node)
3765 return error_mark_node;
3766 }
3767 goto no_destructor;
3768 }
3769
3770 /* The below is short by the cookie size. */
3771 virtual_size = size_binop (MULT_EXPR, size_exp,
3772 fold_convert (sizetype, maxindex));
3773
3774 tbase = create_temporary_var (ptype);
3775 tbase_init
3776 = cp_build_modify_expr (input_location, tbase, NOP_EXPR,
3777 fold_build_pointer_plus_loc (input_location,
3778 fold_convert (ptype,
3779 base),
3780 virtual_size),
3781 complain);
3782 if (tbase_init == error_mark_node)
3783 return error_mark_node;
3784 controller = build3 (BIND_EXPR, void_type_node, tbase,
3785 NULL_TREE, NULL_TREE);
3786 TREE_SIDE_EFFECTS (controller) = 1;
3787
3788 body = build1 (EXIT_EXPR, void_type_node,
3789 build2 (EQ_EXPR, boolean_type_node, tbase,
3790 fold_convert (ptype, base)));
3791 tmp = fold_build1_loc (input_location, NEGATE_EXPR, sizetype, size_exp);
3792 tmp = fold_build_pointer_plus (tbase, tmp);
3793 tmp = cp_build_modify_expr (input_location, tbase, NOP_EXPR, tmp, complain);
3794 if (tmp == error_mark_node)
3795 return error_mark_node;
3796 body = build_compound_expr (input_location, body, tmp);
3797 tmp = build_delete (ptype, tbase, sfk_complete_destructor,
3798 LOOKUP_NORMAL|LOOKUP_DESTRUCTOR, 1,
3799 complain);
3800 if (tmp == error_mark_node)
3801 return error_mark_node;
3802 body = build_compound_expr (input_location, body, tmp);
3803
3804 loop = build1 (LOOP_EXPR, void_type_node, body);
3805 loop = build_compound_expr (input_location, tbase_init, loop);
3806
3807 no_destructor:
3808 /* Delete the storage if appropriate. */
3809 if (auto_delete_vec == sfk_deleting_destructor)
3810 {
3811 tree base_tbd;
3812
3813 /* The below is short by the cookie size. */
3814 virtual_size = size_binop (MULT_EXPR, size_exp,
3815 fold_convert (sizetype, maxindex));
3816
3817 if (! TYPE_VEC_NEW_USES_COOKIE (type))
3818 /* no header */
3819 base_tbd = base;
3820 else
3821 {
3822 tree cookie_size;
3823
3824 cookie_size = targetm.cxx.get_cookie_size (type);
3825 base_tbd = cp_build_binary_op (input_location,
3826 MINUS_EXPR,
3827 cp_convert (string_type_node,
3828 base, complain),
3829 cookie_size,
3830 complain);
3831 if (base_tbd == error_mark_node)
3832 return error_mark_node;
3833 base_tbd = cp_convert (ptype, base_tbd, complain);
3834 /* True size with header. */
3835 virtual_size = size_binop (PLUS_EXPR, virtual_size, cookie_size);
3836 }
3837
3838 deallocate_expr = build_op_delete_call (VEC_DELETE_EXPR,
3839 base_tbd, virtual_size,
3840 use_global_delete & 1,
3841 /*placement=*/NULL_TREE,
3842 /*alloc_fn=*/NULL_TREE,
3843 complain);
3844 }
3845
3846 body = loop;
3847 if (!deallocate_expr)
3848 ;
3849 else if (!body)
3850 body = deallocate_expr;
3851 else
3852 /* The delete operator mist be called, even if a destructor
3853 throws. */
3854 body = build2 (TRY_FINALLY_EXPR, void_type_node, body, deallocate_expr);
3855
3856 if (!body)
3857 body = integer_zero_node;
3858
3859 /* Outermost wrapper: If pointer is null, punt. */
3860 tree cond = build2_loc (input_location, NE_EXPR, boolean_type_node, base,
3861 fold_convert (TREE_TYPE (base), nullptr_node));
3862 /* This is a compiler generated comparison, don't emit
3863 e.g. -Wnonnull-compare warning for it. */
3864 TREE_NO_WARNING (cond) = 1;
3865 body = build3_loc (input_location, COND_EXPR, void_type_node,
3866 cond, body, integer_zero_node);
3867 COND_EXPR_IS_VEC_DELETE (body) = true;
3868 body = build1 (NOP_EXPR, void_type_node, body);
3869
3870 if (controller)
3871 {
3872 TREE_OPERAND (controller, 1) = body;
3873 body = controller;
3874 }
3875
3876 if (TREE_CODE (base) == SAVE_EXPR)
3877 /* Pre-evaluate the SAVE_EXPR outside of the BIND_EXPR. */
3878 body = build2 (COMPOUND_EXPR, void_type_node, base, body);
3879
3880 return convert_to_void (body, ICV_CAST, complain);
3881 }
3882
3883 /* Create an unnamed variable of the indicated TYPE. */
3884
3885 tree
3886 create_temporary_var (tree type)
3887 {
3888 tree decl;
3889
3890 decl = build_decl (input_location,
3891 VAR_DECL, NULL_TREE, type);
3892 TREE_USED (decl) = 1;
3893 DECL_ARTIFICIAL (decl) = 1;
3894 DECL_IGNORED_P (decl) = 1;
3895 DECL_CONTEXT (decl) = current_function_decl;
3896
3897 return decl;
3898 }
3899
3900 /* Create a new temporary variable of the indicated TYPE, initialized
3901 to INIT.
