comparison gcc/tree-ssa-loop-im.c @ 111:04ced10e8804

gcc 7
author kono
date Fri, 27 Oct 2017 22:46:09 +0900
parents f6334be47118
children 84e7813d76e9
comparison
equal deleted inserted replaced
68:561a7518be6b 111:04ced10e8804
1 /* Loop invariant motion. 1 /* Loop invariant motion.
2 Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008, 2010 2 Copyright (C) 2003-2017 Free Software Foundation, Inc.
3 Free Software Foundation, Inc.
4 3
5 This file is part of GCC. 4 This file is part of GCC.
6 5
7 GCC is free software; you can redistribute it and/or modify it 6 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by the 7 under the terms of the GNU General Public License as published by the
19 <http://www.gnu.org/licenses/>. */ 18 <http://www.gnu.org/licenses/>. */
20 19
21 #include "config.h" 20 #include "config.h"
22 #include "system.h" 21 #include "system.h"
23 #include "coretypes.h" 22 #include "coretypes.h"
24 #include "tm.h" 23 #include "backend.h"
25 #include "tree.h" 24 #include "tree.h"
26 #include "tm_p.h" 25 #include "gimple.h"
27 #include "basic-block.h" 26 #include "cfghooks.h"
28 #include "output.h" 27 #include "tree-pass.h"
29 #include "tree-pretty-print.h" 28 #include "ssa.h"
30 #include "gimple-pretty-print.h" 29 #include "gimple-pretty-print.h"
31 #include "tree-flow.h" 30 #include "fold-const.h"
32 #include "tree-dump.h" 31 #include "cfganal.h"
33 #include "timevar.h" 32 #include "tree-eh.h"
33 #include "gimplify.h"
34 #include "gimple-iterator.h"
35 #include "tree-cfg.h"
36 #include "tree-ssa-loop-manip.h"
37 #include "tree-ssa-loop.h"
38 #include "tree-into-ssa.h"
34 #include "cfgloop.h" 39 #include "cfgloop.h"
35 #include "domwalk.h" 40 #include "domwalk.h"
36 #include "params.h" 41 #include "params.h"
37 #include "tree-pass.h"
38 #include "flags.h"
39 #include "hashtab.h"
40 #include "tree-affine.h" 42 #include "tree-affine.h"
41 #include "pointer-set.h"
42 #include "tree-ssa-propagate.h" 43 #include "tree-ssa-propagate.h"
44 #include "trans-mem.h"
45 #include "gimple-fold.h"
46 #include "tree-scalar-evolution.h"
47 #include "tree-ssa-loop-niter.h"
43 48
44 /* TODO: Support for predicated code motion. I.e. 49 /* TODO: Support for predicated code motion. I.e.
45 50
46 while (1) 51 while (1)
47 { 52 {
50 a = inv; 55 a = inv;
51 something; 56 something;
52 } 57 }
53 } 58 }
54 59
55 Where COND and INV are is invariants, but evaluating INV may trap or be 60 Where COND and INV are invariants, but evaluating INV may trap or be
56 invalid from some other reason if !COND. This may be transformed to 61 invalid from some other reason if !COND. This may be transformed to
57 62
58 if (cond) 63 if (cond)
59 a = inv; 64 a = inv;
60 while (1) 65 while (1)
61 { 66 {
62 if (cond) 67 if (cond)
63 something; 68 something;
64 } */ 69 } */
65 70
66 /* A type for the list of statements that have to be moved in order to be able
67 to hoist an invariant computation. */
68
69 struct depend
70 {
71 gimple stmt;
72 struct depend *next;
73 };
74
75 /* The auxiliary data kept for each statement. */ 71 /* The auxiliary data kept for each statement. */
76 72
77 struct lim_aux_data 73 struct lim_aux_data
78 { 74 {
79 struct loop *max_loop; /* The outermost loop in that the statement 75 struct loop *max_loop; /* The outermost loop in that the statement
88 is entered. */ 84 is entered. */
89 85
90 unsigned cost; /* Cost of the computation performed by the 86 unsigned cost; /* Cost of the computation performed by the
91 statement. */ 87 statement. */
92 88
93 struct depend *depends; /* List of statements that must be also hoisted 89 unsigned ref; /* The simple_mem_ref in this stmt or 0. */
94 out of the loop when this statement is 90
95 hoisted; i.e. those that define the operands 91 vec<gimple *> depends; /* Vector of statements that must be also
96 of the statement and are inside of the 92 hoisted out of the loop when this statement
97 MAX_LOOP loop. */ 93 is hoisted; i.e. those that define the
94 operands of the statement and are inside of
95 the MAX_LOOP loop. */
98 }; 96 };
99 97
100 /* Maps statements to their lim_aux_data. */ 98 /* Maps statements to their lim_aux_data. */
101 99
102 static struct pointer_map_t *lim_aux_data_map; 100 static hash_map<gimple *, lim_aux_data *> *lim_aux_data_map;
103 101
104 /* Description of a memory reference location. */ 102 /* Description of a memory reference location. */
105 103
106 typedef struct mem_ref_loc 104 struct mem_ref_loc
107 { 105 {
108 tree *ref; /* The reference itself. */ 106 tree *ref; /* The reference itself. */
109 gimple stmt; /* The statement in that it occurs. */ 107 gimple *stmt; /* The statement in that it occurs. */
110 } *mem_ref_loc_p; 108 };
111 109
112 DEF_VEC_P(mem_ref_loc_p);
113 DEF_VEC_ALLOC_P(mem_ref_loc_p, heap);
114
115 /* The list of memory reference locations in a loop. */
116
117 typedef struct mem_ref_locs
118 {
119 VEC (mem_ref_loc_p, heap) *locs;
120 } *mem_ref_locs_p;
121
122 DEF_VEC_P(mem_ref_locs_p);
123 DEF_VEC_ALLOC_P(mem_ref_locs_p, heap);
124 110
125 /* Description of a memory reference. */ 111 /* Description of a memory reference. */
126 112
127 typedef struct mem_ref 113 struct im_mem_ref
128 { 114 {
129 tree mem; /* The memory itself. */
130 unsigned id; /* ID assigned to the memory reference 115 unsigned id; /* ID assigned to the memory reference
131 (its index in memory_accesses.refs_list) */ 116 (its index in memory_accesses.refs_list) */
132 hashval_t hash; /* Its hash value. */ 117 hashval_t hash; /* Its hash value. */
118
119 /* The memory access itself and associated caching of alias-oracle
120 query meta-data. */
121 ao_ref mem;
122
133 bitmap stored; /* The set of loops in that this memory location 123 bitmap stored; /* The set of loops in that this memory location
134 is stored to. */ 124 is stored to. */
135 VEC (mem_ref_locs_p, heap) *accesses_in_loop; 125 vec<mem_ref_loc> accesses_in_loop;
136 /* The locations of the accesses. Vector 126 /* The locations of the accesses. Vector
137 indexed by the loop number. */ 127 indexed by the loop number. */
138 bitmap vops; /* Vops corresponding to this memory
139 location. */
140 128
141 /* The following sets are computed on demand. We keep both set and 129 /* The following sets are computed on demand. We keep both set and
142 its complement, so that we know whether the information was 130 its complement, so that we know whether the information was
143 already computed or not. */ 131 already computed or not. */
144 bitmap indep_loop; /* The set of loops in that the memory 132 bitmap_head indep_loop; /* The set of loops in that the memory
145 reference is independent, meaning: 133 reference is independent, meaning:
146 If it is stored in the loop, this store 134 If it is stored in the loop, this store
147 is independent on all other loads and 135 is independent on all other loads and
148 stores. 136 stores.
149 If it is only loaded, then it is independent 137 If it is only loaded, then it is independent
150 on all stores in the loop. */ 138 on all stores in the loop. */
151 bitmap dep_loop; /* The complement of INDEP_LOOP. */ 139 bitmap_head dep_loop; /* The complement of INDEP_LOOP. */
152 140 };
153 bitmap indep_ref; /* The set of memory references on that 141
154 this reference is independent. */ 142 /* We use two bits per loop in the ref->{in,}dep_loop bitmaps, the first
155 bitmap dep_ref; /* The complement of DEP_REF. */ 143 to record (in)dependence against stores in the loop and its subloops, the
156 } *mem_ref_p; 144 second to record (in)dependence against all references in the loop
157 145 and its subloops. */
158 DEF_VEC_P(mem_ref_p); 146 #define LOOP_DEP_BIT(loopnum, storedp) (2 * (loopnum) + (storedp ? 1 : 0))
159 DEF_VEC_ALLOC_P(mem_ref_p, heap); 147
160 148 /* Mem_ref hashtable helpers. */
161 DEF_VEC_P(bitmap); 149
162 DEF_VEC_ALLOC_P(bitmap, heap); 150 struct mem_ref_hasher : nofree_ptr_hash <im_mem_ref>
163 151 {
164 DEF_VEC_P(htab_t); 152 typedef tree_node *compare_type;
165 DEF_VEC_ALLOC_P(htab_t, heap); 153 static inline hashval_t hash (const im_mem_ref *);
154 static inline bool equal (const im_mem_ref *, const tree_node *);
155 };
156
157 /* A hash function for struct im_mem_ref object OBJ. */
158
159 inline hashval_t
160 mem_ref_hasher::hash (const im_mem_ref *mem)
161 {
162 return mem->hash;
163 }
164
165 /* An equality function for struct im_mem_ref object MEM1 with
166 memory reference OBJ2. */
167
168 inline bool
169 mem_ref_hasher::equal (const im_mem_ref *mem1, const tree_node *obj2)
170 {
171 return operand_equal_p (mem1->mem.ref, (const_tree) obj2, 0);
172 }
173
166 174
167 /* Description of memory accesses in loops. */ 175 /* Description of memory accesses in loops. */
168 176
169 static struct 177 static struct
170 { 178 {
171 /* The hash table of memory references accessed in loops. */ 179 /* The hash table of memory references accessed in loops. */
172 htab_t refs; 180 hash_table<mem_ref_hasher> *refs;
173 181
174 /* The list of memory references. */ 182 /* The list of memory references. */
175 VEC (mem_ref_p, heap) *refs_list; 183 vec<im_mem_ref *> refs_list;
176 184
177 /* The set of memory references accessed in each loop. */ 185 /* The set of memory references accessed in each loop. */
178 VEC (bitmap, heap) *refs_in_loop; 186 vec<bitmap_head> refs_in_loop;
179 187
180 /* The set of memory references accessed in each loop, including 188 /* The set of memory references stored in each loop. */
181 subloops. */ 189 vec<bitmap_head> refs_stored_in_loop;
182 VEC (bitmap, heap) *all_refs_in_loop; 190
183 191 /* The set of memory references stored in each loop, including subloops . */
184 /* The set of virtual operands clobbered in a given loop. */ 192 vec<bitmap_head> all_refs_stored_in_loop;
185 VEC (bitmap, heap) *clobbered_vops;
186
187 /* Map from the pair (loop, virtual operand) to the set of refs that
188 touch the virtual operand in the loop. */
189 VEC (htab_t, heap) *vop_ref_map;
190 193
191 /* Cache for expanding memory addresses. */ 194 /* Cache for expanding memory addresses. */
192 struct pointer_map_t *ttae_cache; 195 hash_map<tree, name_expansion *> *ttae_cache;
193 } memory_accesses; 196 } memory_accesses;
194 197
195 static bool ref_indep_loop_p (struct loop *, mem_ref_p); 198 /* Obstack for the bitmaps in the above data structures. */
199 static bitmap_obstack lim_bitmap_obstack;
200 static obstack mem_ref_obstack;
201
202 static bool ref_indep_loop_p (struct loop *, im_mem_ref *, struct loop *);
203 static bool ref_always_accessed_p (struct loop *, im_mem_ref *, bool);
196 204
197 /* Minimum cost of an expensive expression. */ 205 /* Minimum cost of an expensive expression. */
198 #define LIM_EXPENSIVE ((unsigned) PARAM_VALUE (PARAM_LIM_EXPENSIVE)) 206 #define LIM_EXPENSIVE ((unsigned) PARAM_VALUE (PARAM_LIM_EXPENSIVE))
199 207
200 /* The outermost loop for that execution of the header guarantees that the 208 /* The outermost loop for which execution of the header guarantees that the
201 block will be executed. */ 209 block will be executed. */
202 #define ALWAYS_EXECUTED_IN(BB) ((struct loop *) (BB)->aux) 210 #define ALWAYS_EXECUTED_IN(BB) ((struct loop *) (BB)->aux)
211 #define SET_ALWAYS_EXECUTED_IN(BB, VAL) ((BB)->aux = (void *) (VAL))
212
213 /* ID of the shared unanalyzable mem. */
214 #define UNANALYZABLE_MEM_ID 0
215
216 /* Whether the reference was analyzable. */
217 #define MEM_ANALYZABLE(REF) ((REF)->id != UNANALYZABLE_MEM_ID)
203 218
204 static struct lim_aux_data * 219 static struct lim_aux_data *
205 init_lim_data (gimple stmt) 220 init_lim_data (gimple *stmt)
206 { 221 {
207 void **p = pointer_map_insert (lim_aux_data_map, stmt); 222 lim_aux_data *p = XCNEW (struct lim_aux_data);
208 223 lim_aux_data_map->put (stmt, p);
209 *p = XCNEW (struct lim_aux_data); 224
210 return (struct lim_aux_data *) *p; 225 return p;
211 } 226 }
212 227
213 static struct lim_aux_data * 228 static struct lim_aux_data *
214 get_lim_data (gimple stmt) 229 get_lim_data (gimple *stmt)
215 { 230 {
216 void **p = pointer_map_contains (lim_aux_data_map, stmt); 231 lim_aux_data **p = lim_aux_data_map->get (stmt);
217 if (!p) 232 if (!p)
218 return NULL; 233 return NULL;
219 234
220 return (struct lim_aux_data *) *p; 235 return *p;
221 } 236 }
222 237
223 /* Releases the memory occupied by DATA. */ 238 /* Releases the memory occupied by DATA. */
224 239
225 static void 240 static void
226 free_lim_aux_data (struct lim_aux_data *data) 241 free_lim_aux_data (struct lim_aux_data *data)
227 { 242 {
228 struct depend *dep, *next; 243 data->depends.release ();
229
230 for (dep = data->depends; dep; dep = next)
231 {
232 next = dep->next;
233 free (dep);
234 }
235 free (data); 244 free (data);
236 } 245 }
237 246
238 static void 247 static void
239 clear_lim_data (gimple stmt) 248 clear_lim_data (gimple *stmt)
240 { 249 {
241 void **p = pointer_map_contains (lim_aux_data_map, stmt); 250 lim_aux_data **p = lim_aux_data_map->get (stmt);
242 if (!p) 251 if (!p)
243 return; 252 return;
244 253
245 free_lim_aux_data ((struct lim_aux_data *) *p); 254 free_lim_aux_data (*p);
246 *p = NULL; 255 *p = NULL;
247 } 256 }
248 257
249 /* Calls CBCK for each index in memory reference ADDR_P. There are two 258
250 kinds situations handled; in each of these cases, the memory reference 259 /* The possibilities of statement movement. */
251 and DATA are passed to the callback: 260 enum move_pos
252 261 {
253 Access to an array: ARRAY_{RANGE_}REF (base, index). In this case we also 262 MOVE_IMPOSSIBLE, /* No movement -- side effect expression. */
254 pass the pointer to the index to the callback. 263 MOVE_PRESERVE_EXECUTION, /* Must not cause the non-executed statement
255 264 become executed -- memory accesses, ... */
256 Pointer dereference: INDIRECT_REF (addr). In this case we also pass the 265 MOVE_POSSIBLE /* Unlimited movement. */
257 pointer to addr to the callback. 266 };
258 267
259 If the callback returns false, the whole search stops and false is returned.
260 Otherwise the function returns true after traversing through the whole
261 reference *ADDR_P. */
262
263 bool
264 for_each_index (tree *addr_p, bool (*cbck) (tree, tree *, void *), void *data)
265 {
266 tree *nxt, *idx;
267
268 for (; ; addr_p = nxt)
269 {
270 switch (TREE_CODE (*addr_p))
271 {
272 case SSA_NAME:
273 return cbck (*addr_p, addr_p, data);
274
275 case MEM_REF:
276 nxt = &TREE_OPERAND (*addr_p, 0);
277 return cbck (*addr_p, nxt, data);
278
279 case BIT_FIELD_REF:
280 case VIEW_CONVERT_EXPR:
281 case REALPART_EXPR:
282 case IMAGPART_EXPR:
283 nxt = &TREE_OPERAND (*addr_p, 0);
284 break;
285
286 case COMPONENT_REF:
287 /* If the component has varying offset, it behaves like index
288 as well. */
289 idx = &TREE_OPERAND (*addr_p, 2);
290 if (*idx
291 && !cbck (*addr_p, idx, data))
292 return false;
293
294 nxt = &TREE_OPERAND (*addr_p, 0);
295 break;
296
297 case ARRAY_REF:
298 case ARRAY_RANGE_REF:
299 nxt = &TREE_OPERAND (*addr_p, 0);
300 if (!cbck (*addr_p, &TREE_OPERAND (*addr_p, 1), data))
301 return false;
302 break;
303
304 case VAR_DECL:
305 case PARM_DECL:
306 case STRING_CST:
307 case RESULT_DECL:
308 case VECTOR_CST:
309 case COMPLEX_CST:
310 case INTEGER_CST:
311 case REAL_CST:
312 case FIXED_CST:
313 case CONSTRUCTOR:
314 return true;
315
316 case ADDR_EXPR:
317 gcc_assert (is_gimple_min_invariant (*addr_p));
318 return true;
319
320 case TARGET_MEM_REF:
321 idx = &TMR_BASE (*addr_p);
322 if (*idx
323 && !cbck (*addr_p, idx, data))
324 return false;
325 idx = &TMR_INDEX (*addr_p);
326 if (*idx
327 && !cbck (*addr_p, idx, data))
328 return false;
329 idx = &TMR_INDEX2 (*addr_p);
330 if (*idx
331 && !cbck (*addr_p, idx, data))
332 return false;
333 return true;
334
335 default:
336 gcc_unreachable ();
337 }
338 }
339 }
340 268
341 /* If it is possible to hoist the statement STMT unconditionally, 269 /* If it is possible to hoist the statement STMT unconditionally,
342 returns MOVE_POSSIBLE. 270 returns MOVE_POSSIBLE.
343 If it is possible to hoist the statement STMT, but we must avoid making 271 If it is possible to hoist the statement STMT, but we must avoid making
344 it executed if it would not be executed in the original program (e.g. 272 it executed if it would not be executed in the original program (e.g.
345 because it may trap), return MOVE_PRESERVE_EXECUTION. 273 because it may trap), return MOVE_PRESERVE_EXECUTION.
