comparison libsanitizer/tsan/tsan_interceptors_posix.cpp @ 145:1830386684a0

gcc-9.2.0
author anatofuz
date Thu, 13 Feb 2020 11:34:05 +0900
parents
children
comparison
equal deleted inserted replaced
131:84e7813d76e9 145:1830386684a0
1 //===-- tsan_interceptors_posix.cpp ---------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file is a part of ThreadSanitizer (TSan), a race detector.
10 //
11 // FIXME: move as many interceptors as possible into
12 // sanitizer_common/sanitizer_common_interceptors.inc
13 //===----------------------------------------------------------------------===//
14
15 #include "sanitizer_common/sanitizer_atomic.h"
16 #include "sanitizer_common/sanitizer_errno.h"
17 #include "sanitizer_common/sanitizer_libc.h"
18 #include "sanitizer_common/sanitizer_linux.h"
19 #include "sanitizer_common/sanitizer_platform_limits_netbsd.h"
20 #include "sanitizer_common/sanitizer_platform_limits_posix.h"
21 #include "sanitizer_common/sanitizer_placement_new.h"
22 #include "sanitizer_common/sanitizer_posix.h"
23 #include "sanitizer_common/sanitizer_stacktrace.h"
24 #include "sanitizer_common/sanitizer_tls_get_addr.h"
25 #include "interception/interception.h"
26 #include "tsan_interceptors.h"
27 #include "tsan_interface.h"
28 #include "tsan_platform.h"
29 #include "tsan_suppressions.h"
30 #include "tsan_rtl.h"
31 #include "tsan_mman.h"
32 #include "tsan_fd.h"
33
34 using namespace __tsan;
35
36 #if SANITIZER_FREEBSD || SANITIZER_MAC
37 #define stdout __stdoutp
38 #define stderr __stderrp
39 #endif
40
41 #if SANITIZER_NETBSD
42 #define dirfd(dirp) (*(int *)(dirp))
43 #define fileno_unlocked(fp) \
44 (((__sanitizer_FILE *)fp)->_file == -1 \
45 ? -1 \
46 : (int)(unsigned short)(((__sanitizer_FILE *)fp)->_file))
47
48 #define stdout ((__sanitizer_FILE*)&__sF[1])
49 #define stderr ((__sanitizer_FILE*)&__sF[2])
50
51 #define nanosleep __nanosleep50
52 #define vfork __vfork14
53 #endif
54
55 #if SANITIZER_ANDROID
56 #define mallopt(a, b)
57 #endif
58
59 #ifdef __mips__
60 const int kSigCount = 129;
61 #else
62 const int kSigCount = 65;
63 #endif
64
65 #ifdef __mips__
66 struct ucontext_t {
67 u64 opaque[768 / sizeof(u64) + 1];
68 };
69 #else
70 struct ucontext_t {
71 // The size is determined by looking at sizeof of real ucontext_t on linux.
72 u64 opaque[936 / sizeof(u64) + 1];
73 };
74 #endif
75
76 #if defined(__x86_64__) || defined(__mips__) || SANITIZER_PPC64V1
77 #define PTHREAD_ABI_BASE "GLIBC_2.3.2"
78 #elif defined(__aarch64__) || SANITIZER_PPC64V2
79 #define PTHREAD_ABI_BASE "GLIBC_2.17"
80 #endif
81
82 extern "C" int pthread_attr_init(void *attr);
83 extern "C" int pthread_attr_destroy(void *attr);
84 DECLARE_REAL(int, pthread_attr_getdetachstate, void *, void *)
85 extern "C" int pthread_attr_setstacksize(void *attr, uptr stacksize);
86 extern "C" int pthread_key_create(unsigned *key, void (*destructor)(void* v));
87 extern "C" int pthread_setspecific(unsigned key, const void *v);
88 DECLARE_REAL(int, pthread_mutexattr_gettype, void *, void *)
89 DECLARE_REAL(int, fflush, __sanitizer_FILE *fp)
90 DECLARE_REAL_AND_INTERCEPTOR(void *, malloc, uptr size)
91 DECLARE_REAL_AND_INTERCEPTOR(void, free, void *ptr)
92 extern "C" void *pthread_self();
93 extern "C" void _exit(int status);
94 #if !SANITIZER_NETBSD
95 extern "C" int fileno_unlocked(void *stream);
96 extern "C" int dirfd(void *dirp);
97 #endif
98 #if !SANITIZER_FREEBSD && !SANITIZER_ANDROID && !SANITIZER_NETBSD
99 extern "C" int mallopt(int param, int value);
100 #endif
101 #if SANITIZER_NETBSD
102 extern __sanitizer_FILE __sF[];
103 #else
104 extern __sanitizer_FILE *stdout, *stderr;
105 #endif
106 #if !SANITIZER_FREEBSD && !SANITIZER_MAC && !SANITIZER_NETBSD
107 const int PTHREAD_MUTEX_RECURSIVE = 1;
108 const int PTHREAD_MUTEX_RECURSIVE_NP = 1;
109 #else
110 const int PTHREAD_MUTEX_RECURSIVE = 2;
