comparison gcc/fortran/interface.c @ 111:04ced10e8804

gcc 7
author kono
date Fri, 27 Oct 2017 22:46:09 +0900
parents
children 84e7813d76e9
comparison
equal deleted inserted replaced
68:561a7518be6b 111:04ced10e8804
1 /* Deal with interfaces.
2 Copyright (C) 2000-2017 Free Software Foundation, Inc.
3 Contributed by Andy Vaught
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21
22 /* Deal with interfaces. An explicit interface is represented as a
23 singly linked list of formal argument structures attached to the
24 relevant symbols. For an implicit interface, the arguments don't
25 point to symbols. Explicit interfaces point to namespaces that
26 contain the symbols within that interface.
27
28 Implicit interfaces are linked together in a singly linked list
29 along the next_if member of symbol nodes. Since a particular
30 symbol can only have a single explicit interface, the symbol cannot
31 be part of multiple lists and a single next-member suffices.
32
33 This is not the case for general classes, though. An operator
34 definition is independent of just about all other uses and has it's
35 own head pointer.
36
37 Nameless interfaces:
38 Nameless interfaces create symbols with explicit interfaces within
39 the current namespace. They are otherwise unlinked.
40
41 Generic interfaces:
42 The generic name points to a linked list of symbols. Each symbol
43 has an explicit interface. Each explicit interface has its own
44 namespace containing the arguments. Module procedures are symbols in
45 which the interface is added later when the module procedure is parsed.
46
47 User operators:
48 User-defined operators are stored in a their own set of symtrees
49 separate from regular symbols. The symtrees point to gfc_user_op
50 structures which in turn head up a list of relevant interfaces.
51
52 Extended intrinsics and assignment:
53 The head of these interface lists are stored in the containing namespace.
54
55 Implicit interfaces:
56 An implicit interface is represented as a singly linked list of
57 formal argument list structures that don't point to any symbol
58 nodes -- they just contain types.
59
60
61 When a subprogram is defined, the program unit's name points to an
62 interface as usual, but the link to the namespace is NULL and the
63 formal argument list points to symbols within the same namespace as
64 the program unit name. */
65
66 #include "config.h"
67 #include "system.h"
68 #include "coretypes.h"
69 #include "options.h"
70 #include "gfortran.h"
71 #include "match.h"
72 #include "arith.h"
73
74 /* The current_interface structure holds information about the
75 interface currently being parsed. This structure is saved and
76 restored during recursive interfaces. */
77
78 gfc_interface_info current_interface;
79
80
81 /* Free a singly linked list of gfc_interface structures. */
82
83 void
84 gfc_free_interface (gfc_interface *intr)
85 {
86 gfc_interface *next;
87
88 for (; intr; intr = next)
89 {
90 next = intr->next;
91 free (intr);
92 }
93 }
94
95
96 /* Change the operators unary plus and minus into binary plus and
97 minus respectively, leaving the rest unchanged. */
98
99 static gfc_intrinsic_op
100 fold_unary_intrinsic (gfc_intrinsic_op op)
101 {
102 switch (op)
103 {
104 case INTRINSIC_UPLUS:
105 op = INTRINSIC_PLUS;
106 break;
107 case INTRINSIC_UMINUS:
108 op = INTRINSIC_MINUS;
109 break;
110 default:
111 break;
112 }
113
114 return op;
115 }
116
117
118 /* Return the operator depending on the DTIO moded string. Note that
119 these are not operators in the normal sense and so have been placed
120 beyond GFC_INTRINSIC_END in gfortran.h:enum gfc_intrinsic_op. */
121
122 static gfc_intrinsic_op
123 dtio_op (char* mode)
124 {
125 if (strncmp (mode, "formatted", 9) == 0)
126 return INTRINSIC_FORMATTED;
127 if (strncmp (mode, "unformatted", 9) == 0)
128 return INTRINSIC_UNFORMATTED;
129 return INTRINSIC_NONE;
130 }
131
132
133 /* Match a generic specification. Depending on which type of
134 interface is found, the 'name' or 'op' pointers may be set.
135 This subroutine doesn't return MATCH_NO. */
136
137 match
138 gfc_match_generic_spec (interface_type *type,
139 char *name,
140 gfc_intrinsic_op *op)
141 {
142 char buffer[GFC_MAX_SYMBOL_LEN + 1];
143 match m;
144 gfc_intrinsic_op i;
145
146 if (gfc_match (" assignment ( = )") == MATCH_YES)
147 {
148 *type = INTERFACE_INTRINSIC_OP;
149 *op = INTRINSIC_ASSIGN;
150 return MATCH_YES;
151 }
152
153 if (gfc_match (" operator ( %o )", &i) == MATCH_YES)
154 { /* Operator i/f */
155 *type = INTERFACE_INTRINSIC_OP;
156 *op = fold_unary_intrinsic (i);
157 return MATCH_YES;
158 }
159
160 *op = INTRINSIC_NONE;
161 if (gfc_match (" operator ( ") == MATCH_YES)
162 {
163 m = gfc_match_defined_op_name (buffer, 1);
164 if (m == MATCH_NO)
165 goto syntax;
166 if (m != MATCH_YES)
167 return MATCH_ERROR;
168
169 m = gfc_match_char (')');
170 if (m == MATCH_NO)
171 goto syntax;
172 if (m != MATCH_YES)
173 return MATCH_ERROR;
174
175 strcpy (name, buffer);
176 *type = INTERFACE_USER_OP;
177 return MATCH_YES;
178 }
179
180 if (gfc_match (" read ( %n )", buffer) == MATCH_YES)
181 {
182 *op = dtio_op (buffer);
183 if (*op == INTRINSIC_FORMATTED)
184 {
185 strcpy (name, gfc_code2string (dtio_procs, DTIO_RF));
186 *type = INTERFACE_DTIO;
187 }
188 if (*op == INTRINSIC_UNFORMATTED)
189 {
190 strcpy (name, gfc_code2string (dtio_procs, DTIO_RUF));
191 *type = INTERFACE_DTIO;
192 }
193 if (*op != INTRINSIC_NONE)
194 return MATCH_YES;
195 }
196
197 if (gfc_match (" write ( %n )", buffer) == MATCH_YES)
198 {
199 *op = dtio_op (buffer);
200 if (*op == INTRINSIC_FORMATTED)
201 {
202 strcpy (name, gfc_code2string (dtio_procs, DTIO_WF));
203 *type = INTERFACE_DTIO;
204 }
205 if (*op == INTRINSIC_UNFORMATTED)
206 {
207 strcpy (name, gfc_code2string (dtio_procs, DTIO_WUF));
208 *type = INTERFACE_DTIO;
209 }
210 if (*op != INTRINSIC_NONE)
211 return MATCH_YES;
212 }
213
214 if (gfc_match_name (buffer) == MATCH_YES)
215 {
216 strcpy (name, buffer);
217 *type = INTERFACE_GENERIC;
218 return MATCH_YES;
219 }
220
221 *type = INTERFACE_NAMELESS;
222 return MATCH_YES;
223
224 syntax:
225 gfc_error ("Syntax error in generic specification at %C");
226 return MATCH_ERROR;
227 }
228
229
230 /* Match one of the five F95 forms of an interface statement. The
231 matcher for the abstract interface follows. */
232
233 match
234 gfc_match_interface (void)
235 {
236 char name[GFC_MAX_SYMBOL_LEN + 1];
237 interface_type type;
238 gfc_symbol *sym;
239 gfc_intrinsic_op op;
240 match m;
241
242 m = gfc_match_space ();
243
244 if (gfc_match_generic_spec (&type, name, &op) == MATCH_ERROR)
245 return MATCH_ERROR;
246
247 /* If we're not looking at the end of the statement now, or if this
248 is not a nameless interface but we did not see a space, punt. */
249 if (gfc_match_eos () != MATCH_YES
250 || (type != INTERFACE_NAMELESS && m != MATCH_YES))
251 {
252 gfc_error ("Syntax error: Trailing garbage in INTERFACE statement "
253 "at %C");
254 return MATCH_ERROR;
255 }
256
257 current_interface.type = type;
258
259 switch (type)
260 {
261 case INTERFACE_DTIO:
262 case INTERFACE_GENERIC:
263 if (gfc_get_symbol (name, NULL, &sym))
264 return MATCH_ERROR;
265
266 if (!sym->attr.generic
267 && !gfc_add_generic (&sym->attr, sym->name, NULL))
268 return MATCH_ERROR;
269
270 if (sym->attr.dummy)
271 {
272 gfc_error ("Dummy procedure %qs at %C cannot have a "
273 "generic interface", sym->name);
274 return MATCH_ERROR;
275 }
276
277 current_interface.sym = gfc_new_block = sym;
278 break;
279
280 case INTERFACE_USER_OP:
281 current_interface.uop = gfc_get_uop (name);
282 break;
283
284 case INTERFACE_INTRINSIC_OP:
285 current_interface.op = op;
286 break;
287
288 case INTERFACE_NAMELESS:
289 case INTERFACE_ABSTRACT:
290 break;
291 }
292
293 return MATCH_YES;
294 }
295
296
297
298 /* Match a F2003 abstract interface. */
299
300 match
301 gfc_match_abstract_interface (void)
302 {
303 match m;
304
305 if (!gfc_notify_std (GFC_STD_F2003, "ABSTRACT INTERFACE at %C"))
306 return MATCH_ERROR;
307
308 m = gfc_match_eos ();
309
310 if (m != MATCH_YES)
311 {
312 gfc_error ("Syntax error in ABSTRACT INTERFACE statement at %C");
313 return MATCH_ERROR;
314 }
315
316 current_interface.type = INTERFACE_ABSTRACT;
317
318 return m;
319 }
320
321
322 /* Match the different sort of generic-specs that can be present after
323 the END INTERFACE itself. */
324
325 match
326 gfc_match_end_interface (void)
327 {
328 char name[GFC_MAX_SYMBOL_LEN + 1];
329 interface_type type;
330 gfc_intrinsic_op op;
331 match m;
332
333 m = gfc_match_space ();
334
335 if (gfc_match_generic_spec (&type, name, &op) == MATCH_ERROR)
336 return MATCH_ERROR;
337
338 /* If we're not looking at the end of the statement now, or if this
339 is not a nameless interface but we did not see a space, punt. */
340 if (gfc_match_eos () != MATCH_YES
341 || (type != INTERFACE_NAMELESS && m != MATCH_YES))
342 {
343 gfc_error ("Syntax error: Trailing garbage in END INTERFACE "
344 "statement at %C");
345 return MATCH_ERROR;
346 }
347
348 m = MATCH_YES;
349
350 switch (current_interface.type)
351 {
352 case INTERFACE_NAMELESS:
353 case INTERFACE_ABSTRACT:
354 if (type != INTERFACE_NAMELESS)
355 {
356 gfc_error ("Expected a nameless interface at %C");
357 m = MATCH_ERROR;
358 }
359
360 break;
361
362 case INTERFACE_INTRINSIC_OP:
363 if (type != current_interface.type || op != current_interface.op)
364 {
365
366 if (current_interface.op == INTRINSIC_ASSIGN)
367 {
368 m = MATCH_ERROR;
369 gfc_error ("Expected %<END INTERFACE ASSIGNMENT (=)%> at %C");
370 }
371 else
372 {
373 const char *s1, *s2;
374 s1 = gfc_op2string (current_interface.op);
375 s2 = gfc_op2string (op);
376
377 /* The following if-statements are used to enforce C1202
378 from F2003. */
379 if ((strcmp(s1, "==") == 0 && strcmp (s2, ".eq.") == 0)
380 || (strcmp(s1, ".eq.") == 0 && strcmp (s2, "==") == 0))
381 break;
382 if ((strcmp(s1, "/=") == 0 && strcmp (s2, ".ne.") == 0)
383 || (strcmp(s1, ".ne.") == 0 && strcmp (s2, "/=") == 0))
384 break;
385 if ((strcmp(s1, "<=") == 0 && strcmp (s2, ".le.") == 0)
386 || (strcmp(s1, ".le.") == 0 && strcmp (s2, "<=") == 0))
387 break;
388 if ((strcmp(s1, "<") == 0 && strcmp (s2, ".lt.") == 0)
389 || (strcmp(s1, ".lt.") == 0 && strcmp (s2, "<") == 0))
390 break;
391 if ((strcmp(s1, ">=") == 0 && strcmp (s2, ".ge.") == 0)
392 || (strcmp(s1, ".ge.") == 0 && strcmp (s2, ">=") == 0))
393 break;
394 if ((strcmp(s1, ">") == 0 && strcmp (s2, ".gt.") == 0)
395 || (strcmp(s1, ".gt.") == 0 && strcmp (s2, ">") == 0))
396 break;
397
398 m = MATCH_ERROR;
399 if (strcmp(s2, "none") == 0)
400 gfc_error ("Expecting %<END INTERFACE OPERATOR (%s)%> "
401 "at %C", s1);
402 else
403 gfc_error ("Expecting %<END INTERFACE OPERATOR (%s)%> at %C, "
404 "but got %qs", s1, s2);
405 }
406
407 }
408
409 break;
410
411 case INTERFACE_USER_OP:
412 /* Comparing the symbol node names is OK because only use-associated
413 symbols can be renamed. */
414 if (type != current_interface.type
415 || strcmp (current_interface.uop->name, name) != 0)
416 {
417 gfc_error ("Expecting %<END INTERFACE OPERATOR (.%s.)%> at %C",
418 current_interface.uop->name);
419 m = MATCH_ERROR;
420 }
421
422 break;
423
424 case INTERFACE_DTIO:
425 case INTERFACE_GENERIC:
426 if (type != current_interface.type
427 || strcmp (current_interface.sym->name, name) != 0)
428 {
429 gfc_error ("Expecting %<END INTERFACE %s%> at %C",
430 current_interface.sym->name);
431 m = MATCH_ERROR;
432 }
433
434 break;
435 }
436
437 return m;
438 }
439
440
441 /* Return whether the component was defined anonymously. */
442
443 static bool
444 is_anonymous_component (gfc_component *cmp)
445 {
446 /* Only UNION and MAP components are anonymous. In the case of a MAP,
447 the derived type symbol is FL_STRUCT and the component name looks like mM*.
448 This is the only case in which the second character of a component name is
449 uppercase. */
450 return cmp->ts.type == BT_UNION
451 || (cmp->ts.type == BT_DERIVED
452 && cmp->ts.u.derived->attr.flavor == FL_STRUCT
453 && cmp->name[0] && cmp->name[1] && ISUPPER (cmp->name[1]));
454 }
455
456
457 /* Return whether the derived type was defined anonymously. */
458
459 static bool
460 is_anonymous_dt (gfc_symbol *derived)
461 {
462 /* UNION and MAP types are always anonymous. Otherwise, only nested STRUCTURE
463 types can be anonymous. For anonymous MAP/STRUCTURE, we have FL_STRUCT
464 and the type name looks like XX*. This is the only case in which the
465 second character of a type name is uppercase. */
466 return derived->attr.flavor == FL_UNION
467 || (derived->attr.flavor == FL_STRUCT
468 && derived->name[0] && derived->name[1] && ISUPPER (derived->name[1]));
469 }
470
471
472 /* Compare components according to 4.4.2 of the Fortran standard. */
473
474 static bool
475 compare_components (gfc_component *cmp1, gfc_component *cmp2,
476 gfc_symbol *derived1, gfc_symbol *derived2)
477 {
478 /* Compare names, but not for anonymous components such as UNION or MAP. */
479 if (!is_anonymous_component (cmp1) && !is_anonymous_component (cmp2)
480 && strcmp (cmp1->name, cmp2->name) != 0)
481 return false;
482
483 if (cmp1->attr.access != cmp2->attr.access)
484 return false;
485
486 if (cmp1->attr.pointer != cmp2->attr.pointer)
487 return false;
488
489 if (cmp1->attr.dimension != cmp2->attr.dimension)
490 return false;
491
492 if (cmp1->attr.allocatable != cmp2->attr.allocatable)
493 return false;
494
495 if (cmp1->attr.dimension && gfc_compare_array_spec (cmp1->as, cmp2->as) == 0)
496 return false;
497
498 if (cmp1->ts.type == BT_CHARACTER && cmp2->ts.type == BT_CHARACTER)
499 {
500 gfc_charlen *l1 = cmp1->ts.u.cl;
501 gfc_charlen *l2 = cmp2->ts.u.cl;
502 if (l1 && l2 && l1->length && l2->length
503 && l1->length->expr_type == EXPR_CONSTANT
504 && l2->length->expr_type == EXPR_CONSTANT
505 && gfc_dep_compare_expr (l1->length, l2->length) != 0)
506 return false;
507 }
508
509 /* Make sure that link lists do not put this function into an
510 endless recursive loop! */
511 if (!(cmp1->ts.type == BT_DERIVED && derived1 == cmp1->ts.u.derived)
512 && !(cmp2->ts.type == BT_DERIVED && derived2 == cmp2->ts.u.derived)
513 && !gfc_compare_types (&cmp1->ts, &cmp2->ts))
514 return false;
515
516 else if ( (cmp1->ts.type == BT_DERIVED && derived1 == cmp1->ts.u.derived)
517 && !(cmp2->ts.type == BT_DERIVED && derived2 == cmp2->ts.u.derived))
518 return false;
519
520 else if (!(cmp1->ts.type == BT_DERIVED && derived1 == cmp1->ts.u.derived)
521 && (cmp2->ts.type == BT_DERIVED && derived2 == cmp2->ts.u.derived))
522 return false;
523
524 return true;
525 }
526
527
528 /* Compare two union types by comparing the components of their maps.
529 Because unions and maps are anonymous their types get special internal
530 names; therefore the usual derived type comparison will fail on them.
531
532 Returns nonzero if equal, as with gfc_compare_derived_types. Also as with
533 gfc_compare_derived_types, 'equal' is closer to meaning 'duplicate
534 definitions' than 'equivalent structure'. */
535
536 static bool
537 compare_union_types (gfc_symbol *un1, gfc_symbol *un2)
538 {
539 gfc_component *map1, *map2, *cmp1, *cmp2;
540 gfc_symbol *map1_t, *map2_t;
541
542 if (un1->attr.flavor != FL_UNION || un2->attr.flavor != FL_UNION)
543 return false;
544
545 if (un1->attr.zero_comp != un2->attr.zero_comp)
546 return false;
547
548 if (un1->attr.zero_comp)
549 return true;
550
551 map1 = un1->components;
552 map2 = un2->components;
553
554 /* In terms of 'equality' here we are worried about types which are
555 declared the same in two places, not types that represent equivalent
556 structures. (This is common because of FORTRAN's weird scoping rules.)
557 Though two unions with their maps in different orders could be equivalent,
558 we will say they are not equal for the purposes of this test; therefore
559 we compare the maps sequentially. */
560 for (;;)
561 {
562 map1_t = map1->ts.u.derived;
563 map2_t = map2->ts.u.derived;
564
565 cmp1 = map1_t->components;
566 cmp2 = map2_t->components;
567
568 /* Protect against null components. */
569 if (map1_t->attr.zero_comp != map2_t->attr.zero_comp)
570 return false;
571
572 if (map1_t->attr.zero_comp)
573 return true;
574
575 for (;;)
576 {
577 /* No two fields will ever point to the same map type unless they are
578 the same component, because one map field is created with its type
579 declaration. Therefore don't worry about recursion here. */
580 /* TODO: worry about recursion into parent types of the unions? */
581 if (!compare_components (cmp1, cmp2, map1_t, map2_t))
582 return false;
583
584 cmp1 = cmp1->next;
585 cmp2 = cmp2->next;
586
587 if (cmp1 == NULL && cmp2 == NULL)
588 break;
589 if (cmp1 == NULL || cmp2 == NULL)
590 return false;
591 }
592
593 map1 = map1->next;
594 map2 = map2->next;
595
596 if (map1 == NULL && map2 == NULL)
597 break;
598 if (map1 == NULL || map2 == NULL)
599 return false;
600 }
601
602 return true;
603 }
604
605
606
607 /* Compare two derived types using the criteria in 4.4.2 of the standard,
608 recursing through gfc_compare_types for the components. */
609
610 bool
611 gfc_compare_derived_types (gfc_symbol *derived1, gfc_symbol *derived2)
612 {
613 gfc_component *cmp1, *cmp2;
614
615 if (derived1 == derived2)
616 return true;
617
618 if (!derived1 || !derived2)
619 gfc_internal_error ("gfc_compare_derived_types: invalid derived type");
620
621 /* Compare UNION types specially. */
622 if (derived1->attr.flavor == FL_UNION || derived2->attr.flavor == FL_UNION)
623 return compare_union_types (derived1, derived2);
624
625 /* Special case for comparing derived types across namespaces. If the
626 true names and module names are the same and the module name is
627 nonnull, then they are equal. */
628 if (strcmp (derived1->name, derived2->name) == 0
629 && derived1->module != NULL && derived2->module != NULL
630 && strcmp (derived1->module, derived2->module) == 0)
631 return true;
632
633 /* Compare type via the rules of the standard. Both types must have
634 the SEQUENCE or BIND(C) attribute to be equal. STRUCTUREs are special
635 because they can be anonymous; therefore two structures with different
636 names may be equal. */
637
638 /* Compare names, but not for anonymous types such as UNION or MAP. */
639 if (!is_anonymous_dt (derived1) && !is_anonymous_dt (derived2)
640 && strcmp (derived1->name, derived2->name) != 0)
641 return false;
642
643 if (derived1->component_access == ACCESS_PRIVATE
644 || derived2->component_access == ACCESS_PRIVATE)
645 return false;
646
647 if (!(derived1->attr.sequence && derived2->attr.sequence)
648 && !(derived1->attr.is_bind_c && derived2->attr.is_bind_c)
649 && !(derived1->attr.pdt_type && derived2->attr.pdt_type))
650 return false;
651
652 /* Protect against null components. */
653 if (derived1->attr.zero_comp != derived2->attr.zero_comp)
654 return false;
655
656 if (derived1->attr.zero_comp)
657 return true;
658
659 cmp1 = derived1->components;
660 cmp2 = derived2->components;
661
662 /* Since subtypes of SEQUENCE types must be SEQUENCE types as well, a
663 simple test can speed things up. Otherwise, lots of things have to
664 match. */
665 for (;;)
666 {
667 if (!compare_components (cmp1, cmp2, derived1, derived2))
668 return false;
669
670 cmp1 = cmp1->next;
671 cmp2 = cmp2->next;
672
673 if (cmp1 == NULL && cmp2 == NULL)
674 break;
675 if (cmp1 == NULL || cmp2 == NULL)
676 return false;
677 }
678
679 return true;
680 }
681
682
683 /* Compare two typespecs, recursively if necessary. */
684
685 bool
686 gfc_compare_types (gfc_typespec *ts1, gfc_typespec *ts2)
687 {
688 /* See if one of the typespecs is a BT_VOID, which is what is being used
689 to allow the funcs like c_f_pointer to accept any pointer type.