346 Otherwise return MOVE_IMPOSSIBLE. */ 274 Otherwise return MOVE_IMPOSSIBLE. */
347 275
348 enum move_pos 276 enum move_pos
349 movement_possibility (gimple stmt) 277 movement_possibility (gimple *stmt)
350 { 278 {
351 tree lhs; 279 tree lhs;
352 enum move_pos ret = MOVE_POSSIBLE; 280 enum move_pos ret = MOVE_POSSIBLE;
353 281
354 if (flag_unswitch_loops 282 if (flag_unswitch_loops
359 return MOVE_POSSIBLE; 287 return MOVE_POSSIBLE;
360 } 288 }
361 289
362 if (gimple_code (stmt) == GIMPLE_PHI 290 if (gimple_code (stmt) == GIMPLE_PHI
363 && gimple_phi_num_args (stmt) <= 2 291 && gimple_phi_num_args (stmt) <= 2
364 && is_gimple_reg (gimple_phi_result (stmt)) 292 && !virtual_operand_p (gimple_phi_result (stmt))
365 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (gimple_phi_result (stmt))) 293 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (gimple_phi_result (stmt)))
366 return MOVE_POSSIBLE; 294 return MOVE_POSSIBLE;
367 295
368 if (gimple_get_lhs (stmt) == NULL_TREE) 296 if (gimple_get_lhs (stmt) == NULL_TREE)
369 return MOVE_IMPOSSIBLE; 297 return MOVE_IMPOSSIBLE;
411 339
412 if (TREE_CODE (lhs) != SSA_NAME 340 if (TREE_CODE (lhs) != SSA_NAME
413 || gimple_could_trap_p (stmt)) 341 || gimple_could_trap_p (stmt))
414 return MOVE_PRESERVE_EXECUTION; 342 return MOVE_PRESERVE_EXECUTION;
415 343
344 /* Non local loads in a transaction cannot be hoisted out. Well,
345 unless the load happens on every path out of the loop, but we
346 don't take this into account yet. */
347 if (flag_tm
348 && gimple_in_transaction (stmt)
349 && gimple_assign_single_p (stmt))
350 {
351 tree rhs = gimple_assign_rhs1 (stmt);
352 if (DECL_P (rhs) && is_global_var (rhs))
353 {
354 if (dump_file)
355 {
356 fprintf (dump_file, "Cannot hoist conditional load of ");
357 print_generic_expr (dump_file, rhs, TDF_SLIM);
358 fprintf (dump_file, " because it is in a transaction.\n");
359 }
360 return MOVE_IMPOSSIBLE;
361 }
362 }
363
416 return ret; 364 return ret;
417 } 365 }
418 366
419 /* Suppose that operand DEF is used inside the LOOP. Returns the outermost 367 /* Suppose that operand DEF is used inside the LOOP. Returns the outermost
420 loop to that we could move the expression using DEF if it did not have 368 loop to that we could move the expression using DEF if it did not have
422 of DEF is invariant. */ 370 of DEF is invariant. */
423 371
424 static struct loop * 372 static struct loop *
425 outermost_invariant_loop (tree def, struct loop *loop) 373 outermost_invariant_loop (tree def, struct loop *loop)
426 { 374 {
427 gimple def_stmt; 375 gimple *def_stmt;
428 basic_block def_bb; 376 basic_block def_bb;
429 struct loop *max_loop; 377 struct loop *max_loop;
430 struct lim_aux_data *lim_data; 378 struct lim_aux_data *lim_data;
431 379
432 if (!def) 380 if (!def)
470 418
471 static bool 419 static bool
472 add_dependency (tree def, struct lim_aux_data *data, struct loop *loop, 420 add_dependency (tree def, struct lim_aux_data *data, struct loop *loop,
473 bool add_cost) 421 bool add_cost)
474 { 422 {
475 gimple def_stmt = SSA_NAME_DEF_STMT (def); 423 gimple *def_stmt = SSA_NAME_DEF_STMT (def);
476 basic_block def_bb = gimple_bb (def_stmt); 424 basic_block def_bb = gimple_bb (def_stmt);
477 struct loop *max_loop; 425 struct loop *max_loop;
478 struct depend *dep;
479 struct lim_aux_data *def_data; 426 struct lim_aux_data *def_data;
480 427
481 if (!def_bb) 428 if (!def_bb)
482 return true; 429 return true;
483 430
498 on it, we will be able to avoid creating a new register for 445 on it, we will be able to avoid creating a new register for
499 it (since it will be only used in these dependent invariants). */ 446 it (since it will be only used in these dependent invariants). */
500 && def_bb->loop_father == loop) 447 && def_bb->loop_father == loop)
501 data->cost += def_data->cost; 448 data->cost += def_data->cost;
502 449
503 dep = XNEW (struct depend); 450 data->depends.safe_push (def_stmt);
504 dep->stmt = def_stmt;
505 dep->next = data->depends;
506 data->depends = dep;
507 451
508 return true; 452 return true;
509 } 453 }
510 454
511 /* Returns an estimate for a cost of statement STMT. TODO -- the values here 455 /* Returns an estimate for a cost of statement STMT. The values here
512 are just ad-hoc constants. The estimates should be based on target-specific 456 are just ad-hoc constants, similar to costs for inlining. */
513 values. */
514 457
515 static unsigned 458 static unsigned
516 stmt_cost (gimple stmt) 459 stmt_cost (gimple *stmt)
517 { 460 {
518 tree fndecl;
519 unsigned cost = 1;
520
521 /* Always try to create possibilities for unswitching. */ 461 /* Always try to create possibilities for unswitching. */
522 if (gimple_code (stmt) == GIMPLE_COND 462 if (gimple_code (stmt) == GIMPLE_COND
523 || gimple_code (stmt) == GIMPLE_PHI) 463 || gimple_code (stmt) == GIMPLE_PHI)
524 return LIM_EXPENSIVE; 464 return LIM_EXPENSIVE;
525 465
526 /* Hoisting memory references out should almost surely be a win. */ 466 /* We should be hoisting calls if possible. */
527 if (gimple_references_memory_p (stmt))
528 cost += 20;
529
530 if (is_gimple_call (stmt)) 467 if (is_gimple_call (stmt))
531 { 468 {
532 /* We should be hoisting calls if possible. */ 469 tree fndecl;
533 470
534 /* Unless the call is a builtin_constant_p; this always folds to a 471 /* Unless the call is a builtin_constant_p; this always folds to a
535 constant, so moving it is useless. */ 472 constant, so moving it is useless. */
536 fndecl = gimple_call_fndecl (stmt); 473 fndecl = gimple_call_fndecl (stmt);
537 if (fndecl 474 if (fndecl
538 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL 475 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
539 && DECL_FUNCTION_CODE (fndecl) == BUILT_IN_CONSTANT_P) 476 && DECL_FUNCTION_CODE (fndecl) == BUILT_IN_CONSTANT_P)
540 return 0; 477 return 0;
541 478
542 return cost + 20; 479 return LIM_EXPENSIVE;
543 } 480 }
481
482 /* Hoisting memory references out should almost surely be a win. */
483 if (gimple_references_memory_p (stmt))
484 return LIM_EXPENSIVE;
544 485
545 if (gimple_code (stmt) != GIMPLE_ASSIGN) 486 if (gimple_code (stmt) != GIMPLE_ASSIGN)
546 return cost; 487 return 1;
547 488
548 switch (gimple_assign_rhs_code (stmt)) 489 switch (gimple_assign_rhs_code (stmt))
549 { 490 {
550 case MULT_EXPR: 491 case MULT_EXPR:
492 case WIDEN_MULT_EXPR:
493 case WIDEN_MULT_PLUS_EXPR:
494 case WIDEN_MULT_MINUS_EXPR:
495 case DOT_PROD_EXPR:
496 case FMA_EXPR:
551 case TRUNC_DIV_EXPR: 497 case TRUNC_DIV_EXPR:
552 case CEIL_DIV_EXPR: 498 case CEIL_DIV_EXPR:
553 case FLOOR_DIV_EXPR: 499 case FLOOR_DIV_EXPR:
554 case ROUND_DIV_EXPR: 500 case ROUND_DIV_EXPR:
555 case EXACT_DIV_EXPR: 501 case EXACT_DIV_EXPR:
557 case FLOOR_MOD_EXPR: 503 case FLOOR_MOD_EXPR:
558 case ROUND_MOD_EXPR: 504 case ROUND_MOD_EXPR:
559 case TRUNC_MOD_EXPR: 505 case TRUNC_MOD_EXPR:
560 case RDIV_EXPR: 506 case RDIV_EXPR:
561 /* Division and multiplication are usually expensive. */ 507 /* Division and multiplication are usually expensive. */
562 cost += 20; 508 return LIM_EXPENSIVE;
563 break;
564 509
565 case LSHIFT_EXPR: 510 case LSHIFT_EXPR:
566 case RSHIFT_EXPR: 511 case RSHIFT_EXPR:
567 cost += 20; 512 case WIDEN_LSHIFT_EXPR:
568 break; 513 case LROTATE_EXPR:
514 case RROTATE_EXPR:
515 /* Shifts and rotates are usually expensive. */
516 return LIM_EXPENSIVE;
517
518 case CONSTRUCTOR:
519 /* Make vector construction cost proportional to the number
520 of elements. */
521 return CONSTRUCTOR_NELTS (gimple_assign_rhs1 (stmt));
522
523 case SSA_NAME:
524 case PAREN_EXPR:
525 /* Whether or not something is wrapped inside a PAREN_EXPR
526 should not change move cost. Nor should an intermediate
527 unpropagated SSA name copy. */
528 return 0;
569 529
570 default: 530 default:
571 break; 531 return 1;
572 } 532 }
573
574 return cost;
575 } 533 }
576 534
577 /* Finds the outermost loop between OUTER and LOOP in that the memory reference 535 /* Finds the outermost loop between OUTER and LOOP in that the memory reference
578 REF is independent. If REF is not independent in LOOP, NULL is returned 536 REF is independent. If REF is not independent in LOOP, NULL is returned
579 instead. */ 537 instead. */
580 538
581 static struct loop * 539 static struct loop *
582 outermost_indep_loop (struct loop *outer, struct loop *loop, mem_ref_p ref) 540 outermost_indep_loop (struct loop *outer, struct loop *loop, im_mem_ref *ref)
583 { 541 {
584 struct loop *aloop; 542 struct loop *aloop;
585 543
586 if (bitmap_bit_p (ref->stored, loop->num)) 544 if (ref->stored && bitmap_bit_p (ref->stored, loop->num))
587 return NULL; 545 return NULL;
588 546
589 for (aloop = outer; 547 for (aloop = outer;
590 aloop != loop; 548 aloop != loop;
591 aloop = superloop_at_depth (loop, loop_depth (aloop) + 1)) 549 aloop = superloop_at_depth (loop, loop_depth (aloop) + 1))
592 if (!bitmap_bit_p (ref->stored, aloop->num) 550 if ((!ref->stored || !bitmap_bit_p (ref->stored, aloop->num))
593 && ref_indep_loop_p (aloop, ref)) 551 && ref_indep_loop_p (aloop, ref, loop))
594 return aloop; 552 return aloop;
595 553
596 if (ref_indep_loop_p (loop, ref)) 554 if (ref_indep_loop_p (loop, ref, loop))
597 return loop; 555 return loop;
598 else 556 else
599 return NULL; 557 return NULL;
600 } 558 }
601 559
602 /* If there is a simple load or store to a memory reference in STMT, returns 560 /* If there is a simple load or store to a memory reference in STMT, returns
603 the location of the memory reference, and sets IS_STORE according to whether 561 the location of the memory reference, and sets IS_STORE according to whether
604 it is a store or load. Otherwise, returns NULL. */ 562 it is a store or load. Otherwise, returns NULL. */
605 563
606 static tree * 564 static tree *
607 simple_mem_ref_in_stmt (gimple stmt, bool *is_store) 565 simple_mem_ref_in_stmt (gimple *stmt, bool *is_store)
608 { 566 {
609 tree *lhs; 567 tree *lhs, *rhs;
610 enum tree_code code; 568
611 569 /* Recognize SSA_NAME = MEM and MEM = (SSA_NAME | invariant) patterns. */
612 /* Recognize MEM = (SSA_NAME | invariant) and SSA_NAME = MEM patterns. */ 570 if (!gimple_assign_single_p (stmt))
613 if (gimple_code (stmt) != GIMPLE_ASSIGN)
614 return NULL; 571 return NULL;
615 572
616 code = gimple_assign_rhs_code (stmt);
617
618 lhs = gimple_assign_lhs_ptr (stmt); 573 lhs = gimple_assign_lhs_ptr (stmt);
619 574 rhs = gimple_assign_rhs1_ptr (stmt);
620 if (TREE_CODE (*lhs) == SSA_NAME) 575
621 { 576 if (TREE_CODE (*lhs) == SSA_NAME && gimple_vuse (stmt))
622 if (get_gimple_rhs_class (code) != GIMPLE_SINGLE_RHS 577 {
623 || !is_gimple_addressable (gimple_assign_rhs1 (stmt)))
624 return NULL;
625
626 *is_store = false; 578 *is_store = false;
627 return gimple_assign_rhs1_ptr (stmt); 579 return rhs;
628 } 580 }
629 else if (code == SSA_NAME 581 else if (gimple_vdef (stmt)
630 || (get_gimple_rhs_class (code) == GIMPLE_SINGLE_RHS 582 && (TREE_CODE (*rhs) == SSA_NAME || is_gimple_min_invariant (*rhs)))
631 && is_gimple_min_invariant (gimple_assign_rhs1 (stmt))))
632 { 583 {
633 *is_store = true; 584 *is_store = true;
634 return lhs; 585 return lhs;
635 } 586 }
636 else 587 else
637 return NULL; 588 return NULL;
638 }
639
640 /* Returns the memory reference contained in STMT. */
641
642 static mem_ref_p
643 mem_ref_in_stmt (gimple stmt)
644 {
645 bool store;
646 tree *mem = simple_mem_ref_in_stmt (stmt, &store);
647 hashval_t hash;
648 mem_ref_p ref;
649
650 if (!mem)
651 return NULL;
652 gcc_assert (!store);
653
654 hash = iterative_hash_expr (*mem, 0);
655 ref = (mem_ref_p) htab_find_with_hash (memory_accesses.refs, *mem, hash);
656
657 gcc_assert (ref != NULL);
658 return ref;
659 } 589 }
660 590
661 /* From a controlling predicate in DOM determine the arguments from 591 /* From a controlling predicate in DOM determine the arguments from
662 the PHI node PHI that are chosen if the predicate evaluates to 592 the PHI node PHI that are chosen if the predicate evaluates to
663 true and false and store them to *TRUE_ARG_P and *FALSE_ARG_P if 593 true and false and store them to *TRUE_ARG_P and *FALSE_ARG_P if
664 they are non-NULL. Returns true if the arguments can be determined, 594 they are non-NULL. Returns true if the arguments can be determined,
665 else return false. */ 595 else return false. */
666 596
667 static bool 597 static bool
668 extract_true_false_args_from_phi (basic_block dom, gimple phi, 598 extract_true_false_args_from_phi (basic_block dom, gphi *phi,
669 tree *true_arg_p, tree *false_arg_p) 599 tree *true_arg_p, tree *false_arg_p)
670 { 600 {
671 basic_block bb = gimple_bb (phi); 601 edge te, fe;
672 edge true_edge, false_edge, tem; 602 if (! extract_true_false_controlled_edges (dom, gimple_bb (phi),
673 tree arg0 = NULL_TREE, arg1 = NULL_TREE; 603 &te, &fe))
674
675 /* We have to verify that one edge into the PHI node is dominated
676 by the true edge of the predicate block and the other edge
677 dominated by the false edge. This ensures that the PHI argument
678 we are going to take is completely determined by the path we
679 take from the predicate block.
680 We can only use BB dominance checks below if the destination of
681 the true/false edges are dominated by their edge, thus only
682 have a single predecessor. */
683 extract_true_false_edges_from_block (dom, &true_edge, &false_edge);
684 tem = EDGE_PRED (bb, 0);
685 if (tem == true_edge
686 || (single_pred_p (true_edge->dest)
687 && (tem->src == true_edge->dest
688 || dominated_by_p (CDI_DOMINATORS,
689 tem->src, true_edge->dest))))
690 arg0 = PHI_ARG_DEF (phi, tem->dest_idx);
691 else if (tem == false_edge
692 || (single_pred_p (false_edge->dest)
693 && (tem->src == false_edge->dest
694 || dominated_by_p (CDI_DOMINATORS,
695 tem->src, false_edge->dest))))
696 arg1 = PHI_ARG_DEF (phi, tem->dest_idx);
697 else
698 return false; 604 return false;
699 tem = EDGE_PRED (bb, 1);
700 if (tem == true_edge
701 || (single_pred_p (true_edge->dest)
702 && (tem->src == true_edge->dest
703 || dominated_by_p (CDI_DOMINATORS,
704 tem->src, true_edge->dest))))
705 arg0 = PHI_ARG_DEF (phi, tem->dest_idx);
706 else if (tem == false_edge
707 || (single_pred_p (false_edge->dest)
708 && (tem->src == false_edge->dest
709 || dominated_by_p (CDI_DOMINATORS,
710 tem->src, false_edge->dest))))
711 arg1 = PHI_ARG_DEF (phi, tem->dest_idx);
712 else
713 return false;
714 if (!arg0 || !arg1)
715 return false;
716 605
717 if (true_arg_p) 606 if (true_arg_p)
718 *true_arg_p = arg0; 607 *true_arg_p = PHI_ARG_DEF (phi, te->dest_idx);
719 if (false_arg_p) 608 if (false_arg_p)
720 *false_arg_p = arg1; 609 *false_arg_p = PHI_ARG_DEF (phi, fe->dest_idx);
721 610
722 return true; 611 return true;
723 } 612 }
724 613
725 /* Determine the outermost loop to that it is possible to hoist a statement 614 /* Determine the outermost loop to that it is possible to hoist a statement
731 620
732 The function returns false if STMT cannot be hoisted outside of the loop it 621 The function returns false if STMT cannot be hoisted outside of the loop it
733 is defined in, and true otherwise. */ 622 is defined in, and true otherwise. */
734 623
735 static bool 624 static bool
736 determine_max_movement (gimple stmt, bool must_preserve_exec) 625 determine_max_movement (gimple *stmt, bool must_preserve_exec)
737 { 626 {
738 basic_block bb = gimple_bb (stmt); 627 basic_block bb = gimple_bb (stmt);
739 struct loop *loop = bb->loop_father; 628 struct loop *loop = bb->loop_father;
740 struct loop *level; 629 struct loop *level;
741 struct lim_aux_data *lim_data = get_lim_data (stmt); 630 struct lim_aux_data *lim_data = get_lim_data (stmt);
746 level = ALWAYS_EXECUTED_IN (bb); 635 level = ALWAYS_EXECUTED_IN (bb);
747 else 636 else
748 level = superloop_at_depth (loop, 1); 637 level = superloop_at_depth (loop, 1);
749 lim_data->max_loop = level; 638 lim_data->max_loop = level;
750 639
751 if (gimple_code (stmt) == GIMPLE_PHI) 640 if (gphi *phi = dyn_cast <gphi *> (stmt))
752 { 641 {
753 use_operand_p use_p; 642 use_operand_p use_p;
754 unsigned min_cost = UINT_MAX; 643 unsigned min_cost = UINT_MAX;
755 unsigned total_cost = 0; 644 unsigned total_cost = 0;
756 struct lim_aux_data *def_data; 645 struct lim_aux_data *def_data;
757 646
758 /* We will end up promoting dependencies to be unconditionally 647 /* We will end up promoting dependencies to be unconditionally
759 evaluated. For this reason the PHI cost (and thus the 648 evaluated. For this reason the PHI cost (and thus the
760 cost we remove from the loop by doing the invariant motion) 649 cost we remove from the loop by doing the invariant motion)
761 is that of the cheapest PHI argument dependency chain. */ 650 is that of the cheapest PHI argument dependency chain. */
762 FOR_EACH_PHI_ARG (use_p, stmt, iter, SSA_OP_USE) 651 FOR_EACH_PHI_ARG (use_p, phi, iter, SSA_OP_USE)
763 { 652 {
764 val = USE_FROM_PTR (use_p); 653 val = USE_FROM_PTR (use_p);
654
765 if (TREE_CODE (val) != SSA_NAME) 655 if (TREE_CODE (val) != SSA_NAME)
766 continue; 656 {
657 /* Assign const 1 to constants. */
658 min_cost = MIN (min_cost, 1);
659 total_cost += 1;
660 continue;
661 }
767 if (!add_dependency (val, lim_data, loop, false)) 662 if (!add_dependency (val, lim_data, loop, false))
768 return false; 663 return false;
769 def_data = get_lim_data (SSA_NAME_DEF_STMT (val)); 664
770 if (def_data) 665 gimple *def_stmt = SSA_NAME_DEF_STMT (val);
666 if (gimple_bb (def_stmt)
667 && gimple_bb (def_stmt)->loop_father == loop)
771 { 668 {
772 min_cost = MIN (min_cost, def_data->cost); 669 def_data = get_lim_data (def_stmt);
773 total_cost += def_data->cost; 670 if (def_data)
671 {
672 min_cost = MIN (min_cost, def_data->cost);
673 total_cost += def_data->cost;
674 }
774 } 675 }
775 } 676 }
776 677
678 min_cost = MIN (min_cost, total_cost);
777 lim_data->cost += min_cost; 679 lim_data->cost += min_cost;
778 680
779 if (gimple_phi_num_args (stmt) > 1) 681 if (gimple_phi_num_args (phi) > 1)
780 { 682 {
781 basic_block dom = get_immediate_dominator (CDI_DOMINATORS, bb); 683 basic_block dom = get_immediate_dominator (CDI_DOMINATORS, bb);
782 gimple cond; 684 gimple *cond;
783 if (gsi_end_p (gsi_last_bb (dom))) 685 if (gsi_end_p (gsi_last_bb (dom)))
784 return false; 686 return false;
785 cond = gsi_stmt (gsi_last_bb (dom)); 687 cond = gsi_stmt (gsi_last_bb (dom));
786 if (gimple_code (cond) != GIMPLE_COND) 688 if (gimple_code (cond) != GIMPLE_COND)
787 return false; 689 return false;
788 /* Verify that this is an extended form of a diamond and 690 /* Verify that this is an extended form of a diamond and
789 the PHI arguments are completely controlled by the 691 the PHI arguments are completely controlled by the
790 predicate in DOM. */ 692 predicate in DOM. */
791 if (!extract_true_false_args_from_phi (dom, stmt, NULL, NULL)) 693 if (!extract_true_false_args_from_phi (dom, phi, NULL, NULL))
792 return false; 694 return false;
793 695
794 /* Fold in dependencies and cost of the condition. */ 696 /* Fold in dependencies and cost of the condition. */
795 FOR_EACH_SSA_TREE_OPERAND (val, cond, iter, SSA_OP_USE) 697 FOR_EACH_SSA_TREE_OPERAND (val, cond, iter, SSA_OP_USE)
796 { 698 {
797 if (!add_dependency (val, lim_data, loop, false)) 699 if (!add_dependency (val, lim_data, loop, false))
798 return false; 700 return false;
799 def_data = get_lim_data (SSA_NAME_DEF_STMT (val)); 701 def_data = get_lim_data (SSA_NAME_DEF_STMT (val));
800 if (def_data) 702 if (def_data)
801 total_cost += def_data->cost; 703 lim_data->cost += def_data->cost;
802 } 704 }
803 705
804 /* We want to avoid unconditionally executing very expensive 706 /* We want to avoid unconditionally executing very expensive
805 operations. As costs for our dependencies cannot be 707 operations. As costs for our dependencies cannot be
806 negative just claim we are not invariand for this case. 708 negative just claim we are not invariand for this case.