111 const int PTHREAD_MUTEX_RECURSIVE_NP = 2;
112 #endif
113 #if !SANITIZER_FREEBSD && !SANITIZER_MAC && !SANITIZER_NETBSD
114 const int EPOLL_CTL_ADD = 1;
115 #endif
116 const int SIGILL = 4;
117 const int SIGTRAP = 5;
118 const int SIGABRT = 6;
119 const int SIGFPE = 8;
120 const int SIGSEGV = 11;
121 const int SIGPIPE = 13;
122 const int SIGTERM = 15;
123 #if defined(__mips__) || SANITIZER_FREEBSD || SANITIZER_MAC || SANITIZER_NETBSD
124 const int SIGBUS = 10;
125 const int SIGSYS = 12;
126 #else
127 const int SIGBUS = 7;
128 const int SIGSYS = 31;
129 #endif
130 void *const MAP_FAILED = (void*)-1;
131 #if SANITIZER_NETBSD
132 const int PTHREAD_BARRIER_SERIAL_THREAD = 1234567;
133 #elif !SANITIZER_MAC
134 const int PTHREAD_BARRIER_SERIAL_THREAD = -1;
135 #endif
136 const int MAP_FIXED = 0x10;
137 typedef long long_t;
138
139 // From /usr/include/unistd.h
140 # define F_ULOCK 0 /* Unlock a previously locked region. */
141 # define F_LOCK 1 /* Lock a region for exclusive use. */
142 # define F_TLOCK 2 /* Test and lock a region for exclusive use. */
143 # define F_TEST 3 /* Test a region for other processes locks. */
144
145 #if SANITIZER_FREEBSD || SANITIZER_MAC || SANITIZER_NETBSD
146 const int SA_SIGINFO = 0x40;
147 const int SIG_SETMASK = 3;
148 #elif defined(__mips__)
149 const int SA_SIGINFO = 8;
150 const int SIG_SETMASK = 3;
151 #else
152 const int SA_SIGINFO = 4;
153 const int SIG_SETMASK = 2;
154 #endif
155
156 #define COMMON_INTERCEPTOR_NOTHING_IS_INITIALIZED \
157 (cur_thread_init(), !cur_thread()->is_inited)
158
159 namespace __tsan {
160 struct SignalDesc {
161 bool armed;
162 bool sigaction;
163 __sanitizer_siginfo siginfo;
164 ucontext_t ctx;
165 };
166
167 struct ThreadSignalContext {
168 int int_signal_send;
169 atomic_uintptr_t in_blocking_func;
170 atomic_uintptr_t have_pending_signals;
171 SignalDesc pending_signals[kSigCount];
172 // emptyset and oldset are too big for stack.
173 __sanitizer_sigset_t emptyset;
174 __sanitizer_sigset_t oldset;
175 };
176
177 // The sole reason tsan wraps atexit callbacks is to establish synchronization
178 // between callback setup and callback execution.
179 struct AtExitCtx {
180 void (*f)();
181 void *arg;
182 };
183
184 // InterceptorContext holds all global data required for interceptors.
185 // It's explicitly constructed in InitializeInterceptors with placement new
186 // and is never destroyed. This allows usage of members with non-trivial
187 // constructors and destructors.
188 struct InterceptorContext {
189 // The object is 64-byte aligned, because we want hot data to be located
190 // in a single cache line if possible (it's accessed in every interceptor).
191 ALIGNED(64) LibIgnore libignore;
192 __sanitizer_sigaction sigactions[kSigCount];
193 #if !SANITIZER_MAC && !SANITIZER_NETBSD
194 unsigned finalize_key;
195 #endif
196
197 BlockingMutex atexit_mu;
198 Vector<struct AtExitCtx *> AtExitStack;
199
200 InterceptorContext()
201 : libignore(LINKER_INITIALIZED), AtExitStack() {
202 }
203 };
204
205 static ALIGNED(64) char interceptor_placeholder[sizeof(InterceptorContext)];
206 InterceptorContext *interceptor_ctx() {
207 return reinterpret_cast<InterceptorContext*>(&interceptor_placeholder[0]);
208 }
209
210 LibIgnore *libignore() {
211 return &interceptor_ctx()->libignore;
212 }
213
214 void InitializeLibIgnore() {
215 const SuppressionContext &supp = *Suppressions();
216 const uptr n = supp.SuppressionCount();
217 for (uptr i = 0; i < n; i++) {
218 const Suppression *s = supp.SuppressionAt(i);
219 if (0 == internal_strcmp(s->type, kSuppressionLib))
220 libignore()->AddIgnoredLibrary(s->templ);
221 }
222 if (flags()->ignore_noninstrumented_modules)
223 libignore()->IgnoreNoninstrumentedModules(true);
224 libignore()->OnLibraryLoaded(0);
225 }
226
227 // The following two hooks can be used by for cooperative scheduling when
228 // locking.
