comparison gcc/tree-outof-ssa.c @ 111:04ced10e8804

gcc 7
author kono
date Fri, 27 Oct 2017 22:46:09 +0900
parents f6334be47118
children 84e7813d76e9
comparison
equal deleted inserted replaced
68:561a7518be6b 111:04ced10e8804
1 /* Convert a program in SSA form into Normal form. 1 /* Convert a program in SSA form into Normal form.
2 Copyright (C) 2004, 2005, 2006, 2007, 2008, 2009, 2010 2 Copyright (C) 2004-2017 Free Software Foundation, Inc.
3 Free Software Foundation, Inc.
4 Contributed by Andrew Macleod <amacleod@redhat.com> 3 Contributed by Andrew Macleod <amacleod@redhat.com>
5 4
6 This file is part of GCC. 5 This file is part of GCC.
7 6
8 GCC is free software; you can redistribute it and/or modify 7 GCC is free software; you can redistribute it and/or modify
20 <http://www.gnu.org/licenses/>. */ 19 <http://www.gnu.org/licenses/>. */
21 20
22 #include "config.h" 21 #include "config.h"
23 #include "system.h" 22 #include "system.h"
24 #include "coretypes.h" 23 #include "coretypes.h"
25 #include "tm.h" 24 #include "backend.h"
25 #include "rtl.h"
26 #include "tree.h" 26 #include "tree.h"
27 #include "ggc.h" 27 #include "gimple.h"
28 #include "basic-block.h" 28 #include "cfghooks.h"
29 #include "tree-pretty-print.h" 29 #include "ssa.h"
30 #include "memmodel.h"
31 #include "emit-rtl.h"
30 #include "gimple-pretty-print.h" 32 #include "gimple-pretty-print.h"
31 #include "bitmap.h"
32 #include "tree-flow.h"
33 #include "timevar.h"
34 #include "tree-dump.h"
35 #include "tree-pass.h"
36 #include "diagnostic-core.h" 33 #include "diagnostic-core.h"
37 #include "ssaexpand.h" 34 #include "stor-layout.h"
35 #include "cfgrtl.h"
36 #include "cfganal.h"
37 #include "tree-eh.h"
38 #include "gimple-iterator.h"
39 #include "tree-cfg.h"
40 #include "dumpfile.h"
41 #include "tree-ssa-live.h"
42 #include "tree-ssa-ter.h"
43 #include "tree-ssa-coalesce.h"
44 #include "tree-outof-ssa.h"
45 #include "dojump.h"
38 46
39 /* FIXME: A lot of code here deals with expanding to RTL. All that code 47 /* FIXME: A lot of code here deals with expanding to RTL. All that code
40 should be in cfgexpand.c. */ 48 should be in cfgexpand.c. */
49 #include "explow.h"
41 #include "expr.h" 50 #include "expr.h"
42 51
43 52 /* Return TRUE if expression STMT is suitable for replacement. */
44 DEF_VEC_I(source_location); 53
45 DEF_VEC_ALLOC_I(source_location,heap); 54 bool
55 ssa_is_replaceable_p (gimple *stmt)
56 {
57 use_operand_p use_p;
58 tree def;
59 gimple *use_stmt;
60
61 /* Only consider modify stmts. */
62 if (!is_gimple_assign (stmt))
63 return false;
64
65 /* If the statement may throw an exception, it cannot be replaced. */
66 if (stmt_could_throw_p (stmt))
67 return false;
68
69 /* Punt if there is more than 1 def. */
70 def = SINGLE_SSA_TREE_OPERAND (stmt, SSA_OP_DEF);
71 if (!def)
72 return false;
73
74 /* Only consider definitions which have a single use. */
75 if (!single_imm_use (def, &use_p, &use_stmt))
76 return false;
77
78 /* Used in this block, but at the TOP of the block, not the end. */
79 if (gimple_code (use_stmt) == GIMPLE_PHI)
80 return false;
81
82 /* There must be no VDEFs. */
83 if (gimple_vdef (stmt))
84 return false;
85
86 /* Float expressions must go through memory if float-store is on. */
87 if (flag_float_store
88 && FLOAT_TYPE_P (gimple_expr_type (stmt)))
89 return false;
90
91 /* An assignment with a register variable on the RHS is not
92 replaceable. */
93 if (gimple_assign_rhs_code (stmt) == VAR_DECL
94 && DECL_HARD_REGISTER (gimple_assign_rhs1 (stmt)))
95 return false;
96
97 /* No function calls can be replaced. */
98 if (is_gimple_call (stmt))
99 return false;
100
101 /* Leave any stmt with volatile operands alone as well. */
102 if (gimple_has_volatile_ops (stmt))
103 return false;
104
105 return true;
106 }
107
46 108
47 /* Used to hold all the components required to do SSA PHI elimination. 109 /* Used to hold all the components required to do SSA PHI elimination.
48 The node and pred/succ list is a simple linear list of nodes and 110 The node and pred/succ list is a simple linear list of nodes and
49 edges represented as pairs of nodes. 111 edges represented as pairs of nodes.
50 112
63 3, and in a bootstrap of GCC, the maximum size encountered was 7. 125 3, and in a bootstrap of GCC, the maximum size encountered was 7.
64 This also limits the number of possible nodes that are involved to 126 This also limits the number of possible nodes that are involved to
65 rarely more than 6, and in the bootstrap of gcc, the maximum number 127 rarely more than 6, and in the bootstrap of gcc, the maximum number
66 of nodes encountered was 12. */ 128 of nodes encountered was 12. */
67 129
68 typedef struct _elim_graph { 130 struct elim_graph
131 {
132 elim_graph (var_map map);
133
69 /* Size of the elimination vectors. */ 134 /* Size of the elimination vectors. */
70 int size; 135 int size;
71 136
72 /* List of nodes in the elimination graph. */ 137 /* List of nodes in the elimination graph. */
73 VEC(int,heap) *nodes; 138 auto_vec<int> nodes;
74 139
75 /* The predecessor and successor edge list. */ 140 /* The predecessor and successor edge list. */
76 VEC(int,heap) *edge_list; 141 auto_vec<int> edge_list;
77 142
78 /* Source locus on each edge */ 143 /* Source locus on each edge */
79 VEC(source_location,heap) *edge_locus; 144 auto_vec<source_location> edge_locus;
80 145
81 /* Visited vector. */ 146 /* Visited vector. */
82 sbitmap visited; 147 auto_sbitmap visited;
83 148
84 /* Stack for visited nodes. */ 149 /* Stack for visited nodes. */
85 VEC(int,heap) *stack; 150 auto_vec<int> stack;
86 151
87 /* The variable partition map. */ 152 /* The variable partition map. */
88 var_map map; 153 var_map map;
89 154
90 /* Edge being eliminated by this graph. */ 155 /* Edge being eliminated by this graph. */
91 edge e; 156 edge e;
92 157
93 /* List of constant copies to emit. These are pushed on in pairs. */ 158 /* List of constant copies to emit. These are pushed on in pairs. */
94 VEC(int,heap) *const_dests; 159 auto_vec<int> const_dests;
95 VEC(tree,heap) *const_copies; 160 auto_vec<tree> const_copies;
96 161
97 /* Source locations for any constant copies. */ 162 /* Source locations for any constant copies. */
98 VEC(source_location,heap) *copy_locus; 163 auto_vec<source_location> copy_locus;