3902
3903 It is not entered into current_binding_level, because that breaks
3904 things when it comes time to do final cleanups (which take place
3905 "outside" the binding contour of the function). */
3906
3907 tree
3908 get_temp_regvar (tree type, tree init)
3909 {
3910 tree decl;
3911
3912 decl = create_temporary_var (type);
3913 add_decl_expr (decl);
3914
3915 finish_expr_stmt (cp_build_modify_expr (input_location, decl, INIT_EXPR,
3916 init, tf_warning_or_error));
3917
3918 return decl;
3919 }
3920
3921 /* Subroutine of build_vec_init. Returns true if assigning to an array of
3922 INNER_ELT_TYPE from INIT is trivial. */
3923
3924 static bool
3925 vec_copy_assign_is_trivial (tree inner_elt_type, tree init)
3926 {
3927 tree fromtype = inner_elt_type;
3928 if (lvalue_p (init))
3929 fromtype = cp_build_reference_type (fromtype, /*rval*/false);
3930 return is_trivially_xible (MODIFY_EXPR, inner_elt_type, fromtype);
3931 }
3932
3933 /* Subroutine of build_vec_init: Check that the array has at least N
3934 elements. Other parameters are local variables in build_vec_init. */
3935
3936 void
3937 finish_length_check (tree atype, tree iterator, tree obase, unsigned n)
3938 {
3939 tree nelts = build_int_cst (ptrdiff_type_node, n - 1);
3940 if (TREE_CODE (atype) != ARRAY_TYPE)
3941 {
3942 if (flag_exceptions)
3943 {
3944 tree c = fold_build2 (LT_EXPR, boolean_type_node, iterator,
3945 nelts);
3946 c = build3 (COND_EXPR, void_type_node, c,
3947 throw_bad_array_new_length (), void_node);
3948 finish_expr_stmt (c);
3949 }
3950 /* Don't check an array new when -fno-exceptions. */
3951 }
3952 else if (sanitize_flags_p (SANITIZE_BOUNDS)
3953 && current_function_decl != NULL_TREE)
3954 {
3955 /* Make sure the last element of the initializer is in bounds. */
3956 finish_expr_stmt
3957 (ubsan_instrument_bounds
3958 (input_location, obase, &nelts, /*ignore_off_by_one*/false));
3959 }
3960 }
3961
3962 /* `build_vec_init' returns tree structure that performs
3963 initialization of a vector of aggregate types.
3964
3965 BASE is a reference to the vector, of ARRAY_TYPE, or a pointer
3966 to the first element, of POINTER_TYPE.
3967 MAXINDEX is the maximum index of the array (one less than the
3968 number of elements). It is only used if BASE is a pointer or
3969 TYPE_DOMAIN (TREE_TYPE (BASE)) == NULL_TREE.
3970
3971 INIT is the (possibly NULL) initializer.
3972
3973 If EXPLICIT_VALUE_INIT_P is true, then INIT must be NULL. All
3974 elements in the array are value-initialized.
3975
3976 FROM_ARRAY is 0 if we should init everything with INIT
3977 (i.e., every element initialized from INIT).
3978 FROM_ARRAY is 1 if we should index into INIT in parallel
3979 with initialization of DECL.
3980 FROM_ARRAY is 2 if we should index into INIT in parallel,
3981 but use assignment instead of initialization. */
3982
3983 tree
3984 build_vec_init (tree base, tree maxindex, tree init,
3985 bool explicit_value_init_p,
3986 int from_array, tsubst_flags_t complain)
3987 {
3988 tree rval;
3989 tree base2 = NULL_TREE;
3990 tree itype = NULL_TREE;
3991 tree iterator;
3992 /* The type of BASE. */
3993 tree atype = TREE_TYPE (base);
3994 /* The type of an element in the array. */
3995 tree type = TREE_TYPE (atype);
3996 /* The element type reached after removing all outer array
3997 types. */
3998 tree inner_elt_type;
3999 /* The type of a pointer to an element in the array. */
4000 tree ptype;
4001 tree stmt_expr;
4002 tree compound_stmt;
4003 int destroy_temps;
4004 tree try_block = NULL_TREE;
4005 int num_initialized_elts = 0;
4006 bool is_global;
4007 tree obase = base;
4008 bool xvalue = false;
4009 bool errors = false;
4010 location_t loc = (init ? EXPR_LOC_OR_LOC (init, input_location)
4011 : location_of (base));
4012
4013 if (TREE_CODE (atype) == ARRAY_TYPE && TYPE_DOMAIN (atype))
4014 maxindex = array_type_nelts (atype);
4015
4016 if (maxindex == NULL_TREE || maxindex == error_mark_node)
4017 return error_mark_node;
4018
4019 maxindex = maybe_constant_value (maxindex);
4020 if (explicit_value_init_p)
4021 gcc_assert (!init);
4022
4023 inner_elt_type = strip_array_types (type);
4024
4025 /* Look through the TARGET_EXPR around a compound literal. */
4026 if (init && TREE_CODE (init) == TARGET_EXPR
4027 && TREE_CODE (TARGET_EXPR_INITIAL (init)) == CONSTRUCTOR
4028 && from_array != 2)
4029 init = TARGET_EXPR_INITIAL (init);
4030
4031 bool direct_init = false;
4032 if (from_array && init && BRACE_ENCLOSED_INITIALIZER_P (init)
4033 && CONSTRUCTOR_NELTS (init) == 1)
4034 {
4035 tree elt = CONSTRUCTOR_ELT (init, 0)->value;
4036 if (TREE_CODE (TREE_TYPE (elt)) == ARRAY_TYPE)
4037 {
4038 direct_init = DIRECT_LIST_INIT_P (init);
4039 init = elt;
4040 }
4041 }
4042
4043 /* If we have a braced-init-list or string constant, make sure that the array
4044 is big enough for all the initializers. */
4045 bool length_check = (init
4046 && (TREE_CODE (init) == STRING_CST
4047 || (TREE_CODE (init) == CONSTRUCTOR
4048 && CONSTRUCTOR_NELTS (init) > 0))
4049 && !TREE_CONSTANT (maxindex));