229 #ifdef TSAN_EXTERNAL_HOOKS
230 void OnPotentiallyBlockingRegionBegin();
231 void OnPotentiallyBlockingRegionEnd();
232 #else
233 SANITIZER_WEAK_CXX_DEFAULT_IMPL void OnPotentiallyBlockingRegionBegin() {}
234 SANITIZER_WEAK_CXX_DEFAULT_IMPL void OnPotentiallyBlockingRegionEnd() {}
235 #endif
236
237 } // namespace __tsan
238
239 static ThreadSignalContext *SigCtx(ThreadState *thr) {
240 ThreadSignalContext *ctx = (ThreadSignalContext*)thr->signal_ctx;
241 if (ctx == 0 && !thr->is_dead) {
242 ctx = (ThreadSignalContext*)MmapOrDie(sizeof(*ctx), "ThreadSignalContext");
243 MemoryResetRange(thr, (uptr)&SigCtx, (uptr)ctx, sizeof(*ctx));
244 thr->signal_ctx = ctx;
245 }
246 return ctx;
247 }
248
249 ScopedInterceptor::ScopedInterceptor(ThreadState *thr, const char *fname,
250 uptr pc)
251 : thr_(thr), pc_(pc), in_ignored_lib_(false), ignoring_(false) {
252 Initialize(thr);
253 if (!thr_->is_inited) return;
254 if (!thr_->ignore_interceptors) FuncEntry(thr, pc);
255 DPrintf("#%d: intercept %s()\n", thr_->tid, fname);
256 ignoring_ =
257 !thr_->in_ignored_lib && libignore()->IsIgnored(pc, &in_ignored_lib_);
258 EnableIgnores();
259 }
260
261 ScopedInterceptor::~ScopedInterceptor() {
262 if (!thr_->is_inited) return;
263 DisableIgnores();
264 if (!thr_->ignore_interceptors) {
265 ProcessPendingSignals(thr_);
266 FuncExit(thr_);
267 CheckNoLocks(thr_);
268 }
269 }
270
271 void ScopedInterceptor::EnableIgnores() {
272 if (ignoring_) {
273 ThreadIgnoreBegin(thr_, pc_, /*save_stack=*/false);
274 if (flags()->ignore_noninstrumented_modules) thr_->suppress_reports++;
275 if (in_ignored_lib_) {
276 DCHECK(!thr_->in_ignored_lib);
277 thr_->in_ignored_lib = true;
278 }
279 }
280 }
281
282 void ScopedInterceptor::DisableIgnores() {
283 if (ignoring_) {
284 ThreadIgnoreEnd(thr_, pc_);
285 if (flags()->ignore_noninstrumented_modules) thr_->suppress_reports--;
286 if (in_ignored_lib_) {
287 DCHECK(thr_->in_ignored_lib);
288 thr_->in_ignored_lib = false;
289 }
290 }
291 }
292
293 #define TSAN_INTERCEPT(func) INTERCEPT_FUNCTION(func)
294 #if SANITIZER_FREEBSD
295 # define TSAN_INTERCEPT_VER(func, ver) INTERCEPT_FUNCTION(func)
296 # define TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(func)
297 # define TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS_THR(func)
298 #elif SANITIZER_NETBSD
299 # define TSAN_INTERCEPT_VER(func, ver) INTERCEPT_FUNCTION(func)
300 # define TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(func) \
301 INTERCEPT_FUNCTION(__libc_##func)
302 # define TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS_THR(func) \
303 INTERCEPT_FUNCTION(__libc_thr_##func)
304 #else
305 # define TSAN_INTERCEPT_VER(func, ver) INTERCEPT_FUNCTION_VER(func, ver)
306 # define TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(func)
307 # define TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS_THR(func)
308 #endif
309
310 #define READ_STRING_OF_LEN(thr, pc, s, len, n) \
311 MemoryAccessRange((thr), (pc), (uptr)(s), \
312 common_flags()->strict_string_checks ? (len) + 1 : (n), false)
313
314 #define READ_STRING(thr, pc, s, n) \
315 READ_STRING_OF_LEN((thr), (pc), (s), internal_strlen(s), (n))
316
317 #define BLOCK_REAL(name) (BlockingCall(thr), REAL(name))
318
319 struct BlockingCall {
320 explicit BlockingCall(ThreadState *thr)
321 : thr(thr)
322 , ctx(SigCtx(thr)) {
323 for (;;) {
324 atomic_store(&ctx->in_blocking_func, 1, memory_order_relaxed);
325 if (atomic_load(&ctx->have_pending_signals, memory_order_relaxed) == 0)
326 break;
327 atomic_store(&ctx->in_blocking_func, 0, memory_order_relaxed);
328 ProcessPendingSignals(thr);
329 }
330 // When we are in a "blocking call", we process signals asynchronously
331 // (right when they arrive). In this context we do not expect to be
332 // executing any user/runtime code. The known interceptor sequence when
333 // this is not true is: pthread_join -> munmap(stack). It's fine
334 // to ignore munmap in this case -- we handle stack shadow separately.