690 TODO: Possibly should narrow this to just the one typespec coming in
691 that is for the formal arg, but oh well. */
692 if (ts1->type == BT_VOID || ts2->type == BT_VOID)
693 return true;
694
695 /* The _data component is not always present, therefore check for its
696 presence before assuming, that its derived->attr is available.
697 When the _data component is not present, then nevertheless the
698 unlimited_polymorphic flag may be set in the derived type's attr. */
699 if (ts1->type == BT_CLASS && ts1->u.derived->components
700 && ((ts1->u.derived->attr.is_class
701 && ts1->u.derived->components->ts.u.derived->attr
702 .unlimited_polymorphic)
703 || ts1->u.derived->attr.unlimited_polymorphic))
704 return true;
705
706 /* F2003: C717 */
707 if (ts2->type == BT_CLASS && ts1->type == BT_DERIVED
708 && ts2->u.derived->components
709 && ((ts2->u.derived->attr.is_class
710 && ts2->u.derived->components->ts.u.derived->attr
711 .unlimited_polymorphic)
712 || ts2->u.derived->attr.unlimited_polymorphic)
713 && (ts1->u.derived->attr.sequence || ts1->u.derived->attr.is_bind_c))
714 return true;
715
716 if (ts1->type != ts2->type
717 && ((ts1->type != BT_DERIVED && ts1->type != BT_CLASS)
718 || (ts2->type != BT_DERIVED && ts2->type != BT_CLASS)))
719 return false;
720
721 if (ts1->type == BT_UNION)
722 return compare_union_types (ts1->u.derived, ts2->u.derived);
723
724 if (ts1->type != BT_DERIVED && ts1->type != BT_CLASS)
725 return (ts1->kind == ts2->kind);
726
727 /* Compare derived types. */
728 return gfc_type_compatible (ts1, ts2);
729 }
730
731
732 static bool
733 compare_type (gfc_symbol *s1, gfc_symbol *s2)
734 {
735 if (s2->attr.ext_attr & (1 << EXT_ATTR_NO_ARG_CHECK))
736 return true;
737
738 /* TYPE and CLASS of the same declared type are type compatible,
739 but have different characteristics. */
740 if ((s1->ts.type == BT_CLASS && s2->ts.type == BT_DERIVED)
741 || (s1->ts.type == BT_DERIVED && s2->ts.type == BT_CLASS))
742 return false;
743
744 return gfc_compare_types (&s1->ts, &s2->ts) || s2->ts.type == BT_ASSUMED;
745 }
746
747
748 static bool
749 compare_rank (gfc_symbol *s1, gfc_symbol *s2)
750 {
751 gfc_array_spec *as1, *as2;
752 int r1, r2;
753
754 if (s2->attr.ext_attr & (1 << EXT_ATTR_NO_ARG_CHECK))
755 return true;
756
757 as1 = (s1->ts.type == BT_CLASS) ? CLASS_DATA (s1)->as : s1->as;
758 as2 = (s2->ts.type == BT_CLASS) ? CLASS_DATA (s2)->as : s2->as;
759
760 r1 = as1 ? as1->rank : 0;
761 r2 = as2 ? as2->rank : 0;
762
763 if (r1 != r2 && (!as2 || as2->type != AS_ASSUMED_RANK))
764 return false; /* Ranks differ. */
765
766 return true;
767 }
768
769
770 /* Given two symbols that are formal arguments, compare their ranks
771 and types. Returns true if they have the same rank and type,
772 false otherwise. */
773
774 static bool
775 compare_type_rank (gfc_symbol *s1, gfc_symbol *s2)
776 {
777 return compare_type (s1, s2) && compare_rank (s1, s2);
778 }
779
780
781 /* Given two symbols that are formal arguments, compare their types
782 and rank and their formal interfaces if they are both dummy
783 procedures. Returns true if the same, false if different. */
784
785 static bool
786 compare_type_rank_if (gfc_symbol *s1, gfc_symbol *s2)
787 {
788 if (s1 == NULL || s2 == NULL)
789 return (s1 == s2);
790
791 if (s1 == s2)
792 return true;
793
794 if (s1->attr.flavor != FL_PROCEDURE && s2->attr.flavor != FL_PROCEDURE)
795 return compare_type_rank (s1, s2);
796
797 if (s1->attr.flavor != FL_PROCEDURE || s2->attr.flavor != FL_PROCEDURE)
798 return false;
799
800 /* At this point, both symbols are procedures. It can happen that
801 external procedures are compared, where one is identified by usage
802 to be a function or subroutine but the other is not. Check TKR
803 nonetheless for these cases. */
804 if (s1->attr.function == 0 && s1->attr.subroutine == 0)
805 return s1->attr.external ? compare_type_rank (s1, s2) : false;
806
807 if (s2->attr.function == 0 && s2->attr.subroutine == 0)
808 return s2->attr.external ? compare_type_rank (s1, s2) : false;
809
810 /* Now the type of procedure has been identified. */
811 if (s1->attr.function != s2->attr.function
812 || s1->attr.subroutine != s2->attr.subroutine)
813 return false;
814
815 if (s1->attr.function && !compare_type_rank (s1, s2))
816 return false;
817
818 /* Originally, gfortran recursed here to check the interfaces of passed
819 procedures. This is explicitly not required by the standard. */
820 return true;
821 }
822
823
824 /* Given a formal argument list and a keyword name, search the list
825 for that keyword. Returns the correct symbol node if found, NULL
826 if not found. */
827
828 static gfc_symbol *
829 find_keyword_arg (const char *name, gfc_formal_arglist *f)
830 {
831 for (; f; f = f->next)
832 if (strcmp (f->sym->name, name) == 0)
833 return f->sym;
834
835 return NULL;
836 }
837
838
839 /******** Interface checking subroutines **********/
840
841
842 /* Given an operator interface and the operator, make sure that all
843 interfaces for that operator are legal. */
844
845 bool
846 gfc_check_operator_interface (gfc_symbol *sym, gfc_intrinsic_op op,
847 locus opwhere)
848 {
849 gfc_formal_arglist *formal;
850 sym_intent i1, i2;
851 bt t1, t2;
852 int args, r1, r2, k1, k2;
853
854 gcc_assert (sym);
855
856 args = 0;
857 t1 = t2 = BT_UNKNOWN;
858 i1 = i2 = INTENT_UNKNOWN;
859 r1 = r2 = -1;
860 k1 = k2 = -1;
861
862 for (formal = gfc_sym_get_dummy_args (sym); formal; formal = formal->next)
863 {
864 gfc_symbol *fsym = formal->sym;
865 if (fsym == NULL)
866 {
867 gfc_error ("Alternate return cannot appear in operator "
868 "interface at %L", &sym->declared_at);
869 return false;
870 }
871 if (args == 0)
872 {
873 t1 = fsym->ts.type;
874 i1 = fsym->attr.intent;
875 r1 = (fsym->as != NULL) ? fsym->as->rank : 0;
876 k1 = fsym->ts.kind;
877 }
878 if (args == 1)
879 {
880 t2 = fsym->ts.type;
881 i2 = fsym->attr.intent;
882 r2 = (fsym->as != NULL) ? fsym->as->rank : 0;
883 k2 = fsym->ts.kind;
884 }
885 args++;
886 }
887
888 /* Only +, - and .not. can be unary operators.
889 .not. cannot be a binary operator. */
890 if (args == 0 || args > 2 || (args == 1 && op != INTRINSIC_PLUS
891 && op != INTRINSIC_MINUS
892 && op != INTRINSIC_NOT)
893 || (args == 2 && op == INTRINSIC_NOT))
894 {
895 if (op == INTRINSIC_ASSIGN)
896 gfc_error ("Assignment operator interface at %L must have "
897 "two arguments", &sym->declared_at);
898 else
899 gfc_error ("Operator interface at %L has the wrong number of arguments",
900 &sym->declared_at);
901 return false;
902 }
903
904 /* Check that intrinsics are mapped to functions, except
905 INTRINSIC_ASSIGN which should map to a subroutine. */
906 if (op == INTRINSIC_ASSIGN)
907 {
908 gfc_formal_arglist *dummy_args;
909
910 if (!sym->attr.subroutine)
911 {
912 gfc_error ("Assignment operator interface at %L must be "
913 "a SUBROUTINE", &sym->declared_at);
914 return false;
915 }
916
917 /* Allowed are (per F2003, 12.3.2.1.2 Defined assignments):
918 - First argument an array with different rank than second,
919 - First argument is a scalar and second an array,
920 - Types and kinds do not conform, or
921 - First argument is of derived type. */
922 dummy_args = gfc_sym_get_dummy_args (sym);
923 if (dummy_args->sym->ts.type != BT_DERIVED
924 && dummy_args->sym->ts.type != BT_CLASS
925 && (r2 == 0 || r1 == r2)
926 && (dummy_args->sym->ts.type == dummy_args->next->sym->ts.type
927 || (gfc_numeric_ts (&dummy_args->sym->ts)
928 && gfc_numeric_ts (&dummy_args->next->sym->ts))))
929 {
930 gfc_error ("Assignment operator interface at %L must not redefine "
931 "an INTRINSIC type assignment", &sym->declared_at);
932 return false;
933 }
934 }
935 else
936 {
937 if (!sym->attr.function)
938 {
939 gfc_error ("Intrinsic operator interface at %L must be a FUNCTION",
940 &sym->declared_at);
941 return false;
942 }
943 }
944
945 /* Check intents on operator interfaces. */
946 if (op == INTRINSIC_ASSIGN)
947 {
948 if (i1 != INTENT_OUT && i1 != INTENT_INOUT)
949 {
950 gfc_error ("First argument of defined assignment at %L must be "
951 "INTENT(OUT) or INTENT(INOUT)", &sym->declared_at);
952 return false;
953 }
954
955 if (i2 != INTENT_IN)
956 {
957 gfc_error ("Second argument of defined assignment at %L must be "
958 "INTENT(IN)", &sym->declared_at);
959 return false;
960 }
961 }
962 else
963 {
964 if (i1 != INTENT_IN)
965 {
966 gfc_error ("First argument of operator interface at %L must be "
967 "INTENT(IN)", &sym->declared_at);
968 return false;
969 }
970
971 if (args == 2 && i2 != INTENT_IN)
972 {
973 gfc_error ("Second argument of operator interface at %L must be "
974 "INTENT(IN)", &sym->declared_at);
975 return false;
976 }
977 }
978
979 /* From now on, all we have to do is check that the operator definition
980 doesn't conflict with an intrinsic operator. The rules for this
981 game are defined in 7.1.2 and 7.1.3 of both F95 and F2003 standards,
982 as well as 12.3.2.1.1 of Fortran 2003:
983
984 "If the operator is an intrinsic-operator (R310), the number of
985 function arguments shall be consistent with the intrinsic uses of
986 that operator, and the types, kind type parameters, or ranks of the
987 dummy arguments shall differ from those required for the intrinsic
988 operation (7.1.2)." */
989
990 #define IS_NUMERIC_TYPE(t) \
991 ((t) == BT_INTEGER || (t) == BT_REAL || (t) == BT_COMPLEX)
992
993 /* Unary ops are easy, do them first. */
994 if (op == INTRINSIC_NOT)
995 {
996 if (t1 == BT_LOGICAL)
997 goto bad_repl;
998 else
999 return true;
1000 }
1001
1002 if (args == 1 && (op == INTRINSIC_PLUS || op == INTRINSIC_MINUS))
1003 {
1004 if (IS_NUMERIC_TYPE (t1))
1005 goto bad_repl;
1006 else
1007 return true;
1008 }
1009
1010 /* Character intrinsic operators have same character kind, thus
1011 operator definitions with operands of different character kinds
1012 are always safe. */
1013 if (t1 == BT_CHARACTER && t2 == BT_CHARACTER && k1 != k2)
1014 return true;
1015
1016 /* Intrinsic operators always perform on arguments of same rank,
1017 so different ranks is also always safe. (rank == 0) is an exception
1018 to that, because all intrinsic operators are elemental. */
1019 if (r1 != r2 && r1 != 0 && r2 != 0)
1020 return true;
1021
1022 switch (op)
1023 {
1024 case INTRINSIC_EQ:
1025 case INTRINSIC_EQ_OS:
1026 case INTRINSIC_NE:
1027 case INTRINSIC_NE_OS:
1028 if (t1 == BT_CHARACTER && t2 == BT_CHARACTER)
1029 goto bad_repl;
1030 /* Fall through. */
1031
1032 case INTRINSIC_PLUS:
1033 case INTRINSIC_MINUS:
1034 case INTRINSIC_TIMES:
1035 case INTRINSIC_DIVIDE:
1036 case INTRINSIC_POWER:
1037 if (IS_NUMERIC_TYPE (t1) && IS_NUMERIC_TYPE (t2))
1038 goto bad_repl;
1039 break;
1040
1041 case INTRINSIC_GT:
1042 case INTRINSIC_GT_OS:
1043 case INTRINSIC_GE:
1044 case INTRINSIC_GE_OS:
1045 case INTRINSIC_LT:
1046 case INTRINSIC_LT_OS:
1047 case INTRINSIC_LE:
1048 case INTRINSIC_LE_OS:
1049 if (t1 == BT_CHARACTER && t2 == BT_CHARACTER)
1050 goto bad_repl;
1051 if ((t1 == BT_INTEGER || t1 == BT_REAL)
1052 && (t2 == BT_INTEGER || t2 == BT_REAL))
1053 goto bad_repl;
1054 break;
1055
1056 case INTRINSIC_CONCAT:
1057 if (t1 == BT_CHARACTER && t2 == BT_CHARACTER)
1058 goto bad_repl;
1059 break;
1060
1061 case INTRINSIC_AND:
1062 case INTRINSIC_OR:
1063 case INTRINSIC_EQV:
1064 case INTRINSIC_NEQV:
1065 if (t1 == BT_LOGICAL && t2 == BT_LOGICAL)
1066 goto bad_repl;
1067 break;
1068
1069 default:
1070 break;
1071 }
1072
1073 return true;
1074
1075 #undef IS_NUMERIC_TYPE
1076
1077 bad_repl:
1078 gfc_error ("Operator interface at %L conflicts with intrinsic interface",
1079 &opwhere);
1080 return false;
1081 }
1082
1083
1084 /* Given a pair of formal argument lists, we see if the two lists can
1085 be distinguished by counting the number of nonoptional arguments of
1086 a given type/rank in f1 and seeing if there are less then that
1087 number of those arguments in f2 (including optional arguments).
1088 Since this test is asymmetric, it has to be called twice to make it
1089 symmetric. Returns nonzero if the argument lists are incompatible
1090 by this test. This subroutine implements rule 1 of section F03:16.2.3.
1091 'p1' and 'p2' are the PASS arguments of both procedures (if applicable). */
1092
1093 static bool
1094 count_types_test (gfc_formal_arglist *f1, gfc_formal_arglist *f2,
1095 const char *p1, const char *p2)
1096 {
1097 int ac1, ac2, i, j, k, n1;
1098 gfc_formal_arglist *f;
1099
1100 typedef struct
1101 {
1102 int flag;
1103 gfc_symbol *sym;
1104 }
1105 arginfo;
1106
1107 arginfo *arg;
1108
1109 n1 = 0;
1110
1111 for (f = f1; f; f = f->next)
1112 n1++;
1113
1114 /* Build an array of integers that gives the same integer to
1115 arguments of the same type/rank. */
1116 arg = XCNEWVEC (arginfo, n1);
1117
1118 f = f1;
1119 for (i = 0; i < n1; i++, f = f->next)
1120 {
1121 arg[i].flag = -1;
1122 arg[i].sym = f->sym;
1123 }
1124
1125 k = 0;
1126
1127 for (i = 0; i < n1; i++)
1128 {
1129 if (arg[i].flag != -1)
1130 continue;
1131
1132 if (arg[i].sym && (arg[i].sym->attr.optional
1133 || (p1 && strcmp (arg[i].sym->name, p1) == 0)))
1134 continue; /* Skip OPTIONAL and PASS arguments. */
1135
1136 arg[i].flag = k;
1137
1138 /* Find other non-optional, non-pass arguments of the same type/rank. */
1139 for (j = i + 1; j < n1; j++)
1140 if ((arg[j].sym == NULL
1141 || !(arg[j].sym->attr.optional
1142 || (p1 && strcmp (arg[j].sym->name, p1) == 0)))
1143 && (compare_type_rank_if (arg[i].sym, arg[j].sym)
1144 || compare_type_rank_if (arg[j].sym, arg[i].sym)))
1145 arg[j].flag = k;
1146
1147 k++;
1148 }
1149
1150 /* Now loop over each distinct type found in f1. */
1151 k = 0;
1152 bool rc = false;
1153
1154 for (i = 0; i < n1; i++)
1155 {
1156 if (arg[i].flag != k)
1157 continue;
1158
1159 ac1 = 1;
1160 for (j = i + 1; j < n1; j++)
1161 if (arg[j].flag == k)
1162 ac1++;
1163
1164 /* Count the number of non-pass arguments in f2 with that type,
1165 including those that are optional. */
1166 ac2 = 0;
1167
1168 for (f = f2; f; f = f->next)
1169 if ((!p2 || strcmp (f->sym->name, p2) != 0)
1170 && (compare_type_rank_if (arg[i].sym, f->sym)
1171 || compare_type_rank_if (f->sym, arg[i].sym)))
1172 ac2++;
1173
1174 if (ac1 > ac2)
1175 {
1176 rc = true;
1177 break;
1178 }
1179
1180 k++;
1181 }
1182
1183 free (arg);
1184
1185 return rc;
1186 }
1187
1188
1189 /* Perform the correspondence test in rule (3) of F08:C1215.
1190 Returns zero if no argument is found that satisfies this rule,
1191 nonzero otherwise. 'p1' and 'p2' are the PASS arguments of both procedures
1192 (if applicable).
1193
1194 This test is also not symmetric in f1 and f2 and must be called
1195 twice. This test finds problems caused by sorting the actual
1196 argument list with keywords. For example:
1197
1198 INTERFACE FOO
1199 SUBROUTINE F1(A, B)
1200 INTEGER :: A ; REAL :: B
1201 END SUBROUTINE F1
1202
1203 SUBROUTINE F2(B, A)
1204 INTEGER :: A ; REAL :: B
1205 END SUBROUTINE F1
1206 END INTERFACE FOO
1207
1208 At this point, 'CALL FOO(A=1, B=1.0)' is ambiguous. */
1209
1210 static bool
1211 generic_correspondence (gfc_formal_arglist *f1, gfc_formal_arglist *f2,
1212 const char *p1, const char *p2)
1213 {
1214 gfc_formal_arglist *f2_save, *g;
1215 gfc_symbol *sym;
1216
1217 f2_save = f2;
1218
1219 while (f1)
1220 {
1221 if (f1->sym->attr.optional)
1222 goto next;
1223
1224 if (p1 && strcmp (f1->sym->name, p1) == 0)
1225 f1 = f1->next;
1226 if (f2 && p2 && strcmp (f2->sym->name, p2) == 0)
1227 f2 = f2->next;
1228
1229 if (f2 != NULL && (compare_type_rank (f1->sym, f2->sym)
1230 || compare_type_rank (f2->sym, f1->sym))
1231 && !((gfc_option.allow_std & GFC_STD_F2008)
1232 && ((f1->sym->attr.allocatable && f2->sym->attr.pointer)
1233 || (f2->sym->attr.allocatable && f1->sym->attr.pointer))))
1234 goto next;
1235
1236 /* Now search for a disambiguating keyword argument starting at
1237 the current non-match. */
1238 for (g = f1; g; g = g->next)
1239 {
1240 if (g->sym->attr.optional || (p1 && strcmp (g->sym->name, p1) == 0))
1241 continue;
1242
1243 sym = find_keyword_arg (g->sym->name, f2_save);
1244 if (sym == NULL || !compare_type_rank (g->sym, sym)
1245 || ((gfc_option.allow_std & GFC_STD_F2008)
1246 && ((sym->attr.allocatable && g->sym->attr.pointer)
1247 || (sym->attr.pointer && g->sym->attr.allocatable))))
1248 return true;
1249 }
1250
1251 next:
1252 if (f1 != NULL)
1253 f1 = f1->next;
1254 if (f2 != NULL)
1255 f2 = f2->next;
1256 }
1257
1258 return false;
1259 }
1260
1261
1262 static int
1263 symbol_rank (gfc_symbol *sym)
1264 {
1265 gfc_array_spec *as;
1266 as = (sym->ts.type == BT_CLASS) ? CLASS_DATA (sym)->as : sym->as;
1267 return as ? as->rank : 0;
1268 }
1269
1270
1271 /* Check if the characteristics of two dummy arguments match,
1272 cf. F08:12.3.2. */
1273
1274 bool
1275 gfc_check_dummy_characteristics (gfc_symbol *s1, gfc_symbol *s2,
1276 bool type_must_agree, char *errmsg,
1277 int err_len)
1278 {
1279 if (s1 == NULL || s2 == NULL)
1280 return s1 == s2 ? true : false;
1281
1282 /* Check type and rank. */
1283 if (type_must_agree)
1284 {
1285 if (!compare_type (s1, s2) || !compare_type (s2, s1))
1286 {
1287 snprintf (errmsg, err_len, "Type mismatch in argument '%s' (%s/%s)",
1288 s1->name, gfc_typename (&s1->ts), gfc_typename (&s2->ts));
1289 return false;
1290 }
1291 if (!compare_rank (s1, s2))
1292 {
1293 snprintf (errmsg, err_len, "Rank mismatch in argument '%s' (%i/%i)",
1294 s1->name, symbol_rank (s1), symbol_rank (s2));
1295 return false;
1296 }
1297 }
1298
1299 /* Check INTENT. */
1300 if (s1->attr.intent != s2->attr.intent)
1301 {
1302 snprintf (errmsg, err_len, "INTENT mismatch in argument '%s'",
1303 s1->name);
1304 return false;
1305 }
1306
1307 /* Check OPTIONAL attribute. */
1308 if (s1->attr.optional != s2->attr.optional)
1309 {
1310 snprintf (errmsg, err_len, "OPTIONAL mismatch in argument '%s'",
1311 s1->name);
1312 return false;
1313 }
1314
1315 /* Check ALLOCATABLE attribute. */
1316 if (s1->attr.allocatable != s2->attr.allocatable)
1317 {
1318 snprintf (errmsg, err_len, "ALLOCATABLE mismatch in argument '%s'",
1319 s1->name);
1320 return false;
1321 }
1322
1323 /* Check POINTER attribute. */
1324 if (s1->attr.pointer != s2->attr.pointer)
1325 {
1326 snprintf (errmsg, err_len, "POINTER mismatch in argument '%s'",
1327 s1->name);
1328 return false;
1329 }
1330
1331 /* Check TARGET attribute. */
1332 if (s1->attr.target != s2->attr.target)
1333 {
1334 snprintf (errmsg, err_len, "TARGET mismatch in argument '%s'",
1335 s1->name);
1336 return false;
1337 }
1338
1339 /* Check ASYNCHRONOUS attribute. */
1340 if (s1->attr.asynchronous != s2->attr.asynchronous)
1341 {
1342 snprintf (errmsg, err_len, "ASYNCHRONOUS mismatch in argument '%s'",
1343 s1->name);
1344 return false;
1345 }
1346
1347 /* Check CONTIGUOUS attribute. */
1348 if (s1->attr.contiguous != s2->attr.contiguous)
1349 {
1350 snprintf (errmsg, err_len, "CONTIGUOUS mismatch in argument '%s'",
1351 s1->name);
1352 return false;
1353 }
1354
1355 /* Check VALUE attribute. */
1356 if (s1->attr.value != s2->attr.value)
1357 {
1358 snprintf (errmsg, err_len, "VALUE mismatch in argument '%s'",
1359 s1->name);
1360 return false;
1361 }
1362
1363 /* Check VOLATILE attribute. */
1364 if (s1->attr.volatile_ != s2->attr.volatile_)
1365 {
1366 snprintf (errmsg, err_len, "VOLATILE mismatch in argument '%s'",
1367 s1->name);
1368 return false;
1369 }
1370
1371 /* Check interface of dummy procedures. */
1372 if (s1->attr.flavor == FL_PROCEDURE)
1373 {
1374 char err[200];
1375 if (!gfc_compare_interfaces (s1, s2, s2->name, 0, 1, err, sizeof(err),
1376 NULL, NULL))
1377 {
1378 snprintf (errmsg, err_len, "Interface mismatch in dummy procedure "
1379 "'%s': %s", s1->name, err);
1380 return false;
1381 }
1382 }
1383
1384 /* Check string length. */
1385 if (s1->ts.type == BT_CHARACTER
1386 && s1->ts.u.cl && s1->ts.u.cl->length
1387 && s2->ts.u.cl && s2->ts.u.cl->length)
1388 {
1389 int compval = gfc_dep_compare_expr (s1->ts.u.cl->length,
1390 s2->ts.u.cl->length);
1391 switch (compval)
1392 {
1393 case -1:
1394 case 1:
1395 case -3:
1396 snprintf (errmsg, err_len, "Character length mismatch "
1397 "in argument '%s'", s1->name);
1398 return false;
1399
1400 case -2:
1401 /* FIXME: Implement a warning for this case.
