comparison gcc/fortran/expr.c @ 111:04ced10e8804

gcc 7
author kono
date Fri, 27 Oct 2017 22:46:09 +0900
parents
children 84e7813d76e9
comparison
equal deleted inserted replaced
68:561a7518be6b 111:04ced10e8804
1 /* Routines for manipulation of expression nodes.
2 Copyright (C) 2000-2017 Free Software Foundation, Inc.
3 Contributed by Andy Vaught
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "options.h"
25 #include "gfortran.h"
26 #include "arith.h"
27 #include "match.h"
28 #include "target-memory.h" /* for gfc_convert_boz */
29 #include "constructor.h"
30
31
32 /* The following set of functions provide access to gfc_expr* of
33 various types - actual all but EXPR_FUNCTION and EXPR_VARIABLE.
34
35 There are two functions available elsewhere that provide
36 slightly different flavours of variables. Namely:
37 expr.c (gfc_get_variable_expr)
38 symbol.c (gfc_lval_expr_from_sym)
39 TODO: Merge these functions, if possible. */
40
41 /* Get a new expression node. */
42
43 gfc_expr *
44 gfc_get_expr (void)
45 {
46 gfc_expr *e;
47
48 e = XCNEW (gfc_expr);
49 gfc_clear_ts (&e->ts);
50 e->shape = NULL;
51 e->ref = NULL;
52 e->symtree = NULL;
53 return e;
54 }
55
56
57 /* Get a new expression node that is an array constructor
58 of given type and kind. */
59
60 gfc_expr *
61 gfc_get_array_expr (bt type, int kind, locus *where)
62 {
63 gfc_expr *e;
64
65 e = gfc_get_expr ();
66 e->expr_type = EXPR_ARRAY;
67 e->value.constructor = NULL;
68 e->rank = 1;
69 e->shape = NULL;
70
71 e->ts.type = type;
72 e->ts.kind = kind;
73 if (where)
74 e->where = *where;
75
76 return e;
77 }
78
79
80 /* Get a new expression node that is the NULL expression. */
81
82 gfc_expr *
83 gfc_get_null_expr (locus *where)
84 {
85 gfc_expr *e;
86
87 e = gfc_get_expr ();
88 e->expr_type = EXPR_NULL;
89 e->ts.type = BT_UNKNOWN;
90
91 if (where)
92 e->where = *where;
93
94 return e;
95 }
96
97
98 /* Get a new expression node that is an operator expression node. */
99
100 gfc_expr *
101 gfc_get_operator_expr (locus *where, gfc_intrinsic_op op,
102 gfc_expr *op1, gfc_expr *op2)
103 {
104 gfc_expr *e;
105
106 e = gfc_get_expr ();
107 e->expr_type = EXPR_OP;
108 e->value.op.op = op;
109 e->value.op.op1 = op1;
110 e->value.op.op2 = op2;
111
112 if (where)
113 e->where = *where;
114
115 return e;
116 }
117
118
119 /* Get a new expression node that is an structure constructor
120 of given type and kind. */
121
122 gfc_expr *
123 gfc_get_structure_constructor_expr (bt type, int kind, locus *where)
124 {
125 gfc_expr *e;
126
127 e = gfc_get_expr ();
128 e->expr_type = EXPR_STRUCTURE;
129 e->value.constructor = NULL;
130
131 e->ts.type = type;
132 e->ts.kind = kind;
133 if (where)
134 e->where = *where;
135
136 return e;
137 }
138
139
140 /* Get a new expression node that is an constant of given type and kind. */
141
142 gfc_expr *
143 gfc_get_constant_expr (bt type, int kind, locus *where)
144 {
145 gfc_expr *e;
146
147 if (!where)
148 gfc_internal_error ("gfc_get_constant_expr(): locus %<where%> cannot be "
149 "NULL");
150
151 e = gfc_get_expr ();
152
153 e->expr_type = EXPR_CONSTANT;
154 e->ts.type = type;
155 e->ts.kind = kind;
156 e->where = *where;
157
158 switch (type)
159 {
160 case BT_INTEGER:
161 mpz_init (e->value.integer);
162 break;
163
164 case BT_REAL:
165 gfc_set_model_kind (kind);
166 mpfr_init (e->value.real);
167 break;
168
169 case BT_COMPLEX:
170 gfc_set_model_kind (kind);
171 mpc_init2 (e->value.complex, mpfr_get_default_prec());
172 break;
173
174 default:
175 break;
176 }
177
178 return e;
179 }
180
181
182 /* Get a new expression node that is an string constant.
183 If no string is passed, a string of len is allocated,
184 blanked and null-terminated. */
185
186 gfc_expr *
187 gfc_get_character_expr (int kind, locus *where, const char *src, int len)
188 {
189 gfc_expr *e;
190 gfc_char_t *dest;
191
192 if (!src)
193 {
194 dest = gfc_get_wide_string (len + 1);
195 gfc_wide_memset (dest, ' ', len);
196 dest[len] = '\0';
197 }
198 else
199 dest = gfc_char_to_widechar (src);
200
201 e = gfc_get_constant_expr (BT_CHARACTER, kind,
202 where ? where : &gfc_current_locus);
203 e->value.character.string = dest;
204 e->value.character.length = len;
205
206 return e;
207 }
208
209
210 /* Get a new expression node that is an integer constant. */
211
212 gfc_expr *
213 gfc_get_int_expr (int kind, locus *where, int value)
214 {
215 gfc_expr *p;
216 p = gfc_get_constant_expr (BT_INTEGER, kind,
217 where ? where : &gfc_current_locus);
218
219 mpz_set_si (p->value.integer, value);
220
221 return p;
222 }
223
224
225 /* Get a new expression node that is a logical constant. */
226
227 gfc_expr *
228 gfc_get_logical_expr (int kind, locus *where, bool value)
229 {
230 gfc_expr *p;
231 p = gfc_get_constant_expr (BT_LOGICAL, kind,
232 where ? where : &gfc_current_locus);
233
234 p->value.logical = value;
235
236 return p;
237 }
238
239
240 gfc_expr *
241 gfc_get_iokind_expr (locus *where, io_kind k)
242 {
243 gfc_expr *e;
244
245 /* Set the types to something compatible with iokind. This is needed to
246 get through gfc_free_expr later since iokind really has no Basic Type,
247 BT, of its own. */
248
249 e = gfc_get_expr ();
250 e->expr_type = EXPR_CONSTANT;
251 e->ts.type = BT_LOGICAL;
252 e->value.iokind = k;
253 e->where = *where;
254
255 return e;
256 }
257
258
259 /* Given an expression pointer, return a copy of the expression. This
260 subroutine is recursive. */
261
262 gfc_expr *
263 gfc_copy_expr (gfc_expr *p)
264 {
265 gfc_expr *q;
266 gfc_char_t *s;
267 char *c;
268
269 if (p == NULL)
270 return NULL;
271
272 q = gfc_get_expr ();
273 *q = *p;
274
275 switch (q->expr_type)
276 {
277 case EXPR_SUBSTRING:
278 s = gfc_get_wide_string (p->value.character.length + 1);
279 q->value.character.string = s;
280 memcpy (s, p->value.character.string,
281 (p->value.character.length + 1) * sizeof (gfc_char_t));
282 break;
283
284 case EXPR_CONSTANT:
285 /* Copy target representation, if it exists. */
286 if (p->representation.string)
287 {
288 c = XCNEWVEC (char, p->representation.length + 1);
289 q->representation.string = c;
290 memcpy (c, p->representation.string, (p->representation.length + 1));
291 }
292
293 /* Copy the values of any pointer components of p->value. */
294 switch (q->ts.type)
295 {
296 case BT_INTEGER:
297 mpz_init_set (q->value.integer, p->value.integer);
298 break;
299
300 case BT_REAL:
301 gfc_set_model_kind (q->ts.kind);
302 mpfr_init (q->value.real);
303 mpfr_set (q->value.real, p->value.real, GFC_RND_MODE);
304 break;
305
306 case BT_COMPLEX:
307 gfc_set_model_kind (q->ts.kind);
308 mpc_init2 (q->value.complex, mpfr_get_default_prec());
309 mpc_set (q->value.complex, p->value.complex, GFC_MPC_RND_MODE);
310 break;
311
312 case BT_CHARACTER:
313 if (p->representation.string)
314 q->value.character.string
315 = gfc_char_to_widechar (q->representation.string);
316 else
317 {
318 s = gfc_get_wide_string (p->value.character.length + 1);
319 q->value.character.string = s;
320
321 /* This is the case for the C_NULL_CHAR named constant. */
322 if (p->value.character.length == 0
323 && (p->ts.is_c_interop || p->ts.is_iso_c))
324 {
325 *s = '\0';
326 /* Need to set the length to 1 to make sure the NUL
327 terminator is copied. */
328 q->value.character.length = 1;
329 }
330 else
331 memcpy (s, p->value.character.string,
332 (p->value.character.length + 1) * sizeof (gfc_char_t));
333 }
334 break;
335
336 case BT_HOLLERITH:
337 case BT_LOGICAL:
338 case_bt_struct:
339 case BT_CLASS:
340 case BT_ASSUMED:
341 break; /* Already done. */
342
343 case BT_PROCEDURE:
344 case BT_VOID:
345 /* Should never be reached. */
346 case BT_UNKNOWN:
347 gfc_internal_error ("gfc_copy_expr(): Bad expr node");
348 /* Not reached. */
349 }
350
351 break;
352
353 case EXPR_OP:
354 switch (q->value.op.op)
355 {
356 case INTRINSIC_NOT:
357 case INTRINSIC_PARENTHESES:
358 case INTRINSIC_UPLUS:
359 case INTRINSIC_UMINUS:
360 q->value.op.op1 = gfc_copy_expr (p->value.op.op1);
361 break;
362
363 default: /* Binary operators. */
364 q->value.op.op1 = gfc_copy_expr (p->value.op.op1);
365 q->value.op.op2 = gfc_copy_expr (p->value.op.op2);
366 break;
367 }
368
369 break;
370
371 case EXPR_FUNCTION:
372 q->value.function.actual =
373 gfc_copy_actual_arglist (p->value.function.actual);
374 break;
375
376 case EXPR_COMPCALL:
377 case EXPR_PPC:
378 q->value.compcall.actual =
379 gfc_copy_actual_arglist (p->value.compcall.actual);
380 q->value.compcall.tbp = p->value.compcall.tbp;
381 break;
382
383 case EXPR_STRUCTURE:
384 case EXPR_ARRAY:
385 q->value.constructor = gfc_constructor_copy (p->value.constructor);
386 break;
387
388 case EXPR_VARIABLE:
389 case EXPR_NULL:
390 break;
391 }
392
393 q->shape = gfc_copy_shape (p->shape, p->rank);
394
395 q->ref = gfc_copy_ref (p->ref);
396
397 if (p->param_list)
398 q->param_list = gfc_copy_actual_arglist (p->param_list);
399
400 return q;
401 }
402
403
404 void
405 gfc_clear_shape (mpz_t *shape, int rank)
406 {
407 int i;
408
409 for (i = 0; i < rank; i++)
410 mpz_clear (shape[i]);
411 }
412
413
414 void
415 gfc_free_shape (mpz_t **shape, int rank)
416 {
417 if (*shape == NULL)
418 return;
419
420 gfc_clear_shape (*shape, rank);
421 free (*shape);
422 *shape = NULL;
423 }
424
425
426 /* Workhorse function for gfc_free_expr() that frees everything
427 beneath an expression node, but not the node itself. This is
428 useful when we want to simplify a node and replace it with
429 something else or the expression node belongs to another structure. */
430
431 static void
432 free_expr0 (gfc_expr *e)
433 {
434 switch (e->expr_type)
435 {
436 case EXPR_CONSTANT:
437 /* Free any parts of the value that need freeing. */
438 switch (e->ts.type)
439 {
440 case BT_INTEGER:
441 mpz_clear (e->value.integer);
442 break;
443
444 case BT_REAL:
445 mpfr_clear (e->value.real);
446 break;
447
448 case BT_CHARACTER:
449 free (e->value.character.string);
450 break;
451
452 case BT_COMPLEX:
453 mpc_clear (e->value.complex);
454 break;
455
456 default:
457 break;
458 }
459
460 /* Free the representation. */
461 free (e->representation.string);
462
463 break;
464
465 case EXPR_OP:
466 if (e->value.op.op1 != NULL)
467 gfc_free_expr (e->value.op.op1);
468 if (e->value.op.op2 != NULL)
469 gfc_free_expr (e->value.op.op2);
470 break;
471
472 case EXPR_FUNCTION:
473 gfc_free_actual_arglist (e->value.function.actual);
474 break;
475
476 case EXPR_COMPCALL:
477 case EXPR_PPC:
478 gfc_free_actual_arglist (e->value.compcall.actual);
479 break;
480
481 case EXPR_VARIABLE:
482 break;
483
484 case EXPR_ARRAY:
485 case EXPR_STRUCTURE:
486 gfc_constructor_free (e->value.constructor);
487 break;
488
489 case EXPR_SUBSTRING:
490 free (e->value.character.string);
491 break;
492
493 case EXPR_NULL:
494 break;
495
496 default:
497 gfc_internal_error ("free_expr0(): Bad expr type");
498 }
499
500 /* Free a shape array. */
501 gfc_free_shape (&e->shape, e->rank);
502
503 gfc_free_ref_list (e->ref);
504
505 gfc_free_actual_arglist (e->param_list);
506
507 memset (e, '\0', sizeof (gfc_expr));
508 }
509
510
511 /* Free an expression node and everything beneath it. */
512
513 void
514 gfc_free_expr (gfc_expr *e)
515 {
516 if (e == NULL)
517 return;
518 free_expr0 (e);
519 free (e);
520 }
521
522
523 /* Free an argument list and everything below it. */
524
525 void
526 gfc_free_actual_arglist (gfc_actual_arglist *a1)
527 {
528 gfc_actual_arglist *a2;
529
530 while (a1)
531 {
532 a2 = a1->next;
533 if (a1->expr)
534 gfc_free_expr (a1->expr);
535 free (a1);
536 a1 = a2;
537 }
538 }
539
540
541 /* Copy an arglist structure and all of the arguments. */
542
543 gfc_actual_arglist *
544 gfc_copy_actual_arglist (gfc_actual_arglist *p)
545 {
546 gfc_actual_arglist *head, *tail, *new_arg;
547
548 head = tail = NULL;
549
550 for (; p; p = p->next)
551 {
552 new_arg = gfc_get_actual_arglist ();
553 *new_arg = *p;
554
555 new_arg->expr = gfc_copy_expr (p->expr);
556 new_arg->next = NULL;
557
558 if (head == NULL)
559 head = new_arg;
560 else
561 tail->next = new_arg;
562
563 tail = new_arg;
564 }
565
566 return head;
567 }
568
569
570 /* Free a list of reference structures. */
571
572 void
573 gfc_free_ref_list (gfc_ref *p)
574 {
575 gfc_ref *q;
576 int i;
577
578 for (; p; p = q)
579 {
580 q = p->next;
581
582 switch (p->type)
583 {
584 case REF_ARRAY:
585 for (i = 0; i < GFC_MAX_DIMENSIONS; i++)
586 {
587 gfc_free_expr (p->u.ar.start[i]);
588 gfc_free_expr (p->u.ar.end[i]);
589 gfc_free_expr (p->u.ar.stride[i]);
590 }
591
592 break;
593
594 case REF_SUBSTRING:
595 gfc_free_expr (p->u.ss.start);
596 gfc_free_expr (p->u.ss.end);
597 break;
598
599 case REF_COMPONENT:
600 break;
601 }
602
603 free (p);
604 }
605 }
606
607
608 /* Graft the *src expression onto the *dest subexpression. */
609
610 void
611 gfc_replace_expr (gfc_expr *dest, gfc_expr *src)
612 {
613 free_expr0 (dest);
614 *dest = *src;
615 free (src);
616 }
617
618
619 /* Try to extract an integer constant from the passed expression node.
620 Return true if some error occurred, false on success. If REPORT_ERROR
621 is non-zero, emit error, for positive REPORT_ERROR using gfc_error,
622 for negative using gfc_error_now. */
623
624 bool
625 gfc_extract_int (gfc_expr *expr, int *result, int report_error)
626 {
627 gfc_ref *ref;
628
629 /* A KIND component is a parameter too. The expression for it
630 is stored in the initializer and should be consistent with
631 the tests below. */
632 if (gfc_expr_attr(expr).pdt_kind)
633 {
634 for (ref = expr->ref; ref; ref = ref->next)
635 {
636 if (ref->u.c.component->attr.pdt_kind)
637 expr = ref->u.c.component->initializer;
638 }
639 }
640
641 if (expr->expr_type != EXPR_CONSTANT)
642 {
643 if (report_error > 0)
644 gfc_error ("Constant expression required at %C");
645 else if (report_error < 0)
646 gfc_error_now ("Constant expression required at %C");
647 return true;
648 }
649
650 if (expr->ts.type != BT_INTEGER)
651 {
652 if (report_error > 0)
653 gfc_error ("Integer expression required at %C");
654 else if (report_error < 0)
655 gfc_error_now ("Integer expression required at %C");
656 return true;
657 }
658
659 if ((mpz_cmp_si (expr->value.integer, INT_MAX) > 0)
660 || (mpz_cmp_si (expr->value.integer, INT_MIN) < 0))
661 {
662 if (report_error > 0)
663 gfc_error ("Integer value too large in expression at %C");
664 else if (report_error < 0)
665 gfc_error_now ("Integer value too large in expression at %C");
666 return true;
667 }
668
669 *result = (int) mpz_get_si (expr->value.integer);
670
671 return false;
672 }
673
674
675 /* Recursively copy a list of reference structures. */
676
677 gfc_ref *
678 gfc_copy_ref (gfc_ref *src)
679 {
680 gfc_array_ref *ar;
681 gfc_ref *dest;
682
683 if (src == NULL)
684 return NULL;
685
686 dest = gfc_get_ref ();
687 dest->type = src->type;
688
689 switch (src->type)
690 {
691 case REF_ARRAY:
692 ar = gfc_copy_array_ref (&src->u.ar);
693 dest->u.ar = *ar;
694 free (ar);
695 break;
696
697 case REF_COMPONENT:
698 dest->u.c = src->u.c;
699 break;
700
701 case REF_SUBSTRING:
702 dest->u.ss = src->u.ss;
703 dest->u.ss.start = gfc_copy_expr (src->u.ss.start);
704 dest->u.ss.end = gfc_copy_expr (src->u.ss.end);
705 break;
706 }
707
708 dest->next = gfc_copy_ref (src->next);
709
710 return dest;
711 }
712
713
714 /* Detect whether an expression has any vector index array references. */
715
716 int
717 gfc_has_vector_index (gfc_expr *e)
718 {
719 gfc_ref *ref;
720 int i;
721 for (ref = e->ref; ref; ref = ref->next)
722 if (ref->type == REF_ARRAY)
723 for (i = 0; i < ref->u.ar.dimen; i++)
724 if (ref->u.ar.dimen_type[i] == DIMEN_VECTOR)
725 return 1;
726 return 0;
727 }
728
729
730 /* Copy a shape array. */
731
732 mpz_t *
733 gfc_copy_shape (mpz_t *shape, int rank)
734 {
735 mpz_t *new_shape;
736 int n;
737
738 if (shape == NULL)
739 return NULL;
740
741 new_shape = gfc_get_shape (rank);
742
743 for (n = 0; n < rank; n++)
744 mpz_init_set (new_shape[n], shape[n]);
745
746 return new_shape;
747 }
748
749
750 /* Copy a shape array excluding dimension N, where N is an integer
751 constant expression. Dimensions are numbered in Fortran style --
752 starting with ONE.
753
754 So, if the original shape array contains R elements
755 { s1 ... sN-1 sN sN+1 ... sR-1 sR}
756 the result contains R-1 elements:
757 { s1 ... sN-1 sN+1 ... sR-1}
758
759 If anything goes wrong -- N is not a constant, its value is out
760 of range -- or anything else, just returns NULL. */
761
762 mpz_t *
763 gfc_copy_shape_excluding (mpz_t *shape, int rank, gfc_expr *dim)
764 {
765 mpz_t *new_shape, *s;
766 int i, n;
767
768 if (shape == NULL
769 || rank <= 1
770 || dim == NULL
771 || dim->expr_type != EXPR_CONSTANT
772 || dim->ts.type != BT_INTEGER)
773 return NULL;
774
775 n = mpz_get_si (dim->value.integer);
776 n--; /* Convert to zero based index. */
777 if (n < 0 || n >= rank)
778 return NULL;
779
780 s = new_shape = gfc_get_shape (rank - 1);
781
782 for (i = 0; i < rank; i++)
783 {
784 if (i == n)
785 continue;
786 mpz_init_set (*s, shape[i]);
787 s++;
788 }
789
790 return new_shape;
791 }
792
793
794 /* Return the maximum kind of two expressions. In general, higher
795 kind numbers mean more precision for numeric types. */
796
797 int
798 gfc_kind_max (gfc_expr *e1, gfc_expr *e2)
799 {
800 return (e1->ts.kind > e2->ts.kind) ? e1->ts.kind : e2->ts.kind;
801 }
802
803
804 /* Returns nonzero if the type is numeric, zero otherwise. */
805
806 static int
807 numeric_type (bt type)
808 {
809 return type == BT_COMPLEX || type == BT_REAL || type == BT_INTEGER;
810 }
811
812
813 /* Returns nonzero if the typespec is a numeric type, zero otherwise. */
814
815 int
816 gfc_numeric_ts (gfc_typespec *ts)
817 {
818 return numeric_type (ts->type);
819 }
820
821
822 /* Return an expression node with an optional argument list attached.
823 A variable number of gfc_expr pointers are strung together in an
824 argument list with a NULL pointer terminating the list. */
825
826 gfc_expr *
827 gfc_build_conversion (gfc_expr *e)
828 {
829 gfc_expr *p;
830
831 p = gfc_get_expr ();
832 p->expr_type = EXPR_FUNCTION;
833 p->symtree = NULL;
834 p->value.function.actual = gfc_get_actual_arglist ();
835 p->value.function.actual->expr = e;
836
837 return p;
838 }
839
840
841 /* Given an expression node with some sort of numeric binary
842 expression, insert type conversions required to make the operands
843 have the same type. Conversion warnings are disabled if wconversion
844 is set to 0.
845
846 The exception is that the operands of an exponential don't have to
847 have the same type. If possible, the base is promoted to the type
848 of the exponent. For example, 1**2.3 becomes 1.0**2.3, but
849 1.0**2 stays as it is. */
850
851 void
852 gfc_type_convert_binary (gfc_expr *e, int wconversion)
853 {
854 gfc_expr *op1, *op2;
855
856 op1 = e->value.op.op1;
857 op2 = e->value.op.op2;
858
859 if (op1->ts.type == BT_UNKNOWN || op2->ts.type == BT_UNKNOWN)
860 {
861 gfc_clear_ts (&e->ts);
862 return;
863 }
864
865 /* Kind conversions of same type. */
866 if (op1->ts.type == op2->ts.type)
867 {
868 if (op1->ts.kind == op2->ts.kind)
869 {
870 /* No type conversions. */
871 e->ts = op1->ts;
872 goto done;
873 }
874
875 if (op1->ts.kind > op2->ts.kind)
876 gfc_convert_type_warn (op2, &op1->ts, 2, wconversion);
877 else
878 gfc_convert_type_warn (op1, &op2->ts, 2, wconversion);
879
880 e->ts = op1->ts;
881 goto done;
882 }
883
884 /* Integer combined with real or complex. */
885 if (op2->ts.type == BT_INTEGER)
886 {
887 e->ts = op1->ts;
888
889 /* Special case for ** operator. */
890 if (e->value.op.op == INTRINSIC_POWER)
891 goto done;
892
893 gfc_convert_type_warn (e->value.op.op2, &e->ts, 2, wconversion);
894 goto done;
895 }
896
897 if (op1->ts.type == BT_INTEGER)
898 {
899 e->ts = op2->ts;
900 gfc_convert_type_warn (e->value.op.op1, &e->ts, 2, wconversion);
901 goto done;
902 }
903
904 /* Real combined with complex. */
905 e->ts.type = BT_COMPLEX;
906 if (op1->ts.kind > op2->ts.kind)
907 e->ts.kind = op1->ts.kind;
908 else
909 e->ts.kind = op2->ts.kind;
910 if (op1->ts.type != BT_COMPLEX || op1->ts.kind != e->ts.kind)
911 gfc_convert_type_warn (e->value.op.op1, &e->ts, 2, wconversion);
912 if (op2->ts.type != BT_COMPLEX || op2->ts.kind != e->ts.kind)
913 gfc_convert_type_warn (e->value.op.op2, &e->ts, 2, wconversion);
914
915 done:
916 return;
917 }
918
919
920 /* Determine if an expression is constant in the sense of F08:7.1.12.