335 thr->ignore_interceptors++;
336 }
337
338 ~BlockingCall() {
339 thr->ignore_interceptors--;
340 atomic_store(&ctx->in_blocking_func, 0, memory_order_relaxed);
341 }
342
343 ThreadState *thr;
344 ThreadSignalContext *ctx;
345 };
346
347 TSAN_INTERCEPTOR(unsigned, sleep, unsigned sec) {
348 SCOPED_TSAN_INTERCEPTOR(sleep, sec);
349 unsigned res = BLOCK_REAL(sleep)(sec);
350 AfterSleep(thr, pc);
351 return res;
352 }
353
354 TSAN_INTERCEPTOR(int, usleep, long_t usec) {
355 SCOPED_TSAN_INTERCEPTOR(usleep, usec);
356 int res = BLOCK_REAL(usleep)(usec);
357 AfterSleep(thr, pc);
358 return res;
359 }
360
361 TSAN_INTERCEPTOR(int, nanosleep, void *req, void *rem) {
362 SCOPED_TSAN_INTERCEPTOR(nanosleep, req, rem);
363 int res = BLOCK_REAL(nanosleep)(req, rem);
364 AfterSleep(thr, pc);
365 return res;
366 }
367
368 TSAN_INTERCEPTOR(int, pause, int fake) {
369 SCOPED_TSAN_INTERCEPTOR(pause, fake);
370 return BLOCK_REAL(pause)(fake);
371 }
372
373 static void at_exit_wrapper() {
374 AtExitCtx *ctx;
375 {
376 // Ensure thread-safety.
377 BlockingMutexLock l(&interceptor_ctx()->atexit_mu);
378
379 // Pop AtExitCtx from the top of the stack of callback functions
380 uptr element = interceptor_ctx()->AtExitStack.Size() - 1;
381 ctx = interceptor_ctx()->AtExitStack[element];
382 interceptor_ctx()->AtExitStack.PopBack();
383 }
384
385 Acquire(cur_thread(), (uptr)0, (uptr)ctx);
386 ((void(*)())ctx->f)();
387 InternalFree(ctx);
388 }
389
390 static void cxa_at_exit_wrapper(void *arg) {
391 Acquire(cur_thread(), 0, (uptr)arg);
392 AtExitCtx *ctx = (AtExitCtx*)arg;
393 ((void(*)(void *arg))ctx->f)(ctx->arg);
394 InternalFree(ctx);
395 }
396
397 static int setup_at_exit_wrapper(ThreadState *thr, uptr pc, void(*f)(),
398 void *arg, void *dso);
399
400 #if !SANITIZER_ANDROID
401 TSAN_INTERCEPTOR(int, atexit, void (*f)()) {
402 if (in_symbolizer())
403 return 0;
404 // We want to setup the atexit callback even if we are in ignored lib
405 // or after fork.
406 SCOPED_INTERCEPTOR_RAW(atexit, f);
407 return setup_at_exit_wrapper(thr, pc, (void(*)())f, 0, 0);
408 }
409 #endif
410
411 TSAN_INTERCEPTOR(int, __cxa_atexit, void (*f)(void *a), void *arg, void *dso) {
412 if (in_symbolizer())
413 return 0;
414 SCOPED_TSAN_INTERCEPTOR(__cxa_atexit, f, arg, dso);
415 return setup_at_exit_wrapper(thr, pc, (void(*)())f, arg, dso);
416 }
417
418 static int setup_at_exit_wrapper(ThreadState *thr, uptr pc, void(*f)(),
419 void *arg, void *dso) {
420 AtExitCtx *ctx = (AtExitCtx*)InternalAlloc(sizeof(AtExitCtx));
421 ctx->f = f;
422 ctx->arg = arg;
423 Release(thr, pc, (uptr)ctx);
424 // Memory allocation in __cxa_atexit will race with free during exit,
425 // because we do not see synchronization around atexit callback list.
426 ThreadIgnoreBegin(thr, pc);
427 int res;
428 if (!dso) {
429 // NetBSD does not preserve the 2nd argument if dso is equal to 0
430 // Store ctx in a local stack-like structure
431
432 // Ensure thread-safety.