1402 gfc_warning (0, "Possible character length mismatch in argument %qs",
1403 s1->name);*/
1404 break;
1405
1406 case 0:
1407 break;
1408
1409 default:
1410 gfc_internal_error ("check_dummy_characteristics: Unexpected result "
1411 "%i of gfc_dep_compare_expr", compval);
1412 break;
1413 }
1414 }
1415
1416 /* Check array shape. */
1417 if (s1->as && s2->as)
1418 {
1419 int i, compval;
1420 gfc_expr *shape1, *shape2;
1421
1422 if (s1->as->type != s2->as->type)
1423 {
1424 snprintf (errmsg, err_len, "Shape mismatch in argument '%s'",
1425 s1->name);
1426 return false;
1427 }
1428
1429 if (s1->as->corank != s2->as->corank)
1430 {
1431 snprintf (errmsg, err_len, "Corank mismatch in argument '%s' (%i/%i)",
1432 s1->name, s1->as->corank, s2->as->corank);
1433 return false;
1434 }
1435
1436 if (s1->as->type == AS_EXPLICIT)
1437 for (i = 0; i < s1->as->rank + MAX (0, s1->as->corank-1); i++)
1438 {
1439 shape1 = gfc_subtract (gfc_copy_expr (s1->as->upper[i]),
1440 gfc_copy_expr (s1->as->lower[i]));
1441 shape2 = gfc_subtract (gfc_copy_expr (s2->as->upper[i]),
1442 gfc_copy_expr (s2->as->lower[i]));
1443 compval = gfc_dep_compare_expr (shape1, shape2);
1444 gfc_free_expr (shape1);
1445 gfc_free_expr (shape2);
1446 switch (compval)
1447 {
1448 case -1:
1449 case 1:
1450 case -3:
1451 if (i < s1->as->rank)
1452 snprintf (errmsg, err_len, "Shape mismatch in dimension %i of"
1453 " argument '%s'", i + 1, s1->name);
1454 else
1455 snprintf (errmsg, err_len, "Shape mismatch in codimension %i "
1456 "of argument '%s'", i - s1->as->rank + 1, s1->name);
1457 return false;
1458
1459 case -2:
1460 /* FIXME: Implement a warning for this case.
1461 gfc_warning (0, "Possible shape mismatch in argument %qs",
1462 s1->name);*/
1463 break;
1464
1465 case 0:
1466 break;
1467
1468 default:
1469 gfc_internal_error ("check_dummy_characteristics: Unexpected "
1470 "result %i of gfc_dep_compare_expr",
1471 compval);
1472 break;
1473 }
1474 }
1475 }
1476
1477 return true;
1478 }
1479
1480
1481 /* Check if the characteristics of two function results match,
1482 cf. F08:12.3.3. */
1483
1484 bool
1485 gfc_check_result_characteristics (gfc_symbol *s1, gfc_symbol *s2,
1486 char *errmsg, int err_len)
1487 {
1488 gfc_symbol *r1, *r2;
1489
1490 if (s1->ts.interface && s1->ts.interface->result)
1491 r1 = s1->ts.interface->result;
1492 else
1493 r1 = s1->result ? s1->result : s1;
1494
1495 if (s2->ts.interface && s2->ts.interface->result)
1496 r2 = s2->ts.interface->result;
1497 else
1498 r2 = s2->result ? s2->result : s2;
1499
1500 if (r1->ts.type == BT_UNKNOWN)
1501 return true;
1502
1503 /* Check type and rank. */
1504 if (!compare_type (r1, r2))
1505 {
1506 snprintf (errmsg, err_len, "Type mismatch in function result (%s/%s)",
1507 gfc_typename (&r1->ts), gfc_typename (&r2->ts));
1508 return false;
1509 }
1510 if (!compare_rank (r1, r2))
1511 {
1512 snprintf (errmsg, err_len, "Rank mismatch in function result (%i/%i)",
1513 symbol_rank (r1), symbol_rank (r2));
1514 return false;
1515 }
1516
1517 /* Check ALLOCATABLE attribute. */
1518 if (r1->attr.allocatable != r2->attr.allocatable)
1519 {
1520 snprintf (errmsg, err_len, "ALLOCATABLE attribute mismatch in "
1521 "function result");
1522 return false;
1523 }
1524
1525 /* Check POINTER attribute. */
1526 if (r1->attr.pointer != r2->attr.pointer)
1527 {
1528 snprintf (errmsg, err_len, "POINTER attribute mismatch in "
1529 "function result");
1530 return false;
1531 }
1532
1533 /* Check CONTIGUOUS attribute. */
1534 if (r1->attr.contiguous != r2->attr.contiguous)
1535 {
1536 snprintf (errmsg, err_len, "CONTIGUOUS attribute mismatch in "
1537 "function result");
1538 return false;
1539 }
1540
1541 /* Check PROCEDURE POINTER attribute. */
1542 if (r1 != s1 && r1->attr.proc_pointer != r2->attr.proc_pointer)
1543 {
1544 snprintf (errmsg, err_len, "PROCEDURE POINTER mismatch in "
1545 "function result");
1546 return false;
1547 }
1548
1549 /* Check string length. */
1550 if (r1->ts.type == BT_CHARACTER && r1->ts.u.cl && r2->ts.u.cl)
1551 {
1552 if (r1->ts.deferred != r2->ts.deferred)
1553 {
1554 snprintf (errmsg, err_len, "Character length mismatch "
1555 "in function result");
1556 return false;
1557 }
1558
1559 if (r1->ts.u.cl->length && r2->ts.u.cl->length)
1560 {
1561 int compval = gfc_dep_compare_expr (r1->ts.u.cl->length,
1562 r2->ts.u.cl->length);
1563 switch (compval)
1564 {
1565 case -1:
1566 case 1:
1567 case -3:
1568 snprintf (errmsg, err_len, "Character length mismatch "
1569 "in function result");
1570 return false;
1571
1572 case -2:
1573 /* FIXME: Implement a warning for this case.
1574 snprintf (errmsg, err_len, "Possible character length mismatch "
1575 "in function result");*/
1576 break;
1577
1578 case 0:
1579 break;
1580
1581 default:
1582 gfc_internal_error ("check_result_characteristics (1): Unexpected "
1583 "result %i of gfc_dep_compare_expr", compval);
1584 break;
1585 }
1586 }
1587 }
1588
1589 /* Check array shape. */
1590 if (!r1->attr.allocatable && !r1->attr.pointer && r1->as && r2->as)
1591 {
1592 int i, compval;
1593 gfc_expr *shape1, *shape2;
1594
1595 if (r1->as->type != r2->as->type)
1596 {
1597 snprintf (errmsg, err_len, "Shape mismatch in function result");
1598 return false;
1599 }
1600
1601 if (r1->as->type == AS_EXPLICIT)
1602 for (i = 0; i < r1->as->rank + r1->as->corank; i++)
1603 {
1604 shape1 = gfc_subtract (gfc_copy_expr (r1->as->upper[i]),
1605 gfc_copy_expr (r1->as->lower[i]));
1606 shape2 = gfc_subtract (gfc_copy_expr (r2->as->upper[i]),
1607 gfc_copy_expr (r2->as->lower[i]));
1608 compval = gfc_dep_compare_expr (shape1, shape2);
1609 gfc_free_expr (shape1);
1610 gfc_free_expr (shape2);
1611 switch (compval)
1612 {
1613 case -1:
1614 case 1:
1615 case -3:
1616 snprintf (errmsg, err_len, "Shape mismatch in dimension %i of "
1617 "function result", i + 1);
1618 return false;
1619
1620 case -2:
1621 /* FIXME: Implement a warning for this case.
1622 gfc_warning (0, "Possible shape mismatch in return value");*/
1623 break;
1624
1625 case 0:
1626 break;
1627
1628 default:
1629 gfc_internal_error ("check_result_characteristics (2): "
1630 "Unexpected result %i of "
1631 "gfc_dep_compare_expr", compval);
1632 break;
1633 }
1634 }
1635 }
1636
1637 return true;
1638 }
1639
1640
1641 /* 'Compare' two formal interfaces associated with a pair of symbols.
1642 We return true if there exists an actual argument list that
1643 would be ambiguous between the two interfaces, zero otherwise.
1644 'strict_flag' specifies whether all the characteristics are
1645 required to match, which is not the case for ambiguity checks.
1646 'p1' and 'p2' are the PASS arguments of both procedures (if applicable). */
1647
1648 bool
1649 gfc_compare_interfaces (gfc_symbol *s1, gfc_symbol *s2, const char *name2,
1650 int generic_flag, int strict_flag,
1651 char *errmsg, int err_len,
1652 const char *p1, const char *p2)
1653 {
1654 gfc_formal_arglist *f1, *f2;
1655
1656 gcc_assert (name2 != NULL);
1657
1658 if (s1->attr.function && (s2->attr.subroutine
1659 || (!s2->attr.function && s2->ts.type == BT_UNKNOWN
1660 && gfc_get_default_type (name2, s2->ns)->type == BT_UNKNOWN)))
1661 {
1662 if (errmsg != NULL)
1663 snprintf (errmsg, err_len, "'%s' is not a function", name2);
1664 return false;
1665 }
1666
1667 if (s1->attr.subroutine && s2->attr.function)
1668 {
1669 if (errmsg != NULL)
1670 snprintf (errmsg, err_len, "'%s' is not a subroutine", name2);
1671 return false;
1672 }
1673
1674 /* Do strict checks on all characteristics
1675 (for dummy procedures and procedure pointer assignments). */
1676 if (!generic_flag && strict_flag)
1677 {
1678 if (s1->attr.function && s2->attr.function)
1679 {
1680 /* If both are functions, check result characteristics. */
1681 if (!gfc_check_result_characteristics (s1, s2, errmsg, err_len)
1682 || !gfc_check_result_characteristics (s2, s1, errmsg, err_len))
1683 return false;
1684 }
1685
1686 if (s1->attr.pure && !s2->attr.pure)
1687 {
1688 snprintf (errmsg, err_len, "Mismatch in PURE attribute");
1689 return false;
1690 }
1691 if (s1->attr.elemental && !s2->attr.elemental)
1692 {
1693 snprintf (errmsg, err_len, "Mismatch in ELEMENTAL attribute");
1694 return false;
1695 }
1696 }
1697
1698 if (s1->attr.if_source == IFSRC_UNKNOWN
1699 || s2->attr.if_source == IFSRC_UNKNOWN)
1700 return true;
1701
1702 f1 = gfc_sym_get_dummy_args (s1);
1703 f2 = gfc_sym_get_dummy_args (s2);
1704
1705 /* Special case: No arguments. */
1706 if (f1 == NULL && f2 == NULL)
1707 return true;
1708
1709 if (generic_flag)
1710 {
1711 if (count_types_test (f1, f2, p1, p2)
1712 || count_types_test (f2, f1, p2, p1))
1713 return false;
1714
1715 /* Special case: alternate returns. If both f1->sym and f2->sym are
1716 NULL, then the leading formal arguments are alternate returns.
1717 The previous conditional should catch argument lists with
1718 different number of argument. */
1719 if (f1 && f1->sym == NULL && f2 && f2->sym == NULL)
1720 return true;
1721
1722 if (generic_correspondence (f1, f2, p1, p2)
1723 || generic_correspondence (f2, f1, p2, p1))
1724 return false;
1725 }
1726 else
1727 /* Perform the abbreviated correspondence test for operators (the
1728 arguments cannot be optional and are always ordered correctly).
1729 This is also done when comparing interfaces for dummy procedures and in
1730 procedure pointer assignments. */
1731
1732 for (; f1 || f2; f1 = f1->next, f2 = f2->next)
1733 {
1734 /* Check existence. */
1735 if (f1 == NULL || f2 == NULL)
1736 {
1737 if (errmsg != NULL)
1738 snprintf (errmsg, err_len, "'%s' has the wrong number of "
1739 "arguments", name2);
1740 return false;
1741 }
1742
1743 if (strict_flag)
1744 {
1745 /* Check all characteristics. */
1746 if (!gfc_check_dummy_characteristics (f1->sym, f2->sym, true,
1747 errmsg, err_len))
1748 return false;
1749 }
1750 else
1751 {
1752 /* Only check type and rank. */
1753 if (!compare_type (f2->sym, f1->sym))
1754 {
1755 if (errmsg != NULL)
1756 snprintf (errmsg, err_len, "Type mismatch in argument '%s' "
1757 "(%s/%s)", f1->sym->name,
1758 gfc_typename (&f1->sym->ts),
1759 gfc_typename (&f2->sym->ts));
1760 return false;
1761 }
1762 if (!compare_rank (f2->sym, f1->sym))
1763 {
1764 if (errmsg != NULL)
1765 snprintf (errmsg, err_len, "Rank mismatch in argument '%s' "
1766 "(%i/%i)", f1->sym->name, symbol_rank (f1->sym),
1767 symbol_rank (f2->sym));
1768 return false;
1769 }
1770 }
1771 }
1772
1773 return true;
1774 }
1775
1776
1777 /* Given a pointer to an interface pointer, remove duplicate
1778 interfaces and make sure that all symbols are either functions
1779 or subroutines, and all of the same kind. Returns true if
1780 something goes wrong. */
1781
1782 static bool
1783 check_interface0 (gfc_interface *p, const char *interface_name)
1784 {
1785 gfc_interface *psave, *q, *qlast;
1786
1787 psave = p;
1788 for (; p; p = p->next)
1789 {
1790 /* Make sure all symbols in the interface have been defined as
1791 functions or subroutines. */
1792 if (((!p->sym->attr.function && !p->sym->attr.subroutine)
1793 || !p->sym->attr.if_source)
1794 && !gfc_fl_struct (p->sym->attr.flavor))
1795 {
1796 const char *guessed
1797 = gfc_lookup_function_fuzzy (p->sym->name, p->sym->ns->sym_root);
1798
1799 if (p->sym->attr.external)
1800 if (guessed)
1801 gfc_error ("Procedure %qs in %s at %L has no explicit interface"
1802 "; did you mean %qs?",
1803 p->sym->name, interface_name, &p->sym->declared_at,
1804 guessed);
1805 else
1806 gfc_error ("Procedure %qs in %s at %L has no explicit interface",
1807 p->sym->name, interface_name, &p->sym->declared_at);
1808 else
1809 if (guessed)
1810 gfc_error ("Procedure %qs in %s at %L is neither function nor "
1811 "subroutine; did you mean %qs?", p->sym->name,
1812 interface_name, &p->sym->declared_at, guessed);
1813 else
1814 gfc_error ("Procedure %qs in %s at %L is neither function nor "
1815 "subroutine", p->sym->name, interface_name,
1816 &p->sym->declared_at);
1817 return true;
1818 }
1819
1820 /* Verify that procedures are either all SUBROUTINEs or all FUNCTIONs. */
1821 if ((psave->sym->attr.function && !p->sym->attr.function
1822 && !gfc_fl_struct (p->sym->attr.flavor))
1823 || (psave->sym->attr.subroutine && !p->sym->attr.subroutine))
1824 {
1825 if (!gfc_fl_struct (p->sym->attr.flavor))
1826 gfc_error ("In %s at %L procedures must be either all SUBROUTINEs"
1827 " or all FUNCTIONs", interface_name,
1828 &p->sym->declared_at);
1829 else if (p->sym->attr.flavor == FL_DERIVED)
1830 gfc_error ("In %s at %L procedures must be all FUNCTIONs as the "
1831 "generic name is also the name of a derived type",
1832 interface_name, &p->sym->declared_at);
1833 return true;
1834 }
1835
1836 /* F2003, C1207. F2008, C1207. */
1837 if (p->sym->attr.proc == PROC_INTERNAL
1838 && !gfc_notify_std (GFC_STD_F2008, "Internal procedure "
1839 "%qs in %s at %L", p->sym->name,
1840 interface_name, &p->sym->declared_at))
1841 return true;
1842 }
1843 p = psave;
1844
1845 /* Remove duplicate interfaces in this interface list. */
1846 for (; p; p = p->next)
1847 {
1848 qlast = p;
1849
1850 for (q = p->next; q;)
1851 {
1852 if (p->sym != q->sym)
1853 {
1854 qlast = q;
1855 q = q->next;
1856 }
1857 else
1858 {
1859 /* Duplicate interface. */
1860 qlast->next = q->next;
1861 free (q);
1862 q = qlast->next;
1863 }
1864 }
1865 }
1866
1867 return false;
1868 }
1869
1870
1871 /* Check lists of interfaces to make sure that no two interfaces are
1872 ambiguous. Duplicate interfaces (from the same symbol) are OK here. */
1873
1874 static bool
1875 check_interface1 (gfc_interface *p, gfc_interface *q0,
1876 int generic_flag, const char *interface_name,
1877 bool referenced)
1878 {
1879 gfc_interface *q;
1880 for (; p; p = p->next)
1881 for (q = q0; q; q = q->next)
1882 {
1883 if (p->sym == q->sym)
1884 continue; /* Duplicates OK here. */
1885
1886 if (p->sym->name == q->sym->name && p->sym->module == q->sym->module)
1887 continue;
1888
1889 if (!gfc_fl_struct (p->sym->attr.flavor)
1890 && !gfc_fl_struct (q->sym->attr.flavor)
1891 && gfc_compare_interfaces (p->sym, q->sym, q->sym->name,
1892 generic_flag, 0, NULL, 0, NULL, NULL))
1893 {
1894 if (referenced)
1895 gfc_error ("Ambiguous interfaces in %s for %qs at %L "
1896 "and %qs at %L", interface_name,
1897 q->sym->name, &q->sym->declared_at,
1898 p->sym->name, &p->sym->declared_at);
1899 else if (!p->sym->attr.use_assoc && q->sym->attr.use_assoc)
1900 gfc_warning (0, "Ambiguous interfaces in %s for %qs at %L "
1901 "and %qs at %L", interface_name,
1902 q->sym->name, &q->sym->declared_at,
1903 p->sym->name, &p->sym->declared_at);
1904 else
1905 gfc_warning (0, "Although not referenced, %qs has ambiguous "
1906 "interfaces at %L", interface_name, &p->where);
1907 return true;
1908 }
1909 }
1910 return false;
1911 }
1912
1913
1914 /* Check the generic and operator interfaces of symbols to make sure
1915 that none of the interfaces conflict. The check has to be done
1916 after all of the symbols are actually loaded. */
1917
1918 static void
1919 check_sym_interfaces (gfc_symbol *sym)
1920 {
1921 char interface_name[GFC_MAX_SYMBOL_LEN + sizeof("generic interface ''")];
1922 gfc_interface *p;
1923
1924 if (sym->ns != gfc_current_ns)
1925 return;
1926
1927 if (sym->generic != NULL)
1928 {
1929 sprintf (interface_name, "generic interface '%s'", sym->name);
1930 if (check_interface0 (sym->generic, interface_name))
1931 return;
1932
1933 for (p = sym->generic; p; p = p->next)
1934 {
1935 if (p->sym->attr.mod_proc
1936 && !p->sym->attr.module_procedure
1937 && (p->sym->attr.if_source != IFSRC_DECL
1938 || p->sym->attr.procedure))
1939 {
1940 gfc_error ("%qs at %L is not a module procedure",
1941 p->sym->name, &p->where);
1942 return;
1943 }
1944 }
1945
1946 /* Originally, this test was applied to host interfaces too;
1947 this is incorrect since host associated symbols, from any
1948 source, cannot be ambiguous with local symbols. */
1949 check_interface1 (sym->generic, sym->generic, 1, interface_name,
1950 sym->attr.referenced || !sym->attr.use_assoc);
1951 }
1952 }
1953
1954
1955 static void
1956 check_uop_interfaces (gfc_user_op *uop)
1957 {
1958 char interface_name[GFC_MAX_SYMBOL_LEN + sizeof("operator interface ''")];
1959 gfc_user_op *uop2;
1960 gfc_namespace *ns;
1961
1962 sprintf (interface_name, "operator interface '%s'", uop->name);
1963 if (check_interface0 (uop->op, interface_name))
1964 return;
1965
1966 for (ns = gfc_current_ns; ns; ns = ns->parent)
1967 {
1968 uop2 = gfc_find_uop (uop->name, ns);
1969 if (uop2 == NULL)
1970 continue;
1971
1972 check_interface1 (uop->op, uop2->op, 0,
1973 interface_name, true);
1974 }
1975 }
1976
1977 /* Given an intrinsic op, return an equivalent op if one exists,
1978 or INTRINSIC_NONE otherwise. */
1979
1980 gfc_intrinsic_op
1981 gfc_equivalent_op (gfc_intrinsic_op op)
1982 {
1983 switch(op)
1984 {
1985 case INTRINSIC_EQ:
1986 return INTRINSIC_EQ_OS;
1987
1988 case INTRINSIC_EQ_OS:
1989 return INTRINSIC_EQ;
1990
1991 case INTRINSIC_NE:
1992 return INTRINSIC_NE_OS;
1993
1994 case INTRINSIC_NE_OS:
1995 return INTRINSIC_NE;
1996
1997 case INTRINSIC_GT:
1998 return INTRINSIC_GT_OS;
1999
2000 case INTRINSIC_GT_OS:
2001 return INTRINSIC_GT;
2002
2003 case INTRINSIC_GE:
2004 return INTRINSIC_GE_OS;
2005
2006 case INTRINSIC_GE_OS:
2007 return INTRINSIC_GE;
2008
2009 case INTRINSIC_LT:
2010 return INTRINSIC_LT_OS;
2011
2012 case INTRINSIC_LT_OS:
2013 return INTRINSIC_LT;
2014
2015 case INTRINSIC_LE:
2016 return INTRINSIC_LE_OS;
2017
2018 case INTRINSIC_LE_OS:
2019 return INTRINSIC_LE;
2020
2021 default:
2022 return INTRINSIC_NONE;
2023 }
2024 }
2025
2026 /* For the namespace, check generic, user operator and intrinsic
2027 operator interfaces for consistency and to remove duplicate
2028 interfaces. We traverse the whole namespace, counting on the fact
2029 that most symbols will not have generic or operator interfaces. */
2030
2031 void
2032 gfc_check_interfaces (gfc_namespace *ns)
2033 {
2034 gfc_namespace *old_ns, *ns2;
2035 char interface_name[GFC_MAX_SYMBOL_LEN + sizeof("intrinsic '' operator")];
2036 int i;
2037
2038 old_ns = gfc_current_ns;
2039 gfc_current_ns = ns;
2040
2041 gfc_traverse_ns (ns, check_sym_interfaces);
2042
2043 gfc_traverse_user_op (ns, check_uop_interfaces);
2044
2045 for (i = GFC_INTRINSIC_BEGIN; i != GFC_INTRINSIC_END; i++)
2046 {
2047 if (i == INTRINSIC_USER)
2048 continue;
2049
2050 if (i == INTRINSIC_ASSIGN)
2051 strcpy (interface_name, "intrinsic assignment operator");
2052 else
2053 sprintf (interface_name, "intrinsic '%s' operator",
2054 gfc_op2string ((gfc_intrinsic_op) i));
2055
2056 if (check_interface0 (ns->op[i], interface_name))
2057 continue;
2058
2059 if (ns->op[i])
2060 gfc_check_operator_interface (ns->op[i]->sym, (gfc_intrinsic_op) i,
