comparison gcc/shrink-wrap.c @ 111:04ced10e8804

gcc 7
author kono
date Fri, 27 Oct 2017 22:46:09 +0900
parents
children 84e7813d76e9
comparison
equal deleted inserted replaced
68:561a7518be6b 111:04ced10e8804
1 /* Shrink-wrapping related optimizations.
2 Copyright (C) 1987-2017 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 /* This file handles shrink-wrapping related optimizations. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "backend.h"
26 #include "target.h"
27 #include "rtl.h"
28 #include "tree.h"
29 #include "cfghooks.h"
30 #include "df.h"
31 #include "memmodel.h"
32 #include "tm_p.h"
33 #include "regs.h"
34 #include "insn-config.h"
35 #include "emit-rtl.h"
36 #include "output.h"
37 #include "tree-pass.h"
38 #include "cfgrtl.h"
39 #include "cfgbuild.h"
40 #include "params.h"
41 #include "bb-reorder.h"
42 #include "shrink-wrap.h"
43 #include "regcprop.h"
44 #include "rtl-iter.h"
45 #include "valtrack.h"
46
47
48 /* Return true if INSN requires the stack frame to be set up.
49 PROLOGUE_USED contains the hard registers used in the function
50 prologue. SET_UP_BY_PROLOGUE is the set of registers we expect the
51 prologue to set up for the function. */
52 bool
53 requires_stack_frame_p (rtx_insn *insn, HARD_REG_SET prologue_used,
54 HARD_REG_SET set_up_by_prologue)
55 {
56 df_ref def, use;
57 HARD_REG_SET hardregs;
58 unsigned regno;
59
60 if (CALL_P (insn))
61 return !SIBLING_CALL_P (insn);
62
63 /* We need a frame to get the unique CFA expected by the unwinder. */
64 if (cfun->can_throw_non_call_exceptions && can_throw_internal (insn))
65 return true;
66
67 CLEAR_HARD_REG_SET (hardregs);
68 FOR_EACH_INSN_DEF (def, insn)
69 {
70 rtx dreg = DF_REF_REG (def);
71
72 if (!REG_P (dreg))
73 continue;
74
75 add_to_hard_reg_set (&hardregs, GET_MODE (dreg), REGNO (dreg));
76 }
77 if (hard_reg_set_intersect_p (hardregs, prologue_used))
78 return true;
79 AND_COMPL_HARD_REG_SET (hardregs, call_used_reg_set);
80 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
81 if (TEST_HARD_REG_BIT (hardregs, regno)
82 && df_regs_ever_live_p (regno))
83 return true;
84
85 FOR_EACH_INSN_USE (use, insn)
86 {
87 rtx reg = DF_REF_REG (use);
88
89 if (!REG_P (reg))
90 continue;
91
92 add_to_hard_reg_set (&hardregs, GET_MODE (reg),
93 REGNO (reg));
94 }
95 if (hard_reg_set_intersect_p (hardregs, set_up_by_prologue))
96 return true;
97
98 return false;
99 }
100
101 /* See whether there has a single live edge from BB, which dest uses
102 [REGNO, END_REGNO). Return the live edge if its dest bb has
103 one or two predecessors. Otherwise return NULL. */
104
105 static edge
106 live_edge_for_reg (basic_block bb, int regno, int end_regno)
107 {
108 edge e, live_edge;
109 edge_iterator ei;
110 bitmap live;
111 int i;
112
113 live_edge = NULL;
114 FOR_EACH_EDGE (e, ei, bb->succs)
115 {
116 live = df_get_live_in (e->dest);
117 for (i = regno; i < end_regno; i++)
118 if (REGNO_REG_SET_P (live, i))
119 {
120 if (live_edge && live_edge != e)
121 return NULL;
122 live_edge = e;
123 }
124 }
125
126 /* We can sometimes encounter dead code. Don't try to move it
127 into the exit block. */
128 if (!live_edge || live_edge->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
129 return NULL;
130
131 /* Reject targets of abnormal edges. This is needed for correctness
132 on ports like Alpha and MIPS, whose pic_offset_table_rtx can die on
133 exception edges even though it is generally treated as call-saved
134 for the majority of the compilation. Moving across abnormal edges
135 isn't going to be interesting for shrink-wrap usage anyway. */
136 if (live_edge->flags & EDGE_ABNORMAL)
137 return NULL;
138
139 /* When live_edge->dest->preds == 2, we can create a new block on
140 the edge to make it meet the requirement. */
141 if (EDGE_COUNT (live_edge->dest->preds) > 2)
142 return NULL;
143
144 return live_edge;
145 }
146
147 /* Try to move INSN from BB to a successor. Return true on success.
148 USES and DEFS are the set of registers that are used and defined
149 after INSN in BB. SPLIT_P indicates whether a live edge from BB
150 is splitted or not. */
151
152 static bool
153 move_insn_for_shrink_wrap (basic_block bb, rtx_insn *insn,
154 const HARD_REG_SET uses,
155 const HARD_REG_SET defs,
156 bool *split_p,
157 struct dead_debug_local *debug)
158 {
159 rtx set, src, dest;
160 bitmap live_out, live_in, bb_uses, bb_defs;
161 unsigned int i, dregno, end_dregno;
162 unsigned int sregno = FIRST_PSEUDO_REGISTER;
163 unsigned int end_sregno = FIRST_PSEUDO_REGISTER;
164 basic_block next_block;
165 edge live_edge;
166 rtx_insn *dinsn;
167 df_ref def;
168
169 /* Look for a simple register assignment. We don't use single_set here
170 because we can't deal with any CLOBBERs, USEs, or REG_UNUSED secondary
171 destinations. */
172 if (!INSN_P (insn))
173 return false;
174 set = PATTERN (insn);
175 if (GET_CODE (set) != SET)
176 return false;
177 src = SET_SRC (set);
178 dest = SET_DEST (set);
179
180 /* For the destination, we want only a register. Also disallow STACK
181 or FRAME related adjustments. They are likely part of the prologue,
182 so keep them in the entry block. */
183 if (!REG_P (dest)
184 || dest == stack_pointer_rtx
185 || dest == frame_pointer_rtx
186 || dest == hard_frame_pointer_rtx)
187 return false;
188
189 /* For the source, we want one of:
190 (1) A (non-overlapping) register
191 (2) A constant,
192 (3) An expression involving no more than one register.