433 BlockingMutexLock l(&interceptor_ctx()->atexit_mu);
434
435 res = REAL(__cxa_atexit)((void (*)(void *a))at_exit_wrapper, 0, 0);
436 // Push AtExitCtx on the top of the stack of callback functions
437 if (!res) {
438 interceptor_ctx()->AtExitStack.PushBack(ctx);
439 }
440 } else {
441 res = REAL(__cxa_atexit)(cxa_at_exit_wrapper, ctx, dso);
442 }
443 ThreadIgnoreEnd(thr, pc);
444 return res;
445 }
446
447 #if !SANITIZER_MAC && !SANITIZER_NETBSD
448 static void on_exit_wrapper(int status, void *arg) {
449 ThreadState *thr = cur_thread();
450 uptr pc = 0;
451 Acquire(thr, pc, (uptr)arg);
452 AtExitCtx *ctx = (AtExitCtx*)arg;
453 ((void(*)(int status, void *arg))ctx->f)(status, ctx->arg);
454 InternalFree(ctx);
455 }
456
457 TSAN_INTERCEPTOR(int, on_exit, void(*f)(int, void*), void *arg) {
458 if (in_symbolizer())
459 return 0;
460 SCOPED_TSAN_INTERCEPTOR(on_exit, f, arg);
461 AtExitCtx *ctx = (AtExitCtx*)InternalAlloc(sizeof(AtExitCtx));
462 ctx->f = (void(*)())f;
463 ctx->arg = arg;
464 Release(thr, pc, (uptr)ctx);
465 // Memory allocation in __cxa_atexit will race with free during exit,
466 // because we do not see synchronization around atexit callback list.
467 ThreadIgnoreBegin(thr, pc);
468 int res = REAL(on_exit)(on_exit_wrapper, ctx);
469 ThreadIgnoreEnd(thr, pc);
470 return res;
471 }
472 #define TSAN_MAYBE_INTERCEPT_ON_EXIT TSAN_INTERCEPT(on_exit)
473 #else
474 #define TSAN_MAYBE_INTERCEPT_ON_EXIT
475 #endif
476
477 // Cleanup old bufs.
478 static void JmpBufGarbageCollect(ThreadState *thr, uptr sp) {
479 for (uptr i = 0; i < thr->jmp_bufs.Size(); i++) {
480 JmpBuf *buf = &thr->jmp_bufs[i];
481 if (buf->sp <= sp) {
482 uptr sz = thr->jmp_bufs.Size();
483 internal_memcpy(buf, &thr->jmp_bufs[sz - 1], sizeof(*buf));
484 thr->jmp_bufs.PopBack();
485 i--;
486 }
487 }
488 }
489
490 static void SetJmp(ThreadState *thr, uptr sp) {
491 if (!thr->is_inited) // called from libc guts during bootstrap
492 return;
493 // Cleanup old bufs.
494 JmpBufGarbageCollect(thr, sp);
495 // Remember the buf.
496 JmpBuf *buf = thr->jmp_bufs.PushBack();
497 buf->sp = sp;
498 buf->shadow_stack_pos = thr->shadow_stack_pos;
499 ThreadSignalContext *sctx = SigCtx(thr);
500 buf->int_signal_send = sctx ? sctx->int_signal_send : 0;
501 buf->in_blocking_func = sctx ?
502 atomic_load(&sctx->in_blocking_func, memory_order_relaxed) :
503 false;
504 buf->in_signal_handler = atomic_load(&thr->in_signal_handler,
505 memory_order_relaxed);
506 }
507
508 static void LongJmp(ThreadState *thr, uptr *env) {
509 uptr sp = ExtractLongJmpSp(env);
510 // Find the saved buf with matching sp.
511 for (uptr i = 0; i < thr->jmp_bufs.Size(); i++) {
512 JmpBuf *buf = &thr->jmp_bufs[i];
513 if (buf->sp == sp) {
514 CHECK_GE(thr->shadow_stack_pos, buf->shadow_stack_pos);
515 // Unwind the stack.
516 while (thr->shadow_stack_pos > buf->shadow_stack_pos)
517 FuncExit(thr);
518 ThreadSignalContext *sctx = SigCtx(thr);
519 if (sctx) {
520 sctx->int_signal_send = buf->int_signal_send;
521 atomic_store(&sctx->in_blocking_func, buf->in_blocking_func,
522 memory_order_relaxed);
523 }
524 atomic_store(&thr->in_signal_handler, buf->in_signal_handler,
525 memory_order_relaxed);
526 JmpBufGarbageCollect(thr, buf->sp - 1); // do not collect buf->sp
527 return;
528 }
529 }
530 Printf("ThreadSanitizer: can't find longjmp buf\n");
531 CHECK(0);
532 }
533
534 // FIXME: put everything below into a common extern "C" block?
535 extern "C" void __tsan_setjmp(uptr sp) {
536 cur_thread_init();
537 SetJmp(cur_thread(), sp);
538 }
539
540 #if SANITIZER_MAC
541 TSAN_INTERCEPTOR(int, setjmp, void *env);
542 TSAN_INTERCEPTOR(int, _setjmp, void *env);
543 TSAN_INTERCEPTOR(int, sigsetjmp, void *env);
544 #else // SANITIZER_MAC
545
546 #if SANITIZER_NETBSD
547 #define setjmp_symname __setjmp14
548 #define sigsetjmp_symname __sigsetjmp14
549 #else
550 #define setjmp_symname setjmp
551 #define sigsetjmp_symname sigsetjmp
552 #endif
553
554 #define TSAN_INTERCEPTOR_SETJMP_(x) __interceptor_ ## x
555 #define TSAN_INTERCEPTOR_SETJMP__(x) TSAN_INTERCEPTOR_SETJMP_(x)
556 #define TSAN_INTERCEPTOR_SETJMP TSAN_INTERCEPTOR_SETJMP__(setjmp_symname)
557 #define TSAN_INTERCEPTOR_SIGSETJMP TSAN_INTERCEPTOR_SETJMP__(sigsetjmp_symname)
558
559 #define TSAN_STRING_SETJMP SANITIZER_STRINGIFY(setjmp_symname)
560 #define TSAN_STRING_SIGSETJMP SANITIZER_STRINGIFY(sigsetjmp_symname)
561
562 // Not called. Merely to satisfy TSAN_INTERCEPT().