99 } *elim_graph; 164 };
100 165
101 166
102 /* For an edge E find out a good source location to associate with 167 /* For an edge E find out a good source location to associate with
103 instructions inserted on edge E. If E has an implicit goto set, 168 instructions inserted on edge E. If E has an implicit goto set,
104 use its location. Otherwise search instructions in predecessors 169 use its location. Otherwise search instructions in predecessors
109 static void 174 static void
110 set_location_for_edge (edge e) 175 set_location_for_edge (edge e)
111 { 176 {
112 if (e->goto_locus) 177 if (e->goto_locus)
113 { 178 {
114 set_curr_insn_source_location (e->goto_locus); 179 set_curr_insn_location (e->goto_locus);
115 set_curr_insn_block (e->goto_block);
116 } 180 }
117 else 181 else
118 { 182 {
119 basic_block bb = e->src; 183 basic_block bb = e->src;
120 gimple_stmt_iterator gsi; 184 gimple_stmt_iterator gsi;
121 185
122 do 186 do
123 { 187 {
124 for (gsi = gsi_last_bb (bb); !gsi_end_p (gsi); gsi_prev (&gsi)) 188 for (gsi = gsi_last_bb (bb); !gsi_end_p (gsi); gsi_prev (&gsi))
125 { 189 {
126 gimple stmt = gsi_stmt (gsi); 190 gimple *stmt = gsi_stmt (gsi);
127 if (is_gimple_debug (stmt)) 191 if (is_gimple_debug (stmt))
128 continue; 192 continue;
129 if (gimple_has_location (stmt) || gimple_block (stmt)) 193 if (gimple_has_location (stmt) || gimple_block (stmt))
130 { 194 {
131 set_curr_insn_source_location (gimple_location (stmt)); 195 set_curr_insn_location (gimple_location (stmt));
132 set_curr_insn_block (gimple_block (stmt));
133 return; 196 return;
134 } 197 }
135 } 198 }
136 /* Nothing found in this basic block. Make a half-assed attempt 199 /* Nothing found in this basic block. Make a half-assed attempt
137 to continue with another block. */ 200 to continue with another block. */
146 209
147 /* Emit insns to copy SRC into DEST converting SRC if necessary. As 210 /* Emit insns to copy SRC into DEST converting SRC if necessary. As
148 SRC/DEST might be BLKmode memory locations SIZEEXP is a tree from 211 SRC/DEST might be BLKmode memory locations SIZEEXP is a tree from
149 which we deduce the size to copy in that case. */ 212 which we deduce the size to copy in that case. */
150 213
151 static inline rtx 214 static inline rtx_insn *
152 emit_partition_copy (rtx dest, rtx src, int unsignedsrcp, tree sizeexp) 215 emit_partition_copy (rtx dest, rtx src, int unsignedsrcp, tree sizeexp)
153 { 216 {
154 rtx seq;
155
156 start_sequence (); 217 start_sequence ();
157 218
158 if (GET_MODE (src) != VOIDmode && GET_MODE (src) != GET_MODE (dest)) 219 if (GET_MODE (src) != VOIDmode && GET_MODE (src) != GET_MODE (dest))
159 src = convert_to_mode (GET_MODE (dest), src, unsignedsrcp); 220 src = convert_to_mode (GET_MODE (dest), src, unsignedsrcp);
160 if (GET_MODE (src) == BLKmode) 221 if (GET_MODE (src) == BLKmode)
162 gcc_assert (GET_MODE (dest) == BLKmode); 223 gcc_assert (GET_MODE (dest) == BLKmode);
163 emit_block_move (dest, src, expr_size (sizeexp), BLOCK_OP_NORMAL); 224 emit_block_move (dest, src, expr_size (sizeexp), BLOCK_OP_NORMAL);
164 } 225 }
165 else 226 else
166 emit_move_insn (dest, src); 227 emit_move_insn (dest, src);
167 228 do_pending_stack_adjust ();
168 seq = get_insns (); 229
230 rtx_insn *seq = get_insns ();
169 end_sequence (); 231 end_sequence ();
170 232
171 return seq; 233 return seq;
172 } 234 }
173 235
175 237
176 static void 238 static void
177 insert_partition_copy_on_edge (edge e, int dest, int src, source_location locus) 239 insert_partition_copy_on_edge (edge e, int dest, int src, source_location locus)
178 { 240 {
179 tree var; 241 tree var;
180 rtx seq;
181 if (dump_file && (dump_flags & TDF_DETAILS)) 242 if (dump_file && (dump_flags & TDF_DETAILS))
182 { 243 {
183 fprintf (dump_file, 244 fprintf (dump_file,
184 "Inserting a partition copy on edge BB%d->BB%d :" 245 "Inserting a partition copy on edge BB%d->BB%d : "
185 "PART.%d = PART.%d", 246 "PART.%d = PART.%d",
186 e->src->index, 247 e->src->index,
187 e->dest->index, dest, src); 248 e->dest->index, dest, src);
188 fprintf (dump_file, "\n"); 249 fprintf (dump_file, "\n");
189 } 250 }
192 gcc_assert (SA.partition_to_pseudo[src]); 253 gcc_assert (SA.partition_to_pseudo[src]);
193 254
194 set_location_for_edge (e); 255 set_location_for_edge (e);
195 /* If a locus is provided, override the default. */ 256 /* If a locus is provided, override the default. */
196 if (locus) 257 if (locus)
197 set_curr_insn_source_location (locus); 258 set_curr_insn_location (locus);
198 259
199 var = partition_to_var (SA.map, src); 260 var = partition_to_var (SA.map, src);
200 seq = emit_partition_copy (SA.partition_to_pseudo[dest], 261 rtx_insn *seq = emit_partition_copy (copy_rtx (SA.partition_to_pseudo[dest]),
201 SA.partition_to_pseudo[src], 262 copy_rtx (SA.partition_to_pseudo[src]),
202 TYPE_UNSIGNED (TREE_TYPE (var)), 263 TYPE_UNSIGNED (TREE_TYPE (var)),
203 var); 264 var);
204 265
205 insert_insn_on_edge (seq, e); 266 insert_insn_on_edge (seq, e);
206 } 267 }
207 268
208 /* Insert a copy instruction from expression SRC to partition DEST 269 /* Insert a copy instruction from expression SRC to partition DEST
209 onto edge E. */ 270 onto edge E. */
210 271
211 static void 272 static void
212 insert_value_copy_on_edge (edge e, int dest, tree src, source_location locus) 273 insert_value_copy_on_edge (edge e, int dest, tree src, source_location locus)
213 { 274 {
214 rtx seq, x; 275 rtx dest_rtx, seq, x;
215 enum machine_mode dest_mode, src_mode; 276 machine_mode dest_mode, src_mode;
216 int unsignedp; 277 int unsignedp;
217 tree var;
218 278
219 if (dump_file && (dump_flags & TDF_DETAILS)) 279 if (dump_file && (dump_flags & TDF_DETAILS))
220 { 280 {
221 fprintf (dump_file, 281 fprintf (dump_file,
222 "Inserting a value copy on edge BB%d->BB%d : PART.%d = ", 282 "Inserting a value copy on edge BB%d->BB%d : PART.%d = ",
224 e->dest->index, dest); 284 e->dest->index, dest);
225 print_generic_expr (dump_file, src, TDF_SLIM); 285 print_generic_expr (dump_file, src, TDF_SLIM);
226 fprintf (dump_file, "\n"); 286 fprintf (dump_file, "\n");
227 } 287 }
228 288
229 gcc_assert (SA.partition_to_pseudo[dest]); 289 dest_rtx = copy_rtx (SA.partition_to_pseudo[dest]);
290 gcc_assert (dest_rtx);
230 291