2061 ns->op[i]->where);
2062
2063 for (ns2 = ns; ns2; ns2 = ns2->parent)
2064 {
2065 gfc_intrinsic_op other_op;
2066
2067 if (check_interface1 (ns->op[i], ns2->op[i], 0,
2068 interface_name, true))
2069 goto done;
2070
2071 /* i should be gfc_intrinsic_op, but has to be int with this cast
2072 here for stupid C++ compatibility rules. */
2073 other_op = gfc_equivalent_op ((gfc_intrinsic_op) i);
2074 if (other_op != INTRINSIC_NONE
2075 && check_interface1 (ns->op[i], ns2->op[other_op],
2076 0, interface_name, true))
2077 goto done;
2078 }
2079 }
2080
2081 done:
2082 gfc_current_ns = old_ns;
2083 }
2084
2085
2086 /* Given a symbol of a formal argument list and an expression, if the
2087 formal argument is allocatable, check that the actual argument is
2088 allocatable. Returns true if compatible, zero if not compatible. */
2089
2090 static bool
2091 compare_allocatable (gfc_symbol *formal, gfc_expr *actual)
2092 {
2093 if (formal->attr.allocatable
2094 || (formal->ts.type == BT_CLASS && CLASS_DATA (formal)->attr.allocatable))
2095 {
2096 symbol_attribute attr = gfc_expr_attr (actual);
2097 if (actual->ts.type == BT_CLASS && !attr.class_ok)
2098 return true;
2099 else if (!attr.allocatable)
2100 return false;
2101 }
2102
2103 return true;
2104 }
2105
2106
2107 /* Given a symbol of a formal argument list and an expression, if the
2108 formal argument is a pointer, see if the actual argument is a
2109 pointer. Returns nonzero if compatible, zero if not compatible. */
2110
2111 static int
2112 compare_pointer (gfc_symbol *formal, gfc_expr *actual)
2113 {
2114 symbol_attribute attr;
2115
2116 if (formal->attr.pointer
2117 || (formal->ts.type == BT_CLASS && CLASS_DATA (formal)
2118 && CLASS_DATA (formal)->attr.class_pointer))
2119 {
2120 attr = gfc_expr_attr (actual);
2121
2122 /* Fortran 2008 allows non-pointer actual arguments. */
2123 if (!attr.pointer && attr.target && formal->attr.intent == INTENT_IN)
2124 return 2;
2125
2126 if (!attr.pointer)
2127 return 0;
2128 }
2129
2130 return 1;
2131 }
2132
2133
2134 /* Emit clear error messages for rank mismatch. */
2135
2136 static void
2137 argument_rank_mismatch (const char *name, locus *where,
2138 int rank1, int rank2)
2139 {
2140
2141 /* TS 29113, C407b. */
2142 if (rank2 == -1)
2143 gfc_error ("The assumed-rank array at %L requires that the dummy argument"
2144 " %qs has assumed-rank", where, name);
2145 else if (rank1 == 0)
2146 gfc_error_opt (OPT_Wargument_mismatch, "Rank mismatch in argument %qs "
2147 "at %L (scalar and rank-%d)", name, where, rank2);
2148 else if (rank2 == 0)
2149 gfc_error_opt (OPT_Wargument_mismatch, "Rank mismatch in argument %qs "
2150 "at %L (rank-%d and scalar)", name, where, rank1);
2151 else
2152 gfc_error_opt (OPT_Wargument_mismatch, "Rank mismatch in argument %qs "
2153 "at %L (rank-%d and rank-%d)", name, where, rank1, rank2);
2154 }
2155
2156
2157 /* Given a symbol of a formal argument list and an expression, see if
2158 the two are compatible as arguments. Returns true if
2159 compatible, false if not compatible. */
2160
2161 static bool
2162 compare_parameter (gfc_symbol *formal, gfc_expr *actual,
2163 int ranks_must_agree, int is_elemental, locus *where)
2164 {
2165 gfc_ref *ref;
2166 bool rank_check, is_pointer;
2167 char err[200];
2168 gfc_component *ppc;
2169
2170 /* If the formal arg has type BT_VOID, it's to one of the iso_c_binding
2171 procs c_f_pointer or c_f_procpointer, and we need to accept most
2172 pointers the user could give us. This should allow that. */
2173 if (formal->ts.type == BT_VOID)
2174 return true;
2175
2176 if (formal->ts.type == BT_DERIVED
2177 && formal->ts.u.derived && formal->ts.u.derived->ts.is_iso_c
2178 && actual->ts.type == BT_DERIVED
2179 && actual->ts.u.derived && actual->ts.u.derived->ts.is_iso_c)
2180 return true;
2181
2182 if (formal->ts.type == BT_CLASS && actual->ts.type == BT_DERIVED)
2183 /* Make sure the vtab symbol is present when
2184 the module variables are generated. */
2185 gfc_find_derived_vtab (actual->ts.u.derived);
2186
2187 if (actual->ts.type == BT_PROCEDURE)
2188 {
2189 gfc_symbol *act_sym = actual->symtree->n.sym;
2190
2191 if (formal->attr.flavor != FL_PROCEDURE)
2192 {
2193 if (where)
2194 gfc_error ("Invalid procedure argument at %L", &actual->where);
2195 return false;
2196 }
2197
2198 if (!gfc_compare_interfaces (formal, act_sym, act_sym->name, 0, 1, err,
2199 sizeof(err), NULL, NULL))
2200 {
2201 if (where)
2202 gfc_error_opt (OPT_Wargument_mismatch,
2203 "Interface mismatch in dummy procedure %qs at %L:"
2204 " %s", formal->name, &actual->where, err);
2205 return false;
2206 }
2207
2208 if (formal->attr.function && !act_sym->attr.function)
2209 {
2210 gfc_add_function (&act_sym->attr, act_sym->name,
2211 &act_sym->declared_at);
2212 if (act_sym->ts.type == BT_UNKNOWN
2213 && !gfc_set_default_type (act_sym, 1, act_sym->ns))
2214 return false;
2215 }
2216 else if (formal->attr.subroutine && !act_sym->attr.subroutine)
2217 gfc_add_subroutine (&act_sym->attr, act_sym->name,
2218 &act_sym->declared_at);
2219
2220 return true;
2221 }
2222
2223 ppc = gfc_get_proc_ptr_comp (actual);
2224 if (ppc && ppc->ts.interface)
2225 {
2226 if (!gfc_compare_interfaces (formal, ppc->ts.interface, ppc->name, 0, 1,
2227 err, sizeof(err), NULL, NULL))
2228 {
2229 if (where)
2230 gfc_error_opt (OPT_Wargument_mismatch,
2231 "Interface mismatch in dummy procedure %qs at %L:"
2232 " %s", formal->name, &actual->where, err);
2233 return false;
2234 }
2235 }
2236
2237 /* F2008, C1241. */
2238 if (formal->attr.pointer && formal->attr.contiguous
2239 && !gfc_is_simply_contiguous (actual, true, false))
2240 {
2241 if (where)
2242 gfc_error ("Actual argument to contiguous pointer dummy %qs at %L "
2243 "must be simply contiguous", formal->name, &actual->where);
2244 return false;
2245 }
2246
2247 symbol_attribute actual_attr = gfc_expr_attr (actual);
2248 if (actual->ts.type == BT_CLASS && !actual_attr.class_ok)
2249 return true;
2250
2251 if ((actual->expr_type != EXPR_NULL || actual->ts.type != BT_UNKNOWN)
2252 && actual->ts.type != BT_HOLLERITH
2253 && formal->ts.type != BT_ASSUMED
2254 && !(formal->attr.ext_attr & (1 << EXT_ATTR_NO_ARG_CHECK))
2255 && !gfc_compare_types (&formal->ts, &actual->ts)
2256 && !(formal->ts.type == BT_DERIVED && actual->ts.type == BT_CLASS
2257 && gfc_compare_derived_types (formal->ts.u.derived,
2258 CLASS_DATA (actual)->ts.u.derived)))
2259 {
2260 if (where)
2261 gfc_error_opt (OPT_Wargument_mismatch,
2262 "Type mismatch in argument %qs at %L; passed %s to %s",
2263 formal->name, where, gfc_typename (&actual->ts),
2264 gfc_typename (&formal->ts));
2265 return false;
2266 }
2267
2268 if (actual->ts.type == BT_ASSUMED && formal->ts.type != BT_ASSUMED)
2269 {
2270 if (where)
2271 gfc_error ("Assumed-type actual argument at %L requires that dummy "
2272 "argument %qs is of assumed type", &actual->where,
2273 formal->name);
2274 return false;
2275 }
2276
2277 /* F2008, 12.5.2.5; IR F08/0073. */
2278 if (formal->ts.type == BT_CLASS && formal->attr.class_ok
2279 && actual->expr_type != EXPR_NULL
2280 && ((CLASS_DATA (formal)->attr.class_pointer
2281 && formal->attr.intent != INTENT_IN)
2282 || CLASS_DATA (formal)->attr.allocatable))
2283 {
2284 if (actual->ts.type != BT_CLASS)
2285 {
2286 if (where)
2287 gfc_error ("Actual argument to %qs at %L must be polymorphic",
2288 formal->name, &actual->where);
2289 return false;
2290 }
2291
2292 if ((!UNLIMITED_POLY (formal) || !UNLIMITED_POLY(actual))
2293 && !gfc_compare_derived_types (CLASS_DATA (actual)->ts.u.derived,
2294 CLASS_DATA (formal)->ts.u.derived))
2295 {
2296 if (where)
2297 gfc_error ("Actual argument to %qs at %L must have the same "
2298 "declared type", formal->name, &actual->where);
2299 return false;
2300 }
2301 }
2302
2303 /* F08: 12.5.2.5 Allocatable and pointer dummy variables. However, this
2304 is necessary also for F03, so retain error for both.
2305 NOTE: Other type/kind errors pre-empt this error. Since they are F03
2306 compatible, no attempt has been made to channel to this one. */
2307 if (UNLIMITED_POLY (formal) && !UNLIMITED_POLY (actual)
2308 && (CLASS_DATA (formal)->attr.allocatable
2309 ||CLASS_DATA (formal)->attr.class_pointer))
2310 {
2311 if (where)
2312 gfc_error ("Actual argument to %qs at %L must be unlimited "
2313 "polymorphic since the formal argument is a "
2314 "pointer or allocatable unlimited polymorphic "
2315 "entity [F2008: 12.5.2.5]", formal->name,
2316 &actual->where);
2317 return false;
2318 }
2319
2320 if (formal->attr.codimension && !gfc_is_coarray (actual))
2321 {
2322 if (where)
2323 gfc_error ("Actual argument to %qs at %L must be a coarray",
2324 formal->name, &actual->where);
2325 return false;
2326 }
2327
2328 if (formal->attr.codimension && formal->attr.allocatable)
2329 {
2330 gfc_ref *last = NULL;
2331
2332 for (ref = actual->ref; ref; ref = ref->next)
2333 if (ref->type == REF_COMPONENT)
2334 last = ref;
2335
2336 /* F2008, 12.5.2.6. */
2337 if ((last && last->u.c.component->as->corank != formal->as->corank)
2338 || (!last
2339 && actual->symtree->n.sym->as->corank != formal->as->corank))
2340 {
2341 if (where)
2342 gfc_error ("Corank mismatch in argument %qs at %L (%d and %d)",
2343 formal->name, &actual->where, formal->as->corank,
2344 last ? last->u.c.component->as->corank
2345 : actual->symtree->n.sym->as->corank);
2346 return false;
2347 }
2348 }
2349
2350 if (formal->attr.codimension)
2351 {
2352 /* F2008, 12.5.2.8 + Corrig 2 (IR F08/0048). */
2353 /* F2015, 12.5.2.8. */
2354 if (formal->attr.dimension
2355 && (formal->attr.contiguous || formal->as->type != AS_ASSUMED_SHAPE)
2356 && actual_attr.dimension
2357 && !gfc_is_simply_contiguous (actual, true, true))
2358 {
2359 if (where)
2360 gfc_error ("Actual argument to %qs at %L must be simply "
2361 "contiguous or an element of such an array",
2362 formal->name, &actual->where);
2363 return false;
2364 }
2365
2366 /* F2008, C1303 and C1304. */
2367 if (formal->attr.intent != INTENT_INOUT
2368 && (((formal->ts.type == BT_DERIVED || formal->ts.type == BT_CLASS)
2369 && formal->ts.u.derived->from_intmod == INTMOD_ISO_FORTRAN_ENV
2370 && formal->ts.u.derived->intmod_sym_id == ISOFORTRAN_LOCK_TYPE)
2371 || formal->attr.lock_comp))
2372
2373 {
2374 if (where)
2375 gfc_error ("Actual argument to non-INTENT(INOUT) dummy %qs at %L, "
2376 "which is LOCK_TYPE or has a LOCK_TYPE component",
2377 formal->name, &actual->where);
2378 return false;
2379 }
2380
2381 /* TS18508, C702/C703. */
2382 if (formal->attr.intent != INTENT_INOUT
2383 && (((formal->ts.type == BT_DERIVED || formal->ts.type == BT_CLASS)
2384 && formal->ts.u.derived->from_intmod == INTMOD_ISO_FORTRAN_ENV
2385 && formal->ts.u.derived->intmod_sym_id == ISOFORTRAN_EVENT_TYPE)
2386 || formal->attr.event_comp))
2387
2388 {
2389 if (where)
2390 gfc_error ("Actual argument to non-INTENT(INOUT) dummy %qs at %L, "
2391 "which is EVENT_TYPE or has a EVENT_TYPE component",
2392 formal->name, &actual->where);
2393 return false;
2394 }
2395 }
2396
2397 /* F2008, C1239/C1240. */
2398 if (actual->expr_type == EXPR_VARIABLE
2399 && (actual->symtree->n.sym->attr.asynchronous
2400 || actual->symtree->n.sym->attr.volatile_)
2401 && (formal->attr.asynchronous || formal->attr.volatile_)
2402 && actual->rank && formal->as
2403 && !gfc_is_simply_contiguous (actual, true, false)
2404 && ((formal->as->type != AS_ASSUMED_SHAPE
2405 && formal->as->type != AS_ASSUMED_RANK && !formal->attr.pointer)
2406 || formal->attr.contiguous))
2407 {
2408 if (where)
2409 gfc_error ("Dummy argument %qs has to be a pointer, assumed-shape or "
2410 "assumed-rank array without CONTIGUOUS attribute - as actual"
2411 " argument at %L is not simply contiguous and both are "
2412 "ASYNCHRONOUS or VOLATILE", formal->name, &actual->where);
2413 return false;
2414 }
2415
2416 if (formal->attr.allocatable && !formal->attr.codimension
2417 && actual_attr.codimension)
2418 {
2419 if (formal->attr.intent == INTENT_OUT)
2420 {
2421 if (where)
2422 gfc_error ("Passing coarray at %L to allocatable, noncoarray, "
2423 "INTENT(OUT) dummy argument %qs", &actual->where,
2424 formal->name);
2425 return false;
2426 }
2427 else if (warn_surprising && where && formal->attr.intent != INTENT_IN)
2428 gfc_warning (OPT_Wsurprising,
2429 "Passing coarray at %L to allocatable, noncoarray dummy "
2430 "argument %qs, which is invalid if the allocation status"
2431 " is modified", &actual->where, formal->name);
2432 }
2433
2434 /* If the rank is the same or the formal argument has assumed-rank. */
2435 if (symbol_rank (formal) == actual->rank || symbol_rank (formal) == -1)
2436 return true;
2437
2438 rank_check = where != NULL && !is_elemental && formal->as
2439 && (formal->as->type == AS_ASSUMED_SHAPE
2440 || formal->as->type == AS_DEFERRED)
2441 && actual->expr_type != EXPR_NULL;
2442
2443 /* Skip rank checks for NO_ARG_CHECK. */
2444 if (formal->attr.ext_attr & (1 << EXT_ATTR_NO_ARG_CHECK))
2445 return true;
2446
2447 /* Scalar & coindexed, see: F2008, Section 12.5.2.4. */
2448 if (rank_check || ranks_must_agree
2449 || (formal->attr.pointer && actual->expr_type != EXPR_NULL)
2450 || (actual->rank != 0 && !(is_elemental || formal->attr.dimension))
2451 || (actual->rank == 0
2452 && ((formal->ts.type == BT_CLASS
2453 && CLASS_DATA (formal)->as->type == AS_ASSUMED_SHAPE)
2454 || (formal->ts.type != BT_CLASS
2455 && formal->as->type == AS_ASSUMED_SHAPE))
2456 && actual->expr_type != EXPR_NULL)
2457 || (actual->rank == 0 && formal->attr.dimension
2458 && gfc_is_coindexed (actual)))
2459 {
2460 if (where)
2461 argument_rank_mismatch (formal->name, &actual->where,
2462 symbol_rank (formal), actual->rank);
2463 return false;
2464 }
2465 else if (actual->rank != 0 && (is_elemental || formal->attr.dimension))
2466 return true;
2467
2468 /* At this point, we are considering a scalar passed to an array. This
2469 is valid (cf. F95 12.4.1.1, F2003 12.4.1.2, and F2008 12.5.2.4),
2470 - if the actual argument is (a substring of) an element of a
2471 non-assumed-shape/non-pointer/non-polymorphic array; or
2472 - (F2003) if the actual argument is of type character of default/c_char
2473 kind. */
2474
2475 is_pointer = actual->expr_type == EXPR_VARIABLE
2476 ? actual->symtree->n.sym->attr.pointer : false;
2477
2478 for (ref = actual->ref; ref; ref = ref->next)
2479 {
2480 if (ref->type == REF_COMPONENT)
2481 is_pointer = ref->u.c.component->attr.pointer;
2482 else if (ref->type == REF_ARRAY && ref->u.ar.type == AR_ELEMENT
2483 && ref->u.ar.dimen > 0
2484 && (!ref->next
2485 || (ref->next->type == REF_SUBSTRING && !ref->next->next)))
2486 break;
2487 }
2488
2489 if (actual->ts.type == BT_CLASS && actual->expr_type != EXPR_NULL)
2490 {
2491 if (where)
2492 gfc_error ("Polymorphic scalar passed to array dummy argument %qs "
2493 "at %L", formal->name, &actual->where);
2494 return false;
2495 }
2496
2497 if (actual->expr_type != EXPR_NULL && ref && actual->ts.type != BT_CHARACTER
2498 && (is_pointer || ref->u.ar.as->type == AS_ASSUMED_SHAPE))
2499 {
2500 if (where)
2501 gfc_error ("Element of assumed-shaped or pointer "
2502 "array passed to array dummy argument %qs at %L",
2503 formal->name, &actual->where);
2504 return false;
2505 }
2506
2507 if (actual->ts.type == BT_CHARACTER && actual->expr_type != EXPR_NULL
2508 && (!ref || is_pointer || ref->u.ar.as->type == AS_ASSUMED_SHAPE))
2509 {
2510 if (formal->ts.kind != 1 && (gfc_option.allow_std & GFC_STD_GNU) == 0)
2511 {
2512 if (where)
2513 gfc_error ("Extension: Scalar non-default-kind, non-C_CHAR-kind "
2514 "CHARACTER actual argument with array dummy argument "
2515 "%qs at %L", formal->name, &actual->where);
2516 return false;
2517 }
2518
2519 if (where && (gfc_option.allow_std & GFC_STD_F2003) == 0)
2520 {
2521 gfc_error ("Fortran 2003: Scalar CHARACTER actual argument with "
2522 "array dummy argument %qs at %L",
2523 formal->name, &actual->where);
2524 return false;
2525 }
2526 else
2527 return ((gfc_option.allow_std & GFC_STD_F2003) != 0);
2528 }
2529
2530 if (ref == NULL && actual->expr_type != EXPR_NULL)
2531 {
2532 if (where)
2533 argument_rank_mismatch (formal->name, &actual->where,
2534 symbol_rank (formal), actual->rank);
2535 return false;
2536 }
2537
2538 return true;
2539 }
2540
2541
2542 /* Returns the storage size of a symbol (formal argument) or
2543 zero if it cannot be determined. */
2544
2545 static unsigned long
2546 get_sym_storage_size (gfc_symbol *sym)
2547 {
2548 int i;
2549 unsigned long strlen, elements;
2550
2551 if (sym->ts.type == BT_CHARACTER)
2552 {
2553 if (sym->ts.u.cl && sym->ts.u.cl->length
2554 && sym->ts.u.cl->length->expr_type == EXPR_CONSTANT)
2555 strlen = mpz_get_ui (sym->ts.u.cl->length->value.integer);
2556 else
2557 return 0;
2558 }
2559 else
2560 strlen = 1;
2561
2562 if (symbol_rank (sym) == 0)
2563 return strlen;
2564
2565 elements = 1;
2566 if (sym->as->type != AS_EXPLICIT)
2567 return 0;
2568 for (i = 0; i < sym->as->rank; i++)
2569 {
2570 if (sym->as->upper[i]->expr_type != EXPR_CONSTANT
2571 || sym->as->lower[i]->expr_type != EXPR_CONSTANT)
2572 return 0;
2573
2574 elements *= mpz_get_si (sym->as->upper[i]->value.integer)
2575 - mpz_get_si (sym->as->lower[i]->value.integer) + 1L;
2576 }
2577
2578 return strlen*elements;
2579 }
2580
2581
2582 /* Returns the storage size of an expression (actual argument) or
2583 zero if it cannot be determined. For an array element, it returns
2584 the remaining size as the element sequence consists of all storage
2585 units of the actual argument up to the end of the array. */
2586
2587 static unsigned long
2588 get_expr_storage_size (gfc_expr *e)
2589 {
2590 int i;
2591 long int strlen, elements;
2592 long int substrlen = 0;
2593 bool is_str_storage = false;
2594 gfc_ref *ref;
2595
2596 if (e == NULL)
2597 return 0;
2598
2599 if (e->ts.type == BT_CHARACTER)
2600 {
2601 if (e->ts.u.cl && e->ts.u.cl->length
2602 && e->ts.u.cl->length->expr_type == EXPR_CONSTANT)
2603 strlen = mpz_get_si (e->ts.u.cl->length->value.integer);
2604 else if (e->expr_type == EXPR_CONSTANT
2605 && (e->ts.u.cl == NULL || e->ts.u.cl->length == NULL))
2606 strlen = e->value.character.length;
2607 else
2608 return 0;
2609 }
2610 else
2611 strlen = 1; /* Length per element. */
2612
2613 if (e->rank == 0 && !e->ref)
2614 return strlen;
2615
2616 elements = 1;
2617 if (!e->ref)
2618 {
2619 if (!e->shape)
2620 return 0;
2621 for (i = 0; i < e->rank; i++)
2622 elements *= mpz_get_si (e->shape[i]);
2623 return elements*strlen;
2624 }
2625
2626 for (ref = e->ref; ref; ref = ref->next)
2627 {
2628 if (ref->type == REF_SUBSTRING && ref->u.ss.start
2629 && ref->u.ss.start->expr_type == EXPR_CONSTANT)
2630 {
2631 if (is_str_storage)
2632 {
2633 /* The string length is the substring length.