4050
4051 if (init
4052 && TREE_CODE (atype) == ARRAY_TYPE
4053 && TREE_CONSTANT (maxindex)
4054 && (from_array == 2
4055 ? vec_copy_assign_is_trivial (inner_elt_type, init)
4056 : !TYPE_NEEDS_CONSTRUCTING (type))
4057 && ((TREE_CODE (init) == CONSTRUCTOR
4058 && (BRACE_ENCLOSED_INITIALIZER_P (init)
4059 || (same_type_ignoring_top_level_qualifiers_p
4060 (atype, TREE_TYPE (init))))
4061 /* Don't do this if the CONSTRUCTOR might contain something
4062 that might throw and require us to clean up. */
4063 && (vec_safe_is_empty (CONSTRUCTOR_ELTS (init))
4064 || ! TYPE_HAS_NONTRIVIAL_DESTRUCTOR (inner_elt_type)))
4065 || from_array))
4066 {
4067 /* Do non-default initialization of trivial arrays resulting from
4068 brace-enclosed initializers. In this case, digest_init and
4069 store_constructor will handle the semantics for us. */
4070
4071 if (BRACE_ENCLOSED_INITIALIZER_P (init))
4072 init = digest_init (atype, init, complain);
4073 stmt_expr = build2 (INIT_EXPR, atype, base, init);
4074 return stmt_expr;
4075 }
4076
4077 maxindex = cp_convert (ptrdiff_type_node, maxindex, complain);
4078 maxindex = fold_simple (maxindex);
4079
4080 if (TREE_CODE (atype) == ARRAY_TYPE)
4081 {
4082 ptype = build_pointer_type (type);
4083 base = decay_conversion (base, complain);
4084 if (base == error_mark_node)
4085 return error_mark_node;
4086 base = cp_convert (ptype, base, complain);
4087 }
4088 else
4089 ptype = atype;
4090
4091 /* The code we are generating looks like:
4092 ({
4093 T* t1 = (T*) base;
4094 T* rval = t1;
4095 ptrdiff_t iterator = maxindex;
4096 try {
4097 for (; iterator != -1; --iterator) {
4098 ... initialize *t1 ...
4099 ++t1;
4100 }
4101 } catch (...) {
4102 ... destroy elements that were constructed ...
4103 }
4104 rval;
4105 })
4106
4107 We can omit the try and catch blocks if we know that the
4108 initialization will never throw an exception, or if the array
4109 elements do not have destructors. We can omit the loop completely if
4110 the elements of the array do not have constructors.
4111
4112 We actually wrap the entire body of the above in a STMT_EXPR, for
4113 tidiness.
4114
4115 When copying from array to another, when the array elements have
4116 only trivial copy constructors, we should use __builtin_memcpy
4117 rather than generating a loop. That way, we could take advantage
4118 of whatever cleverness the back end has for dealing with copies
4119 of blocks of memory. */
4120
4121 is_global = begin_init_stmts (&stmt_expr, &compound_stmt);
4122 destroy_temps = stmts_are_full_exprs_p ();
4123 current_stmt_tree ()->stmts_are_full_exprs_p = 0;
4124 rval = get_temp_regvar (ptype, base);
4125 base = get_temp_regvar (ptype, rval);
4126 iterator = get_temp_regvar (ptrdiff_type_node, maxindex);
4127
4128 /* If initializing one array from another, initialize element by
4129 element. We rely upon the below calls to do the argument
4130 checking. Evaluate the initializer before entering the try block. */
4131 if (from_array && init && TREE_CODE (init) != CONSTRUCTOR)
4132 {
4133 if (lvalue_kind (init) & clk_rvalueref)
4134 xvalue = true;
4135 base2 = decay_conversion (init, complain);
4136 if (base2 == error_mark_node)
4137 return error_mark_node;
4138 itype = TREE_TYPE (base2);
4139 base2 = get_temp_regvar (itype, base2);
4140 itype = TREE_TYPE (itype);
4141 }
4142
4143 /* Protect the entire array initialization so that we can destroy
4144 the partially constructed array if an exception is thrown.
4145 But don't do this if we're assigning. */
4146 if (flag_exceptions && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type)
4147 && from_array != 2)
4148 {
4149 try_block = begin_try_block ();
4150 }
4151
4152 /* Should we try to create a constant initializer? */
4153 bool try_const = (TREE_CODE (atype) == ARRAY_TYPE
4154 && TREE_CONSTANT (maxindex)
4155 && (init ? TREE_CODE (init) == CONSTRUCTOR
4156 : (type_has_constexpr_default_constructor
4157 (inner_elt_type)))
4158 && (literal_type_p (inner_elt_type)
4159 || TYPE_HAS_CONSTEXPR_CTOR (inner_elt_type)));
4160 vec<constructor_elt, va_gc> *const_vec = NULL;
4161 bool saw_non_const = false;
4162 /* If we're initializing a static array, we want to do static
4163 initialization of any elements with constant initializers even if
4164 some are non-constant. */
4165 bool do_static_init = (DECL_P (obase) && TREE_STATIC (obase));
4166
4167 bool empty_list = false;
4168 if (init && BRACE_ENCLOSED_INITIALIZER_P (init)
4169 && CONSTRUCTOR_NELTS (init) == 0)
4170 /* Skip over the handling of non-empty init lists. */
4171 empty_list = true;
4172
4173 /* Maybe pull out constant value when from_array? */
4174
4175 else if (init != NULL_TREE && TREE_CODE (init) == CONSTRUCTOR)
4176 {
4177 /* Do non-default initialization of non-trivial arrays resulting from
4178 brace-enclosed initializers. */
4179 unsigned HOST_WIDE_INT idx;
4180 tree field, elt;
4181 /* If the constructor already has the array type, it's been through
4182 digest_init, so we shouldn't try to do anything more. */