824 if (!add_dependency (val, lim_data, loop, true)) 726 if (!add_dependency (val, lim_data, loop, true))
825 return false; 727 return false;
826 728
827 if (gimple_vuse (stmt)) 729 if (gimple_vuse (stmt))
828 { 730 {
829 mem_ref_p ref = mem_ref_in_stmt (stmt); 731 im_mem_ref *ref
830 732 = lim_data ? memory_accesses.refs_list[lim_data->ref] : NULL;
831 if (ref) 733 if (ref
832 { 734 && MEM_ANALYZABLE (ref))
833 lim_data->max_loop 735 {
834 = outermost_indep_loop (lim_data->max_loop, loop, ref); 736 lim_data->max_loop = outermost_indep_loop (lim_data->max_loop,
737 loop, ref);
835 if (!lim_data->max_loop) 738 if (!lim_data->max_loop)
836 return false; 739 return false;
837 } 740 }
838 else 741 else if (! add_dependency (gimple_vuse (stmt), lim_data, loop, false))
839 { 742 return false;
840 if ((val = gimple_vuse (stmt)) != NULL_TREE)
841 {
842 if (!add_dependency (val, lim_data, loop, false))
843 return false;
844 }
845 }
846 } 743 }
847 744
848 lim_data->cost += stmt_cost (stmt); 745 lim_data->cost += stmt_cost (stmt);
849 746
850 return true; 747 return true;
854 and that one of the operands of this statement is computed by STMT. 751 and that one of the operands of this statement is computed by STMT.
855 Ensure that STMT (together with all the statements that define its 752 Ensure that STMT (together with all the statements that define its
856 operands) is hoisted at least out of the loop LEVEL. */ 753 operands) is hoisted at least out of the loop LEVEL. */
857 754
858 static void 755 static void
859 set_level (gimple stmt, struct loop *orig_loop, struct loop *level) 756 set_level (gimple *stmt, struct loop *orig_loop, struct loop *level)
860 { 757 {
861 struct loop *stmt_loop = gimple_bb (stmt)->loop_father; 758 struct loop *stmt_loop = gimple_bb (stmt)->loop_father;
862 struct depend *dep;
863 struct lim_aux_data *lim_data; 759 struct lim_aux_data *lim_data;
760 gimple *dep_stmt;
761 unsigned i;
864 762
865 stmt_loop = find_common_loop (orig_loop, stmt_loop); 763 stmt_loop = find_common_loop (orig_loop, stmt_loop);
866 lim_data = get_lim_data (stmt); 764 lim_data = get_lim_data (stmt);
867 if (lim_data != NULL && lim_data->tgt_loop != NULL) 765 if (lim_data != NULL && lim_data->tgt_loop != NULL)
868 stmt_loop = find_common_loop (stmt_loop, 766 stmt_loop = find_common_loop (stmt_loop,
872 770
873 gcc_assert (level == lim_data->max_loop 771 gcc_assert (level == lim_data->max_loop
874 || flow_loop_nested_p (lim_data->max_loop, level)); 772 || flow_loop_nested_p (lim_data->max_loop, level));
875 773
876 lim_data->tgt_loop = level; 774 lim_data->tgt_loop = level;
877 for (dep = lim_data->depends; dep; dep = dep->next) 775 FOR_EACH_VEC_ELT (lim_data->depends, i, dep_stmt)
878 set_level (dep->stmt, orig_loop, level); 776 set_level (dep_stmt, orig_loop, level);
879 } 777 }
880 778
881 /* Determines an outermost loop from that we want to hoist the statement STMT. 779 /* Determines an outermost loop from that we want to hoist the statement STMT.
882 For now we chose the outermost possible loop. TODO -- use profiling 780 For now we chose the outermost possible loop. TODO -- use profiling
883 information to set it more sanely. */ 781 information to set it more sanely. */
884 782
885 static void 783 static void
886 set_profitable_level (gimple stmt) 784 set_profitable_level (gimple *stmt)
887 { 785 {
888 set_level (stmt, gimple_bb (stmt)->loop_father, get_lim_data (stmt)->max_loop); 786 set_level (stmt, gimple_bb (stmt)->loop_father, get_lim_data (stmt)->max_loop);
889 } 787 }
890 788
891 /* Returns true if STMT is a call that has side effects. */ 789 /* Returns true if STMT is a call that has side effects. */
892 790
893 static bool 791 static bool
894 nonpure_call_p (gimple stmt) 792 nonpure_call_p (gimple *stmt)
895 { 793 {
896 if (gimple_code (stmt) != GIMPLE_CALL) 794 if (gimple_code (stmt) != GIMPLE_CALL)
897 return false; 795 return false;
898 796
899 return gimple_has_side_effects (stmt); 797 return gimple_has_side_effects (stmt);
900 } 798 }
901 799
902 /* Rewrite a/b to a*(1/b). Return the invariant stmt to process. */ 800 /* Rewrite a/b to a*(1/b). Return the invariant stmt to process. */
903 801
904 static gimple 802 static gimple *
905 rewrite_reciprocal (gimple_stmt_iterator *bsi) 803 rewrite_reciprocal (gimple_stmt_iterator *bsi)
906 { 804 {
907 gimple stmt, stmt1, stmt2; 805 gassign *stmt, *stmt1, *stmt2;
908 tree var, name, lhs, type; 806 tree name, lhs, type;
909 tree real_one; 807 tree real_one;
910 gimple_stmt_iterator gsi; 808 gimple_stmt_iterator gsi;
911 809
912 stmt = gsi_stmt (*bsi); 810 stmt = as_a <gassign *> (gsi_stmt (*bsi));
913 lhs = gimple_assign_lhs (stmt); 811 lhs = gimple_assign_lhs (stmt);
914 type = TREE_TYPE (lhs); 812 type = TREE_TYPE (lhs);
915 813
916 var = create_tmp_var (type, "reciptmp");
917 add_referenced_var (var);
918 DECL_GIMPLE_REG_P (var) = 1;
919
920 real_one = build_one_cst (type); 814 real_one = build_one_cst (type);
921 815
922 stmt1 = gimple_build_assign_with_ops (RDIV_EXPR, 816 name = make_temp_ssa_name (type, NULL, "reciptmp");
923 var, real_one, gimple_assign_rhs2 (stmt)); 817 stmt1 = gimple_build_assign (name, RDIV_EXPR, real_one,
924 name = make_ssa_name (var, stmt1); 818 gimple_assign_rhs2 (stmt));
925 gimple_assign_set_lhs (stmt1, name); 819 stmt2 = gimple_build_assign (lhs, MULT_EXPR, name,
926 820 gimple_assign_rhs1 (stmt));
927 stmt2 = gimple_build_assign_with_ops (MULT_EXPR, lhs, name,
928 gimple_assign_rhs1 (stmt));
929 821
930 /* Replace division stmt with reciprocal and multiply stmts. 822 /* Replace division stmt with reciprocal and multiply stmts.
931 The multiply stmt is not invariant, so update iterator 823 The multiply stmt is not invariant, so update iterator
932 and avoid rescanning. */ 824 and avoid rescanning. */
933 gsi = *bsi; 825 gsi = *bsi;
939 } 831 }
940 832
941 /* Check if the pattern at *BSI is a bittest of the form 833 /* Check if the pattern at *BSI is a bittest of the form
942 (A >> B) & 1 != 0 and in this case rewrite it to A & (1 << B) != 0. */ 834 (A >> B) & 1 != 0 and in this case rewrite it to A & (1 << B) != 0. */
943 835
944 static gimple 836 static gimple *
945 rewrite_bittest (gimple_stmt_iterator *bsi) 837 rewrite_bittest (gimple_stmt_iterator *bsi)
946 { 838 {
947 gimple stmt, use_stmt, stmt1, stmt2; 839 gassign *stmt;
948 tree lhs, var, name, t, a, b; 840 gimple *stmt1;
841 gassign *stmt2;
842 gimple *use_stmt;
843 gcond *cond_stmt;
844 tree lhs, name, t, a, b;
949 use_operand_p use; 845 use_operand_p use;
950 846
951 stmt = gsi_stmt (*bsi); 847 stmt = as_a <gassign *> (gsi_stmt (*bsi));
952 lhs = gimple_assign_lhs (stmt); 848 lhs = gimple_assign_lhs (stmt);
953 849
954 /* Verify that the single use of lhs is a comparison against zero. */ 850 /* Verify that the single use of lhs is a comparison against zero. */
955 if (TREE_CODE (lhs) != SSA_NAME 851 if (TREE_CODE (lhs) != SSA_NAME
956 || !single_imm_use (lhs, &use, &use_stmt) 852 || !single_imm_use (lhs, &use, &use_stmt))
957 || gimple_code (use_stmt) != GIMPLE_COND)
958 return stmt; 853 return stmt;
959 if (gimple_cond_lhs (use_stmt) != lhs 854 cond_stmt = dyn_cast <gcond *> (use_stmt);
960 || (gimple_cond_code (use_stmt) != NE_EXPR 855 if (!cond_stmt)
961 && gimple_cond_code (use_stmt) != EQ_EXPR) 856 return stmt;
962 || !integer_zerop (gimple_cond_rhs (use_stmt))) 857 if (gimple_cond_lhs (cond_stmt) != lhs
858 || (gimple_cond_code (cond_stmt) != NE_EXPR
859 && gimple_cond_code (cond_stmt) != EQ_EXPR)
860 || !integer_zerop (gimple_cond_rhs (cond_stmt)))
963 return stmt; 861 return stmt;
964 862
965 /* Get at the operands of the shift. The rhs is TMP1 & 1. */ 863 /* Get at the operands of the shift. The rhs is TMP1 & 1. */
966 stmt1 = SSA_NAME_DEF_STMT (gimple_assign_rhs1 (stmt)); 864 stmt1 = SSA_NAME_DEF_STMT (gimple_assign_rhs1 (stmt));
967 if (gimple_code (stmt1) != GIMPLE_ASSIGN) 865 if (gimple_code (stmt1) != GIMPLE_ASSIGN)
992 && outermost_invariant_loop (a, loop_containing_stmt (stmt1)) == NULL) 890 && outermost_invariant_loop (a, loop_containing_stmt (stmt1)) == NULL)
993 { 891 {
994 gimple_stmt_iterator rsi; 892 gimple_stmt_iterator rsi;
995 893
996 /* 1 << B */ 894 /* 1 << B */
997 var = create_tmp_var (TREE_TYPE (a), "shifttmp");
998 add_referenced_var (var);
999 t = fold_build2 (LSHIFT_EXPR, TREE_TYPE (a), 895 t = fold_build2 (LSHIFT_EXPR, TREE_TYPE (a),
1000 build_int_cst (TREE_TYPE (a), 1), b); 896 build_int_cst (TREE_TYPE (a), 1), b);
1001 stmt1 = gimple_build_assign (var, t); 897 name = make_temp_ssa_name (TREE_TYPE (a), NULL, "shifttmp");
1002 name = make_ssa_name (var, stmt1); 898 stmt1 = gimple_build_assign (name, t);
1003 gimple_assign_set_lhs (stmt1, name);
1004 899
1005 /* A & (1 << B) */ 900 /* A & (1 << B) */
1006 t = fold_build2 (BIT_AND_EXPR, TREE_TYPE (a), a, name); 901 t = fold_build2 (BIT_AND_EXPR, TREE_TYPE (a), a, name);
1007 stmt2 = gimple_build_assign (var, t); 902 name = make_temp_ssa_name (TREE_TYPE (a), NULL, "shifttmp");
1008 name = make_ssa_name (var, stmt2); 903 stmt2 = gimple_build_assign (name, t);
1009 gimple_assign_set_lhs (stmt2, name);
1010 904
1011 /* Replace the SSA_NAME we compare against zero. Adjust 905 /* Replace the SSA_NAME we compare against zero. Adjust
1012 the type of zero accordingly. */ 906 the type of zero accordingly. */
1013 SET_USE (use, name); 907 SET_USE (use, name);
1014 gimple_cond_set_rhs (use_stmt, build_int_cst_type (TREE_TYPE (name), 0)); 908 gimple_cond_set_rhs (cond_stmt,
909 build_int_cst_type (TREE_TYPE (name),
910 0));
1015 911
1016 /* Don't use gsi_replace here, none of the new assignments sets 912 /* Don't use gsi_replace here, none of the new assignments sets
1017 the variable originally set in stmt. Move bsi to stmt1, and 913 the variable originally set in stmt. Move bsi to stmt1, and
1018 then remove the original stmt, so that we get a chance to 914 then remove the original stmt, so that we get a chance to
1019 retain debug info for it. */ 915 retain debug info for it. */
1020 rsi = *bsi; 916 rsi = *bsi;
1021 gsi_insert_before (bsi, stmt1, GSI_NEW_STMT); 917 gsi_insert_before (bsi, stmt1, GSI_NEW_STMT);
1022 gsi_insert_before (&rsi, stmt2, GSI_SAME_STMT); 918 gsi_insert_before (&rsi, stmt2, GSI_SAME_STMT);
919 gimple *to_release = gsi_stmt (rsi);
1023 gsi_remove (&rsi, true); 920 gsi_remove (&rsi, true);
921 release_defs (to_release);
1024 922
1025 return stmt1; 923 return stmt1;
1026 } 924 }
1027 925
1028 return stmt; 926 return stmt;
1029 } 927 }
1030 928
929 /* For each statement determines the outermost loop in that it is invariant,
930 - statements on whose motion it depends and the cost of the computation.
931 - This information is stored to the LIM_DATA structure associated with
932 - each statement. */
933 class invariantness_dom_walker : public dom_walker
934 {
935 public:
936 invariantness_dom_walker (cdi_direction direction)
937 : dom_walker (direction) {}
938
939 virtual edge before_dom_children (basic_block);
940 };
1031 941
1032 /* Determine the outermost loops in that statements in basic block BB are 942 /* Determine the outermost loops in that statements in basic block BB are
1033 invariant, and record them to the LIM_DATA associated with the statements. 943 invariant, and record them to the LIM_DATA associated with the statements.