563 extern "C" SANITIZER_INTERFACE_ATTRIBUTE
564 int TSAN_INTERCEPTOR_SETJMP(void *env);
565 extern "C" int TSAN_INTERCEPTOR_SETJMP(void *env) {
566 CHECK(0);
567 return 0;
568 }
569
570 // FIXME: any reason to have a separate declaration?
571 extern "C" SANITIZER_INTERFACE_ATTRIBUTE
572 int __interceptor__setjmp(void *env);
573 extern "C" int __interceptor__setjmp(void *env) {
574 CHECK(0);
575 return 0;
576 }
577
578 extern "C" SANITIZER_INTERFACE_ATTRIBUTE
579 int TSAN_INTERCEPTOR_SIGSETJMP(void *env);
580 extern "C" int TSAN_INTERCEPTOR_SIGSETJMP(void *env) {
581 CHECK(0);
582 return 0;
583 }
584
585 #if !SANITIZER_NETBSD
586 extern "C" SANITIZER_INTERFACE_ATTRIBUTE
587 int __interceptor___sigsetjmp(void *env);
588 extern "C" int __interceptor___sigsetjmp(void *env) {
589 CHECK(0);
590 return 0;
591 }
592 #endif
593
594 extern "C" int setjmp_symname(void *env);
595 extern "C" int _setjmp(void *env);
596 extern "C" int sigsetjmp_symname(void *env);
597 #if !SANITIZER_NETBSD
598 extern "C" int __sigsetjmp(void *env);
599 #endif
600 DEFINE_REAL(int, setjmp_symname, void *env)
601 DEFINE_REAL(int, _setjmp, void *env)
602 DEFINE_REAL(int, sigsetjmp_symname, void *env)
603 #if !SANITIZER_NETBSD
604 DEFINE_REAL(int, __sigsetjmp, void *env)
605 #endif
606 #endif // SANITIZER_MAC
607
608 #if SANITIZER_NETBSD
609 #define longjmp_symname __longjmp14
610 #define siglongjmp_symname __siglongjmp14
611 #else
612 #define longjmp_symname longjmp
613 #define siglongjmp_symname siglongjmp
614 #endif
615
616 TSAN_INTERCEPTOR(void, longjmp_symname, uptr *env, int val) {
617 // Note: if we call REAL(longjmp) in the context of ScopedInterceptor,
618 // bad things will happen. We will jump over ScopedInterceptor dtor and can
619 // leave thr->in_ignored_lib set.
620 {
621 SCOPED_INTERCEPTOR_RAW(longjmp_symname, env, val);
622 }
623 LongJmp(cur_thread(), env);
624 REAL(longjmp_symname)(env, val);
625 }
626
627 TSAN_INTERCEPTOR(void, siglongjmp_symname, uptr *env, int val) {
628 {
629 SCOPED_INTERCEPTOR_RAW(siglongjmp_symname, env, val);
630 }
631 LongJmp(cur_thread(), env);
632 REAL(siglongjmp_symname)(env, val);
633 }
634
635 #if SANITIZER_NETBSD
636 TSAN_INTERCEPTOR(void, _longjmp, uptr *env, int val) {
637 {
638 SCOPED_INTERCEPTOR_RAW(_longjmp, env, val);
639 }
640 LongJmp(cur_thread(), env);
641 REAL(_longjmp)(env, val);
642 }
643 #endif
644
645 #if !SANITIZER_MAC
646 TSAN_INTERCEPTOR(void*, malloc, uptr size) {
647 if (in_symbolizer())
648 return InternalAlloc(size);
649 void *p = 0;
650 {
651 SCOPED_INTERCEPTOR_RAW(malloc, size);
652 p = user_alloc(thr, pc, size);
653 }
654 invoke_malloc_hook(p, size);
655 return p;
656 }
657
658 TSAN_INTERCEPTOR(void*, __libc_memalign, uptr align, uptr sz) {
659 SCOPED_TSAN_INTERCEPTOR(__libc_memalign, align, sz);
660 return user_memalign(thr, pc, align, sz);
661 }
662
663 TSAN_INTERCEPTOR(void*, calloc, uptr size, uptr n) {
664 if (in_symbolizer())
665 return InternalCalloc(size, n);
666 void *p = 0;
667 {
668 SCOPED_INTERCEPTOR_RAW(calloc, size, n);
669 p = user_calloc(thr, pc, size, n);
670 }
671 invoke_malloc_hook(p, n * size);
672 return p;
673 }
674
675 TSAN_INTERCEPTOR(void*, realloc, void *p, uptr size) {
676 if (in_symbolizer())
677 return InternalRealloc(p, size);
678 if (p)
679 invoke_free_hook(p);
680 {
681 SCOPED_INTERCEPTOR_RAW(realloc, p, size);
682 p = user_realloc(thr, pc, p, size);
683 }
684 invoke_malloc_hook(p, size);