2634 Set now to full string length. */
2635 if (!ref->u.ss.length || !ref->u.ss.length->length
2636 || ref->u.ss.length->length->expr_type != EXPR_CONSTANT)
2637 return 0;
2638
2639 strlen = mpz_get_ui (ref->u.ss.length->length->value.integer);
2640 }
2641 substrlen = strlen - mpz_get_ui (ref->u.ss.start->value.integer) + 1;
2642 continue;
2643 }
2644
2645 if (ref->type == REF_ARRAY && ref->u.ar.type == AR_SECTION)
2646 for (i = 0; i < ref->u.ar.dimen; i++)
2647 {
2648 long int start, end, stride;
2649 stride = 1;
2650
2651 if (ref->u.ar.stride[i])
2652 {
2653 if (ref->u.ar.stride[i]->expr_type == EXPR_CONSTANT)
2654 stride = mpz_get_si (ref->u.ar.stride[i]->value.integer);
2655 else
2656 return 0;
2657 }
2658
2659 if (ref->u.ar.start[i])
2660 {
2661 if (ref->u.ar.start[i]->expr_type == EXPR_CONSTANT)
2662 start = mpz_get_si (ref->u.ar.start[i]->value.integer);
2663 else
2664 return 0;
2665 }
2666 else if (ref->u.ar.as->lower[i]
2667 && ref->u.ar.as->lower[i]->expr_type == EXPR_CONSTANT)
2668 start = mpz_get_si (ref->u.ar.as->lower[i]->value.integer);
2669 else
2670 return 0;
2671
2672 if (ref->u.ar.end[i])
2673 {
2674 if (ref->u.ar.end[i]->expr_type == EXPR_CONSTANT)
2675 end = mpz_get_si (ref->u.ar.end[i]->value.integer);
2676 else
2677 return 0;
2678 }
2679 else if (ref->u.ar.as->upper[i]
2680 && ref->u.ar.as->upper[i]->expr_type == EXPR_CONSTANT)
2681 end = mpz_get_si (ref->u.ar.as->upper[i]->value.integer);
2682 else
2683 return 0;
2684
2685 elements *= (end - start)/stride + 1L;
2686 }
2687 else if (ref->type == REF_ARRAY && ref->u.ar.type == AR_FULL)
2688 for (i = 0; i < ref->u.ar.as->rank; i++)
2689 {
2690 if (ref->u.ar.as->lower[i] && ref->u.ar.as->upper[i]
2691 && ref->u.ar.as->lower[i]->expr_type == EXPR_CONSTANT
2692 && ref->u.ar.as->lower[i]->ts.type == BT_INTEGER
2693 && ref->u.ar.as->upper[i]->expr_type == EXPR_CONSTANT
2694 && ref->u.ar.as->upper[i]->ts.type == BT_INTEGER)
2695 elements *= mpz_get_si (ref->u.ar.as->upper[i]->value.integer)
2696 - mpz_get_si (ref->u.ar.as->lower[i]->value.integer)
2697 + 1L;
2698 else
2699 return 0;
2700 }
2701 else if (ref->type == REF_ARRAY && ref->u.ar.type == AR_ELEMENT
2702 && e->expr_type == EXPR_VARIABLE)
2703 {
2704 if (ref->u.ar.as->type == AS_ASSUMED_SHAPE
2705 || e->symtree->n.sym->attr.pointer)
2706 {
2707 elements = 1;
2708 continue;
2709 }
2710
2711 /* Determine the number of remaining elements in the element
2712 sequence for array element designators. */
2713 is_str_storage = true;
2714 for (i = ref->u.ar.dimen - 1; i >= 0; i--)
2715 {
2716 if (ref->u.ar.start[i] == NULL
2717 || ref->u.ar.start[i]->expr_type != EXPR_CONSTANT
2718 || ref->u.ar.as->upper[i] == NULL
2719 || ref->u.ar.as->lower[i] == NULL
2720 || ref->u.ar.as->upper[i]->expr_type != EXPR_CONSTANT
2721 || ref->u.ar.as->lower[i]->expr_type != EXPR_CONSTANT)
2722 return 0;
2723
2724 elements
2725 = elements
2726 * (mpz_get_si (ref->u.ar.as->upper[i]->value.integer)
2727 - mpz_get_si (ref->u.ar.as->lower[i]->value.integer)
2728 + 1L)
2729 - (mpz_get_si (ref->u.ar.start[i]->value.integer)
2730 - mpz_get_si (ref->u.ar.as->lower[i]->value.integer));
2731 }
2732 }
2733 else if (ref->type == REF_COMPONENT && ref->u.c.component->attr.function
2734 && ref->u.c.component->attr.proc_pointer
2735 && ref->u.c.component->attr.dimension)
2736 {
2737 /* Array-valued procedure-pointer components. */
2738 gfc_array_spec *as = ref->u.c.component->as;
2739 for (i = 0; i < as->rank; i++)
2740 {
2741 if (!as->upper[i] || !as->lower[i]
2742 || as->upper[i]->expr_type != EXPR_CONSTANT
2743 || as->lower[i]->expr_type != EXPR_CONSTANT)
2744 return 0;
2745
2746 elements = elements
2747 * (mpz_get_si (as->upper[i]->value.integer)
2748 - mpz_get_si (as->lower[i]->value.integer) + 1L);
2749 }
2750 }
2751 }
2752
2753 if (substrlen)
2754 return (is_str_storage) ? substrlen + (elements-1)*strlen
2755 : elements*strlen;
2756 else
2757 return elements*strlen;
2758 }
2759
2760
2761 /* Given an expression, check whether it is an array section
2762 which has a vector subscript. */
2763
2764 bool
2765 gfc_has_vector_subscript (gfc_expr *e)
2766 {
2767 int i;
2768 gfc_ref *ref;
2769
2770 if (e == NULL || e->rank == 0 || e->expr_type != EXPR_VARIABLE)
2771 return false;
2772
2773 for (ref = e->ref; ref; ref = ref->next)
2774 if (ref->type == REF_ARRAY && ref->u.ar.type == AR_SECTION)
2775 for (i = 0; i < ref->u.ar.dimen; i++)
2776 if (ref->u.ar.dimen_type[i] == DIMEN_VECTOR)
2777 return true;
2778
2779 return false;
2780 }
2781
2782
2783 static bool
2784 is_procptr_result (gfc_expr *expr)
2785 {
2786 gfc_component *c = gfc_get_proc_ptr_comp (expr);
2787 if (c)
2788 return (c->ts.interface && (c->ts.interface->attr.proc_pointer == 1));
2789 else
2790 return ((expr->symtree->n.sym->result != expr->symtree->n.sym)
2791 && (expr->symtree->n.sym->result->attr.proc_pointer == 1));
2792 }
2793
2794
2795 /* Recursively append candidate argument ARG to CANDIDATES. Store the
2796 number of total candidates in CANDIDATES_LEN. */
2797
2798 static void
2799 lookup_arg_fuzzy_find_candidates (gfc_formal_arglist *arg,
2800 char **&candidates,
2801 size_t &candidates_len)
2802 {
2803 for (gfc_formal_arglist *p = arg; p && p->sym; p = p->next)
2804 vec_push (candidates, candidates_len, p->sym->name);
2805 }
2806
2807
2808 /* Lookup argument ARG fuzzily, taking names in ARGUMENTS into account. */
2809
2810 static const char*
2811 lookup_arg_fuzzy (const char *arg, gfc_formal_arglist *arguments)
2812 {
2813 char **candidates = NULL;
2814 size_t candidates_len = 0;
2815 lookup_arg_fuzzy_find_candidates (arguments, candidates, candidates_len);
2816 return gfc_closest_fuzzy_match (arg, candidates);
2817 }
2818
2819
2820 /* Given formal and actual argument lists, see if they are compatible.
2821 If they are compatible, the actual argument list is sorted to
2822 correspond with the formal list, and elements for missing optional
2823 arguments are inserted. If WHERE pointer is nonnull, then we issue
2824 errors when things don't match instead of just returning the status
2825 code. */
2826
2827 static bool
2828 compare_actual_formal (gfc_actual_arglist **ap, gfc_formal_arglist *formal,
2829 int ranks_must_agree, int is_elemental, locus *where)
2830 {
2831 gfc_actual_arglist **new_arg, *a, *actual;
2832 gfc_formal_arglist *f;
2833 int i, n, na;
2834 unsigned long actual_size, formal_size;
2835 bool full_array = false;
2836 gfc_array_ref *actual_arr_ref;
2837
2838 actual = *ap;
2839
2840 if (actual == NULL && formal == NULL)
2841 return true;
2842
2843 n = 0;
2844 for (f = formal; f; f = f->next)
2845 n++;
2846
2847 new_arg = XALLOCAVEC (gfc_actual_arglist *, n);
2848
2849 for (i = 0; i < n; i++)
2850 new_arg[i] = NULL;
2851
2852 na = 0;
2853 f = formal;
2854 i = 0;
2855
2856 for (a = actual; a; a = a->next, f = f->next)
2857 {
2858 /* Look for keywords but ignore g77 extensions like %VAL. */
2859 if (a->name != NULL && a->name[0] != '%')
2860 {
2861 i = 0;
2862 for (f = formal; f; f = f->next, i++)
2863 {
2864 if (f->sym == NULL)
2865 continue;
2866 if (strcmp (f->sym->name, a->name) == 0)
2867 break;
2868 }
2869
2870 if (f == NULL)
2871 {
2872 if (where)
2873 {
2874 const char *guessed = lookup_arg_fuzzy (a->name, formal);
2875 if (guessed)
2876 gfc_error ("Keyword argument %qs at %L is not in "
2877 "the procedure; did you mean %qs?",
2878 a->name, &a->expr->where, guessed);
2879 else
2880 gfc_error ("Keyword argument %qs at %L is not in "
2881 "the procedure", a->name, &a->expr->where);
2882 }
2883 return false;
2884 }
2885
2886 if (new_arg[i] != NULL)
2887 {
2888 if (where)
2889 gfc_error ("Keyword argument %qs at %L is already associated "
2890 "with another actual argument", a->name,
2891 &a->expr->where);
2892 return false;
2893 }
2894 }
2895
2896 if (f == NULL)
2897 {
2898 if (where)
2899 gfc_error ("More actual than formal arguments in procedure "
2900 "call at %L", where);
2901
2902 return false;
2903 }
2904
2905 if (f->sym == NULL && a->expr == NULL)
2906 goto match;
2907
2908 if (f->sym == NULL)
2909 {
2910 if (where)
2911 gfc_error ("Missing alternate return spec in subroutine call "
2912 "at %L", where);
2913 return false;
2914 }
2915
2916 if (a->expr == NULL)
2917 {
2918 if (where)
2919 gfc_error ("Unexpected alternate return spec in subroutine "
2920 "call at %L", where);
2921 return false;
2922 }
2923
2924 /* Make sure that intrinsic vtables exist for calls to unlimited
2925 polymorphic formal arguments. */
2926 if (UNLIMITED_POLY (f->sym)
2927 && a->expr->ts.type != BT_DERIVED
2928 && a->expr->ts.type != BT_CLASS)
2929 gfc_find_vtab (&a->expr->ts);
2930
2931 if (a->expr->expr_type == EXPR_NULL
2932 && ((f->sym->ts.type != BT_CLASS && !f->sym->attr.pointer
2933 && (f->sym->attr.allocatable || !f->sym->attr.optional
2934 || (gfc_option.allow_std & GFC_STD_F2008) == 0))
2935 || (f->sym->ts.type == BT_CLASS
2936 && !CLASS_DATA (f->sym)->attr.class_pointer
2937 && (CLASS_DATA (f->sym)->attr.allocatable
2938 || !f->sym->attr.optional
2939 || (gfc_option.allow_std & GFC_STD_F2008) == 0))))
2940 {
2941 if (where
2942 && (!f->sym->attr.optional
2943 || (f->sym->ts.type != BT_CLASS && f->sym->attr.allocatable)
2944 || (f->sym->ts.type == BT_CLASS
2945 && CLASS_DATA (f->sym)->attr.allocatable)))
2946 gfc_error ("Unexpected NULL() intrinsic at %L to dummy %qs",
2947 where, f->sym->name);
2948 else if (where)
2949 gfc_error ("Fortran 2008: Null pointer at %L to non-pointer "
2950 "dummy %qs", where, f->sym->name);
2951
2952 return false;
2953 }
2954
2955 if (!compare_parameter (f->sym, a->expr, ranks_must_agree,
2956 is_elemental, where))
2957 return false;
2958
2959 /* TS 29113, 6.3p2. */
2960 if (f->sym->ts.type == BT_ASSUMED
2961 && (a->expr->ts.type == BT_DERIVED
2962 || (a->expr->ts.type == BT_CLASS && CLASS_DATA (a->expr))))
2963 {
2964 gfc_namespace *f2k_derived;
2965
2966 f2k_derived = a->expr->ts.type == BT_DERIVED
2967 ? a->expr->ts.u.derived->f2k_derived
2968 : CLASS_DATA (a->expr)->ts.u.derived->f2k_derived;
2969
2970 if (f2k_derived
2971 && (f2k_derived->finalizers || f2k_derived->tb_sym_root))
2972 {
2973 gfc_error ("Actual argument at %L to assumed-type dummy is of "
2974 "derived type with type-bound or FINAL procedures",
2975 &a->expr->where);
2976 return false;
2977 }
2978 }
2979
2980 /* Special case for character arguments. For allocatable, pointer
2981 and assumed-shape dummies, the string length needs to match
2982 exactly. */
2983 if (a->expr->ts.type == BT_CHARACTER
2984 && a->expr->ts.u.cl && a->expr->ts.u.cl->length
2985 && a->expr->ts.u.cl->length->expr_type == EXPR_CONSTANT
2986 && f->sym->ts.type == BT_CHARACTER && f->sym->ts.u.cl
2987 && f->sym->ts.u.cl->length
2988 && f->sym->ts.u.cl->length->expr_type == EXPR_CONSTANT
2989 && (f->sym->attr.pointer || f->sym->attr.allocatable
2990 || (f->sym->as && f->sym->as->type == AS_ASSUMED_SHAPE))
2991 && (mpz_cmp (a->expr->ts.u.cl->length->value.integer,
2992 f->sym->ts.u.cl->length->value.integer) != 0))
2993 {
2994 if (where && (f->sym->attr.pointer || f->sym->attr.allocatable))
2995 gfc_warning (OPT_Wargument_mismatch,
2996 "Character length mismatch (%ld/%ld) between actual "
2997 "argument and pointer or allocatable dummy argument "
2998 "%qs at %L",
2999 mpz_get_si (a->expr->ts.u.cl->length->value.integer),
3000 mpz_get_si (f->sym->ts.u.cl->length->value.integer),
3001 f->sym->name, &a->expr->where);
3002 else if (where)
3003 gfc_warning (OPT_Wargument_mismatch,
3004 "Character length mismatch (%ld/%ld) between actual "
3005 "argument and assumed-shape dummy argument %qs "
3006 "at %L",
3007 mpz_get_si (a->expr->ts.u.cl->length->value.integer),
3008 mpz_get_si (f->sym->ts.u.cl->length->value.integer),
3009 f->sym->name, &a->expr->where);
3010 return false;
3011 }
3012
3013 if ((f->sym->attr.pointer || f->sym->attr.allocatable)
3014 && f->sym->ts.deferred != a->expr->ts.deferred
3015 && a->expr->ts.type == BT_CHARACTER)
3016 {
3017 if (where)
3018 gfc_error ("Actual argument at %L to allocatable or "
3019 "pointer dummy argument %qs must have a deferred "
3020 "length type parameter if and only if the dummy has one",
3021 &a->expr->where, f->sym->name);
3022 return false;
3023 }
3024
3025 if (f->sym->ts.type == BT_CLASS)
3026 goto skip_size_check;
3027
3028 actual_size = get_expr_storage_size (a->expr);
3029 formal_size = get_sym_storage_size (f->sym);
3030 if (actual_size != 0 && actual_size < formal_size
3031 && a->expr->ts.type != BT_PROCEDURE
3032 && f->sym->attr.flavor != FL_PROCEDURE)
3033 {
3034 if (a->expr->ts.type == BT_CHARACTER && !f->sym->as && where)
3035 gfc_warning (OPT_Wargument_mismatch,
3036 "Character length of actual argument shorter "
3037 "than of dummy argument %qs (%lu/%lu) at %L",
3038 f->sym->name, actual_size, formal_size,
3039 &a->expr->where);
3040 else if (where)
3041 {
3042 /* Emit a warning for -std=legacy and an error otherwise. */
3043 if (gfc_option.warn_std == 0)
3044 gfc_warning (OPT_Wargument_mismatch,
3045 "Actual argument contains too few "
3046 "elements for dummy argument %qs (%lu/%lu) "
3047 "at %L", f->sym->name, actual_size,
3048 formal_size, &a->expr->where);
3049 else
3050 gfc_error_now ("Actual argument contains too few "
3051 "elements for dummy argument %qs (%lu/%lu) "
3052 "at %L", f->sym->name, actual_size,
3053 formal_size, &a->expr->where);
3054 }
3055 return false;
3056 }
3057
3058 skip_size_check:
3059
3060 /* Satisfy F03:12.4.1.3 by ensuring that a procedure pointer actual
3061 argument is provided for a procedure pointer formal argument. */
3062 if (f->sym->attr.proc_pointer
3063 && !((a->expr->expr_type == EXPR_VARIABLE
3064 && (a->expr->symtree->n.sym->attr.proc_pointer
3065 || gfc_is_proc_ptr_comp (a->expr)))
3066 || (a->expr->expr_type == EXPR_FUNCTION
3067 && is_procptr_result (a->expr))))
3068 {
3069 if (where)
3070 gfc_error ("Expected a procedure pointer for argument %qs at %L",
3071 f->sym->name, &a->expr->where);
3072 return false;
3073 }
3074
3075 /* Satisfy F03:12.4.1.3 by ensuring that a procedure actual argument is
3076 provided for a procedure formal argument. */
3077 if (f->sym->attr.flavor == FL_PROCEDURE
3078 && !((a->expr->expr_type == EXPR_VARIABLE
3079 && (a->expr->symtree->n.sym->attr.flavor == FL_PROCEDURE
3080 || a->expr->symtree->n.sym->attr.proc_pointer
3081 || gfc_is_proc_ptr_comp (a->expr)))
3082 || (a->expr->expr_type == EXPR_FUNCTION
3083 && is_procptr_result (a->expr))))
3084 {
3085 if (where)
3086 gfc_error ("Expected a procedure for argument %qs at %L",
3087 f->sym->name, &a->expr->where);
3088 return false;
3089 }
3090
3091 if (f->sym->as && f->sym->as->type == AS_ASSUMED_SHAPE
3092 && a->expr->expr_type == EXPR_VARIABLE
3093 && a->expr->symtree->n.sym->as
3094 && a->expr->symtree->n.sym->as->type == AS_ASSUMED_SIZE
3095 && (a->expr->ref == NULL
3096 || (a->expr->ref->type == REF_ARRAY
3097 && a->expr->ref->u.ar.type == AR_FULL)))
3098 {
3099 if (where)
3100 gfc_error ("Actual argument for %qs cannot be an assumed-size"
3101 " array at %L", f->sym->name, where);
3102 return false;
3103 }
3104
3105 if (a->expr->expr_type != EXPR_NULL
3106 && compare_pointer (f->sym, a->expr) == 0)
3107 {
3108 if (where)
3109 gfc_error ("Actual argument for %qs must be a pointer at %L",
3110 f->sym->name, &a->expr->where);
3111 return false;
3112 }
3113
3114 if (a->expr->expr_type != EXPR_NULL
3115 && (gfc_option.allow_std & GFC_STD_F2008) == 0
3116 && compare_pointer (f->sym, a->expr) == 2)
3117 {
3118 if (where)
3119 gfc_error ("Fortran 2008: Non-pointer actual argument at %L to "
3120 "pointer dummy %qs", &a->expr->where,f->sym->name);
3121 return false;
3122 }
3123
3124
3125 /* Fortran 2008, C1242. */
3126 if (f->sym->attr.pointer && gfc_is_coindexed (a->expr))
3127 {
3128 if (where)
3129 gfc_error ("Coindexed actual argument at %L to pointer "
3130 "dummy %qs",
3131 &a->expr->where, f->sym->name);
3132 return false;
3133 }
3134
3135 /* Fortran 2008, 12.5.2.5 (no constraint). */
3136 if (a->expr->expr_type == EXPR_VARIABLE
3137 && f->sym->attr.intent != INTENT_IN
3138 && f->sym->attr.allocatable
3139 && gfc_is_coindexed (a->expr))
3140 {
3141 if (where)
3142 gfc_error ("Coindexed actual argument at %L to allocatable "
3143 "dummy %qs requires INTENT(IN)",
3144 &a->expr->where, f->sym->name);
3145 return false;
3146 }
3147
3148 /* Fortran 2008, C1237. */
3149 if (a->expr->expr_type == EXPR_VARIABLE
3150 && (f->sym->attr.asynchronous || f->sym->attr.volatile_)
3151 && gfc_is_coindexed (a->expr)
3152 && (a->expr->symtree->n.sym->attr.volatile_
3153 || a->expr->symtree->n.sym->attr.asynchronous))
3154 {
3155 if (where)
3156 gfc_error ("Coindexed ASYNCHRONOUS or VOLATILE actual argument at "
3157 "%L requires that dummy %qs has neither "
3158 "ASYNCHRONOUS nor VOLATILE", &a->expr->where,
3159 f->sym->name);
3160 return false;
3161 }
3162
3163 /* Fortran 2008, 12.5.2.4 (no constraint). */
3164 if (a->expr->expr_type == EXPR_VARIABLE
3165 && f->sym->attr.intent != INTENT_IN && !f->sym->attr.value
