comparison gcc/genextract.c @ 111:04ced10e8804

gcc 7
author kono
date Fri, 27 Oct 2017 22:46:09 +0900
parents f6334be47118
children 84e7813d76e9
comparison
equal deleted inserted replaced
68:561a7518be6b 111:04ced10e8804
1 /* Generate code from machine description to extract operands from insn as rtl. 1 /* Generate code from machine description to extract operands from insn as rtl.
2 Copyright (C) 1987, 1991, 1992, 1993, 1997, 1998, 1999, 2000, 2003, 2 Copyright (C) 1987-2017 Free Software Foundation, Inc.
3 2004, 2005, 2007, 2008, 2009, 2010
4 Free Software Foundation, Inc.
5 3
6 This file is part of GCC. 4 This file is part of GCC.
7 5
8 GCC is free software; you can redistribute it and/or modify it under 6 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free 7 the terms of the GNU General Public License as published by the Free
26 #include "tm.h" 24 #include "tm.h"
27 #include "rtl.h" 25 #include "rtl.h"
28 #include "errors.h" 26 #include "errors.h"
29 #include "read-md.h" 27 #include "read-md.h"
30 #include "gensupport.h" 28 #include "gensupport.h"
31 #include "vec.h"
32 #include "vecprim.h"
33 29
34 /* This structure contains all the information needed to describe one 30 /* This structure contains all the information needed to describe one
35 set of extractions methods. Each method may be used by more than 31 set of extractions methods. Each method may be used by more than
36 one pattern if the operands are in the same place. 32 one pattern if the operands are in the same place.
37 33
68 static struct code_ptr *peepholes; 64 static struct code_ptr *peepholes;
69 65
70 /* This structure is used by gen_insn and walk_rtx to accumulate the 66 /* This structure is used by gen_insn and walk_rtx to accumulate the
71 data that will be used to produce an extractions structure. */ 67 data that will be used to produce an extractions structure. */
72 68
73 DEF_VEC_P(locstr);
74 DEF_VEC_ALLOC_P(locstr,heap);
75 69
76 struct accum_extract 70 struct accum_extract
77 { 71 {
78 VEC(locstr,heap) *oplocs; 72 accum_extract () : oplocs (10), duplocs (10), dupnums (10), pathstr (20) {}
79 VEC(locstr,heap) *duplocs; 73
80 VEC(int,heap) *dupnums; 74 auto_vec<locstr> oplocs;
81 VEC(char,heap) *pathstr; 75 auto_vec<locstr> duplocs;
76 auto_vec<int> dupnums;
77 auto_vec<char> pathstr;
82 }; 78 };
83 79
84 int line_no;
85
86 /* Forward declarations. */ 80 /* Forward declarations. */
87 static void walk_rtx (rtx, struct accum_extract *); 81 static void walk_rtx (md_rtx_info *, rtx, struct accum_extract *);
88 82
89 static void 83 static void
90 gen_insn (rtx insn, int insn_code_number) 84 gen_insn (md_rtx_info *info)
91 { 85 {
92 int i; 86 int i;
93 unsigned int op_count, dup_count, j; 87 unsigned int op_count, dup_count, j;
94 struct extraction *p; 88 struct extraction *p;
95 struct code_ptr *link; 89 struct code_ptr *link;
96 struct accum_extract acc; 90 struct accum_extract acc;
97 91
98 acc.oplocs = VEC_alloc (locstr,heap, 10);
99 acc.duplocs = VEC_alloc (locstr,heap, 10);
100 acc.dupnums = VEC_alloc (int,heap, 10);
101 acc.pathstr = VEC_alloc (char,heap, 20);
102
103 /* Walk the insn's pattern, remembering at all times the path 92 /* Walk the insn's pattern, remembering at all times the path