231 set_location_for_edge (e); 292 set_location_for_edge (e);
232 /* If a locus is provided, override the default. */ 293 /* If a locus is provided, override the default. */
233 if (locus) 294 if (locus)
234 set_curr_insn_source_location (locus); 295 set_curr_insn_location (locus);
235 296
236 start_sequence (); 297 start_sequence ();
237 298
238 var = SSA_NAME_VAR (partition_to_var (SA.map, dest)); 299 tree name = partition_to_var (SA.map, dest);
239 src_mode = TYPE_MODE (TREE_TYPE (src)); 300 src_mode = TYPE_MODE (TREE_TYPE (src));
240 dest_mode = promote_decl_mode (var, &unsignedp); 301 dest_mode = GET_MODE (dest_rtx);
241 gcc_assert (src_mode == TYPE_MODE (TREE_TYPE (var))); 302 gcc_assert (src_mode == TYPE_MODE (TREE_TYPE (name)));
242 gcc_assert (dest_mode == GET_MODE (SA.partition_to_pseudo[dest])); 303 gcc_assert (!REG_P (dest_rtx)
304 || dest_mode == promote_ssa_mode (name, &unsignedp));
243 305
244 if (src_mode != dest_mode) 306 if (src_mode != dest_mode)
245 { 307 {
246 x = expand_expr (src, NULL, src_mode, EXPAND_NORMAL); 308 x = expand_expr (src, NULL, src_mode, EXPAND_NORMAL);
247 x = convert_modes (dest_mode, src_mode, x, unsignedp); 309 x = convert_modes (dest_mode, src_mode, x, unsignedp);
248 } 310 }
249 else if (src_mode == BLKmode) 311 else if (src_mode == BLKmode)
250 { 312 {
251 x = SA.partition_to_pseudo[dest]; 313 x = dest_rtx;
252 store_expr (src, x, 0, false); 314 store_expr (src, x, 0, false, false);
253 } 315 }
254 else 316 else
255 x = expand_expr (src, SA.partition_to_pseudo[dest], 317 x = expand_expr (src, dest_rtx, dest_mode, EXPAND_NORMAL);
256 dest_mode, EXPAND_NORMAL); 318
257 319 if (x != dest_rtx)
258 if (x != SA.partition_to_pseudo[dest]) 320 emit_move_insn (dest_rtx, x);
259 emit_move_insn (SA.partition_to_pseudo[dest], x); 321 do_pending_stack_adjust ();
322
260 seq = get_insns (); 323 seq = get_insns ();
261 end_sequence (); 324 end_sequence ();
262 325
263 insert_insn_on_edge (seq, e); 326 insert_insn_on_edge (seq, e);
264 } 327 }
268 331
269 static void 332 static void
270 insert_rtx_to_part_on_edge (edge e, int dest, rtx src, int unsignedsrcp, 333 insert_rtx_to_part_on_edge (edge e, int dest, rtx src, int unsignedsrcp,
271 source_location locus) 334 source_location locus)
272 { 335 {
273 rtx seq;
274 if (dump_file && (dump_flags & TDF_DETAILS)) 336 if (dump_file && (dump_flags & TDF_DETAILS))
275 { 337 {
276 fprintf (dump_file, 338 fprintf (dump_file,
277 "Inserting a temp copy on edge BB%d->BB%d : PART.%d = ", 339 "Inserting a temp copy on edge BB%d->BB%d : PART.%d = ",
278 e->src->index, 340 e->src->index,
284 gcc_assert (SA.partition_to_pseudo[dest]); 346 gcc_assert (SA.partition_to_pseudo[dest]);
285 347
286 set_location_for_edge (e); 348 set_location_for_edge (e);
287 /* If a locus is provided, override the default. */ 349 /* If a locus is provided, override the default. */
288 if (locus) 350 if (locus)
289 set_curr_insn_source_location (locus); 351 set_curr_insn_location (locus);
290 352
291 /* We give the destination as sizeexp in case src/dest are BLKmode 353 /* We give the destination as sizeexp in case src/dest are BLKmode
292 mems. Usually we give the source. As we result from SSA names 354 mems. Usually we give the source. As we result from SSA names
293 the left and right size should be the same (and no WITH_SIZE_EXPR 355 the left and right size should be the same (and no WITH_SIZE_EXPR
294 involved), so it doesn't matter. */ 356 involved), so it doesn't matter. */
295 seq = emit_partition_copy (SA.partition_to_pseudo[dest], 357 rtx_insn *seq = emit_partition_copy (copy_rtx (SA.partition_to_pseudo[dest]),
296 src, unsignedsrcp, 358 src, unsignedsrcp,
297 partition_to_var (SA.map, dest)); 359 partition_to_var (SA.map, dest));
298 360
299 insert_insn_on_edge (seq, e); 361 insert_insn_on_edge (seq, e);
300 } 362 }
301 363
302 /* Insert a copy instruction from partition SRC to RTL lvalue DEST 364 /* Insert a copy instruction from partition SRC to RTL lvalue DEST
304 366
305 static void 367 static void
306 insert_part_to_rtx_on_edge (edge e, rtx dest, int src, source_location locus) 368 insert_part_to_rtx_on_edge (edge e, rtx dest, int src, source_location locus)
307 { 369 {
308 tree var; 370 tree var;
309 rtx seq;
310 if (dump_file && (dump_flags & TDF_DETAILS)) 371 if (dump_file && (dump_flags & TDF_DETAILS))
311 { 372 {
312 fprintf (dump_file, 373 fprintf (dump_file,
313 "Inserting a temp copy on edge BB%d->BB%d : ", 374 "Inserting a temp copy on edge BB%d->BB%d : ",
314 e->src->index, 375 e->src->index,
320 gcc_assert (SA.partition_to_pseudo[src]); 381 gcc_assert (SA.partition_to_pseudo[src]);
321 382
322 set_location_for_edge (e); 383 set_location_for_edge (e);
323 /* If a locus is provided, override the default. */ 384 /* If a locus is provided, override the default. */
324 if (locus) 385 if (locus)
325 set_curr_insn_source_location (locus); 386 set_curr_insn_location (locus);
326 387
327 var = partition_to_var (SA.map, src); 388 var = partition_to_var (SA.map, src);
328 seq = emit_partition_copy (dest, 389 rtx_insn *seq = emit_partition_copy (dest,
329 SA.partition_to_pseudo[src], 390 copy_rtx (SA.partition_to_pseudo[src]),
330 TYPE_UNSIGNED (TREE_TYPE (var)), 391 TYPE_UNSIGNED (TREE_TYPE (var)),
331 var); 392 var);
332 393
333 insert_insn_on_edge (seq, e); 394 insert_insn_on_edge (seq, e);
334 } 395 }
335 396
336 397
337 /* Create an elimination graph with SIZE nodes and associated data 398 /* Create an elimination graph for map. */
338 structures. */ 399
339 400 elim_graph::elim_graph (var_map map) :
340 static elim_graph 401 nodes (30), edge_list (20), edge_locus (10), visited (map->num_partitions),
341 new_elim_graph (int size) 402 stack (30), map (map), const_dests (20), const_copies (20), copy_locus (10)
342 { 403 {
343 elim_graph g = (elim_graph) xmalloc (sizeof (struct _elim_graph));
344
345 g->nodes = VEC_alloc (int, heap, 30);
346 g->const_dests = VEC_alloc (int, heap, 20);
347 g->const_copies = VEC_alloc (tree, heap, 20);
348 g->copy_locus = VEC_alloc (source_location, heap, 10);
349 g->edge_list = VEC_alloc (int, heap, 20);
350 g->edge_locus = VEC_alloc (source_location, heap, 10);
351 g->stack = VEC_alloc (int, heap, 30);
352
353 g->visited = sbitmap_alloc (size);
354
355 return g;
356 } 404 }
357 405
358 406