4183 bool digested = same_type_p (atype, TREE_TYPE (init));
4184 from_array = 0;
4185
4186 if (length_check)
4187 finish_length_check (atype, iterator, obase, CONSTRUCTOR_NELTS (init));
4188
4189 if (try_const)
4190 vec_alloc (const_vec, CONSTRUCTOR_NELTS (init));
4191
4192 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (init), idx, field, elt)
4193 {
4194 tree baseref = build1 (INDIRECT_REF, type, base);
4195 tree one_init;
4196
4197 num_initialized_elts++;
4198
4199 current_stmt_tree ()->stmts_are_full_exprs_p = 1;
4200 if (digested)
4201 one_init = build2 (INIT_EXPR, type, baseref, elt);
4202 else if (MAYBE_CLASS_TYPE_P (type) || TREE_CODE (type) == ARRAY_TYPE)
4203 one_init = build_aggr_init (baseref, elt, 0, complain);
4204 else
4205 one_init = cp_build_modify_expr (input_location, baseref,
4206 NOP_EXPR, elt, complain);
4207 if (one_init == error_mark_node)
4208 errors = true;
4209 if (try_const)
4210 {
4211 tree e = maybe_constant_init (one_init);
4212 if (reduced_constant_expression_p (e))
4213 {
4214 CONSTRUCTOR_APPEND_ELT (const_vec, field, e);
4215 if (do_static_init)
4216 one_init = NULL_TREE;
4217 else
4218 one_init = build2 (INIT_EXPR, type, baseref, e);
4219 }
4220 else
4221 {
4222 if (do_static_init)
4223 {
4224 tree value = build_zero_init (TREE_TYPE (e), NULL_TREE,
4225 true);
4226 if (value)
4227 CONSTRUCTOR_APPEND_ELT (const_vec, field, value);
4228 }
4229 saw_non_const = true;
4230 }
4231 }
4232
4233 if (one_init)
4234 finish_expr_stmt (one_init);
4235 current_stmt_tree ()->stmts_are_full_exprs_p = 0;
4236
4237 one_init = cp_build_unary_op (PREINCREMENT_EXPR, base, false,
4238 complain);
4239 if (one_init == error_mark_node)
4240 errors = true;
4241 else
4242 finish_expr_stmt (one_init);
4243
4244 one_init = cp_build_unary_op (PREDECREMENT_EXPR, iterator, false,
4245 complain);
4246 if (one_init == error_mark_node)
4247 errors = true;
4248 else
4249 finish_expr_stmt (one_init);
4250 }
4251
4252 /* Any elements without explicit initializers get T{}. */
4253 empty_list = true;
4254 }
4255 else if (init && TREE_CODE (init) == STRING_CST)
4256 {
4257 /* Check that the array is at least as long as the string. */
4258 if (length_check)
4259 finish_length_check (atype, iterator, obase,
4260 TREE_STRING_LENGTH (init));
4261 tree length = build_int_cst (ptrdiff_type_node,
4262 TREE_STRING_LENGTH (init));
4263
4264 /* Copy the string to the first part of the array. */
4265 tree alias_set = build_int_cst (build_pointer_type (type), 0);
4266 tree lhs = build2 (MEM_REF, TREE_TYPE (init), base, alias_set);
4267 tree stmt = build2 (MODIFY_EXPR, void_type_node, lhs, init);
4268 finish_expr_stmt (stmt);
4269
4270 /* Adjust the counter and pointer. */
4271 stmt = cp_build_binary_op (loc, MINUS_EXPR, iterator, length, complain);
4272 stmt = build2 (MODIFY_EXPR, void_type_node, iterator, stmt);
4273 finish_expr_stmt (stmt);
4274
4275 stmt = cp_build_binary_op (loc, PLUS_EXPR, base, length, complain);
4276 stmt = build2 (MODIFY_EXPR, void_type_node, base, stmt);
4277 finish_expr_stmt (stmt);
4278
4279 /* And set the rest of the array to NUL. */
4280 from_array = 0;
4281 explicit_value_init_p = true;
4282 }
4283 else if (from_array)
4284 {
4285 if (init)
4286 /* OK, we set base2 above. */;
4287 else if (CLASS_TYPE_P (type)
4288 && ! TYPE_HAS_DEFAULT_CONSTRUCTOR (type))
4289 {
4290 if (complain & tf_error)
4291 error ("initializer ends prematurely");
4292 errors = true;
4293 }
4294 }
4295
4296 /* Now, default-initialize any remaining elements. We don't need to
4297 do that if a) the type does not need constructing, or b) we've
4298 already initialized all the elements.
4299
4300 We do need to keep going if we're copying an array. */
4301
4302 if (try_const && !init)
4303 /* With a constexpr default constructor, which we checked for when
4304 setting try_const above, default-initialization is equivalent to
4305 value-initialization, and build_value_init gives us something more
4306 friendly to maybe_constant_init. */
4307 explicit_value_init_p = true;
4308 if (from_array
4309 || ((type_build_ctor_call (type) || init || explicit_value_init_p)
4310 && ! (tree_fits_shwi_p (maxindex)
4311 && (num_initialized_elts
4312 == tree_to_shwi (maxindex) + 1))))
4313 {
4314 /* If the ITERATOR is lesser or equal to -1, then we don't have to loop;
4315 we've already initialized all the elements. */
4316 tree for_stmt;
4317 tree elt_init;
4318 tree to;
4319
4320 for_stmt = begin_for_stmt (NULL_TREE, NULL_TREE);
4321 finish_init_stmt (for_stmt);
4322 finish_for_cond (build2 (GT_EXPR, boolean_type_node, iterator,
4323 build_int_cst (TREE_TYPE (iterator), -1)),
4324 for_stmt, false);
4325 elt_init = cp_build_unary_op (PREDECREMENT_EXPR, iterator, false,
4326 complain);
4327 if (elt_init == error_mark_node)
4328 errors = true;
4329 finish_for_expr (elt_init, for_stmt);
4330
4331 to = build1 (INDIRECT_REF, type, base);
4332
4333 /* If the initializer is {}, then all elements are initialized from T{}.