193
194 That last point comes from the code following, which was originally
195 written to handle only register move operations, and still only handles
196 a single source register when checking for overlaps. Happily, the
197 same checks can be applied to expressions like (plus reg const). */
198
199 if (CONSTANT_P (src))
200 ;
201 else if (!REG_P (src))
202 {
203 rtx src_inner = NULL_RTX;
204
205 if (can_throw_internal (insn))
206 return false;
207
208 subrtx_var_iterator::array_type array;
209 FOR_EACH_SUBRTX_VAR (iter, array, src, ALL)
210 {
211 rtx x = *iter;
212 switch (GET_RTX_CLASS (GET_CODE (x)))
213 {
214 case RTX_CONST_OBJ:
215 case RTX_COMPARE:
216 case RTX_COMM_COMPARE:
217 case RTX_BIN_ARITH:
218 case RTX_COMM_ARITH:
219 case RTX_UNARY:
220 case RTX_TERNARY:
221 /* Constant or expression. Continue. */
222 break;
223
224 case RTX_OBJ:
225 case RTX_EXTRA:
226 switch (GET_CODE (x))
227 {
228 case UNSPEC:
229 case SUBREG:
230 case STRICT_LOW_PART:
231 case PC:
232 case LO_SUM:
233 /* Ok. Continue. */
234 break;
235
236 case REG:
237 /* Fail if we see a second inner register. */
238 if (src_inner != NULL)
239 return false;
240 src_inner = x;
241 break;
242
243 default:
244 return false;
245 }
246 break;
247
248 default:
249 return false;
250 }
251 }
252
253 if (src_inner != NULL)
254 src = src_inner;
255 }
256
257 /* Make sure that the source register isn't defined later in BB. */
258 if (REG_P (src))
259 {
260 sregno = REGNO (src);
261 end_sregno = END_REGNO (src);
262 if (overlaps_hard_reg_set_p (defs, GET_MODE (src), sregno))
263 return false;
264 }
265
266 /* Make sure that the destination register isn't referenced later in BB. */
267 dregno = REGNO (dest);
268 end_dregno = END_REGNO (dest);
269 if (overlaps_hard_reg_set_p (uses, GET_MODE (dest), dregno)
270 || overlaps_hard_reg_set_p (defs, GET_MODE (dest), dregno))
271 return false;
272
273 /* See whether there is a successor block to which we could move INSN. */
274 live_edge = live_edge_for_reg (bb, dregno, end_dregno);
275 if (!live_edge)
276 return false;
277
278 next_block = live_edge->dest;
279 /* Create a new basic block on the edge. */
280 if (EDGE_COUNT (next_block->preds) == 2)
281 {
282 /* split_edge for a block with only one successor is meaningless. */
283 if (EDGE_COUNT (bb->succs) == 1)
284 return false;
285
286 /* If DF_LIVE doesn't exist, i.e. at -O1, just give up. */
287 if (!df_live)
288 return false;
289
290 basic_block old_dest = live_edge->dest;
291 next_block = split_edge (live_edge);
292
293 /* We create a new basic block. Call df_grow_bb_info to make sure
294 all data structures are allocated. */
295 df_grow_bb_info (df_live);
296
297 bitmap_and (df_get_live_in (next_block), df_get_live_out (bb),
298 df_get_live_in (old_dest));
299 df_set_bb_dirty (next_block);
300
301 /* We should not split more than once for a function. */
302 if (*split_p)
303 return false;
304
305 *split_p = true;
306 }
307
308 /* At this point we are committed to moving INSN, but let's try to
309 move it as far as we can. */
310 do
311 {
312 if (MAY_HAVE_DEBUG_INSNS)
313 {
314 FOR_BB_INSNS_REVERSE (bb, dinsn)
315 if (DEBUG_INSN_P (dinsn))
316 {
317 df_ref use;
318 FOR_EACH_INSN_USE (use, dinsn)
319 if (refers_to_regno_p (dregno, end_dregno,
320 DF_REF_REG (use), (rtx *) NULL))
321 dead_debug_add (debug, use, DF_REF_REGNO (use));
322 }
323 else if (dinsn == insn)
324 break;
325 }
326 live_out = df_get_live_out (bb);
327 live_in = df_get_live_in (next_block);
328 bb = next_block;
329
330 /* Check whether BB uses DEST or clobbers DEST. We need to add
331 INSN to BB if so. Either way, DEST is no longer live on entry,
332 except for any part that overlaps SRC (next loop). */
333 bb_uses = &DF_LR_BB_INFO (bb)->use;
334 bb_defs = &DF_LR_BB_INFO (bb)->def;
335 if (df_live)
336 {
337 for (i = dregno; i < end_dregno; i++)
338 {
339 if (*split_p
340 || REGNO_REG_SET_P (bb_uses, i)
341 || REGNO_REG_SET_P (bb_defs, i)
342 || REGNO_REG_SET_P (&DF_LIVE_BB_INFO (bb)->gen, i))
343 next_block = NULL;
344 CLEAR_REGNO_REG_SET (live_out, i);
345 CLEAR_REGNO_REG_SET (live_in, i);
346 }
347
348 /* Check whether BB clobbers SRC. We need to add INSN to BB if so.
349 Either way, SRC is now live on entry. */
350 for (i = sregno; i < end_sregno; i++)
351 {
352 if (*split_p
353 || REGNO_REG_SET_P (bb_defs, i)
354 || REGNO_REG_SET_P (&DF_LIVE_BB_INFO (bb)->gen, i))
355 next_block = NULL;
356 SET_REGNO_REG_SET (live_out, i);
357 SET_REGNO_REG_SET (live_in, i);
358 }
359 }
360 else
361 {
362 /* DF_LR_BB_INFO (bb)->def does not comprise the DF_REF_PARTIAL and
363 DF_REF_CONDITIONAL defs. So if DF_LIVE doesn't exist, i.e.
364 at -O1, just give up searching NEXT_BLOCK. */
365 next_block = NULL;
366 for (i = dregno; i < end_dregno; i++)
367 {
368 CLEAR_REGNO_REG_SET (live_out, i);
369 CLEAR_REGNO_REG_SET (live_in, i);
370 }
371
372 for (i = sregno; i < end_sregno; i++)
373 {
374 SET_REGNO_REG_SET (live_out, i);
375 SET_REGNO_REG_SET (live_in, i);
376 }
377 }
378
379 /* If we don't need to add the move to BB, look for a single
380 successor block. */
381 if (next_block)
382 {
383 live_edge = live_edge_for_reg (next_block, dregno, end_dregno);
384 if (!live_edge || EDGE_COUNT (live_edge->dest->preds) > 1)
385 break;
386 next_block = live_edge->dest;
387 }
388 }
389 while (next_block);
390
391 /* For the new created basic block, there is no dataflow info at all.
392 So skip the following dataflow update and check. */
393 if (!(*split_p))
394 {
395 /* BB now defines DEST. It only uses the parts of DEST that overlap SRC
396 (next loop). */
397 for (i = dregno; i < end_dregno; i++)
398 {
399 CLEAR_REGNO_REG_SET (bb_uses, i);
400 SET_REGNO_REG_SET (bb_defs, i);
401 }
402
403 /* BB now uses SRC. */
404 for (i = sregno; i < end_sregno; i++)
405 SET_REGNO_REG_SET (bb_uses, i);
406 }
407
408 /* Insert debug temps for dead REGs used in subsequent debug insns. */
409 if (debug->used && !bitmap_empty_p (debug->used))
410 FOR_EACH_INSN_DEF (def, insn)
411 dead_debug_insert_temp (debug, DF_REF_REGNO (def), insn,
412 DEBUG_TEMP_BEFORE_WITH_VALUE);
413
414 emit_insn_after (PATTERN (insn), bb_note (bb));
415 delete_insn (insn);
416 return true;
417 }
418
419 /* Look for register copies in the first block of the function, and move
420 them down into successor blocks if the register is used only on one
421 path. This exposes more opportunities for shrink-wrapping. These
422 kinds of sets often occur when incoming argument registers are moved
423 to call-saved registers because their values are live across one or
424 more calls during the function. */
425
426 static void
427 prepare_shrink_wrap (basic_block entry_block)
428 {
429 rtx_insn *insn, *curr;
430 rtx x;
431 HARD_REG_SET uses, defs;
432 df_ref def, use;
433 bool split_p = false;
434 unsigned int i;
435 struct dead_debug_local debug;
436
437 if (JUMP_P (BB_END (entry_block)))
438 {
439 /* To have more shrink-wrapping opportunities, prepare_shrink_wrap tries
440 to sink the copies from parameter to callee saved register out of
441 entry block. copyprop_hardreg_forward_bb_without_debug_insn is called
442 to release some dependences. */
443 copyprop_hardreg_forward_bb_without_debug_insn (entry_block);
444 }
445
446 dead_debug_local_init (&debug, NULL, NULL);
447 CLEAR_HARD_REG_SET (uses);
448 CLEAR_HARD_REG_SET (defs);
449
450 FOR_BB_INSNS_REVERSE_SAFE (entry_block, insn, curr)
451 if (NONDEBUG_INSN_P (insn)
452 && !move_insn_for_shrink_wrap (entry_block, insn, uses, defs,
453 &split_p, &debug))
454 {
455 /* Add all defined registers to DEFs. */
456 FOR_EACH_INSN_DEF (def, insn)
457 {
458 x = DF_REF_REG (def);
459 if (REG_P (x) && HARD_REGISTER_P (x))
460 for (i = REGNO (x); i < END_REGNO (x); i++)
461 SET_HARD_REG_BIT (defs, i);
462 }
463
464 /* Add all used registers to USESs. */
465 FOR_EACH_INSN_USE (use, insn)
466 {
467 x = DF_REF_REG (use);
468 if (REG_P (x) && HARD_REGISTER_P (x))
469 for (i = REGNO (x); i < END_REGNO (x); i++)
470 SET_HARD_REG_BIT (uses, i);
471 }
472 }
473
474 dead_debug_local_finish (&debug, NULL);
475 }
476
477 /* Return whether basic block PRO can get the prologue. It can not if it
478 has incoming complex edges that need a prologue inserted (we make a new
479 block for the prologue, so those edges would need to be redirected, which
480 does not work). It also can not if there exist registers live on entry
481 to PRO that are clobbered by the prologue. */
482
483 static bool
484 can_get_prologue (basic_block pro, HARD_REG_SET prologue_clobbered)
485 {
486 edge e;
487 edge_iterator ei;
488 FOR_EACH_EDGE (e, ei, pro->preds)
489 if (e->flags & (EDGE_COMPLEX | EDGE_CROSSING)
490 && !dominated_by_p (CDI_DOMINATORS, e->src, pro))
491 return false;
492
493 HARD_REG_SET live;
494 REG_SET_TO_HARD_REG_SET (live, df_get_live_in (pro));
495 if (hard_reg_set_intersect_p (live, prologue_clobbered))
496 return false;
497
498 return true;
499 }
500
501 /* Return whether we can duplicate basic block BB for shrink wrapping. We
502 cannot if the block cannot be duplicated at all, or if any of its incoming
503 edges are complex and come from a block that does not require a prologue
504 (we cannot redirect such edges), or if the block is too big to copy.