3166 && gfc_is_coindexed (a->expr)
3167 && gfc_has_ultimate_allocatable (a->expr))
3168 {
3169 if (where)
3170 gfc_error ("Coindexed actual argument at %L with allocatable "
3171 "ultimate component to dummy %qs requires either VALUE "
3172 "or INTENT(IN)", &a->expr->where, f->sym->name);
3173 return false;
3174 }
3175
3176 if (f->sym->ts.type == BT_CLASS
3177 && CLASS_DATA (f->sym)->attr.allocatable
3178 && gfc_is_class_array_ref (a->expr, &full_array)
3179 && !full_array)
3180 {
3181 if (where)
3182 gfc_error ("Actual CLASS array argument for %qs must be a full "
3183 "array at %L", f->sym->name, &a->expr->where);
3184 return false;
3185 }
3186
3187
3188 if (a->expr->expr_type != EXPR_NULL
3189 && !compare_allocatable (f->sym, a->expr))
3190 {
3191 if (where)
3192 gfc_error ("Actual argument for %qs must be ALLOCATABLE at %L",
3193 f->sym->name, &a->expr->where);
3194 return false;
3195 }
3196
3197 /* Check intent = OUT/INOUT for definable actual argument. */
3198 if ((f->sym->attr.intent == INTENT_OUT
3199 || f->sym->attr.intent == INTENT_INOUT))
3200 {
3201 const char* context = (where
3202 ? _("actual argument to INTENT = OUT/INOUT")
3203 : NULL);
3204
3205 if (((f->sym->ts.type == BT_CLASS && f->sym->attr.class_ok
3206 && CLASS_DATA (f->sym)->attr.class_pointer)
3207 || (f->sym->ts.type != BT_CLASS && f->sym->attr.pointer))
3208 && !gfc_check_vardef_context (a->expr, true, false, false, context))
3209 return false;
3210 if (!gfc_check_vardef_context (a->expr, false, false, false, context))
3211 return false;
3212 }
3213
3214 if ((f->sym->attr.intent == INTENT_OUT
3215 || f->sym->attr.intent == INTENT_INOUT
3216 || f->sym->attr.volatile_
3217 || f->sym->attr.asynchronous)
3218 && gfc_has_vector_subscript (a->expr))
3219 {
3220 if (where)
3221 gfc_error ("Array-section actual argument with vector "
3222 "subscripts at %L is incompatible with INTENT(OUT), "
3223 "INTENT(INOUT), VOLATILE or ASYNCHRONOUS attribute "
3224 "of the dummy argument %qs",
3225 &a->expr->where, f->sym->name);
3226 return false;
3227 }
3228
3229 /* C1232 (R1221) For an actual argument which is an array section or
3230 an assumed-shape array, the dummy argument shall be an assumed-
3231 shape array, if the dummy argument has the VOLATILE attribute. */
3232
3233 if (f->sym->attr.volatile_
3234 && a->expr->expr_type == EXPR_VARIABLE
3235 && a->expr->symtree->n.sym->as
3236 && a->expr->symtree->n.sym->as->type == AS_ASSUMED_SHAPE
3237 && !(f->sym->as && f->sym->as->type == AS_ASSUMED_SHAPE))
3238 {
3239 if (where)
3240 gfc_error ("Assumed-shape actual argument at %L is "
3241 "incompatible with the non-assumed-shape "
3242 "dummy argument %qs due to VOLATILE attribute",
3243 &a->expr->where,f->sym->name);
3244 return false;
3245 }
3246
3247 /* Find the last array_ref. */
3248 actual_arr_ref = NULL;
3249 if (a->expr->ref)
3250 actual_arr_ref = gfc_find_array_ref (a->expr, true);
3251
3252 if (f->sym->attr.volatile_
3253 && actual_arr_ref && actual_arr_ref->type == AR_SECTION
3254 && !(f->sym->as && f->sym->as->type == AS_ASSUMED_SHAPE))
3255 {
3256 if (where)
3257 gfc_error ("Array-section actual argument at %L is "
3258 "incompatible with the non-assumed-shape "
3259 "dummy argument %qs due to VOLATILE attribute",
3260 &a->expr->where, f->sym->name);
3261 return false;
3262 }
3263
3264 /* C1233 (R1221) For an actual argument which is a pointer array, the
3265 dummy argument shall be an assumed-shape or pointer array, if the
3266 dummy argument has the VOLATILE attribute. */
3267
3268 if (f->sym->attr.volatile_
3269 && a->expr->expr_type == EXPR_VARIABLE
3270 && a->expr->symtree->n.sym->attr.pointer
3271 && a->expr->symtree->n.sym->as
3272 && !(f->sym->as
3273 && (f->sym->as->type == AS_ASSUMED_SHAPE
3274 || f->sym->attr.pointer)))
3275 {
3276 if (where)
3277 gfc_error ("Pointer-array actual argument at %L requires "
3278 "an assumed-shape or pointer-array dummy "
3279 "argument %qs due to VOLATILE attribute",
3280 &a->expr->where,f->sym->name);
3281 return false;
3282 }
3283
3284 match:
3285 if (a == actual)
3286 na = i;
3287
3288 new_arg[i++] = a;
3289 }
3290
3291 /* Make sure missing actual arguments are optional. */
3292 i = 0;
3293 for (f = formal; f; f = f->next, i++)
3294 {
3295 if (new_arg[i] != NULL)
3296 continue;
3297 if (f->sym == NULL)
3298 {
3299 if (where)
3300 gfc_error ("Missing alternate return spec in subroutine call "
3301 "at %L", where);
3302 return false;
3303 }
3304 if (!f->sym->attr.optional)
3305 {
3306 if (where)
3307 gfc_error ("Missing actual argument for argument %qs at %L",
3308 f->sym->name, where);
3309 return false;
3310 }
3311 }
3312
3313 /* The argument lists are compatible. We now relink a new actual
3314 argument list with null arguments in the right places. The head
3315 of the list remains the head. */
3316 for (i = 0; i < n; i++)
3317 if (new_arg[i] == NULL)
3318 new_arg[i] = gfc_get_actual_arglist ();
3319
3320 if (na != 0)
3321 {
3322 std::swap (*new_arg[0], *actual);
3323 std::swap (new_arg[0], new_arg[na]);
3324 }
3325
3326 for (i = 0; i < n - 1; i++)
3327 new_arg[i]->next = new_arg[i + 1];
3328
3329 new_arg[i]->next = NULL;
3330
3331 if (*ap == NULL && n > 0)
3332 *ap = new_arg[0];
3333
3334 /* Note the types of omitted optional arguments. */
3335 for (a = *ap, f = formal; a; a = a->next, f = f->next)
3336 if (a->expr == NULL && a->label == NULL)
3337 a->missing_arg_type = f->sym->ts.type;
3338
3339 return true;
3340 }
3341
3342
3343 typedef struct
3344 {
3345 gfc_formal_arglist *f;
3346 gfc_actual_arglist *a;
3347 }
3348 argpair;
3349
3350 /* qsort comparison function for argument pairs, with the following
3351 order:
3352 - p->a->expr == NULL
3353 - p->a->expr->expr_type != EXPR_VARIABLE
3354 - by gfc_symbol pointer value (larger first). */
3355
3356 static int
3357 pair_cmp (const void *p1, const void *p2)
3358 {
3359 const gfc_actual_arglist *a1, *a2;
3360
3361 /* *p1 and *p2 are elements of the to-be-sorted array. */
3362 a1 = ((const argpair *) p1)->a;
3363 a2 = ((const argpair *) p2)->a;
3364 if (!a1->expr)
3365 {
3366 if (!a2->expr)
3367 return 0;
3368 return -1;
3369 }
3370 if (!a2->expr)
3371 return 1;
3372 if (a1->expr->expr_type != EXPR_VARIABLE)
3373 {
3374 if (a2->expr->expr_type != EXPR_VARIABLE)
3375 return 0;
3376 return -1;
3377 }
3378 if (a2->expr->expr_type != EXPR_VARIABLE)
3379 return 1;
3380 if (a1->expr->symtree->n.sym > a2->expr->symtree->n.sym)
3381 return -1;
3382 return a1->expr->symtree->n.sym < a2->expr->symtree->n.sym;
3383 }
3384
3385
3386 /* Given two expressions from some actual arguments, test whether they
3387 refer to the same expression. The analysis is conservative.
3388 Returning false will produce no warning. */
3389
3390 static bool
3391 compare_actual_expr (gfc_expr *e1, gfc_expr *e2)
3392 {
3393 const gfc_ref *r1, *r2;
3394
3395 if (!e1 || !e2
3396 || e1->expr_type != EXPR_VARIABLE
3397 || e2->expr_type != EXPR_VARIABLE
3398 || e1->symtree->n.sym != e2->symtree->n.sym)
3399 return false;
3400
3401 /* TODO: improve comparison, see expr.c:show_ref(). */
3402 for (r1 = e1->ref, r2 = e2->ref; r1 && r2; r1 = r1->next, r2 = r2->next)
3403 {
3404 if (r1->type != r2->type)
3405 return false;
3406 switch (r1->type)
3407 {
3408 case REF_ARRAY:
3409 if (r1->u.ar.type != r2->u.ar.type)
3410 return false;
3411 /* TODO: At the moment, consider only full arrays;
3412 we could do better. */
3413 if (r1->u.ar.type != AR_FULL || r2->u.ar.type != AR_FULL)
3414 return false;
3415 break;
3416
3417 case REF_COMPONENT:
3418 if (r1->u.c.component != r2->u.c.component)
3419 return false;
3420 break;
3421
3422 case REF_SUBSTRING:
3423 return false;
3424
3425 default:
3426 gfc_internal_error ("compare_actual_expr(): Bad component code");
3427 }
3428 }
3429 if (!r1 && !r2)
3430 return true;
3431 return false;
3432 }
3433
3434
3435 /* Given formal and actual argument lists that correspond to one
3436 another, check that identical actual arguments aren't not
3437 associated with some incompatible INTENTs. */
3438
3439 static bool
3440 check_some_aliasing (gfc_formal_arglist *f, gfc_actual_arglist *a)
3441 {
3442 sym_intent f1_intent, f2_intent;
3443 gfc_formal_arglist *f1;
3444 gfc_actual_arglist *a1;
3445 size_t n, i, j;
3446 argpair *p;
3447 bool t = true;
3448
3449 n = 0;
3450 for (f1 = f, a1 = a;; f1 = f1->next, a1 = a1->next)
3451 {
3452 if (f1 == NULL && a1 == NULL)
3453 break;
3454 if (f1 == NULL || a1 == NULL)
3455 gfc_internal_error ("check_some_aliasing(): List mismatch");
3456 n++;
3457 }
3458 if (n == 0)
3459 return t;
3460 p = XALLOCAVEC (argpair, n);
3461
3462 for (i = 0, f1 = f, a1 = a; i < n; i++, f1 = f1->next, a1 = a1->next)
3463 {
3464 p[i].f = f1;
3465 p[i].a = a1;
3466 }
3467
3468 qsort (p, n, sizeof (argpair), pair_cmp);
3469
3470 for (i = 0; i < n; i++)
3471 {
3472 if (!p[i].a->expr
3473 || p[i].a->expr->expr_type != EXPR_VARIABLE
3474 || p[i].a->expr->ts.type == BT_PROCEDURE)
3475 continue;
3476 f1_intent = p[i].f->sym->attr.intent;
3477 for (j = i + 1; j < n; j++)
3478 {
3479 /* Expected order after the sort. */
3480 if (!p[j].a->expr || p[j].a->expr->expr_type != EXPR_VARIABLE)
3481 gfc_internal_error ("check_some_aliasing(): corrupted data");
3482
3483 /* Are the expression the same? */
3484 if (!compare_actual_expr (p[i].a->expr, p[j].a->expr))
3485 break;
3486 f2_intent = p[j].f->sym->attr.intent;
3487 if ((f1_intent == INTENT_IN && f2_intent == INTENT_OUT)
3488 || (f1_intent == INTENT_OUT && f2_intent == INTENT_IN)
3489 || (f1_intent == INTENT_OUT && f2_intent == INTENT_OUT))
3490 {
3491 gfc_warning (0, "Same actual argument associated with INTENT(%s) "
3492 "argument %qs and INTENT(%s) argument %qs at %L",
3493 gfc_intent_string (f1_intent), p[i].f->sym->name,
3494 gfc_intent_string (f2_intent), p[j].f->sym->name,
3495 &p[i].a->expr->where);
3496 t = false;
3497 }
3498 }
3499 }
3500
3501 return t;
3502 }
3503
3504
3505 /* Given formal and actual argument lists that correspond to one
3506 another, check that they are compatible in the sense that intents
3507 are not mismatched. */
3508
3509 static bool
3510 check_intents (gfc_formal_arglist *f, gfc_actual_arglist *a)
3511 {
3512 sym_intent f_intent;
3513
3514 for (;; f = f->next, a = a->next)
3515 {
3516 gfc_expr *expr;
3517
3518 if (f == NULL && a == NULL)
3519 break;
3520 if (f == NULL || a == NULL)
3521 gfc_internal_error ("check_intents(): List mismatch");
3522
3523 if (a->expr && a->expr->expr_type == EXPR_FUNCTION
3524 && a->expr->value.function.isym
3525 && a->expr->value.function.isym->id == GFC_ISYM_CAF_GET)
3526 expr = a->expr->value.function.actual->expr;
3527 else
3528 expr = a->expr;
3529
3530 if (expr == NULL || expr->expr_type != EXPR_VARIABLE)
3531 continue;
3532
3533 f_intent = f->sym->attr.intent;
3534
3535 if (gfc_pure (NULL) && gfc_impure_variable (expr->symtree->n.sym))
3536 {
3537 if ((f->sym->ts.type == BT_CLASS && f->sym->attr.class_ok
3538 && CLASS_DATA (f->sym)->attr.class_pointer)
3539 || (f->sym->ts.type != BT_CLASS && f->sym->attr.pointer))
3540 {
3541 gfc_error ("Procedure argument at %L is local to a PURE "
3542 "procedure and has the POINTER attribute",
3543 &expr->where);
3544 return false;
3545 }
3546 }
3547
3548 /* Fortran 2008, C1283. */
3549 if (gfc_pure (NULL) && gfc_is_coindexed (expr))
3550 {
3551 if (f_intent == INTENT_INOUT || f_intent == INTENT_OUT)
3552 {
3553 gfc_error ("Coindexed actual argument at %L in PURE procedure "
3554 "is passed to an INTENT(%s) argument",
3555 &expr->where, gfc_intent_string (f_intent));
3556 return false;
3557 }
3558
3559 if ((f->sym->ts.type == BT_CLASS && f->sym->attr.class_ok
3560 && CLASS_DATA (f->sym)->attr.class_pointer)
3561 || (f->sym->ts.type != BT_CLASS && f->sym->attr.pointer))
3562 {
3563 gfc_error ("Coindexed actual argument at %L in PURE procedure "
3564 "is passed to a POINTER dummy argument",
3565 &expr->where);
3566 return false;
3567 }
3568 }
3569
3570 /* F2008, Section 12.5.2.4. */
3571 if (expr->ts.type == BT_CLASS && f->sym->ts.type == BT_CLASS
3572 && gfc_is_coindexed (expr))
3573 {
3574 gfc_error ("Coindexed polymorphic actual argument at %L is passed "
3575 "polymorphic dummy argument %qs",
3576 &expr->where, f->sym->name);
3577 return false;
3578 }
3579 }
3580
3581 return true;
3582 }
3583
3584
3585 /* Check how a procedure is used against its interface. If all goes
3586 well, the actual argument list will also end up being properly
3587 sorted. */
3588
3589 bool
3590 gfc_procedure_use (gfc_symbol *sym, gfc_actual_arglist **ap, locus *where)
3591 {
3592 gfc_formal_arglist *dummy_args;
3593
3594 /* Warn about calls with an implicit interface. Special case
3595 for calling a ISO_C_BINDING because c_loc and c_funloc
3596 are pseudo-unknown. Additionally, warn about procedures not
3597 explicitly declared at all if requested. */
3598 if (sym->attr.if_source == IFSRC_UNKNOWN && !sym->attr.is_iso_c)
3599 {
3600 if (sym->ns->has_implicit_none_export && sym->attr.proc == PROC_UNKNOWN)
3601 {
3602 const char *guessed
3603 = gfc_lookup_function_fuzzy (sym->name, sym->ns->sym_root);
3604 if (guessed)
3605 gfc_error ("Procedure %qs called at %L is not explicitly declared"
3606 "; did you mean %qs?",
3607 sym->name, where, guessed);
3608 else
3609 gfc_error ("Procedure %qs called at %L is not explicitly declared",
3610 sym->name, where);
3611 return false;
3612 }
3613 if (warn_implicit_interface)
3614 gfc_warning (OPT_Wimplicit_interface,
3615 "Procedure %qs called with an implicit interface at %L",
3616 sym->name, where);
3617 else if (warn_implicit_procedure && sym->attr.proc == PROC_UNKNOWN)
3618 gfc_warning (OPT_Wimplicit_procedure,
3619 "Procedure %qs called at %L is not explicitly declared",
3620 sym->name, where);
3621 }
3622
3623 if (sym->attr.if_source == IFSRC_UNKNOWN)
3624 {
3625 gfc_actual_arglist *a;
3626
3627 if (sym->attr.pointer)
3628 {
3629 gfc_error ("The pointer object %qs at %L must have an explicit "
3630 "function interface or be declared as array",
3631 sym->name, where);
3632 return false;
3633 }
3634
3635 if (sym->attr.allocatable && !sym->attr.external)
3636 {
3637 gfc_error ("The allocatable object %qs at %L must have an explicit "
3638 "function interface or be declared as array",
3639 sym->name, where);
3640 return false;
3641 }
3642
3643 if (sym->attr.allocatable)
3644 {
3645 gfc_error ("Allocatable function %qs at %L must have an explicit "
3646 "function interface", sym->name, where);
3647 return false;
3648 }
3649
3650 for (a = *ap; a; a = a->next)
3651 {
3652 /* Skip g77 keyword extensions like %VAL, %REF, %LOC. */
3653 if (a->name != NULL && a->name[0] != '%')
3654 {
3655 gfc_error ("Keyword argument requires explicit interface "
3656 "for procedure %qs at %L", sym->name, &a->expr->where);
3657 break;
3658 }
3659
3660 /* TS 29113, 6.2. */
3661 if (a->expr && a->expr->ts.type == BT_ASSUMED
3662 && sym->intmod_sym_id != ISOCBINDING_LOC)
3663 {
3664 gfc_error ("Assumed-type argument %s at %L requires an explicit "
3665 "interface", a->expr->symtree->n.sym->name,
3666 &a->expr->where);
3667 break;
3668 }
3669
3670 /* F2008, C1303 and C1304. */
3671 if (a->expr
3672 && (a->expr->ts.type == BT_DERIVED || a->expr->ts.type == BT_CLASS)
3673 && ((a->expr->ts.u.derived->from_intmod == INTMOD_ISO_FORTRAN_ENV
3674 && a->expr->ts.u.derived->intmod_sym_id == ISOFORTRAN_LOCK_TYPE)
3675 || gfc_expr_attr (a->expr).lock_comp))
3676 {
3677 gfc_error ("Actual argument of LOCK_TYPE or with LOCK_TYPE "
3678 "component at %L requires an explicit interface for "
3679 "procedure %qs", &a->expr->where, sym->name);
3680 break;
3681 }
3682
3683 if (a->expr
3684 && (a->expr->ts.type == BT_DERIVED || a->expr->ts.type == BT_CLASS)
3685 && ((a->expr->ts.u.derived->from_intmod == INTMOD_ISO_FORTRAN_ENV
3686 && a->expr->ts.u.derived->intmod_sym_id
3687 == ISOFORTRAN_EVENT_TYPE)
3688 || gfc_expr_attr (a->expr).event_comp))
3689 {
3690 gfc_error ("Actual argument of EVENT_TYPE or with EVENT_TYPE "
3691 "component at %L requires an explicit interface for "
3692 "procedure %qs", &a->expr->where, sym->name);
3693 break;
3694 }
3695
3696 if (a->expr && a->expr->expr_type == EXPR_NULL
3697 && a->expr->ts.type == BT_UNKNOWN)
3698 {
3699 gfc_error ("MOLD argument to NULL required at %L", &a->expr->where);
3700 return false;
3701 }
3702
3703 /* TS 29113, C407b. */
3704 if (a->expr && a->expr->expr_type == EXPR_VARIABLE
3705 && symbol_rank (a->expr->symtree->n.sym) == -1)
3706 {
3707 gfc_error ("Assumed-rank argument requires an explicit interface "
3708 "at %L", &a->expr->where);
3709 return false;
3710 }
3711 }
3712
3713 return true;
3714 }
3715
3716 dummy_args = gfc_sym_get_dummy_args (sym);
3717
3718 if (!compare_actual_formal (ap, dummy_args, 0, sym->attr.elemental, where))
3719 return false;
3720
3721 if (!check_intents (dummy_args, *ap))
3722 return false;
3723
3724 if (warn_aliasing)
3725 check_some_aliasing (dummy_args, *ap);
3726
3727 return true;
3728 }
3729
3730
3731 /* Check how a procedure pointer component is used against its interface.