921 * This function expects that the expression has already been simplified. */
922
923 bool
924 gfc_is_constant_expr (gfc_expr *e)
925 {
926 gfc_constructor *c;
927 gfc_actual_arglist *arg;
928
929 if (e == NULL)
930 return true;
931
932 switch (e->expr_type)
933 {
934 case EXPR_OP:
935 return (gfc_is_constant_expr (e->value.op.op1)
936 && (e->value.op.op2 == NULL
937 || gfc_is_constant_expr (e->value.op.op2)));
938
939 case EXPR_VARIABLE:
940 /* The only context in which this can occur is in a parameterized
941 derived type declaration, so returning true is OK. */
942 if (e->symtree->n.sym->attr.pdt_len
943 || e->symtree->n.sym->attr.pdt_kind)
944 return true;
945 return false;
946
947 case EXPR_FUNCTION:
948 case EXPR_PPC:
949 case EXPR_COMPCALL:
950 gcc_assert (e->symtree || e->value.function.esym
951 || e->value.function.isym);
952
953 /* Call to intrinsic with at least one argument. */
954 if (e->value.function.isym && e->value.function.actual)
955 {
956 for (arg = e->value.function.actual; arg; arg = arg->next)
957 if (!gfc_is_constant_expr (arg->expr))
958 return false;
959 }
960
961 if (e->value.function.isym
962 && (e->value.function.isym->elemental
963 || e->value.function.isym->pure
964 || e->value.function.isym->inquiry
965 || e->value.function.isym->transformational))
966 return true;
967
968 return false;
969
970 case EXPR_CONSTANT:
971 case EXPR_NULL:
972 return true;
973
974 case EXPR_SUBSTRING:
975 return e->ref == NULL || (gfc_is_constant_expr (e->ref->u.ss.start)
976 && gfc_is_constant_expr (e->ref->u.ss.end));
977
978 case EXPR_ARRAY:
979 case EXPR_STRUCTURE:
980 c = gfc_constructor_first (e->value.constructor);
981 if ((e->expr_type == EXPR_ARRAY) && c && c->iterator)
982 return gfc_constant_ac (e);
983
984 for (; c; c = gfc_constructor_next (c))
985 if (!gfc_is_constant_expr (c->expr))
986 return false;
987
988 return true;
989
990
991 default:
992 gfc_internal_error ("gfc_is_constant_expr(): Unknown expression type");
993 return false;
994 }
995 }
996
997
998 /* Is true if an array reference is followed by a component or substring
999 reference. */
1000 bool
1001 is_subref_array (gfc_expr * e)
1002 {
1003 gfc_ref * ref;
1004 bool seen_array;
1005
1006 if (e->expr_type != EXPR_VARIABLE)
1007 return false;
1008
1009 if (e->symtree->n.sym->attr.subref_array_pointer)
1010 return true;
1011
1012 if (e->symtree->n.sym->ts.type == BT_CLASS
1013 && e->symtree->n.sym->attr.dummy
1014 && CLASS_DATA (e->symtree->n.sym)->attr.class_pointer)
1015 return true;
1016
1017 seen_array = false;
1018 for (ref = e->ref; ref; ref = ref->next)
1019 {
1020 if (ref->type == REF_ARRAY
1021 && ref->u.ar.type != AR_ELEMENT)
1022 seen_array = true;
1023
1024 if (seen_array
1025 && ref->type != REF_ARRAY)
1026 return seen_array;
1027 }
1028 return false;
1029 }
1030
1031
1032 /* Try to collapse intrinsic expressions. */
1033
1034 static bool
1035 simplify_intrinsic_op (gfc_expr *p, int type)
1036 {
1037 gfc_intrinsic_op op;
1038 gfc_expr *op1, *op2, *result;
1039
1040 if (p->value.op.op == INTRINSIC_USER)
1041 return true;
1042
1043 op1 = p->value.op.op1;
1044 op2 = p->value.op.op2;
1045 op = p->value.op.op;
1046
1047 if (!gfc_simplify_expr (op1, type))
1048 return false;
1049 if (!gfc_simplify_expr (op2, type))
1050 return false;
1051
1052 if (!gfc_is_constant_expr (op1)
1053 || (op2 != NULL && !gfc_is_constant_expr (op2)))
1054 return true;
1055
1056 /* Rip p apart. */
1057 p->value.op.op1 = NULL;
1058 p->value.op.op2 = NULL;
1059
1060 switch (op)
1061 {
1062 case INTRINSIC_PARENTHESES:
1063 result = gfc_parentheses (op1);
1064 break;
1065
1066 case INTRINSIC_UPLUS:
1067 result = gfc_uplus (op1);
1068 break;
1069
1070 case INTRINSIC_UMINUS:
1071 result = gfc_uminus (op1);
1072 break;
1073
1074 case INTRINSIC_PLUS:
1075 result = gfc_add (op1, op2);
1076 break;
1077
1078 case INTRINSIC_MINUS:
1079 result = gfc_subtract (op1, op2);
1080 break;
1081
1082 case INTRINSIC_TIMES:
1083 result = gfc_multiply (op1, op2);
1084 break;
1085
1086 case INTRINSIC_DIVIDE:
1087 result = gfc_divide (op1, op2);
1088 break;
1089
1090 case INTRINSIC_POWER:
1091 result = gfc_power (op1, op2);
1092 break;
1093
1094 case INTRINSIC_CONCAT:
1095 result = gfc_concat (op1, op2);
1096 break;
1097
1098 case INTRINSIC_EQ:
1099 case INTRINSIC_EQ_OS:
1100 result = gfc_eq (op1, op2, op);
1101 break;
1102
1103 case INTRINSIC_NE:
1104 case INTRINSIC_NE_OS:
1105 result = gfc_ne (op1, op2, op);
1106 break;
1107
1108 case INTRINSIC_GT:
1109 case INTRINSIC_GT_OS:
1110 result = gfc_gt (op1, op2, op);
1111 break;
1112
1113 case INTRINSIC_GE:
1114 case INTRINSIC_GE_OS:
1115 result = gfc_ge (op1, op2, op);
1116 break;
1117
1118 case INTRINSIC_LT:
1119 case INTRINSIC_LT_OS:
1120 result = gfc_lt (op1, op2, op);
1121 break;
1122
1123 case INTRINSIC_LE:
1124 case INTRINSIC_LE_OS:
1125 result = gfc_le (op1, op2, op);
1126 break;
1127
1128 case INTRINSIC_NOT:
1129 result = gfc_not (op1);
1130 break;
1131
1132 case INTRINSIC_AND:
1133 result = gfc_and (op1, op2);
1134 break;
1135
1136 case INTRINSIC_OR:
1137 result = gfc_or (op1, op2);
1138 break;
1139
1140 case INTRINSIC_EQV:
1141 result = gfc_eqv (op1, op2);
1142 break;
1143
1144 case INTRINSIC_NEQV:
1145 result = gfc_neqv (op1, op2);
1146 break;
1147
1148 default:
1149 gfc_internal_error ("simplify_intrinsic_op(): Bad operator");
1150 }
1151
1152 if (result == NULL)
1153 {
1154 gfc_free_expr (op1);
1155 gfc_free_expr (op2);
1156 return false;
1157 }
1158
1159 result->rank = p->rank;
1160 result->where = p->where;
1161 gfc_replace_expr (p, result);
1162
1163 return true;
1164 }
1165
1166
1167 /* Subroutine to simplify constructor expressions. Mutually recursive
1168 with gfc_simplify_expr(). */
1169
1170 static bool
1171 simplify_constructor (gfc_constructor_base base, int type)
1172 {
1173 gfc_constructor *c;
1174 gfc_expr *p;
1175
1176 for (c = gfc_constructor_first (base); c; c = gfc_constructor_next (c))
1177 {
1178 if (c->iterator
1179 && (!gfc_simplify_expr(c->iterator->start, type)
1180 || !gfc_simplify_expr (c->iterator->end, type)
1181 || !gfc_simplify_expr (c->iterator->step, type)))
1182 return false;
1183
1184 if (c->expr)
1185 {
1186 /* Try and simplify a copy. Replace the original if successful
1187 but keep going through the constructor at all costs. Not
1188 doing so can make a dog's dinner of complicated things. */
1189 p = gfc_copy_expr (c->expr);
1190
1191 if (!gfc_simplify_expr (p, type))
1192 {
1193 gfc_free_expr (p);
1194 continue;
1195 }
1196
1197 gfc_replace_expr (c->expr, p);
1198 }
1199 }
1200
1201 return true;
1202 }
1203
1204
1205 /* Pull a single array element out of an array constructor. */
1206
1207 static bool
1208 find_array_element (gfc_constructor_base base, gfc_array_ref *ar,
1209 gfc_constructor **rval)
1210 {
1211 unsigned long nelemen;
1212 int i;
1213 mpz_t delta;
1214 mpz_t offset;
1215 mpz_t span;
1216 mpz_t tmp;
1217 gfc_constructor *cons;
1218 gfc_expr *e;
1219 bool t;
1220
1221 t = true;
1222 e = NULL;
1223
1224 mpz_init_set_ui (offset, 0);
1225 mpz_init (delta);
1226 mpz_init (tmp);
1227 mpz_init_set_ui (span, 1);
1228 for (i = 0; i < ar->dimen; i++)
1229 {
1230 if (!gfc_reduce_init_expr (ar->as->lower[i])
1231 || !gfc_reduce_init_expr (ar->as->upper[i]))
1232 {
1233 t = false;
1234 cons = NULL;
1235 goto depart;
1236 }
1237
1238 e = ar->start[i];
1239 if (e->expr_type != EXPR_CONSTANT)
1240 {
1241 cons = NULL;
1242 goto depart;
1243 }
1244
1245 gcc_assert (ar->as->upper[i]->expr_type == EXPR_CONSTANT
1246 && ar->as->lower[i]->expr_type == EXPR_CONSTANT);
1247
1248 /* Check the bounds. */
1249 if ((ar->as->upper[i]
1250 && mpz_cmp (e->value.integer,
1251 ar->as->upper[i]->value.integer) > 0)
1252 || (mpz_cmp (e->value.integer,
1253 ar->as->lower[i]->value.integer) < 0))
1254 {
1255 gfc_error ("Index in dimension %d is out of bounds "
1256 "at %L", i + 1, &ar->c_where[i]);
1257 cons = NULL;
1258 t = false;
1259 goto depart;
1260 }
1261
1262 mpz_sub (delta, e->value.integer, ar->as->lower[i]->value.integer);
1263 mpz_mul (delta, delta, span);
1264 mpz_add (offset, offset, delta);
1265
1266 mpz_set_ui (tmp, 1);
1267 mpz_add (tmp, tmp, ar->as->upper[i]->value.integer);
1268 mpz_sub (tmp, tmp, ar->as->lower[i]->value.integer);
1269 mpz_mul (span, span, tmp);
1270 }
1271
1272 for (cons = gfc_constructor_first (base), nelemen = mpz_get_ui (offset);
1273 cons && nelemen > 0; cons = gfc_constructor_next (cons), nelemen--)
1274 {
1275 if (cons->iterator)
1276 {
1277 cons = NULL;
1278 goto depart;
1279 }
1280 }
1281
1282 depart:
1283 mpz_clear (delta);
1284 mpz_clear (offset);
1285 mpz_clear (span);
1286 mpz_clear (tmp);
1287 *rval = cons;
1288 return t;
1289 }
1290
1291
1292 /* Find a component of a structure constructor. */
1293
1294 static gfc_constructor *
1295 find_component_ref (gfc_constructor_base base, gfc_ref *ref)
1296 {
1297 gfc_component *pick = ref->u.c.component;
1298 gfc_constructor *c = gfc_constructor_first (base);
1299
1300 gfc_symbol *dt = ref->u.c.sym;
1301 int ext = dt->attr.extension;
1302
1303 /* For extended types, check if the desired component is in one of the
1304 * parent types. */
1305 while (ext > 0 && gfc_find_component (dt->components->ts.u.derived,
1306 pick->name, true, true, NULL))
1307 {
1308 dt = dt->components->ts.u.derived;
1309 c = gfc_constructor_first (c->expr->value.constructor);
1310 ext--;
1311 }
1312
1313 gfc_component *comp = dt->components;
1314 while (comp != pick)
1315 {
1316 comp = comp->next;
1317 c = gfc_constructor_next (c);
1318 }
1319
1320 return c;
1321 }
1322
1323
1324 /* Replace an expression with the contents of a constructor, removing
1325 the subobject reference in the process. */
1326
1327 static void
1328 remove_subobject_ref (gfc_expr *p, gfc_constructor *cons)
1329 {
1330 gfc_expr *e;
1331
1332 if (cons)
1333 {
1334 e = cons->expr;
1335 cons->expr = NULL;
1336 }
1337 else
1338 e = gfc_copy_expr (p);
1339 e->ref = p->ref->next;
1340 p->ref->next = NULL;
1341 gfc_replace_expr (p, e);
1342 }
1343
1344
1345 /* Pull an array section out of an array constructor. */
1346
1347 static bool
1348 find_array_section (gfc_expr *expr, gfc_ref *ref)
1349 {
1350 int idx;
1351 int rank;
1352 int d;
1353 int shape_i;
1354 int limit;
1355 long unsigned one = 1;
1356 bool incr_ctr;
1357 mpz_t start[GFC_MAX_DIMENSIONS];
1358 mpz_t end[GFC_MAX_DIMENSIONS];
1359 mpz_t stride[GFC_MAX_DIMENSIONS];
1360 mpz_t delta[GFC_MAX_DIMENSIONS];
1361 mpz_t ctr[GFC_MAX_DIMENSIONS];
1362 mpz_t delta_mpz;
1363 mpz_t tmp_mpz;
1364 mpz_t nelts;
1365 mpz_t ptr;
1366 gfc_constructor_base base;
1367 gfc_constructor *cons, *vecsub[GFC_MAX_DIMENSIONS];
1368 gfc_expr *begin;
1369 gfc_expr *finish;
1370 gfc_expr *step;
1371 gfc_expr *upper;
1372 gfc_expr *lower;
1373 bool t;
1374
1375 t = true;
1376
1377 base = expr->value.constructor;
1378 expr->value.constructor = NULL;
1379
1380 rank = ref->u.ar.as->rank;
1381
1382 if (expr->shape == NULL)
1383 expr->shape = gfc_get_shape (rank);
1384
1385 mpz_init_set_ui (delta_mpz, one);
1386 mpz_init_set_ui (nelts, one);
1387 mpz_init (tmp_mpz);
1388
1389 /* Do the initialization now, so that we can cleanup without
1390 keeping track of where we were. */
1391 for (d = 0; d < rank; d++)
1392 {
1393 mpz_init (delta[d]);
1394 mpz_init (start[d]);
1395 mpz_init (end[d]);
1396 mpz_init (ctr[d]);
1397 mpz_init (stride[d]);
1398 vecsub[d] = NULL;
1399 }
1400
1401 /* Build the counters to clock through the array reference. */
1402 shape_i = 0;
1403 for (d = 0; d < rank; d++)
1404 {
1405 /* Make this stretch of code easier on the eye! */
1406 begin = ref->u.ar.start[d];
1407 finish = ref->u.ar.end[d];
1408 step = ref->u.ar.stride[d];
1409 lower = ref->u.ar.as->lower[d];
1410 upper = ref->u.ar.as->upper[d];
1411
1412 if (ref->u.ar.dimen_type[d] == DIMEN_VECTOR) /* Vector subscript. */
1413 {
1414 gfc_constructor *ci;
1415 gcc_assert (begin);
1416
1417 if (begin->expr_type != EXPR_ARRAY || !gfc_is_constant_expr (begin))
1418 {
1419 t = false;
1420 goto cleanup;
1421 }
1422
1423 gcc_assert (begin->rank == 1);
1424 /* Zero-sized arrays have no shape and no elements, stop early. */
1425 if (!begin->shape)
1426 {
1427 mpz_init_set_ui (nelts, 0);
1428 break;
1429 }
1430
1431 vecsub[d] = gfc_constructor_first (begin->value.constructor);
1432 mpz_set (ctr[d], vecsub[d]->expr->value.integer);
1433 mpz_mul (nelts, nelts, begin->shape[0]);
1434 mpz_set (expr->shape[shape_i++], begin->shape[0]);
1435
1436 /* Check bounds. */
1437 for (ci = vecsub[d]; ci; ci = gfc_constructor_next (ci))
1438 {
1439 if (mpz_cmp (ci->expr->value.integer, upper->value.integer) > 0
1440 || mpz_cmp (ci->expr->value.integer,
1441 lower->value.integer) < 0)
1442 {
1443 gfc_error ("index in dimension %d is out of bounds "
1444 "at %L", d + 1, &ref->u.ar.c_where[d]);
1445 t = false;
1446 goto cleanup;
1447 }
1448 }
1449 }
1450 else
1451 {
1452 if ((begin && begin->expr_type != EXPR_CONSTANT)
1453 || (finish && finish->expr_type != EXPR_CONSTANT)
1454 || (step && step->expr_type != EXPR_CONSTANT))
1455 {
1456 t = false;
1457 goto cleanup;
1458 }
1459
1460 /* Obtain the stride. */
1461 if (step)
1462 mpz_set (stride[d], step->value.integer);
1463 else
1464 mpz_set_ui (stride[d], one);
1465
1466 if (mpz_cmp_ui (stride[d], 0) == 0)
1467 mpz_set_ui (stride[d], one);
1468
1469 /* Obtain the start value for the index. */
1470 if (begin)
1471 mpz_set (start[d], begin->value.integer);
1472 else
1473 mpz_set (start[d], lower->value.integer);
1474
1475 mpz_set (ctr[d], start[d]);
1476
1477 /* Obtain the end value for the index. */
1478 if (finish)
1479 mpz_set (end[d], finish->value.integer);
1480 else
1481 mpz_set (end[d], upper->value.integer);
1482
1483 /* Separate 'if' because elements sometimes arrive with
1484 non-null end. */
1485 if (ref->u.ar.dimen_type[d] == DIMEN_ELEMENT)
1486 mpz_set (end [d], begin->value.integer);
1487
1488 /* Check the bounds. */
1489 if (mpz_cmp (ctr[d], upper->value.integer) > 0
1490 || mpz_cmp (end[d], upper->value.integer) > 0
1491 || mpz_cmp (ctr[d], lower->value.integer) < 0
1492 || mpz_cmp (end[d], lower->value.integer) < 0)
1493 {
1494 gfc_error ("index in dimension %d is out of bounds "
1495 "at %L", d + 1, &ref->u.ar.c_where[d]);
1496 t = false;
1497 goto cleanup;
1498 }
1499
1500 /* Calculate the number of elements and the shape. */
1501 mpz_set (tmp_mpz, stride[d]);
1502 mpz_add (tmp_mpz, end[d], tmp_mpz);
1503 mpz_sub (tmp_mpz, tmp_mpz, ctr[d]);
1504 mpz_div (tmp_mpz, tmp_mpz, stride[d]);
1505 mpz_mul (nelts, nelts, tmp_mpz);
1506
1507 /* An element reference reduces the rank of the expression; don't
1508 add anything to the shape array. */
1509 if (ref->u.ar.dimen_type[d] != DIMEN_ELEMENT)
1510 mpz_set (expr->shape[shape_i++], tmp_mpz);
1511 }
1512
1513 /* Calculate the 'stride' (=delta) for conversion of the
1514 counter values into the index along the constructor. */
1515 mpz_set (delta[d], delta_mpz);
1516 mpz_sub (tmp_mpz, upper->value.integer, lower->value.integer);
1517 mpz_add_ui (tmp_mpz, tmp_mpz, one);
1518 mpz_mul (delta_mpz, delta_mpz, tmp_mpz);
1519 }
1520
1521 mpz_init (ptr);
1522 cons = gfc_constructor_first (base);
1523
1524 /* Now clock through the array reference, calculating the index in
1525 the source constructor and transferring the elements to the new
1526 constructor. */
1527 for (idx = 0; idx < (int) mpz_get_si (nelts); idx++)
1528 {
1529 mpz_init_set_ui (ptr, 0);
1530
1531 incr_ctr = true;
1532 for (d = 0; d < rank; d++)
1533 {
1534 mpz_set (tmp_mpz, ctr[d]);
1535 mpz_sub (tmp_mpz, tmp_mpz, ref->u.ar.as->lower[d]->value.integer);
1536 mpz_mul (tmp_mpz, tmp_mpz, delta[d]);
1537 mpz_add (ptr, ptr, tmp_mpz);
1538
1539 if (!incr_ctr) continue;
1540
1541 if (ref->u.ar.dimen_type[d] == DIMEN_VECTOR) /* Vector subscript. */
1542 {
1543 gcc_assert(vecsub[d]);
1544
1545 if (!gfc_constructor_next (vecsub[d]))
1546 vecsub[d] = gfc_constructor_first (ref->u.ar.start[d]->value.constructor);
1547 else
1548 {
1549 vecsub[d] = gfc_constructor_next (vecsub[d]);
1550 incr_ctr = false;
1551 }
1552 mpz_set (ctr[d], vecsub[d]->expr->value.integer);
1553 }
1554 else
1555 {
1556 mpz_add (ctr[d], ctr[d], stride[d]);
1557
1558 if (mpz_cmp_ui (stride[d], 0) > 0
1559 ? mpz_cmp (ctr[d], end[d]) > 0
1560 : mpz_cmp (ctr[d], end[d]) < 0)
1561 mpz_set (ctr[d], start[d]);
1562 else
1563 incr_ctr = false;
1564 }
1565 }
1566
1567 limit = mpz_get_ui (ptr);
1568 if (limit >= flag_max_array_constructor)
1569 {
1570 gfc_error ("The number of elements in the array constructor "
1571 "at %L requires an increase of the allowed %d "
1572 "upper limit. See -fmax-array-constructor "
1573 "option", &expr->where, flag_max_array_constructor);
1574 return false;
1575 }
1576
1577 cons = gfc_constructor_lookup (base, limit);
1578 gcc_assert (cons);
1579 gfc_constructor_append_expr (&expr->value.constructor,
1580 gfc_copy_expr (cons->expr), NULL);
1581 }
1582
1583 mpz_clear (ptr);
1584
1585 cleanup:
1586
1587 mpz_clear (delta_mpz);
1588 mpz_clear (tmp_mpz);
1589 mpz_clear (nelts);
1590 for (d = 0; d < rank; d++)
1591 {
1592 mpz_clear (delta[d]);
1593 mpz_clear (start[d]);
1594 mpz_clear (end[d]);
1595 mpz_clear (ctr[d]);
1596 mpz_clear (stride[d]);
1597 }
1598 gfc_constructor_free (base);
1599 return t;
1600 }
1601
1602 /* Pull a substring out of an expression. */
1603
1604 static bool
1605 find_substring_ref (gfc_expr *p, gfc_expr **newp)
1606 {
1607 int end;
1608 int start;
1609 int length;
1610 gfc_char_t *chr;
1611
1612 if (p->ref->u.ss.start->expr_type != EXPR_CONSTANT
1613 || p->ref->u.ss.end->expr_type != EXPR_CONSTANT)
1614 return false;
1615
1616 *newp = gfc_copy_expr (p);
1617 free ((*newp)->value.character.string);
1618
1619 end = (int) mpz_get_ui (p->ref->u.ss.end->value.integer);
1620 start = (int) mpz_get_ui (p->ref->u.ss.start->value.integer);
1621 length = end - start + 1;
1622
1623 chr = (*newp)->value.character.string = gfc_get_wide_string (length + 1);
1624 (*newp)->value.character.length = length;
1625 memcpy (chr, &p->value.character.string[start - 1],
1626 length * sizeof (gfc_char_t));
1627 chr[length] = '\0';
1628 return true;
1629 }
1630
1631
1632
1633 /* Simplify a subobject reference of a constructor. This occurs when
1634 parameter variable values are substituted. */
1635
1636 static bool
1637 simplify_const_ref (gfc_expr *p)
1638 {
1639 gfc_constructor *cons, *c;
1640 gfc_expr *newp;
1641 gfc_ref *last_ref;
1642
1643 while (p->ref)
1644 {
1645 switch (p->ref->type)
1646 {
1647 case REF_ARRAY:
1648 switch (p->ref->u.ar.type)
1649 {
1650 case AR_ELEMENT:
1651 /* <type/kind spec>, parameter :: x(<int>) = scalar_expr
1652 will generate this. */
1653 if (p->expr_type != EXPR_ARRAY)
1654 {
1655 remove_subobject_ref (p, NULL);
1656 break;
1657 }
1658 if (!find_array_element (p->value.constructor, &p->ref->u.ar, &cons))
1659 return false;
1660
1661 if (!cons)
1662 return true;
1663
1664 remove_subobject_ref (p, cons);
1665 break;
1666
1667 case AR_SECTION:
1668 if (!find_array_section (p, p->ref))
1669 return false;
1670 p->ref->u.ar.type = AR_FULL;
1671
1672 /* Fall through. */
1673
1674 case AR_FULL:
1675 if (p->ref->next != NULL
1676 && (p->ts.type == BT_CHARACTER || gfc_bt_struct (p->ts.type)))
1677 {
1678 for (c = gfc_constructor_first (p->value.constructor);
1679 c; c = gfc_constructor_next (c))
1680 {
1681 c->expr->ref = gfc_copy_ref (p->ref->next);
1682 if (!simplify_const_ref (c->expr))
1683 return false;
1684 }
1685
1686 if (gfc_bt_struct (p->ts.type)
1687 && p->ref->next
1688 && (c = gfc_constructor_first (p->value.constructor)))
1689 {
1690 /* There may have been component references. */
1691 p->ts = c->expr->ts;
1692 }
1693
1694 last_ref = p->ref;
1695 for (; last_ref->next; last_ref = last_ref->next) {};
1696
1697 if (p->ts.type == BT_CHARACTER
1698 && last_ref->type == REF_SUBSTRING)
1699 {
1700 /* If this is a CHARACTER array and we possibly took
1701 a substring out of it, update the type-spec's
1702 character length according to the first element
1703 (as all should have the same length). */
1704 int string_len;
1705 if ((c = gfc_constructor_first (p->value.constructor)))
1706 {
1707 const gfc_expr* first = c->expr;
1708 gcc_assert (first->expr_type == EXPR_CONSTANT);
1709 gcc_assert (first->ts.type == BT_CHARACTER);
1710 string_len = first->value.character.length;
1711 }
1712 else
1713 string_len = 0;
1714
1715 if (!p->ts.u.cl)
1716 p->ts.u.cl = gfc_new_charlen (p->symtree->n.sym->ns,
1717 NULL);
1718 else
1719 gfc_free_expr (p->ts.u.cl->length);
1720
1721 p->ts.u.cl->length
1722 = gfc_get_int_expr (gfc_default_integer_kind,
1723 NULL, string_len);
1724 }
1725 }
1726 gfc_free_ref_list (p->ref);
1727 p->ref = NULL;
1728 break;
1729
1730 default:
1731 return true;
1732 }
1733
1734 break;
1735
1736 case REF_COMPONENT:
1737 cons = find_component_ref (p->value.constructor, p->ref);
1738 remove_subobject_ref (p, cons);
1739 break;
1740
1741 case REF_SUBSTRING:
1742 if (!find_substring_ref (p, &newp))