1034 Callback for walk_dominator_tree. */ 944 Callback for dom_walker. */
1035 945
1036 static void 946 edge
1037 determine_invariantness_stmt (struct dom_walk_data *dw_data ATTRIBUTE_UNUSED, 947 invariantness_dom_walker::before_dom_children (basic_block bb)
1038 basic_block bb)
1039 { 948 {
1040 enum move_pos pos; 949 enum move_pos pos;
1041 gimple_stmt_iterator bsi; 950 gimple_stmt_iterator bsi;
1042 gimple stmt; 951 gimple *stmt;
1043 bool maybe_never = ALWAYS_EXECUTED_IN (bb) == NULL; 952 bool maybe_never = ALWAYS_EXECUTED_IN (bb) == NULL;
1044 struct loop *outermost = ALWAYS_EXECUTED_IN (bb); 953 struct loop *outermost = ALWAYS_EXECUTED_IN (bb);
1045 struct lim_aux_data *lim_data; 954 struct lim_aux_data *lim_data;
1046 955
1047 if (!loop_outer (bb->loop_father)) 956 if (!loop_outer (bb->loop_father))
1048 return; 957 return NULL;
1049 958
1050 if (dump_file && (dump_flags & TDF_DETAILS)) 959 if (dump_file && (dump_flags & TDF_DETAILS))
1051 fprintf (dump_file, "Basic block %d (loop %d -- depth %d):\n\n", 960 fprintf (dump_file, "Basic block %d (loop %d -- depth %d):\n\n",
1052 bb->index, bb->loop_father->num, loop_depth (bb->loop_father)); 961 bb->index, bb->loop_father->num, loop_depth (bb->loop_father));
1053 962
1065 974
1066 pos = movement_possibility (stmt); 975 pos = movement_possibility (stmt);
1067 if (pos == MOVE_IMPOSSIBLE) 976 if (pos == MOVE_IMPOSSIBLE)
1068 continue; 977 continue;
1069 978
1070 lim_data = init_lim_data (stmt); 979 lim_data = get_lim_data (stmt);
980 if (! lim_data)
981 lim_data = init_lim_data (stmt);
1071 lim_data->always_executed_in = outermost; 982 lim_data->always_executed_in = outermost;
1072 983
1073 if (!determine_max_movement (stmt, false)) 984 if (!determine_max_movement (stmt, false))
1074 { 985 {
1075 lim_data->max_loop = NULL; 986 lim_data->max_loop = NULL;
1076 continue; 987 continue;
1077 } 988 }
1078 989
1079 if (dump_file && (dump_flags & TDF_DETAILS)) 990 if (dump_file && (dump_flags & TDF_DETAILS))
1080 { 991 {
1081 print_gimple_stmt (dump_file, stmt, 2, 0); 992 print_gimple_stmt (dump_file, stmt, 2);
1082 fprintf (dump_file, " invariant up to level %d, cost %d.\n\n", 993 fprintf (dump_file, " invariant up to level %d, cost %d.\n\n",
1083 loop_depth (lim_data->max_loop), 994 loop_depth (lim_data->max_loop),
1084 lim_data->cost); 995 lim_data->cost);
1085 } 996 }
1086 997
1102 } 1013 }
1103 /* Make sure to note always_executed_in for stores to make 1014 /* Make sure to note always_executed_in for stores to make
1104 store-motion work. */ 1015 store-motion work. */
1105 else if (stmt_makes_single_store (stmt)) 1016 else if (stmt_makes_single_store (stmt))
1106 { 1017 {
1107 struct lim_aux_data *lim_data = init_lim_data (stmt); 1018 struct lim_aux_data *lim_data = get_lim_data (stmt);
1019 if (! lim_data)
1020 lim_data = init_lim_data (stmt);
1108 lim_data->always_executed_in = outermost; 1021 lim_data->always_executed_in = outermost;
1109 } 1022 }
1110 continue; 1023 continue;
1111 } 1024 }
1112 1025
1138 && TREE_CODE (op0) == SSA_NAME 1051 && TREE_CODE (op0) == SSA_NAME
1139 && has_single_use (op0)) 1052 && has_single_use (op0))
1140 stmt = rewrite_bittest (&bsi); 1053 stmt = rewrite_bittest (&bsi);
1141 } 1054 }
1142 1055
1143 lim_data = init_lim_data (stmt); 1056 lim_data = get_lim_data (stmt);
1057 if (! lim_data)
1058 lim_data = init_lim_data (stmt);
1144 lim_data->always_executed_in = outermost; 1059 lim_data->always_executed_in = outermost;
1145 1060
1146 if (maybe_never && pos == MOVE_PRESERVE_EXECUTION) 1061 if (maybe_never && pos == MOVE_PRESERVE_EXECUTION)
1147 continue; 1062 continue;
1148 1063
1152 continue; 1067 continue;
1153 } 1068 }
1154 1069
1155 if (dump_file && (dump_flags & TDF_DETAILS)) 1070 if (dump_file && (dump_flags & TDF_DETAILS))
1156 { 1071 {
1157 print_gimple_stmt (dump_file, stmt, 2, 0); 1072 print_gimple_stmt (dump_file, stmt, 2);
1158 fprintf (dump_file, " invariant up to level %d, cost %d.\n\n", 1073 fprintf (dump_file, " invariant up to level %d, cost %d.\n\n",
1159 loop_depth (lim_data->max_loop), 1074 loop_depth (lim_data->max_loop),
1160 lim_data->cost); 1075 lim_data->cost);
1161 } 1076 }
1162 1077
1163 if (lim_data->cost >= LIM_EXPENSIVE) 1078 if (lim_data->cost >= LIM_EXPENSIVE)
1164 set_profitable_level (stmt); 1079 set_profitable_level (stmt);
1165 } 1080 }
1166 } 1081 return NULL;
1167 1082 }
1168 /* For each statement determines the outermost loop in that it is invariant, 1083
1169 statements on whose motion it depends and the cost of the computation. 1084 class move_computations_dom_walker : public dom_walker
1170 This information is stored to the LIM_DATA structure associated with 1085 {
1171 each statement. */ 1086 public:
1172 1087 move_computations_dom_walker (cdi_direction direction)
1173 static void 1088 : dom_walker (direction), todo_ (0) {}
1174 determine_invariantness (void) 1089
1175 { 1090 virtual edge before_dom_children (basic_block);
1176 struct dom_walk_data walk_data; 1091
1177 1092 unsigned int todo_;
1178 memset (&walk_data, 0, sizeof (struct dom_walk_data)); 1093 };
1179 walk_data.dom_direction = CDI_DOMINATORS;
1180 walk_data.before_dom_children = determine_invariantness_stmt;
1181
1182 init_walk_dominator_tree (&walk_data);
1183 walk_dominator_tree (&walk_data, ENTRY_BLOCK_PTR);
1184 fini_walk_dominator_tree (&walk_data);
1185 }
1186 1094
1187 /* Hoist the statements in basic block BB out of the loops prescribed by 1095 /* Hoist the statements in basic block BB out of the loops prescribed by
1188 data stored in LIM_DATA structures associated with each statement. Callback 1096 data stored in LIM_DATA structures associated with each statement. Callback
1189 for walk_dominator_tree. */ 1097 for walk_dominator_tree. */
1190 1098
1191 static void 1099 unsigned int
1192 move_computations_stmt (struct dom_walk_data *dw_data, 1100 move_computations_worker (basic_block bb)
1193 basic_block bb)
1194 { 1101 {
1195 struct loop *level; 1102 struct loop *level;
1196 gimple_stmt_iterator bsi;
1197 gimple stmt;
1198 unsigned cost = 0; 1103 unsigned cost = 0;
1199 struct lim_aux_data *lim_data; 1104 struct lim_aux_data *lim_data;
1105 unsigned int todo = 0;
1200 1106
1201 if (!loop_outer (bb->loop_father)) 1107 if (!loop_outer (bb->loop_father))
1202 return; 1108 return todo;
1203 1109
1204 for (bsi = gsi_start_phis (bb); !gsi_end_p (bsi); ) 1110 for (gphi_iterator bsi = gsi_start_phis (bb); !gsi_end_p (bsi); )
1205 { 1111 {
1206 gimple new_stmt; 1112 gassign *new_stmt;
1207 stmt = gsi_stmt (bsi); 1113 gphi *stmt = bsi.phi ();
1208 1114
1209 lim_data = get_lim_data (stmt); 1115 lim_data = get_lim_data (stmt);
1210 if (lim_data == NULL) 1116 if (lim_data == NULL)
1211 { 1117 {
1212 gsi_next (&bsi); 1118 gsi_next (&bsi);
1224 } 1130 }
1225 1131
1226 if (dump_file && (dump_flags & TDF_DETAILS)) 1132 if (dump_file && (dump_flags & TDF_DETAILS))
1227 { 1133 {
1228 fprintf (dump_file, "Moving PHI node\n"); 1134 fprintf (dump_file, "Moving PHI node\n");
1229 print_gimple_stmt (dump_file, stmt, 0, 0); 1135 print_gimple_stmt (dump_file, stmt, 0);
1230 fprintf (dump_file, "(cost %u) out of loop %d.\n\n", 1136 fprintf (dump_file, "(cost %u) out of loop %d.\n\n",
1231 cost, level->num); 1137 cost, level->num);
1232 } 1138 }
1233 1139
1234 if (gimple_phi_num_args (stmt) == 1) 1140 if (gimple_phi_num_args (stmt) == 1)
1235 { 1141 {
1236 tree arg = PHI_ARG_DEF (stmt, 0); 1142 tree arg = PHI_ARG_DEF (stmt, 0);
1237 new_stmt = gimple_build_assign_with_ops (TREE_CODE (arg), 1143 new_stmt = gimple_build_assign (gimple_phi_result (stmt),
1238 gimple_phi_result (stmt), 1144 TREE_CODE (arg), arg);
1239 arg, NULL_TREE);
1240 SSA_NAME_DEF_STMT (gimple_phi_result (stmt)) = new_stmt;
1241 } 1145 }
1242 else 1146 else
1243 { 1147 {
1244 basic_block dom = get_immediate_dominator (CDI_DOMINATORS, bb); 1148 basic_block dom = get_immediate_dominator (CDI_DOMINATORS, bb);
1245 gimple cond = gsi_stmt (gsi_last_bb (dom)); 1149 gimple *cond = gsi_stmt (gsi_last_bb (dom));
1246 tree arg0 = NULL_TREE, arg1 = NULL_TREE, t; 1150 tree arg0 = NULL_TREE, arg1 = NULL_TREE, t;
1247 /* Get the PHI arguments corresponding to the true and false 1151 /* Get the PHI arguments corresponding to the true and false
1248 edges of COND. */ 1152 edges of COND. */
1249 extract_true_false_args_from_phi (dom, stmt, &arg0, &arg1); 1153 extract_true_false_args_from_phi (dom, stmt, &arg0, &arg1);
1250 gcc_assert (arg0 && arg1); 1154 gcc_assert (arg0 && arg1);
1251 t = build2 (gimple_cond_code (cond), boolean_type_node, 1155 t = build2 (gimple_cond_code (cond), boolean_type_node,
1252 gimple_cond_lhs (cond), gimple_cond_rhs (cond)); 1156 gimple_cond_lhs (cond), gimple_cond_rhs (cond));
1253 t = build3 (COND_EXPR, TREE_TYPE (gimple_phi_result (stmt)), 1157 new_stmt = gimple_build_assign (gimple_phi_result (stmt),
1254 t, arg0, arg1); 1158 COND_EXPR, t, arg0, arg1);
1255 new_stmt = gimple_build_assign_with_ops (COND_EXPR, 1159 todo |= TODO_cleanup_cfg;
1256 gimple_phi_result (stmt), 1160 }
1257 t, NULL_TREE); 1161 if (INTEGRAL_TYPE_P (TREE_TYPE (gimple_assign_lhs (new_stmt)))
1258 SSA_NAME_DEF_STMT (gimple_phi_result (stmt)) = new_stmt; 1162 && (!ALWAYS_EXECUTED_IN (bb)
1259 *((unsigned int *)(dw_data->global_data)) |= TODO_cleanup_cfg; 1163 || (ALWAYS_EXECUTED_IN (bb) != level
1164 && !flow_loop_nested_p (ALWAYS_EXECUTED_IN (bb), level))))
1165 {
1166 tree lhs = gimple_assign_lhs (new_stmt);
1167 SSA_NAME_RANGE_INFO (lhs) = NULL;
1260 } 1168 }
1261 gsi_insert_on_edge (loop_preheader_edge (level), new_stmt); 1169 gsi_insert_on_edge (loop_preheader_edge (level), new_stmt);
1262 remove_phi_node (&bsi, false); 1170 remove_phi_node (&bsi, false);
1263 } 1171 }
1264 1172
1265 for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); ) 1173 for (gimple_stmt_iterator bsi = gsi_start_bb (bb); !gsi_end_p (bsi); )
1266 { 1174 {
1267 stmt = gsi_stmt (bsi); 1175 edge e;
1176
1177 gimple *stmt = gsi_stmt (bsi);
1268 1178
1269 lim_data = get_lim_data (stmt); 1179 lim_data = get_lim_data (stmt);
1270 if (lim_data == NULL) 1180 if (lim_data == NULL)
1271 { 1181 {
1272 gsi_next (&bsi); 1182 gsi_next (&bsi);
1289 continue; 1199 continue;
1290 1200
1291 if (dump_file && (dump_flags & TDF_DETAILS)) 1201 if (dump_file && (dump_flags & TDF_DETAILS))
1292 { 1202 {
1293 fprintf (dump_file, "Moving statement\n"); 1203 fprintf (dump_file, "Moving statement\n");
1294 print_gimple_stmt (dump_file, stmt, 0, 0); 1204 print_gimple_stmt (dump_file, stmt, 0);
1295 fprintf (dump_file, "(cost %u) out of loop %d.\n\n", 1205 fprintf (dump_file, "(cost %u) out of loop %d.\n\n",
1296 cost, level->num); 1206 cost, level->num);
1297 } 1207 }
1298 1208
1299 mark_virtual_ops_for_renaming (stmt); 1209 e = loop_preheader_edge (level);
1300 gsi_insert_on_edge (loop_preheader_edge (level), stmt); 1210 gcc_assert (!gimple_vdef (stmt));
1211 if (gimple_vuse (stmt))
1212 {
1213 /* The new VUSE is the one from the virtual PHI in the loop
1214 header or the one already present. */
1215 gphi_iterator gsi2;
1216 for (gsi2 = gsi_start_phis (e->dest);
1217 !gsi_end_p (gsi2); gsi_next (&gsi2))
1218 {
1219 gphi *phi = gsi2.phi ();
1220 if (virtual_operand_p (gimple_phi_result (phi)))
1221 {
1222 gimple_set_vuse (stmt, PHI_ARG_DEF_FROM_EDGE (phi, e));
1223 break;
1224 }
1225 }
1226 }
1301 gsi_remove (&bsi, false); 1227 gsi_remove (&bsi, false);
1302 } 1228 if (gimple_has_lhs (stmt)
1229 && TREE_CODE (gimple_get_lhs (stmt)) == SSA_NAME
1230 && INTEGRAL_TYPE_P (TREE_TYPE (gimple_get_lhs (stmt)))
1231 && (!ALWAYS_EXECUTED_IN (bb)
1232 || !(ALWAYS_EXECUTED_IN (bb) == level
1233 || flow_loop_nested_p (ALWAYS_EXECUTED_IN (bb), level))))
1234 {
1235 tree lhs = gimple_get_lhs (stmt);
1236 SSA_NAME_RANGE_INFO (lhs) = NULL;
1237 }
1238 /* In case this is a stmt that is not unconditionally executed
1239 when the target loop header is executed and the stmt may
1240 invoke undefined integer or pointer overflow rewrite it to
1241 unsigned arithmetic. */
1242 if (is_gimple_assign (stmt)
1243 && INTEGRAL_TYPE_P (TREE_TYPE (gimple_assign_lhs (stmt)))
1244 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (gimple_assign_lhs (stmt)))
1245 && arith_code_with_undefined_signed_overflow
1246 (gimple_assign_rhs_code (stmt))
1247 && (!ALWAYS_EXECUTED_IN (bb)
1248 || !(ALWAYS_EXECUTED_IN (bb) == level
1249 || flow_loop_nested_p (ALWAYS_EXECUTED_IN (bb), level))))
1250 gsi_insert_seq_on_edge (e, rewrite_to_defined_overflow (stmt));
1251 else
1252 gsi_insert_on_edge (e, stmt);
1253 }
1254
1255 return todo;
1303 } 1256 }
1304 1257
1305 /* Hoist the statements out of the loops prescribed by data stored in 1258 /* Hoist the statements out of the loops prescribed by data stored in
1306 LIM_DATA structures associated with each statement.*/ 1259 LIM_DATA structures associated with each statement.*/
1307 1260
1308 static unsigned int 1261 static unsigned int
1309 move_computations (void) 1262 move_computations (void)
1310 { 1263 {
1311 struct dom_walk_data walk_data; 1264 int *rpo = XNEWVEC (int, last_basic_block_for_fn (cfun));
1312 unsigned int todo = 0; 1265 int n = pre_and_rev_post_order_compute_fn (cfun, NULL, rpo, false);
1313 1266 unsigned todo = 0;
1314 memset (&walk_data, 0, sizeof (struct dom_walk_data)); 1267
1315 walk_data.global_data = &todo; 1268 for (int i = 0; i < n; ++i)
1316 walk_data.dom_direction = CDI_DOMINATORS; 1269 todo |= move_computations_worker (BASIC_BLOCK_FOR_FN (cfun, rpo[i]));
1317 walk_data.before_dom_children = move_computations_stmt; 1270
1318 1271 free (rpo);
1319 init_walk_dominator_tree (&walk_data);
1320 walk_dominator_tree (&walk_data, ENTRY_BLOCK_PTR);
1321 fini_walk_dominator_tree (&walk_data);
1322 1272
1323 gsi_commit_edge_inserts (); 1273 gsi_commit_edge_inserts ();
1324 if (need_ssa_update_p (cfun)) 1274 if (need_ssa_update_p (cfun))
1325 rewrite_into_loop_closed_ssa (NULL, TODO_update_ssa); 1275 rewrite_into_loop_closed_ssa (NULL, TODO_update_ssa);
1326 1276
1362 moved out of the LOOP. ORIG_LOOP is the loop in that EXPR is used. */ 1312 moved out of the LOOP. ORIG_LOOP is the loop in that EXPR is used. */
1363 1313
1364 static void 1314 static void
1365 force_move_till_op (tree op, struct loop *orig_loop, struct loop *loop) 1315 force_move_till_op (tree op, struct loop *orig_loop, struct loop *loop)
1366 { 1316 {
1367 gimple stmt; 1317 gimple *stmt;
1368 1318
1369 if (!op 1319 if (!op
1370 || is_gimple_min_invariant (op)) 1320 || is_gimple_min_invariant (op))
1371 return; 1321 return;
1372 1322
1406 force_move_till_op (*index, fmt_data->orig_loop, fmt_data->loop); 1356 force_move_till_op (*index, fmt_data->orig_loop, fmt_data->loop);
1407 1357
1408 return true; 1358 return true;
1409 } 1359 }
1410 1360
1411 /* A hash function for struct mem_ref object OBJ. */ 1361 /* A function to free the mem_ref object OBJ. */
1412
1413 static hashval_t
1414 memref_hash (const void *obj)
1415 {
1416 const struct mem_ref *const mem = (const struct mem_ref *) obj;
1417
1418 return mem->hash;
1419 }
1420
1421 /* An equality function for struct mem_ref object OBJ1 with
1422 memory reference OBJ2. */
1423
1424 static int
1425 memref_eq (const void *obj1, const void *obj2)
1426 {
1427 const struct mem_ref *const mem1 = (const struct mem_ref *) obj1;
1428
1429 return operand_equal_p (mem1->mem, (const_tree) obj2, 0);
1430 }
1431
1432 /* Releases list of memory reference locations ACCS. */
1433 1362
1434 static void 1363 static void
1435 free_mem_ref_locs (mem_ref_locs_p accs) 1364 memref_free (struct im_mem_ref *mem)
1436 { 1365 {
1437 unsigned i; 1366 mem->accesses_in_loop.release ();
1438 mem_ref_loc_p loc;
1439
1440 if (!accs)
1441 return;
1442
1443 FOR_EACH_VEC_ELT (mem_ref_loc_p, accs->locs, i, loc)
1444 free (loc);
1445 VEC_free (mem_ref_loc_p, heap, accs->locs);
1446 free (accs);
1447 }
1448
1449 /* A function to free the mem_ref object OBJ. */
1450
1451 static void
1452 memref_free (void *obj)
1453 {
1454 struct mem_ref *const mem = (struct mem_ref *) obj;
1455 unsigned i;
1456 mem_ref_locs_p accs;
1457
1458 BITMAP_FREE (mem->stored);
1459 BITMAP_FREE (mem->indep_loop);
1460 BITMAP_FREE (mem->dep_loop);
1461 BITMAP_FREE (mem->indep_ref);
1462 BITMAP_FREE (mem->dep_ref);
1463
1464 FOR_EACH_VEC_ELT (mem_ref_locs_p, mem->accesses_in_loop, i, accs)
1465 free_mem_ref_locs (accs);
1466 VEC_free (mem_ref_locs_p, heap, mem->accesses_in_loop);
1467
1468 BITMAP_FREE (mem->vops);
1469 free (mem);
1470 } 1367 }
1471 1368
1472 /* Allocates and returns a memory reference description for MEM whose hash 1369 /* Allocates and returns a memory reference description for MEM whose hash
1473 value is HASH and id is ID. */ 1370 value is HASH and id is ID. */
1474 1371
1475 static mem_ref_p 1372 static im_mem_ref *
1476 mem_ref_alloc (tree mem, unsigned hash, unsigned id) 1373 mem_ref_alloc (tree mem, unsigned hash, unsigned id)
1477 { 1374 {
1478 mem_ref_p ref = XNEW (struct mem_ref); 1375 im_mem_ref *ref = XOBNEW (&mem_ref_obstack, struct im_mem_ref);
1479 ref->mem = mem; 1376 ao_ref_init (&ref->mem, mem);
1480 ref->id = id; 1377 ref->id = id;
1481 ref->hash = hash; 1378 ref->hash = hash;
1482 ref->stored = BITMAP_ALLOC (NULL); 1379 ref->stored = NULL;
1483 ref->indep_loop = BITMAP_ALLOC (NULL); 1380 bitmap_initialize (&ref->indep_loop, &lim_bitmap_obstack);
1484 ref->dep_loop = BITMAP_ALLOC (NULL); 1381 bitmap_initialize (&ref->dep_loop, &lim_bitmap_obstack);
1485 ref->indep_ref = BITMAP_ALLOC (NULL); 1382 ref->accesses_in_loop.create (1);
1486 ref->dep_ref = BITMAP_ALLOC (NULL);
1487 ref->accesses_in_loop = NULL;
1488 ref->vops = BITMAP_ALLOC (NULL);
1489 1383
1490 return ref; 1384 return ref;
1491 }
1492
1493 /* Allocates and returns the new list of locations. */
1494
1495 static mem_ref_locs_p
1496 mem_ref_locs_alloc (void)
1497 {
1498 mem_ref_locs_p accs = XNEW (struct mem_ref_locs);
1499 accs->locs = NULL;
1500 return accs;
1501 } 1385 }
1502 1386
1503 /* Records memory reference location *LOC in LOOP to the memory reference 1387 /* Records memory reference location *LOC in LOOP to the memory reference
1504 description REF. The reference occurs in statement STMT. */ 1388 description REF. The reference occurs in statement STMT. */
1505 1389
1506 static void 1390 static void
1507 record_mem_ref_loc (mem_ref_p ref, struct loop *loop, gimple stmt, tree *loc) 1391 record_mem_ref_loc (im_mem_ref *ref, gimple *stmt, tree *loc)
1508 { 1392 {
1509 mem_ref_loc_p aref = XNEW (struct mem_ref_loc); 1393 mem_ref_loc aref;
1510 mem_ref_locs_p accs; 1394 aref.stmt = stmt;
1511 bitmap ril = VEC_index (bitmap, memory_accesses.refs_in_loop, loop->num); 1395 aref.ref = loc;
1512 1396 ref->accesses_in_loop.safe_push (aref);
1513 if (VEC_length (mem_ref_locs_p, ref->accesses_in_loop) 1397 }
1514 <= (unsigned) loop->num) 1398
1515 VEC_safe_grow_cleared (mem_ref_locs_p, heap, ref->accesses_in_loop, 1399 /* Set the LOOP bit in REF stored bitmap and allocate that if
1516 loop->num + 1); 1400 necessary. Return whether a bit was changed. */