359 /* Empty elimination graph G. */ 407 /* Empty elimination graph G. */
360 408
361 static inline void 409 static inline void
362 clear_elim_graph (elim_graph g) 410 clear_elim_graph (elim_graph *g)
363 { 411 {
364 VEC_truncate (int, g->nodes, 0); 412 g->nodes.truncate (0);
365 VEC_truncate (int, g->edge_list, 0); 413 g->edge_list.truncate (0);
366 VEC_truncate (source_location, g->edge_locus, 0); 414 g->edge_locus.truncate (0);
367 } 415 }
368 416
369 417
370 /* Delete elimination graph G. */ 418 /* Return the number of nodes in graph G. */
419
420 static inline int
421 elim_graph_size (elim_graph *g)
422 {
423 return g->nodes.length ();
424 }
425
426
427 /* Add NODE to graph G, if it doesn't exist already. */
371 428
372 static inline void 429 static inline void
373 delete_elim_graph (elim_graph g) 430 elim_graph_add_node (elim_graph *g, int node)
374 {
375 sbitmap_free (g->visited);
376 VEC_free (int, heap, g->stack);
377 VEC_free (int, heap, g->edge_list);
378 VEC_free (tree, heap, g->const_copies);
379 VEC_free (int, heap, g->const_dests);
380 VEC_free (int, heap, g->nodes);
381 VEC_free (source_location, heap, g->copy_locus);
382 VEC_free (source_location, heap, g->edge_locus);
383
384 free (g);
385 }
386
387
388 /* Return the number of nodes in graph G. */
389
390 static inline int
391 elim_graph_size (elim_graph g)
392 {
393 return VEC_length (int, g->nodes);
394 }
395
396
397 /* Add NODE to graph G, if it doesn't exist already. */
398
399 static inline void
400 elim_graph_add_node (elim_graph g, int node)
401 { 431 {
402 int x; 432 int x;
403 int t; 433 int t;
404 434
405 FOR_EACH_VEC_ELT (int, g->nodes, x, t) 435 FOR_EACH_VEC_ELT (g->nodes, x, t)
406 if (t == node) 436 if (t == node)
407 return; 437 return;
408 VEC_safe_push (int, heap, g->nodes, node); 438 g->nodes.safe_push (node);
409 } 439 }
410 440
411 441
412 /* Add the edge PRED->SUCC to graph G. */ 442 /* Add the edge PRED->SUCC to graph G. */
413 443
414 static inline void 444 static inline void
415 elim_graph_add_edge (elim_graph g, int pred, int succ, source_location locus) 445 elim_graph_add_edge (elim_graph *g, int pred, int succ, source_location locus)
416 { 446 {
417 VEC_safe_push (int, heap, g->edge_list, pred); 447 g->edge_list.safe_push (pred);
418 VEC_safe_push (int, heap, g->edge_list, succ); 448 g->edge_list.safe_push (succ);
419 VEC_safe_push (source_location, heap, g->edge_locus, locus); 449 g->edge_locus.safe_push (locus);
420 } 450 }
421 451
422 452
423 /* Remove an edge from graph G for which NODE is the predecessor, and 453 /* Remove an edge from graph G for which NODE is the predecessor, and
424 return the successor node. -1 is returned if there is no such edge. */ 454 return the successor node. -1 is returned if there is no such edge. */
425 455
426 static inline int 456 static inline int
427 elim_graph_remove_succ_edge (elim_graph g, int node, source_location *locus) 457 elim_graph_remove_succ_edge (elim_graph *g, int node, source_location *locus)
428 { 458 {
429 int y; 459 int y;
430 unsigned x; 460 unsigned x;
431 for (x = 0; x < VEC_length (int, g->edge_list); x += 2) 461 for (x = 0; x < g->edge_list.length (); x += 2)
432 if (VEC_index (int, g->edge_list, x) == node) 462 if (g->edge_list[x] == node)
433 { 463 {
434 VEC_replace (int, g->edge_list, x, -1); 464 g->edge_list[x] = -1;
435 y = VEC_index (int, g->edge_list, x + 1); 465 y = g->edge_list[x + 1];
436 VEC_replace (int, g->edge_list, x + 1, -1); 466 g->edge_list[x + 1] = -1;
437 *locus = VEC_index (source_location, g->edge_locus, x / 2); 467 *locus = g->edge_locus[x / 2];
438 VEC_replace (source_location, g->edge_locus, x / 2, UNKNOWN_LOCATION); 468 g->edge_locus[x / 2] = UNKNOWN_LOCATION;
439 return y; 469 return y;
440 } 470 }
441 *locus = UNKNOWN_LOCATION; 471 *locus = UNKNOWN_LOCATION;
442 return -1; 472 return -1;
443 } 473 }
449 479
450 #define FOR_EACH_ELIM_GRAPH_SUCC(GRAPH, NODE, VAR, LOCUS, CODE) \ 480 #define FOR_EACH_ELIM_GRAPH_SUCC(GRAPH, NODE, VAR, LOCUS, CODE) \
451 do { \ 481 do { \
452 unsigned x_; \ 482 unsigned x_; \
453 int y_; \ 483 int y_; \
454 for (x_ = 0; x_ < VEC_length (int, (GRAPH)->edge_list); x_ += 2) \ 484 for (x_ = 0; x_ < (GRAPH)->edge_list.length (); x_ += 2) \
455 { \ 485 { \
456 y_ = VEC_index (int, (GRAPH)->edge_list, x_); \ 486 y_ = (GRAPH)->edge_list[x_]; \
457 if (y_ != (NODE)) \ 487 if (y_ != (NODE)) \
458 continue; \ 488 continue; \
459 (void) ((VAR) = VEC_index (int, (GRAPH)->edge_list, x_ + 1)); \ 489 (void) ((VAR) = (GRAPH)->edge_list[x_ + 1]); \
460 (void) ((LOCUS) = VEC_index (source_location, \ 490 (void) ((LOCUS) = (GRAPH)->edge_locus[x_ / 2]); \
461 (GRAPH)->edge_locus, x_ / 2)); \
462 CODE; \ 491 CODE; \
463 } \ 492 } \
464 } while (0) 493 } while (0)
465 494
466 495
470 499
471 #define FOR_EACH_ELIM_GRAPH_PRED(GRAPH, NODE, VAR, LOCUS, CODE) \ 500 #define FOR_EACH_ELIM_GRAPH_PRED(GRAPH, NODE, VAR, LOCUS, CODE) \
472 do { \ 501 do { \
473 unsigned x_; \ 502 unsigned x_; \
474 int y_; \ 503 int y_; \
475 for (x_ = 0; x_ < VEC_length (int, (GRAPH)->edge_list); x_ += 2) \ 504 for (x_ = 0; x_ < (GRAPH)->edge_list.length (); x_ += 2) \
476 { \ 505 { \
477 y_ = VEC_index (int, (GRAPH)->edge_list, x_ + 1); \ 506 y_ = (GRAPH)->edge_list[x_ + 1]; \
478 if (y_ != (NODE)) \ 507 if (y_ != (NODE)) \
479 continue; \ 508 continue; \
480 (void) ((VAR) = VEC_index (int, (GRAPH)->edge_list, x_)); \ 509 (void) ((VAR) = (GRAPH)->edge_list[x_]); \
481 (void) ((LOCUS) = VEC_index (source_location, \ 510 (void) ((LOCUS) = (GRAPH)->edge_locus[x_ / 2]); \
482 (GRAPH)->edge_locus, x_ / 2)); \
483 CODE; \ 511 CODE; \
484 } \ 512 } \
485 } while (0) 513 } while (0)
486 514
487 515
488 /* Add T to elimination graph G. */ 516 /* Add T to elimination graph G. */
489 517
490 static inline void 518 static inline void
491 eliminate_name (elim_graph g, int T) 519 eliminate_name (elim_graph *g, int T)
492 { 520 {
493 elim_graph_add_node (g, T); 521 elim_graph_add_node (g, T);
494 } 522 }
495 523
524 /* Return true if this phi argument T should have a copy queued when using
525 var_map MAP. PHI nodes should contain only ssa_names and invariants. A
526 test for ssa_name is definitely simpler, but don't let invalid contents
527 slip through in the meantime. */
528
529 static inline bool
530 queue_phi_copy_p (var_map map, tree t)