505 PRO is the basic block before which we would put the prologue, MAX_SIZE is
506 the maximum size block we allow to be copied. */
507
508 static bool
509 can_dup_for_shrink_wrapping (basic_block bb, basic_block pro, unsigned max_size)
510 {
511 if (!can_duplicate_block_p (bb))
512 return false;
513
514 edge e;
515 edge_iterator ei;
516 FOR_EACH_EDGE (e, ei, bb->preds)
517 if (e->flags & (EDGE_COMPLEX | EDGE_CROSSING)
518 && !dominated_by_p (CDI_DOMINATORS, e->src, pro))
519 return false;
520
521 unsigned size = 0;
522
523 rtx_insn *insn;
524 FOR_BB_INSNS (bb, insn)
525 if (NONDEBUG_INSN_P (insn))
526 {
527 size += get_attr_min_length (insn);
528 if (size > max_size)
529 return false;
530 }
531
532 return true;
533 }
534
535 /* Do whatever needs to be done for exits that run without prologue.
536 Sibcalls need nothing done. Normal exits get a simple_return inserted. */
537
538 static void
539 handle_simple_exit (edge e)
540 {
541
542 if (e->flags & EDGE_SIBCALL)
543 {
544 /* Tell function.c to take no further action on this edge. */
545 e->flags |= EDGE_IGNORE;
546
547 e->flags &= ~EDGE_FALLTHRU;
548 emit_barrier_after_bb (e->src);
549 return;
550 }
551
552 /* If the basic block the edge comes from has multiple successors,
553 split the edge. */
554 if (EDGE_COUNT (e->src->succs) > 1)
555 {
556 basic_block old_bb = e->src;
557 rtx_insn *end = BB_END (old_bb);
558 rtx_note *note = emit_note_after (NOTE_INSN_DELETED, end);
559 basic_block new_bb = create_basic_block (note, note, old_bb);
560 BB_COPY_PARTITION (new_bb, old_bb);
561 BB_END (old_bb) = end;
562
563 redirect_edge_succ (e, new_bb);
564 new_bb->frequency = EDGE_FREQUENCY (e);
565 e->flags |= EDGE_FALLTHRU;
566
567 e = make_single_succ_edge (new_bb, EXIT_BLOCK_PTR_FOR_FN (cfun), 0);
568 }
569
570 e->flags &= ~EDGE_FALLTHRU;
571 rtx_jump_insn *ret = emit_jump_insn_after (targetm.gen_simple_return (),
572 BB_END (e->src));
573 JUMP_LABEL (ret) = simple_return_rtx;
574 emit_barrier_after_bb (e->src);
575
576 if (dump_file)
577 fprintf (dump_file, "Made simple_return with UID %d in bb %d\n",
578 INSN_UID (ret), e->src->index);
579 }
580
581 /* Try to perform a kind of shrink-wrapping, making sure the
582 prologue/epilogue is emitted only around those parts of the
583 function that require it.
584
585 There will be exactly one prologue, and it will be executed either
586 zero or one time, on any path. Depending on where the prologue is
587 placed, some of the basic blocks can be reached via both paths with
588 and without a prologue. Such blocks will be duplicated here, and the
589 edges changed to match.
590
591 Paths that go to the exit without going through the prologue will use
592 a simple_return instead of the epilogue. We maximize the number of
593 those, making sure to only duplicate blocks that can be duplicated.
594 If the prologue can then still be placed in multiple locations, we
595 place it as early as possible.
596
597 An example, where we duplicate blocks with control flow (legend:
598 _B_egin, _R_eturn and _S_imple_return; edges without arrowhead should
599 be taken to point down or to the right, to simplify the diagram; here,
600 block 3 needs a prologue, the rest does not):
601
602
603 B B
604 | |
605 2 2
606 |\ |\
607 | 3 becomes | 3
608 |/ | \
609 4 7 4
610 |\ |\ |\
611 | 5 | 8 | 5
612 |/ |/ |/
613 6 9 6
614 | | |
615 R S R
616
617
618 (bb 4 is duplicated to 7, and so on; the prologue is inserted on the
619 edge 2->3).
620
621 Another example, where part of a loop is duplicated (again, bb 3 is
622 the only block that needs a prologue):
623
624
625 B 3<-- B ->3<--
626 | | | | | | |
627 | v | becomes | | v |
628 2---4--- 2---5-- 4---
629 | | |
630 R S R
631
632
633 (bb 4 is duplicated to 5; the prologue is inserted on the edge 5->3).
634
635 ENTRY_EDGE is the edge where the prologue will be placed, possibly
636 changed by this function. PROLOGUE_SEQ is the prologue we will insert. */
637
638 void
639 try_shrink_wrapping (edge *entry_edge, rtx_insn *prologue_seq)
640 {
641 /* If we cannot shrink-wrap, are told not to shrink-wrap, or it makes
642 no sense to shrink-wrap: then do not shrink-wrap! */
643
644 if (!SHRINK_WRAPPING_ENABLED)
645 return;
646
647 if (crtl->profile && !targetm.profile_before_prologue ())
648 return;
649
650 if (crtl->calls_eh_return)
651 return;
652
653 bool empty_prologue = true;
654 for (rtx_insn *insn = prologue_seq; insn; insn = NEXT_INSN (insn))
655 if (!(NOTE_P (insn) && NOTE_KIND (insn) == NOTE_INSN_PROLOGUE_END))
656 {
657 empty_prologue = false;
658 break;
659 }
660 if (empty_prologue)
661 return;
662
663 /* Move some code down to expose more shrink-wrapping opportunities. */
664
665 basic_block entry = (*entry_edge)->dest;
666 prepare_shrink_wrap (entry);
667
668 if (dump_file)
669 fprintf (dump_file, "Attempting shrink-wrapping optimization.\n");
670
671 /* Compute the registers set and used in the prologue. */
672
673 HARD_REG_SET prologue_clobbered, prologue_used;
674 CLEAR_HARD_REG_SET (prologue_clobbered);
675 CLEAR_HARD_REG_SET (prologue_used);
676 for (rtx_insn *insn = prologue_seq; insn; insn = NEXT_INSN (insn))
677 if (NONDEBUG_INSN_P (insn))
678 {
679 HARD_REG_SET this_used;
680 CLEAR_HARD_REG_SET (this_used);
681 note_uses (&PATTERN (insn), record_hard_reg_uses, &this_used);
682 AND_COMPL_HARD_REG_SET (this_used, prologue_clobbered);
683 IOR_HARD_REG_SET (prologue_used, this_used);
684 note_stores (PATTERN (insn), record_hard_reg_sets, &prologue_clobbered);
685 }
686 CLEAR_HARD_REG_BIT (prologue_clobbered, STACK_POINTER_REGNUM);
687 if (frame_pointer_needed)
688 CLEAR_HARD_REG_BIT (prologue_clobbered, HARD_FRAME_POINTER_REGNUM);
689
690 /* Find out what registers are set up by the prologue; any use of these
691 cannot happen before the prologue. */
692
693 struct hard_reg_set_container set_up_by_prologue;
694 CLEAR_HARD_REG_SET (set_up_by_prologue.set);
695 add_to_hard_reg_set (&set_up_by_prologue.set, Pmode, STACK_POINTER_REGNUM);
696 add_to_hard_reg_set (&set_up_by_prologue.set, Pmode, ARG_POINTER_REGNUM);
697 if (frame_pointer_needed)
698 add_to_hard_reg_set (&set_up_by_prologue.set, Pmode,
699 HARD_FRAME_POINTER_REGNUM);
700 if (pic_offset_table_rtx
701 && (unsigned) PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM)
702 add_to_hard_reg_set (&set_up_by_prologue.set, Pmode,
703 PIC_OFFSET_TABLE_REGNUM);
704 if (crtl->drap_reg)
705 add_to_hard_reg_set (&set_up_by_prologue.set,
706 GET_MODE (crtl->drap_reg),
707 REGNO (crtl->drap_reg));
708 if (targetm.set_up_by_prologue)
709 targetm.set_up_by_prologue (&set_up_by_prologue);
710
711 /* We will insert the prologue before the basic block PRO. PRO should
712 dominate all basic blocks that need the prologue to be executed
713 before them. First, make PRO the "tightest wrap" possible. */
714
715 calculate_dominance_info (CDI_DOMINATORS);
716
717 basic_block pro = 0;
718
719 basic_block bb;
720 edge e;
721 edge_iterator ei;
722 FOR_EACH_BB_FN (bb, cfun)
723 {
724 rtx_insn *insn;
725 FOR_BB_INSNS (bb, insn)
726 if (NONDEBUG_INSN_P (insn)
727 && requires_stack_frame_p (insn, prologue_used,
728 set_up_by_prologue.set))
729 {
730 if (dump_file)
731 fprintf (dump_file, "Block %d needs the prologue.\n", bb->index);
732 pro = nearest_common_dominator (CDI_DOMINATORS, pro, bb);
733 break;
734 }
735 }
736
737 /* If nothing needs a prologue, just put it at the start. This really
738 shouldn't happen, but we cannot fix it here. */
739
740 if (pro == 0)
741 {
742 if (dump_file)
743 fprintf(dump_file, "Nothing needs a prologue, but it isn't empty; "
744 "putting it at the start.\n");
745 pro = entry;
746 }
747
748 if (dump_file)
749 fprintf (dump_file, "After wrapping required blocks, PRO is now %d\n",
750 pro->index);
751
752 /* Now see if we can put the prologue at the start of PRO. Putting it
753 there might require duplicating a block that cannot be duplicated,
754 or in some cases we cannot insert the prologue there at all. If PRO
755 wont't do, try again with the immediate dominator of PRO, and so on.