104 down to the walking point. */ 93 down to the walking point. */
105 94
95 rtx insn = info->def;
106 if (XVECLEN (insn, 1) == 1) 96 if (XVECLEN (insn, 1) == 1)
107 walk_rtx (XVECEXP (insn, 1, 0), &acc); 97 walk_rtx (info, XVECEXP (insn, 1, 0), &acc);
108 else 98 else
109 for (i = XVECLEN (insn, 1) - 1; i >= 0; i--) 99 for (i = XVECLEN (insn, 1) - 1; i >= 0; i--)
110 { 100 {
111 VEC_safe_push (char,heap, acc.pathstr, 'a' + i); 101 acc.pathstr.safe_push ('a' + i);
112 walk_rtx (XVECEXP (insn, 1, i), &acc); 102 walk_rtx (info, XVECEXP (insn, 1, i), &acc);
113 VEC_pop (char, acc.pathstr); 103 acc.pathstr.pop ();
114 } 104 }
115 105
116 link = XNEW (struct code_ptr); 106 link = XNEW (struct code_ptr);
117 link->insn_code = insn_code_number; 107 link->insn_code = info->index;
118 108
119 /* See if we find something that already had this extraction method. */ 109 /* See if we find something that already had this extraction method. */
120 110
121 op_count = VEC_length (locstr, acc.oplocs); 111 op_count = acc.oplocs.length ();
122 dup_count = VEC_length (locstr, acc.duplocs); 112 dup_count = acc.duplocs.length ();
123 gcc_assert (dup_count == VEC_length (int, acc.dupnums)); 113 gcc_assert (dup_count == acc.dupnums.length ());
124 114
125 for (p = extractions; p; p = p->next) 115 for (p = extractions; p; p = p->next)
126 { 116 {
127 if (p->op_count != op_count || p->dup_count != dup_count) 117 if (p->op_count != op_count || p->dup_count != dup_count)
128 continue; 118 continue;
129 119
130 for (j = 0; j < op_count; j++) 120 for (j = 0; j < op_count; j++)
131 { 121 {
132 char *a = p->oplocs[j]; 122 char *a = p->oplocs[j];
133 char *b = VEC_index (locstr, acc.oplocs, j); 123 char *b = acc.oplocs[j];
134 if (a != b && (!a || !b || strcmp (a, b))) 124 if (a != b && (!a || !b || strcmp (a, b)))
135 break; 125 break;
136 } 126 }
137 127
138 if (j != op_count) 128 if (j != op_count)
139 continue; 129 continue;
140 130
141 for (j = 0; j < dup_count; j++) 131 for (j = 0; j < dup_count; j++)
142 if (p->dupnums[j] != VEC_index (int, acc.dupnums, j) 132 if (p->dupnums[j] != acc.dupnums[j]
143 || strcmp (p->duplocs[j], VEC_index (locstr, acc.duplocs, j))) 133 || strcmp (p->duplocs[j], acc.duplocs[j]))
144 break; 134 break;
145 135
146 if (j != dup_count) 136 if (j != dup_count)
147 continue; 137 continue;
148 138
149 /* This extraction is the same as ours. Just link us in. */ 139 /* This extraction is the same as ours. Just link us in. */
150 link->next = p->insns; 140 link->next = p->insns;
151 p->insns = link; 141 p->insns = link;
152 goto done; 142 return;
153 } 143 }
154 144
155 /* Otherwise, make a new extraction method. We stash the arrays 145 /* Otherwise, make a new extraction method. We stash the arrays
156 after the extraction structure in memory. */ 146 after the extraction structure in memory. */
157 147
168 158
169 p->oplocs = (char **)((char *)p + sizeof (struct extraction)); 159 p->oplocs = (char **)((char *)p + sizeof (struct extraction));
170 p->duplocs = p->oplocs + op_count; 160 p->duplocs = p->oplocs + op_count;
171 p->dupnums = (int *)(p->duplocs + dup_count); 161 p->dupnums = (int *)(p->duplocs + dup_count);