1517 accs = VEC_index (mem_ref_locs_p, ref->accesses_in_loop, loop->num); 1401
1518 if (!accs) 1402 static bool
1519 { 1403 set_ref_stored_in_loop (im_mem_ref *ref, struct loop *loop)
1520 accs = mem_ref_locs_alloc (); 1404 {
1521 VEC_replace (mem_ref_locs_p, ref->accesses_in_loop, loop->num, accs); 1405 if (!ref->stored)
1522 } 1406 ref->stored = BITMAP_ALLOC (&lim_bitmap_obstack);
1523 1407 return bitmap_set_bit (ref->stored, loop->num);
1524 aref->stmt = stmt;
1525 aref->ref = loc;
1526
1527 VEC_safe_push (mem_ref_loc_p, heap, accs->locs, aref);
1528 bitmap_set_bit (ril, ref->id);
1529 } 1408 }
1530 1409
1531 /* Marks reference REF as stored in LOOP. */ 1410 /* Marks reference REF as stored in LOOP. */
1532 1411
1533 static void 1412 static void
1534 mark_ref_stored (mem_ref_p ref, struct loop *loop) 1413 mark_ref_stored (im_mem_ref *ref, struct loop *loop)
1535 { 1414 {
1536 for (; 1415 while (loop != current_loops->tree_root
1537 loop != current_loops->tree_root 1416 && set_ref_stored_in_loop (ref, loop))
1538 && !bitmap_bit_p (ref->stored, loop->num); 1417 loop = loop_outer (loop);
1539 loop = loop_outer (loop))
1540 bitmap_set_bit (ref->stored, loop->num);
1541 } 1418 }
1542 1419
1543 /* Gathers memory references in statement STMT in LOOP, storing the 1420 /* Gathers memory references in statement STMT in LOOP, storing the
1544 information about them in the memory_accesses structure. Marks 1421 information about them in the memory_accesses structure. Marks
1545 the vops accessed through unrecognized statements there as 1422 the vops accessed through unrecognized statements there as
1546 well. */ 1423 well. */
1547 1424
1548 static void 1425 static void
1549 gather_mem_refs_stmt (struct loop *loop, gimple stmt) 1426 gather_mem_refs_stmt (struct loop *loop, gimple *stmt)
1550 { 1427 {
1551 tree *mem = NULL; 1428 tree *mem = NULL;
1552 hashval_t hash; 1429 hashval_t hash;
1553 PTR *slot; 1430 im_mem_ref **slot;
1554 mem_ref_p ref; 1431 im_mem_ref *ref;
1555 tree vname;
1556 bool is_stored; 1432 bool is_stored;
1557 bitmap clvops;
1558 unsigned id; 1433 unsigned id;
1559 1434
1560 if (!gimple_vuse (stmt)) 1435 if (!gimple_vuse (stmt))
1561 return; 1436 return;
1562 1437
1563 mem = simple_mem_ref_in_stmt (stmt, &is_stored); 1438 mem = simple_mem_ref_in_stmt (stmt, &is_stored);
1564 if (!mem) 1439 if (!mem)
1565 goto fail; 1440 {
1566 1441 /* We use the shared mem_ref for all unanalyzable refs. */
1567 hash = iterative_hash_expr (*mem, 0); 1442 id = UNANALYZABLE_MEM_ID;
1568 slot = htab_find_slot_with_hash (memory_accesses.refs, *mem, hash, INSERT); 1443 ref = memory_accesses.refs_list[id];
1569 1444 if (dump_file && (dump_flags & TDF_DETAILS))
1570 if (*slot) 1445 {
1571 { 1446 fprintf (dump_file, "Unanalyzed memory reference %u: ", id);
1572 ref = (mem_ref_p) *slot; 1447 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
1573 id = ref->id; 1448 }
1449 is_stored = gimple_vdef (stmt);
1574 } 1450 }
1575 else 1451 else
1576 { 1452 {
1577 id = VEC_length (mem_ref_p, memory_accesses.refs_list); 1453 hash = iterative_hash_expr (*mem, 0);
1578 ref = mem_ref_alloc (*mem, hash, id); 1454 slot = memory_accesses.refs->find_slot_with_hash (*mem, hash, INSERT);
1579 VEC_safe_push (mem_ref_p, heap, memory_accesses.refs_list, ref); 1455 if (*slot)
1580 *slot = ref; 1456 {
1581 1457 ref = *slot;
1582 if (dump_file && (dump_flags & TDF_DETAILS)) 1458 id = ref->id;
1583 { 1459 }
1584 fprintf (dump_file, "Memory reference %u: ", id); 1460 else
1585 print_generic_expr (dump_file, ref->mem, TDF_SLIM); 1461 {
1586 fprintf (dump_file, "\n"); 1462 id = memory_accesses.refs_list.length ();
1587 } 1463 ref = mem_ref_alloc (*mem, hash, id);
1588 } 1464 memory_accesses.refs_list.safe_push (ref);
1465 *slot = ref;
1466
1467 if (dump_file && (dump_flags & TDF_DETAILS))
1468 {
1469 fprintf (dump_file, "Memory reference %u: ", id);
1470 print_generic_expr (dump_file, ref->mem.ref, TDF_SLIM);
1471 fprintf (dump_file, "\n");
1472 }
1473 }
1474
1475 record_mem_ref_loc (ref, stmt, mem);
1476 }
1477 bitmap_set_bit (&memory_accesses.refs_in_loop[loop->num], ref->id);
1589 if (is_stored) 1478 if (is_stored)
1590 mark_ref_stored (ref, loop); 1479 {
1591 1480 bitmap_set_bit (&memory_accesses.refs_stored_in_loop[loop->num], ref->id);
1592 if ((vname = gimple_vuse (stmt)) != NULL_TREE) 1481 mark_ref_stored (ref, loop);
1593 bitmap_set_bit (ref->vops, DECL_UID (SSA_NAME_VAR (vname))); 1482 }
1594 record_mem_ref_loc (ref, loop, stmt, mem); 1483 init_lim_data (stmt)->ref = ref->id;
1595 return; 1484 return;
1596 1485 }
1597 fail: 1486
1598 clvops = VEC_index (bitmap, memory_accesses.clobbered_vops, loop->num); 1487 static unsigned *bb_loop_postorder;
1599 if ((vname = gimple_vuse (stmt)) != NULL_TREE) 1488
1600 bitmap_set_bit (clvops, DECL_UID (SSA_NAME_VAR (vname))); 1489 /* qsort sort function to sort blocks after their loop fathers postorder. */
1490
1491 static int
1492 sort_bbs_in_loop_postorder_cmp (const void *bb1_, const void *bb2_)
1493 {
1494 basic_block bb1 = *(basic_block *)const_cast<void *>(bb1_);
1495 basic_block bb2 = *(basic_block *)const_cast<void *>(bb2_);
1496 struct loop *loop1 = bb1->loop_father;
1497 struct loop *loop2 = bb2->loop_father;
1498 if (loop1->num == loop2->num)
1499 return 0;
1500 return bb_loop_postorder[loop1->num] < bb_loop_postorder[loop2->num] ? -1 : 1;
1501 }
1502
1503 /* qsort sort function to sort ref locs after their loop fathers postorder. */
1504
1505 static int
1506 sort_locs_in_loop_postorder_cmp (const void *loc1_, const void *loc2_)
1507 {
1508 mem_ref_loc *loc1 = (mem_ref_loc *)const_cast<void *>(loc1_);
1509 mem_ref_loc *loc2 = (mem_ref_loc *)const_cast<void *>(loc2_);
1510 struct loop *loop1 = gimple_bb (loc1->stmt)->loop_father;
1511 struct loop *loop2 = gimple_bb (loc2->stmt)->loop_father;
1512 if (loop1->num == loop2->num)
1513 return 0;
1514 return bb_loop_postorder[loop1->num] < bb_loop_postorder[loop2->num] ? -1 : 1;
1601 } 1515 }
1602 1516
1603 /* Gathers memory references in loops. */ 1517 /* Gathers memory references in loops. */
1604
1605 static void
1606 gather_mem_refs_in_loops (void)
1607 {
1608 gimple_stmt_iterator bsi;
1609 basic_block bb;
1610 struct loop *loop;
1611 loop_iterator li;
1612 bitmap clvo, clvi;
1613 bitmap lrefs, alrefs, alrefso;
1614
1615 FOR_EACH_BB (bb)
1616 {
1617 loop = bb->loop_father;
1618 if (loop == current_loops->tree_root)
1619 continue;
1620
1621 for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
1622 gather_mem_refs_stmt (loop, gsi_stmt (bsi));
1623 }
1624
1625 /* Propagate the information about clobbered vops and accessed memory
1626 references up the loop hierarchy. */
1627 FOR_EACH_LOOP (li, loop, LI_FROM_INNERMOST)
1628 {
1629 lrefs = VEC_index (bitmap, memory_accesses.refs_in_loop, loop->num);
1630 alrefs = VEC_index (bitmap, memory_accesses.all_refs_in_loop, loop->num);
1631 bitmap_ior_into (alrefs, lrefs);
1632
1633 if (loop_outer (loop) == current_loops->tree_root)
1634 continue;
1635
1636 clvi = VEC_index (bitmap, memory_accesses.clobbered_vops, loop->num);
1637 clvo = VEC_index (bitmap, memory_accesses.clobbered_vops,
1638 loop_outer (loop)->num);
1639 bitmap_ior_into (clvo, clvi);
1640
1641 alrefso = VEC_index (bitmap, memory_accesses.all_refs_in_loop,
1642 loop_outer (loop)->num);
1643 bitmap_ior_into (alrefso, alrefs);
1644 }
1645 }
1646
1647 /* Element of the hash table that maps vops to memory references. */
1648
1649 struct vop_to_refs_elt
1650 {
1651 /* DECL_UID of the vop. */
1652 unsigned uid;
1653
1654 /* List of the all references. */
1655 bitmap refs_all;
1656
1657 /* List of stored references. */
1658 bitmap refs_stored;
1659 };
1660
1661 /* A hash function for struct vop_to_refs_elt object OBJ. */
1662
1663 static hashval_t
1664 vtoe_hash (const void *obj)
1665 {
1666 const struct vop_to_refs_elt *const vtoe =
1667 (const struct vop_to_refs_elt *) obj;
1668
1669 return vtoe->uid;
1670 }
1671
1672 /* An equality function for struct vop_to_refs_elt object OBJ1 with
1673 uid of a vop OBJ2. */
1674
1675 static int
1676 vtoe_eq (const void *obj1, const void *obj2)
1677 {
1678 const struct vop_to_refs_elt *const vtoe =
1679 (const struct vop_to_refs_elt *) obj1;
1680 const unsigned *const uid = (const unsigned *) obj2;
1681
1682 return vtoe->uid == *uid;
1683 }
1684
1685 /* A function to free the struct vop_to_refs_elt object. */
1686
1687 static void
1688 vtoe_free (void *obj)
1689 {
1690 struct vop_to_refs_elt *const vtoe =
1691 (struct vop_to_refs_elt *) obj;
1692
1693 BITMAP_FREE (vtoe->refs_all);
1694 BITMAP_FREE (vtoe->refs_stored);
1695 free (vtoe);
1696 }
1697
1698 /* Records REF to hashtable VOP_TO_REFS for the index VOP. STORED is true
1699 if the reference REF is stored. */
1700
1701 static void
1702 record_vop_access (htab_t vop_to_refs, unsigned vop, unsigned ref, bool stored)
1703 {
1704 void **slot = htab_find_slot_with_hash (vop_to_refs, &vop, vop, INSERT);
1705 struct vop_to_refs_elt *vtoe;
1706
1707 if (!*slot)
1708 {
1709 vtoe = XNEW (struct vop_to_refs_elt);
1710 vtoe->uid = vop;
1711 vtoe->refs_all = BITMAP_ALLOC (NULL);
1712 vtoe->refs_stored = BITMAP_ALLOC (NULL);
1713 *slot = vtoe;
1714 }
1715 else
1716 vtoe = (struct vop_to_refs_elt *) *slot;
1717
1718 bitmap_set_bit (vtoe->refs_all, ref);
1719 if (stored)
1720 bitmap_set_bit (vtoe->refs_stored, ref);
1721 }
1722
1723 /* Returns the set of references that access VOP according to the table
1724 VOP_TO_REFS. */
1725
1726 static bitmap
1727 get_vop_accesses (htab_t vop_to_refs, unsigned vop)
1728 {
1729 struct vop_to_refs_elt *const vtoe =
1730 (struct vop_to_refs_elt *) htab_find_with_hash (vop_to_refs, &vop, vop);
1731 return vtoe->refs_all;
1732 }
1733
1734 /* Returns the set of stores that access VOP according to the table
1735 VOP_TO_REFS. */
1736
1737 static bitmap
1738 get_vop_stores (htab_t vop_to_refs, unsigned vop)
1739 {
1740 struct vop_to_refs_elt *const vtoe =
1741 (struct vop_to_refs_elt *) htab_find_with_hash (vop_to_refs, &vop, vop);
1742 return vtoe->refs_stored;
1743 }
1744
1745 /* Adds REF to mapping from virtual operands to references in LOOP. */
1746
1747 static void
1748 add_vop_ref_mapping (struct loop *loop, mem_ref_p ref)
1749 {
1750 htab_t map = VEC_index (htab_t, memory_accesses.vop_ref_map, loop->num);
1751 bool stored = bitmap_bit_p (ref->stored, loop->num);
1752 bitmap clobbers = VEC_index (bitmap, memory_accesses.clobbered_vops,
1753 loop->num);
1754 bitmap_iterator bi;
1755 unsigned vop;
1756
1757 EXECUTE_IF_AND_COMPL_IN_BITMAP (ref->vops, clobbers, 0, vop, bi)
1758 {
1759 record_vop_access (map, vop, ref->id, stored);
1760 }
1761 }
1762
1763 /* Create a mapping from virtual operands to references that touch them
1764 in LOOP. */
1765
1766 static void
1767 create_vop_ref_mapping_loop (struct loop *loop)
1768 {
1769 bitmap refs = VEC_index (bitmap, memory_accesses.refs_in_loop, loop->num);
1770 struct loop *sloop;
1771 bitmap_iterator bi;
1772 unsigned i;
1773 mem_ref_p ref;
1774
1775 EXECUTE_IF_SET_IN_BITMAP (refs, 0, i, bi)
1776 {
1777 ref = VEC_index (mem_ref_p, memory_accesses.refs_list, i);
1778 for (sloop = loop; sloop != current_loops->tree_root; sloop = loop_outer (sloop))
1779 add_vop_ref_mapping (sloop, ref);
1780 }
1781 }
1782
1783 /* For each non-clobbered virtual operand and each loop, record the memory
1784 references in this loop that touch the operand. */
1785
1786 static void
1787 create_vop_ref_mapping (void)
1788 {
1789 loop_iterator li;
1790 struct loop *loop;
1791
1792 FOR_EACH_LOOP (li, loop, 0)
1793 {
1794 create_vop_ref_mapping_loop (loop);
1795 }
1796 }
1797
1798 /* Gathers information about memory accesses in the loops. */
1799 1518
1800 static void 1519 static void
1801 analyze_memory_references (void) 1520 analyze_memory_references (void)
1802 { 1521 {
1803 unsigned i; 1522 gimple_stmt_iterator bsi;
1804 bitmap empty; 1523 basic_block bb, *bbs;
1805 htab_t hempty; 1524 struct loop *loop, *outer;
1806 1525 unsigned i, n;
1807 memory_accesses.refs 1526
1808 = htab_create (100, memref_hash, memref_eq, memref_free); 1527 /* Collect all basic-blocks in loops and sort them after their
1809 memory_accesses.refs_list = NULL; 1528 loops postorder. */
1810 memory_accesses.refs_in_loop = VEC_alloc (bitmap, heap, 1529 i = 0;
1811 number_of_loops ()); 1530 bbs = XNEWVEC (basic_block, n_basic_blocks_for_fn (cfun) - NUM_FIXED_BLOCKS);
1812 memory_accesses.all_refs_in_loop = VEC_alloc (bitmap, heap, 1531 FOR_EACH_BB_FN (bb, cfun)
1813 number_of_loops ()); 1532 if (bb->loop_father != current_loops->tree_root)
1814 memory_accesses.clobbered_vops = VEC_alloc (bitmap, heap, 1533 bbs[i++] = bb;
1815 number_of_loops ()); 1534 n = i;
1816 memory_accesses.vop_ref_map = VEC_alloc (htab_t, heap, 1535 qsort (bbs, n, sizeof (basic_block), sort_bbs_in_loop_postorder_cmp);
1817 number_of_loops ()); 1536
1818 1537 /* Visit blocks in loop postorder and assign mem-ref IDs in that order.
1819 for (i = 0; i < number_of_loops (); i++) 1538 That results in better locality for all the bitmaps. */
1820 { 1539 for (i = 0; i < n; ++i)
1821 empty = BITMAP_ALLOC (NULL); 1540 {
1822 VEC_quick_push (bitmap, memory_accesses.refs_in_loop, empty); 1541 basic_block bb = bbs[i];
1823 empty = BITMAP_ALLOC (NULL); 1542 for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
1824 VEC_quick_push (bitmap, memory_accesses.all_refs_in_loop, empty); 1543 gather_mem_refs_stmt (bb->loop_father, gsi_stmt (bsi));
1825 empty = BITMAP_ALLOC (NULL); 1544 }
1826 VEC_quick_push (bitmap, memory_accesses.clobbered_vops, empty); 1545
1827 hempty = htab_create (10, vtoe_hash, vtoe_eq, vtoe_free); 1546 /* Sort the location list of gathered memory references after their
1828 VEC_quick_push (htab_t, memory_accesses.vop_ref_map, hempty); 1547 loop postorder number. */
1829 } 1548 im_mem_ref *ref;
1830 1549 FOR_EACH_VEC_ELT (memory_accesses.refs_list, i, ref)
1831 memory_accesses.ttae_cache = NULL; 1550 ref->accesses_in_loop.qsort (sort_locs_in_loop_postorder_cmp);
1832 1551
1833 gather_mem_refs_in_loops (); 1552 free (bbs);
1834 create_vop_ref_mapping (); 1553 // free (bb_loop_postorder);
1835 } 1554
1836 1555 /* Propagate the information about accessed memory references up
1837 /* Returns true if a region of size SIZE1 at position 0 and a region of 1556 the loop hierarchy. */
1838 size SIZE2 at position DIFF cannot overlap. */ 1557 FOR_EACH_LOOP (loop, LI_FROM_INNERMOST)
1839 1558 {
1840 static bool 1559 /* Finalize the overall touched references (including subloops). */
1841 cannot_overlap_p (aff_tree *diff, double_int size1, double_int size2) 1560 bitmap_ior_into (&memory_accesses.all_refs_stored_in_loop[loop->num],
1842 { 1561 &memory_accesses.refs_stored_in_loop[loop->num]);
1843 double_int d, bound; 1562
1844 1563 /* Propagate the information about accessed memory references up
1845 /* Unless the difference is a constant, we fail. */ 1564 the loop hierarchy. */
1846 if (diff->n != 0) 1565 outer = loop_outer (loop);
1847 return false; 1566 if (outer == current_loops->tree_root)
1848 1567 continue;
1849 d = diff->offset; 1568
1850 if (double_int_negative_p (d)) 1569 bitmap_ior_into (&memory_accesses.all_refs_stored_in_loop[outer->num],
1851 { 1570 &memory_accesses.all_refs_stored_in_loop[loop->num]);
1852 /* The second object is before the first one, we succeed if the last
1853 element of the second object is before the start of the first one. */
1854 bound = double_int_add (d, double_int_add (size2, double_int_minus_one));
1855 return double_int_negative_p (bound);
1856 }
1857 else
1858 {
1859 /* We succeed if the second object starts after the first one ends. */
1860 return double_int_scmp (size1, d) <= 0;
1861 } 1571 }
1862 } 1572 }
1863 1573
1864 /* Returns true if MEM1 and MEM2 may alias. TTAE_CACHE is used as a cache in 1574 /* Returns true if MEM1 and MEM2 may alias. TTAE_CACHE is used as a cache in
1865 tree_to_aff_combination_expand. */ 1575 tree_to_aff_combination_expand. */
1866 1576
1867 static bool 1577 static bool
1868 mem_refs_may_alias_p (tree mem1, tree mem2, struct pointer_map_t **ttae_cache) 1578 mem_refs_may_alias_p (im_mem_ref *mem1, im_mem_ref *mem2,
1579 hash_map<tree, name_expansion *> **ttae_cache)
1869 { 1580 {
1870 /* Perform BASE + OFFSET analysis -- if MEM1 and MEM2 are based on the same 1581 /* Perform BASE + OFFSET analysis -- if MEM1 and MEM2 are based on the same
1871 object and their offset differ in such a way that the locations cannot 1582 object and their offset differ in such a way that the locations cannot
1872 overlap, then they cannot alias. */ 1583 overlap, then they cannot alias. */
1873 double_int size1, size2; 1584 widest_int size1, size2;
1874 aff_tree off1, off2; 1585 aff_tree off1, off2;
1875 1586
1876 /* Perform basic offset and type-based disambiguation. */ 1587 /* Perform basic offset and type-based disambiguation. */
1877 if (!refs_may_alias_p (mem1, mem2)) 1588 if (!refs_may_alias_p_1 (&mem1->mem, &mem2->mem, true))
1878 return false; 1589 return false;
1879 1590
1880 /* The expansion of addresses may be a bit expensive, thus we only do 1591 /* The expansion of addresses may be a bit expensive, thus we only do
1881 the check at -O2 and higher optimization levels. */ 1592 the check at -O2 and higher optimization levels. */
1882 if (optimize < 2) 1593 if (optimize < 2)
1883 return true; 1594 return true;
1884 1595
1885 get_inner_reference_aff (mem1, &off1, &size1); 1596 get_inner_reference_aff (mem1->mem.ref, &off1, &size1);
1886 get_inner_reference_aff (mem2, &off2, &size2); 1597 get_inner_reference_aff (mem2->mem.ref, &off2, &size2);
1887 aff_combination_expand (&off1, ttae_cache); 1598 aff_combination_expand (&off1, ttae_cache);
1888 aff_combination_expand (&off2, ttae_cache); 1599 aff_combination_expand (&off2, ttae_cache);
1889 aff_combination_scale (&off1, double_int_minus_one); 1600 aff_combination_scale (&off1, -1);
1890 aff_combination_add (&off2, &off1); 1601 aff_combination_add (&off2, &off1);
1891 1602
1892 if (cannot_overlap_p (&off2, size1, size2)) 1603 if (aff_comb_cannot_overlap_p (&off2, size1, size2))
1893 return false; 1604 return false;
1894 1605
1895 return true; 1606 return true;
1896 } 1607 }
1897 1608
1609 /* Compare function for bsearch searching for reference locations
1610 in a loop. */
1611
1612 static int
1613 find_ref_loc_in_loop_cmp (const void *loop_, const void *loc_)
1614 {
1615 struct loop *loop = (struct loop *)const_cast<void *>(loop_);
1616 mem_ref_loc *loc = (mem_ref_loc *)const_cast<void *>(loc_);
1617 struct loop *loc_loop = gimple_bb (loc->stmt)->loop_father;
1618 if (loop->num == loc_loop->num
1619 || flow_loop_nested_p (loop, loc_loop))
1620 return 0;
1621 return (bb_loop_postorder[loop->num] < bb_loop_postorder[loc_loop->num]
1622 ? -1 : 1);
1623 }
1624
1625 /* Iterates over all locations of REF in LOOP and its subloops calling
1626 fn.operator() with the location as argument. When that operator
1627 returns true the iteration is stopped and true is returned.