4334 But for non-classes, that's the same as value-initialization. */
4335 if (empty_list)
4336 {
4337 if (cxx_dialect >= cxx11 && AGGREGATE_TYPE_P (type))
4338 {
4339 init = build_constructor (init_list_type_node, NULL);
4340 }
4341 else
4342 {
4343 init = NULL_TREE;
4344 explicit_value_init_p = true;
4345 }
4346 }
4347
4348 if (from_array)
4349 {
4350 tree from;
4351
4352 if (base2)
4353 {
4354 from = build1 (INDIRECT_REF, itype, base2);
4355 if (xvalue)
4356 from = move (from);
4357 if (direct_init)
4358 from = build_tree_list (NULL_TREE, from);
4359 }
4360 else
4361 from = NULL_TREE;
4362
4363 if (from_array == 2)
4364 elt_init = cp_build_modify_expr (input_location, to, NOP_EXPR,
4365 from, complain);
4366 else if (type_build_ctor_call (type))
4367 elt_init = build_aggr_init (to, from, 0, complain);
4368 else if (from)
4369 elt_init = cp_build_modify_expr (input_location, to, NOP_EXPR, from,
4370 complain);
4371 else
4372 gcc_unreachable ();
4373 }
4374 else if (TREE_CODE (type) == ARRAY_TYPE)
4375 {
4376 if (init && !BRACE_ENCLOSED_INITIALIZER_P (init))
4377 sorry
4378 ("cannot initialize multi-dimensional array with initializer");
4379 elt_init = build_vec_init (build1 (INDIRECT_REF, type, base),
4380 0, init,
4381 explicit_value_init_p,
4382 0, complain);
4383 }
4384 else if (explicit_value_init_p)
4385 {
4386 elt_init = build_value_init (type, complain);
4387 if (elt_init != error_mark_node)
4388 elt_init = build2 (INIT_EXPR, type, to, elt_init);
4389 }
4390 else
4391 {
4392 gcc_assert (type_build_ctor_call (type) || init);
4393 if (CLASS_TYPE_P (type))
4394 elt_init = build_aggr_init (to, init, 0, complain);
4395 else
4396 {
4397 if (TREE_CODE (init) == TREE_LIST)
4398 init = build_x_compound_expr_from_list (init, ELK_INIT,
4399 complain);
4400 elt_init = build2 (INIT_EXPR, type, to, init);
4401 }
4402 }
4403
4404 if (elt_init == error_mark_node)
4405 errors = true;
4406
4407 if (try_const)
4408 {
4409 /* FIXME refs to earlier elts */
4410 tree e = maybe_constant_init (elt_init);
4411 if (reduced_constant_expression_p (e))
4412 {
4413 if (initializer_zerop (e))
4414 /* Don't fill the CONSTRUCTOR with zeros. */
4415 e = NULL_TREE;
4416 if (do_static_init)
4417 elt_init = NULL_TREE;
4418 }
4419 else
4420 {
4421 saw_non_const = true;
4422 if (do_static_init)
4423 e = build_zero_init (TREE_TYPE (e), NULL_TREE, true);
4424 else
4425 e = NULL_TREE;
4426 }
4427
4428 if (e)
4429 {
4430 int max = tree_to_shwi (maxindex)+1;
4431 for (; num_initialized_elts < max; ++num_initialized_elts)
4432 {
4433 tree field = size_int (num_initialized_elts);
4434 CONSTRUCTOR_APPEND_ELT (const_vec, field, e);
4435 }
4436 }
4437 }
4438
4439 current_stmt_tree ()->stmts_are_full_exprs_p = 1;
4440 if (elt_init)
4441 finish_expr_stmt (elt_init);
4442 current_stmt_tree ()->stmts_are_full_exprs_p = 0;
4443
4444 finish_expr_stmt (cp_build_unary_op (PREINCREMENT_EXPR, base, false,
4445 complain));
4446 if (base2)
4447 finish_expr_stmt (cp_build_unary_op (PREINCREMENT_EXPR, base2, false,
4448 complain));
4449
4450 finish_for_stmt (for_stmt);
4451 }
4452
4453 /* Make sure to cleanup any partially constructed elements. */
4454 if (flag_exceptions && TYPE_HAS_NONTRIVIAL_DESTRUCTOR (type)
4455 && from_array != 2)
4456 {
4457 tree e;
4458 tree m = cp_build_binary_op (input_location,
4459 MINUS_EXPR, maxindex, iterator,
4460 complain);
4461
4462 /* Flatten multi-dimensional array since build_vec_delete only
4463 expects one-dimensional array. */
4464 if (TREE_CODE (type) == ARRAY_TYPE)
4465 m = cp_build_binary_op (input_location,
4466 MULT_EXPR, m,
4467 /* Avoid mixing signed and unsigned. */
4468 convert (TREE_TYPE (m),
4469 array_type_nelts_total (type)),
4470 complain);
4471
4472 finish_cleanup_try_block (try_block);
4473 e = build_vec_delete_1 (rval, m,
4474 inner_elt_type, sfk_complete_destructor,
4475 /*use_global_delete=*/0, complain);
4476 if (e == error_mark_node)
4477 errors = true;
4478 finish_cleanup (e, try_block);
4479 }
4480
4481 /* The value of the array initialization is the array itself, RVAL
4482 is a pointer to the first element. */
4483 finish_stmt_expr_expr (rval, stmt_expr);
4484
4485 stmt_expr = finish_init_stmts (is_global, stmt_expr, compound_stmt);
4486
4487 current_stmt_tree ()->stmts_are_full_exprs_p = destroy_temps;
4488
4489 if (errors)
4490 return error_mark_node;
4491
4492 if (try_const)
4493 {
4494 if (!saw_non_const)
4495 {
4496 tree const_init = build_constructor (atype, const_vec);
4497 return build2 (INIT_EXPR, atype, obase, const_init);
4498 }
4499 else if (do_static_init && !vec_safe_is_empty (const_vec))
4500 DECL_INITIAL (obase) = build_constructor (atype, const_vec);
4501 else
4502 vec_free (const_vec);
4503 }
4504
4505 /* Now make the result have the correct type. */
4506 if (TREE_CODE (atype) == ARRAY_TYPE)
4507 {
4508 atype = build_pointer_type (atype);
4509 stmt_expr = build1 (NOP_EXPR, atype, stmt_expr);
4510 stmt_expr = cp_build_indirect_ref (stmt_expr, RO_NULL, complain);
4511 TREE_NO_WARNING (stmt_expr) = 1;
4512 }
4513
4514 return stmt_expr;
4515 }
4516
4517 /* Call the DTOR_KIND destructor for EXP. FLAGS are as for
4518 build_delete. */
4519
4520 static tree
4521 build_dtor_call (tree exp, special_function_kind dtor_kind, int flags,
4522 tsubst_flags_t complain)
4523 {
4524 tree name;
4525 tree fn;
4526 switch (dtor_kind)
4527 {
4528 case sfk_complete_destructor:
4529 name = complete_dtor_identifier;
4530 break;
4531
4532 case sfk_base_destructor:
4533 name = base_dtor_identifier;
4534 break;
4535
4536 case sfk_deleting_destructor:
4537 name = deleting_dtor_identifier;
4538 break;
4539
4540 default:
4541 gcc_unreachable ();
4542 }
4543 fn = lookup_fnfields (TREE_TYPE (exp), name, /*protect=*/2);
4544 return build_new_method_call (exp, fn,
4545 /*args=*/NULL,
4546 /*conversion_path=*/NULL_TREE,
4547 flags,
4548 /*fn_p=*/NULL,
4549 complain);
4550 }
4551
4552 /* Generate a call to a destructor. TYPE is the type to cast ADDR to.