685 return p;
686 }
687
688 TSAN_INTERCEPTOR(void*, reallocarray, void *p, uptr size, uptr n) {
689 if (in_symbolizer())
690 return InternalReallocArray(p, size, n);
691 if (p)
692 invoke_free_hook(p);
693 {
694 SCOPED_INTERCEPTOR_RAW(reallocarray, p, size, n);
695 p = user_reallocarray(thr, pc, p, size, n);
696 }
697 invoke_malloc_hook(p, size);
698 return p;
699 }
700
701 TSAN_INTERCEPTOR(void, free, void *p) {
702 if (p == 0)
703 return;
704 if (in_symbolizer())
705 return InternalFree(p);
706 invoke_free_hook(p);
707 SCOPED_INTERCEPTOR_RAW(free, p);
708 user_free(thr, pc, p);
709 }
710
711 TSAN_INTERCEPTOR(void, cfree, void *p) {
712 if (p == 0)
713 return;
714 if (in_symbolizer())
715 return InternalFree(p);
716 invoke_free_hook(p);
717 SCOPED_INTERCEPTOR_RAW(cfree, p);
718 user_free(thr, pc, p);
719 }
720
721 TSAN_INTERCEPTOR(uptr, malloc_usable_size, void *p) {
722 SCOPED_INTERCEPTOR_RAW(malloc_usable_size, p);
723 return user_alloc_usable_size(p);
724 }
725 #endif
726
727 TSAN_INTERCEPTOR(char *, strcpy, char *dst, const char *src) {
728 SCOPED_TSAN_INTERCEPTOR(strcpy, dst, src);
729 uptr srclen = internal_strlen(src);
730 MemoryAccessRange(thr, pc, (uptr)dst, srclen + 1, true);
731 MemoryAccessRange(thr, pc, (uptr)src, srclen + 1, false);
732 return REAL(strcpy)(dst, src);
733 }
734
735 TSAN_INTERCEPTOR(char*, strncpy, char *dst, char *src, uptr n) {
736 SCOPED_TSAN_INTERCEPTOR(strncpy, dst, src, n);
737 uptr srclen = internal_strnlen(src, n);
738 MemoryAccessRange(thr, pc, (uptr)dst, n, true);
739 MemoryAccessRange(thr, pc, (uptr)src, min(srclen + 1, n), false);
740 return REAL(strncpy)(dst, src, n);
741 }
742
743 TSAN_INTERCEPTOR(char*, strdup, const char *str) {
744 SCOPED_TSAN_INTERCEPTOR(strdup, str);
745 // strdup will call malloc, so no instrumentation is required here.
746 return REAL(strdup)(str);
747 }
748
749 // Zero out addr if it points into shadow memory and was provided as a hint
750 // only, i.e., MAP_FIXED is not set.
751 static bool fix_mmap_addr(void **addr, long_t sz, int flags) {
752 if (*addr) {
753 if (!IsAppMem((uptr)*addr) || !IsAppMem((uptr)*addr + sz - 1)) {
754 if (flags & MAP_FIXED) {
755 errno = errno_EINVAL;
756 return false;
757 } else {
758 *addr = 0;
759 }
760 }
761 }
762 return true;
763 }
764
765 template <class Mmap>
766 static void *mmap_interceptor(ThreadState *thr, uptr pc, Mmap real_mmap,
767 void *addr, SIZE_T sz, int prot, int flags,
768 int fd, OFF64_T off) {
769 if (!fix_mmap_addr(&addr, sz, flags)) return MAP_FAILED;
770 void *res = real_mmap(addr, sz, prot, flags, fd, off);
771 if (res != MAP_FAILED) {
772 if (fd > 0) FdAccess(thr, pc, fd);
773 MemoryRangeImitateWriteOrResetRange(thr, pc, (uptr)res, sz);
774 }
775 return res;
776 }
777
778 TSAN_INTERCEPTOR(int, munmap, void *addr, long_t sz) {
779 SCOPED_TSAN_INTERCEPTOR(munmap, addr, sz);
780 UnmapShadow(thr, (uptr)addr, sz);
781 int res = REAL(munmap)(addr, sz);
782 return res;
783 }
784
785 #if SANITIZER_LINUX
786 TSAN_INTERCEPTOR(void*, memalign, uptr align, uptr sz) {
787 SCOPED_INTERCEPTOR_RAW(memalign, align, sz);
788 return user_memalign(thr, pc, align, sz);
789 }
790 #define TSAN_MAYBE_INTERCEPT_MEMALIGN TSAN_INTERCEPT(memalign)
791 #else
792 #define TSAN_MAYBE_INTERCEPT_MEMALIGN
793 #endif
794
795 #if !SANITIZER_MAC
796 TSAN_INTERCEPTOR(void*, aligned_alloc, uptr align, uptr sz) {
797 if (in_symbolizer())