1628 Otherwise false is returned. */
1629
1630 template <typename FN>
1631 static bool
1632 for_all_locs_in_loop (struct loop *loop, im_mem_ref *ref, FN fn)
1633 {
1634 unsigned i;
1635 mem_ref_loc *loc;
1636
1637 /* Search for the cluster of locs in the accesses_in_loop vector
1638 which is sorted after postorder index of the loop father. */
1639 loc = ref->accesses_in_loop.bsearch (loop, find_ref_loc_in_loop_cmp);
1640 if (!loc)
1641 return false;
1642
1643 /* We have found one location inside loop or its sub-loops. Iterate
1644 both forward and backward to cover the whole cluster. */
1645 i = loc - ref->accesses_in_loop.address ();
1646 while (i > 0)
1647 {
1648 --i;
1649 mem_ref_loc *l = &ref->accesses_in_loop[i];
1650 if (!flow_bb_inside_loop_p (loop, gimple_bb (l->stmt)))
1651 break;
1652 if (fn (l))
1653 return true;
1654 }
1655 for (i = loc - ref->accesses_in_loop.address ();
1656 i < ref->accesses_in_loop.length (); ++i)
1657 {
1658 mem_ref_loc *l = &ref->accesses_in_loop[i];
1659 if (!flow_bb_inside_loop_p (loop, gimple_bb (l->stmt)))
1660 break;
1661 if (fn (l))
1662 return true;
1663 }
1664
1665 return false;
1666 }
1667
1898 /* Rewrites location LOC by TMP_VAR. */ 1668 /* Rewrites location LOC by TMP_VAR. */
1899 1669
1900 static void 1670 struct rewrite_mem_ref_loc
1901 rewrite_mem_ref_loc (mem_ref_loc_p loc, tree tmp_var) 1671 {
1902 { 1672 rewrite_mem_ref_loc (tree tmp_var_) : tmp_var (tmp_var_) {}
1903 mark_virtual_ops_for_renaming (loc->stmt); 1673 bool operator () (mem_ref_loc *loc);
1674 tree tmp_var;
1675 };
1676
1677 bool
1678 rewrite_mem_ref_loc::operator () (mem_ref_loc *loc)
1679 {
1904 *loc->ref = tmp_var; 1680 *loc->ref = tmp_var;
1905 update_stmt (loc->stmt); 1681 update_stmt (loc->stmt);
1906 } 1682 return false;
1907 1683 }
1908 /* Adds all locations of REF in LOOP and its subloops to LOCS. */ 1684
1685 /* Rewrites all references to REF in LOOP by variable TMP_VAR. */
1909 1686
1910 static void 1687 static void
1911 get_all_locs_in_loop (struct loop *loop, mem_ref_p ref, 1688 rewrite_mem_refs (struct loop *loop, im_mem_ref *ref, tree tmp_var)
1912 VEC (mem_ref_loc_p, heap) **locs) 1689 {
1913 { 1690 for_all_locs_in_loop (loop, ref, rewrite_mem_ref_loc (tmp_var));
1914 mem_ref_locs_p accs; 1691 }
1915 unsigned i; 1692
1916 mem_ref_loc_p loc; 1693 /* Stores the first reference location in LOCP. */
1917 bitmap refs = VEC_index (bitmap, memory_accesses.all_refs_in_loop, 1694
1918 loop->num); 1695 struct first_mem_ref_loc_1
1919 struct loop *subloop; 1696 {
1920 1697 first_mem_ref_loc_1 (mem_ref_loc **locp_) : locp (locp_) {}
1921 if (!bitmap_bit_p (refs, ref->id)) 1698 bool operator () (mem_ref_loc *loc);
1922 return; 1699 mem_ref_loc **locp;
1923 1700 };
1924 if (VEC_length (mem_ref_locs_p, ref->accesses_in_loop) 1701
1925 > (unsigned) loop->num) 1702 bool
1926 { 1703 first_mem_ref_loc_1::operator () (mem_ref_loc *loc)
1927 accs = VEC_index (mem_ref_locs_p, ref->accesses_in_loop, loop->num); 1704 {
1928 if (accs) 1705 *locp = loc;
1929 { 1706 return true;
1930 FOR_EACH_VEC_ELT (mem_ref_loc_p, accs->locs, i, loc) 1707 }
1931 VEC_safe_push (mem_ref_loc_p, heap, *locs, loc); 1708
1932 } 1709 /* Returns the first reference location to REF in LOOP. */
1933 } 1710
1934 1711 static mem_ref_loc *
1935 for (subloop = loop->inner; subloop != NULL; subloop = subloop->next) 1712 first_mem_ref_loc (struct loop *loop, im_mem_ref *ref)
1936 get_all_locs_in_loop (subloop, ref, locs); 1713 {
1937 } 1714 mem_ref_loc *locp = NULL;
1938 1715 for_all_locs_in_loop (loop, ref, first_mem_ref_loc_1 (&locp));
1939 /* Rewrites all references to REF in LOOP by variable TMP_VAR. */ 1716 return locp;
1717 }
1718
1719 struct prev_flag_edges {
1720 /* Edge to insert new flag comparison code. */
1721 edge append_cond_position;
1722
1723 /* Edge for fall through from previous flag comparison. */
1724 edge last_cond_fallthru;
1725 };
1726
1727 /* Helper function for execute_sm. Emit code to store TMP_VAR into
1728 MEM along edge EX.
1729
1730 The store is only done if MEM has changed. We do this so no
1731 changes to MEM occur on code paths that did not originally store
1732 into it.
1733
1734 The common case for execute_sm will transform:
1735
1736 for (...) {
1737 if (foo)
1738 stuff;
1739 else
1740 MEM = TMP_VAR;
1741 }
1742
1743 into:
1744
1745 lsm = MEM;
1746 for (...) {
1747 if (foo)
1748 stuff;
1749 else
1750 lsm = TMP_VAR;
1751 }
1752 MEM = lsm;
1753
1754 This function will generate:
1755
1756 lsm = MEM;
1757
1758 lsm_flag = false;
1759 ...
1760 for (...) {
1761 if (foo)
1762 stuff;
1763 else {
1764 lsm = TMP_VAR;
1765 lsm_flag = true;
1766 }
1767 }
1768 if (lsm_flag) <--
1769 MEM = lsm; <--
1770 */
1940 1771
1941 static void 1772 static void
1942 rewrite_mem_refs (struct loop *loop, mem_ref_p ref, tree tmp_var) 1773 execute_sm_if_changed (edge ex, tree mem, tree tmp_var, tree flag,
1943 { 1774 edge preheader, hash_set <basic_block> *flag_bbs)
1944 unsigned i; 1775 {
1945 mem_ref_loc_p loc; 1776 basic_block new_bb, then_bb, old_dest;
1946 VEC (mem_ref_loc_p, heap) *locs = NULL; 1777 bool loop_has_only_one_exit;
1947 1778 edge then_old_edge, orig_ex = ex;
1948 get_all_locs_in_loop (loop, ref, &locs); 1779 gimple_stmt_iterator gsi;
1949 FOR_EACH_VEC_ELT (mem_ref_loc_p, locs, i, loc) 1780 gimple *stmt;
1950 rewrite_mem_ref_loc (loc, tmp_var); 1781 struct prev_flag_edges *prev_edges = (struct prev_flag_edges *) ex->aux;
1951 VEC_free (mem_ref_loc_p, heap, locs); 1782 bool irr = ex->flags & EDGE_IRREDUCIBLE_LOOP;
1952 } 1783
1953 1784 int freq_sum = 0;
1954 /* The name and the length of the currently generated variable 1785 profile_count count_sum = profile_count::zero ();
1955 for lsm. */ 1786 int nbbs = 0, ncount = 0;
1956 #define MAX_LSM_NAME_LENGTH 40 1787 profile_probability flag_probability = profile_probability::uninitialized ();
1957 static char lsm_tmp_name[MAX_LSM_NAME_LENGTH + 1]; 1788
1958 static int lsm_tmp_name_length; 1789 /* Flag is set in FLAG_BBS. Determine probability that flag will be true
1959 1790 at loop exit.
1960 /* Adds S to lsm_tmp_name. */ 1791
1961 1792 This code may look fancy, but it can not update profile very realistically
1962 static void 1793 because we do not know the probability that flag will be true at given
1963 lsm_tmp_name_add (const char *s) 1794 loop exit.
1964 { 1795
1965 int l = strlen (s) + lsm_tmp_name_length; 1796 We look for two interesting extremes
1966 if (l > MAX_LSM_NAME_LENGTH) 1797 - when exit is dominated by block setting the flag, we know it will
1967 return; 1798 always be true. This is a common case.
1968 1799 - when all blocks setting the flag have very low frequency we know
1969 strcpy (lsm_tmp_name + lsm_tmp_name_length, s); 1800 it will likely be false.
1970 lsm_tmp_name_length = l; 1801 In all other cases we default to 2/3 for flag being true. */
1971 } 1802
1972 1803 for (hash_set<basic_block>::iterator it = flag_bbs->begin ();
1973 /* Stores the name for temporary variable that replaces REF to 1804 it != flag_bbs->end (); ++it)
1974 lsm_tmp_name. */ 1805 {
1975 1806 freq_sum += (*it)->frequency;
1976 static void 1807 if ((*it)->count.initialized_p ())
1977 gen_lsm_tmp_name (tree ref) 1808 count_sum += (*it)->count, ncount ++;
1978 { 1809 if (dominated_by_p (CDI_DOMINATORS, ex->src, *it))
1979 const char *name; 1810 flag_probability = profile_probability::always ();
1980 1811 nbbs++;
1981 switch (TREE_CODE (ref)) 1812 }
1982 { 1813
1983 case MEM_REF: 1814 profile_probability cap = profile_probability::always ().apply_scale (2, 3);
1984 gen_lsm_tmp_name (TREE_OPERAND (ref, 0)); 1815
1985 lsm_tmp_name_add ("_"); 1816 if (flag_probability.initialized_p ())
1986 break; 1817 ;
1987 1818 else if (ncount == nbbs && count_sum > 0 && preheader->count () >= count_sum)
1988 case ADDR_EXPR: 1819 {
1989 gen_lsm_tmp_name (TREE_OPERAND (ref, 0)); 1820 flag_probability = count_sum.probability_in (preheader->count ());
1990 break; 1821 if (flag_probability > cap)
1991 1822 flag_probability = cap;
1992 case BIT_FIELD_REF: 1823 }
1993 case VIEW_CONVERT_EXPR: 1824 else if (freq_sum > 0 && EDGE_FREQUENCY (preheader) >= freq_sum)
1994 case ARRAY_RANGE_REF: 1825 {
1995 gen_lsm_tmp_name (TREE_OPERAND (ref, 0)); 1826 flag_probability = profile_probability::from_reg_br_prob_base
1996 break; 1827 (GCOV_COMPUTE_SCALE (freq_sum, EDGE_FREQUENCY (preheader)));
1997 1828 if (flag_probability > cap)
1998 case REALPART_EXPR: 1829 flag_probability = cap;
1999 gen_lsm_tmp_name (TREE_OPERAND (ref, 0)); 1830 }
2000 lsm_tmp_name_add ("_RE"); 1831 else
2001 break; 1832 flag_probability = cap;
2002 1833
2003 case IMAGPART_EXPR: 1834 /* ?? Insert store after previous store if applicable. See note
2004 gen_lsm_tmp_name (TREE_OPERAND (ref, 0)); 1835 below. */
2005 lsm_tmp_name_add ("_IM"); 1836 if (prev_edges)
2006 break; 1837 ex = prev_edges->append_cond_position;
2007 1838
2008 case COMPONENT_REF: 1839 loop_has_only_one_exit = single_pred_p (ex->dest);
2009 gen_lsm_tmp_name (TREE_OPERAND (ref, 0)); 1840
2010 lsm_tmp_name_add ("_"); 1841 if (loop_has_only_one_exit)
2011 name = get_name (TREE_OPERAND (ref, 1)); 1842 ex = split_block_after_labels (ex->dest);
2012 if (!name) 1843 else
2013 name = "F"; 1844 {
2014 lsm_tmp_name_add (name); 1845 for (gphi_iterator gpi = gsi_start_phis (ex->dest);
2015 break; 1846 !gsi_end_p (gpi); gsi_next (&gpi))
2016 1847 {
2017 case ARRAY_REF: 1848 gphi *phi = gpi.phi ();
2018 gen_lsm_tmp_name (TREE_OPERAND (ref, 0)); 1849 if (virtual_operand_p (gimple_phi_result (phi)))
2019 lsm_tmp_name_add ("_I"); 1850 continue;
2020 break; 1851
2021 1852 /* When the destination has a non-virtual PHI node with multiple
2022 case SSA_NAME: 1853 predecessors make sure we preserve the PHI structure by
2023 ref = SSA_NAME_VAR (ref); 1854 forcing a forwarder block so that hoisting of that PHI will
2024 /* Fallthru. */ 1855 still work. */
2025 1856 split_edge (ex);
2026 case VAR_DECL: 1857 break;
2027 case PARM_DECL: 1858 }
2028 name = get_name (ref); 1859 }
2029 if (!name) 1860
2030 name = "D"; 1861 old_dest = ex->dest;
2031 lsm_tmp_name_add (name); 1862 new_bb = split_edge (ex);
2032 break; 1863 then_bb = create_empty_bb (new_bb);
2033 1864 then_bb->frequency = flag_probability.apply (new_bb->frequency);
2034 case STRING_CST: 1865 then_bb->count = new_bb->count.apply_probability (flag_probability);
2035 lsm_tmp_name_add ("S"); 1866 if (irr)
2036 break; 1867 then_bb->flags = BB_IRREDUCIBLE_LOOP;
2037 1868 add_bb_to_loop (then_bb, new_bb->loop_father);
2038 case RESULT_DECL: 1869
2039 lsm_tmp_name_add ("R"); 1870 gsi = gsi_start_bb (new_bb);
2040 break; 1871 stmt = gimple_build_cond (NE_EXPR, flag, boolean_false_node,
2041 1872 NULL_TREE, NULL_TREE);
2042 case INTEGER_CST: 1873 gsi_insert_after (&gsi, stmt, GSI_CONTINUE_LINKING);
2043 /* Nothing. */ 1874
2044 break; 1875 gsi = gsi_start_bb (then_bb);
2045 1876 /* Insert actual store. */
2046 default: 1877 stmt = gimple_build_assign (unshare_expr (mem), tmp_var);
2047 gcc_unreachable (); 1878 gsi_insert_after (&gsi, stmt, GSI_CONTINUE_LINKING);
2048 } 1879
2049 } 1880 edge e1 = single_succ_edge (new_bb);
2050 1881 edge e2 = make_edge (new_bb, then_bb,
2051 /* Determines name for temporary variable that replaces REF. 1882 EDGE_TRUE_VALUE | (irr ? EDGE_IRREDUCIBLE_LOOP : 0));
2052 The name is accumulated into the lsm_tmp_name variable. 1883 e2->probability = flag_probability;
2053 N is added to the name of the temporary. */ 1884
2054 1885 e1->flags |= EDGE_FALSE_VALUE | (irr ? EDGE_IRREDUCIBLE_LOOP : 0);
2055 char * 1886 e1->flags &= ~EDGE_FALLTHRU;
2056 get_lsm_tmp_name (tree ref, unsigned n) 1887
2057 { 1888 e1->probability = flag_probability.invert ();
2058 char ns[2]; 1889
2059 1890 then_old_edge = make_single_succ_edge (then_bb, old_dest,
2060 lsm_tmp_name_length = 0; 1891 EDGE_FALLTHRU | (irr ? EDGE_IRREDUCIBLE_LOOP : 0));
2061 gen_lsm_tmp_name (ref); 1892
2062 lsm_tmp_name_add ("_lsm"); 1893 set_immediate_dominator (CDI_DOMINATORS, then_bb, new_bb);
2063 if (n < 10) 1894
2064 { 1895 if (prev_edges)
2065 ns[0] = '0' + n; 1896 {
2066 ns[1] = 0; 1897 basic_block prevbb = prev_edges->last_cond_fallthru->src;
2067 lsm_tmp_name_add (ns); 1898 redirect_edge_succ (prev_edges->last_cond_fallthru, new_bb);
2068 } 1899 set_immediate_dominator (CDI_DOMINATORS, new_bb, prevbb);
2069 return lsm_tmp_name; 1900 set_immediate_dominator (CDI_DOMINATORS, old_dest,
1901 recompute_dominator (CDI_DOMINATORS, old_dest));
1902 }
1903
1904 /* ?? Because stores may alias, they must happen in the exact
1905 sequence they originally happened. Save the position right after
1906 the (_lsm) store we just created so we can continue appending after
1907 it and maintain the original order. */
1908 {
1909 struct prev_flag_edges *p;
1910
1911 if (orig_ex->aux)
1912 orig_ex->aux = NULL;
1913 alloc_aux_for_edge (orig_ex, sizeof (struct prev_flag_edges));
1914 p = (struct prev_flag_edges *) orig_ex->aux;
1915 p->append_cond_position = then_old_edge;
1916 p->last_cond_fallthru = find_edge (new_bb, old_dest);
1917 orig_ex->aux = (void *) p;
1918 }
1919
1920 if (!loop_has_only_one_exit)
1921 for (gphi_iterator gpi = gsi_start_phis (old_dest);
1922 !gsi_end_p (gpi); gsi_next (&gpi))
1923 {
1924 gphi *phi = gpi.phi ();
1925 unsigned i;
1926
1927 for (i = 0; i < gimple_phi_num_args (phi); i++)
1928 if (gimple_phi_arg_edge (phi, i)->src == new_bb)
1929 {
1930 tree arg = gimple_phi_arg_def (phi, i);
1931 add_phi_arg (phi, arg, then_old_edge, UNKNOWN_LOCATION);
1932 update_stmt (phi);
1933 }
1934 }
1935 }
1936
1937 /* When REF is set on the location, set flag indicating the store. */
1938
1939 struct sm_set_flag_if_changed
1940 {
1941 sm_set_flag_if_changed (tree flag_, hash_set <basic_block> *bbs_)
1942 : flag (flag_), bbs (bbs_) {}
1943 bool operator () (mem_ref_loc *loc);
1944 tree flag;
1945 hash_set <basic_block> *bbs;
1946 };
1947
1948 bool
1949 sm_set_flag_if_changed::operator () (mem_ref_loc *loc)
1950 {
1951 /* Only set the flag for writes. */
1952 if (is_gimple_assign (loc->stmt)
1953 && gimple_assign_lhs_ptr (loc->stmt) == loc->ref)
1954 {
1955 gimple_stmt_iterator gsi = gsi_for_stmt (loc->stmt);
1956 gimple *stmt = gimple_build_assign (flag, boolean_true_node);
1957 gsi_insert_after (&gsi, stmt, GSI_CONTINUE_LINKING);
1958 bbs->add (gimple_bb (stmt));
1959 }
1960 return false;
1961 }
1962
1963 /* Helper function for execute_sm. On every location where REF is
1964 set, set an appropriate flag indicating the store. */
1965
1966 static tree
1967 execute_sm_if_changed_flag_set (struct loop *loop, im_mem_ref *ref,
1968 hash_set <basic_block> *bbs)
1969 {
1970 tree flag;
1971 char *str = get_lsm_tmp_name (ref->mem.ref, ~0, "_flag");
1972 flag = create_tmp_reg (boolean_type_node, str);
1973 for_all_locs_in_loop (loop, ref, sm_set_flag_if_changed (flag, bbs));
1974 return flag;
2070 } 1975 }
2071 1976
2072 /* Executes store motion of memory reference REF from LOOP. 1977 /* Executes store motion of memory reference REF from LOOP.