4553 ADDR is an expression which yields the store to be destroyed.
4554 AUTO_DELETE is the name of the destructor to call, i.e., either
4555 sfk_complete_destructor, sfk_base_destructor, or
4556 sfk_deleting_destructor.
4557
4558 FLAGS is the logical disjunction of zero or more LOOKUP_
4559 flags. See cp-tree.h for more info. */
4560
4561 tree
4562 build_delete (tree otype, tree addr, special_function_kind auto_delete,
4563 int flags, int use_global_delete, tsubst_flags_t complain)
4564 {
4565 tree expr;
4566
4567 if (addr == error_mark_node)
4568 return error_mark_node;
4569
4570 tree type = TYPE_MAIN_VARIANT (otype);
4571
4572 /* Can happen when CURRENT_EXCEPTION_OBJECT gets its type
4573 set to `error_mark_node' before it gets properly cleaned up. */
4574 if (type == error_mark_node)
4575 return error_mark_node;
4576
4577 if (TREE_CODE (type) == POINTER_TYPE)
4578 type = TYPE_MAIN_VARIANT (TREE_TYPE (type));
4579
4580 if (TREE_CODE (type) == ARRAY_TYPE)
4581 {
4582 if (TYPE_DOMAIN (type) == NULL_TREE)
4583 {
4584 if (complain & tf_error)
4585 error ("unknown array size in delete");
4586 return error_mark_node;
4587 }
4588 return build_vec_delete (addr, array_type_nelts (type),
4589 auto_delete, use_global_delete, complain);
4590 }
4591
4592 if (TYPE_PTR_P (otype))
4593 {
4594 addr = mark_rvalue_use (addr);
4595
4596 /* We don't want to warn about delete of void*, only other
4597 incomplete types. Deleting other incomplete types
4598 invokes undefined behavior, but it is not ill-formed, so
4599 compile to something that would even do The Right Thing
4600 (TM) should the type have a trivial dtor and no delete
4601 operator. */
4602 if (!VOID_TYPE_P (type))
4603 {
4604 complete_type (type);
4605 if (!COMPLETE_TYPE_P (type))
4606 {
4607 if ((complain & tf_warning)
4608 && warning (OPT_Wdelete_incomplete,
4609 "possible problem detected in invocation of "
4610 "delete operator:"))
4611 {
4612 cxx_incomplete_type_diagnostic (addr, type, DK_WARNING);
4613 inform (input_location,
4614 "neither the destructor nor the class-specific "
4615 "operator delete will be called, even if they are "
4616 "declared when the class is defined");
4617 }
4618 }
4619 else if (auto_delete == sfk_deleting_destructor && warn_delnonvdtor
4620 && MAYBE_CLASS_TYPE_P (type) && !CLASSTYPE_FINAL (type)
4621 && TYPE_POLYMORPHIC_P (type))
4622 {
4623 tree dtor = CLASSTYPE_DESTRUCTOR (type);
4624 if (!dtor || !DECL_VINDEX (dtor))
4625 {
4626 if (CLASSTYPE_PURE_VIRTUALS (type))
4627 warning (OPT_Wdelete_non_virtual_dtor,
4628 "deleting object of abstract class type %qT"
4629 " which has non-virtual destructor"
4630 " will cause undefined behavior", type);
4631 else
4632 warning (OPT_Wdelete_non_virtual_dtor,
4633 "deleting object of polymorphic class type %qT"
4634 " which has non-virtual destructor"
4635 " might cause undefined behavior", type);
4636 }
4637 }
4638 }
4639 if (TREE_SIDE_EFFECTS (addr))
4640 addr = save_expr (addr);
4641
4642 /* Throw away const and volatile on target type of addr. */
4643 addr = convert_force (build_pointer_type (type), addr, 0, complain);
4644 }
4645 else
4646 {
4647 /* Don't check PROTECT here; leave that decision to the
4648 destructor. If the destructor is accessible, call it,
4649 else report error. */
4650 addr = cp_build_addr_expr (addr, complain);
4651 if (addr == error_mark_node)
4652 return error_mark_node;
4653 if (TREE_SIDE_EFFECTS (addr))
4654 addr = save_expr (addr);
4655
4656 addr = convert_force (build_pointer_type (type), addr, 0, complain);
4657 }
4658
4659 if (TYPE_HAS_TRIVIAL_DESTRUCTOR (type))
4660 {
4661 /* Make sure the destructor is callable. */
4662 if (type_build_dtor_call (type))
4663 {
4664 expr = build_dtor_call (cp_build_indirect_ref (addr, RO_NULL,
4665 complain),
4666 sfk_complete_destructor, flags, complain);
4667 if (expr == error_mark_node)
4668 return error_mark_node;