3732 If all goes well, the actual argument list will also end up being properly
3733 sorted. Completely analogous to gfc_procedure_use. */
3734
3735 void
3736 gfc_ppc_use (gfc_component *comp, gfc_actual_arglist **ap, locus *where)
3737 {
3738 /* Warn about calls with an implicit interface. Special case
3739 for calling a ISO_C_BINDING because c_loc and c_funloc
3740 are pseudo-unknown. */
3741 if (warn_implicit_interface
3742 && comp->attr.if_source == IFSRC_UNKNOWN
3743 && !comp->attr.is_iso_c)
3744 gfc_warning (OPT_Wimplicit_interface,
3745 "Procedure pointer component %qs called with an implicit "
3746 "interface at %L", comp->name, where);
3747
3748 if (comp->attr.if_source == IFSRC_UNKNOWN)
3749 {
3750 gfc_actual_arglist *a;
3751 for (a = *ap; a; a = a->next)
3752 {
3753 /* Skip g77 keyword extensions like %VAL, %REF, %LOC. */
3754 if (a->name != NULL && a->name[0] != '%')
3755 {
3756 gfc_error ("Keyword argument requires explicit interface "
3757 "for procedure pointer component %qs at %L",
3758 comp->name, &a->expr->where);
3759 break;
3760 }
3761 }
3762
3763 return;
3764 }
3765
3766 if (!compare_actual_formal (ap, comp->ts.interface->formal, 0,
3767 comp->attr.elemental, where))
3768 return;
3769
3770 check_intents (comp->ts.interface->formal, *ap);
3771 if (warn_aliasing)
3772 check_some_aliasing (comp->ts.interface->formal, *ap);
3773 }
3774
3775
3776 /* Try if an actual argument list matches the formal list of a symbol,
3777 respecting the symbol's attributes like ELEMENTAL. This is used for
3778 GENERIC resolution. */
3779
3780 bool
3781 gfc_arglist_matches_symbol (gfc_actual_arglist** args, gfc_symbol* sym)
3782 {
3783 gfc_formal_arglist *dummy_args;
3784 bool r;
3785
3786 if (sym->attr.flavor != FL_PROCEDURE)
3787 return false;
3788
3789 dummy_args = gfc_sym_get_dummy_args (sym);
3790
3791 r = !sym->attr.elemental;
3792 if (compare_actual_formal (args, dummy_args, r, !r, NULL))
3793 {
3794 check_intents (dummy_args, *args);
3795 if (warn_aliasing)
3796 check_some_aliasing (dummy_args, *args);
3797 return true;
3798 }
3799
3800 return false;
3801 }
3802
3803
3804 /* Given an interface pointer and an actual argument list, search for
3805 a formal argument list that matches the actual. If found, returns
3806 a pointer to the symbol of the correct interface. Returns NULL if
3807 not found. */
3808
3809 gfc_symbol *
3810 gfc_search_interface (gfc_interface *intr, int sub_flag,
3811 gfc_actual_arglist **ap)
3812 {
3813 gfc_symbol *elem_sym = NULL;
3814 gfc_symbol *null_sym = NULL;
3815 locus null_expr_loc;
3816 gfc_actual_arglist *a;
3817 bool has_null_arg = false;
3818
3819 for (a = *ap; a; a = a->next)
3820 if (a->expr && a->expr->expr_type == EXPR_NULL
3821 && a->expr->ts.type == BT_UNKNOWN)
3822 {
3823 has_null_arg = true;
3824 null_expr_loc = a->expr->where;
3825 break;
3826 }
3827
3828 for (; intr; intr = intr->next)
3829 {
3830 if (gfc_fl_struct (intr->sym->attr.flavor))
3831 continue;
3832 if (sub_flag && intr->sym->attr.function)
3833 continue;
3834 if (!sub_flag && intr->sym->attr.subroutine)
3835 continue;
3836
3837 if (gfc_arglist_matches_symbol (ap, intr->sym))
3838 {
3839 if (has_null_arg && null_sym)
3840 {
3841 gfc_error ("MOLD= required in NULL() argument at %L: Ambiguity "
3842 "between specific functions %s and %s",
3843 &null_expr_loc, null_sym->name, intr->sym->name);
3844 return NULL;
3845 }
3846 else if (has_null_arg)
3847 {
3848 null_sym = intr->sym;
3849 continue;
3850 }
3851
3852 /* Satisfy 12.4.4.1 such that an elemental match has lower
3853 weight than a non-elemental match. */
3854 if (intr->sym->attr.elemental)
3855 {
3856 elem_sym = intr->sym;
3857 continue;
3858 }
3859 return intr->sym;
3860 }
3861 }
3862
3863 if (null_sym)
3864 return null_sym;
3865
3866 return elem_sym ? elem_sym : NULL;
3867 }
3868
3869
3870 /* Do a brute force recursive search for a symbol. */
3871
3872 static gfc_symtree *
3873 find_symtree0 (gfc_symtree *root, gfc_symbol *sym)
3874 {
3875 gfc_symtree * st;
3876
3877 if (root->n.sym == sym)
3878 return root;
3879
3880 st = NULL;
3881 if (root->left)
3882 st = find_symtree0 (root->left, sym);
3883 if (root->right && ! st)
3884 st = find_symtree0 (root->right, sym);
3885 return st;
3886 }
3887
3888
3889 /* Find a symtree for a symbol. */
3890
3891 gfc_symtree *
3892 gfc_find_sym_in_symtree (gfc_symbol *sym)
3893 {
3894 gfc_symtree *st;
3895 gfc_namespace *ns;
3896
3897 /* First try to find it by name. */
3898 gfc_find_sym_tree (sym->name, gfc_current_ns, 1, &st);
3899 if (st && st->n.sym == sym)
3900 return st;
3901
3902 /* If it's been renamed, resort to a brute-force search. */
3903 /* TODO: avoid having to do this search. If the symbol doesn't exist
3904 in the symtree for the current namespace, it should probably be added. */
3905 for (ns = gfc_current_ns; ns; ns = ns->parent)
3906 {
3907 st = find_symtree0 (ns->sym_root, sym);
3908 if (st)
3909 return st;
3910 }
3911 gfc_internal_error ("Unable to find symbol %qs", sym->name);
3912 /* Not reached. */
3913 }
3914
3915
3916 /* See if the arglist to an operator-call contains a derived-type argument
3917 with a matching type-bound operator. If so, return the matching specific
3918 procedure defined as operator-target as well as the base-object to use
3919 (which is the found derived-type argument with operator). The generic
3920 name, if any, is transmitted to the final expression via 'gname'. */
3921
3922 static gfc_typebound_proc*
3923 matching_typebound_op (gfc_expr** tb_base,
3924 gfc_actual_arglist* args,
3925 gfc_intrinsic_op op, const char* uop,
3926 const char ** gname)
3927 {
3928 gfc_actual_arglist* base;
3929
3930 for (base = args; base; base = base->next)
3931 if (base->expr->ts.type == BT_DERIVED || base->expr->ts.type == BT_CLASS)
3932 {
3933 gfc_typebound_proc* tb;
3934 gfc_symbol* derived;
3935 bool result;
3936
3937 while (base->expr->expr_type == EXPR_OP
3938 && base->expr->value.op.op == INTRINSIC_PARENTHESES)
3939 base->expr = base->expr->value.op.op1;
3940
3941 if (base->expr->ts.type == BT_CLASS)
3942 {
3943 if (!base->expr->ts.u.derived || CLASS_DATA (base->expr) == NULL
3944 || !gfc_expr_attr (base->expr).class_ok)
3945 continue;
3946 derived = CLASS_DATA (base->expr)->ts.u.derived;
3947 }
3948 else
3949 derived = base->expr->ts.u.derived;
3950
3951 if (op == INTRINSIC_USER)
3952 {
3953 gfc_symtree* tb_uop;
3954
3955 gcc_assert (uop);
3956 tb_uop = gfc_find_typebound_user_op (derived, &result, uop,
3957 false, NULL);
3958
3959 if (tb_uop)
3960 tb = tb_uop->n.tb;
3961 else
3962 tb = NULL;
3963 }
3964 else
3965 tb = gfc_find_typebound_intrinsic_op (derived, &result, op,
3966 false, NULL);
3967
3968 /* This means we hit a PRIVATE operator which is use-associated and
3969 should thus not be seen. */
3970 if (!result)
3971 tb = NULL;
3972
3973 /* Look through the super-type hierarchy for a matching specific
3974 binding. */
3975 for (; tb; tb = tb->overridden)
3976 {
3977 gfc_tbp_generic* g;
3978
3979 gcc_assert (tb->is_generic);
3980 for (g = tb->u.generic; g; g = g->next)
3981 {
3982 gfc_symbol* target;
3983 gfc_actual_arglist* argcopy;
3984 bool matches;
3985
3986 gcc_assert (g->specific);
3987 if (g->specific->error)
3988 continue;
3989
3990 target = g->specific->u.specific->n.sym;
3991
3992 /* Check if this arglist matches the formal. */
3993 argcopy = gfc_copy_actual_arglist (args);
3994 matches = gfc_arglist_matches_symbol (&argcopy, target);
3995 gfc_free_actual_arglist (argcopy);
3996
3997 /* Return if we found a match. */
3998 if (matches)
3999 {
4000 *tb_base = base->expr;
4001 *gname = g->specific_st->name;
4002 return g->specific;
4003 }
4004 }
4005 }
4006 }
4007
4008 return NULL;
4009 }
4010
4011
4012 /* For the 'actual arglist' of an operator call and a specific typebound
4013 procedure that has been found the target of a type-bound operator, build the
4014 appropriate EXPR_COMPCALL and resolve it. We take this indirection over
4015 type-bound procedures rather than resolving type-bound operators 'directly'
4016 so that we can reuse the existing logic. */
4017
4018 static void
4019 build_compcall_for_operator (gfc_expr* e, gfc_actual_arglist* actual,
4020 gfc_expr* base, gfc_typebound_proc* target,
4021 const char *gname)
4022 {
4023 e->expr_type = EXPR_COMPCALL;
4024 e->value.compcall.tbp = target;
4025 e->value.compcall.name = gname ? gname : "$op";
4026 e->value.compcall.actual = actual;
4027 e->value.compcall.base_object = base;
4028 e->value.compcall.ignore_pass = 1;
4029 e->value.compcall.assign = 0;
4030 if (e->ts.type == BT_UNKNOWN
4031 && target->function)
4032 {
4033 if (target->is_generic)
4034 e->ts = target->u.generic->specific->u.specific->n.sym->ts;
4035 else
4036 e->ts = target->u.specific->n.sym->ts;
4037 }
4038 }
4039
4040
4041 /* This subroutine is called when an expression is being resolved.
4042 The expression node in question is either a user defined operator
4043 or an intrinsic operator with arguments that aren't compatible
4044 with the operator. This subroutine builds an actual argument list
4045 corresponding to the operands, then searches for a compatible
4046 interface. If one is found, the expression node is replaced with
4047 the appropriate function call. We use the 'match' enum to specify
4048 whether a replacement has been made or not, or if an error occurred. */
4049
4050 match
4051 gfc_extend_expr (gfc_expr *e)
4052 {
4053 gfc_actual_arglist *actual;
4054 gfc_symbol *sym;
4055 gfc_namespace *ns;
4056 gfc_user_op *uop;
4057 gfc_intrinsic_op i;
4058 const char *gname;
4059 gfc_typebound_proc* tbo;
4060 gfc_expr* tb_base;
4061
4062 sym = NULL;
4063
4064 actual = gfc_get_actual_arglist ();
4065 actual->expr = e->value.op.op1;
4066
4067 gname = NULL;
4068
4069 if (e->value.op.op2 != NULL)
4070 {
4071 actual->next = gfc_get_actual_arglist ();
4072 actual->next->expr = e->value.op.op2;
4073 }
4074
4075 i = fold_unary_intrinsic (e->value.op.op);
4076
4077 /* See if we find a matching type-bound operator. */
4078 if (i == INTRINSIC_USER)
4079 tbo = matching_typebound_op (&tb_base, actual,
4080 i, e->value.op.uop->name, &gname);
4081 else
4082 switch (i)
4083 {
4084 #define CHECK_OS_COMPARISON(comp) \
4085 case INTRINSIC_##comp: \
4086 case INTRINSIC_##comp##_OS: \
4087 tbo = matching_typebound_op (&tb_base, actual, \
4088 INTRINSIC_##comp, NULL, &gname); \
4089 if (!tbo) \
4090 tbo = matching_typebound_op (&tb_base, actual, \
4091 INTRINSIC_##comp##_OS, NULL, &gname); \
4092 break;
4093 CHECK_OS_COMPARISON(EQ)
4094 CHECK_OS_COMPARISON(NE)
4095 CHECK_OS_COMPARISON(GT)
4096 CHECK_OS_COMPARISON(GE)
4097 CHECK_OS_COMPARISON(LT)
4098 CHECK_OS_COMPARISON(LE)
4099 #undef CHECK_OS_COMPARISON
4100
4101 default:
4102 tbo = matching_typebound_op (&tb_base, actual, i, NULL, &gname);
4103 break;
4104 }
4105
4106 /* If there is a matching typebound-operator, replace the expression with
4107 a call to it and succeed. */
4108 if (tbo)
4109 {
4110 gcc_assert (tb_base);
4111 build_compcall_for_operator (e, actual, tb_base, tbo, gname);
4112
4113 if (!gfc_resolve_expr (e))
4114 return MATCH_ERROR;
4115 else
4116 return MATCH_YES;
4117 }
4118
4119 if (i == INTRINSIC_USER)
4120 {
4121 for (ns = gfc_current_ns; ns; ns = ns->parent)
4122 {
4123 uop = gfc_find_uop (e->value.op.uop->name, ns);
4124 if (uop == NULL)
4125 continue;
4126
4127 sym = gfc_search_interface (uop->op, 0, &actual);
4128 if (sym != NULL)
4129 break;
4130 }
4131 }
4132 else
4133 {
4134 for (ns = gfc_current_ns; ns; ns = ns->parent)
4135 {
4136 /* Due to the distinction between '==' and '.eq.' and friends, one has
4137 to check if either is defined. */
4138 switch (i)
4139 {
4140 #define CHECK_OS_COMPARISON(comp) \
4141 case INTRINSIC_##comp: \
4142 case INTRINSIC_##comp##_OS: \
4143 sym = gfc_search_interface (ns->op[INTRINSIC_##comp], 0, &actual); \
4144 if (!sym) \
4145 sym = gfc_search_interface (ns->op[INTRINSIC_##comp##_OS], 0, &actual); \
4146 break;
4147 CHECK_OS_COMPARISON(EQ)
4148 CHECK_OS_COMPARISON(NE)
4149 CHECK_OS_COMPARISON(GT)
4150 CHECK_OS_COMPARISON(GE)
4151 CHECK_OS_COMPARISON(LT)
4152 CHECK_OS_COMPARISON(LE)
4153 #undef CHECK_OS_COMPARISON
4154
4155 default:
4156 sym = gfc_search_interface (ns->op[i], 0, &actual);
4157 }
4158
4159 if (sym != NULL)
4160 break;
4161 }
4162 }
4163
4164 /* TODO: Do an ambiguity-check and error if multiple matching interfaces are
4165 found rather than just taking the first one and not checking further. */
4166
4167 if (sym == NULL)
4168 {
4169 /* Don't use gfc_free_actual_arglist(). */
4170 free (actual->next);
4171 free (actual);
4172 return MATCH_NO;
4173 }
4174
4175 /* Change the expression node to a function call. */
4176 e->expr_type = EXPR_FUNCTION;
4177 e->symtree = gfc_find_sym_in_symtree (sym);
4178 e->value.function.actual = actual;
4179 e->value.function.esym = NULL;
4180 e->value.function.isym = NULL;
4181 e->value.function.name = NULL;
4182 e->user_operator = 1;
4183
4184 if (!gfc_resolve_expr (e))
4185 return MATCH_ERROR;
4186
4187 return MATCH_YES;
4188 }
4189
4190
4191 /* Tries to replace an assignment code node with a subroutine call to the
4192 subroutine associated with the assignment operator. Return true if the node
4193 was replaced. On false, no error is generated. */
4194
4195 bool
4196 gfc_extend_assign (gfc_code *c, gfc_namespace *ns)
4197 {
4198 gfc_actual_arglist *actual;
4199 gfc_expr *lhs, *rhs, *tb_base;
4200 gfc_symbol *sym = NULL;
4201 const char *gname = NULL;
4202 gfc_typebound_proc* tbo;
4203
4204 lhs = c->expr1;
4205 rhs = c->expr2;
4206
4207 /* Don't allow an intrinsic assignment to be replaced. */
4208 if (lhs->ts.type != BT_DERIVED && lhs->ts.type != BT_CLASS
4209 && (rhs->rank == 0 || rhs->rank == lhs->rank)
4210 && (lhs->ts.type == rhs->ts.type
4211 || (gfc_numeric_ts (&lhs->ts) && gfc_numeric_ts (&rhs->ts))))
4212 return false;
4213
4214 actual = gfc_get_actual_arglist ();
4215 actual->expr = lhs;
4216
4217 actual->next = gfc_get_actual_arglist ();
4218 actual->next->expr = rhs;
4219
4220 /* TODO: Ambiguity-check, see above for gfc_extend_expr. */
4221
4222 /* See if we find a matching type-bound assignment. */
4223 tbo = matching_typebound_op (&tb_base, actual, INTRINSIC_ASSIGN,
4224 NULL, &gname);
4225
4226 if (tbo)
4227 {
4228 /* Success: Replace the expression with a type-bound call. */
4229 gcc_assert (tb_base);
4230 c->expr1 = gfc_get_expr ();
4231 build_compcall_for_operator (c->expr1, actual, tb_base, tbo, gname);
4232 c->expr1->value.compcall.assign = 1;
4233 c->expr1->where = c->loc;
4234 c->expr2 = NULL;
4235 c->op = EXEC_COMPCALL;
4236 return true;
4237 }
4238
4239 /* See if we find an 'ordinary' (non-typebound) assignment procedure. */
4240 for (; ns; ns = ns->parent)
4241 {
4242 sym = gfc_search_interface (ns->op[INTRINSIC_ASSIGN], 1, &actual);
4243 if (sym != NULL)
4244 break;
4245 }
4246
4247 if (sym)
4248 {
4249 /* Success: Replace the assignment with the call. */
4250 c->op = EXEC_ASSIGN_CALL;
4251 c->symtree = gfc_find_sym_in_symtree (sym);
4252 c->expr1 = NULL;
4253 c->expr2 = NULL;
4254 c->ext.actual = actual;
4255 return true;
4256 }
4257
4258 /* Failure: No assignment procedure found. */
4259 free (actual->next);
4260 free (actual);
4261 return false;
4262 }
4263
4264
4265 /* Make sure that the interface just parsed is not already present in
4266 the given interface list. Ambiguity isn't checked yet since module
4267 procedures can be present without interfaces. */
4268
4269 bool
4270 gfc_check_new_interface (gfc_interface *base, gfc_symbol *new_sym, locus loc)
4271 {
4272 gfc_interface *ip;
4273
4274 for (ip = base; ip; ip = ip->next)
4275 {
4276 if (ip->sym == new_sym)
4277 {
4278 gfc_error ("Entity %qs at %L is already present in the interface",
4279 new_sym->name, &loc);
4280 return false;
4281 }
4282 }
4283
4284 return true;
4285 }
4286
4287
4288 /* Add a symbol to the current interface. */
4289
4290 bool
4291 gfc_add_interface (gfc_symbol *new_sym)
4292 {
4293 gfc_interface **head, *intr;
4294 gfc_namespace *ns;
4295 gfc_symbol *sym;
4296
4297 switch (current_interface.type)
4298 {
4299 case INTERFACE_NAMELESS:
4300 case INTERFACE_ABSTRACT:
4301 return true;
4302
4303 case INTERFACE_INTRINSIC_OP:
4304 for (ns = current_interface.ns; ns; ns = ns->parent)
4305 switch (current_interface.op)
4306 {
4307 case INTRINSIC_EQ:
4308 case INTRINSIC_EQ_OS:
4309 if (!gfc_check_new_interface (ns->op[INTRINSIC_EQ], new_sym,
4310 gfc_current_locus)
4311 || !gfc_check_new_interface (ns->op[INTRINSIC_EQ_OS],
4312 new_sym, gfc_current_locus))
4313 return false;
4314 break;
4315
4316 case INTRINSIC_NE:
4317 case INTRINSIC_NE_OS:
4318 if (!gfc_check_new_interface (ns->op[INTRINSIC_NE], new_sym,
4319 gfc_current_locus)
4320 || !gfc_check_new_interface (ns->op[INTRINSIC_NE_OS],
4321 new_sym, gfc_current_locus))
4322 return false;
4323 break;
4324
4325 case INTRINSIC_GT:
4326 case INTRINSIC_GT_OS:
4327 if (!gfc_check_new_interface (ns->op[INTRINSIC_GT],
4328 new_sym, gfc_current_locus)
4329 || !gfc_check_new_interface (ns->op[INTRINSIC_GT_OS],
4330 new_sym, gfc_current_locus))
4331 return false;
4332 break;
4333
4334 case INTRINSIC_GE:
4335 case INTRINSIC_GE_OS:
4336 if (!gfc_check_new_interface (ns->op[INTRINSIC_GE],
4337 new_sym, gfc_current_locus)
4338 || !gfc_check_new_interface (ns->op[INTRINSIC_GE_OS],
4339 new_sym, gfc_current_locus))
4340 return false;
4341 break;
4342
4343 case INTRINSIC_LT:
4344 case INTRINSIC_LT_OS:
4345 if (!gfc_check_new_interface (ns->op[INTRINSIC_LT],
4346 new_sym, gfc_current_locus)
4347 || !gfc_check_new_interface (ns->op[INTRINSIC_LT_OS],
4348 new_sym, gfc_current_locus))
4349 return false;
4350 break;
4351
4352 case INTRINSIC_LE:
4353 case INTRINSIC_LE_OS:
4354 if (!gfc_check_new_interface (ns->op[INTRINSIC_LE],
4355 new_sym, gfc_current_locus)
4356 || !gfc_check_new_interface (ns->op[INTRINSIC_LE_OS],
4357 new_sym, gfc_current_locus))
4358 return false;
4359 break;
4360
4361 default:
4362 if (!gfc_check_new_interface (ns->op[current_interface.op],
4363 new_sym, gfc_current_locus))
4364 return false;
4365 }
4366
4367 head = &current_interface.ns->op[current_interface.op];
4368 break;
4369
4370 case INTERFACE_GENERIC:
4371 case INTERFACE_DTIO:
4372 for (ns = current_interface.ns; ns; ns = ns->parent)
4373 {
4374 gfc_find_symbol (current_interface.sym->name, ns, 0, &sym);
4375 if (sym == NULL)
4376 continue;
4377
4378 if (!gfc_check_new_interface (sym->generic,
4379 new_sym, gfc_current_locus))
4380 return false;
4381 }
4382
4383 head = &current_interface.sym->generic;
4384 break;
4385
4386 case INTERFACE_USER_OP:
4387 if (!gfc_check_new_interface (current_interface.uop->op,
4388 new_sym, gfc_current_locus))
4389 return false;
4390
4391 head = &current_interface.uop->op;
4392 break;
4393
4394 default:
4395 gfc_internal_error ("gfc_add_interface(): Bad interface type");
4396 }
4397
4398 intr = gfc_get_interface ();
4399 intr->sym = new_sym;
4400 intr->where = gfc_current_locus;
4401
4402 intr->next = *head;
4403 *head = intr;
4404
4405 return true;
4406 }
4407
4408
4409 gfc_interface *
4410 gfc_current_interface_head (void)
4411 {
4412 switch (current_interface.type)
4413 {
4414 case INTERFACE_INTRINSIC_OP:
4415 return current_interface.ns->op[current_interface.op];
4416
4417 case INTERFACE_GENERIC:
4418 case INTERFACE_DTIO:
4419 return current_interface.sym->generic;
4420
4421 case INTERFACE_USER_OP:
4422 return current_interface.uop->op;
4423
4424 default:
4425 gcc_unreachable ();
4426 }
4427 }
4428
4429
4430 void
4431 gfc_set_current_interface_head (gfc_interface *i)
4432 {
4433 switch (current_interface.type)
4434 {
4435 case INTERFACE_INTRINSIC_OP:
4436 current_interface.ns->op[current_interface.op] = i;
4437 break;
4438
4439 case INTERFACE_GENERIC:
4440 case INTERFACE_DTIO:
4441 current_interface.sym->generic = i;
4442 break;
4443
4444 case INTERFACE_USER_OP:
4445 current_interface.uop->op = i;
4446 break;
4447
4448 default:
4449 gcc_unreachable ();
4450 }
4451 }
4452
4453
4454 /* Gets rid of a formal argument list. We do not free symbols.