756
757 The blocks that need duplicating are those reachable from PRO but
758 not dominated by it. We keep in BB_WITH a bitmap of the blocks
759 reachable from PRO that we already found, and in VEC a stack of
760 those we still need to consider (to find successors). */
761
762 auto_bitmap bb_with;
763 bitmap_set_bit (bb_with, pro->index);
764
765 vec<basic_block> vec;
766 vec.create (n_basic_blocks_for_fn (cfun));
767 vec.quick_push (pro);
768
769 unsigned max_grow_size = get_uncond_jump_length ();
770 max_grow_size *= PARAM_VALUE (PARAM_MAX_GROW_COPY_BB_INSNS);
771
772 while (!vec.is_empty () && pro != entry)
773 {
774 while (pro != entry && !can_get_prologue (pro, prologue_clobbered))
775 {
776 pro = get_immediate_dominator (CDI_DOMINATORS, pro);
777
778 if (bitmap_set_bit (bb_with, pro->index))
779 vec.quick_push (pro);
780 }
781
782 basic_block bb = vec.pop ();
783 if (!can_dup_for_shrink_wrapping (bb, pro, max_grow_size))
784 while (!dominated_by_p (CDI_DOMINATORS, bb, pro))
785 {
786 gcc_assert (pro != entry);
787
788 pro = get_immediate_dominator (CDI_DOMINATORS, pro);
789
790 if (bitmap_set_bit (bb_with, pro->index))
791 vec.quick_push (pro);
792 }
793
794 FOR_EACH_EDGE (e, ei, bb->succs)
795 if (e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
796 && bitmap_set_bit (bb_with, e->dest->index))
797 vec.quick_push (e->dest);
798 }
799
800 if (dump_file)
801 fprintf (dump_file, "Avoiding non-duplicatable blocks, PRO is now %d\n",
802 pro->index);
803
804 /* If we can move PRO back without having to duplicate more blocks, do so.
805 We do this because putting the prologue earlier is better for scheduling.
806
807 We can move back to a block PRE if every path from PRE will eventually
808 need a prologue, that is, PRO is a post-dominator of PRE. PRE needs
809 to dominate every block reachable from itself. We keep in BB_TMP a
810 bitmap of the blocks reachable from PRE that we already found, and in
811 VEC a stack of those we still need to consider.
812
813 Any block reachable from PRE is also reachable from all predecessors
814 of PRE, so if we find we need to move PRE back further we can leave
815 everything not considered so far on the stack. Any block dominated
816 by PRE is also dominated by all other dominators of PRE, so anything
817 found good for some PRE does not need to be reconsidered later.
818
819 We don't need to update BB_WITH because none of the new blocks found
820 can jump to a block that does not need the prologue. */
821
822 if (pro != entry)
823 {
824 calculate_dominance_info (CDI_POST_DOMINATORS);
825
826 auto_bitmap bb_tmp;
827 bitmap_copy (bb_tmp, bb_with);
828 basic_block last_ok = pro;
829 vec.truncate (0);
830
831 while (pro != entry)
832 {
833 basic_block pre = get_immediate_dominator (CDI_DOMINATORS, pro);
834 if (!dominated_by_p (CDI_POST_DOMINATORS, pre, pro))
835 break;
836
837 if (bitmap_set_bit (bb_tmp, pre->index))
838 vec.quick_push (pre);
839
840 bool ok = true;
841 while (!vec.is_empty ())
842 {
843 if (!dominated_by_p (CDI_DOMINATORS, vec.last (), pre))
844 {
845 ok = false;
846 break;
847 }
848
849 basic_block bb = vec.pop ();
850 FOR_EACH_EDGE (e, ei, bb->succs)
851 if (bitmap_set_bit (bb_tmp, e->dest->index))
852 vec.quick_push (e->dest);
853 }
854
855 if (ok && can_get_prologue (pre, prologue_clobbered))
856 last_ok = pre;
857
858 pro = pre;
859 }
860
861 pro = last_ok;
862
863 free_dominance_info (CDI_POST_DOMINATORS);
864 }
865
866 vec.release ();
867
868 if (dump_file)
869 fprintf (dump_file, "Bumping back to anticipatable blocks, PRO is now %d\n",
870 pro->index);
871
872 if (pro == entry)
873 {
874 free_dominance_info (CDI_DOMINATORS);
875 return;
876 }
877
878 /* Compute what fraction of the frequency and count of the blocks that run
879 both with and without prologue are for running with prologue. This gives
880 the correct answer for reducible flow graphs; for irreducible flow graphs
881 our profile is messed up beyond repair anyway. */
882
883 gcov_type num = 0;
884 gcov_type den = 0;
885
886 FOR_EACH_EDGE (e, ei, pro->preds)
887 if (!dominated_by_p (CDI_DOMINATORS, e->src, pro))
888 {
889 num += EDGE_FREQUENCY (e);
890 den += e->src->frequency;
891 }
892
893 if (den == 0)
894 den = 1;
895
896 /* All is okay, so do it. */
897
898 crtl->shrink_wrapped = true;
899 if (dump_file)
900 fprintf (dump_file, "Performing shrink-wrapping.\n");
901
902 /* Copy the blocks that can run both with and without prologue. The
903 originals run with prologue, the copies without. Store a pointer to
904 the copy in the ->aux field of the original. */
905
906 FOR_EACH_BB_FN (bb, cfun)
907 if (bitmap_bit_p (bb_with, bb->index)
908 && !dominated_by_p (CDI_DOMINATORS, bb, pro))
909 {
910 basic_block dup = duplicate_block (bb, 0, 0);
911
912 bb->aux = dup;
913
914 if (JUMP_P (BB_END (dup)) && !any_condjump_p (BB_END (dup)))
915 emit_barrier_after_bb (dup);
916
917 if (EDGE_COUNT (dup->succs) == 0)
918 emit_barrier_after_bb (dup);
919
920 if (dump_file)
921 fprintf (dump_file, "Duplicated %d to %d\n", bb->index, dup->index);
922
923 bb->frequency = RDIV (num * bb->frequency, den);
924 dup->frequency -= bb->frequency;
925 bb->count = bb->count.apply_scale (num, den);
926 dup->count -= bb->count;
927 }
928
929 /* Now change the edges to point to the copies, where appropriate. */
930
931 FOR_EACH_BB_FN (bb, cfun)
932 if (!dominated_by_p (CDI_DOMINATORS, bb, pro))
933 {
934 basic_block src = bb;
935 if (bitmap_bit_p (bb_with, bb->index))
936 src = (basic_block) bb->aux;
937
938 FOR_EACH_EDGE (e, ei, src->succs)
939 {
940 if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
941 continue;
942
943 if (bitmap_bit_p (bb_with, e->dest->index)
944 && !dominated_by_p (CDI_DOMINATORS, e->dest, pro))
945 {
946 if (dump_file)
947 fprintf (dump_file, "Redirecting edge %d->%d to %d\n",
948 e->src->index, e->dest->index,
949 ((basic_block) e->dest->aux)->index);
950 redirect_edge_and_branch_force (e, (basic_block) e->dest->aux);
951 }
952 else if (e->flags & EDGE_FALLTHRU
953 && bitmap_bit_p (bb_with, bb->index))
954 force_nonfallthru (e);
955 }
956 }
957
958 /* Also redirect the function entry edge if necessary. */
959
960 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs)
961 if (bitmap_bit_p (bb_with, e->dest->index)
962 && !dominated_by_p (CDI_DOMINATORS, e->dest, pro))
963 {
964 basic_block split_bb = split_edge (e);
965 e = single_succ_edge (split_bb);
966 redirect_edge_and_branch_force (e, (basic_block) e->dest->aux);
967 }
968
969 /* Make a simple_return for those exits that run without prologue. */
970
971 FOR_EACH_BB_REVERSE_FN (bb, cfun)
972 if (!bitmap_bit_p (bb_with, bb->index))
973 FOR_EACH_EDGE (e, ei, bb->succs)
974 if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
975 handle_simple_exit (e);
976
977 /* Finally, we want a single edge to put the prologue on. Make a new
978 block before the PRO block; the edge beteen them is the edge we want.