531 {
532 if (TREE_CODE (t) == SSA_NAME)
533 {
534 if (var_to_partition (map, t) == NO_PARTITION)
535 return true;
536 return false;
537 }
538 gcc_checking_assert (is_gimple_min_invariant (t));
539 return true;
540 }
496 541
497 /* Build elimination graph G for basic block BB on incoming PHI edge 542 /* Build elimination graph G for basic block BB on incoming PHI edge
498 G->e. */ 543 G->e. */
499 544
500 static void 545 static void
501 eliminate_build (elim_graph g) 546 eliminate_build (elim_graph *g)
502 { 547 {
503 tree Ti; 548 tree Ti;
504 int p0, pi; 549 int p0, pi;
505 gimple_stmt_iterator gsi; 550 gphi_iterator gsi;
506 551
507 clear_elim_graph (g); 552 clear_elim_graph (g);
508 553
509 for (gsi = gsi_start_phis (g->e->dest); !gsi_end_p (gsi); gsi_next (&gsi)) 554 for (gsi = gsi_start_phis (g->e->dest); !gsi_end_p (gsi); gsi_next (&gsi))
510 { 555 {
511 gimple phi = gsi_stmt (gsi); 556 gphi *phi = gsi.phi ();
512 source_location locus; 557 source_location locus;
513 558
514 p0 = var_to_partition (g->map, gimple_phi_result (phi)); 559 p0 = var_to_partition (g->map, gimple_phi_result (phi));
515 /* Ignore results which are not in partitions. */ 560 /* Ignore results which are not in partitions. */
516 if (p0 == NO_PARTITION) 561 if (p0 == NO_PARTITION)
520 locus = gimple_phi_arg_location_from_edge (phi, g->e); 565 locus = gimple_phi_arg_location_from_edge (phi, g->e);
521 566
522 /* If this argument is a constant, or a SSA_NAME which is being 567 /* If this argument is a constant, or a SSA_NAME which is being
523 left in SSA form, just queue a copy to be emitted on this 568 left in SSA form, just queue a copy to be emitted on this
524 edge. */ 569 edge. */
525 if (!phi_ssa_name_p (Ti) 570 if (queue_phi_copy_p (g->map, Ti))
526 || (TREE_CODE (Ti) == SSA_NAME
527 && var_to_partition (g->map, Ti) == NO_PARTITION))
528 { 571 {
529 /* Save constant copies until all other copies have been emitted 572 /* Save constant copies until all other copies have been emitted
530 on this edge. */ 573 on this edge. */
531 VEC_safe_push (int, heap, g->const_dests, p0); 574 g->const_dests.safe_push (p0);
532 VEC_safe_push (tree, heap, g->const_copies, Ti); 575 g->const_copies.safe_push (Ti);
533 VEC_safe_push (source_location, heap, g->copy_locus, locus); 576 g->copy_locus.safe_push (locus);
534 } 577 }
535 else 578 else
536 { 579 {
537 pi = var_to_partition (g->map, Ti); 580 pi = var_to_partition (g->map, Ti);
538 if (p0 != pi) 581 if (p0 != pi)
547 590
548 591
549 /* Push successors of T onto the elimination stack for G. */ 592 /* Push successors of T onto the elimination stack for G. */
550 593
551 static void 594 static void
552 elim_forward (elim_graph g, int T) 595 elim_forward (elim_graph *g, int T)
553 { 596 {
554 int S; 597 int S;
555 source_location locus; 598 source_location locus;
556 599
557 SET_BIT (g->visited, T); 600 bitmap_set_bit (g->visited, T);
558 FOR_EACH_ELIM_GRAPH_SUCC (g, T, S, locus, 601 FOR_EACH_ELIM_GRAPH_SUCC (g, T, S, locus,
559 { 602 {
560 if (!TEST_BIT (g->visited, S)) 603 if (!bitmap_bit_p (g->visited, S))
561 elim_forward (g, S); 604 elim_forward (g, S);
562 }); 605 });
563 VEC_safe_push (int, heap, g->stack, T); 606 g->stack.safe_push (T);
564 } 607 }
565 608
566 609
567 /* Return 1 if there unvisited predecessors of T in graph G. */ 610 /* Return 1 if there unvisited predecessors of T in graph G. */
568 611
569 static int 612 static int
570 elim_unvisited_predecessor (elim_graph g, int T) 613 elim_unvisited_predecessor (elim_graph *g, int T)
571 { 614 {
572 int P; 615 int P;
573 source_location locus; 616 source_location locus;
574 617
575 FOR_EACH_ELIM_GRAPH_PRED (g, T, P, locus, 618 FOR_EACH_ELIM_GRAPH_PRED (g, T, P, locus,
576 { 619 {
577 if (!TEST_BIT (g->visited, P)) 620 if (!bitmap_bit_p (g->visited, P))
578 return 1; 621 return 1;
579 }); 622 });
580 return 0; 623 return 0;
581 } 624 }
582 625
583 /* Process predecessors first, and insert a copy. */ 626 /* Process predecessors first, and insert a copy. */
584 627
585 static void 628 static void
586 elim_backward (elim_graph g, int T) 629 elim_backward (elim_graph *g, int T)
587 { 630 {
588 int P; 631 int P;
589 source_location locus; 632 source_location locus;
590 633
591 SET_BIT (g->visited, T); 634 bitmap_set_bit (g->visited, T);
592 FOR_EACH_ELIM_GRAPH_PRED (g, T, P, locus, 635 FOR_EACH_ELIM_GRAPH_PRED (g, T, P, locus,
593 { 636 {
594 if (!TEST_BIT (g->visited, P)) 637 if (!bitmap_bit_p (g->visited, P))
595 { 638 {
596 elim_backward (g, P); 639 elim_backward (g, P);
597 insert_partition_copy_on_edge (g->e, P, T, locus); 640 insert_partition_copy_on_edge (g->e, P, T, locus);
598 } 641 }
599 }); 642 });
603 in NAME (a decl or SSA name), i.e. with matching mode and attributes. */ 646 in NAME (a decl or SSA name), i.e. with matching mode and attributes. */
604 647
605 static rtx 648 static rtx
606 get_temp_reg (tree name) 649 get_temp_reg (tree name)
607 { 650 {
608 tree var = TREE_CODE (name) == SSA_NAME ? SSA_NAME_VAR (name) : name; 651 tree type = TREE_TYPE (name);
609 tree type = TREE_TYPE (var);
610 int unsignedp; 652 int unsignedp;
611 enum machine_mode reg_mode = promote_decl_mode (var, &unsignedp); 653 machine_mode reg_mode = promote_ssa_mode (name, &unsignedp);
612 rtx x = gen_reg_rtx (reg_mode); 654 rtx x = gen_reg_rtx (reg_mode);
613 if (POINTER_TYPE_P (type)) 655 if (POINTER_TYPE_P (type))
614 mark_reg_pointer (x, TYPE_ALIGN (TREE_TYPE (TREE_TYPE (var)))); 656 mark_reg_pointer (x, TYPE_ALIGN (TREE_TYPE (type)));
615 return x; 657 return x;
616 } 658 }
617 659
618 /* Insert required copies for T in graph G. Check for a strongly connected 660 /* Insert required copies for T in graph G. Check for a strongly connected
619 region, and create a temporary to break the cycle if one is found. */ 661 region, and create a temporary to break the cycle if one is found. */
620 662
621 static void 663 static void
622 elim_create (elim_graph g, int T) 664 elim_create (elim_graph *g, int T)
623 { 665 {
624 int P, S; 666 int P, S;
625 source_location locus; 667 source_location locus;
626 668
627 if (elim_unvisited_predecessor (g, T)) 669 if (elim_unvisited_predecessor (g, T))
631 int unsignedsrcp = TYPE_UNSIGNED (TREE_TYPE (var)); 673 int unsignedsrcp = TYPE_UNSIGNED (TREE_TYPE (var));