2073 Exits from the LOOP are stored in EXITS. The initialization of the 1978 Exits from the LOOP are stored in EXITS. The initialization of the
2074 temporary variable is put to the preheader of the loop, and assignments 1979 temporary variable is put to the preheader of the loop, and assignments
2075 to the reference from the temporary variable are emitted to exits. */ 1980 to the reference from the temporary variable are emitted to exits. */
2076 1981
2077 static void 1982 static void
2078 execute_sm (struct loop *loop, VEC (edge, heap) *exits, mem_ref_p ref) 1983 execute_sm (struct loop *loop, vec<edge> exits, im_mem_ref *ref)
2079 { 1984 {
2080 tree tmp_var; 1985 tree tmp_var, store_flag = NULL_TREE;
2081 unsigned i; 1986 unsigned i;
2082 gimple load, store; 1987 gassign *load;
2083 struct fmt_data fmt_data; 1988 struct fmt_data fmt_data;
2084 edge ex; 1989 edge ex;
2085 struct lim_aux_data *lim_data; 1990 struct lim_aux_data *lim_data;
1991 bool multi_threaded_model_p = false;
1992 gimple_stmt_iterator gsi;
1993 hash_set<basic_block> flag_bbs;
2086 1994
2087 if (dump_file && (dump_flags & TDF_DETAILS)) 1995 if (dump_file && (dump_flags & TDF_DETAILS))
2088 { 1996 {
2089 fprintf (dump_file, "Executing store motion of "); 1997 fprintf (dump_file, "Executing store motion of ");
2090 print_generic_expr (dump_file, ref->mem, 0); 1998 print_generic_expr (dump_file, ref->mem.ref);
2091 fprintf (dump_file, " from loop %d\n", loop->num); 1999 fprintf (dump_file, " from loop %d\n", loop->num);
2092 } 2000 }
2093 2001
2094 tmp_var = make_rename_temp (TREE_TYPE (ref->mem), 2002 tmp_var = create_tmp_reg (TREE_TYPE (ref->mem.ref),
2095 get_lsm_tmp_name (ref->mem, ~0)); 2003 get_lsm_tmp_name (ref->mem.ref, ~0));
2096 2004
2097 fmt_data.loop = loop; 2005 fmt_data.loop = loop;
2098 fmt_data.orig_loop = loop; 2006 fmt_data.orig_loop = loop;
2099 for_each_index (&ref->mem, force_move_till, &fmt_data); 2007 for_each_index (&ref->mem.ref, force_move_till, &fmt_data);
2008
2009 if (bb_in_transaction (loop_preheader_edge (loop)->src)
2010 || (! PARAM_VALUE (PARAM_ALLOW_STORE_DATA_RACES)
2011 && ! ref_always_accessed_p (loop, ref, true)))
2012 multi_threaded_model_p = true;
2013
2014 if (multi_threaded_model_p)
2015 store_flag = execute_sm_if_changed_flag_set (loop, ref, &flag_bbs);
2100 2016
2101 rewrite_mem_refs (loop, ref, tmp_var); 2017 rewrite_mem_refs (loop, ref, tmp_var);
2102 2018
2103 /* Emit the load & stores. */ 2019 /* Emit the load code on a random exit edge or into the latch if
2104 load = gimple_build_assign (tmp_var, unshare_expr (ref->mem)); 2020 the loop does not exit, so that we are sure it will be processed
2021 by move_computations after all dependencies. */
2022 gsi = gsi_for_stmt (first_mem_ref_loc (loop, ref)->stmt);
2023
2024 /* FIXME/TODO: For the multi-threaded variant, we could avoid this
2025 load altogether, since the store is predicated by a flag. We
2026 could, do the load only if it was originally in the loop. */
2027 load = gimple_build_assign (tmp_var, unshare_expr (ref->mem.ref));
2105 lim_data = init_lim_data (load); 2028 lim_data = init_lim_data (load);
2106 lim_data->max_loop = loop; 2029 lim_data->max_loop = loop;
2107 lim_data->tgt_loop = loop; 2030 lim_data->tgt_loop = loop;
2108 2031 gsi_insert_before (&gsi, load, GSI_SAME_STMT);
2109 /* Put this into the latch, so that we are sure it will be processed after 2032
2110 all dependencies. */ 2033 if (multi_threaded_model_p)
2111 gsi_insert_on_edge (loop_latch_edge (loop), load); 2034 {
2112 2035 load = gimple_build_assign (store_flag, boolean_false_node);
2113 FOR_EACH_VEC_ELT (edge, exits, i, ex) 2036 lim_data = init_lim_data (load);
2114 { 2037 lim_data->max_loop = loop;
2115 store = gimple_build_assign (unshare_expr (ref->mem), tmp_var); 2038 lim_data->tgt_loop = loop;
2116 gsi_insert_on_edge (ex, store); 2039 gsi_insert_before (&gsi, load, GSI_SAME_STMT);
2117 } 2040 }
2041
2042 /* Sink the store to every exit from the loop. */
2043 FOR_EACH_VEC_ELT (exits, i, ex)
2044 if (!multi_threaded_model_p)
2045 {
2046 gassign *store;
2047 store = gimple_build_assign (unshare_expr (ref->mem.ref), tmp_var);
2048 gsi_insert_on_edge (ex, store);
2049 }
2050 else
2051 execute_sm_if_changed (ex, ref->mem.ref, tmp_var, store_flag,
2052 loop_preheader_edge (loop), &flag_bbs);
2118 } 2053 }
2119 2054
2120 /* Hoists memory references MEM_REFS out of LOOP. EXITS is the list of exit 2055 /* Hoists memory references MEM_REFS out of LOOP. EXITS is the list of exit
2121 edges of the LOOP. */ 2056 edges of the LOOP. */
2122 2057
2123 static void 2058 static void
2124 hoist_memory_references (struct loop *loop, bitmap mem_refs, 2059 hoist_memory_references (struct loop *loop, bitmap mem_refs,
2125 VEC (edge, heap) *exits) 2060 vec<edge> exits)
2126 { 2061 {
2127 mem_ref_p ref; 2062 im_mem_ref *ref;
2128 unsigned i; 2063 unsigned i;
2129 bitmap_iterator bi; 2064 bitmap_iterator bi;
2130 2065
2131 EXECUTE_IF_SET_IN_BITMAP (mem_refs, 0, i, bi) 2066 EXECUTE_IF_SET_IN_BITMAP (mem_refs, 0, i, bi)
2132 { 2067 {
2133 ref = VEC_index (mem_ref_p, memory_accesses.refs_list, i); 2068 ref = memory_accesses.refs_list[i];
2134 execute_sm (loop, exits, ref); 2069 execute_sm (loop, exits, ref);
2135 } 2070 }
2071 }
2072
2073 struct ref_always_accessed
2074 {
2075 ref_always_accessed (struct loop *loop_, bool stored_p_)
2076 : loop (loop_), stored_p (stored_p_) {}
2077 bool operator () (mem_ref_loc *loc);
2078 struct loop *loop;
2079 bool stored_p;
2080 };
2081
2082 bool
2083 ref_always_accessed::operator () (mem_ref_loc *loc)
2084 {
2085 struct loop *must_exec;
2086
2087 if (!get_lim_data (loc->stmt))
2088 return false;
2089
2090 /* If we require an always executed store make sure the statement
2091 stores to the reference. */
2092 if (stored_p)
2093 {
2094 tree lhs = gimple_get_lhs (loc->stmt);
2095 if (!lhs
2096 || lhs != *loc->ref)
2097 return false;
2098 }
2099
2100 must_exec = get_lim_data (loc->stmt)->always_executed_in;
2101 if (!must_exec)
2102 return false;
2103
2104 if (must_exec == loop
2105 || flow_loop_nested_p (must_exec, loop))
2106 return true;
2107
2108 return false;
2136 } 2109 }
2137 2110
2138 /* Returns true if REF is always accessed in LOOP. If STORED_P is true 2111 /* Returns true if REF is always accessed in LOOP. If STORED_P is true
2139 make sure REF is always stored to in LOOP. */ 2112 make sure REF is always stored to in LOOP. */
2140 2113
2141 static bool 2114 static bool
2142 ref_always_accessed_p (struct loop *loop, mem_ref_p ref, bool stored_p) 2115 ref_always_accessed_p (struct loop *loop, im_mem_ref *ref, bool stored_p)
2143 { 2116 {
2144 VEC (mem_ref_loc_p, heap) *locs = NULL; 2117 return for_all_locs_in_loop (loop, ref,
2145 unsigned i; 2118 ref_always_accessed (loop, stored_p));
2146 mem_ref_loc_p loc;
2147 bool ret = false;
2148 struct loop *must_exec;
2149 tree base;
2150
2151 base = get_base_address (ref->mem);
2152 if (INDIRECT_REF_P (base)
2153 || TREE_CODE (base) == MEM_REF)
2154 base = TREE_OPERAND (base, 0);
2155
2156 get_all_locs_in_loop (loop, ref, &locs);
2157 FOR_EACH_VEC_ELT (mem_ref_loc_p, locs, i, loc)
2158 {
2159 if (!get_lim_data (loc->stmt))
2160 continue;
2161
2162 /* If we require an always executed store make sure the statement
2163 stores to the reference. */
2164 if (stored_p)
2165 {
2166 tree lhs;
2167 if (!gimple_get_lhs (loc->stmt))
2168 continue;
2169 lhs = get_base_address (gimple_get_lhs (loc->stmt));
2170 if (!lhs)
2171 continue;
2172 if (INDIRECT_REF_P (lhs)
2173 || TREE_CODE (lhs) == MEM_REF)
2174 lhs = TREE_OPERAND (lhs, 0);
2175 if (lhs != base)
2176 continue;
2177 }
2178
2179 must_exec = get_lim_data (loc->stmt)->always_executed_in;
2180 if (!must_exec)
2181 continue;
2182
2183 if (must_exec == loop
2184 || flow_loop_nested_p (must_exec, loop))
2185 {
2186 ret = true;
2187 break;
2188 }
2189 }
2190 VEC_free (mem_ref_loc_p, heap, locs);
2191
2192 return ret;
2193 } 2119 }
2194 2120
2195 /* Returns true if REF1 and REF2 are independent. */ 2121 /* Returns true if REF1 and REF2 are independent. */
2196 2122
2197 static bool 2123 static bool
2198 refs_independent_p (mem_ref_p ref1, mem_ref_p ref2) 2124 refs_independent_p (im_mem_ref *ref1, im_mem_ref *ref2)
2199 { 2125 {
2200 if (ref1 == ref2 2126 if (ref1 == ref2)
2201 || bitmap_bit_p (ref1->indep_ref, ref2->id))
2202 return true; 2127 return true;
2203 if (bitmap_bit_p (ref1->dep_ref, ref2->id))
2204 return false;
2205 2128
2206 if (dump_file && (dump_flags & TDF_DETAILS)) 2129 if (dump_file && (dump_flags & TDF_DETAILS))
2207 fprintf (dump_file, "Querying dependency of refs %u and %u: ", 2130 fprintf (dump_file, "Querying dependency of refs %u and %u: ",
2208 ref1->id, ref2->id); 2131 ref1->id, ref2->id);
2209 2132
2210 if (mem_refs_may_alias_p (ref1->mem, ref2->mem, 2133 if (mem_refs_may_alias_p (ref1, ref2, &memory_accesses.ttae_cache))
2211 &memory_accesses.ttae_cache)) 2134 {
2212 {
2213 bitmap_set_bit (ref1->dep_ref, ref2->id);
2214 bitmap_set_bit (ref2->dep_ref, ref1->id);
2215 if (dump_file && (dump_flags & TDF_DETAILS)) 2135 if (dump_file && (dump_flags & TDF_DETAILS))
2216 fprintf (dump_file, "dependent.\n"); 2136 fprintf (dump_file, "dependent.\n");
2217 return false; 2137 return false;
2218 } 2138 }
2219 else 2139 else
2220 { 2140 {
2221 bitmap_set_bit (ref1->indep_ref, ref2->id);
2222 bitmap_set_bit (ref2->indep_ref, ref1->id);
2223 if (dump_file && (dump_flags & TDF_DETAILS)) 2141 if (dump_file && (dump_flags & TDF_DETAILS))
2224 fprintf (dump_file, "independent.\n"); 2142 fprintf (dump_file, "independent.\n");
2225 return true; 2143 return true;
2226 } 2144 }
2227 } 2145 }
2228 2146
2229 /* Records the information whether REF is independent in LOOP (according 2147 /* Mark REF dependent on stores or loads (according to STORED_P) in LOOP
2230 to INDEP). */ 2148 and its super-loops. */
2231 2149
2232 static void 2150 static void
2233 record_indep_loop (struct loop *loop, mem_ref_p ref, bool indep) 2151 record_dep_loop (struct loop *loop, im_mem_ref *ref, bool stored_p)
2234 { 2152 {
2235 if (indep) 2153 /* We can propagate dependent-in-loop bits up the loop
2236 bitmap_set_bit (ref->indep_loop, loop->num); 2154 hierarchy to all outer loops. */
2155 while (loop != current_loops->tree_root
2156 && bitmap_set_bit (&ref->dep_loop, LOOP_DEP_BIT (loop->num, stored_p)))
2157 loop = loop_outer (loop);
2158 }
2159
2160 /* Returns true if REF is independent on all other memory
2161 references in LOOP. REF_LOOP is where REF is accessed, SAFELEN is the
2162 safelen to apply. */
2163
2164 static bool
2165 ref_indep_loop_p_1 (int safelen, struct loop *loop, im_mem_ref *ref,
2166 bool stored_p, struct loop *ref_loop)
2167 {
2168 stored_p |= (ref->stored && bitmap_bit_p (ref->stored, loop->num));
2169
2170 if (loop->safelen > safelen
2171 /* Check that REF is accessed inside LOOP. */
2172 && (loop == ref_loop || flow_loop_nested_p (loop, ref_loop)))
2173 safelen = loop->safelen;
2174
2175 bool indep_p = true;
2176 bitmap refs_to_check;
2177
2178 if (stored_p)
2179 refs_to_check = &memory_accesses.refs_in_loop[loop->num];
2237 else 2180 else
2238 bitmap_set_bit (ref->dep_loop, loop->num); 2181 refs_to_check = &memory_accesses.refs_stored_in_loop[loop->num];
2239 } 2182
2240 2183 if (bitmap_bit_p (refs_to_check, UNANALYZABLE_MEM_ID))
2241 /* Returns true if REF is independent on all other memory references in 2184 indep_p = false;
2242 LOOP. */ 2185 else if (safelen > 1)
2243 2186 {
2244 static bool 2187 if (dump_file && (dump_flags & TDF_DETAILS))
2245 ref_indep_loop_p_1 (struct loop *loop, mem_ref_p ref) 2188 {
2246 { 2189 fprintf (dump_file,"REF is independent due to safelen %d\n",
2247 bitmap clobbers, refs_to_check, refs; 2190 safelen);
2248 unsigned i; 2191 print_generic_expr (dump_file, ref->mem.ref, TDF_SLIM);
2249 bitmap_iterator bi; 2192 fprintf (dump_file, "\n");
2250 bool ret = true, stored = bitmap_bit_p (ref->stored, loop->num); 2193 }
2251 htab_t map; 2194
2252 mem_ref_p aref; 2195 /* We need to recurse to properly handle UNANALYZABLE_MEM_ID. */
2253 2196 struct loop *inner = loop->inner;
2254 /* If the reference is clobbered, it is not independent. */ 2197 while (inner)
2255 clobbers = VEC_index (bitmap, memory_accesses.clobbered_vops, loop->num); 2198 {
2256 if (bitmap_intersect_p (ref->vops, clobbers)) 2199 if (!ref_indep_loop_p_1 (safelen, inner, ref, stored_p, ref_loop))
2257 return false; 2200 {
2258 2201 indep_p = false;
2259 refs_to_check = BITMAP_ALLOC (NULL); 2202 break;
2260 2203 }
2261 map = VEC_index (htab_t, memory_accesses.vop_ref_map, loop->num); 2204 inner = inner->next;
2262 EXECUTE_IF_AND_COMPL_IN_BITMAP (ref->vops, clobbers, 0, i, bi) 2205 }
2263 { 2206
2264 if (stored) 2207 /* Avoid caching here as safelen depends on context and refs
2265 refs = get_vop_accesses (map, i); 2208 are shared between different contexts. */
2266 else 2209 return indep_p;
2267 refs = get_vop_stores (map, i); 2210 }
2268 2211 else
2269 bitmap_ior_into (refs_to_check, refs); 2212 {
2270 } 2213 if (bitmap_bit_p (&ref->indep_loop, LOOP_DEP_BIT (loop->num, stored_p)))
2271 2214 return true;
2272 EXECUTE_IF_SET_IN_BITMAP (refs_to_check, 0, i, bi) 2215 if (bitmap_bit_p (&ref->dep_loop, LOOP_DEP_BIT (loop->num, stored_p)))
2273 { 2216 return false;
2274 aref = VEC_index (mem_ref_p, memory_accesses.refs_list, i); 2217
2275 if (!refs_independent_p (ref, aref)) 2218 struct loop *inner = loop->inner;
2276 { 2219 while (inner)
2277 ret = false; 2220 {
2278 record_indep_loop (loop, aref, false); 2221 if (!ref_indep_loop_p_1 (safelen, inner, ref, stored_p, ref_loop))
2279 break; 2222 {
2280 } 2223 indep_p = false;
2281 } 2224 break;
2282 2225 }
2283 BITMAP_FREE (refs_to_check); 2226 inner = inner->next;
2284 return ret; 2227 }
2285 } 2228
2286 2229 if (indep_p)
2287 /* Returns true if REF is independent on all other memory references in 2230 {
2288 LOOP. Wrapper over ref_indep_loop_p_1, caching its results. */ 2231 unsigned i;
2289 2232 bitmap_iterator bi;
2290 static bool 2233 EXECUTE_IF_SET_IN_BITMAP (refs_to_check, 0, i, bi)
2291 ref_indep_loop_p (struct loop *loop, mem_ref_p ref) 2234 {
2292 { 2235 im_mem_ref *aref = memory_accesses.refs_list[i];
2293 bool ret; 2236 if (!refs_independent_p (ref, aref))
2294 2237 {
2295 if (bitmap_bit_p (ref->indep_loop, loop->num)) 2238 indep_p = false;
2296 return true; 2239 break;
2297 if (bitmap_bit_p (ref->dep_loop, loop->num)) 2240 }
2298 return false; 2241 }
2299 2242 }
2300 ret = ref_indep_loop_p_1 (loop, ref); 2243 }
2301 2244
2302 if (dump_file && (dump_flags & TDF_DETAILS)) 2245 if (dump_file && (dump_flags & TDF_DETAILS))
2303 fprintf (dump_file, "Querying dependencies of ref %u in loop %d: %s\n", 2246 fprintf (dump_file, "Querying dependencies of ref %u in loop %d: %s\n",
2304 ref->id, loop->num, ret ? "independent" : "dependent"); 2247 ref->id, loop->num, indep_p ? "independent" : "dependent");
2305 2248
2306 record_indep_loop (loop, ref, ret); 2249 /* Record the computed result in the cache. */
2307 2250 if (indep_p)
2308 return ret; 2251 {
2252 if (bitmap_set_bit (&ref->indep_loop, LOOP_DEP_BIT (loop->num, stored_p))
2253 && stored_p)
2254 {
2255 /* If it's independend against all refs then it's independent
2256 against stores, too. */
2257 bitmap_set_bit (&ref->indep_loop, LOOP_DEP_BIT (loop->num, false));
2258 }
2259 }
2260 else
2261 {
2262 record_dep_loop (loop, ref, stored_p);
2263 if (!stored_p)
2264 {
2265 /* If it's dependent against stores it's dependent against
2266 all refs, too. */
2267 record_dep_loop (loop, ref, true);
2268 }
2269 }
2270
2271 return indep_p;
2272 }
2273
2274 /* Returns true if REF is independent on all other memory references in
2275 LOOP. REF_LOOP is the loop where REF is accessed. */
2276
2277 static bool
2278 ref_indep_loop_p (struct loop *loop, im_mem_ref *ref, struct loop *ref_loop)
2279 {
2280 gcc_checking_assert (MEM_ANALYZABLE (ref));
2281
2282 return ref_indep_loop_p_1 (0, loop, ref, false, ref_loop);
2309 } 2283 }
2310 2284
2311 /* Returns true if we can perform store motion of REF from LOOP. */ 2285 /* Returns true if we can perform store motion of REF from LOOP. */
2312 2286
2313 static bool 2287 static bool
2314 can_sm_ref_p (struct loop *loop, mem_ref_p ref) 2288 can_sm_ref_p (struct loop *loop, im_mem_ref *ref)
2315 { 2289 {
2316 tree base; 2290 tree base;
2317 2291
2318 /* Unless the reference is stored in the loop, there is nothing to do. */ 2292 /* Can't hoist unanalyzable refs. */
2319 if (!bitmap_bit_p (ref->stored, loop->num)) 2293 if (!MEM_ANALYZABLE (ref))
2320 return false; 2294 return false;
2321 2295
2322 /* It should be movable. */ 2296 /* It should be movable. */
2323 if (!is_gimple_reg_type (TREE_TYPE (ref->mem)) 2297 if (!is_gimple_reg_type (TREE_TYPE (ref->mem.ref))
2324 || TREE_THIS_VOLATILE (ref->mem) 2298 || TREE_THIS_VOLATILE (ref->mem.ref)
2325 || !for_each_index (&ref->mem, may_move_till, loop)) 2299 || !for_each_index (&ref->mem.ref, may_move_till, loop))
2326 return false; 2300 return false;
2327 2301
2328 /* If it can throw fail, we do not properly update EH info. */ 2302 /* If it can throw fail, we do not properly update EH info. */
2329 if (tree_could_throw_p (ref->mem)) 2303 if (tree_could_throw_p (ref->mem.ref))
2330 return false; 2304 return false;
2331 2305
2332 /* If it can trap, it must be always executed in LOOP. 2306 /* If it can trap, it must be always executed in LOOP.