172 162
173 memcpy(p->oplocs, VEC_address(locstr,acc.oplocs), op_count*sizeof(locstr)); 163 memcpy (p->oplocs, acc.oplocs.address (), op_count * sizeof (locstr));
174 memcpy(p->duplocs, VEC_address(locstr,acc.duplocs), dup_count*sizeof(locstr)); 164 memcpy (p->duplocs, acc.duplocs.address (), dup_count * sizeof (locstr));
175 memcpy(p->dupnums, VEC_address(int, acc.dupnums), dup_count*sizeof(int)); 165 memcpy (p->dupnums, acc.dupnums.address (), dup_count * sizeof (int));
176
177 done:
178 VEC_free (locstr,heap, acc.oplocs);
179 VEC_free (locstr,heap, acc.duplocs);
180 VEC_free (int,heap, acc.dupnums);
181 VEC_free (char,heap, acc.pathstr);
182 } 166 }
183 167
184 /* Helper subroutine of walk_rtx: given a VEC(locstr), an index, and a 168 /* Helper subroutine of walk_rtx: given a vec<locstr>, an index, and a
185 string, insert the string at the index, which should either already 169 string, insert the string at the index, which should either already
186 exist and be NULL, or not yet exist within the vector. In the latter 170 exist and be NULL, or not yet exist within the vector. In the latter
187 case the vector is enlarged as appropriate. */ 171 case the vector is enlarged as appropriate. INFO describes the
172 containing define_* expression. */
188 static void 173 static void
189 VEC_safe_set_locstr (VEC(locstr,heap) **vp, unsigned int ix, char *str) 174 VEC_safe_set_locstr (md_rtx_info *info, vec<locstr> *vp,
190 { 175 unsigned int ix, char *str)
191 if (ix < VEC_length (locstr, *vp)) 176 {
192 { 177 if (ix < (*vp).length ())
193 if (VEC_index (locstr, *vp, ix)) 178 {
194 { 179 if ((*vp)[ix])
195 message_with_line (line_no, "repeated operand number %d", ix); 180 {
181 message_at (info->loc, "repeated operand number %d", ix);
196 have_error = 1; 182 have_error = 1;
197 } 183 }
198 else 184 else
199 VEC_replace (locstr, *vp, ix, str); 185 (*vp)[ix] = str;
200 } 186 }
201 else 187 else
202 { 188 {
203 while (ix > VEC_length (locstr, *vp)) 189 while (ix > (*vp).length ())
204 VEC_safe_push (locstr, heap, *vp, 0); 190 vp->safe_push (NULL);
205 VEC_safe_push (locstr, heap, *vp, str); 191 vp->safe_push (str);
206 } 192 }
207 } 193 }
208 194
209 /* Another helper subroutine of walk_rtx: given a VEC(char), convert it 195 /* Another helper subroutine of walk_rtx: given a vec<char>, convert it
210 to a NUL-terminated string in malloc memory. */ 196 to a NUL-terminated string in malloc memory. */
211 static char * 197 static char *
212 VEC_char_to_string (VEC(char,heap) *v) 198 VEC_char_to_string (vec<char> v)
213 { 199 {
214 size_t n = VEC_length (char, v); 200 size_t n = v.length ();
215 char *s = XNEWVEC (char, n + 1); 201 char *s = XNEWVEC (char, n + 1);
216 memcpy (s, VEC_address (char, v), n); 202 memcpy (s, v.address (), n);
217 s[n] = '\0'; 203 s[n] = '\0';
218 return s; 204 return s;
219 } 205 }
220 206
221 static void 207 static void
222 walk_rtx (rtx x, struct accum_extract *acc) 208 walk_rtx (md_rtx_info *info, rtx x, struct accum_extract *acc)
223 { 209 {
224 RTX_CODE code; 210 RTX_CODE code;
225 int i, len, base; 211 int i, len, base;
226 const char *fmt; 212 const char *fmt;
227 213
237 case SYMBOL_REF: 223 case SYMBOL_REF:
238 return; 224 return;
239 225
240 case MATCH_OPERAND: 226 case MATCH_OPERAND:
241 case MATCH_SCRATCH: 227 case MATCH_SCRATCH:
242 VEC_safe_set_locstr (&acc->oplocs, XINT (x, 0), 228 VEC_safe_set_locstr (info, &acc->oplocs, XINT (x, 0),
243 VEC_char_to_string (acc->pathstr)); 229 VEC_char_to_string (acc->pathstr));
244 break; 230 break;
245 231
246 case MATCH_OPERATOR: 232 case MATCH_OPERATOR:
247 case MATCH_PARALLEL: 233 case MATCH_PARALLEL:
248 VEC_safe_set_locstr (&acc->oplocs, XINT (x, 0), 234 VEC_safe_set_locstr (info, &acc->oplocs, XINT (x, 0),
249 VEC_char_to_string (acc->pathstr)); 235 VEC_char_to_string (acc->pathstr));
250 236
251 base = (code == MATCH_OPERATOR ? '0' : 'a'); 237 base = (code == MATCH_OPERATOR ? '0' : 'a');
252 for (i = XVECLEN (x, 2) - 1; i >= 0; i--) 238 for (i = XVECLEN (x, 2) - 1; i >= 0; i--)
253 { 239 {
254 VEC_safe_push (char,heap, acc->pathstr, base + i); 240 acc->pathstr.safe_push (base + i);
255 walk_rtx (XVECEXP (x, 2, i), acc); 241 walk_rtx (info, XVECEXP (x, 2, i), acc);
256 VEC_pop (char, acc->pathstr); 242 acc->pathstr.pop ();
257 } 243 }
258 return; 244 return;
259 245
260 case MATCH_DUP: 246 case MATCH_DUP:
261 case MATCH_PAR_DUP: 247 case MATCH_PAR_DUP:
262 case MATCH_OP_DUP: 248 case MATCH_OP_DUP:
263 VEC_safe_push (locstr,heap, acc->duplocs, 249 acc->duplocs.safe_push (VEC_char_to_string (acc->pathstr));
264 VEC_char_to_string (acc->pathstr)); 250 acc->dupnums.safe_push (XINT (x, 0));
265 VEC_safe_push (int,heap, acc->dupnums, XINT (x, 0));
266 251
267 if (code == MATCH_DUP) 252 if (code == MATCH_DUP)
268 break; 253 break;
269 254
270 base = (code == MATCH_OP_DUP ? '0' : 'a'); 255 base = (code == MATCH_OP_DUP ? '0' : 'a');
271 for (i = XVECLEN (x, 1) - 1; i >= 0; i--) 256 for (i = XVECLEN (x, 1) - 1; i >= 0; i--)
272 { 257 {
273 VEC_safe_push (char,heap, acc->pathstr, base + i); 258 acc->pathstr.safe_push (base + i);
274 walk_rtx (XVECEXP (x, 1, i), acc); 259 walk_rtx (info, XVECEXP (x, 1, i), acc);
275 VEC_pop (char, acc->pathstr); 260 acc->pathstr.pop ();
276 } 261 }
277 return; 262 return;
278 263
279 default: 264 default:
280 break; 265 break;
284 len = GET_RTX_LENGTH (code); 269 len = GET_RTX_LENGTH (code);
285 for (i = 0; i < len; i++) 270 for (i = 0; i < len; i++)
286 { 271 {
287 if (fmt[i] == 'e' || fmt[i] == 'u') 272 if (fmt[i] == 'e' || fmt[i] == 'u')
288 { 273 {
289 VEC_safe_push (char,heap, acc->pathstr, '0' + i); 274 acc->pathstr.safe_push ('0' + i);
290 walk_rtx (XEXP (x, i), acc); 275 walk_rtx (info, XEXP (x, i), acc);
291 VEC_pop (char, acc->pathstr); 276 acc->pathstr.pop ();
292 } 277 }
293 else if (fmt[i] == 'E') 278 else if (fmt[i] == 'E')
294 { 279 {
295 int j; 280 int j;
296 for (j = XVECLEN (x, i) - 1; j >= 0; j--) 281 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
297 { 282 {
298 VEC_safe_push (char,heap, acc->pathstr, 'a' + j); 283 acc->pathstr.safe_push ('a' + j);
299 walk_rtx (XVECEXP (x, i, j), acc); 284 walk_rtx (info, XVECEXP (x, i, j), acc);
300 VEC_pop (char, acc->pathstr); 285 acc->pathstr.pop ();
301 } 286 }
302 } 287 }
303 } 288 }
304 } 289 }
305 290
338 323
339 for (i = 0; i < len; i++) 324 for (i = 0; i < len; i++)
340 { 325 {
341 if (ISLOWER (path[i])) 326 if (ISLOWER (path[i]))