979 Then redirect those edges into PRO that come from blocks without the
980 prologue, to point to the new block instead. The new prologue block
981 is put at the end of the insn chain. */
982
983 basic_block new_bb = create_empty_bb (EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb);
984 BB_COPY_PARTITION (new_bb, pro);
985 new_bb->count = profile_count::zero ();
986 if (dump_file)
987 fprintf (dump_file, "Made prologue block %d\n", new_bb->index);
988
989 for (ei = ei_start (pro->preds); (e = ei_safe_edge (ei)); )
990 {
991 if (bitmap_bit_p (bb_with, e->src->index)
992 || dominated_by_p (CDI_DOMINATORS, e->src, pro))
993 {
994 ei_next (&ei);
995 continue;
996 }
997
998 new_bb->count += e->src->count.apply_probability (e->probability);
999 new_bb->frequency += EDGE_FREQUENCY (e);
1000
1001 redirect_edge_and_branch_force (e, new_bb);
1002 if (dump_file)
1003 fprintf (dump_file, "Redirected edge from %d\n", e->src->index);
1004 }
1005
1006 *entry_edge = make_single_succ_edge (new_bb, pro, EDGE_FALLTHRU);
1007 force_nonfallthru (*entry_edge);
1008
1009 free_dominance_info (CDI_DOMINATORS);
1010 }
1011
1012 /* Separate shrink-wrapping
1013
1014 Instead of putting all of the prologue and epilogue in one spot, we
1015 can put parts of it in places where those components are executed less
1016 frequently. The following code does this, for prologue and epilogue
1017 components that can be put in more than one location, and where those
1018 components can be executed more than once (the epilogue component will
1019 always be executed before the prologue component is executed a second
1020 time).
1021
1022 What exactly is a component is target-dependent. The more usual
1023 components are simple saves/restores to/from the frame of callee-saved
1024 registers. This code treats components abstractly (as an sbitmap),
1025 letting the target handle all details.
1026
1027 Prologue components are placed in such a way that for every component
1028 the prologue is executed as infrequently as possible. We do this by
1029 walking the dominator tree, comparing the cost of placing a prologue
1030 component before a block to the sum of costs determined for all subtrees
1031 of that block.
1032
1033 From this placement, we then determine for each component all blocks
1034 where at least one of this block's dominators (including itself) will
1035 get a prologue inserted. That then is how the components are placed.
1036 We could place the epilogue components a bit smarter (we can save a
1037 bit of code size sometimes); this is a possible future improvement.
1038
1039 Prologues and epilogues are preferably placed into a block, either at
1040 the beginning or end of it, if it is needed for all predecessor resp.
1041 successor edges; or placed on the edge otherwise.
1042
1043 If the placement of any prologue/epilogue leads to a situation we cannot
1044 handle (for example, an abnormal edge would need to be split, or some
1045 targets want to use some specific registers that may not be available
1046 where we want to put them), separate shrink-wrapping for the components
1047 in that prologue/epilogue is aborted. */
1048
1049
1050 /* Print the sbitmap COMPONENTS to the DUMP_FILE if not empty, with the
1051 label LABEL. */
1052 static void
1053 dump_components (const char *label, sbitmap components)
1054 {
1055 if (bitmap_empty_p (components))
1056 return;
1057
1058 fprintf (dump_file, " [%s", label);
1059
1060 for (unsigned int j = 0; j < components->n_bits; j++)
1061 if (bitmap_bit_p (components, j))
1062 fprintf (dump_file, " %u", j);
1063
1064 fprintf (dump_file, "]");
1065 }
1066
1067 /* The data we collect for each bb. */
1068 struct sw {
1069 /* What components does this BB need? */
1070 sbitmap needs_components;
1071
1072 /* What components does this BB have? This is the main decision this
1073 pass makes. */
1074 sbitmap has_components;
1075
1076 /* The components for which we placed code at the start of the BB (instead
1077 of on all incoming edges). */
1078 sbitmap head_components;
1079
1080 /* The components for which we placed code at the end of the BB (instead
1081 of on all outgoing edges). */
1082 sbitmap tail_components;
1083
1084 /* The frequency of executing the prologue for this BB, if a prologue is
1085 placed on this BB. This is a pessimistic estimate (no prologue is
1086 needed for edges from blocks that have the component under consideration
1087 active already). */
1088 gcov_type own_cost;
1089
1090 /* The frequency of executing the prologue for this BB and all BBs
1091 dominated by it. */
1092 gcov_type total_cost;
1093 };
1094
1095 /* A helper function for accessing the pass-specific info. */
1096 static inline struct sw *
1097 SW (basic_block bb)
1098 {
1099 gcc_assert (bb->aux);
1100 return (struct sw *) bb->aux;
1101 }
1102
1103 /* Create the pass-specific data structures for separately shrink-wrapping
1104 with components COMPONENTS. */
1105 static void
1106 init_separate_shrink_wrap (sbitmap components)
1107 {
1108 basic_block bb;
1109 FOR_ALL_BB_FN (bb, cfun)
1110 {
1111 bb->aux = xcalloc (1, sizeof (struct sw));
1112
1113 SW (bb)->needs_components = targetm.shrink_wrap.components_for_bb (bb);
1114
1115 /* Mark all basic blocks without successor as needing all components.
1116 This avoids problems in at least cfgcleanup, sel-sched, and
1117 regrename (largely to do with all paths to such a block still
1118 needing the same dwarf CFI info). */
1119 if (EDGE_COUNT (bb->succs) == 0)
1120 bitmap_copy (SW (bb)->needs_components, components);
1121
1122 if (dump_file)
1123 {
1124 fprintf (dump_file, "bb %d components:", bb->index);
1125 dump_components ("has", SW (bb)->needs_components);
1126 fprintf (dump_file, "\n");
1127 }
1128
1129 SW (bb)->has_components = sbitmap_alloc (SBITMAP_SIZE (components));
1130 SW (bb)->head_components = sbitmap_alloc (SBITMAP_SIZE (components));
1131 SW (bb)->tail_components = sbitmap_alloc (SBITMAP_SIZE (components));
1132 bitmap_clear (SW (bb)->has_components);
1133 }
1134 }
1135
1136 /* Destroy the pass-specific data. */
1137 static void
1138 fini_separate_shrink_wrap (void)
1139 {
1140 basic_block bb;
1141 FOR_ALL_BB_FN (bb, cfun)
1142 if (bb->aux)
1143 {
1144 sbitmap_free (SW (bb)->needs_components);
1145 sbitmap_free (SW (bb)->has_components);
1146 sbitmap_free (SW (bb)->head_components);
1147 sbitmap_free (SW (bb)->tail_components);
1148 free (bb->aux);
1149 bb->aux = 0;
1150 }
1151 }
1152
1153 /* Place the prologue for component WHICH, in the basic blocks dominated
1154 by HEAD. Do a DFS over the dominator tree, and set bit WHICH in the
1155 HAS_COMPONENTS of a block if either the block has that bit set in
1156 NEEDS_COMPONENTS, or it is cheaper to place the prologue here than in all
1157 dominator subtrees separately. */
1158 static void
1159 place_prologue_for_one_component (unsigned int which, basic_block head)
1160 {
1161 /* The block we are currently dealing with. */
1162 basic_block bb = head;
1163 /* Is this the first time we visit this block, i.e. have we just gone
1164 down the tree. */
1165 bool first_visit = true;
1166
1167 /* Walk the dominator tree, visit one block per iteration of this loop.