4669 }
4670
4671 if (auto_delete != sfk_deleting_destructor)
4672 return void_node;
4673
4674 return build_op_delete_call (DELETE_EXPR, addr,
4675 cxx_sizeof_nowarn (type),
4676 use_global_delete,
4677 /*placement=*/NULL_TREE,
4678 /*alloc_fn=*/NULL_TREE,
4679 complain);
4680 }
4681 else
4682 {
4683 tree head = NULL_TREE;
4684 tree do_delete = NULL_TREE;
4685 tree ifexp;
4686
4687 if (CLASSTYPE_LAZY_DESTRUCTOR (type))
4688 lazily_declare_fn (sfk_destructor, type);
4689
4690 /* For `::delete x', we must not use the deleting destructor
4691 since then we would not be sure to get the global `operator
4692 delete'. */
4693 if (use_global_delete && auto_delete == sfk_deleting_destructor)
4694 {
4695 /* We will use ADDR multiple times so we must save it. */
4696 addr = save_expr (addr);
4697 head = get_target_expr (build_headof (addr));
4698 /* Delete the object. */
4699 do_delete = build_op_delete_call (DELETE_EXPR,
4700 head,
4701 cxx_sizeof_nowarn (type),
4702 /*global_p=*/true,
4703 /*placement=*/NULL_TREE,
4704 /*alloc_fn=*/NULL_TREE,
4705 complain);
4706 /* Otherwise, treat this like a complete object destructor
4707 call. */
4708 auto_delete = sfk_complete_destructor;
4709 }
4710 /* If the destructor is non-virtual, there is no deleting
4711 variant. Instead, we must explicitly call the appropriate
4712 `operator delete' here. */
4713 else if (!DECL_VIRTUAL_P (CLASSTYPE_DESTRUCTOR (type))
4714 && auto_delete == sfk_deleting_destructor)
4715 {
4716 /* We will use ADDR multiple times so we must save it. */
4717 addr = save_expr (addr);
4718 /* Build the call. */
4719 do_delete = build_op_delete_call (DELETE_EXPR,
4720 addr,
4721 cxx_sizeof_nowarn (type),
4722 /*global_p=*/false,
4723 /*placement=*/NULL_TREE,
4724 /*alloc_fn=*/NULL_TREE,
4725 complain);
4726 /* Call the complete object destructor. */
4727 auto_delete = sfk_complete_destructor;
4728 }
4729 else if (auto_delete == sfk_deleting_destructor
4730 && TYPE_GETS_REG_DELETE (type))
4731 {
4732 /* Make sure we have access to the member op delete, even though
4733 we'll actually be calling it from the destructor. */
4734 build_op_delete_call (DELETE_EXPR, addr, cxx_sizeof_nowarn (type),
4735 /*global_p=*/false,
4736 /*placement=*/NULL_TREE,
4737 /*alloc_fn=*/NULL_TREE,
4738 complain);
4739 }
4740
4741 expr = build_dtor_call (cp_build_indirect_ref (addr, RO_NULL, complain),
4742 auto_delete, flags, complain);
4743 if (expr == error_mark_node)
4744 return error_mark_node;
4745 if (do_delete)
4746 /* The delete operator must be called, regardless of whether
4747 the destructor throws.
4748
4749 [expr.delete]/7 The deallocation function is called
4750 regardless of whether the destructor for the object or some
4751 element of the array throws an exception. */
4752 expr = build2 (TRY_FINALLY_EXPR, void_type_node, expr, do_delete);
4753
4754 /* We need to calculate this before the dtor changes the vptr. */
4755 if (head)
4756 expr = build2 (COMPOUND_EXPR, void_type_node, head, expr);
4757
4758 if (flags & LOOKUP_DESTRUCTOR)
4759 /* Explicit destructor call; don't check for null pointer. */
4760 ifexp = integer_one_node;
4761 else
4762 {
4763 /* Handle deleting a null pointer. */
4764 warning_sentinel s (warn_address);
4765 ifexp = cp_build_binary_op (input_location, NE_EXPR, addr,
4766 nullptr_node, complain);
4767 if (ifexp == error_mark_node)
4768 return error_mark_node;
4769 /* This is a compiler generated comparison, don't emit
4770 e.g. -Wnonnull-compare warning for it. */
4771 else if (TREE_CODE (ifexp) == NE_EXPR)
4772 TREE_NO_WARNING (ifexp) = 1;
4773 }
4774
4775 if (ifexp != integer_one_node)
4776 expr = build3 (COND_EXPR, void_type_node, ifexp, expr, void_node);
4777
4778 return expr;
4779 }
4780 }
4781
4782 /* At the beginning of a destructor, push cleanups that will call the
4783 destructors for our base classes and members.