1743 return false;
1744
1745 gfc_replace_expr (p, newp);
1746 gfc_free_ref_list (p->ref);
1747 p->ref = NULL;
1748 break;
1749 }
1750 }
1751
1752 return true;
1753 }
1754
1755
1756 /* Simplify a chain of references. */
1757
1758 static bool
1759 simplify_ref_chain (gfc_ref *ref, int type)
1760 {
1761 int n;
1762
1763 for (; ref; ref = ref->next)
1764 {
1765 switch (ref->type)
1766 {
1767 case REF_ARRAY:
1768 for (n = 0; n < ref->u.ar.dimen; n++)
1769 {
1770 if (!gfc_simplify_expr (ref->u.ar.start[n], type))
1771 return false;
1772 if (!gfc_simplify_expr (ref->u.ar.end[n], type))
1773 return false;
1774 if (!gfc_simplify_expr (ref->u.ar.stride[n], type))
1775 return false;
1776 }
1777 break;
1778
1779 case REF_SUBSTRING:
1780 if (!gfc_simplify_expr (ref->u.ss.start, type))
1781 return false;
1782 if (!gfc_simplify_expr (ref->u.ss.end, type))
1783 return false;
1784 break;
1785
1786 default:
1787 break;
1788 }
1789 }
1790 return true;
1791 }
1792
1793
1794 /* Try to substitute the value of a parameter variable. */
1795
1796 static bool
1797 simplify_parameter_variable (gfc_expr *p, int type)
1798 {
1799 gfc_expr *e;
1800 bool t;
1801
1802 e = gfc_copy_expr (p->symtree->n.sym->value);
1803 if (e == NULL)
1804 return false;
1805
1806 e->rank = p->rank;
1807
1808 /* Do not copy subobject refs for constant. */
1809 if (e->expr_type != EXPR_CONSTANT && p->ref != NULL)
1810 e->ref = gfc_copy_ref (p->ref);
1811 t = gfc_simplify_expr (e, type);
1812
1813 /* Only use the simplification if it eliminated all subobject references. */
1814 if (t && !e->ref)
1815 gfc_replace_expr (p, e);
1816 else
1817 gfc_free_expr (e);
1818
1819 return t;
1820 }
1821
1822 /* Given an expression, simplify it by collapsing constant
1823 expressions. Most simplification takes place when the expression
1824 tree is being constructed. If an intrinsic function is simplified
1825 at some point, we get called again to collapse the result against
1826 other constants.
1827
1828 We work by recursively simplifying expression nodes, simplifying
1829 intrinsic functions where possible, which can lead to further
1830 constant collapsing. If an operator has constant operand(s), we
1831 rip the expression apart, and rebuild it, hoping that it becomes
1832 something simpler.
1833
1834 The expression type is defined for:
1835 0 Basic expression parsing
1836 1 Simplifying array constructors -- will substitute
1837 iterator values.
1838 Returns false on error, true otherwise.
1839 NOTE: Will return true even if the expression can not be simplified. */
1840
1841 bool
1842 gfc_simplify_expr (gfc_expr *p, int type)
1843 {
1844 gfc_actual_arglist *ap;
1845
1846 if (p == NULL)
1847 return true;
1848
1849 switch (p->expr_type)
1850 {
1851 case EXPR_CONSTANT:
1852 case EXPR_NULL:
1853 break;
1854
1855 case EXPR_FUNCTION:
1856 for (ap = p->value.function.actual; ap; ap = ap->next)
1857 if (!gfc_simplify_expr (ap->expr, type))
1858 return false;
1859
1860 if (p->value.function.isym != NULL
1861 && gfc_intrinsic_func_interface (p, 1) == MATCH_ERROR)
1862 return false;
1863
1864 break;
1865
1866 case EXPR_SUBSTRING:
1867 if (!simplify_ref_chain (p->ref, type))
1868 return false;
1869
1870 if (gfc_is_constant_expr (p))
1871 {
1872 gfc_char_t *s;
1873 int start, end;
1874
1875 start = 0;
1876 if (p->ref && p->ref->u.ss.start)
1877 {
1878 gfc_extract_int (p->ref->u.ss.start, &start);
1879 start--; /* Convert from one-based to zero-based. */
1880 }
1881
1882 end = p->value.character.length;
1883 if (p->ref && p->ref->u.ss.end)
1884 gfc_extract_int (p->ref->u.ss.end, &end);
1885
1886 if (end < start)
1887 end = start;
1888
1889 s = gfc_get_wide_string (end - start + 2);
1890 memcpy (s, p->value.character.string + start,
1891 (end - start) * sizeof (gfc_char_t));
1892 s[end - start + 1] = '\0'; /* TODO: C-style string. */
1893 free (p->value.character.string);
1894 p->value.character.string = s;
1895 p->value.character.length = end - start;
1896 p->ts.u.cl = gfc_new_charlen (gfc_current_ns, NULL);
1897 p->ts.u.cl->length = gfc_get_int_expr (gfc_default_integer_kind,
1898 NULL,
1899 p->value.character.length);
1900 gfc_free_ref_list (p->ref);
1901 p->ref = NULL;
1902 p->expr_type = EXPR_CONSTANT;
1903 }
1904 break;
1905
1906 case EXPR_OP:
1907 if (!simplify_intrinsic_op (p, type))
1908 return false;
1909 break;
1910
1911 case EXPR_VARIABLE:
1912 /* Only substitute array parameter variables if we are in an
1913 initialization expression, or we want a subsection. */
1914 if (p->symtree->n.sym->attr.flavor == FL_PARAMETER
1915 && (gfc_init_expr_flag || p->ref
1916 || p->symtree->n.sym->value->expr_type != EXPR_ARRAY))
1917 {
1918 if (!simplify_parameter_variable (p, type))
1919 return false;
1920 break;
1921 }
1922
1923 if (type == 1)
1924 {
1925 gfc_simplify_iterator_var (p);
1926 }
1927
1928 /* Simplify subcomponent references. */
1929 if (!simplify_ref_chain (p->ref, type))
1930 return false;
1931
1932 break;
1933
1934 case EXPR_STRUCTURE:
1935 case EXPR_ARRAY:
1936 if (!simplify_ref_chain (p->ref, type))
1937 return false;
1938
1939 if (!simplify_constructor (p->value.constructor, type))
1940 return false;
1941
1942 if (p->expr_type == EXPR_ARRAY && p->ref && p->ref->type == REF_ARRAY
1943 && p->ref->u.ar.type == AR_FULL)
1944 gfc_expand_constructor (p, false);
1945
1946 if (!simplify_const_ref (p))
1947 return false;
1948
1949 break;
1950
1951 case EXPR_COMPCALL:
1952 case EXPR_PPC:
1953 break;
1954 }
1955
1956 return true;
1957 }
1958
1959
1960 /* Returns the type of an expression with the exception that iterator
1961 variables are automatically integers no matter what else they may
1962 be declared as. */
1963
1964 static bt
1965 et0 (gfc_expr *e)
1966 {
1967 if (e->expr_type == EXPR_VARIABLE && gfc_check_iter_variable (e))
1968 return BT_INTEGER;
1969
1970 return e->ts.type;
1971 }
1972
1973
1974 /* Scalarize an expression for an elemental intrinsic call. */
1975
1976 static bool
1977 scalarize_intrinsic_call (gfc_expr *e)
1978 {
1979 gfc_actual_arglist *a, *b;
1980 gfc_constructor_base ctor;
1981 gfc_constructor *args[5] = {}; /* Avoid uninitialized warnings. */
1982 gfc_constructor *ci, *new_ctor;
1983 gfc_expr *expr, *old;
1984 int n, i, rank[5], array_arg;
1985
1986 /* Find which, if any, arguments are arrays. Assume that the old
1987 expression carries the type information and that the first arg
1988 that is an array expression carries all the shape information.*/
1989 n = array_arg = 0;
1990 a = e->value.function.actual;
1991 for (; a; a = a->next)
1992 {
1993 n++;
1994 if (!a->expr || a->expr->expr_type != EXPR_ARRAY)
1995 continue;
1996 array_arg = n;
1997 expr = gfc_copy_expr (a->expr);
1998 break;
1999 }
2000
2001 if (!array_arg)
2002 return false;
2003
2004 old = gfc_copy_expr (e);
2005
2006 gfc_constructor_free (expr->value.constructor);
2007 expr->value.constructor = NULL;
2008 expr->ts = old->ts;
2009 expr->where = old->where;
2010 expr->expr_type = EXPR_ARRAY;
2011
2012 /* Copy the array argument constructors into an array, with nulls
2013 for the scalars. */
2014 n = 0;
2015 a = old->value.function.actual;
2016 for (; a; a = a->next)
2017 {
2018 /* Check that this is OK for an initialization expression. */
2019 if (a->expr && !gfc_check_init_expr (a->expr))
2020 goto cleanup;
2021
2022 rank[n] = 0;
2023 if (a->expr && a->expr->rank && a->expr->expr_type == EXPR_VARIABLE)
2024 {
2025 rank[n] = a->expr->rank;
2026 ctor = a->expr->symtree->n.sym->value->value.constructor;
2027 args[n] = gfc_constructor_first (ctor);
2028 }
2029 else if (a->expr && a->expr->expr_type == EXPR_ARRAY)
2030 {
2031 if (a->expr->rank)
2032 rank[n] = a->expr->rank;
2033 else
2034 rank[n] = 1;
2035 ctor = gfc_constructor_copy (a->expr->value.constructor);
2036 args[n] = gfc_constructor_first (ctor);
2037 }
2038 else
2039 args[n] = NULL;
2040
2041 n++;
2042 }
2043
2044
2045 /* Using the array argument as the master, step through the array
2046 calling the function for each element and advancing the array
2047 constructors together. */
2048 for (ci = args[array_arg - 1]; ci; ci = gfc_constructor_next (ci))
2049 {
2050 new_ctor = gfc_constructor_append_expr (&expr->value.constructor,
2051 gfc_copy_expr (old), NULL);
2052
2053 gfc_free_actual_arglist (new_ctor->expr->value.function.actual);
2054 a = NULL;
2055 b = old->value.function.actual;
2056 for (i = 0; i < n; i++)
2057 {
2058 if (a == NULL)
2059 new_ctor->expr->value.function.actual
2060 = a = gfc_get_actual_arglist ();
2061 else
2062 {
2063 a->next = gfc_get_actual_arglist ();
2064 a = a->next;
2065 }
2066
2067 if (args[i])
2068 a->expr = gfc_copy_expr (args[i]->expr);
2069 else
2070 a->expr = gfc_copy_expr (b->expr);
2071
2072 b = b->next;
2073 }
2074
2075 /* Simplify the function calls. If the simplification fails, the
2076 error will be flagged up down-stream or the library will deal
2077 with it. */
2078 gfc_simplify_expr (new_ctor->expr, 0);
2079
2080 for (i = 0; i < n; i++)
2081 if (args[i])
2082 args[i] = gfc_constructor_next (args[i]);
2083
2084 for (i = 1; i < n; i++)
2085 if (rank[i] && ((args[i] != NULL && args[array_arg - 1] == NULL)
2086 || (args[i] == NULL && args[array_arg - 1] != NULL)))
2087 goto compliance;
2088 }
2089
2090 free_expr0 (e);
2091 *e = *expr;
2092 /* Free "expr" but not the pointers it contains. */
2093 free (expr);
2094 gfc_free_expr (old);
2095 return true;
2096
2097 compliance:
2098 gfc_error_now ("elemental function arguments at %C are not compliant");
2099
2100 cleanup:
2101 gfc_free_expr (expr);
2102 gfc_free_expr (old);
2103 return false;
2104 }
2105
2106
2107 static bool
2108 check_intrinsic_op (gfc_expr *e, bool (*check_function) (gfc_expr *))
2109 {
2110 gfc_expr *op1 = e->value.op.op1;
2111 gfc_expr *op2 = e->value.op.op2;
2112
2113 if (!(*check_function)(op1))
2114 return false;
2115
2116 switch (e->value.op.op)
2117 {
2118 case INTRINSIC_UPLUS:
2119 case INTRINSIC_UMINUS:
2120 if (!numeric_type (et0 (op1)))
2121 goto not_numeric;
2122 break;
2123
2124 case INTRINSIC_EQ:
2125 case INTRINSIC_EQ_OS:
2126 case INTRINSIC_NE:
2127 case INTRINSIC_NE_OS:
2128 case INTRINSIC_GT:
2129 case INTRINSIC_GT_OS:
2130 case INTRINSIC_GE:
2131 case INTRINSIC_GE_OS:
2132 case INTRINSIC_LT:
2133 case INTRINSIC_LT_OS:
2134 case INTRINSIC_LE:
2135 case INTRINSIC_LE_OS:
2136 if (!(*check_function)(op2))
2137 return false;
2138
2139 if (!(et0 (op1) == BT_CHARACTER && et0 (op2) == BT_CHARACTER)
2140 && !(numeric_type (et0 (op1)) && numeric_type (et0 (op2))))
2141 {
2142 gfc_error ("Numeric or CHARACTER operands are required in "
2143 "expression at %L", &e->where);
2144 return false;
2145 }
2146 break;
2147
2148 case INTRINSIC_PLUS:
2149 case INTRINSIC_MINUS:
2150 case INTRINSIC_TIMES:
2151 case INTRINSIC_DIVIDE:
2152 case INTRINSIC_POWER:
2153 if (!(*check_function)(op2))
2154 return false;
2155
2156 if (!numeric_type (et0 (op1)) || !numeric_type (et0 (op2)))
2157 goto not_numeric;
2158
2159 break;
2160
2161 case INTRINSIC_CONCAT:
2162 if (!(*check_function)(op2))
2163 return false;
2164
2165 if (et0 (op1) != BT_CHARACTER || et0 (op2) != BT_CHARACTER)
2166 {
2167 gfc_error ("Concatenation operator in expression at %L "
2168 "must have two CHARACTER operands", &op1->where);
2169 return false;
2170 }
2171
2172 if (op1->ts.kind != op2->ts.kind)
2173 {
2174 gfc_error ("Concat operator at %L must concatenate strings of the "
2175 "same kind", &e->where);
2176 return false;
2177 }
2178
2179 break;
2180
2181 case INTRINSIC_NOT:
2182 if (et0 (op1) != BT_LOGICAL)
2183 {
2184 gfc_error (".NOT. operator in expression at %L must have a LOGICAL "
2185 "operand", &op1->where);
2186 return false;
2187 }
2188
2189 break;
2190
2191 case INTRINSIC_AND:
2192 case INTRINSIC_OR:
2193 case INTRINSIC_EQV:
2194 case INTRINSIC_NEQV:
2195 if (!(*check_function)(op2))
2196 return false;
2197
2198 if (et0 (op1) != BT_LOGICAL || et0 (op2) != BT_LOGICAL)
2199 {
2200 gfc_error ("LOGICAL operands are required in expression at %L",
2201 &e->where);
2202 return false;
2203 }
2204
2205 break;
2206
2207 case INTRINSIC_PARENTHESES:
2208 break;
2209
2210 default:
2211 gfc_error ("Only intrinsic operators can be used in expression at %L",
2212 &e->where);
2213 return false;
2214 }
2215
2216 return true;
2217
2218 not_numeric:
2219 gfc_error ("Numeric operands are required in expression at %L", &e->where);
2220
2221 return false;
2222 }
2223
2224 /* F2003, 7.1.7 (3): In init expression, allocatable components
2225 must not be data-initialized. */
2226 static bool
2227 check_alloc_comp_init (gfc_expr *e)
2228 {
2229 gfc_component *comp;
2230 gfc_constructor *ctor;
2231
2232 gcc_assert (e->expr_type == EXPR_STRUCTURE);
2233 gcc_assert (e->ts.type == BT_DERIVED || e->ts.type == BT_CLASS);
2234
2235 for (comp = e->ts.u.derived->components,
2236 ctor = gfc_constructor_first (e->value.constructor);
2237 comp; comp = comp->next, ctor = gfc_constructor_next (ctor))
2238 {
2239 if (comp->attr.allocatable && ctor->expr
2240 && ctor->expr->expr_type != EXPR_NULL)
2241 {
2242 gfc_error ("Invalid initialization expression for ALLOCATABLE "
2243 "component %qs in structure constructor at %L",
2244 comp->name, &ctor->expr->where);
2245 return false;
2246 }
2247 }
2248
2249 return true;
2250 }
2251
2252 static match
2253 check_init_expr_arguments (gfc_expr *e)
2254 {
2255 gfc_actual_arglist *ap;
2256
2257 for (ap = e->value.function.actual; ap; ap = ap->next)
2258 if (!gfc_check_init_expr (ap->expr))
2259 return MATCH_ERROR;
2260
2261 return MATCH_YES;
2262 }
2263
2264 static bool check_restricted (gfc_expr *);
2265
2266 /* F95, 7.1.6.1, Initialization expressions, (7)
2267 F2003, 7.1.7 Initialization expression, (8) */
2268
2269 static match
2270 check_inquiry (gfc_expr *e, int not_restricted)
2271 {
2272 const char *name;
2273 const char *const *functions;
2274
2275 static const char *const inquiry_func_f95[] = {
2276 "lbound", "shape", "size", "ubound",
2277 "bit_size", "len", "kind",
2278 "digits", "epsilon", "huge", "maxexponent", "minexponent",
2279 "precision", "radix", "range", "tiny",
2280 NULL
2281 };
2282
2283 static const char *const inquiry_func_f2003[] = {
2284 "lbound", "shape", "size", "ubound",
2285 "bit_size", "len", "kind",
2286 "digits", "epsilon", "huge", "maxexponent", "minexponent",
2287 "precision", "radix", "range", "tiny",
2288 "new_line", NULL
2289 };
2290
2291 int i = 0;
2292 gfc_actual_arglist *ap;
2293
2294 if (!e->value.function.isym
2295 || !e->value.function.isym->inquiry)
2296 return MATCH_NO;
2297
2298 /* An undeclared parameter will get us here (PR25018). */
2299 if (e->symtree == NULL)
2300 return MATCH_NO;
2301
2302 if (e->symtree->n.sym->from_intmod)
2303 {
2304 if (e->symtree->n.sym->from_intmod == INTMOD_ISO_FORTRAN_ENV
2305 && e->symtree->n.sym->intmod_sym_id != ISOFORTRAN_COMPILER_OPTIONS
2306 && e->symtree->n.sym->intmod_sym_id != ISOFORTRAN_COMPILER_VERSION)
2307 return MATCH_NO;
2308
2309 if (e->symtree->n.sym->from_intmod == INTMOD_ISO_C_BINDING
2310 && e->symtree->n.sym->intmod_sym_id != ISOCBINDING_C_SIZEOF)
2311 return MATCH_NO;
2312 }
2313 else
2314 {
2315 name = e->symtree->n.sym->name;
2316
2317 functions = (gfc_option.warn_std & GFC_STD_F2003)
2318 ? inquiry_func_f2003 : inquiry_func_f95;
2319
2320 for (i = 0; functions[i]; i++)
2321 if (strcmp (functions[i], name) == 0)
2322 break;
2323
2324 if (functions[i] == NULL)
2325 return MATCH_ERROR;
2326 }
2327
2328 /* At this point we have an inquiry function with a variable argument. The
2329 type of the variable might be undefined, but we need it now, because the
2330 arguments of these functions are not allowed to be undefined. */
2331
2332 for (ap = e->value.function.actual; ap; ap = ap->next)
2333 {
2334 if (!ap->expr)
2335 continue;
2336
2337 if (ap->expr->ts.type == BT_UNKNOWN)
2338 {
2339 if (ap->expr->symtree->n.sym->ts.type == BT_UNKNOWN
2340 && !gfc_set_default_type (ap->expr->symtree->n.sym, 0, gfc_current_ns))
2341 return MATCH_NO;
2342
2343 ap->expr->ts = ap->expr->symtree->n.sym->ts;
2344 }
2345
2346 /* Assumed character length will not reduce to a constant expression
2347 with LEN, as required by the standard. */
2348 if (i == 5 && not_restricted
2349 && ap->expr->symtree->n.sym->ts.type == BT_CHARACTER
2350 && (ap->expr->symtree->n.sym->ts.u.cl->length == NULL
2351 || ap->expr->symtree->n.sym->ts.deferred))
2352 {
2353 gfc_error ("Assumed or deferred character length variable %qs "
2354 "in constant expression at %L",
2355 ap->expr->symtree->n.sym->name,
2356 &ap->expr->where);
2357 return MATCH_ERROR;
2358 }
2359 else if (not_restricted && !gfc_check_init_expr (ap->expr))
2360 return MATCH_ERROR;
2361
2362 if (not_restricted == 0
2363 && ap->expr->expr_type != EXPR_VARIABLE
2364 && !check_restricted (ap->expr))
2365 return MATCH_ERROR;
2366
2367 if (not_restricted == 0
2368 && ap->expr->expr_type == EXPR_VARIABLE
2369 && ap->expr->symtree->n.sym->attr.dummy
2370 && ap->expr->symtree->n.sym->attr.optional)
2371 return MATCH_NO;
2372 }
2373
2374 return MATCH_YES;
2375 }
2376
2377
2378 /* F95, 7.1.6.1, Initialization expressions, (5)
2379 F2003, 7.1.7 Initialization expression, (5) */
2380
2381 static match
2382 check_transformational (gfc_expr *e)
2383 {
2384 static const char * const trans_func_f95[] = {
2385 "repeat", "reshape", "selected_int_kind",
2386 "selected_real_kind", "transfer", "trim", NULL
2387 };
2388
2389 static const char * const trans_func_f2003[] = {
2390 "all", "any", "count", "dot_product", "matmul", "null", "pack",
2391 "product", "repeat", "reshape", "selected_char_kind", "selected_int_kind",
2392 "selected_real_kind", "spread", "sum", "transfer", "transpose",
2393 "trim", "unpack", NULL
2394 };
2395
2396 int i;
2397 const char *name;
2398 const char *const *functions;
2399
2400 if (!e->value.function.isym
2401 || !e->value.function.isym->transformational)
2402 return MATCH_NO;
2403
2404 name = e->symtree->n.sym->name;
2405
2406 functions = (gfc_option.allow_std & GFC_STD_F2003)
2407 ? trans_func_f2003 : trans_func_f95;
2408
2409 /* NULL() is dealt with below. */
2410 if (strcmp ("null", name) == 0)
2411 return MATCH_NO;
2412
2413 for (i = 0; functions[i]; i++)
2414 if (strcmp (functions[i], name) == 0)
2415 break;
2416
2417 if (functions[i] == NULL)
2418 {
2419 gfc_error ("transformational intrinsic %qs at %L is not permitted "
2420 "in an initialization expression", name, &e->where);
2421 return MATCH_ERROR;
2422 }
2423
2424 return check_init_expr_arguments (e);
2425 }
2426
2427
2428 /* F95, 7.1.6.1, Initialization expressions, (6)
2429 F2003, 7.1.7 Initialization expression, (6) */
2430
2431 static match
2432 check_null (gfc_expr *e)
2433 {
2434 if (strcmp ("null", e->symtree->n.sym->name) != 0)
2435 return MATCH_NO;
2436
2437 return check_init_expr_arguments (e);
2438 }
2439
2440
2441 static match
2442 check_elemental (gfc_expr *e)
2443 {
2444 if (!e->value.function.isym
2445 || !e->value.function.isym->elemental)
2446 return MATCH_NO;
2447
2448 if (e->ts.type != BT_INTEGER
2449 && e->ts.type != BT_CHARACTER
2450 && !gfc_notify_std (GFC_STD_F2003, "Evaluation of nonstandard "
2451 "initialization expression at %L", &e->where))
2452 return MATCH_ERROR;
2453
2454 return check_init_expr_arguments (e);
2455 }
2456
2457
2458 static match
2459 check_conversion (gfc_expr *e)
2460 {
2461 if (!e->value.function.isym
2462 || !e->value.function.isym->conversion)
2463 return MATCH_NO;
2464
2465 return check_init_expr_arguments (e);
2466 }
2467
2468
2469 /* Verify that an expression is an initialization expression. A side
2470 effect is that the expression tree is reduced to a single constant
2471 node if all goes well. This would normally happen when the
2472 expression is constructed but function references are assumed to be
2473 intrinsics in the context of initialization expressions. If
2474 false is returned an error message has been generated. */
2475
2476 bool
2477 gfc_check_init_expr (gfc_expr *e)
2478 {
2479 match m;
2480 bool t;
2481
2482 if (e == NULL)
2483 return true;
2484
2485 switch (e->expr_type)
2486 {
2487 case EXPR_OP:
2488 t = check_intrinsic_op (e, gfc_check_init_expr);
2489 if (t)
2490 t = gfc_simplify_expr (e, 0);
2491
2492 break;
2493
2494 case EXPR_FUNCTION:
2495 t = false;
2496
2497 {
2498 bool conversion;
2499 gfc_intrinsic_sym* isym = NULL;
2500 gfc_symbol* sym = e->symtree->n.sym;
2501
2502 /* Simplify here the intrinsics from the IEEE_ARITHMETIC and
2503 IEEE_EXCEPTIONS modules. */
2504 int mod = sym->from_intmod;
2505 if (mod == INTMOD_NONE && sym->generic)
2506 mod = sym->generic->sym->from_intmod;
2507 if (mod == INTMOD_IEEE_ARITHMETIC || mod == INTMOD_IEEE_EXCEPTIONS)
2508 {
2509 gfc_expr *new_expr = gfc_simplify_ieee_functions (e);
2510 if (new_expr)
2511 {
2512 gfc_replace_expr (e, new_expr);
2513 t = true;
2514 break;
2515 }
2516 }
2517
2518 /* If a conversion function, e.g., __convert_i8_i4, was inserted
2519 into an array constructor, we need to skip the error check here.