632 674
633 insert_part_to_rtx_on_edge (g->e, U, T, UNKNOWN_LOCATION); 675 insert_part_to_rtx_on_edge (g->e, U, T, UNKNOWN_LOCATION);
634 FOR_EACH_ELIM_GRAPH_PRED (g, T, P, locus, 676 FOR_EACH_ELIM_GRAPH_PRED (g, T, P, locus,
635 { 677 {
636 if (!TEST_BIT (g->visited, P)) 678 if (!bitmap_bit_p (g->visited, P))
637 { 679 {
638 elim_backward (g, P); 680 elim_backward (g, P);
639 insert_rtx_to_part_on_edge (g->e, P, U, unsignedsrcp, locus); 681 insert_rtx_to_part_on_edge (g->e, P, U, unsignedsrcp, locus);
640 } 682 }
641 }); 683 });
643 else 685 else
644 { 686 {
645 S = elim_graph_remove_succ_edge (g, T, &locus); 687 S = elim_graph_remove_succ_edge (g, T, &locus);
646 if (S != -1) 688 if (S != -1)
647 { 689 {
648 SET_BIT (g->visited, T); 690 bitmap_set_bit (g->visited, T);
649 insert_partition_copy_on_edge (g->e, T, S, locus); 691 insert_partition_copy_on_edge (g->e, T, S, locus);
650 } 692 }
651 } 693 }
652 } 694 }
653 695
654 696
655 /* Eliminate all the phi nodes on edge E in graph G. */ 697 /* Eliminate all the phi nodes on edge E in graph G. */
656 698
657 static void 699 static void
658 eliminate_phi (edge e, elim_graph g) 700 eliminate_phi (edge e, elim_graph *g)
659 { 701 {
660 int x; 702 int x;
661 703
662 gcc_assert (VEC_length (tree, g->const_copies) == 0); 704 gcc_assert (g->const_copies.length () == 0);
663 gcc_assert (VEC_length (source_location, g->copy_locus) == 0); 705 gcc_assert (g->copy_locus.length () == 0);
664 706
665 /* Abnormal edges already have everything coalesced. */ 707 /* Abnormal edges already have everything coalesced. */
666 if (e->flags & EDGE_ABNORMAL) 708 if (e->flags & EDGE_ABNORMAL)
667 return; 709 return;
668 710
672 714
673 if (elim_graph_size (g) != 0) 715 if (elim_graph_size (g) != 0)
674 { 716 {
675 int part; 717 int part;
676 718
677 sbitmap_zero (g->visited); 719 bitmap_clear (g->visited);
678 VEC_truncate (int, g->stack, 0); 720 g->stack.truncate (0);
679 721
680 FOR_EACH_VEC_ELT (int, g->nodes, x, part) 722 FOR_EACH_VEC_ELT (g->nodes, x, part)
681 { 723 {
682 if (!TEST_BIT (g->visited, part)) 724 if (!bitmap_bit_p (g->visited, part))
683 elim_forward (g, part); 725 elim_forward (g, part);
684 } 726 }
685 727
686 sbitmap_zero (g->visited); 728 bitmap_clear (g->visited);
687 while (VEC_length (int, g->stack) > 0) 729 while (g->stack.length () > 0)
688 { 730 {
689 x = VEC_pop (int, g->stack); 731 x = g->stack.pop ();
690 if (!TEST_BIT (g->visited, x)) 732 if (!bitmap_bit_p (g->visited, x))
691 elim_create (g, x); 733 elim_create (g, x);
692 } 734 }
693 } 735 }
694 736
695 /* If there are any pending constant copies, issue them now. */ 737 /* If there are any pending constant copies, issue them now. */
696 while (VEC_length (tree, g->const_copies) > 0) 738 while (g->const_copies.length () > 0)
697 { 739 {
698 int dest; 740 int dest;
699 tree src; 741 tree src;
700 source_location locus; 742 source_location locus;
701 743
702 src = VEC_pop (tree, g->const_copies); 744 src = g->const_copies.pop ();
703 dest = VEC_pop (int, g->const_dests); 745 dest = g->const_dests.pop ();
704 locus = VEC_pop (source_location, g->copy_locus); 746 locus = g->copy_locus.pop ();
705 insert_value_copy_on_edge (e, dest, src, locus); 747 insert_value_copy_on_edge (e, dest, src, locus);
706 } 748 }
707 } 749 }
708 750
709 751
710 /* Remove each argument from PHI. If an arg was the last use of an SSA_NAME, 752 /* Remove each argument from PHI. If an arg was the last use of an SSA_NAME,
711 check to see if this allows another PHI node to be removed. */ 753 check to see if this allows another PHI node to be removed. */
712 754
713 static void 755 static void
714 remove_gimple_phi_args (gimple phi) 756 remove_gimple_phi_args (gphi *phi)
715 { 757 {
716 use_operand_p arg_p; 758 use_operand_p arg_p;
717 ssa_op_iter iter; 759 ssa_op_iter iter;
718 760
719 if (dump_file && (dump_flags & TDF_DETAILS)) 761 if (dump_file && (dump_flags & TDF_DETAILS))
729 { 771 {
730 /* Remove the reference to the existing argument. */ 772 /* Remove the reference to the existing argument. */
731 SET_USE (arg_p, NULL_TREE); 773 SET_USE (arg_p, NULL_TREE);
732 if (has_zero_uses (arg)) 774 if (has_zero_uses (arg))
733 { 775 {
734 gimple stmt; 776 gimple *stmt;
735 gimple_stmt_iterator gsi; 777 gimple_stmt_iterator gsi;
736 778
737 stmt = SSA_NAME_DEF_STMT (arg); 779 stmt = SSA_NAME_DEF_STMT (arg);
738 780
739 /* Also remove the def if it is a PHI node. */ 781 /* Also remove the def if it is a PHI node. */
740 if (gimple_code (stmt) == GIMPLE_PHI) 782 if (gimple_code (stmt) == GIMPLE_PHI)
741 { 783 {
742 remove_gimple_phi_args (stmt); 784 remove_gimple_phi_args (as_a <gphi *> (stmt));
743 gsi = gsi_for_stmt (stmt); 785 gsi = gsi_for_stmt (stmt);
744 remove_phi_node (&gsi, true); 786 remove_phi_node (&gsi, true);
745 } 787 }
746 788
747 } 789 }
753 795
754 static void 796 static void
755 eliminate_useless_phis (void) 797 eliminate_useless_phis (void)
756 { 798 {
757 basic_block bb; 799 basic_block bb;
758 gimple_stmt_iterator gsi; 800 gphi_iterator gsi;
759 tree result; 801 tree result;
760 802
761 FOR_EACH_BB (bb) 803 FOR_EACH_BB_FN (bb, cfun)
762 { 804 {
763 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); ) 805 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); )
764 { 806 {
765 gimple phi = gsi_stmt (gsi); 807 gphi *phi = gsi.phi ();
766 result = gimple_phi_result (phi); 808 result = gimple_phi_result (phi);
767 if (!is_gimple_reg (SSA_NAME_VAR (result))) 809 if (virtual_operand_p (result))
768 { 810 {
769 #ifdef ENABLE_CHECKING
770 size_t i;
771 /* There should be no arguments which are not virtual, or the 811 /* There should be no arguments which are not virtual, or the
772 results will be incorrect. */ 812 results will be incorrect. */
773 for (i = 0; i < gimple_phi_num_args (phi); i++) 813 if (flag_checking)
774 { 814 for (size_t i = 0; i < gimple_phi_num_args (phi); i++)
775 tree arg = PHI_ARG_DEF (phi, i); 815 {
776 if (TREE_CODE (arg) == SSA_NAME 816 tree arg = PHI_ARG_DEF (phi, i);
777 && is_gimple_reg (SSA_NAME_VAR (arg))) 817 if (TREE_CODE (arg) == SSA_NAME
778 { 818 && !virtual_operand_p (arg))
779 fprintf (stderr, "Argument of PHI is not virtual ("); 819 {
780 print_generic_expr (stderr, arg, TDF_SLIM); 820 fprintf (stderr, "Argument of PHI is not virtual (");