4784
4785 Called from begin_destructor_body. */
4786
4787 void
4788 push_base_cleanups (void)
4789 {
4790 tree binfo, base_binfo;
4791 int i;
4792 tree member;
4793 tree expr;
4794 vec<tree, va_gc> *vbases;
4795
4796 /* Run destructors for all virtual baseclasses. */
4797 if (!ABSTRACT_CLASS_TYPE_P (current_class_type)
4798 && CLASSTYPE_VBASECLASSES (current_class_type))
4799 {
4800 tree cond = (condition_conversion
4801 (build2 (BIT_AND_EXPR, integer_type_node,
4802 current_in_charge_parm,
4803 integer_two_node)));
4804
4805 /* The CLASSTYPE_VBASECLASSES vector is in initialization
4806 order, which is also the right order for pushing cleanups. */
4807 for (vbases = CLASSTYPE_VBASECLASSES (current_class_type), i = 0;
4808 vec_safe_iterate (vbases, i, &base_binfo); i++)
4809 {
4810 if (type_build_dtor_call (BINFO_TYPE (base_binfo)))
4811 {
4812 expr = build_special_member_call (current_class_ref,
4813 base_dtor_identifier,
4814 NULL,
4815 base_binfo,
4816 (LOOKUP_NORMAL
4817 | LOOKUP_NONVIRTUAL),
4818 tf_warning_or_error);
4819 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (BINFO_TYPE (base_binfo)))
4820 {
4821 expr = build3 (COND_EXPR, void_type_node, cond,
4822 expr, void_node);
4823 finish_decl_cleanup (NULL_TREE, expr);
4824 }
4825 }
4826 }
4827 }
4828
4829 /* Take care of the remaining baseclasses. */
4830 for (binfo = TYPE_BINFO (current_class_type), i = 0;
4831 BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
4832 {
4833 if (BINFO_VIRTUAL_P (base_binfo)
4834 || !type_build_dtor_call (BINFO_TYPE (base_binfo)))
4835 continue;
4836
4837 expr = build_special_member_call (current_class_ref,
4838 base_dtor_identifier,
4839 NULL, base_binfo,
4840 LOOKUP_NORMAL | LOOKUP_NONVIRTUAL,
4841 tf_warning_or_error);
4842 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (BINFO_TYPE (base_binfo)))
4843 finish_decl_cleanup (NULL_TREE, expr);
4844 }
4845
4846 /* Don't automatically destroy union members. */
4847 if (TREE_CODE (current_class_type) == UNION_TYPE)
4848 return;
4849
4850 for (member = TYPE_FIELDS (current_class_type); member;
4851 member = DECL_CHAIN (member))
4852 {
4853 tree this_type = TREE_TYPE (member);
4854 if (this_type == error_mark_node
4855 || TREE_CODE (member) != FIELD_DECL
4856 || DECL_ARTIFICIAL (member))
4857 continue;
4858 if (ANON_AGGR_TYPE_P (this_type))
4859 continue;
4860 if (type_build_dtor_call (this_type))
4861 {
4862 tree this_member = (build_class_member_access_expr
4863 (current_class_ref, member,
4864 /*access_path=*/NULL_TREE,
4865 /*preserve_reference=*/false,
4866 tf_warning_or_error));
4867 expr = build_delete (this_type, this_member,
4868 sfk_complete_destructor,
4869 LOOKUP_NONVIRTUAL|LOOKUP_DESTRUCTOR|LOOKUP_NORMAL,
4870 0, tf_warning_or_error);
4871 if (TYPE_HAS_NONTRIVIAL_DESTRUCTOR (this_type))
4872 finish_decl_cleanup (NULL_TREE, expr);
4873 }
4874 }
4875 }
4876
4877 /* Build a C++ vector delete expression.
4878 MAXINDEX is the number of elements to be deleted.
4879 ELT_SIZE is the nominal size of each element in the vector.
4880 BASE is the expression that should yield the store to be deleted.
4881 This function expands (or synthesizes) these calls itself.
4882 AUTO_DELETE_VEC says whether the container (vector) should be deallocated.
4883
4884 This also calls delete for virtual baseclasses of elements of the vector.
4885
4886 Update: MAXINDEX is no longer needed. The size can be extracted from the
4887 start of the vector for pointers, and from the type for arrays. We still
4888 use MAXINDEX for arrays because it happens to already have one of the
4889 values we'd have to extract. (We could use MAXINDEX with pointers to
4890 confirm the size, and trap if the numbers differ; not clear that it'd
4891 be worth bothering.) */
4892
4893 tree
4894 build_vec_delete (tree base, tree maxindex,
4895 special_function_kind auto_delete_vec,
4896 int use_global_delete, tsubst_flags_t complain)
4897 {
4898 tree type;
4899 tree rval;
4900 tree base_init = NULL_TREE;
4901
4902 type = TREE_TYPE (base);
4903
4904 if (TYPE_PTR_P (type))
4905 {
4906 /* Step back one from start of vector, and read dimension. */
4907 tree cookie_addr;
4908 tree size_ptr_type = build_pointer_type (sizetype);
4909
4910 base = mark_rvalue_use (base);
4911 if (TREE_SIDE_EFFECTS (base))
4912 {
4913 base_init = get_target_expr (base);
4914 base = TARGET_EXPR_SLOT (base_init);
4915 }
4916 type = strip_array_types (TREE_TYPE (type));
4917 cookie_addr = fold_build1_loc (input_location, NEGATE_EXPR,
4918 sizetype, TYPE_SIZE_UNIT (sizetype));
4919 cookie_addr = fold_build_pointer_plus (fold_convert (size_ptr_type, base),
4920 cookie_addr);
4921 maxindex = cp_build_indirect_ref (cookie_addr, RO_NULL, complain);
4922 }
4923 else if (TREE_CODE (type) == ARRAY_TYPE)
4924 {
4925 /* Get the total number of things in the array, maxindex is a
4926 bad name. */
4927 maxindex = array_type_nelts_total (type);
4928 type = strip_array_types (type);
4929 base = decay_conversion (base, complain);
4930 if (base == error_mark_node)
4931 return error_mark_node;
4932 if (TREE_SIDE_EFFECTS (base))
4933 {
4934 base_init = get_target_expr (base);
4935 base = TARGET_EXPR_SLOT (base_init);
4936 }
4937 }
4938 else
4939 {
4940 if (base != error_mark_node && !(complain & tf_error))
4941 error ("type to vector delete is neither pointer or array type");
4942 return error_mark_node;
4943 }
4944
4945 rval = build_vec_delete_1 (base, maxindex, type, auto_delete_vec,
4946 use_global_delete, complain);
4947 if (base_init && rval != error_mark_node)
4948 rval = build2 (COMPOUND_EXPR, TREE_TYPE (rval), base_init, rval);
4949
4950 return rval;
4951 }
4952
4953 #include "gt-cp-init.h"