2520 Conversion errors are caught below in scalarize_intrinsic_call. */
2521 conversion = e->value.function.isym
2522 && (e->value.function.isym->conversion == 1);
2523
2524 if (!conversion && (!gfc_is_intrinsic (sym, 0, e->where)
2525 || (m = gfc_intrinsic_func_interface (e, 0)) != MATCH_YES))
2526 {
2527 gfc_error ("Function %qs in initialization expression at %L "
2528 "must be an intrinsic function",
2529 e->symtree->n.sym->name, &e->where);
2530 break;
2531 }
2532
2533 if ((m = check_conversion (e)) == MATCH_NO
2534 && (m = check_inquiry (e, 1)) == MATCH_NO
2535 && (m = check_null (e)) == MATCH_NO
2536 && (m = check_transformational (e)) == MATCH_NO
2537 && (m = check_elemental (e)) == MATCH_NO)
2538 {
2539 gfc_error ("Intrinsic function %qs at %L is not permitted "
2540 "in an initialization expression",
2541 e->symtree->n.sym->name, &e->where);
2542 m = MATCH_ERROR;
2543 }
2544
2545 if (m == MATCH_ERROR)
2546 return false;
2547
2548 /* Try to scalarize an elemental intrinsic function that has an
2549 array argument. */
2550 isym = gfc_find_function (e->symtree->n.sym->name);
2551 if (isym && isym->elemental
2552 && (t = scalarize_intrinsic_call (e)))
2553 break;
2554 }
2555
2556 if (m == MATCH_YES)
2557 t = gfc_simplify_expr (e, 0);
2558
2559 break;
2560
2561 case EXPR_VARIABLE:
2562 t = true;
2563
2564 /* This occurs when parsing pdt templates. */
2565 if (gfc_expr_attr (e).pdt_kind)
2566 break;
2567
2568 if (gfc_check_iter_variable (e))
2569 break;
2570
2571 if (e->symtree->n.sym->attr.flavor == FL_PARAMETER)
2572 {
2573 /* A PARAMETER shall not be used to define itself, i.e.
2574 REAL, PARAMETER :: x = transfer(0, x)
2575 is invalid. */
2576 if (!e->symtree->n.sym->value)
2577 {
2578 gfc_error ("PARAMETER %qs is used at %L before its definition "
2579 "is complete", e->symtree->n.sym->name, &e->where);
2580 t = false;
2581 }
2582 else
2583 t = simplify_parameter_variable (e, 0);
2584
2585 break;
2586 }
2587
2588 if (gfc_in_match_data ())
2589 break;
2590
2591 t = false;
2592
2593 if (e->symtree->n.sym->as)
2594 {
2595 switch (e->symtree->n.sym->as->type)
2596 {
2597 case AS_ASSUMED_SIZE:
2598 gfc_error ("Assumed size array %qs at %L is not permitted "
2599 "in an initialization expression",
2600 e->symtree->n.sym->name, &e->where);
2601 break;
2602
2603 case AS_ASSUMED_SHAPE:
2604 gfc_error ("Assumed shape array %qs at %L is not permitted "
2605 "in an initialization expression",
2606 e->symtree->n.sym->name, &e->where);
2607 break;
2608
2609 case AS_DEFERRED:
2610 gfc_error ("Deferred array %qs at %L is not permitted "
2611 "in an initialization expression",
2612 e->symtree->n.sym->name, &e->where);
2613 break;
2614
2615 case AS_EXPLICIT:
2616 gfc_error ("Array %qs at %L is a variable, which does "
2617 "not reduce to a constant expression",
2618 e->symtree->n.sym->name, &e->where);
2619 break;
2620
2621 default:
2622 gcc_unreachable();
2623 }
2624 }
2625 else
2626 gfc_error ("Parameter %qs at %L has not been declared or is "
2627 "a variable, which does not reduce to a constant "
2628 "expression", e->symtree->name, &e->where);
2629
2630 break;
2631
2632 case EXPR_CONSTANT:
2633 case EXPR_NULL:
2634 t = true;
2635 break;
2636
2637 case EXPR_SUBSTRING:
2638 if (e->ref)
2639 {
2640 t = gfc_check_init_expr (e->ref->u.ss.start);
2641 if (!t)
2642 break;
2643
2644 t = gfc_check_init_expr (e->ref->u.ss.end);
2645 if (t)
2646 t = gfc_simplify_expr (e, 0);
2647 }
2648 else
2649 t = false;
2650 break;
2651
2652 case EXPR_STRUCTURE:
2653 t = e->ts.is_iso_c ? true : false;
2654 if (t)
2655 break;
2656
2657 t = check_alloc_comp_init (e);
2658 if (!t)
2659 break;
2660
2661 t = gfc_check_constructor (e, gfc_check_init_expr);
2662 if (!t)
2663 break;
2664
2665 break;
2666
2667 case EXPR_ARRAY:
2668 t = gfc_check_constructor (e, gfc_check_init_expr);
2669 if (!t)
2670 break;
2671
2672 t = gfc_expand_constructor (e, true);
2673 if (!t)
2674 break;
2675
2676 t = gfc_check_constructor_type (e);
2677 break;
2678
2679 default:
2680 gfc_internal_error ("check_init_expr(): Unknown expression type");
2681 }
2682
2683 return t;
2684 }
2685
2686 /* Reduces a general expression to an initialization expression (a constant).
2687 This used to be part of gfc_match_init_expr.
2688 Note that this function doesn't free the given expression on false. */
2689
2690 bool
2691 gfc_reduce_init_expr (gfc_expr *expr)
2692 {
2693 bool t;
2694
2695 gfc_init_expr_flag = true;
2696 t = gfc_resolve_expr (expr);
2697 if (t)
2698 t = gfc_check_init_expr (expr);
2699 gfc_init_expr_flag = false;
2700
2701 if (!t)
2702 return false;
2703
2704 if (expr->expr_type == EXPR_ARRAY)
2705 {
2706 if (!gfc_check_constructor_type (expr))
2707 return false;
2708 if (!gfc_expand_constructor (expr, true))
2709 return false;
2710 }
2711
2712 return true;
2713 }
2714
2715
2716 /* Match an initialization expression. We work by first matching an
2717 expression, then reducing it to a constant. */
2718
2719 match
2720 gfc_match_init_expr (gfc_expr **result)
2721 {
2722 gfc_expr *expr;
2723 match m;
2724 bool t;
2725
2726 expr = NULL;
2727
2728 gfc_init_expr_flag = true;
2729
2730 m = gfc_match_expr (&expr);
2731 if (m != MATCH_YES)
2732 {
2733 gfc_init_expr_flag = false;
2734 return m;
2735 }
2736
2737 if (gfc_derived_parameter_expr (expr))
2738 {
2739 *result = expr;
2740 gfc_init_expr_flag = false;
2741 return m;
2742 }
2743
2744 t = gfc_reduce_init_expr (expr);
2745 if (!t)
2746 {
2747 gfc_free_expr (expr);
2748 gfc_init_expr_flag = false;
2749 return MATCH_ERROR;
2750 }
2751
2752 *result = expr;
2753 gfc_init_expr_flag = false;
2754
2755 return MATCH_YES;
2756 }
2757
2758
2759 /* Given an actual argument list, test to see that each argument is a
2760 restricted expression and optionally if the expression type is
2761 integer or character. */
2762
2763 static bool
2764 restricted_args (gfc_actual_arglist *a)
2765 {
2766 for (; a; a = a->next)
2767 {
2768 if (!check_restricted (a->expr))
2769 return false;
2770 }
2771
2772 return true;
2773 }
2774
2775
2776 /************* Restricted/specification expressions *************/
2777
2778
2779 /* Make sure a non-intrinsic function is a specification function,
2780 * see F08:7.1.11.5. */
2781
2782 static bool
2783 external_spec_function (gfc_expr *e)
2784 {
2785 gfc_symbol *f;
2786
2787 f = e->value.function.esym;
2788
2789 /* IEEE functions allowed are "a reference to a transformational function
2790 from the intrinsic module IEEE_ARITHMETIC or IEEE_EXCEPTIONS", and
2791 "inquiry function from the intrinsic modules IEEE_ARITHMETIC and
2792 IEEE_EXCEPTIONS". */
2793 if (f->from_intmod == INTMOD_IEEE_ARITHMETIC
2794 || f->from_intmod == INTMOD_IEEE_EXCEPTIONS)
2795 {
2796 if (!strcmp (f->name, "ieee_selected_real_kind")
2797 || !strcmp (f->name, "ieee_support_rounding")
2798 || !strcmp (f->name, "ieee_support_flag")
2799 || !strcmp (f->name, "ieee_support_halting")
2800 || !strcmp (f->name, "ieee_support_datatype")
2801 || !strcmp (f->name, "ieee_support_denormal")
2802 || !strcmp (f->name, "ieee_support_divide")
2803 || !strcmp (f->name, "ieee_support_inf")
2804 || !strcmp (f->name, "ieee_support_io")
2805 || !strcmp (f->name, "ieee_support_nan")
2806 || !strcmp (f->name, "ieee_support_sqrt")
2807 || !strcmp (f->name, "ieee_support_standard")
2808 || !strcmp (f->name, "ieee_support_underflow_control"))
2809 goto function_allowed;
2810 }
2811
2812 if (f->attr.proc == PROC_ST_FUNCTION)
2813 {
2814 gfc_error ("Specification function %qs at %L cannot be a statement "
2815 "function", f->name, &e->where);
2816 return false;
2817 }
2818
2819 if (f->attr.proc == PROC_INTERNAL)
2820 {
2821 gfc_error ("Specification function %qs at %L cannot be an internal "
2822 "function", f->name, &e->where);
2823 return false;
2824 }
2825
2826 if (!f->attr.pure && !f->attr.elemental)
2827 {
2828 gfc_error ("Specification function %qs at %L must be PURE", f->name,
2829 &e->where);
2830 return false;
2831 }
2832
2833 /* F08:7.1.11.6. */
2834 if (f->attr.recursive
2835 && !gfc_notify_std (GFC_STD_F2003,
2836 "Specification function %qs "
2837 "at %L cannot be RECURSIVE", f->name, &e->where))
2838 return false;
2839
2840 function_allowed:
2841 return restricted_args (e->value.function.actual);
2842 }
2843
2844
2845 /* Check to see that a function reference to an intrinsic is a
2846 restricted expression. */
2847
2848 static bool
2849 restricted_intrinsic (gfc_expr *e)
2850 {
2851 /* TODO: Check constraints on inquiry functions. 7.1.6.2 (7). */
2852 if (check_inquiry (e, 0) == MATCH_YES)
2853 return true;
2854
2855 return restricted_args (e->value.function.actual);
2856 }
2857
2858
2859 /* Check the expressions of an actual arglist. Used by check_restricted. */
2860
2861 static bool
2862 check_arglist (gfc_actual_arglist* arg, bool (*checker) (gfc_expr*))
2863 {
2864 for (; arg; arg = arg->next)
2865 if (!checker (arg->expr))
2866 return false;
2867
2868 return true;
2869 }
2870
2871
2872 /* Check the subscription expressions of a reference chain with a checking
2873 function; used by check_restricted. */
2874
2875 static bool
2876 check_references (gfc_ref* ref, bool (*checker) (gfc_expr*))
2877 {
2878 int dim;
2879
2880 if (!ref)
2881 return true;
2882
2883 switch (ref->type)
2884 {
2885 case REF_ARRAY:
2886 for (dim = 0; dim != ref->u.ar.dimen; ++dim)
2887 {
2888 if (!checker (ref->u.ar.start[dim]))
2889 return false;
2890 if (!checker (ref->u.ar.end[dim]))
2891 return false;
2892 if (!checker (ref->u.ar.stride[dim]))
2893 return false;
2894 }
2895 break;
2896
2897 case REF_COMPONENT:
2898 /* Nothing needed, just proceed to next reference. */
2899 break;
2900
2901 case REF_SUBSTRING:
2902 if (!checker (ref->u.ss.start))
2903 return false;
2904 if (!checker (ref->u.ss.end))
2905 return false;
2906 break;
2907
2908 default:
2909 gcc_unreachable ();
2910 break;
2911 }
2912
2913 return check_references (ref->next, checker);
2914 }
2915
2916 /* Return true if ns is a parent of the current ns. */
2917
2918 static bool
2919 is_parent_of_current_ns (gfc_namespace *ns)
2920 {
2921 gfc_namespace *p;
2922 for (p = gfc_current_ns->parent; p; p = p->parent)
2923 if (ns == p)
2924 return true;
2925
2926 return false;
2927 }
2928
2929 /* Verify that an expression is a restricted expression. Like its
2930 cousin check_init_expr(), an error message is generated if we
2931 return false. */
2932
2933 static bool
2934 check_restricted (gfc_expr *e)
2935 {
2936 gfc_symbol* sym;
2937 bool t;
2938
2939 if (e == NULL)
2940 return true;
2941
2942 switch (e->expr_type)
2943 {
2944 case EXPR_OP:
2945 t = check_intrinsic_op (e, check_restricted);
2946 if (t)
2947 t = gfc_simplify_expr (e, 0);
2948
2949 break;
2950
2951 case EXPR_FUNCTION:
2952 if (e->value.function.esym)
2953 {
2954 t = check_arglist (e->value.function.actual, &check_restricted);
2955 if (t)
2956 t = external_spec_function (e);
2957 }
2958 else
2959 {
2960 if (e->value.function.isym && e->value.function.isym->inquiry)
2961 t = true;
2962 else
2963 t = check_arglist (e->value.function.actual, &check_restricted);
2964
2965 if (t)
2966 t = restricted_intrinsic (e);
2967 }
2968 break;
2969
2970 case EXPR_VARIABLE:
2971 sym = e->symtree->n.sym;
2972 t = false;
2973
2974 /* If a dummy argument appears in a context that is valid for a
2975 restricted expression in an elemental procedure, it will have
2976 already been simplified away once we get here. Therefore we
2977 don't need to jump through hoops to distinguish valid from
2978 invalid cases. */
2979 if (sym->attr.dummy && sym->ns == gfc_current_ns
2980 && sym->ns->proc_name && sym->ns->proc_name->attr.elemental)
2981 {
2982 gfc_error ("Dummy argument %qs not allowed in expression at %L",
2983 sym->name, &e->where);
2984 break;
2985 }
2986
2987 if (sym->attr.optional)
2988 {
2989 gfc_error ("Dummy argument %qs at %L cannot be OPTIONAL",
2990 sym->name, &e->where);
2991 break;
2992 }
2993
2994 if (sym->attr.intent == INTENT_OUT)
2995 {
2996 gfc_error ("Dummy argument %qs at %L cannot be INTENT(OUT)",
2997 sym->name, &e->where);
2998 break;
2999 }
3000
3001 /* Check reference chain if any. */
3002 if (!check_references (e->ref, &check_restricted))
3003 break;
3004
3005 /* gfc_is_formal_arg broadcasts that a formal argument list is being
3006 processed in resolve.c(resolve_formal_arglist). This is done so
3007 that host associated dummy array indices are accepted (PR23446).
3008 This mechanism also does the same for the specification expressions
3009 of array-valued functions. */
3010 if (e->error
3011 || sym->attr.in_common
3012 || sym->attr.use_assoc
3013 || sym->attr.dummy
3014 || sym->attr.implied_index
3015 || sym->attr.flavor == FL_PARAMETER
3016 || is_parent_of_current_ns (sym->ns)
3017 || (sym->ns->proc_name != NULL
3018 && sym->ns->proc_name->attr.flavor == FL_MODULE)
3019 || (gfc_is_formal_arg () && (sym->ns == gfc_current_ns)))
3020 {
3021 t = true;
3022 break;
3023 }
3024
3025 gfc_error ("Variable %qs cannot appear in the expression at %L",
3026 sym->name, &e->where);
3027 /* Prevent a repetition of the error. */
3028 e->error = 1;
3029 break;
3030
3031 case EXPR_NULL:
3032 case EXPR_CONSTANT:
3033 t = true;
3034 break;
3035
3036 case EXPR_SUBSTRING:
3037 t = gfc_specification_expr (e->ref->u.ss.start);
3038 if (!t)
3039 break;
3040
3041 t = gfc_specification_expr (e->ref->u.ss.end);
3042 if (t)
3043 t = gfc_simplify_expr (e, 0);
3044
3045 break;
3046
3047 case EXPR_STRUCTURE:
3048 t = gfc_check_constructor (e, check_restricted);
3049 break;
3050
3051 case EXPR_ARRAY:
3052 t = gfc_check_constructor (e, check_restricted);
3053 break;
3054
3055 default:
3056 gfc_internal_error ("check_restricted(): Unknown expression type");
3057 }
3058
3059 return t;
3060 }
3061
3062
3063 /* Check to see that an expression is a specification expression. If
3064 we return false, an error has been generated. */
3065
3066 bool
3067 gfc_specification_expr (gfc_expr *e)
3068 {
3069 gfc_component *comp;
3070
3071 if (e == NULL)
3072 return true;
3073
3074 if (e->ts.type != BT_INTEGER)
3075 {
3076 gfc_error ("Expression at %L must be of INTEGER type, found %s",
3077 &e->where, gfc_basic_typename (e->ts.type));
3078 return false;
3079 }
3080
3081 comp = gfc_get_proc_ptr_comp (e);
3082 if (e->expr_type == EXPR_FUNCTION
3083 && !e->value.function.isym
3084 && !e->value.function.esym
3085 && !gfc_pure (e->symtree->n.sym)
3086 && (!comp || !comp->attr.pure))
3087 {
3088 gfc_error ("Function %qs at %L must be PURE",
3089 e->symtree->n.sym->name, &e->where);
3090 /* Prevent repeat error messages. */
3091 e->symtree->n.sym->attr.pure = 1;
3092 return false;
3093 }
3094
3095 if (e->rank != 0)
3096 {
3097 gfc_error ("Expression at %L must be scalar", &e->where);
3098 return false;
3099 }
3100
3101 if (!gfc_simplify_expr (e, 0))
3102 return false;
3103
3104 return check_restricted (e);
3105 }
3106
3107
3108 /************** Expression conformance checks. *************/
3109
3110 /* Given two expressions, make sure that the arrays are conformable. */
3111
3112 bool
3113 gfc_check_conformance (gfc_expr *op1, gfc_expr *op2, const char *optype_msgid, ...)