4455 Symbols are freed when a namespace is freed. */
4456
4457 void
4458 gfc_free_formal_arglist (gfc_formal_arglist *p)
4459 {
4460 gfc_formal_arglist *q;
4461
4462 for (; p; p = q)
4463 {
4464 q = p->next;
4465 free (p);
4466 }
4467 }
4468
4469
4470 /* Check that it is ok for the type-bound procedure 'proc' to override the
4471 procedure 'old', cf. F08:4.5.7.3. */
4472
4473 bool
4474 gfc_check_typebound_override (gfc_symtree* proc, gfc_symtree* old)
4475 {
4476 locus where;
4477 gfc_symbol *proc_target, *old_target;
4478 unsigned proc_pass_arg, old_pass_arg, argpos;
4479 gfc_formal_arglist *proc_formal, *old_formal;
4480 bool check_type;
4481 char err[200];
4482
4483 /* This procedure should only be called for non-GENERIC proc. */
4484 gcc_assert (!proc->n.tb->is_generic);
4485
4486 /* If the overwritten procedure is GENERIC, this is an error. */
4487 if (old->n.tb->is_generic)
4488 {
4489 gfc_error ("Can't overwrite GENERIC %qs at %L",
4490 old->name, &proc->n.tb->where);
4491 return false;
4492 }
4493
4494 where = proc->n.tb->where;
4495 proc_target = proc->n.tb->u.specific->n.sym;
4496 old_target = old->n.tb->u.specific->n.sym;
4497
4498 /* Check that overridden binding is not NON_OVERRIDABLE. */
4499 if (old->n.tb->non_overridable)
4500 {
4501 gfc_error ("%qs at %L overrides a procedure binding declared"
4502 " NON_OVERRIDABLE", proc->name, &where);
4503 return false;
4504 }
4505
4506 /* It's an error to override a non-DEFERRED procedure with a DEFERRED one. */
4507 if (!old->n.tb->deferred && proc->n.tb->deferred)
4508 {
4509 gfc_error ("%qs at %L must not be DEFERRED as it overrides a"
4510 " non-DEFERRED binding", proc->name, &where);
4511 return false;
4512 }
4513
4514 /* If the overridden binding is PURE, the overriding must be, too. */
4515 if (old_target->attr.pure && !proc_target->attr.pure)
4516 {
4517 gfc_error ("%qs at %L overrides a PURE procedure and must also be PURE",
4518 proc->name, &where);
4519 return false;
4520 }
4521
4522 /* If the overridden binding is ELEMENTAL, the overriding must be, too. If it
4523 is not, the overriding must not be either. */
4524 if (old_target->attr.elemental && !proc_target->attr.elemental)
4525 {
4526 gfc_error ("%qs at %L overrides an ELEMENTAL procedure and must also be"
4527 " ELEMENTAL", proc->name, &where);
4528 return false;
4529 }
4530 if (!old_target->attr.elemental && proc_target->attr.elemental)
4531 {
4532 gfc_error ("%qs at %L overrides a non-ELEMENTAL procedure and must not"
4533 " be ELEMENTAL, either", proc->name, &where);
4534 return false;
4535 }
4536
4537 /* If the overridden binding is a SUBROUTINE, the overriding must also be a
4538 SUBROUTINE. */
4539 if (old_target->attr.subroutine && !proc_target->attr.subroutine)
4540 {
4541 gfc_error ("%qs at %L overrides a SUBROUTINE and must also be a"
4542 " SUBROUTINE", proc->name, &where);
4543 return false;
4544 }
4545
4546 /* If the overridden binding is a FUNCTION, the overriding must also be a
4547 FUNCTION and have the same characteristics. */
4548 if (old_target->attr.function)
4549 {
4550 if (!proc_target->attr.function)
4551 {
4552 gfc_error ("%qs at %L overrides a FUNCTION and must also be a"
4553 " FUNCTION", proc->name, &where);
4554 return false;
4555 }
4556
4557 if (!gfc_check_result_characteristics (proc_target, old_target,
4558 err, sizeof(err)))
4559 {
4560 gfc_error ("Result mismatch for the overriding procedure "
4561 "%qs at %L: %s", proc->name, &where, err);
4562 return false;
4563 }
4564 }
4565
4566 /* If the overridden binding is PUBLIC, the overriding one must not be
4567 PRIVATE. */
4568 if (old->n.tb->access == ACCESS_PUBLIC
4569 && proc->n.tb->access == ACCESS_PRIVATE)
4570 {
4571 gfc_error ("%qs at %L overrides a PUBLIC procedure and must not be"
4572 " PRIVATE", proc->name, &where);
4573 return false;
4574 }
4575
4576 /* Compare the formal argument lists of both procedures. This is also abused
4577 to find the position of the passed-object dummy arguments of both
4578 bindings as at least the overridden one might not yet be resolved and we
4579 need those positions in the check below. */
4580 proc_pass_arg = old_pass_arg = 0;
4581 if (!proc->n.tb->nopass && !proc->n.tb->pass_arg)
4582 proc_pass_arg = 1;
4583 if (!old->n.tb->nopass && !old->n.tb->pass_arg)
4584 old_pass_arg = 1;
4585 argpos = 1;
4586 proc_formal = gfc_sym_get_dummy_args (proc_target);
4587 old_formal = gfc_sym_get_dummy_args (old_target);
4588 for ( ; proc_formal && old_formal;
4589 proc_formal = proc_formal->next, old_formal = old_formal->next)
4590 {
4591 if (proc->n.tb->pass_arg
4592 && !strcmp (proc->n.tb->pass_arg, proc_formal->sym->name))
4593 proc_pass_arg = argpos;
4594 if (old->n.tb->pass_arg
4595 && !strcmp (old->n.tb->pass_arg, old_formal->sym->name))
4596 old_pass_arg = argpos;
4597
4598 /* Check that the names correspond. */
4599 if (strcmp (proc_formal->sym->name, old_formal->sym->name))
4600 {
4601 gfc_error ("Dummy argument %qs of %qs at %L should be named %qs as"
4602 " to match the corresponding argument of the overridden"
4603 " procedure", proc_formal->sym->name, proc->name, &where,
4604 old_formal->sym->name);
4605 return false;
4606 }
4607
4608 check_type = proc_pass_arg != argpos && old_pass_arg != argpos;
4609 if (!gfc_check_dummy_characteristics (proc_formal->sym, old_formal->sym,
4610 check_type, err, sizeof(err)))
4611 {
4612 gfc_error_opt (OPT_Wargument_mismatch,
4613 "Argument mismatch for the overriding procedure "
4614 "%qs at %L: %s", proc->name, &where, err);
4615 return false;
4616 }
4617
4618 ++argpos;
4619 }
4620 if (proc_formal || old_formal)
4621 {
4622 gfc_error ("%qs at %L must have the same number of formal arguments as"
4623 " the overridden procedure", proc->name, &where);
4624 return false;
4625 }
4626
4627 /* If the overridden binding is NOPASS, the overriding one must also be
4628 NOPASS. */
4629 if (old->n.tb->nopass && !proc->n.tb->nopass)
4630 {
4631 gfc_error ("%qs at %L overrides a NOPASS binding and must also be"
4632 " NOPASS", proc->name, &where);
4633 return false;
4634 }
4635
4636 /* If the overridden binding is PASS(x), the overriding one must also be
4637 PASS and the passed-object dummy arguments must correspond. */
4638 if (!old->n.tb->nopass)
4639 {
4640 if (proc->n.tb->nopass)
4641 {
4642 gfc_error ("%qs at %L overrides a binding with PASS and must also be"
4643 " PASS", proc->name, &where);
4644 return false;
4645 }
4646
4647 if (proc_pass_arg != old_pass_arg)
4648 {
4649 gfc_error ("Passed-object dummy argument of %qs at %L must be at"
4650 " the same position as the passed-object dummy argument of"
4651 " the overridden procedure", proc->name, &where);
4652 return false;
4653 }
4654 }
4655
4656 return true;
4657 }
4658
4659
4660 /* The following three functions check that the formal arguments
4661 of user defined derived type IO procedures are compliant with
4662 the requirements of the standard. */
4663
4664 static void
4665 check_dtio_arg_TKR_intent (gfc_symbol *fsym, bool typebound, bt type,
4666 int kind, int rank, sym_intent intent)
4667 {
4668 if (fsym->ts.type != type)
4669 {
4670 gfc_error ("DTIO dummy argument at %L must be of type %s",
4671 &fsym->declared_at, gfc_basic_typename (type));
4672 return;
4673 }
4674
4675 if (fsym->ts.type != BT_CLASS && fsym->ts.type != BT_DERIVED
4676 && fsym->ts.kind != kind)
4677 gfc_error ("DTIO dummy argument at %L must be of KIND = %d",
4678 &fsym->declared_at, kind);
4679
4680 if (!typebound
4681 && rank == 0
4682 && (((type == BT_CLASS) && CLASS_DATA (fsym)->attr.dimension)
4683 || ((type != BT_CLASS) && fsym->attr.dimension)))
4684 gfc_error ("DTIO dummy argument at %L must be a scalar",
4685 &fsym->declared_at);
4686 else if (rank == 1
4687 && (fsym->as == NULL || fsym->as->type != AS_ASSUMED_SHAPE))
4688 gfc_error ("DTIO dummy argument at %L must be an "
4689 "ASSUMED SHAPE ARRAY", &fsym->declared_at);
4690
4691 if (fsym->attr.intent != intent)
4692 gfc_error ("DTIO dummy argument at %L must have INTENT %s",
4693 &fsym->declared_at, gfc_code2string (intents, (int)intent));
4694 return;
4695 }
4696
4697
4698 static void
4699 check_dtio_interface1 (gfc_symbol *derived, gfc_symtree *tb_io_st,
4700 bool typebound, bool formatted, int code)
4701 {
4702 gfc_symbol *dtio_sub, *generic_proc, *fsym;
4703 gfc_typebound_proc *tb_io_proc, *specific_proc;
4704 gfc_interface *intr;
4705 gfc_formal_arglist *formal;
4706 int arg_num;
4707
4708 bool read = ((dtio_codes)code == DTIO_RF)
4709 || ((dtio_codes)code == DTIO_RUF);
4710 bt type;
4711 sym_intent intent;
4712 int kind;
4713
4714 dtio_sub = NULL;
4715 if (typebound)
4716 {
4717 /* Typebound DTIO binding. */
4718 tb_io_proc = tb_io_st->n.tb;
4719 if (tb_io_proc == NULL)
4720 return;
4721
4722 gcc_assert (tb_io_proc->is_generic);
4723 gcc_assert (tb_io_proc->u.generic->next == NULL);
4724
4725 specific_proc = tb_io_proc->u.generic->specific;
4726 if (specific_proc == NULL || specific_proc->is_generic)
4727 return;
4728
4729 dtio_sub = specific_proc->u.specific->n.sym;
4730 }
4731 else
4732 {
4733 generic_proc = tb_io_st->n.sym;
4734 if (generic_proc == NULL || generic_proc->generic == NULL)
4735 return;
4736
4737 for (intr = tb_io_st->n.sym->generic; intr; intr = intr->next)
4738 {
4739 if (intr->sym && intr->sym->formal && intr->sym->formal->sym
4740 && ((intr->sym->formal->sym->ts.type == BT_CLASS
4741 && CLASS_DATA (intr->sym->formal->sym)->ts.u.derived
4742 == derived)
4743 || (intr->sym->formal->sym->ts.type == BT_DERIVED
4744 && intr->sym->formal->sym->ts.u.derived == derived)))
4745 {
4746 dtio_sub = intr->sym;
4747 break;
4748 }
4749 else if (intr->sym && intr->sym->formal && !intr->sym->formal->sym)
4750 {
4751 gfc_error ("Alternate return at %L is not permitted in a DTIO "
4752 "procedure", &intr->sym->declared_at);
4753 return;
4754 }
4755 }
4756
4757 if (dtio_sub == NULL)
4758 return;
4759 }
4760
4761 gcc_assert (dtio_sub);
4762 if (!dtio_sub->attr.subroutine)
4763 gfc_error ("DTIO procedure %qs at %L must be a subroutine",
4764 dtio_sub->name, &dtio_sub->declared_at);
4765
4766 arg_num = 0;
4767 for (formal = dtio_sub->formal; formal; formal = formal->next)
4768 arg_num++;
4769
4770 if (arg_num < (formatted ? 6 : 4))
4771 {
4772 gfc_error ("Too few dummy arguments in DTIO procedure %qs at %L",
4773 dtio_sub->name, &dtio_sub->declared_at);
4774 return;
4775 }
4776
4777 if (arg_num > (formatted ? 6 : 4))
4778 {
4779 gfc_error ("Too many dummy arguments in DTIO procedure %qs at %L",
4780 dtio_sub->name, &dtio_sub->declared_at);
4781 return;
4782 }
4783
4784
4785 /* Now go through the formal arglist. */
4786 arg_num = 1;
4787 for (formal = dtio_sub->formal; formal; formal = formal->next, arg_num++)
4788 {
4789 if (!formatted && arg_num == 3)
4790 arg_num = 5;
4791 fsym = formal->sym;
4792
4793 if (fsym == NULL)
4794 {
4795 gfc_error ("Alternate return at %L is not permitted in a DTIO "
4796 "procedure", &dtio_sub->declared_at);
4797 return;
4798 }
4799
4800 switch (arg_num)
4801 {
4802 case(1): /* DTV */
4803 type = derived->attr.sequence || derived->attr.is_bind_c ?
4804 BT_DERIVED : BT_CLASS;
4805 kind = 0;
4806 intent = read ? INTENT_INOUT : INTENT_IN;
4807 check_dtio_arg_TKR_intent (fsym, typebound, type, kind,
4808 0, intent);
4809 break;
4810
4811 case(2): /* UNIT */
4812 type = BT_INTEGER;
4813 kind = gfc_default_integer_kind;
4814 intent = INTENT_IN;
4815 check_dtio_arg_TKR_intent (fsym, typebound, type, kind,
4816 0, intent);
4817 break;
4818 case(3): /* IOTYPE */
4819 type = BT_CHARACTER;
4820 kind = gfc_default_character_kind;
4821 intent = INTENT_IN;
4822 check_dtio_arg_TKR_intent (fsym, typebound, type, kind,
4823 0, intent);
4824 break;
4825 case(4): /* VLIST */
4826 type = BT_INTEGER;
4827 kind = gfc_default_integer_kind;
4828 intent = INTENT_IN;
4829 check_dtio_arg_TKR_intent (fsym, typebound, type, kind,
4830 1, intent);
4831 break;
4832 case(5): /* IOSTAT */
4833 type = BT_INTEGER;
4834 kind = gfc_default_integer_kind;
4835 intent = INTENT_OUT;
4836 check_dtio_arg_TKR_intent (fsym, typebound, type, kind,
4837 0, intent);
4838 break;
4839 case(6): /* IOMSG */
4840 type = BT_CHARACTER;
4841 kind = gfc_default_character_kind;
4842 intent = INTENT_INOUT;
4843 check_dtio_arg_TKR_intent (fsym, typebound, type, kind,
4844 0, intent);
4845 break;
4846 default:
4847 gcc_unreachable ();
4848 }
4849 }
4850 derived->attr.has_dtio_procs = 1;
4851 return;
4852 }
4853
4854 void
4855 gfc_check_dtio_interfaces (gfc_symbol *derived)
4856 {
4857 gfc_symtree *tb_io_st;
4858 bool t = false;
4859 int code;
4860 bool formatted;
4861
4862 if (derived->attr.is_class == 1 || derived->attr.vtype == 1)
4863 return;
4864
4865 /* Check typebound DTIO bindings. */
4866 for (code = 0; code < 4; code++)
4867 {
4868 formatted = ((dtio_codes)code == DTIO_RF)
4869 || ((dtio_codes)code == DTIO_WF);
4870
4871 tb_io_st = gfc_find_typebound_proc (derived, &t,
4872 gfc_code2string (dtio_procs, code),
4873 true, &derived->declared_at);
4874 if (tb_io_st != NULL)
4875 check_dtio_interface1 (derived, tb_io_st, true, formatted, code);
4876 }
4877
4878 /* Check generic DTIO interfaces. */
4879 for (code = 0; code < 4; code++)
4880 {
4881 formatted = ((dtio_codes)code == DTIO_RF)
4882 || ((dtio_codes)code == DTIO_WF);
4883
4884 tb_io_st = gfc_find_symtree (derived->ns->sym_root,
4885 gfc_code2string (dtio_procs, code));
4886 if (tb_io_st != NULL)
4887 check_dtio_interface1 (derived, tb_io_st, false, formatted, code);
4888 }
4889 }
4890
4891
4892 gfc_symtree*
4893 gfc_find_typebound_dtio_proc (gfc_symbol *derived, bool write, bool formatted)
4894 {
4895 gfc_symtree *tb_io_st = NULL;
4896 bool t = false;
4897
4898 if (!derived || !derived->resolved || derived->attr.flavor != FL_DERIVED)
4899 return NULL;
4900
4901 /* Try to find a typebound DTIO binding. */
4902 if (formatted == true)
4903 {
4904 if (write == true)
4905 tb_io_st = gfc_find_typebound_proc (derived, &t,
4906 gfc_code2string (dtio_procs,
4907 DTIO_WF),
4908 true,
4909 &derived->declared_at);
4910 else
4911 tb_io_st = gfc_find_typebound_proc (derived, &t,
4912 gfc_code2string (dtio_procs,
4913 DTIO_RF),
4914 true,
4915 &derived->declared_at);
4916 }
4917 else
4918 {
4919 if (write == true)
4920 tb_io_st = gfc_find_typebound_proc (derived, &t,
4921 gfc_code2string (dtio_procs,
4922 DTIO_WUF),
4923 true,
4924 &derived->declared_at);
4925 else
4926 tb_io_st = gfc_find_typebound_proc (derived, &t,
4927 gfc_code2string (dtio_procs,
4928 DTIO_RUF),
4929 true,
4930 &derived->declared_at);
4931 }
4932 return tb_io_st;
4933 }
4934
4935
4936 gfc_symbol *
4937 gfc_find_specific_dtio_proc (gfc_symbol *derived, bool write, bool formatted)
4938 {
4939 gfc_symtree *tb_io_st = NULL;
4940 gfc_symbol *dtio_sub = NULL;
4941 gfc_symbol *extended;
4942 gfc_typebound_proc *tb_io_proc, *specific_proc;
4943
4944 tb_io_st = gfc_find_typebound_dtio_proc (derived, write, formatted);
4945
4946 if (tb_io_st != NULL)
4947 {
4948 const char *genname;
4949 gfc_symtree *st;
4950
4951 tb_io_proc = tb_io_st->n.tb;
4952 gcc_assert (tb_io_proc != NULL);
4953 gcc_assert (tb_io_proc->is_generic);
4954 gcc_assert (tb_io_proc->u.generic->next == NULL);
4955
4956 specific_proc = tb_io_proc->u.generic->specific;
4957 gcc_assert (!specific_proc->is_generic);
4958
4959 /* Go back and make sure that we have the right specific procedure.
4960 Here we most likely have a procedure from the parent type, which
4961 can be overridden in extensions. */
4962 genname = tb_io_proc->u.generic->specific_st->name;
4963 st = gfc_find_typebound_proc (derived, NULL, genname,
4964 true, &tb_io_proc->where);
4965 if (st)
4966 dtio_sub = st->n.tb->u.specific->n.sym;
4967 else
4968 dtio_sub = specific_proc->u.specific->n.sym;
4969
4970 goto finish;
4971 }
4972
4973 /* If there is not a typebound binding, look for a generic
4974 DTIO interface. */
4975 for (extended = derived; extended;
4976 extended = gfc_get_derived_super_type (extended))
4977 {
4978 if (extended == NULL || extended->ns == NULL
4979 || extended->attr.flavor == FL_UNKNOWN)
4980 return NULL;
4981
4982 if (formatted == true)
4983 {
4984 if (write == true)
4985 tb_io_st = gfc_find_symtree (extended->ns->sym_root,
4986 gfc_code2string (dtio_procs,
4987 DTIO_WF));
4988 else
4989 tb_io_st = gfc_find_symtree (extended->ns->sym_root,
4990 gfc_code2string (dtio_procs,
4991 DTIO_RF));
4992 }
4993 else
4994 {
4995 if (write == true)
4996 tb_io_st = gfc_find_symtree (extended->ns->sym_root,
4997 gfc_code2string (dtio_procs,
4998 DTIO_WUF));
4999 else
5000 tb_io_st = gfc_find_symtree (extended->ns->sym_root,
5001 gfc_code2string (dtio_procs,
5002 DTIO_RUF));
5003 }
5004
5005 if (tb_io_st != NULL
5006 && tb_io_st->n.sym
5007 && tb_io_st->n.sym->generic)
5008 {
5009 for (gfc_interface *intr = tb_io_st->n.sym->generic;
5010 intr && intr->sym; intr = intr->next)
5011 {
5012 if (intr->sym->formal)
5013 {
5014 gfc_symbol *fsym = intr->sym->formal->sym;
5015 if ((fsym->ts.type == BT_CLASS
5016 && CLASS_DATA (fsym)->ts.u.derived == extended)
5017 || (fsym->ts.type == BT_DERIVED
5018 && fsym->ts.u.derived == extended))
5019 {
5020 dtio_sub = intr->sym;
5021 break;
5022 }
5023 }
5024 }
5025 }
5026 }
5027
5028 finish:
5029 if (dtio_sub && derived != CLASS_DATA (dtio_sub->formal->sym)->ts.u.derived)
5030 gfc_find_derived_vtab (derived);
5031
5032 return dtio_sub;
5033 }