1168 Each basic block is visited twice: once before visiting any children
1169 of the block, and once after visiting all of them (leaf nodes are
1170 visited only once). As an optimization, we do not visit subtrees
1171 that can no longer influence the prologue placement. */
1172 for (;;)
1173 {
1174 /* First visit of a block: set the (children) cost accumulator to zero;
1175 if the block does not have the component itself, walk down. */
1176 if (first_visit)
1177 {
1178 /* Initialize the cost. The cost is the block execution frequency
1179 that does not come from backedges. Calculating this by simply
1180 adding the cost of all edges that aren't backedges does not
1181 work: this does not always add up to the block frequency at
1182 all, and even if it does, rounding error makes for bad
1183 decisions. */
1184 SW (bb)->own_cost = bb->frequency;
1185
1186 edge e;
1187 edge_iterator ei;
1188 FOR_EACH_EDGE (e, ei, bb->preds)
1189 if (dominated_by_p (CDI_DOMINATORS, e->src, bb))
1190 {
1191 if (SW (bb)->own_cost > EDGE_FREQUENCY (e))
1192 SW (bb)->own_cost -= EDGE_FREQUENCY (e);
1193 else
1194 SW (bb)->own_cost = 0;
1195 }
1196
1197 SW (bb)->total_cost = 0;
1198
1199 if (!bitmap_bit_p (SW (bb)->needs_components, which)
1200 && first_dom_son (CDI_DOMINATORS, bb))
1201 {
1202 bb = first_dom_son (CDI_DOMINATORS, bb);
1203 continue;
1204 }
1205 }
1206
1207 /* If this block does need the component itself, or it is cheaper to
1208 put the prologue here than in all the descendants that need it,
1209 mark it so. If this block's immediate post-dominator is dominated
1210 by this block, and that needs the prologue, we can put it on this
1211 block as well (earlier is better). */
1212 if (bitmap_bit_p (SW (bb)->needs_components, which)
1213 || SW (bb)->total_cost > SW (bb)->own_cost)
1214 {
1215 SW (bb)->total_cost = SW (bb)->own_cost;
1216 bitmap_set_bit (SW (bb)->has_components, which);
1217 }
1218 else
1219 {
1220 basic_block kid = get_immediate_dominator (CDI_POST_DOMINATORS, bb);
1221 if (dominated_by_p (CDI_DOMINATORS, kid, bb)
1222 && bitmap_bit_p (SW (kid)->has_components, which))
1223 {
1224 SW (bb)->total_cost = SW (bb)->own_cost;
1225 bitmap_set_bit (SW (bb)->has_components, which);
1226 }
1227 }
1228
1229 /* We are back where we started, so we are done now. */
1230 if (bb == head)
1231 return;
1232
1233 /* We now know the cost of the subtree rooted at the current block.
1234 Accumulate this cost in the parent. */
1235 basic_block parent = get_immediate_dominator (CDI_DOMINATORS, bb);
1236 SW (parent)->total_cost += SW (bb)->total_cost;
1237
1238 /* Don't walk the tree down unless necessary. */
1239 if (next_dom_son (CDI_DOMINATORS, bb)
1240 && SW (parent)->total_cost <= SW (parent)->own_cost)
1241 {
1242 bb = next_dom_son (CDI_DOMINATORS, bb);
1243 first_visit = true;
1244 }
1245 else
1246 {
1247 bb = parent;
1248 first_visit = false;
1249 }
1250 }
1251 }
1252
1253 /* Set HAS_COMPONENTS in every block to the maximum it can be set to without
1254 setting it on any path from entry to exit where it was not already set
1255 somewhere (or, for blocks that have no path to the exit, consider only
1256 paths from the entry to the block itself). */
1257 static void
1258 spread_components (sbitmap components)
1259 {
1260 basic_block entry_block = ENTRY_BLOCK_PTR_FOR_FN (cfun);
1261 basic_block exit_block = EXIT_BLOCK_PTR_FOR_FN (cfun);
1262
1263 /* A stack of all blocks left to consider, and a bitmap of all blocks
1264 on that stack. */
1265 vec<basic_block> todo;
1266 todo.create (n_basic_blocks_for_fn (cfun));
1267 auto_bitmap seen;
1268
1269 auto_sbitmap old (SBITMAP_SIZE (components));
1270
1271 /* Find for every block the components that are *not* needed on some path
1272 from the entry to that block. Do this with a flood fill from the entry
1273 block. Every block can be visited at most as often as the number of
1274 components (plus one), and usually much less often. */
1275
1276 if (dump_file)
1277 fprintf (dump_file, "Spreading down...\n");
1278
1279 basic_block bb;
1280 FOR_ALL_BB_FN (bb, cfun)
1281 bitmap_clear (SW (bb)->head_components);
1282
1283 bitmap_copy (SW (entry_block)->head_components, components);
1284
1285 edge e;
1286 edge_iterator ei;
1287
1288 todo.quick_push (single_succ (entry_block));
1289 bitmap_set_bit (seen, single_succ (entry_block)->index);
1290 while (!todo.is_empty ())
1291 {
1292 bb = todo.pop ();
1293
1294 bitmap_copy (old, SW (bb)->head_components);
1295
1296 FOR_EACH_EDGE (e, ei, bb->preds)
1297 bitmap_ior (SW (bb)->head_components, SW (bb)->head_components,
1298 SW (e->src)->head_components);
1299
1300 bitmap_and_compl (SW (bb)->head_components, SW (bb)->head_components,
1301 SW (bb)->has_components);
1302
1303 if (!bitmap_equal_p (old, SW (bb)->head_components))
1304 FOR_EACH_EDGE (e, ei, bb->succs)
1305 if (bitmap_set_bit (seen, e->dest->index))
1306 todo.quick_push (e->dest);
1307
1308 bitmap_clear_bit (seen, bb->index);
1309 }
1310
1311 /* Find for every block the components that are *not* needed on some reverse
1312 path from the exit to that block. */
1313
1314 if (dump_file)
1315 fprintf (dump_file, "Spreading up...\n");
1316
1317 /* First, mark all blocks not reachable from the exit block as not needing
1318 any component on any path to the exit. Mark everything, and then clear
1319 again by a flood fill. */
1320
1321 FOR_ALL_BB_FN (bb, cfun)
1322 bitmap_copy (SW (bb)->tail_components, components);
1323
1324 FOR_EACH_EDGE (e, ei, exit_block->preds)
1325 {
1326 todo.quick_push (e->src);
1327 bitmap_set_bit (seen, e->src->index);
1328 }
1329
1330 while (!todo.is_empty ())
1331 {
1332 bb = todo.pop ();
1333
1334 if (!bitmap_empty_p (SW (bb)->tail_components))
1335 FOR_EACH_EDGE (e, ei, bb->preds)
1336 if (bitmap_set_bit (seen, e->src->index))
1337 todo.quick_push (e->src);
1338
1339 bitmap_clear (SW (bb)->tail_components);
1340
1341 bitmap_clear_bit (seen, bb->index);
1342 }
1343
1344 /* And then, flood fill backwards to find for every block the components
1345 not needed on some path to the exit. */
1346
1347 bitmap_copy (SW (exit_block)->tail_components, components);
1348
1349 FOR_EACH_EDGE (e, ei, exit_block->preds)
1350 {
1351 todo.quick_push (e->src);
1352 bitmap_set_bit (seen, e->src->index);
1353 }
1354
1355 while (!todo.is_empty ())
1356 {
1357 bb = todo.pop ();
1358
1359 bitmap_copy (old, SW (bb)->tail_components);
1360
1361 FOR_EACH_EDGE (e, ei, bb->succs)
1362 bitmap_ior (SW (bb)->tail_components, SW (bb)->tail_components,
1363 SW (e->dest)->tail_components);
1364
1365 bitmap_and_compl (SW (bb)->tail_components, SW (bb)->tail_components,
1366 SW (bb)->has_components);
1367
1368 if (!bitmap_equal_p (old, SW (bb)->tail_components))
1369 FOR_EACH_EDGE (e, ei, bb->preds)
1370 if (bitmap_set_bit (seen, e->src->index))
1371 todo.quick_push (e->src);
1372
1373 bitmap_clear_bit (seen, bb->index);
1374 }
1375
1376 /* Finally, mark everything not not needed both forwards and backwards. */
1377
1378 FOR_EACH_BB_FN (bb, cfun)
1379 {
1380 bitmap_and (SW (bb)->head_components, SW (bb)->head_components,
1381 SW (bb)->tail_components);
1382 bitmap_and_compl (SW (bb)->has_components, components,
1383 SW (bb)->head_components);
1384 }
1385
1386 FOR_ALL_BB_FN (bb, cfun)