3114 {
3115 int op1_flag, op2_flag, d;
3116 mpz_t op1_size, op2_size;
3117 bool t;
3118
3119 va_list argp;
3120 char buffer[240];
3121
3122 if (op1->rank == 0 || op2->rank == 0)
3123 return true;
3124
3125 va_start (argp, optype_msgid);
3126 vsnprintf (buffer, 240, optype_msgid, argp);
3127 va_end (argp);
3128
3129 if (op1->rank != op2->rank)
3130 {
3131 gfc_error ("Incompatible ranks in %s (%d and %d) at %L", _(buffer),
3132 op1->rank, op2->rank, &op1->where);
3133 return false;
3134 }
3135
3136 t = true;
3137
3138 for (d = 0; d < op1->rank; d++)
3139 {
3140 op1_flag = gfc_array_dimen_size(op1, d, &op1_size);
3141 op2_flag = gfc_array_dimen_size(op2, d, &op2_size);
3142
3143 if (op1_flag && op2_flag && mpz_cmp (op1_size, op2_size) != 0)
3144 {
3145 gfc_error ("Different shape for %s at %L on dimension %d "
3146 "(%d and %d)", _(buffer), &op1->where, d + 1,
3147 (int) mpz_get_si (op1_size),
3148 (int) mpz_get_si (op2_size));
3149
3150 t = false;
3151 }
3152
3153 if (op1_flag)
3154 mpz_clear (op1_size);
3155 if (op2_flag)
3156 mpz_clear (op2_size);
3157
3158 if (!t)
3159 return false;
3160 }
3161
3162 return true;
3163 }
3164
3165
3166 /* Given an assignable expression and an arbitrary expression, make
3167 sure that the assignment can take place. Only add a call to the intrinsic
3168 conversion routines, when allow_convert is set. When this assign is a
3169 coarray call, then the convert is done by the coarray routine implictly and
3170 adding the intrinsic conversion would do harm in most cases. */
3171
3172 bool
3173 gfc_check_assign (gfc_expr *lvalue, gfc_expr *rvalue, int conform,
3174 bool allow_convert)
3175 {
3176 gfc_symbol *sym;
3177 gfc_ref *ref;
3178 int has_pointer;
3179
3180 sym = lvalue->symtree->n.sym;
3181
3182 /* See if this is the component or subcomponent of a pointer. */
3183 has_pointer = sym->attr.pointer;
3184 for (ref = lvalue->ref; ref; ref = ref->next)
3185 if (ref->type == REF_COMPONENT && ref->u.c.component->attr.pointer)
3186 {
3187 has_pointer = 1;
3188 break;
3189 }
3190
3191 /* 12.5.2.2, Note 12.26: The result variable is very similar to any other
3192 variable local to a function subprogram. Its existence begins when
3193 execution of the function is initiated and ends when execution of the
3194 function is terminated...
3195 Therefore, the left hand side is no longer a variable, when it is: */
3196 if (sym->attr.flavor == FL_PROCEDURE && sym->attr.proc != PROC_ST_FUNCTION
3197 && !sym->attr.external)
3198 {
3199 bool bad_proc;
3200 bad_proc = false;
3201
3202 /* (i) Use associated; */
3203 if (sym->attr.use_assoc)
3204 bad_proc = true;
3205
3206 /* (ii) The assignment is in the main program; or */
3207 if (gfc_current_ns->proc_name
3208 && gfc_current_ns->proc_name->attr.is_main_program)
3209 bad_proc = true;
3210
3211 /* (iii) A module or internal procedure... */
3212 if (gfc_current_ns->proc_name
3213 && (gfc_current_ns->proc_name->attr.proc == PROC_INTERNAL
3214 || gfc_current_ns->proc_name->attr.proc == PROC_MODULE)
3215 && gfc_current_ns->parent
3216 && (!(gfc_current_ns->parent->proc_name->attr.function
3217 || gfc_current_ns->parent->proc_name->attr.subroutine)
3218 || gfc_current_ns->parent->proc_name->attr.is_main_program))
3219 {
3220 /* ... that is not a function... */
3221 if (gfc_current_ns->proc_name
3222 && !gfc_current_ns->proc_name->attr.function)
3223 bad_proc = true;
3224
3225 /* ... or is not an entry and has a different name. */
3226 if (!sym->attr.entry && sym->name != gfc_current_ns->proc_name->name)
3227 bad_proc = true;
3228 }
3229
3230 /* (iv) Host associated and not the function symbol or the
3231 parent result. This picks up sibling references, which
3232 cannot be entries. */
3233 if (!sym->attr.entry
3234 && sym->ns == gfc_current_ns->parent
3235 && sym != gfc_current_ns->proc_name
3236 && sym != gfc_current_ns->parent->proc_name->result)
3237 bad_proc = true;
3238
3239 if (bad_proc)
3240 {
3241 gfc_error ("%qs at %L is not a VALUE", sym->name, &lvalue->where);
3242 return false;
3243 }
3244 }
3245
3246 if (rvalue->rank != 0 && lvalue->rank != rvalue->rank)
3247 {
3248 gfc_error ("Incompatible ranks %d and %d in assignment at %L",
3249 lvalue->rank, rvalue->rank, &lvalue->where);
3250 return false;
3251 }
3252
3253 if (lvalue->ts.type == BT_UNKNOWN)
3254 {
3255 gfc_error ("Variable type is UNKNOWN in assignment at %L",
3256 &lvalue->where);
3257 return false;
3258 }
3259
3260 if (rvalue->expr_type == EXPR_NULL)
3261 {
3262 if (has_pointer && (ref == NULL || ref->next == NULL)
3263 && lvalue->symtree->n.sym->attr.data)
3264 return true;
3265 else
3266 {
3267 gfc_error ("NULL appears on right-hand side in assignment at %L",
3268 &rvalue->where);
3269 return false;
3270 }
3271 }
3272
3273 /* This is possibly a typo: x = f() instead of x => f(). */
3274 if (warn_surprising
3275 && rvalue->expr_type == EXPR_FUNCTION && gfc_expr_attr (rvalue).pointer)
3276 gfc_warning (OPT_Wsurprising,
3277 "POINTER-valued function appears on right-hand side of "
3278 "assignment at %L", &rvalue->where);
3279
3280 /* Check size of array assignments. */
3281 if (lvalue->rank != 0 && rvalue->rank != 0
3282 && !gfc_check_conformance (lvalue, rvalue, "array assignment"))
3283 return false;
3284
3285 if (rvalue->is_boz && lvalue->ts.type != BT_INTEGER
3286 && lvalue->symtree->n.sym->attr.data
3287 && !gfc_notify_std (GFC_STD_GNU, "BOZ literal at %L used to "
3288 "initialize non-integer variable %qs",
3289 &rvalue->where, lvalue->symtree->n.sym->name))
3290 return false;
3291 else if (rvalue->is_boz && !lvalue->symtree->n.sym->attr.data
3292 && !gfc_notify_std (GFC_STD_GNU, "BOZ literal at %L outside "
3293 "a DATA statement and outside INT/REAL/DBLE/CMPLX",
3294 &rvalue->where))
3295 return false;
3296
3297 /* Handle the case of a BOZ literal on the RHS. */
3298 if (rvalue->is_boz && lvalue->ts.type != BT_INTEGER)
3299 {
3300 int rc;
3301 if (warn_surprising)
3302 gfc_warning (OPT_Wsurprising,
3303 "BOZ literal at %L is bitwise transferred "
3304 "non-integer symbol %qs", &rvalue->where,
3305 lvalue->symtree->n.sym->name);
3306 if (!gfc_convert_boz (rvalue, &lvalue->ts))
3307 return false;
3308 if ((rc = gfc_range_check (rvalue)) != ARITH_OK)
3309 {
3310 if (rc == ARITH_UNDERFLOW)
3311 gfc_error ("Arithmetic underflow of bit-wise transferred BOZ at %L"
3312 ". This check can be disabled with the option "
3313 "%<-fno-range-check%>", &rvalue->where);
3314 else if (rc == ARITH_OVERFLOW)
3315 gfc_error ("Arithmetic overflow of bit-wise transferred BOZ at %L"
3316 ". This check can be disabled with the option "
3317 "%<-fno-range-check%>", &rvalue->where);
3318 else if (rc == ARITH_NAN)
3319 gfc_error ("Arithmetic NaN of bit-wise transferred BOZ at %L"
3320 ". This check can be disabled with the option "
3321 "%<-fno-range-check%>", &rvalue->where);
3322 return false;
3323 }
3324 }
3325
3326 if (gfc_expr_attr (lvalue).pdt_kind || gfc_expr_attr (lvalue).pdt_len)
3327 {
3328 gfc_error ("The assignment to a KIND or LEN component of a "
3329 "parameterized type at %L is not allowed",
3330 &lvalue->where);
3331 return false;
3332 }
3333
3334 if (gfc_compare_types (&lvalue->ts, &rvalue->ts))
3335 return true;
3336
3337 /* Only DATA Statements come here. */
3338 if (!conform)
3339 {
3340 /* Numeric can be converted to any other numeric. And Hollerith can be
3341 converted to any other type. */
3342 if ((gfc_numeric_ts (&lvalue->ts) && gfc_numeric_ts (&rvalue->ts))
3343 || rvalue->ts.type == BT_HOLLERITH)
3344 return true;
3345
3346 if (lvalue->ts.type == BT_LOGICAL && rvalue->ts.type == BT_LOGICAL)
3347 return true;
3348
3349 gfc_error ("Incompatible types in DATA statement at %L; attempted "
3350 "conversion of %s to %s", &lvalue->where,
3351 gfc_typename (&rvalue->ts), gfc_typename (&lvalue->ts));
3352
3353 return false;
3354 }
3355
3356 /* Assignment is the only case where character variables of different
3357 kind values can be converted into one another. */
3358 if (lvalue->ts.type == BT_CHARACTER && rvalue->ts.type == BT_CHARACTER)
3359 {
3360 if (lvalue->ts.kind != rvalue->ts.kind && allow_convert)
3361 return gfc_convert_chartype (rvalue, &lvalue->ts);
3362 else
3363 return true;
3364 }
3365
3366 if (!allow_convert)
3367 return true;
3368
3369 return gfc_convert_type (rvalue, &lvalue->ts, 1);
3370 }
3371
3372
3373 /* Check that a pointer assignment is OK. We first check lvalue, and
3374 we only check rvalue if it's not an assignment to NULL() or a
3375 NULLIFY statement. */
3376
3377 bool
3378 gfc_check_pointer_assign (gfc_expr *lvalue, gfc_expr *rvalue)
3379 {
3380 symbol_attribute attr, lhs_attr;
3381 gfc_ref *ref;
3382 bool is_pure, is_implicit_pure, rank_remap;
3383 int proc_pointer;
3384
3385 lhs_attr = gfc_expr_attr (lvalue);
3386 if (lvalue->ts.type == BT_UNKNOWN && !lhs_attr.proc_pointer)
3387 {
3388 gfc_error ("Pointer assignment target is not a POINTER at %L",
3389 &lvalue->where);
3390 return false;
3391 }
3392
3393 if (lhs_attr.flavor == FL_PROCEDURE && lhs_attr.use_assoc
3394 && !lhs_attr.proc_pointer)
3395 {
3396 gfc_error ("%qs in the pointer assignment at %L cannot be an "
3397 "l-value since it is a procedure",
3398 lvalue->symtree->n.sym->name, &lvalue->where);
3399 return false;
3400 }
3401
3402 proc_pointer = lvalue->symtree->n.sym->attr.proc_pointer;
3403
3404 rank_remap = false;
3405 for (ref = lvalue->ref; ref; ref = ref->next)
3406 {
3407 if (ref->type == REF_COMPONENT)
3408 proc_pointer = ref->u.c.component->attr.proc_pointer;
3409
3410 if (ref->type == REF_ARRAY && ref->next == NULL)
3411 {
3412 int dim;
3413
3414 if (ref->u.ar.type == AR_FULL)
3415 break;
3416
3417 if (ref->u.ar.type != AR_SECTION)
3418 {
3419 gfc_error ("Expected bounds specification for %qs at %L",
3420 lvalue->symtree->n.sym->name, &lvalue->where);
3421 return false;
3422 }
3423
3424 if (!gfc_notify_std (GFC_STD_F2003, "Bounds specification "
3425 "for %qs in pointer assignment at %L",
3426 lvalue->symtree->n.sym->name, &lvalue->where))
3427 return false;
3428
3429 /* When bounds are given, all lbounds are necessary and either all
3430 or none of the upper bounds; no strides are allowed. If the
3431 upper bounds are present, we may do rank remapping. */
3432 for (dim = 0; dim < ref->u.ar.dimen; ++dim)
3433 {
3434 if (!ref->u.ar.start[dim]
3435 || ref->u.ar.dimen_type[dim] != DIMEN_RANGE)
3436 {
3437 gfc_error ("Lower bound has to be present at %L",
3438 &lvalue->where);
3439 return false;
3440 }
3441 if (ref->u.ar.stride[dim])
3442 {
3443 gfc_error ("Stride must not be present at %L",
3444 &lvalue->where);
3445 return false;
3446 }
3447
3448 if (dim == 0)
3449 rank_remap = (ref->u.ar.end[dim] != NULL);
3450 else
3451 {
3452 if ((rank_remap && !ref->u.ar.end[dim])
3453 || (!rank_remap && ref->u.ar.end[dim]))
3454 {
3455 gfc_error ("Either all or none of the upper bounds"
3456 " must be specified at %L", &lvalue->where);
3457 return false;
3458 }
3459 }
3460 }
3461 }
3462 }
3463
3464 is_pure = gfc_pure (NULL);
3465 is_implicit_pure = gfc_implicit_pure (NULL);
3466
3467 /* If rvalue is a NULL() or NULLIFY, we're done. Otherwise the type,
3468 kind, etc for lvalue and rvalue must match, and rvalue must be a
3469 pure variable if we're in a pure function. */
3470 if (rvalue->expr_type == EXPR_NULL && rvalue->ts.type == BT_UNKNOWN)
3471 return true;
3472
3473 /* F2008, C723 (pointer) and C726 (proc-pointer); for PURE also C1283. */
3474 if (lvalue->expr_type == EXPR_VARIABLE
3475 && gfc_is_coindexed (lvalue))
3476 {
3477 gfc_ref *ref;
3478 for (ref = lvalue->ref; ref; ref = ref->next)
3479 if (ref->type == REF_ARRAY && ref->u.ar.codimen)
3480 {
3481 gfc_error ("Pointer object at %L shall not have a coindex",
3482 &lvalue->where);
3483 return false;
3484 }
3485 }
3486
3487 /* Checks on rvalue for procedure pointer assignments. */
3488 if (proc_pointer)
3489 {
3490 char err[200];
3491 gfc_symbol *s1,*s2;
3492 gfc_component *comp1, *comp2;
3493 const char *name;
3494
3495 attr = gfc_expr_attr (rvalue);
3496 if (!((rvalue->expr_type == EXPR_NULL)
3497 || (rvalue->expr_type == EXPR_FUNCTION && attr.proc_pointer)
3498 || (rvalue->expr_type == EXPR_VARIABLE && attr.proc_pointer)
3499 || (rvalue->expr_type == EXPR_VARIABLE
3500 && attr.flavor == FL_PROCEDURE)))
3501 {
3502 gfc_error ("Invalid procedure pointer assignment at %L",
3503 &rvalue->where);
3504 return false;
3505 }
3506 if (rvalue->expr_type == EXPR_VARIABLE && !attr.proc_pointer)
3507 {
3508 /* Check for intrinsics. */
3509 gfc_symbol *sym = rvalue->symtree->n.sym;
3510 if (!sym->attr.intrinsic
3511 && (gfc_is_intrinsic (sym, 0, sym->declared_at)
3512 || gfc_is_intrinsic (sym, 1, sym->declared_at)))
3513 {
3514 sym->attr.intrinsic = 1;
3515 gfc_resolve_intrinsic (sym, &rvalue->where);
3516 attr = gfc_expr_attr (rvalue);
3517 }
3518 /* Check for result of embracing function. */
3519 if (sym->attr.function && sym->result == sym)
3520 {
3521 gfc_namespace *ns;
3522
3523 for (ns = gfc_current_ns; ns; ns = ns->parent)
3524 if (sym == ns->proc_name)
3525 {
3526 gfc_error ("Function result %qs is invalid as proc-target "
3527 "in procedure pointer assignment at %L",
3528 sym->name, &rvalue->where);
3529 return false;
3530 }
3531 }
3532 }
3533 if (attr.abstract)
3534 {
3535 gfc_error ("Abstract interface %qs is invalid "
3536 "in procedure pointer assignment at %L",
3537 rvalue->symtree->name, &rvalue->where);
3538 return false;
3539 }
3540 /* Check for F08:C729. */
3541 if (attr.flavor == FL_PROCEDURE)
3542 {
3543 if (attr.proc == PROC_ST_FUNCTION)
3544 {
3545 gfc_error ("Statement function %qs is invalid "
3546 "in procedure pointer assignment at %L",
3547 rvalue->symtree->name, &rvalue->where);
3548 return false;
3549 }
3550 if (attr.proc == PROC_INTERNAL &&
3551 !gfc_notify_std(GFC_STD_F2008, "Internal procedure %qs "
3552 "is invalid in procedure pointer assignment "
3553 "at %L", rvalue->symtree->name, &rvalue->where))
3554 return false;
3555 if (attr.intrinsic && gfc_intrinsic_actual_ok (rvalue->symtree->name,
3556 attr.subroutine) == 0)
3557 {
3558 gfc_error ("Intrinsic %qs at %L is invalid in procedure pointer "
3559 "assignment", rvalue->symtree->name, &rvalue->where);
3560 return false;
3561 }
3562 }
3563 /* Check for F08:C730. */
3564 if (attr.elemental && !attr.intrinsic)
3565 {
3566 gfc_error ("Nonintrinsic elemental procedure %qs is invalid "
3567 "in procedure pointer assignment at %L",
3568 rvalue->symtree->name, &rvalue->where);
3569 return false;
3570 }
3571
3572 /* Ensure that the calling convention is the same. As other attributes
3573 such as DLLEXPORT may differ, one explicitly only tests for the
3574 calling conventions. */
3575 if (rvalue->expr_type == EXPR_VARIABLE
3576 && lvalue->symtree->n.sym->attr.ext_attr
3577 != rvalue->symtree->n.sym->attr.ext_attr)
3578 {
3579 symbol_attribute calls;
3580
3581 calls.ext_attr = 0;
3582 gfc_add_ext_attribute (&calls, EXT_ATTR_CDECL, NULL);
3583 gfc_add_ext_attribute (&calls, EXT_ATTR_STDCALL, NULL);
3584 gfc_add_ext_attribute (&calls, EXT_ATTR_FASTCALL, NULL);
3585
3586 if ((calls.ext_attr & lvalue->symtree->n.sym->attr.ext_attr)
3587 != (calls.ext_attr & rvalue->symtree->n.sym->attr.ext_attr))
3588 {
3589 gfc_error ("Mismatch in the procedure pointer assignment "
3590 "at %L: mismatch in the calling convention",
3591 &rvalue->where);
3592 return false;
3593 }
3594 }
3595
3596 comp1 = gfc_get_proc_ptr_comp (lvalue);
3597 if (comp1)
3598 s1 = comp1->ts.interface;
3599 else
3600 {
3601 s1 = lvalue->symtree->n.sym;
3602 if (s1->ts.interface)
3603 s1 = s1->ts.interface;
3604 }
3605
3606 comp2 = gfc_get_proc_ptr_comp (rvalue);
3607 if (comp2)
3608 {
3609 if (rvalue->expr_type == EXPR_FUNCTION)
3610 {
3611 s2 = comp2->ts.interface->result;
3612 name = s2->name;
3613 }
3614 else
3615 {
3616 s2 = comp2->ts.interface;
3617 name = comp2->name;
3618 }
3619 }
3620 else if (rvalue->expr_type == EXPR_FUNCTION)
3621 {
3622 if (rvalue->value.function.esym)
3623 s2 = rvalue->value.function.esym->result;
3624 else
3625 s2 = rvalue->symtree->n.sym->result;
3626
3627 name = s2->name;
3628 }
3629 else
3630 {
3631 s2 = rvalue->symtree->n.sym;
3632 name = s2->name;
3633 }
3634
3635 if (s2 && s2->attr.proc_pointer && s2->ts.interface)
3636 s2 = s2->ts.interface;
3637
3638 /* Special check for the case of absent interface on the lvalue.