342 printf (", 0, %d)", path[i] - 'a'); 327 printf (", 0, %d)", path[i] - 'a');
343 else if (ISDIGIT(path[i])) 328 else if (ISDIGIT (path[i]))
344 printf (", %d)", path[i] - '0'); 329 printf (", %d)", path[i] - '0');
345 else 330 else
346 gcc_unreachable (); 331 gcc_unreachable ();
347 } 332 }
348 } 333 }
371 whose numbers are skipped by a given pattern. */\n\ 356 whose numbers are skipped by a given pattern. */\n\
372 static rtx junk ATTRIBUTE_UNUSED;\n"); 357 static rtx junk ATTRIBUTE_UNUSED;\n");
373 358
374 puts ("\ 359 puts ("\
375 void\n\ 360 void\n\
376 insn_extract (rtx insn)\n{\n\ 361 insn_extract (rtx_insn *insn)\n{\n\
377 rtx *ro = recog_data.operand;\n\ 362 rtx *ro = recog_data.operand;\n\
378 rtx **ro_loc = recog_data.operand_loc;\n\ 363 rtx **ro_loc = recog_data.operand_loc;\n\
379 rtx pat = PATTERN (insn);\n\ 364 rtx pat = PATTERN (insn);\n\
380 int i ATTRIBUTE_UNUSED; /* only for peepholes */\n\ 365 int i ATTRIBUTE_UNUSED; /* only for peepholes */\n\
381 \n\ 366 \n\
382 #ifdef ENABLE_CHECKING\n\ 367 if (flag_checking)\n\
383 memset (ro, 0xab, sizeof (*ro) * MAX_RECOG_OPERANDS);\n\ 368 {\n\
384 memset (ro_loc, 0xab, sizeof (*ro_loc) * MAX_RECOG_OPERANDS);\n\ 369 memset (ro, 0xab, sizeof (*ro) * MAX_RECOG_OPERANDS);\n\
385 #endif\n"); 370 memset (ro_loc, 0xab, sizeof (*ro_loc) * MAX_RECOG_OPERANDS);\n\
371 }\n");
386 372
387 puts ("\ 373 puts ("\
388 switch (INSN_CODE (insn))\n\ 374 switch (INSN_CODE (insn))\n\
389 {\n\ 375 {\n\
390 default:\n\ 376 default:\n\
397 else\n\ 383 else\n\
398 fatal_insn (\"insn with invalid code number:\", insn);\n"); 384 fatal_insn (\"insn with invalid code number:\", insn);\n");
399 } 385 }
400 386
401 int 387 int
402 main (int argc, char **argv) 388 main (int argc, const char **argv)
403 { 389 {
404 rtx desc;
405 unsigned int i; 390 unsigned int i;
406 struct extraction *p; 391 struct extraction *p;
407 struct code_ptr *link; 392 struct code_ptr *link;
408 const char *name; 393 const char *name;
409 int insn_code_number;
410 394
411 progname = "genextract"; 395 progname = "genextract";
412 396
413 if (!init_rtx_reader_args (argc, argv)) 397 if (!init_rtx_reader_args (argc, argv))
414 return (FATAL_EXIT_CODE); 398 return (FATAL_EXIT_CODE);
415 399
416 /* Read the machine description. */ 400 /* Read the machine description. */
417 401
418 while ((desc = read_md_rtx (&line_no, &insn_code_number)) != NULL) 402 md_rtx_info info;
419 { 403 while (read_md_rtx (&info))
420 if (GET_CODE (desc) == DEFINE_INSN) 404 switch (GET_CODE (info.def))
421 gen_insn (desc, insn_code_number); 405 {
422 406 case DEFINE_INSN:
423 else if (GET_CODE (desc) == DEFINE_PEEPHOLE) 407 gen_insn (&info);
408 break;
409
410 case DEFINE_PEEPHOLE:
424 { 411 {
425 struct code_ptr *link = XNEW (struct code_ptr); 412 struct code_ptr *link = XNEW (struct code_ptr);
426 413
427 link->insn_code = insn_code_number; 414 link->insn_code = info.index;
428 link->next = peepholes; 415 link->next = peepholes;
429 peepholes = link; 416 peepholes = link;
430 } 417 }
418 break;
419
420 default:
421 break;
431 } 422 }
432 423
433 if (have_error) 424 if (have_error)
434 return FATAL_EXIT_CODE; 425 return FATAL_EXIT_CODE;
435 426