2333 Readonly memory locations may trap when storing to them, but 2307 Readonly memory locations may trap when storing to them, but
2334 tree_could_trap_p is a predicate for rvalues, so check that 2308 tree_could_trap_p is a predicate for rvalues, so check that
2335 explicitly. */ 2309 explicitly. */
2336 base = get_base_address (ref->mem); 2310 base = get_base_address (ref->mem.ref);
2337 if ((tree_could_trap_p (ref->mem) 2311 if ((tree_could_trap_p (ref->mem.ref)
2338 || (DECL_P (base) && TREE_READONLY (base))) 2312 || (DECL_P (base) && TREE_READONLY (base)))
2339 && !ref_always_accessed_p (loop, ref, true)) 2313 && !ref_always_accessed_p (loop, ref, true))
2340 return false; 2314 return false;
2341 2315
2342 /* And it must be independent on all other memory references 2316 /* And it must be independent on all other memory references
2343 in LOOP. */ 2317 in LOOP. */
2344 if (!ref_indep_loop_p (loop, ref)) 2318 if (!ref_indep_loop_p (loop, ref, loop))
2345 return false; 2319 return false;
2346 2320
2347 return true; 2321 return true;
2348 } 2322 }
2349 2323
2352 motion was performed in one of the outer loops. */ 2326 motion was performed in one of the outer loops. */
2353 2327
2354 static void 2328 static void
2355 find_refs_for_sm (struct loop *loop, bitmap sm_executed, bitmap refs_to_sm) 2329 find_refs_for_sm (struct loop *loop, bitmap sm_executed, bitmap refs_to_sm)
2356 { 2330 {
2357 bitmap refs = VEC_index (bitmap, memory_accesses.all_refs_in_loop, 2331 bitmap refs = &memory_accesses.all_refs_stored_in_loop[loop->num];
2358 loop->num);
2359 unsigned i; 2332 unsigned i;
2360 bitmap_iterator bi; 2333 bitmap_iterator bi;
2361 mem_ref_p ref; 2334 im_mem_ref *ref;
2362 2335
2363 EXECUTE_IF_AND_COMPL_IN_BITMAP (refs, sm_executed, 0, i, bi) 2336 EXECUTE_IF_AND_COMPL_IN_BITMAP (refs, sm_executed, 0, i, bi)
2364 { 2337 {
2365 ref = VEC_index (mem_ref_p, memory_accesses.refs_list, i); 2338 ref = memory_accesses.refs_list[i];
2366 if (can_sm_ref_p (loop, ref)) 2339 if (can_sm_ref_p (loop, ref))
2367 bitmap_set_bit (refs_to_sm, i); 2340 bitmap_set_bit (refs_to_sm, i);
2368 } 2341 }
2369 } 2342 }
2370 2343
2372 for a store motion optimization (i.e. whether we can insert statement 2345 for a store motion optimization (i.e. whether we can insert statement
2373 on its exits). */ 2346 on its exits). */
2374 2347
2375 static bool 2348 static bool
2376 loop_suitable_for_sm (struct loop *loop ATTRIBUTE_UNUSED, 2349 loop_suitable_for_sm (struct loop *loop ATTRIBUTE_UNUSED,
2377 VEC (edge, heap) *exits) 2350 vec<edge> exits)
2378 { 2351 {
2379 unsigned i; 2352 unsigned i;
2380 edge ex; 2353 edge ex;
2381 2354
2382 FOR_EACH_VEC_ELT (edge, exits, i, ex) 2355 FOR_EACH_VEC_ELT (exits, i, ex)
2383 if (ex->flags & (EDGE_ABNORMAL | EDGE_EH)) 2356 if (ex->flags & (EDGE_ABNORMAL | EDGE_EH))
2384 return false; 2357 return false;
2385 2358
2386 return true; 2359 return true;
2387 } 2360 }
2391 store motion was executed in one of the outer loops. */ 2364 store motion was executed in one of the outer loops. */
2392 2365
2393 static void 2366 static void
2394 store_motion_loop (struct loop *loop, bitmap sm_executed) 2367 store_motion_loop (struct loop *loop, bitmap sm_executed)
2395 { 2368 {
2396 VEC (edge, heap) *exits = get_loop_exit_edges (loop); 2369 vec<edge> exits = get_loop_exit_edges (loop);
2397 struct loop *subloop; 2370 struct loop *subloop;
2398 bitmap sm_in_loop = BITMAP_ALLOC (NULL); 2371 bitmap sm_in_loop = BITMAP_ALLOC (&lim_bitmap_obstack);
2399 2372
2400 if (loop_suitable_for_sm (loop, exits)) 2373 if (loop_suitable_for_sm (loop, exits))
2401 { 2374 {
2402 find_refs_for_sm (loop, sm_executed, sm_in_loop); 2375 find_refs_for_sm (loop, sm_executed, sm_in_loop);
2403 hoist_memory_references (loop, sm_in_loop, exits); 2376 hoist_memory_references (loop, sm_in_loop, exits);
2404 } 2377 }
2405 VEC_free (edge, heap, exits); 2378 exits.release ();
2406 2379
2407 bitmap_ior_into (sm_executed, sm_in_loop); 2380 bitmap_ior_into (sm_executed, sm_in_loop);
2408 for (subloop = loop->inner; subloop != NULL; subloop = subloop->next) 2381 for (subloop = loop->inner; subloop != NULL; subloop = subloop->next)
2409 store_motion_loop (subloop, sm_executed); 2382 store_motion_loop (subloop, sm_executed);
2410 bitmap_and_compl_into (sm_executed, sm_in_loop); 2383 bitmap_and_compl_into (sm_executed, sm_in_loop);
2416 2389
2417 static void 2390 static void
2418 store_motion (void) 2391 store_motion (void)
2419 { 2392 {
2420 struct loop *loop; 2393 struct loop *loop;
2421 bitmap sm_executed = BITMAP_ALLOC (NULL); 2394 bitmap sm_executed = BITMAP_ALLOC (&lim_bitmap_obstack);
2422 2395
2423 for (loop = current_loops->tree_root->inner; loop != NULL; loop = loop->next) 2396 for (loop = current_loops->tree_root->inner; loop != NULL; loop = loop->next)
2424 store_motion_loop (loop, sm_executed); 2397 store_motion_loop (loop, sm_executed);
2425 2398
2426 BITMAP_FREE (sm_executed); 2399 BITMAP_FREE (sm_executed);
2431 for each such basic block bb records the outermost loop for that execution 2404 for each such basic block bb records the outermost loop for that execution
2432 of its header implies execution of bb. CONTAINS_CALL is the bitmap of 2405 of its header implies execution of bb. CONTAINS_CALL is the bitmap of
2433 blocks that contain a nonpure call. */ 2406 blocks that contain a nonpure call. */
2434 2407
2435 static void 2408 static void
2436 fill_always_executed_in (struct loop *loop, sbitmap contains_call) 2409 fill_always_executed_in_1 (struct loop *loop, sbitmap contains_call)
2437 { 2410 {
2438 basic_block bb = NULL, *bbs, last = NULL; 2411 basic_block bb = NULL, *bbs, last = NULL;
2439 unsigned i; 2412 unsigned i;
2440 edge e; 2413 edge e;
2441 struct loop *inn_loop = loop; 2414 struct loop *inn_loop = loop;
2442 2415
2443 if (!loop->header->aux) 2416 if (ALWAYS_EXECUTED_IN (loop->header) == NULL)
2444 { 2417 {
2445 bbs = get_loop_body_in_dom_order (loop); 2418 bbs = get_loop_body_in_dom_order (loop);
2446 2419
2447 for (i = 0; i < loop->num_nodes; i++) 2420 for (i = 0; i < loop->num_nodes; i++)
2448 { 2421 {
2450 bb = bbs[i]; 2423 bb = bbs[i];
2451 2424
2452 if (dominated_by_p (CDI_DOMINATORS, loop->latch, bb)) 2425 if (dominated_by_p (CDI_DOMINATORS, loop->latch, bb))
2453 last = bb; 2426 last = bb;
2454 2427
2455 if (TEST_BIT (contains_call, bb->index)) 2428 if (bitmap_bit_p (contains_call, bb->index))
2456 break; 2429 break;
2457 2430
2458 FOR_EACH_EDGE (e, ei, bb->succs) 2431 FOR_EACH_EDGE (e, ei, bb->succs)
2459 if (!flow_bb_inside_loop_p (loop, e->dest)) 2432 {
2460 break; 2433 /* If there is an exit from this BB. */
2434 if (!flow_bb_inside_loop_p (loop, e->dest))
2435 break;
2436 /* Or we enter a possibly non-finite loop. */
2437 if (flow_loop_nested_p (bb->loop_father,
2438 e->dest->loop_father)
2439 && ! finite_loop_p (e->dest->loop_father))
2440 break;
2441 }
2461 if (e) 2442 if (e)
2462 break; 2443 break;
2463 2444
2464 /* A loop might be infinite (TODO use simple loop analysis 2445 /* A loop might be infinite (TODO use simple loop analysis
2465 to disprove this if possible). */ 2446 to disprove this if possible). */
2480 } 2461 }
2481 } 2462 }
2482 2463
2483 while (1) 2464 while (1)
2484 { 2465 {
2485 last->aux = loop; 2466 SET_ALWAYS_EXECUTED_IN (last, loop);
2486 if (last == loop->header) 2467 if (last == loop->header)
2487 break; 2468 break;
2488 last = get_immediate_dominator (CDI_DOMINATORS, last); 2469 last = get_immediate_dominator (CDI_DOMINATORS, last);
2489 } 2470 }
2490 2471
2491 free (bbs); 2472 free (bbs);
2492 } 2473 }
2493 2474
2494 for (loop = loop->inner; loop; loop = loop->next) 2475 for (loop = loop->inner; loop; loop = loop->next)
2495 fill_always_executed_in (loop, contains_call); 2476 fill_always_executed_in_1 (loop, contains_call);
2496 } 2477 }
2478
2479 /* Fills ALWAYS_EXECUTED_IN information for basic blocks, i.e.
2480 for each such basic block bb records the outermost loop for that execution
2481 of its header implies execution of bb. */
2482
2483 static void
2484 fill_always_executed_in (void)
2485 {
2486 basic_block bb;
2487 struct loop *loop;
2488
2489 auto_sbitmap contains_call (last_basic_block_for_fn (cfun));
2490 bitmap_clear (contains_call);
2491 FOR_EACH_BB_FN (bb, cfun)
2492 {
2493 gimple_stmt_iterator gsi;
2494 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
2495 {
2496 if (nonpure_call_p (gsi_stmt (gsi)))
2497 break;
2498 }
2499
2500 if (!gsi_end_p (gsi))
2501 bitmap_set_bit (contains_call, bb->index);
2502 }
2503
2504 for (loop = current_loops->tree_root->inner; loop; loop = loop->next)
2505 fill_always_executed_in_1 (loop, contains_call);
2506 }
2507
2497 2508
2498 /* Compute the global information needed by the loop invariant motion pass. */ 2509 /* Compute the global information needed by the loop invariant motion pass. */
2499 2510
2500 static void 2511 static void
2501 tree_ssa_lim_initialize (void) 2512 tree_ssa_lim_initialize (void)
2502 { 2513 {
2503 sbitmap contains_call = sbitmap_alloc (last_basic_block);
2504 gimple_stmt_iterator bsi;
2505 struct loop *loop; 2514 struct loop *loop;
2506 basic_block bb; 2515 unsigned i;
2507 2516
2508 sbitmap_zero (contains_call); 2517 bitmap_obstack_initialize (&lim_bitmap_obstack);
2509 FOR_EACH_BB (bb) 2518 gcc_obstack_init (&mem_ref_obstack);
2510 { 2519 lim_aux_data_map = new hash_map<gimple *, lim_aux_data *>;
2511 for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi)) 2520
2512 { 2521 if (flag_tm)
2513 if (nonpure_call_p (gsi_stmt (bsi))) 2522 compute_transaction_bits ();
2514 break; 2523
2515 } 2524 alloc_aux_for_edges (0);
2516 2525
2517 if (!gsi_end_p (bsi)) 2526 memory_accesses.refs = new hash_table<mem_ref_hasher> (100);
2518 SET_BIT (contains_call, bb->index); 2527 memory_accesses.refs_list.create (100);
2519 } 2528 /* Allocate a special, unanalyzable mem-ref with ID zero. */
2520 2529 memory_accesses.refs_list.quick_push
2521 for (loop = current_loops->tree_root->inner; loop; loop = loop->next) 2530 (mem_ref_alloc (error_mark_node, 0, UNANALYZABLE_MEM_ID));
2522 fill_always_executed_in (loop, contains_call); 2531
2523 2532 memory_accesses.refs_in_loop.create (number_of_loops (cfun));
2524 sbitmap_free (contains_call); 2533 memory_accesses.refs_in_loop.quick_grow (number_of_loops (cfun));
2525 2534 memory_accesses.refs_stored_in_loop.create (number_of_loops (cfun));
2526 lim_aux_data_map = pointer_map_create (); 2535 memory_accesses.refs_stored_in_loop.quick_grow (number_of_loops (cfun));
2536 memory_accesses.all_refs_stored_in_loop.create (number_of_loops (cfun));
2537 memory_accesses.all_refs_stored_in_loop.quick_grow (number_of_loops (cfun));
2538
2539 for (i = 0; i < number_of_loops (cfun); i++)
2540 {
2541 bitmap_initialize (&memory_accesses.refs_in_loop[i],
2542 &lim_bitmap_obstack);
2543 bitmap_initialize (&memory_accesses.refs_stored_in_loop[i],
2544 &lim_bitmap_obstack);
2545 bitmap_initialize (&memory_accesses.all_refs_stored_in_loop[i],
2546 &lim_bitmap_obstack);
2547 }
2548
2549 memory_accesses.ttae_cache = NULL;
2550
2551 /* Initialize bb_loop_postorder with a mapping from loop->num to
2552 its postorder index. */
2553 i = 0;
2554 bb_loop_postorder = XNEWVEC (unsigned, number_of_loops (cfun));
2555 FOR_EACH_LOOP (loop, LI_FROM_INNERMOST)
2556 bb_loop_postorder[loop->num] = i++;
2527 } 2557 }
2528 2558
2529 /* Cleans up after the invariant motion pass. */ 2559 /* Cleans up after the invariant motion pass. */
2530 2560
2531 static void 2561 static void
2532 tree_ssa_lim_finalize (void) 2562 tree_ssa_lim_finalize (void)
2533 { 2563 {
2534 basic_block bb; 2564 basic_block bb;
2535 unsigned i; 2565 unsigned i;
2536 bitmap b; 2566 im_mem_ref *ref;
2537 htab_t h; 2567
2538 2568 free_aux_for_edges ();
2539 FOR_EACH_BB (bb) 2569
2540 { 2570 FOR_EACH_BB_FN (bb, cfun)
2541 bb->aux = NULL; 2571 SET_ALWAYS_EXECUTED_IN (bb, NULL);
2542 } 2572
2543 2573 bitmap_obstack_release (&lim_bitmap_obstack);
2544 pointer_map_destroy (lim_aux_data_map); 2574 delete lim_aux_data_map;
2545 2575
2546 VEC_free (mem_ref_p, heap, memory_accesses.refs_list); 2576 delete memory_accesses.refs;
2547 htab_delete (memory_accesses.refs); 2577 memory_accesses.refs = NULL;
2548 2578
2549 FOR_EACH_VEC_ELT (bitmap, memory_accesses.refs_in_loop, i, b) 2579 FOR_EACH_VEC_ELT (memory_accesses.refs_list, i, ref)
2550 BITMAP_FREE (b); 2580 memref_free (ref);
2551 VEC_free (bitmap, heap, memory_accesses.refs_in_loop); 2581 memory_accesses.refs_list.release ();
2552 2582 obstack_free (&mem_ref_obstack, NULL);
2553 FOR_EACH_VEC_ELT (bitmap, memory_accesses.all_refs_in_loop, i, b) 2583
2554 BITMAP_FREE (b); 2584 memory_accesses.refs_in_loop.release ();
2555 VEC_free (bitmap, heap, memory_accesses.all_refs_in_loop); 2585 memory_accesses.refs_stored_in_loop.release ();
2556 2586 memory_accesses.all_refs_stored_in_loop.release ();
2557 FOR_EACH_VEC_ELT (bitmap, memory_accesses.clobbered_vops, i, b)
2558 BITMAP_FREE (b);
2559 VEC_free (bitmap, heap, memory_accesses.clobbered_vops);
2560
2561 FOR_EACH_VEC_ELT (htab_t, memory_accesses.vop_ref_map, i, h)
2562 htab_delete (h);
2563 VEC_free (htab_t, heap, memory_accesses.vop_ref_map);
2564 2587
2565 if (memory_accesses.ttae_cache) 2588 if (memory_accesses.ttae_cache)
2566 pointer_map_destroy (memory_accesses.ttae_cache); 2589 free_affine_expand_cache (&memory_accesses.ttae_cache);
2590
2591 free (bb_loop_postorder);
2567 } 2592 }
2568 2593
2569 /* Moves invariants from loops. Only "expensive" invariants are moved out -- 2594 /* Moves invariants from loops. Only "expensive" invariants are moved out --
2570 i.e. those that are likely to be win regardless of the register pressure. */ 2595 i.e. those that are likely to be win regardless of the register pressure. */
2571 2596
2572 unsigned int 2597 static unsigned int
2573 tree_ssa_lim (void) 2598 tree_ssa_lim (void)
2574 { 2599 {
2575 unsigned int todo; 2600 unsigned int todo;
2576 2601
2577 tree_ssa_lim_initialize (); 2602 tree_ssa_lim_initialize ();
2578 2603
2579 /* Gathers information about memory accesses in the loops. */ 2604 /* Gathers information about memory accesses in the loops. */
2580 analyze_memory_references (); 2605 analyze_memory_references ();
2581 2606
2607 /* Fills ALWAYS_EXECUTED_IN information for basic blocks. */
2608 fill_always_executed_in ();
2609
2582 /* For each statement determine the outermost loop in that it is 2610 /* For each statement determine the outermost loop in that it is
2583 invariant and cost for computing the invariant. */ 2611 invariant and cost for computing the invariant. */
2584 determine_invariantness (); 2612 invariantness_dom_walker (CDI_DOMINATORS)
2613 .walk (cfun->cfg->x_entry_block_ptr);
2585 2614
2586 /* Execute store motion. Force the necessary invariants to be moved 2615 /* Execute store motion. Force the necessary invariants to be moved
2587 out of the loops as well. */ 2616 out of the loops as well. */
2588 store_motion (); 2617 store_motion ();
2589 2618
2592 2621
2593 tree_ssa_lim_finalize (); 2622 tree_ssa_lim_finalize ();
2594 2623
2595 return todo; 2624 return todo;
2596 } 2625 }
2626
2627 /* Loop invariant motion pass. */
2628
2629 namespace {
2630
2631 const pass_data pass_data_lim =
2632 {
2633 GIMPLE_PASS, /* type */
2634 "lim", /* name */
2635 OPTGROUP_LOOP, /* optinfo_flags */
2636 TV_LIM, /* tv_id */
2637 PROP_cfg, /* properties_required */
2638 0, /* properties_provided */
2639 0, /* properties_destroyed */
2640 0, /* todo_flags_start */
2641 0, /* todo_flags_finish */
2642 };
2643
2644 class pass_lim : public gimple_opt_pass
2645 {
2646 public:
2647 pass_lim (gcc::context *ctxt)
2648 : gimple_opt_pass (pass_data_lim, ctxt)
2649 {}
2650
2651 /* opt_pass methods: */
2652 opt_pass * clone () { return new pass_lim (m_ctxt); }
2653 virtual bool gate (function *) { return flag_tree_loop_im != 0; }
2654 virtual unsigned int execute (function *);
2655
2656 }; // class pass_lim
2657
2658 unsigned int
2659 pass_lim::execute (function *fun)
2660 {
2661 bool in_loop_pipeline = scev_initialized_p ();
2662 if (!in_loop_pipeline)
2663 loop_optimizer_init (LOOPS_NORMAL | LOOPS_HAVE_RECORDED_EXITS);
2664
2665 if (number_of_loops (fun) <= 1)
2666 return 0;
2667 unsigned int todo = tree_ssa_lim ();
2668
2669 if (!in_loop_pipeline)
2670 loop_optimizer_finalize ();
2671 return todo;
2672 }
2673
2674 } // anon namespace
2675
2676 gimple_opt_pass *
2677 make_pass_lim (gcc::context *ctxt)
2678 {
2679 return new pass_lim (ctxt);
2680 }
2681
2682