3639 * All other interface checks are done below. */
3640 if (!s1 && comp1 && comp1->attr.subroutine && s2 && s2->attr.function)
3641 {
3642 gfc_error ("Interface mismatch in procedure pointer assignment "
3643 "at %L: %qs is not a subroutine", &rvalue->where, name);
3644 return false;
3645 }
3646
3647 /* F08:7.2.2.4 (4) */
3648 if (s2 && gfc_explicit_interface_required (s2, err, sizeof(err)))
3649 {
3650 if (comp1 && !s1)
3651 {
3652 gfc_error ("Explicit interface required for component %qs at %L: %s",
3653 comp1->name, &lvalue->where, err);
3654 return false;
3655 }
3656 else if (s1->attr.if_source == IFSRC_UNKNOWN)
3657 {
3658 gfc_error ("Explicit interface required for %qs at %L: %s",
3659 s1->name, &lvalue->where, err);
3660 return false;
3661 }
3662 }
3663 if (s1 && gfc_explicit_interface_required (s1, err, sizeof(err)))
3664 {
3665 if (comp2 && !s2)
3666 {
3667 gfc_error ("Explicit interface required for component %qs at %L: %s",
3668 comp2->name, &rvalue->where, err);
3669 return false;
3670 }
3671 else if (s2->attr.if_source == IFSRC_UNKNOWN)
3672 {
3673 gfc_error ("Explicit interface required for %qs at %L: %s",
3674 s2->name, &rvalue->where, err);
3675 return false;
3676 }
3677 }
3678
3679 if (s1 == s2 || !s1 || !s2)
3680 return true;
3681
3682 if (!gfc_compare_interfaces (s1, s2, name, 0, 1,
3683 err, sizeof(err), NULL, NULL))
3684 {
3685 gfc_error ("Interface mismatch in procedure pointer assignment "
3686 "at %L: %s", &rvalue->where, err);
3687 return false;
3688 }
3689
3690 /* Check F2008Cor2, C729. */
3691 if (!s2->attr.intrinsic && s2->attr.if_source == IFSRC_UNKNOWN
3692 && !s2->attr.external && !s2->attr.subroutine && !s2->attr.function)
3693 {
3694 gfc_error ("Procedure pointer target %qs at %L must be either an "
3695 "intrinsic, host or use associated, referenced or have "
3696 "the EXTERNAL attribute", s2->name, &rvalue->where);
3697 return false;
3698 }
3699
3700 return true;
3701 }
3702
3703 if (!gfc_compare_types (&lvalue->ts, &rvalue->ts))
3704 {
3705 /* Check for F03:C717. */
3706 if (UNLIMITED_POLY (rvalue)
3707 && !(UNLIMITED_POLY (lvalue)
3708 || (lvalue->ts.type == BT_DERIVED
3709 && (lvalue->ts.u.derived->attr.is_bind_c
3710 || lvalue->ts.u.derived->attr.sequence))))
3711 gfc_error ("Data-pointer-object at %L must be unlimited "
3712 "polymorphic, or of a type with the BIND or SEQUENCE "
3713 "attribute, to be compatible with an unlimited "
3714 "polymorphic target", &lvalue->where);
3715 else
3716 gfc_error ("Different types in pointer assignment at %L; "
3717 "attempted assignment of %s to %s", &lvalue->where,
3718 gfc_typename (&rvalue->ts),
3719 gfc_typename (&lvalue->ts));
3720 return false;
3721 }
3722
3723 if (lvalue->ts.type != BT_CLASS && lvalue->ts.kind != rvalue->ts.kind)
3724 {
3725 gfc_error ("Different kind type parameters in pointer "
3726 "assignment at %L", &lvalue->where);
3727 return false;
3728 }
3729
3730 if (lvalue->rank != rvalue->rank && !rank_remap)
3731 {
3732 gfc_error ("Different ranks in pointer assignment at %L", &lvalue->where);
3733 return false;
3734 }
3735
3736 /* Make sure the vtab is present. */
3737 if (lvalue->ts.type == BT_CLASS && !UNLIMITED_POLY (rvalue))
3738 gfc_find_vtab (&rvalue->ts);
3739
3740 /* Check rank remapping. */
3741 if (rank_remap)
3742 {
3743 mpz_t lsize, rsize;
3744
3745 /* If this can be determined, check that the target must be at least as
3746 large as the pointer assigned to it is. */
3747 if (gfc_array_size (lvalue, &lsize)
3748 && gfc_array_size (rvalue, &rsize)
3749 && mpz_cmp (rsize, lsize) < 0)
3750 {
3751 gfc_error ("Rank remapping target is smaller than size of the"
3752 " pointer (%ld < %ld) at %L",
3753 mpz_get_si (rsize), mpz_get_si (lsize),
3754 &lvalue->where);
3755 return false;
3756 }
3757
3758 /* The target must be either rank one or it must be simply contiguous
3759 and F2008 must be allowed. */
3760 if (rvalue->rank != 1)
3761 {
3762 if (!gfc_is_simply_contiguous (rvalue, true, false))
3763 {
3764 gfc_error ("Rank remapping target must be rank 1 or"
3765 " simply contiguous at %L", &rvalue->where);
3766 return false;
3767 }
3768 if (!gfc_notify_std (GFC_STD_F2008, "Rank remapping target is not "
3769 "rank 1 at %L", &rvalue->where))
3770 return false;
3771 }
3772 }
3773
3774 /* Now punt if we are dealing with a NULLIFY(X) or X = NULL(X). */
3775 if (rvalue->expr_type == EXPR_NULL)
3776 return true;
3777
3778 if (lvalue->ts.type == BT_CHARACTER)
3779 {
3780 bool t = gfc_check_same_strlen (lvalue, rvalue, "pointer assignment");
3781 if (!t)
3782 return false;
3783 }
3784
3785 if (rvalue->expr_type == EXPR_VARIABLE && is_subref_array (rvalue))
3786 lvalue->symtree->n.sym->attr.subref_array_pointer = 1;
3787
3788 attr = gfc_expr_attr (rvalue);
3789
3790 if (rvalue->expr_type == EXPR_FUNCTION && !attr.pointer)
3791 {
3792 /* F2008, C725. For PURE also C1283. Sometimes rvalue is a function call
3793 to caf_get. Map this to the same error message as below when it is
3794 still a variable expression. */
3795 if (rvalue->value.function.isym
3796 && rvalue->value.function.isym->id == GFC_ISYM_CAF_GET)
3797 /* The test above might need to be extend when F08, Note 5.4 has to be
3798 interpreted in the way that target and pointer with the same coindex
3799 are allowed. */
3800 gfc_error ("Data target at %L shall not have a coindex",
3801 &rvalue->where);
3802 else
3803 gfc_error ("Target expression in pointer assignment "
3804 "at %L must deliver a pointer result",
3805 &rvalue->where);
3806 return false;
3807 }
3808
3809 if (!attr.target && !attr.pointer)
3810 {
3811 gfc_error ("Pointer assignment target is neither TARGET "
3812 "nor POINTER at %L", &rvalue->where);
3813 return false;
3814 }
3815
3816 if (is_pure && gfc_impure_variable (rvalue->symtree->n.sym))
3817 {
3818 gfc_error ("Bad target in pointer assignment in PURE "
3819 "procedure at %L", &rvalue->where);
3820 }
3821
3822 if (is_implicit_pure && gfc_impure_variable (rvalue->symtree->n.sym))
3823 gfc_unset_implicit_pure (gfc_current_ns->proc_name);
3824
3825 if (gfc_has_vector_index (rvalue))
3826 {
3827 gfc_error ("Pointer assignment with vector subscript "
3828 "on rhs at %L", &rvalue->where);
3829 return false;
3830 }
3831
3832 if (attr.is_protected && attr.use_assoc
3833 && !(attr.pointer || attr.proc_pointer))
3834 {
3835 gfc_error ("Pointer assignment target has PROTECTED "
3836 "attribute at %L", &rvalue->where);
3837 return false;
3838 }
3839
3840 /* F2008, C725. For PURE also C1283. */
3841 if (rvalue->expr_type == EXPR_VARIABLE
3842 && gfc_is_coindexed (rvalue))
3843 {
3844 gfc_ref *ref;
3845 for (ref = rvalue->ref; ref; ref = ref->next)
3846 if (ref->type == REF_ARRAY && ref->u.ar.codimen)
3847 {
3848 gfc_error ("Data target at %L shall not have a coindex",
3849 &rvalue->where);
3850 return false;
3851 }
3852 }
3853
3854 /* Error for assignments of contiguous pointers to targets which is not
3855 contiguous. Be lenient in the definition of what counts as
3856 congiguous. */
3857
3858 if (lhs_attr.contiguous && !gfc_is_simply_contiguous (rvalue, false, true))
3859 gfc_error ("Assignment to contiguous pointer from non-contiguous "
3860 "target at %L", &rvalue->where);
3861
3862 /* Warn if it is the LHS pointer may lives longer than the RHS target. */
3863 if (warn_target_lifetime
3864 && rvalue->expr_type == EXPR_VARIABLE
3865 && !rvalue->symtree->n.sym->attr.save
3866 && !rvalue->symtree->n.sym->attr.pointer && !attr.pointer
3867 && !rvalue->symtree->n.sym->attr.host_assoc
3868 && !rvalue->symtree->n.sym->attr.in_common
3869 && !rvalue->symtree->n.sym->attr.use_assoc
3870 && !rvalue->symtree->n.sym->attr.dummy)
3871 {
3872 bool warn;
3873 gfc_namespace *ns;
3874
3875 warn = lvalue->symtree->n.sym->attr.dummy
3876 || lvalue->symtree->n.sym->attr.result
3877 || lvalue->symtree->n.sym->attr.function
3878 || (lvalue->symtree->n.sym->attr.host_assoc
3879 && lvalue->symtree->n.sym->ns
3880 != rvalue->symtree->n.sym->ns)
3881 || lvalue->symtree->n.sym->attr.use_assoc
3882 || lvalue->symtree->n.sym->attr.in_common;
3883
3884 if (rvalue->symtree->n.sym->ns->proc_name
3885 && rvalue->symtree->n.sym->ns->proc_name->attr.flavor != FL_PROCEDURE
3886 && rvalue->symtree->n.sym->ns->proc_name->attr.flavor != FL_PROGRAM)
3887 for (ns = rvalue->symtree->n.sym->ns;
3888 ns && ns->proc_name && ns->proc_name->attr.flavor != FL_PROCEDURE;
3889 ns = ns->parent)
3890 if (ns->parent == lvalue->symtree->n.sym->ns)
3891 {
3892 warn = true;
3893 break;
3894 }
3895
3896 if (warn)
3897 gfc_warning (OPT_Wtarget_lifetime,
3898 "Pointer at %L in pointer assignment might outlive the "
3899 "pointer target", &lvalue->where);
3900 }
3901
3902 return true;
3903 }
3904
3905
3906 /* Relative of gfc_check_assign() except that the lvalue is a single
3907 symbol. Used for initialization assignments. */
3908
3909 bool
3910 gfc_check_assign_symbol (gfc_symbol *sym, gfc_component *comp, gfc_expr *rvalue)
3911 {
3912 gfc_expr lvalue;
3913 bool r;
3914 bool pointer, proc_pointer;
3915
3916 memset (&lvalue, '\0', sizeof (gfc_expr));
3917
3918 lvalue.expr_type = EXPR_VARIABLE;
3919 lvalue.ts = sym->ts;
3920 if (sym->as)
3921 lvalue.rank = sym->as->rank;
3922 lvalue.symtree = XCNEW (gfc_symtree);
3923 lvalue.symtree->n.sym = sym;
3924 lvalue.where = sym->declared_at;
3925
3926 if (comp)
3927 {
3928 lvalue.ref = gfc_get_ref ();
3929 lvalue.ref->type = REF_COMPONENT;
3930 lvalue.ref->u.c.component = comp;
3931 lvalue.ref->u.c.sym = sym;
3932 lvalue.ts = comp->ts;
3933 lvalue.rank = comp->as ? comp->as->rank : 0;
3934 lvalue.where = comp->loc;
3935 pointer = comp->ts.type == BT_CLASS && CLASS_DATA (comp)
3936 ? CLASS_DATA (comp)->attr.class_pointer : comp->attr.pointer;
3937 proc_pointer = comp->attr.proc_pointer;
3938 }
3939 else
3940 {
3941 pointer = sym->ts.type == BT_CLASS && CLASS_DATA (sym)
3942 ? CLASS_DATA (sym)->attr.class_pointer : sym->attr.pointer;
3943 proc_pointer = sym->attr.proc_pointer;
3944 }
3945
3946 if (pointer || proc_pointer)
3947 r = gfc_check_pointer_assign (&lvalue, rvalue);
3948 else
3949 {
3950 /* If a conversion function, e.g., __convert_i8_i4, was inserted
3951 into an array constructor, we should check if it can be reduced
3952 as an initialization expression. */
3953 if (rvalue->expr_type == EXPR_FUNCTION
3954 && rvalue->value.function.isym
3955 && (rvalue->value.function.isym->conversion == 1))
3956 gfc_check_init_expr (rvalue);
3957
3958 r = gfc_check_assign (&lvalue, rvalue, 1);
3959 }
3960
3961 free (lvalue.symtree);
3962 free (lvalue.ref);
3963
3964 if (!r)
3965 return r;
3966
3967 if (pointer && rvalue->expr_type != EXPR_NULL)
3968 {
3969 /* F08:C461. Additional checks for pointer initialization. */
3970 symbol_attribute attr;
3971 attr = gfc_expr_attr (rvalue);
3972 if (attr.allocatable)
3973 {
3974 gfc_error ("Pointer initialization target at %L "
3975 "must not be ALLOCATABLE", &rvalue->where);
3976 return false;
3977 }
3978 if (!attr.target || attr.pointer)
3979 {
3980 gfc_error ("Pointer initialization target at %L "
3981 "must have the TARGET attribute", &rvalue->where);
3982 return false;
3983 }
3984
3985 if (!attr.save && rvalue->expr_type == EXPR_VARIABLE
3986 && rvalue->symtree->n.sym->ns->proc_name
3987 && rvalue->symtree->n.sym->ns->proc_name->attr.is_main_program)
3988 {
3989 rvalue->symtree->n.sym->ns->proc_name->attr.save = SAVE_IMPLICIT;
3990 attr.save = SAVE_IMPLICIT;
3991 }
3992
3993 if (!attr.save)
3994 {
3995 gfc_error ("Pointer initialization target at %L "
3996 "must have the SAVE attribute", &rvalue->where);
3997 return false;
3998 }
3999 }
4000
4001 if (proc_pointer && rvalue->expr_type != EXPR_NULL)
4002 {
4003 /* F08:C1220. Additional checks for procedure pointer initialization. */
4004 symbol_attribute attr = gfc_expr_attr (rvalue);
4005 if (attr.proc_pointer)
4006 {
4007 gfc_error ("Procedure pointer initialization target at %L "
4008 "may not be a procedure pointer", &rvalue->where);
4009 return false;
4010 }
4011 }
4012
4013 return true;
4014 }
4015
4016
4017 /* Build an initializer for a local integer, real, complex, logical, or
4018 character variable, based on the command line flags finit-local-zero,
4019 finit-integer=, finit-real=, finit-logical=, and finit-character=. */
4020
4021 gfc_expr *
4022 gfc_build_default_init_expr (gfc_typespec *ts, locus *where)
4023 {
4024 int char_len;
4025 gfc_expr *init_expr;
4026 int i;
4027
4028 /* Try to build an initializer expression. */
4029 init_expr = gfc_get_constant_expr (ts->type, ts->kind, where);
4030
4031 /* We will only initialize integers, reals, complex, logicals, and
4032 characters, and only if the corresponding command-line flags
4033 were set. Otherwise, we free init_expr and return null. */
4034 switch (ts->type)
4035 {
4036 case BT_INTEGER:
4037 if (gfc_option.flag_init_integer != GFC_INIT_INTEGER_OFF)
4038 mpz_set_si (init_expr->value.integer,
4039 gfc_option.flag_init_integer_value);
4040 else
4041 {
4042 gfc_free_expr (init_expr);
4043 init_expr = NULL;
4044 }
4045 break;
4046
4047 case BT_REAL:
4048 switch (flag_init_real)
4049 {
4050 case GFC_INIT_REAL_SNAN:
4051 init_expr->is_snan = 1;
4052 /* Fall through. */
4053 case GFC_INIT_REAL_NAN:
4054 mpfr_set_nan (init_expr->value.real);
4055 break;
4056
4057 case GFC_INIT_REAL_INF:
4058 mpfr_set_inf (init_expr->value.real, 1);
4059 break;
4060
4061 case GFC_INIT_REAL_NEG_INF:
4062 mpfr_set_inf (init_expr->value.real, -1);
4063 break;
4064
4065 case GFC_INIT_REAL_ZERO:
4066 mpfr_set_ui (init_expr->value.real, 0.0, GFC_RND_MODE);
4067 break;
4068
4069 default:
4070 gfc_free_expr (init_expr);
4071 init_expr = NULL;
4072 break;
4073 }
4074 break;
4075
4076 case BT_COMPLEX:
4077 switch (flag_init_real)
4078 {
4079 case GFC_INIT_REAL_SNAN:
4080 init_expr->is_snan = 1;
4081 /* Fall through. */
4082 case GFC_INIT_REAL_NAN:
4083 mpfr_set_nan (mpc_realref (init_expr->value.complex));
4084 mpfr_set_nan (mpc_imagref (init_expr->value.complex));
4085 break;
4086
4087 case GFC_INIT_REAL_INF:
4088 mpfr_set_inf (mpc_realref (init_expr->value.complex), 1);
4089 mpfr_set_inf (mpc_imagref (init_expr->value.complex), 1);
4090 break;
4091
4092 case GFC_INIT_REAL_NEG_INF:
4093 mpfr_set_inf (mpc_realref (init_expr->value.complex), -1);
4094 mpfr_set_inf (mpc_imagref (init_expr->value.complex), -1);
4095 break;
4096
4097 case GFC_INIT_REAL_ZERO:
4098 mpc_set_ui (init_expr->value.complex, 0, GFC_MPC_RND_MODE);
4099 break;
4100
4101 default:
4102 gfc_free_expr (init_expr);
4103 init_expr = NULL;
4104 break;
4105 }
4106 break;
4107
4108 case BT_LOGICAL:
4109 if (gfc_option.flag_init_logical == GFC_INIT_LOGICAL_FALSE)
4110 init_expr->value.logical = 0;
4111 else if (gfc_option.flag_init_logical == GFC_INIT_LOGICAL_TRUE)
4112 init_expr->value.logical = 1;
4113 else
4114 {
4115 gfc_free_expr (init_expr);
4116 init_expr = NULL;
4117 }
4118 break;
4119
4120 case BT_CHARACTER:
4121 /* For characters, the length must be constant in order to
4122 create a default initializer. */
4123 if (gfc_option.flag_init_character == GFC_INIT_CHARACTER_ON
4124 && ts->u.cl->length
4125 && ts->u.cl->length->expr_type == EXPR_CONSTANT)
4126 {
4127 char_len = mpz_get_si (ts->u.cl->length->value.integer);
4128 init_expr->value.character.length = char_len;
4129 init_expr->value.character.string = gfc_get_wide_string (char_len+1);
4130 for (i = 0; i < char_len; i++)
4131 init_expr->value.character.string[i]
4132 = (unsigned char) gfc_option.flag_init_character_value;
4133 }
4134 else
4135 {
4136 gfc_free_expr (init_expr);
4137 init_expr = NULL;
4138 }
4139 if (!init_expr && gfc_option.flag_init_character == GFC_INIT_CHARACTER_ON
4140 && ts->u.cl->length && flag_max_stack_var_size != 0)
4141 {
4142 gfc_actual_arglist *arg;
4143 init_expr = gfc_get_expr ();
4144 init_expr->where = *where;
4145 init_expr->ts = *ts;
4146 init_expr->expr_type = EXPR_FUNCTION;
4147 init_expr->value.function.isym =
4148 gfc_intrinsic_function_by_id (GFC_ISYM_REPEAT);
4149 init_expr->value.function.name = "repeat";
4150 arg = gfc_get_actual_arglist ();
4151 arg->expr = gfc_get_character_expr (ts->kind, where, NULL, 1);
4152 arg->expr->value.character.string[0] =
4153 gfc_option.flag_init_character_value;
4154 arg->next = gfc_get_actual_arglist ();
4155 arg->next->expr = gfc_copy_expr (ts->u.cl->length);
4156 init_expr->value.function.actual = arg;
4157 }
4158 break;
4159
4160 default:
4161 gfc_free_expr (init_expr);
4162 init_expr = NULL;
4163 }
4164
4165 return init_expr;
4166 }
4167
4168 /* Apply an initialization expression to a typespec. Can be used for symbols or
4169 components. Similar to add_init_expr_to_sym in decl.c; could probably be
4170 combined with some effort. */
4171
4172 void
4173 gfc_apply_init (gfc_typespec *ts, symbol_attribute *attr, gfc_expr *init)
4174 {
4175 if (ts->type == BT_CHARACTER && !attr->pointer && init
4176 && ts->u.cl
4177 && ts->u.cl->length && ts->u.cl->length->expr_type == EXPR_CONSTANT)
4178 {
4179 int len;
4180
4181 gcc_assert (ts->u.cl && ts->u.cl->length);
4182 gcc_assert (ts->u.cl->length->expr_type == EXPR_CONSTANT);
4183 gcc_assert (ts->u.cl->length->ts.type == BT_INTEGER);
4184
4185 len = mpz_get_si (ts->u.cl->length->value.integer);
4186
4187 if (init->expr_type == EXPR_CONSTANT)
4188 gfc_set_constant_character_len (len, init, -1);
4189 else if (init
4190 && init->ts.u.cl
4191 && mpz_cmp (ts->u.cl->length->value.integer,
4192 init->ts.u.cl->length->value.integer))
4193 {
4194 gfc_constructor *ctor;
4195 ctor = gfc_constructor_first (init->value.constructor);
4196
4197 if (ctor)
4198 {
4199 int first_len;
4200 bool has_ts = (init->ts.u.cl
4201 && init->ts.u.cl->length_from_typespec);
4202
4203 /* Remember the length of the first element for checking
4204 that all elements *in the constructor* have the same
4205 length. This need not be the length of the LHS! */
4206 gcc_assert (ctor->expr->expr_type == EXPR_CONSTANT);
4207 gcc_assert (ctor->expr->ts.type == BT_CHARACTER);
4208 first_len = ctor->expr->value.character.length;
4209
4210 for ( ; ctor; ctor = gfc_constructor_next (ctor))
4211 if (ctor->expr->expr_type == EXPR_CONSTANT)
4212 {
4213 gfc_set_constant_character_len (len, ctor->expr,
4214 has_ts ? -1 : first_len);
4215 if (!ctor->expr->ts.u.cl)
4216 ctor->expr->ts.u.cl
4217 = gfc_new_charlen (gfc_current_ns, ts->u.cl);
4218 else
4219 ctor->expr->ts.u.cl->length
4220 = gfc_copy_expr (ts->u.cl->length);
4221 }
4222 }
4223 }
4224 }
4225 }
4226
4227
4228 /* Check whether an expression is a structure constructor and whether it has
4229 other values than NULL. */
4230
4231 bool
4232 is_non_empty_structure_constructor (gfc_expr * e)
4233 {
4234 if (e->expr_type != EXPR_STRUCTURE)
4235 return false;
4236
4237 gfc_constructor *cons = gfc_constructor_first (e->value.constructor);
4238 while (cons)
4239 {
4240 if (!cons->expr || cons->expr->expr_type != EXPR_NULL)
4241 return true;
4242 cons = gfc_constructor_next (cons);
4243 }
4244 return false;
4245 }
4246
4247
4248 /* Check for default initializer; sym->value is not enough
4249 as it is also set for EXPR_NULL of allocatables. */
4250
4251 bool
4252 gfc_has_default_initializer (gfc_symbol *der)
4253 {
4254 gfc_component *c;
4255
4256 gcc_assert (gfc_fl_struct (der->attr.flavor));
4257 for (c = der->components; c; c = c->next)
4258 if (gfc_bt_struct (c->ts.type))
4259 {
4260 if (!c->attr.pointer && !c->attr.proc_pointer
4261 && !(c->attr.allocatable && der == c->ts.u.derived)
4262 && ((c->initializer
4263 && is_non_empty_structure_constructor (c->initializer))
4264 || gfc_has_default_initializer (c->ts.u.derived)))
4265 return true;
4266 if (c->attr.pointer && c->initializer)
4267 return true;
4268 }
4269 else
4270 {
4271 if (c->initializer)
4272 return true;
4273 }
4274
4275 return false;
4276 }
4277
4278
4279 /*
4280 Generate an initializer expression which initializes the entirety of a union.
4281 A normal structure constructor is insufficient without undue effort, because
4282 components of maps may be oddly aligned/overlapped. (For example if a
4283 character is initialized from one map overtop a real from the other, only one
4284 byte of the real is actually initialized.) Unfortunately we don't know the
4285 size of the union right now, so we can't generate a proper initializer, but
4286 we use a NULL expr as a placeholder and do the right thing later in
4287 gfc_trans_subcomponent_assign.