1387 {
1388 if (dump_file)
1389 {
1390 fprintf (dump_file, "bb %d components:", bb->index);
1391 dump_components ("has", SW (bb)->has_components);
1392 fprintf (dump_file, "\n");
1393 }
1394 }
1395 }
1396
1397 /* If we cannot handle placing some component's prologues or epilogues where
1398 we decided we should place them, unmark that component in COMPONENTS so
1399 that it is not wrapped separately. */
1400 static void
1401 disqualify_problematic_components (sbitmap components)
1402 {
1403 auto_sbitmap pro (SBITMAP_SIZE (components));
1404 auto_sbitmap epi (SBITMAP_SIZE (components));
1405
1406 basic_block bb;
1407 FOR_EACH_BB_FN (bb, cfun)
1408 {
1409 edge e;
1410 edge_iterator ei;
1411 FOR_EACH_EDGE (e, ei, bb->succs)
1412 {
1413 /* Find which components we want pro/epilogues for here. */
1414 bitmap_and_compl (epi, SW (e->src)->has_components,
1415 SW (e->dest)->has_components);
1416 bitmap_and_compl (pro, SW (e->dest)->has_components,
1417 SW (e->src)->has_components);
1418
1419 /* Ask the target what it thinks about things. */
1420 if (!bitmap_empty_p (epi))
1421 targetm.shrink_wrap.disqualify_components (components, e, epi,
1422 false);
1423 if (!bitmap_empty_p (pro))
1424 targetm.shrink_wrap.disqualify_components (components, e, pro,
1425 true);
1426
1427 /* If this edge doesn't need splitting, we're fine. */
1428 if (single_pred_p (e->dest)
1429 && e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
1430 continue;
1431
1432 /* If the edge can be split, that is fine too. */
1433 if ((e->flags & EDGE_ABNORMAL) == 0)
1434 continue;
1435
1436 /* We also can handle sibcalls. */
1437 if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
1438 {
1439 gcc_assert (e->flags & EDGE_SIBCALL);
1440 continue;
1441 }
1442
1443 /* Remove from consideration those components we would need
1444 pro/epilogues for on edges where we cannot insert them. */
1445 bitmap_and_compl (components, components, epi);
1446 bitmap_and_compl (components, components, pro);
1447
1448 if (dump_file && !bitmap_subset_p (epi, components))
1449 {
1450 fprintf (dump_file, " BAD epi %d->%d", e->src->index,
1451 e->dest->index);
1452 if (e->flags & EDGE_EH)
1453 fprintf (dump_file, " for EH");
1454 dump_components ("epi", epi);
1455 fprintf (dump_file, "\n");
1456 }
1457
1458 if (dump_file && !bitmap_subset_p (pro, components))
1459 {
1460 fprintf (dump_file, " BAD pro %d->%d", e->src->index,
1461 e->dest->index);
1462 if (e->flags & EDGE_EH)
1463 fprintf (dump_file, " for EH");
1464 dump_components ("pro", pro);
1465 fprintf (dump_file, "\n");
1466 }
1467 }
1468 }
1469 }
1470
1471 /* Place code for prologues and epilogues for COMPONENTS where we can put
1472 that code at the start of basic blocks. */
1473 static void
1474 emit_common_heads_for_components (sbitmap components)
1475 {
1476 auto_sbitmap pro (SBITMAP_SIZE (components));
1477 auto_sbitmap epi (SBITMAP_SIZE (components));
1478 auto_sbitmap tmp (SBITMAP_SIZE (components));
1479
1480 basic_block bb;
1481 FOR_ALL_BB_FN (bb, cfun)
1482 bitmap_clear (SW (bb)->head_components);
1483
1484 FOR_EACH_BB_FN (bb, cfun)
1485 {
1486 /* Find which prologue resp. epilogue components are needed for all
1487 predecessor edges to this block. */
1488
1489 /* First, select all possible components. */
1490 bitmap_copy (epi, components);
1491 bitmap_copy (pro, components);
1492
1493 edge e;
1494 edge_iterator ei;
1495 FOR_EACH_EDGE (e, ei, bb->preds)
1496 {
1497 if (e->flags & EDGE_ABNORMAL)
1498 {
1499 bitmap_clear (epi);
1500 bitmap_clear (pro);
1501 break;
1502 }
1503
1504 /* Deselect those epilogue components that should not be inserted
1505 for this edge. */
1506 bitmap_and_compl (tmp, SW (e->src)->has_components,
1507 SW (e->dest)->has_components);
1508 bitmap_and (epi, epi, tmp);
1509
1510 /* Similar, for the prologue. */
1511 bitmap_and_compl (tmp, SW (e->dest)->has_components,
1512 SW (e->src)->has_components);
1513 bitmap_and (pro, pro, tmp);
1514 }
1515
1516 if (dump_file && !(bitmap_empty_p (epi) && bitmap_empty_p (pro)))
1517 fprintf (dump_file, " bb %d", bb->index);
1518
1519 if (dump_file && !bitmap_empty_p (epi))
1520 dump_components ("epi", epi);
1521 if (dump_file && !bitmap_empty_p (pro))
1522 dump_components ("pro", pro);
1523
1524 if (dump_file && !(bitmap_empty_p (epi) && bitmap_empty_p (pro)))
1525 fprintf (dump_file, "\n");
1526
1527 /* Place code after the BB note. */
1528 if (!bitmap_empty_p (pro))
1529 {
1530 start_sequence ();
1531 targetm.shrink_wrap.emit_prologue_components (pro);
1532 rtx_insn *seq = get_insns ();
1533 end_sequence ();
1534 record_prologue_seq (seq);
1535
1536 emit_insn_after (seq, bb_note (bb));
1537
1538 bitmap_ior (SW (bb)->head_components, SW (bb)->head_components, pro);
1539 }
1540
1541 if (!bitmap_empty_p (epi))
1542 {
1543 start_sequence ();
1544 targetm.shrink_wrap.emit_epilogue_components (epi);
1545 rtx_insn *seq = get_insns ();
1546 end_sequence ();
1547 record_epilogue_seq (seq);
1548
1549 emit_insn_after (seq, bb_note (bb));
1550
1551 bitmap_ior (SW (bb)->head_components, SW (bb)->head_components, epi);
1552 }
1553 }
1554 }
1555
1556 /* Place code for prologues and epilogues for COMPONENTS where we can put
1557 that code at the end of basic blocks. */
1558 static void
1559 emit_common_tails_for_components (sbitmap components)
1560 {
1561 auto_sbitmap pro (SBITMAP_SIZE (components));
1562 auto_sbitmap epi (SBITMAP_SIZE (components));
1563 auto_sbitmap tmp (SBITMAP_SIZE (components));
1564
1565 basic_block bb;
1566 FOR_ALL_BB_FN (bb, cfun)
1567 bitmap_clear (SW (bb)->tail_components);
1568
1569 FOR_EACH_BB_FN (bb, cfun)
1570 {
1571 /* Find which prologue resp. epilogue components are needed for all
1572 successor edges from this block. */
1573 if (EDGE_COUNT (bb->succs) == 0)
1574 continue;
1575
1576 /* First, select all possible components. */
1577 bitmap_copy (epi, components);
1578 bitmap_copy (pro, components);
1579
1580 edge e;
1581 edge_iterator ei;
1582 FOR_EACH_EDGE (e, ei, bb->succs)
1583 {
1584 if (e->flags & EDGE_ABNORMAL)
1585 {
1586 bitmap_clear (epi);
1587 bitmap_clear (pro);
1588 break;
1589 }
1590
1591 /* Deselect those epilogue components that should not be inserted
1592 for this edge, and also those that are already put at the head
1593 of the successor block. */
1594 bitmap_and_compl (tmp, SW (e->src)->has_components,
1595 SW (e->dest)->has_components);
1596 bitmap_and_compl (tmp, tmp, SW (e->dest)->head_components);
1597 bitmap_and (epi, epi, tmp);
1598
1599 /* Similarly, for the prologue. */
1600 bitmap_and_compl (tmp, SW (e->dest)->has_components,
1601 SW (e->src)->has_components);
1602 bitmap_and_compl (tmp, tmp, SW (e->dest)->head_components);
1603 bitmap_and (pro, pro, tmp);
1604 }
1605
1606 /* If the last insn of this block is a control flow insn we cannot
1607 put anything after it. We can put our code before it instead,
1608 but only if that jump insn is a simple jump. */
1609 rtx_insn *last_insn = BB_END (bb);
1610 if (control_flow_insn_p (last_insn) && !simplejump_p (last_insn))
1611 {
1612 bitmap_clear (epi);
1613 bitmap_clear (pro);
1614 }
1615
1616 if (dump_file && !(bitmap_empty_p (epi) && bitmap_empty_p (pro)))
1617 fprintf (dump_file, " bb %d", bb->index);
1618
1619 if (dump_file && !bitmap_empty_p (epi))