781 fprintf (stderr, "), but the result is :"); 821 print_generic_expr (stderr, arg, TDF_SLIM);
782 print_gimple_stmt (stderr, phi, 0, TDF_SLIM); 822 fprintf (stderr, "), but the result is :");
783 internal_error ("SSA corruption"); 823 print_gimple_stmt (stderr, phi, 0, TDF_SLIM);
784 } 824 internal_error ("SSA corruption");
785 } 825 }
786 #endif 826 }
827
787 remove_phi_node (&gsi, true); 828 remove_phi_node (&gsi, true);
788 } 829 }
789 else 830 else
790 { 831 {
791 /* Also remove real PHIs with no uses. */ 832 /* Also remove real PHIs with no uses. */
807 occurrences of partitions with non-null entries in the vector will be 848 occurrences of partitions with non-null entries in the vector will be
808 replaced with the expression in the vector instead of its mapped 849 replaced with the expression in the vector instead of its mapped
809 variable. */ 850 variable. */
810 851
811 static void 852 static void
812 rewrite_trees (var_map map ATTRIBUTE_UNUSED) 853 rewrite_trees (var_map map)
813 { 854 {
814 #ifdef ENABLE_CHECKING 855 if (!flag_checking)
856 return;
857
815 basic_block bb; 858 basic_block bb;
816 /* Search for PHIs where the destination has no partition, but one 859 /* Search for PHIs where the destination has no partition, but one
817 or more arguments has a partition. This should not happen and can 860 or more arguments has a partition. This should not happen and can
818 create incorrect code. */ 861 create incorrect code. */
819 FOR_EACH_BB (bb) 862 FOR_EACH_BB_FN (bb, cfun)
820 { 863 {
821 gimple_stmt_iterator gsi; 864 gphi_iterator gsi;
822 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi)) 865 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
823 { 866 {
824 gimple phi = gsi_stmt (gsi); 867 gphi *phi = gsi.phi ();
825 tree T0 = var_to_partition_to_var (map, gimple_phi_result (phi)); 868 tree T0 = var_to_partition_to_var (map, gimple_phi_result (phi));
826 if (T0 == NULL_TREE) 869 if (T0 == NULL_TREE)
827 { 870 {
828 size_t i; 871 size_t i;
829 for (i = 0; i < gimple_phi_num_args (phi); i++) 872 for (i = 0; i < gimple_phi_num_args (phi); i++)
841 } 884 }
842 } 885 }
843 } 886 }
844 } 887 }
845 } 888 }
846 #endif
847 } 889 }
848 890
849 /* Given the out-of-ssa info object SA (with prepared partitions) 891 /* Given the out-of-ssa info object SA (with prepared partitions)
850 eliminate all phi nodes in all basic blocks. Afterwards no 892 eliminate all phi nodes in all basic blocks. Afterwards no
851 basic block will have phi nodes anymore and there are possibly 893 basic block will have phi nodes anymore and there are possibly
853 895
854 void 896 void
855 expand_phi_nodes (struct ssaexpand *sa) 897 expand_phi_nodes (struct ssaexpand *sa)
856 { 898 {
857 basic_block bb; 899 basic_block bb;
858 elim_graph g = new_elim_graph (sa->map->num_partitions); 900 elim_graph g (sa->map);
859 g->map = sa->map; 901
860 902 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb,
861 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR->next_bb, EXIT_BLOCK_PTR, next_bb) 903 EXIT_BLOCK_PTR_FOR_FN (cfun), next_bb)
862 if (!gimple_seq_empty_p (phi_nodes (bb))) 904 if (!gimple_seq_empty_p (phi_nodes (bb)))
863 { 905 {
864 edge e; 906 edge e;
865 edge_iterator ei; 907 edge_iterator ei;
866 FOR_EACH_EDGE (e, ei, bb->preds) 908 FOR_EACH_EDGE (e, ei, bb->preds)
867 eliminate_phi (e, g); 909 eliminate_phi (e, &g);
868 set_phi_nodes (bb, NULL); 910 set_phi_nodes (bb, NULL);
869 /* We can't redirect EH edges in RTL land, so we need to do this 911 /* We can't redirect EH edges in RTL land, so we need to do this
870 here. Redirection happens only when splitting is necessary, 912 here. Redirection happens only when splitting is necessary,
871 which it is only for critical edges, normally. For EH edges 913 which it is only for critical edges, normally. For EH edges
872 it might also be necessary when the successor has more than 914 it might also be necessary when the successor has more than
878 for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei)); ) 920 for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei)); )
879 { 921 {
880 if (e->insns.r && (e->flags & EDGE_EH) 922 if (e->insns.r && (e->flags & EDGE_EH)
881 && !single_pred_p (e->dest)) 923 && !single_pred_p (e->dest))
882 { 924 {
883 rtx insns = e->insns.r; 925 rtx_insn *insns = e->insns.r;
884 basic_block bb; 926 basic_block bb;
885 e->insns.r = NULL_RTX; 927 e->insns.r = NULL;
886 bb = split_edge (e); 928 bb = split_edge (e);
887 single_pred_edge (bb)->insns.r = insns; 929 single_pred_edge (bb)->insns.r = insns;
888 } 930 }
889 else 931 else
890 ei_next (&ei); 932 ei_next (&ei);
891 } 933 }
892 } 934 }
893
894 delete_elim_graph (g);
895 } 935 }
896 936
897 937
898 /* Remove the ssa-names in the current function and translate them into normal 938 /* Remove the ssa-names in the current function and translate them into normal
899 compiler variables. PERFORM_TER is true if Temporary Expression Replacement 939 compiler variables. PERFORM_TER is true if Temporary Expression Replacement
902 static void 942 static void
903 remove_ssa_form (bool perform_ter, struct ssaexpand *sa) 943 remove_ssa_form (bool perform_ter, struct ssaexpand *sa)
904 { 944 {
905 bitmap values = NULL; 945 bitmap values = NULL;
906 var_map map; 946 var_map map;
907 unsigned i;
908 947
909 map = coalesce_ssa_name (); 948 map = coalesce_ssa_name ();
910 949
911 /* Return to viewing the variable list as just all reference variables after 950 /* Return to viewing the variable list as just all reference variables after
912 coalescing has been performed. */ 951 coalescing has been performed. */
913 partition_view_normal (map, false); 952 partition_view_normal (map);
914 953
915 if (dump_file && (dump_flags & TDF_DETAILS)) 954 if (dump_file && (dump_flags & TDF_DETAILS))
916 { 955 {
917 fprintf (dump_file, "After Coalescing:\n"); 956 fprintf (dump_file, "After Coalescing:\n");
918 dump_var_map (dump_file, map); 957 dump_var_map (dump_file, map);
927 966
928 rewrite_trees (map); 967 rewrite_trees (map);
929 968
930 sa->map = map; 969 sa->map = map;
931 sa->values = values; 970 sa->values = values;
932 sa->partition_has_default_def = BITMAP_ALLOC (NULL); 971 sa->partitions_for_parm_default_defs = get_parm_default_def_partitions (map);