4288 */
4289 static gfc_expr *
4290 generate_union_initializer (gfc_component *un)
4291 {
4292 if (un == NULL || un->ts.type != BT_UNION)
4293 return NULL;
4294
4295 gfc_expr *placeholder = gfc_get_null_expr (&un->loc);
4296 placeholder->ts = un->ts;
4297 return placeholder;
4298 }
4299
4300
4301 /* Get the user-specified initializer for a union, if any. This means the user
4302 has said to initialize component(s) of a map. For simplicity's sake we
4303 only allow the user to initialize the first map. We don't have to worry
4304 about overlapping initializers as they are released early in resolution (see
4305 resolve_fl_struct). */
4306
4307 static gfc_expr *
4308 get_union_initializer (gfc_symbol *union_type, gfc_component **map_p)
4309 {
4310 gfc_component *map;
4311 gfc_expr *init=NULL;
4312
4313 if (!union_type || union_type->attr.flavor != FL_UNION)
4314 return NULL;
4315
4316 for (map = union_type->components; map; map = map->next)
4317 {
4318 if (gfc_has_default_initializer (map->ts.u.derived))
4319 {
4320 init = gfc_default_initializer (&map->ts);
4321 if (map_p)
4322 *map_p = map;
4323 break;
4324 }
4325 }
4326
4327 if (map_p && !init)
4328 *map_p = NULL;
4329
4330 return init;
4331 }
4332
4333 /* Fetch or generate an initializer for the given component.
4334 Only generate an initializer if generate is true. */
4335
4336 static gfc_expr *
4337 component_initializer (gfc_typespec *ts, gfc_component *c, bool generate)
4338 {
4339 gfc_expr *init = NULL;
4340
4341 /* See if we can find the initializer immediately.
4342 Some components should never get initializers. */
4343 if (c->initializer || !generate
4344 || (ts->type == BT_CLASS && !c->attr.allocatable)
4345 || c->attr.pointer
4346 || c->attr.class_pointer
4347 || c->attr.proc_pointer)
4348 return c->initializer;
4349
4350 /* Recursively handle derived type components. */
4351 if (c->ts.type == BT_DERIVED || c->ts.type == BT_CLASS)
4352 init = gfc_generate_initializer (&c->ts, true);
4353
4354 else if (c->ts.type == BT_UNION && c->ts.u.derived->components)
4355 {
4356 gfc_component *map = NULL;
4357 gfc_constructor *ctor;
4358 gfc_expr *user_init;
4359
4360 /* If we don't have a user initializer and we aren't generating one, this
4361 union has no initializer. */
4362 user_init = get_union_initializer (c->ts.u.derived, &map);
4363 if (!user_init && !generate)
4364 return NULL;
4365
4366 /* Otherwise use a structure constructor. */
4367 init = gfc_get_structure_constructor_expr (c->ts.type, c->ts.kind,
4368 &c->loc);
4369 init->ts = c->ts;
4370
4371 /* If we are to generate an initializer for the union, add a constructor
4372 which initializes the whole union first. */
4373 if (generate)
4374 {
4375 ctor = gfc_constructor_get ();
4376 ctor->expr = generate_union_initializer (c);
4377 gfc_constructor_append (&init->value.constructor, ctor);
4378 }
4379
4380 /* If we found an initializer in one of our maps, apply it. Note this
4381 is applied _after_ the entire-union initializer above if any. */
4382 if (user_init)
4383 {
4384 ctor = gfc_constructor_get ();
4385 ctor->expr = user_init;
4386 ctor->n.component = map;
4387 gfc_constructor_append (&init->value.constructor, ctor);
4388 }
4389 }
4390
4391 /* Treat simple components like locals. */
4392 else
4393 {
4394 init = gfc_build_default_init_expr (&c->ts, &c->loc);
4395 gfc_apply_init (&c->ts, &c->attr, init);
4396 }
4397
4398 return init;
4399 }
4400
4401
4402 /* Get an expression for a default initializer of a derived type. */
4403
4404 gfc_expr *
4405 gfc_default_initializer (gfc_typespec *ts)
4406 {
4407 return gfc_generate_initializer (ts, false);
4408 }
4409
4410
4411 /* Get or generate an expression for a default initializer of a derived type.
4412 If -finit-derived is specified, generate default initialization expressions
4413 for components that lack them when generate is set. */
4414
4415 gfc_expr *
4416 gfc_generate_initializer (gfc_typespec *ts, bool generate)
4417 {
4418 gfc_expr *init, *tmp;
4419 gfc_component *comp;
4420 generate = flag_init_derived && generate;
4421
4422 /* See if we have a default initializer in this, but not in nested
4423 types (otherwise we could use gfc_has_default_initializer()).
4424 We don't need to check if we are going to generate them. */
4425 comp = ts->u.derived->components;
4426 if (!generate)
4427 {
4428 for (; comp; comp = comp->next)
4429 if (comp->initializer || comp->attr.allocatable
4430 || (comp->ts.type == BT_CLASS && CLASS_DATA (comp)
4431 && CLASS_DATA (comp)->attr.allocatable))
4432 break;
4433 }
4434
4435 if (!comp)
4436 return NULL;
4437
4438 init = gfc_get_structure_constructor_expr (ts->type, ts->kind,
4439 &ts->u.derived->declared_at);
4440 init->ts = *ts;
4441
4442 for (comp = ts->u.derived->components; comp; comp = comp->next)
4443 {
4444 gfc_constructor *ctor = gfc_constructor_get();
4445
4446 /* Fetch or generate an initializer for the component. */
4447 tmp = component_initializer (ts, comp, generate);
4448 if (tmp)
4449 {
4450 /* Save the component ref for STRUCTUREs and UNIONs. */
4451 if (ts->u.derived->attr.flavor == FL_STRUCT
4452 || ts->u.derived->attr.flavor == FL_UNION)
4453 ctor->n.component = comp;
4454
4455 /* If the initializer was not generated, we need a copy. */
4456 ctor->expr = comp->initializer ? gfc_copy_expr (tmp) : tmp;
4457 if ((comp->ts.type != tmp->ts.type
4458 || comp->ts.kind != tmp->ts.kind)
4459 && !comp->attr.pointer && !comp->attr.proc_pointer)
4460 {
4461 bool val;
4462 val = gfc_convert_type_warn (ctor->expr, &comp->ts, 1, false);
4463 if (val == false)
4464 return NULL;
4465 }
4466 }
4467
4468 if (comp->attr.allocatable
4469 || (comp->ts.type == BT_CLASS && CLASS_DATA (comp)->attr.allocatable))
4470 {
4471 ctor->expr = gfc_get_expr ();
4472 ctor->expr->expr_type = EXPR_NULL;
4473 ctor->expr->where = init->where;
4474 ctor->expr->ts = comp->ts;
4475 }
4476
4477 gfc_constructor_append (&init->value.constructor, ctor);
4478 }
4479
4480 return init;
4481 }
4482
4483
4484 /* Given a symbol, create an expression node with that symbol as a
4485 variable. If the symbol is array valued, setup a reference of the
4486 whole array. */
4487
4488 gfc_expr *
4489 gfc_get_variable_expr (gfc_symtree *var)
4490 {
4491 gfc_expr *e;
4492
4493 e = gfc_get_expr ();
4494 e->expr_type = EXPR_VARIABLE;
4495 e->symtree = var;
4496 e->ts = var->n.sym->ts;
4497
4498 if (var->n.sym->attr.flavor != FL_PROCEDURE
4499 && ((var->n.sym->as != NULL && var->n.sym->ts.type != BT_CLASS)
4500 || (var->n.sym->ts.type == BT_CLASS && CLASS_DATA (var->n.sym)
4501 && CLASS_DATA (var->n.sym)->as)))
4502 {
4503 e->rank = var->n.sym->ts.type == BT_CLASS
4504 ? CLASS_DATA (var->n.sym)->as->rank : var->n.sym->as->rank;
4505 e->ref = gfc_get_ref ();
4506 e->ref->type = REF_ARRAY;
4507 e->ref->u.ar.type = AR_FULL;
4508 e->ref->u.ar.as = gfc_copy_array_spec (var->n.sym->ts.type == BT_CLASS
4509 ? CLASS_DATA (var->n.sym)->as
4510 : var->n.sym->as);
4511 }
4512
4513 return e;
4514 }
4515
4516
4517 /* Adds a full array reference to an expression, as needed. */
4518
4519 void
4520 gfc_add_full_array_ref (gfc_expr *e, gfc_array_spec *as)
4521 {
4522 gfc_ref *ref;
4523 for (ref = e->ref; ref; ref = ref->next)
4524 if (!ref->next)
4525 break;
4526 if (ref)
4527 {
4528 ref->next = gfc_get_ref ();
4529 ref = ref->next;
4530 }
4531 else
4532 {
4533 e->ref = gfc_get_ref ();
4534 ref = e->ref;
4535 }
4536 ref->type = REF_ARRAY;
4537 ref->u.ar.type = AR_FULL;
4538 ref->u.ar.dimen = e->rank;
4539 ref->u.ar.where = e->where;
4540 ref->u.ar.as = as;
4541 }
4542
4543
4544 gfc_expr *
4545 gfc_lval_expr_from_sym (gfc_symbol *sym)
4546 {
4547 gfc_expr *lval;
4548 gfc_array_spec *as;
4549 lval = gfc_get_expr ();
4550 lval->expr_type = EXPR_VARIABLE;
4551 lval->where = sym->declared_at;
4552 lval->ts = sym->ts;
4553 lval->symtree = gfc_find_symtree (sym->ns->sym_root, sym->name);
4554
4555 /* It will always be a full array. */
4556 as = IS_CLASS_ARRAY (sym) ? CLASS_DATA (sym)->as : sym->as;
4557 lval->rank = as ? as->rank : 0;
4558 if (lval->rank)
4559 gfc_add_full_array_ref (lval, as);
4560 return lval;
4561 }
4562
4563
4564 /* Returns the array_spec of a full array expression. A NULL is
4565 returned otherwise. */
4566 gfc_array_spec *
4567 gfc_get_full_arrayspec_from_expr (gfc_expr *expr)
4568 {
4569 gfc_array_spec *as;
4570 gfc_ref *ref;
4571
4572 if (expr->rank == 0)
4573 return NULL;
4574
4575 /* Follow any component references. */
4576 if (expr->expr_type == EXPR_VARIABLE
4577 || expr->expr_type == EXPR_CONSTANT)
4578 {
4579 if (expr->symtree)
4580 as = expr->symtree->n.sym->as;
4581 else
4582 as = NULL;
4583
4584 for (ref = expr->ref; ref; ref = ref->next)
4585 {
4586 switch (ref->type)
4587 {
4588 case REF_COMPONENT:
4589 as = ref->u.c.component->as;
4590 continue;
4591
4592 case REF_SUBSTRING:
4593 continue;
4594
4595 case REF_ARRAY:
4596 {
4597 switch (ref->u.ar.type)
4598 {
4599 case AR_ELEMENT:
4600 case AR_SECTION:
4601 case AR_UNKNOWN:
4602 as = NULL;
4603 continue;
4604
4605 case AR_FULL:
4606 break;
4607 }
4608 break;
4609 }
4610 }
4611 }
4612 }
4613 else
4614 as = NULL;
4615
4616 return as;
4617 }
4618
4619
4620 /* General expression traversal function. */
4621
4622 bool
4623 gfc_traverse_expr (gfc_expr *expr, gfc_symbol *sym,
4624 bool (*func)(gfc_expr *, gfc_symbol *, int*),
4625 int f)
4626 {
4627 gfc_array_ref ar;
4628 gfc_ref *ref;
4629 gfc_actual_arglist *args;
4630 gfc_constructor *c;
4631 int i;
4632
4633 if (!expr)
4634 return false;
4635
4636 if ((*func) (expr, sym, &f))
4637 return true;
4638
4639 if (expr->ts.type == BT_CHARACTER
4640 && expr->ts.u.cl
4641 && expr->ts.u.cl->length
4642 && expr->ts.u.cl->length->expr_type != EXPR_CONSTANT
4643 && gfc_traverse_expr (expr->ts.u.cl->length, sym, func, f))
4644 return true;
4645
4646 switch (expr->expr_type)
4647 {
4648 case EXPR_PPC:
4649 case EXPR_COMPCALL:
4650 case EXPR_FUNCTION:
4651 for (args = expr->value.function.actual; args; args = args->next)
4652 {
4653 if (gfc_traverse_expr (args->expr, sym, func, f))
4654 return true;
4655 }
4656 break;
4657
4658 case EXPR_VARIABLE:
4659 case EXPR_CONSTANT:
4660 case EXPR_NULL:
4661 case EXPR_SUBSTRING:
4662 break;
4663
4664 case EXPR_STRUCTURE:
4665 case EXPR_ARRAY:
4666 for (c = gfc_constructor_first (expr->value.constructor);
4667 c; c = gfc_constructor_next (c))
4668 {
4669 if (gfc_traverse_expr (c->expr, sym, func, f))
4670 return true;
4671 if (c->iterator)
4672 {
4673 if (gfc_traverse_expr (c->iterator->var, sym, func, f))
4674 return true;
4675 if (gfc_traverse_expr (c->iterator->start, sym, func, f))
4676 return true;
4677 if (gfc_traverse_expr (c->iterator->end, sym, func, f))
4678 return true;
4679 if (gfc_traverse_expr (c->iterator->step, sym, func, f))
4680 return true;
4681 }
4682 }
4683 break;
4684
4685 case EXPR_OP:
4686 if (gfc_traverse_expr (expr->value.op.op1, sym, func, f))
4687 return true;
4688 if (gfc_traverse_expr (expr->value.op.op2, sym, func, f))
4689 return true;
4690 break;
4691
4692 default:
4693 gcc_unreachable ();
4694 break;
4695 }
4696
4697 ref = expr->ref;
4698 while (ref != NULL)
4699 {
4700 switch (ref->type)
4701 {
4702 case REF_ARRAY:
4703 ar = ref->u.ar;
4704 for (i = 0; i < GFC_MAX_DIMENSIONS; i++)
4705 {
4706 if (gfc_traverse_expr (ar.start[i], sym, func, f))
4707 return true;
4708 if (gfc_traverse_expr (ar.end[i], sym, func, f))
4709 return true;
4710 if (gfc_traverse_expr (ar.stride[i], sym, func, f))
4711 return true;
4712 }
4713 break;
4714
4715 case REF_SUBSTRING:
4716 if (gfc_traverse_expr (ref->u.ss.start, sym, func, f))
4717 return true;
4718 if (gfc_traverse_expr (ref->u.ss.end, sym, func, f))
4719 return true;
4720 break;
4721
4722 case REF_COMPONENT:
4723 if (ref->u.c.component->ts.type == BT_CHARACTER
4724 && ref->u.c.component->ts.u.cl
4725 && ref->u.c.component->ts.u.cl->length
4726 && ref->u.c.component->ts.u.cl->length->expr_type
4727 != EXPR_CONSTANT
4728 && gfc_traverse_expr (ref->u.c.component->ts.u.cl->length,
4729 sym, func, f))
4730 return true;
4731
4732 if (ref->u.c.component->as)
4733 for (i = 0; i < ref->u.c.component->as->rank
4734 + ref->u.c.component->as->corank; i++)
4735 {
4736 if (gfc_traverse_expr (ref->u.c.component->as->lower[i],
4737 sym, func, f))
4738 return true;
4739 if (gfc_traverse_expr (ref->u.c.component->as->upper[i],
4740 sym, func, f))
4741 return true;
4742 }
4743 break;
4744
4745 default:
4746 gcc_unreachable ();
4747 }
4748 ref = ref->next;
4749 }
4750 return false;
4751 }
4752
4753 /* Traverse expr, marking all EXPR_VARIABLE symbols referenced. */
4754
4755 static bool
4756 expr_set_symbols_referenced (gfc_expr *expr,
4757 gfc_symbol *sym ATTRIBUTE_UNUSED,
4758 int *f ATTRIBUTE_UNUSED)
4759 {
4760 if (expr->expr_type != EXPR_VARIABLE)
4761 return false;
4762 gfc_set_sym_referenced (expr->symtree->n.sym);
4763 return false;
4764 }
4765
4766 void
4767 gfc_expr_set_symbols_referenced (gfc_expr *expr)
4768 {
4769 gfc_traverse_expr (expr, NULL, expr_set_symbols_referenced, 0);
4770 }
4771
4772
4773 /* Determine if an expression is a procedure pointer component and return
4774 the component in that case. Otherwise return NULL. */
4775
4776 gfc_component *
4777 gfc_get_proc_ptr_comp (gfc_expr *expr)
4778 {
4779 gfc_ref *ref;
4780
4781 if (!expr || !expr->ref)
4782 return NULL;
4783
4784 ref = expr->ref;
4785 while (ref->next)
4786 ref = ref->next;
4787
4788 if (ref->type == REF_COMPONENT
4789 && ref->u.c.component->attr.proc_pointer)
4790 return ref->u.c.component;
4791
4792 return NULL;
4793 }
4794
4795
4796 /* Determine if an expression is a procedure pointer component. */
4797
4798 bool
4799 gfc_is_proc_ptr_comp (gfc_expr *expr)
4800 {
4801 return (gfc_get_proc_ptr_comp (expr) != NULL);
4802 }
4803
4804
4805 /* Determine if an expression is a function with an allocatable class scalar
4806 result. */
4807 bool
4808 gfc_is_alloc_class_scalar_function (gfc_expr *expr)
4809 {
4810 if (expr->expr_type == EXPR_FUNCTION
4811 && expr->value.function.esym
4812 && expr->value.function.esym->result
4813 && expr->value.function.esym->result->ts.type == BT_CLASS
4814 && !CLASS_DATA (expr->value.function.esym->result)->attr.dimension
4815 && CLASS_DATA (expr->value.function.esym->result)->attr.allocatable)
4816 return true;
4817
4818 return false;
4819 }
4820
4821
4822 /* Determine if an expression is a function with an allocatable class array
4823 result. */
4824 bool
4825 gfc_is_alloc_class_array_function (gfc_expr *expr)
4826 {
4827 if (expr->expr_type == EXPR_FUNCTION
4828 && expr->value.function.esym
4829 && expr->value.function.esym->result
4830 && expr->value.function.esym->result->ts.type == BT_CLASS
4831 && CLASS_DATA (expr->value.function.esym->result)->attr.dimension
4832 && CLASS_DATA (expr->value.function.esym->result)->attr.allocatable)
4833 return true;
4834
4835 return false;
4836 }
4837
4838
4839 /* Walk an expression tree and check each variable encountered for being typed.
4840 If strict is not set, a top-level variable is tolerated untyped in -std=gnu
4841 mode as is a basic arithmetic expression using those; this is for things in
4842 legacy-code like:
4843
4844 INTEGER :: arr(n), n
4845 INTEGER :: arr(n + 1), n
4846
4847 The namespace is needed for IMPLICIT typing. */
4848
4849 static gfc_namespace* check_typed_ns;
4850
4851 static bool
4852 expr_check_typed_help (gfc_expr* e, gfc_symbol* sym ATTRIBUTE_UNUSED,
4853 int* f ATTRIBUTE_UNUSED)
4854 {
4855 bool t;
4856
4857 if (e->expr_type != EXPR_VARIABLE)
4858 return false;
4859
4860 gcc_assert (e->symtree);
4861 t = gfc_check_symbol_typed (e->symtree->n.sym, check_typed_ns,
4862 true, e->where);
4863
4864 return (!t);
4865 }
4866
4867 bool
4868 gfc_expr_check_typed (gfc_expr* e, gfc_namespace* ns, bool strict)
4869 {
4870 bool error_found;
4871
4872 /* If this is a top-level variable or EXPR_OP, do the check with strict given
4873 to us. */
4874 if (!strict)
4875 {
4876 if (e->expr_type == EXPR_VARIABLE && !e->ref)
4877 return gfc_check_symbol_typed (e->symtree->n.sym, ns, strict, e->where);
4878
4879 if (e->expr_type == EXPR_OP)
4880 {
4881 bool t = true;
4882
4883 gcc_assert (e->value.op.op1);
4884 t = gfc_expr_check_typed (e->value.op.op1, ns, strict);
4885
4886 if (t && e->value.op.op2)
4887 t = gfc_expr_check_typed (e->value.op.op2, ns, strict);
4888
4889 return t;
4890 }
4891 }
4892
4893 /* Otherwise, walk the expression and do it strictly. */
4894 check_typed_ns = ns;
4895 error_found = gfc_traverse_expr (e, NULL, &expr_check_typed_help, 0);
4896
4897 return error_found ? false : true;
4898 }
4899
4900
4901 /* This function returns true if it contains any references to PDT KIND
4902 or LEN parameters. */
4903
4904 static bool
4905 derived_parameter_expr (gfc_expr* e, gfc_symbol* sym ATTRIBUTE_UNUSED,
4906 int* f ATTRIBUTE_UNUSED)
4907 {
4908 if (e->expr_type != EXPR_VARIABLE)
4909 return false;
4910
4911 gcc_assert (e->symtree);
4912 if (e->symtree->n.sym->attr.pdt_kind
4913 || e->symtree->n.sym->attr.pdt_len)
4914 return true;
4915
4916 return false;
4917 }
4918
4919
4920 bool
4921 gfc_derived_parameter_expr (gfc_expr *e)
4922 {
4923 return gfc_traverse_expr (e, NULL, &derived_parameter_expr, 0);
4924 }
4925
4926
4927 /* This function returns the overall type of a type parameter spec list.