1620 dump_components ("epi", epi);
1621 if (dump_file && !bitmap_empty_p (pro))
1622 dump_components ("pro", pro);
1623
1624 if (dump_file && !(bitmap_empty_p (epi) && bitmap_empty_p (pro)))
1625 fprintf (dump_file, "\n");
1626
1627 /* Put the code at the end of the BB, but before any final jump. */
1628 if (!bitmap_empty_p (epi))
1629 {
1630 start_sequence ();
1631 targetm.shrink_wrap.emit_epilogue_components (epi);
1632 rtx_insn *seq = get_insns ();
1633 end_sequence ();
1634 record_epilogue_seq (seq);
1635
1636 if (control_flow_insn_p (last_insn))
1637 emit_insn_before (seq, last_insn);
1638 else
1639 emit_insn_after (seq, last_insn);
1640
1641 bitmap_ior (SW (bb)->tail_components, SW (bb)->tail_components, epi);
1642 }
1643
1644 if (!bitmap_empty_p (pro))
1645 {
1646 start_sequence ();
1647 targetm.shrink_wrap.emit_prologue_components (pro);
1648 rtx_insn *seq = get_insns ();
1649 end_sequence ();
1650 record_prologue_seq (seq);
1651
1652 if (control_flow_insn_p (last_insn))
1653 emit_insn_before (seq, last_insn);
1654 else
1655 emit_insn_after (seq, last_insn);
1656
1657 bitmap_ior (SW (bb)->tail_components, SW (bb)->tail_components, pro);
1658 }
1659 }
1660 }
1661
1662 /* Place prologues and epilogues for COMPONENTS on edges, if we haven't already
1663 placed them inside blocks directly. */
1664 static void
1665 insert_prologue_epilogue_for_components (sbitmap components)
1666 {
1667 auto_sbitmap pro (SBITMAP_SIZE (components));
1668 auto_sbitmap epi (SBITMAP_SIZE (components));
1669
1670 basic_block bb;
1671 FOR_EACH_BB_FN (bb, cfun)
1672 {
1673 if (!bb->aux)
1674 continue;
1675
1676 edge e;
1677 edge_iterator ei;
1678 FOR_EACH_EDGE (e, ei, bb->succs)
1679 {
1680 /* Find which pro/epilogue components are needed on this edge. */
1681 bitmap_and_compl (epi, SW (e->src)->has_components,
1682 SW (e->dest)->has_components);
1683 bitmap_and_compl (pro, SW (e->dest)->has_components,
1684 SW (e->src)->has_components);
1685 bitmap_and (epi, epi, components);
1686 bitmap_and (pro, pro, components);
1687
1688 /* Deselect those we already have put at the head or tail of the
1689 edge's dest resp. src. */
1690 bitmap_and_compl (epi, epi, SW (e->dest)->head_components);
1691 bitmap_and_compl (pro, pro, SW (e->dest)->head_components);
1692 bitmap_and_compl (epi, epi, SW (e->src)->tail_components);
1693 bitmap_and_compl (pro, pro, SW (e->src)->tail_components);
1694
1695 if (!bitmap_empty_p (epi) || !bitmap_empty_p (pro))
1696 {
1697 if (dump_file)
1698 {
1699 fprintf (dump_file, " %d->%d", e->src->index,
1700 e->dest->index);
1701 dump_components ("epi", epi);
1702 dump_components ("pro", pro);
1703 if (e->flags & EDGE_SIBCALL)
1704 fprintf (dump_file, " (SIBCALL)");
1705 else if (e->flags & EDGE_ABNORMAL)
1706 fprintf (dump_file, " (ABNORMAL)");
1707 fprintf (dump_file, "\n");
1708 }
1709
1710 /* Put the epilogue components in place. */
1711 start_sequence ();
1712 targetm.shrink_wrap.emit_epilogue_components (epi);
1713 rtx_insn *seq = get_insns ();
1714 end_sequence ();
1715 record_epilogue_seq (seq);
1716
1717 if (e->flags & EDGE_SIBCALL)
1718 {
1719 gcc_assert (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun));
1720
1721 rtx_insn *insn = BB_END (e->src);
1722 gcc_assert (CALL_P (insn) && SIBLING_CALL_P (insn));
1723 emit_insn_before (seq, insn);
1724 }
1725 else if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
1726 {
1727 gcc_assert (e->flags & EDGE_FALLTHRU);
1728 basic_block new_bb = split_edge (e);
1729 emit_insn_after (seq, BB_END (new_bb));
1730 }
1731 else
1732 insert_insn_on_edge (seq, e);
1733
1734 /* Put the prologue components in place. */
1735 start_sequence ();
1736 targetm.shrink_wrap.emit_prologue_components (pro);
1737 seq = get_insns ();
1738 end_sequence ();
1739 record_prologue_seq (seq);
1740
1741 insert_insn_on_edge (seq, e);
1742 }
1743 }
1744 }
1745
1746 commit_edge_insertions ();
1747 }
1748
1749 /* The main entry point to this subpass. FIRST_BB is where the prologue
1750 would be normally put. */
1751 void
1752 try_shrink_wrapping_separate (basic_block first_bb)
1753 {
1754 if (HAVE_cc0)
1755 return;
1756
1757 if (!(SHRINK_WRAPPING_ENABLED
1758 && flag_shrink_wrap_separate
1759 && optimize_function_for_speed_p (cfun)
1760 && targetm.shrink_wrap.get_separate_components))
1761 return;
1762
1763 /* We don't handle "strange" functions. */
1764 if (cfun->calls_alloca
1765 || cfun->calls_setjmp
1766 || cfun->can_throw_non_call_exceptions
1767 || crtl->calls_eh_return
1768 || crtl->has_nonlocal_goto
1769 || crtl->saves_all_registers)
1770 return;
1771
1772 /* Ask the target what components there are. If it returns NULL, don't
1773 do anything. */
1774 sbitmap components = targetm.shrink_wrap.get_separate_components ();
1775 if (!components)
1776 return;
1777
1778 /* We need LIVE info, not defining anything in the entry block and not
1779 using anything in the exit block. A block then needs a component if
1780 the register for that component is in the IN or GEN or KILL set for
1781 that block. */
1782 df_scan->local_flags |= DF_SCAN_EMPTY_ENTRY_EXIT;
1783 df_update_entry_exit_and_calls ();
1784 df_live_add_problem ();
1785 df_live_set_all_dirty ();
1786 df_analyze ();
1787
1788 calculate_dominance_info (CDI_DOMINATORS);
1789 calculate_dominance_info (CDI_POST_DOMINATORS);
1790
1791 init_separate_shrink_wrap (components);
1792
1793 sbitmap_iterator sbi;
1794 unsigned int j;
1795 EXECUTE_IF_SET_IN_BITMAP (components, 0, j, sbi)
1796 place_prologue_for_one_component (j, first_bb);
1797
1798 spread_components (components);
1799
1800 disqualify_problematic_components (components);
1801
1802 /* Don't separately shrink-wrap anything where the "main" prologue will
1803 go; the target code can often optimize things if it is presented with
1804 all components together (say, if it generates store-multiple insns). */
1805 bitmap_and_compl (components, components, SW (first_bb)->has_components);
1806
1807 if (bitmap_empty_p (components))
1808 {
1809 if (dump_file)
1810 fprintf (dump_file, "Not wrapping anything separately.\n");
1811 }
1812 else
1813 {
1814 if (dump_file)
1815 {
1816 fprintf (dump_file, "The components we wrap separately are");
1817 dump_components ("sep", components);
1818 fprintf (dump_file, "\n");
1819
1820 fprintf (dump_file, "... Inserting common heads...\n");
1821 }
1822
1823 emit_common_heads_for_components (components);
1824
1825 if (dump_file)
1826 fprintf (dump_file, "... Inserting common tails...\n");
1827
1828 emit_common_tails_for_components (components);
1829
1830 if (dump_file)
1831 fprintf (dump_file, "... Inserting the more difficult ones...\n");
1832
1833 insert_prologue_epilogue_for_components (components);
1834
1835 if (dump_file)
1836 fprintf (dump_file, "... Done.\n");
1837
1838 targetm.shrink_wrap.set_handled_components (components);
1839
1840 crtl->shrink_wrapped_separate = true;
1841 }
1842
1843 fini_separate_shrink_wrap ();
1844
1845 sbitmap_free (components);
1846 free_dominance_info (CDI_DOMINATORS);
1847 free_dominance_info (CDI_POST_DOMINATORS);
1848
1849 /* All done. */
1850 df_scan->local_flags &= ~DF_SCAN_EMPTY_ENTRY_EXIT;
1851 df_update_entry_exit_and_calls ();
1852 df_live_set_all_dirty ();
1853 df_analyze ();
1854 }