933 for (i = 1; i < num_ssa_names; i++) 972 sa->partitions_for_undefined_values = get_undefined_value_partitions (map);
934 {
935 tree t = ssa_name (i);
936 if (t && SSA_NAME_IS_DEFAULT_DEF (t))
937 {
938 int p = var_to_partition (map, t);
939 if (p != NO_PARTITION)
940 bitmap_set_bit (sa->partition_has_default_def, p);
941 }
942 }
943 } 973 }
944 974
945 975
946 /* If not already done so for basic block BB, assign increasing uids 976 /* If not already done so for basic block BB, assign increasing uids
947 to each of its instructions. */ 977 to each of its instructions. */
955 if (!bb->aux) 985 if (!bb->aux)
956 return; 986 return;
957 bb->aux = NULL; 987 bb->aux = NULL;
958 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi)) 988 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
959 { 989 {
960 gimple stmt = gsi_stmt (gsi); 990 gimple *stmt = gsi_stmt (gsi);
961 gimple_set_uid (stmt, i); 991 gimple_set_uid (stmt, i);
962 i++; 992 i++;
963 } 993 }
964 } 994 }
965 995
971 static bool 1001 static bool
972 trivially_conflicts_p (basic_block bb, tree result, tree arg) 1002 trivially_conflicts_p (basic_block bb, tree result, tree arg)
973 { 1003 {
974 use_operand_p use; 1004 use_operand_p use;
975 imm_use_iterator imm_iter; 1005 imm_use_iterator imm_iter;
976 gimple defa = SSA_NAME_DEF_STMT (arg); 1006 gimple *defa = SSA_NAME_DEF_STMT (arg);
977 1007
978 /* If ARG isn't defined in the same block it's too complicated for 1008 /* If ARG isn't defined in the same block it's too complicated for
979 our little mind. */ 1009 our little mind. */
980 if (gimple_bb (defa) != bb) 1010 if (gimple_bb (defa) != bb)
981 return false; 1011 return false;
982 1012
983 FOR_EACH_IMM_USE_FAST (use, imm_iter, result) 1013 FOR_EACH_IMM_USE_FAST (use, imm_iter, result)
984 { 1014 {
985 gimple use_stmt = USE_STMT (use); 1015 gimple *use_stmt = USE_STMT (use);
986 if (is_gimple_debug (use_stmt)) 1016 if (is_gimple_debug (use_stmt))
987 continue; 1017 continue;
988 /* Now, if there's a use of RESULT that lies outside this basic block, 1018 /* Now, if there's a use of RESULT that lies outside this basic block,
989 then there surely is a conflict with ARG. */ 1019 then there surely is a conflict with ARG. */
990 if (gimple_bb (use_stmt) != bb) 1020 if (gimple_bb (use_stmt) != bb)
1017 1047
1018 static void 1048 static void
1019 insert_backedge_copies (void) 1049 insert_backedge_copies (void)
1020 { 1050 {
1021 basic_block bb; 1051 basic_block bb;
1022 gimple_stmt_iterator gsi; 1052 gphi_iterator gsi;
1023 1053
1024 FOR_EACH_BB (bb) 1054 mark_dfs_back_edges ();
1055
1056 FOR_EACH_BB_FN (bb, cfun)
1025 { 1057 {
1026 /* Mark block as possibly needing calculation of UIDs. */ 1058 /* Mark block as possibly needing calculation of UIDs. */
1027 bb->aux = &bb->aux; 1059 bb->aux = &bb->aux;
1028 1060
1029 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi)) 1061 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1030 { 1062 {
1031 gimple phi = gsi_stmt (gsi); 1063 gphi *phi = gsi.phi ();
1032 tree result = gimple_phi_result (phi); 1064 tree result = gimple_phi_result (phi);
1033 tree result_var;
1034 size_t i; 1065 size_t i;
1035 1066
1036 if (!is_gimple_reg (result)) 1067 if (virtual_operand_p (result))
1037 continue; 1068 continue;
1038 1069
1039 result_var = SSA_NAME_VAR (result);
1040 for (i = 0; i < gimple_phi_num_args (phi); i++) 1070 for (i = 0; i < gimple_phi_num_args (phi); i++)
1041 { 1071 {
1042 tree arg = gimple_phi_arg_def (phi, i); 1072 tree arg = gimple_phi_arg_def (phi, i);
1043 edge e = gimple_phi_arg_edge (phi, i); 1073 edge e = gimple_phi_arg_edge (phi, i);
1044 1074
1046 constant initialization. If the argument is an SSA_NAME with 1076 constant initialization. If the argument is an SSA_NAME with
1047 a different underlying variable then a copy statement will be 1077 a different underlying variable then a copy statement will be
1048 needed. */ 1078 needed. */
1049 if ((e->flags & EDGE_DFS_BACK) 1079 if ((e->flags & EDGE_DFS_BACK)
1050 && (TREE_CODE (arg) != SSA_NAME 1080 && (TREE_CODE (arg) != SSA_NAME
1051 || SSA_NAME_VAR (arg) != result_var 1081 || SSA_NAME_VAR (arg) != SSA_NAME_VAR (result)
1052 || trivially_conflicts_p (bb, result, arg))) 1082 || trivially_conflicts_p (bb, result, arg)))
1053 { 1083 {
1054 tree name; 1084 tree name;
1055 gimple stmt, last = NULL; 1085 gassign *stmt;
1086 gimple *last = NULL;
1056 gimple_stmt_iterator gsi2; 1087 gimple_stmt_iterator gsi2;
1057 1088
1058 gsi2 = gsi_last_bb (gimple_phi_arg_edge (phi, i)->src); 1089 gsi2 = gsi_last_bb (gimple_phi_arg_edge (phi, i)->src);
1059 if (!gsi_end_p (gsi2)) 1090 if (!gsi_end_p (gsi2))
1060 last = gsi_stmt (gsi2); 1091 last = gsi_stmt (gsi2);
1076 continue; 1107 continue;
1077 } 1108 }
1078 1109
1079 /* Create a new instance of the underlying variable of the 1110 /* Create a new instance of the underlying variable of the
1080 PHI result. */ 1111 PHI result. */
1081 stmt = gimple_build_assign (result_var, 1112 name = copy_ssa_name (result);
1113 stmt = gimple_build_assign (name,
1082 gimple_phi_arg_def (phi, i)); 1114 gimple_phi_arg_def (phi, i));
1083 name = make_ssa_name (result_var, stmt);
1084 gimple_assign_set_lhs (stmt, name);
1085 1115
1086 /* copy location if present. */ 1116 /* copy location if present. */
1087 if (gimple_phi_arg_has_location (phi, i)) 1117 if (gimple_phi_arg_has_location (phi, i))
1088 gimple_set_location (stmt, 1118 gimple_set_location (stmt,
1089 gimple_phi_arg_location (phi, i)); 1119 gimple_phi_arg_location (phi, i));
1112 { 1142 {
1113 free (sa->partition_to_pseudo); 1143 free (sa->partition_to_pseudo);
1114 if (sa->values) 1144 if (sa->values)
1115 BITMAP_FREE (sa->values); 1145 BITMAP_FREE (sa->values);
1116 delete_var_map (sa->map); 1146 delete_var_map (sa->map);
1117 BITMAP_FREE (sa->partition_has_default_def); 1147 BITMAP_FREE (sa->partitions_for_parm_default_defs);
1148 BITMAP_FREE (sa->partitions_for_undefined_values);
1118 memset (sa, 0, sizeof *sa); 1149 memset (sa, 0, sizeof *sa);
1119 } 1150 }
1120 1151
1121 /* Take the current function out of SSA form, translating PHIs as described in 1152 /* Take the current function out of SSA form, translating PHIs as described in
1122 R. Morgan, ``Building an Optimizing Compiler'', 1153 R. Morgan, ``Building an Optimizing Compiler'',