4928 If all the specs are explicit, SPEC_EXPLICIT is returned. If any of the
4929 parameters are assumed/deferred then SPEC_ASSUMED/DEFERRED is returned
4930 unless derived is not NULL. In this latter case, all the LEN parameters
4931 must be either assumed or deferred for the return argument to be set to
4932 anything other than SPEC_EXPLICIT. */
4933
4934 gfc_param_spec_type
4935 gfc_spec_list_type (gfc_actual_arglist *param_list, gfc_symbol *derived)
4936 {
4937 gfc_param_spec_type res = SPEC_EXPLICIT;
4938 gfc_component *c;
4939 bool seen_assumed = false;
4940 bool seen_deferred = false;
4941
4942 if (derived == NULL)
4943 {
4944 for (; param_list; param_list = param_list->next)
4945 if (param_list->spec_type == SPEC_ASSUMED
4946 || param_list->spec_type == SPEC_DEFERRED)
4947 return param_list->spec_type;
4948 }
4949 else
4950 {
4951 for (; param_list; param_list = param_list->next)
4952 {
4953 c = gfc_find_component (derived, param_list->name,
4954 true, true, NULL);
4955 gcc_assert (c != NULL);
4956 if (c->attr.pdt_kind)
4957 continue;
4958 else if (param_list->spec_type == SPEC_EXPLICIT)
4959 return SPEC_EXPLICIT;
4960 seen_assumed = param_list->spec_type == SPEC_ASSUMED;
4961 seen_deferred = param_list->spec_type == SPEC_DEFERRED;
4962 if (seen_assumed && seen_deferred)
4963 return SPEC_EXPLICIT;
4964 }
4965 res = seen_assumed ? SPEC_ASSUMED : SPEC_DEFERRED;
4966 }
4967 return res;
4968 }
4969
4970
4971 bool
4972 gfc_ref_this_image (gfc_ref *ref)
4973 {
4974 int n;
4975
4976 gcc_assert (ref->type == REF_ARRAY && ref->u.ar.codimen > 0);
4977
4978 for (n = ref->u.ar.dimen; n < ref->u.ar.dimen + ref->u.ar.codimen; n++)
4979 if (ref->u.ar.dimen_type[n] != DIMEN_THIS_IMAGE)
4980 return false;
4981
4982 return true;
4983 }
4984
4985 gfc_expr *
4986 gfc_find_stat_co(gfc_expr *e)
4987 {
4988 gfc_ref *ref;
4989
4990 for (ref = e->ref; ref; ref = ref->next)
4991 if (ref->type == REF_ARRAY && ref->u.ar.codimen > 0)
4992 return ref->u.ar.stat;
4993
4994 if (e->value.function.actual->expr)
4995 for (ref = e->value.function.actual->expr->ref; ref;
4996 ref = ref->next)
4997 if (ref->type == REF_ARRAY && ref->u.ar.codimen > 0)
4998 return ref->u.ar.stat;
4999
5000 return NULL;
5001 }
5002
5003 bool
5004 gfc_is_coindexed (gfc_expr *e)
5005 {
5006 gfc_ref *ref;
5007
5008 for (ref = e->ref; ref; ref = ref->next)
5009 if (ref->type == REF_ARRAY && ref->u.ar.codimen > 0)
5010 return !gfc_ref_this_image (ref);
5011
5012 return false;
5013 }
5014
5015
5016 /* Coarrays are variables with a corank but not being coindexed. However, also
5017 the following is a coarray: A subobject of a coarray is a coarray if it does
5018 not have any cosubscripts, vector subscripts, allocatable component
5019 selection, or pointer component selection. (F2008, 2.4.7) */
5020
5021 bool
5022 gfc_is_coarray (gfc_expr *e)
5023 {
5024 gfc_ref *ref;
5025 gfc_symbol *sym;
5026 gfc_component *comp;
5027 bool coindexed;
5028 bool coarray;
5029 int i;
5030
5031 if (e->expr_type != EXPR_VARIABLE)
5032 return false;
5033
5034 coindexed = false;
5035 sym = e->symtree->n.sym;
5036
5037 if (sym->ts.type == BT_CLASS && sym->attr.class_ok)
5038 coarray = CLASS_DATA (sym)->attr.codimension;
5039 else
5040 coarray = sym->attr.codimension;
5041
5042 for (ref = e->ref; ref; ref = ref->next)
5043 switch (ref->type)
5044 {
5045 case REF_COMPONENT:
5046 comp = ref->u.c.component;
5047 if (comp->ts.type == BT_CLASS && comp->attr.class_ok
5048 && (CLASS_DATA (comp)->attr.class_pointer
5049 || CLASS_DATA (comp)->attr.allocatable))
5050 {
5051 coindexed = false;
5052 coarray = CLASS_DATA (comp)->attr.codimension;
5053 }
5054 else if (comp->attr.pointer || comp->attr.allocatable)
5055 {
5056 coindexed = false;
5057 coarray = comp->attr.codimension;
5058 }
5059 break;
5060
5061 case REF_ARRAY:
5062 if (!coarray)
5063 break;
5064
5065 if (ref->u.ar.codimen > 0 && !gfc_ref_this_image (ref))
5066 {
5067 coindexed = true;
5068 break;
5069 }
5070
5071 for (i = 0; i < ref->u.ar.dimen; i++)
5072 if (ref->u.ar.dimen_type[i] == DIMEN_VECTOR)
5073 {
5074 coarray = false;
5075 break;
5076 }
5077 break;
5078
5079 case REF_SUBSTRING:
5080 break;
5081 }
5082
5083 return coarray && !coindexed;
5084 }
5085
5086
5087 int
5088 gfc_get_corank (gfc_expr *e)
5089 {
5090 int corank;
5091 gfc_ref *ref;
5092
5093 if (!gfc_is_coarray (e))
5094 return 0;
5095
5096 if (e->ts.type == BT_CLASS && e->ts.u.derived->components)
5097 corank = e->ts.u.derived->components->as
5098 ? e->ts.u.derived->components->as->corank : 0;
5099 else
5100 corank = e->symtree->n.sym->as ? e->symtree->n.sym->as->corank : 0;
5101
5102 for (ref = e->ref; ref; ref = ref->next)
5103 {
5104 if (ref->type == REF_ARRAY)
5105 corank = ref->u.ar.as->corank;
5106 gcc_assert (ref->type != REF_SUBSTRING);
5107 }
5108
5109 return corank;
5110 }
5111
5112
5113 /* Check whether the expression has an ultimate allocatable component.
5114 Being itself allocatable does not count. */
5115 bool
5116 gfc_has_ultimate_allocatable (gfc_expr *e)
5117 {
5118 gfc_ref *ref, *last = NULL;
5119
5120 if (e->expr_type != EXPR_VARIABLE)
5121 return false;
5122
5123 for (ref = e->ref; ref; ref = ref->next)
5124 if (ref->type == REF_COMPONENT)
5125 last = ref;
5126
5127 if (last && last->u.c.component->ts.type == BT_CLASS)
5128 return CLASS_DATA (last->u.c.component)->attr.alloc_comp;
5129 else if (last && last->u.c.component->ts.type == BT_DERIVED)
5130 return last->u.c.component->ts.u.derived->attr.alloc_comp;
5131 else if (last)
5132 return false;
5133
5134 if (e->ts.type == BT_CLASS)
5135 return CLASS_DATA (e)->attr.alloc_comp;
5136 else if (e->ts.type == BT_DERIVED)
5137 return e->ts.u.derived->attr.alloc_comp;
5138 else
5139 return false;
5140 }
5141
5142
5143 /* Check whether the expression has an pointer component.
5144 Being itself a pointer does not count. */
5145 bool
5146 gfc_has_ultimate_pointer (gfc_expr *e)
5147 {
5148 gfc_ref *ref, *last = NULL;
5149
5150 if (e->expr_type != EXPR_VARIABLE)
5151 return false;
5152
5153 for (ref = e->ref; ref; ref = ref->next)
5154 if (ref->type == REF_COMPONENT)
5155 last = ref;
5156
5157 if (last && last->u.c.component->ts.type == BT_CLASS)
5158 return CLASS_DATA (last->u.c.component)->attr.pointer_comp;
5159 else if (last && last->u.c.component->ts.type == BT_DERIVED)
5160 return last->u.c.component->ts.u.derived->attr.pointer_comp;
5161 else if (last)
5162 return false;
5163
5164 if (e->ts.type == BT_CLASS)
5165 return CLASS_DATA (e)->attr.pointer_comp;
5166 else if (e->ts.type == BT_DERIVED)
5167 return e->ts.u.derived->attr.pointer_comp;
5168 else
5169 return false;
5170 }
5171
5172
5173 /* Check whether an expression is "simply contiguous", cf. F2008, 6.5.4.
5174 Note: A scalar is not regarded as "simply contiguous" by the standard.
5175 if bool is not strict, some further checks are done - for instance,
5176 a "(::1)" is accepted. */
5177
5178 bool
5179 gfc_is_simply_contiguous (gfc_expr *expr, bool strict, bool permit_element)
5180 {
5181 bool colon;
5182 int i;
5183 gfc_array_ref *ar = NULL;
5184 gfc_ref *ref, *part_ref = NULL;
5185 gfc_symbol *sym;
5186
5187 if (expr->expr_type == EXPR_FUNCTION)
5188 return expr->value.function.esym
5189 ? expr->value.function.esym->result->attr.contiguous : false;
5190 else if (expr->expr_type != EXPR_VARIABLE)
5191 return false;
5192
5193 if (!permit_element && expr->rank == 0)
5194 return false;
5195
5196 for (ref = expr->ref; ref; ref = ref->next)
5197 {
5198 if (ar)
5199 return false; /* Array shall be last part-ref. */
5200
5201 if (ref->type == REF_COMPONENT)
5202 part_ref = ref;
5203 else if (ref->type == REF_SUBSTRING)
5204 return false;
5205 else if (ref->u.ar.type != AR_ELEMENT)
5206 ar = &ref->u.ar;
5207 }
5208
5209 sym = expr->symtree->n.sym;
5210 if (expr->ts.type != BT_CLASS
5211 && ((part_ref
5212 && !part_ref->u.c.component->attr.contiguous
5213 && part_ref->u.c.component->attr.pointer)
5214 || (!part_ref
5215 && !sym->attr.contiguous
5216 && (sym->attr.pointer
5217 || sym->as->type == AS_ASSUMED_RANK
5218 || sym->as->type == AS_ASSUMED_SHAPE))))
5219 return false;
5220
5221 if (!ar || ar->type == AR_FULL)
5222 return true;
5223
5224 gcc_assert (ar->type == AR_SECTION);
5225
5226 /* Check for simply contiguous array */
5227 colon = true;
5228 for (i = 0; i < ar->dimen; i++)
5229 {
5230 if (ar->dimen_type[i] == DIMEN_VECTOR)
5231 return false;
5232
5233 if (ar->dimen_type[i] == DIMEN_ELEMENT)
5234 {
5235 colon = false;
5236 continue;
5237 }
5238
5239 gcc_assert (ar->dimen_type[i] == DIMEN_RANGE);
5240
5241
5242 /* If the previous section was not contiguous, that's an error,
5243 unless we have effective only one element and checking is not
5244 strict. */
5245 if (!colon && (strict || !ar->start[i] || !ar->end[i]
5246 || ar->start[i]->expr_type != EXPR_CONSTANT
5247 || ar->end[i]->expr_type != EXPR_CONSTANT
5248 || mpz_cmp (ar->start[i]->value.integer,
5249 ar->end[i]->value.integer) != 0))
5250 return false;
5251
5252 /* Following the standard, "(::1)" or - if known at compile time -
5253 "(lbound:ubound)" are not simply contiguous; if strict
5254 is false, they are regarded as simply contiguous. */
5255 if (ar->stride[i] && (strict || ar->stride[i]->expr_type != EXPR_CONSTANT
5256 || ar->stride[i]->ts.type != BT_INTEGER
5257 || mpz_cmp_si (ar->stride[i]->value.integer, 1) != 0))
5258 return false;
5259
5260 if (ar->start[i]
5261 && (strict || ar->start[i]->expr_type != EXPR_CONSTANT
5262 || !ar->as->lower[i]
5263 || ar->as->lower[i]->expr_type != EXPR_CONSTANT
5264 || mpz_cmp (ar->start[i]->value.integer,
5265 ar->as->lower[i]->value.integer) != 0))
5266 colon = false;
5267
5268 if (ar->end[i]
5269 && (strict || ar->end[i]->expr_type != EXPR_CONSTANT
5270 || !ar->as->upper[i]
5271 || ar->as->upper[i]->expr_type != EXPR_CONSTANT
5272 || mpz_cmp (ar->end[i]->value.integer,
5273 ar->as->upper[i]->value.integer) != 0))
5274 colon = false;
5275 }
5276
5277 return true;
5278 }
5279
5280
5281 /* Build call to an intrinsic procedure. The number of arguments has to be
5282 passed (rather than ending the list with a NULL value) because we may
5283 want to add arguments but with a NULL-expression. */
5284
5285 gfc_expr*
5286 gfc_build_intrinsic_call (gfc_namespace *ns, gfc_isym_id id, const char* name,
5287 locus where, unsigned numarg, ...)
5288 {
5289 gfc_expr* result;
5290 gfc_actual_arglist* atail;
5291 gfc_intrinsic_sym* isym;
5292 va_list ap;
5293 unsigned i;
5294 const char *mangled_name = gfc_get_string (GFC_PREFIX ("%s"), name);
5295
5296 isym = gfc_intrinsic_function_by_id (id);
5297 gcc_assert (isym);
5298
5299 result = gfc_get_expr ();
5300 result->expr_type = EXPR_FUNCTION;
5301 result->ts = isym->ts;
5302 result->where = where;
5303 result->value.function.name = mangled_name;
5304 result->value.function.isym = isym;
5305
5306 gfc_get_sym_tree (mangled_name, ns, &result->symtree, false);
5307 gfc_commit_symbol (result->symtree->n.sym);
5308 gcc_assert (result->symtree
5309 && (result->symtree->n.sym->attr.flavor == FL_PROCEDURE
5310 || result->symtree->n.sym->attr.flavor == FL_UNKNOWN));
5311 result->symtree->n.sym->intmod_sym_id = id;
5312 result->symtree->n.sym->attr.flavor = FL_PROCEDURE;
5313 result->symtree->n.sym->attr.intrinsic = 1;
5314 result->symtree->n.sym->attr.artificial = 1;
5315
5316 va_start (ap, numarg);
5317 atail = NULL;
5318 for (i = 0; i < numarg; ++i)
5319 {
5320 if (atail)
5321 {
5322 atail->next = gfc_get_actual_arglist ();
5323 atail = atail->next;
5324 }
5325 else
5326 atail = result->value.function.actual = gfc_get_actual_arglist ();
5327
5328 atail->expr = va_arg (ap, gfc_expr*);
5329 }
5330 va_end (ap);
5331
5332 return result;
5333 }
5334
5335
5336 /* Check if an expression may appear in a variable definition context
5337 (F2008, 16.6.7) or pointer association context (F2008, 16.6.8).
5338 This is called from the various places when resolving
5339 the pieces that make up such a context.
5340 If own_scope is true (applies to, e.g., ac-implied-do/data-implied-do
5341 variables), some checks are not performed.
5342
5343 Optionally, a possible error message can be suppressed if context is NULL
5344 and just the return status (true / false) be requested. */
5345
5346 bool
5347 gfc_check_vardef_context (gfc_expr* e, bool pointer, bool alloc_obj,
5348 bool own_scope, const char* context)
5349 {
5350 gfc_symbol* sym = NULL;
5351 bool is_pointer;
5352 bool check_intentin;
5353 bool ptr_component;
5354 symbol_attribute attr;
5355 gfc_ref* ref;
5356 int i;
5357
5358 if (e->expr_type == EXPR_VARIABLE)
5359 {
5360 gcc_assert (e->symtree);
5361 sym = e->symtree->n.sym;
5362 }
5363 else if (e->expr_type == EXPR_FUNCTION)
5364 {
5365 gcc_assert (e->symtree);
5366 sym = e->value.function.esym ? e->value.function.esym : e->symtree->n.sym;
5367 }
5368
5369 attr = gfc_expr_attr (e);
5370 if (!pointer && e->expr_type == EXPR_FUNCTION && attr.pointer)
5371 {
5372 if (!(gfc_option.allow_std & GFC_STD_F2008))
5373 {
5374 if (context)
5375 gfc_error ("Fortran 2008: Pointer functions in variable definition"
5376 " context (%s) at %L", context, &e->where);
5377 return false;
5378 }
5379 }
5380 else if (e->expr_type != EXPR_VARIABLE)
5381 {
5382 if (context)
5383 gfc_error ("Non-variable expression in variable definition context (%s)"
5384 " at %L", context, &e->where);
5385 return false;
5386 }
5387
5388 if (!pointer && sym->attr.flavor == FL_PARAMETER)
5389 {
5390 if (context)
5391 gfc_error ("Named constant %qs in variable definition context (%s)"
5392 " at %L", sym->name, context, &e->where);
5393 return false;
5394 }
5395 if (!pointer && sym->attr.flavor != FL_VARIABLE
5396 && !(sym->attr.flavor == FL_PROCEDURE && sym == sym->result)
5397 && !(sym->attr.flavor == FL_PROCEDURE && sym->attr.proc_pointer))
5398 {
5399 if (context)
5400 gfc_error ("%qs in variable definition context (%s) at %L is not"
5401 " a variable", sym->name, context, &e->where);
5402 return false;
5403 }
5404
5405 /* Find out whether the expr is a pointer; this also means following
5406 component references to the last one. */
5407 is_pointer = (attr.pointer || attr.proc_pointer);
5408 if (pointer && !is_pointer)
5409 {
5410 if (context)
5411 gfc_error ("Non-POINTER in pointer association context (%s)"
5412 " at %L", context, &e->where);
5413 return false;
5414 }
5415
5416 if (e->ts.type == BT_DERIVED
5417 && e->ts.u.derived == NULL)
5418 {
5419 if (context)
5420 gfc_error ("Type inaccessible in variable definition context (%s) "
5421 "at %L", context, &e->where);
5422 return false;
5423 }
5424
5425 /* F2008, C1303. */
5426 if (!alloc_obj
5427 && (attr.lock_comp
5428 || (e->ts.type == BT_DERIVED
5429 && e->ts.u.derived->from_intmod == INTMOD_ISO_FORTRAN_ENV
5430 && e->ts.u.derived->intmod_sym_id == ISOFORTRAN_LOCK_TYPE)))
5431 {
5432 if (context)
5433 gfc_error ("LOCK_TYPE in variable definition context (%s) at %L",
5434 context, &e->where);
5435 return false;
5436 }
5437
5438 /* TS18508, C702/C203. */
5439 if (!alloc_obj
5440 && (attr.lock_comp
5441 || (e->ts.type == BT_DERIVED
5442 && e->ts.u.derived->from_intmod == INTMOD_ISO_FORTRAN_ENV
5443 && e->ts.u.derived->intmod_sym_id == ISOFORTRAN_EVENT_TYPE)))
5444 {
5445 if (context)
5446 gfc_error ("LOCK_EVENT in variable definition context (%s) at %L",
5447 context, &e->where);
5448 return false;
5449 }
5450
5451 /* INTENT(IN) dummy argument. Check this, unless the object itself is the
5452 component of sub-component of a pointer; we need to distinguish
5453 assignment to a pointer component from pointer-assignment to a pointer
5454 component. Note that (normal) assignment to procedure pointers is not
5455 possible. */
5456 check_intentin = !own_scope;
5457 ptr_component = (sym->ts.type == BT_CLASS && sym->ts.u.derived
5458 && CLASS_DATA (sym))
5459 ? CLASS_DATA (sym)->attr.class_pointer : sym->attr.pointer;
5460 for (ref = e->ref; ref && check_intentin; ref = ref->next)
5461 {
5462 if (ptr_component && ref->type == REF_COMPONENT)
5463 check_intentin = false;
5464 if (ref->type == REF_COMPONENT && ref->u.c.component->attr.pointer)
5465 {
5466 ptr_component = true;
5467 if (!pointer)
5468 check_intentin = false;
5469 }
5470 }
5471 if (check_intentin && sym->attr.intent == INTENT_IN)
5472 {
5473 if (pointer && is_pointer)
5474 {
5475 if (context)
5476 gfc_error ("Dummy argument %qs with INTENT(IN) in pointer"
5477 " association context (%s) at %L",
5478 sym->name, context, &e->where);
5479 return false;
5480 }
5481 if (!pointer && !is_pointer && !sym->attr.pointer)
5482 {
5483 if (context)
5484 gfc_error ("Dummy argument %qs with INTENT(IN) in variable"
5485 " definition context (%s) at %L",
5486 sym->name, context, &e->where);
5487 return false;
5488 }
5489 }
5490
5491 /* PROTECTED and use-associated. */
5492 if (sym->attr.is_protected && sym->attr.use_assoc && check_intentin)
5493 {
5494 if (pointer && is_pointer)
5495 {
5496 if (context)
5497 gfc_error ("Variable %qs is PROTECTED and can not appear in a"
5498 " pointer association context (%s) at %L",
5499 sym->name, context, &e->where);
5500 return false;
5501 }
5502 if (!pointer && !is_pointer)
5503 {
5504 if (context)
5505 gfc_error ("Variable %qs is PROTECTED and can not appear in a"
5506 " variable definition context (%s) at %L",
5507 sym->name, context, &e->where);
5508 return false;
5509 }
5510 }
5511
5512 /* Variable not assignable from a PURE procedure but appears in
5513 variable definition context. */
5514 if (!pointer && !own_scope && gfc_pure (NULL) && gfc_impure_variable (sym))
5515 {
5516 if (context)
5517 gfc_error ("Variable %qs can not appear in a variable definition"
5518 " context (%s) at %L in PURE procedure",
5519 sym->name, context, &e->where);
5520 return false;
5521 }
5522
5523 if (!pointer && context && gfc_implicit_pure (NULL)
5524 && gfc_impure_variable (sym))
5525 {
5526 gfc_namespace *ns;
5527 gfc_symbol *sym;
5528
5529 for (ns = gfc_current_ns; ns; ns = ns->parent)
5530 {
5531 sym = ns->proc_name;
5532 if (sym == NULL)
5533 break;
5534 if (sym->attr.flavor == FL_PROCEDURE)
5535 {
5536 sym->attr.implicit_pure = 0;
5537 break;
5538 }
5539 }
5540 }
5541 /* Check variable definition context for associate-names. */
5542 if (!pointer && sym->assoc)
5543 {
5544 const char* name;
5545 gfc_association_list* assoc;
5546
5547 gcc_assert (sym->assoc->target);
5548
5549 /* If this is a SELECT TYPE temporary (the association is used internally
5550 for SELECT TYPE), silently go over to the target. */
5551 if (sym->attr.select_type_temporary)
5552 {
5553 gfc_expr* t = sym->assoc->target;
5554
5555 gcc_assert (t->expr_type == EXPR_VARIABLE);
5556 name = t->symtree->name;
5557
5558 if (t->symtree->n.sym->assoc)
5559 assoc = t->symtree->n.sym->assoc;
5560 else
5561 assoc = sym->assoc;
5562 }
5563 else
5564 {
5565 name = sym->name;
5566 assoc = sym->assoc;
5567 }
5568 gcc_assert (name && assoc);
5569
5570 /* Is association to a valid variable? */
5571 if (!assoc->variable)
5572 {
5573 if (context)
5574 {
5575 if (assoc->target->expr_type == EXPR_VARIABLE)
5576 gfc_error ("%qs at %L associated to vector-indexed target can"
5577 " not be used in a variable definition context (%s)",
5578 name, &e->where, context);
5579 else
5580 gfc_error ("%qs at %L associated to expression can"
5581 " not be used in a variable definition context (%s)",
5582 name, &e->where, context);
5583 }
5584 return false;
5585 }
5586
5587 /* Target must be allowed to appear in a variable definition context. */
5588 if (!gfc_check_vardef_context (assoc->target, pointer, false, false, NULL))
5589 {
5590 if (context)
5591 gfc_error ("Associate-name %qs can not appear in a variable"
5592 " definition context (%s) at %L because its target"
5593 " at %L can not, either",
5594 name, context, &e->where,
5595 &assoc->target->where);
5596 return false;
5597 }
5598 }
5599
5600 /* Check for same value in vector expression subscript. */
5601
5602 if (e->rank > 0)
5603 for (ref = e->ref; ref != NULL; ref = ref->next)
5604 if (ref->type == REF_ARRAY && ref->u.ar.type == AR_SECTION)
5605 for (i = 0; i < GFC_MAX_DIMENSIONS
5606 && ref->u.ar.dimen_type[i] != 0; i++)
5607 if (ref->u.ar.dimen_type[i] == DIMEN_VECTOR)
5608 {
5609 gfc_expr *arr = ref->u.ar.start[i];
5610 if (arr->expr_type == EXPR_ARRAY)
5611 {
5612 gfc_constructor *c, *n;
5613 gfc_expr *ec, *en;
5614
5615 for (c = gfc_constructor_first (arr->value.constructor);
5616 c != NULL; c = gfc_constructor_next (c))
5617 {
5618 if (c == NULL || c->iterator != NULL)
5619 continue;
5620
5621 ec = c->expr;
5622
5623 for (n = gfc_constructor_next (c); n != NULL;
5624 n = gfc_constructor_next (n))
5625 {
5626 if (n->iterator != NULL)
5627 continue;
5628
5629 en = n->expr;
5630 if (gfc_dep_compare_expr (ec, en) == 0)
5631 {
5632 if (context)
5633 gfc_error_now ("Elements with the same value "
5634 "at %L and %L in vector "
5635 "subscript in a variable "
5636 "definition context (%s)",
5637 &(ec->where), &(en->where),
5638 context);
5639 return false;
5640 }
5641 }
5642 }
5643 }
5644 }
5645
5646 return true;
5647 }