798 return InternalAlloc(sz, nullptr, align);
799 SCOPED_INTERCEPTOR_RAW(aligned_alloc, align, sz);
800 return user_aligned_alloc(thr, pc, align, sz);
801 }
802
803 TSAN_INTERCEPTOR(void*, valloc, uptr sz) {
804 if (in_symbolizer())
805 return InternalAlloc(sz, nullptr, GetPageSizeCached());
806 SCOPED_INTERCEPTOR_RAW(valloc, sz);
807 return user_valloc(thr, pc, sz);
808 }
809 #endif
810
811 #if SANITIZER_LINUX
812 TSAN_INTERCEPTOR(void*, pvalloc, uptr sz) {
813 if (in_symbolizer()) {
814 uptr PageSize = GetPageSizeCached();
815 sz = sz ? RoundUpTo(sz, PageSize) : PageSize;
816 return InternalAlloc(sz, nullptr, PageSize);
817 }
818 SCOPED_INTERCEPTOR_RAW(pvalloc, sz);
819 return user_pvalloc(thr, pc, sz);
820 }
821 #define TSAN_MAYBE_INTERCEPT_PVALLOC TSAN_INTERCEPT(pvalloc)
822 #else
823 #define TSAN_MAYBE_INTERCEPT_PVALLOC
824 #endif
825
826 #if !SANITIZER_MAC
827 TSAN_INTERCEPTOR(int, posix_memalign, void **memptr, uptr align, uptr sz) {
828 if (in_symbolizer()) {
829 void *p = InternalAlloc(sz, nullptr, align);
830 if (!p)
831 return errno_ENOMEM;
832 *memptr = p;
833 return 0;
834 }
835 SCOPED_INTERCEPTOR_RAW(posix_memalign, memptr, align, sz);
836 return user_posix_memalign(thr, pc, memptr, align, sz);
837 }
838 #endif
839
840 // __cxa_guard_acquire and friends need to be intercepted in a special way -
841 // regular interceptors will break statically-linked libstdc++. Linux
842 // interceptors are especially defined as weak functions (so that they don't
843 // cause link errors when user defines them as well). So they silently
844 // auto-disable themselves when such symbol is already present in the binary. If
845 // we link libstdc++ statically, it will bring own __cxa_guard_acquire which
846 // will silently replace our interceptor. That's why on Linux we simply export
847 // these interceptors with INTERFACE_ATTRIBUTE.
848 // On OS X, we don't support statically linking, so we just use a regular
849 // interceptor.
850 #if SANITIZER_MAC
851 #define STDCXX_INTERCEPTOR TSAN_INTERCEPTOR
852 #else
853 #define STDCXX_INTERCEPTOR(rettype, name, ...) \
854 extern "C" rettype INTERFACE_ATTRIBUTE name(__VA_ARGS__)
855 #endif
856
857 // Used in thread-safe function static initialization.
858 STDCXX_INTERCEPTOR(int, __cxa_guard_acquire, atomic_uint32_t *g) {
859 SCOPED_INTERCEPTOR_RAW(__cxa_guard_acquire, g);
860 OnPotentiallyBlockingRegionBegin();
861 auto on_exit = at_scope_exit(&OnPotentiallyBlockingRegionEnd);
862 for (;;) {
863 u32 cmp = atomic_load(g, memory_order_acquire);
864 if (cmp == 0) {
865 if (atomic_compare_exchange_strong(g, &cmp, 1<<16, memory_order_relaxed))
866 return 1;
867 } else if (cmp == 1) {
868 Acquire(thr, pc, (uptr)g);
869 return 0;
870 } else {
871 internal_sched_yield();
872 }
873 }
874 }
875
876 STDCXX_INTERCEPTOR(void, __cxa_guard_release, atomic_uint32_t *g) {
877 SCOPED_INTERCEPTOR_RAW(__cxa_guard_release, g);
878 Release(thr, pc, (uptr)g);
879 atomic_store(g, 1, memory_order_release);
880 }
881
882 STDCXX_INTERCEPTOR(void, __cxa_guard_abort, atomic_uint32_t *g) {
883 SCOPED_INTERCEPTOR_RAW(__cxa_guard_abort, g);
884 atomic_store(g, 0, memory_order_relaxed);
885 }
886
887 namespace __tsan {
888 void DestroyThreadState() {
889 ThreadState *thr = cur_thread();
890 Processor *proc = thr->proc();
891 ThreadFinish(thr);
892 ProcUnwire(proc, thr);
893 ProcDestroy(proc);
894 ThreadSignalContext *sctx = thr->signal_ctx;
895 if (sctx) {
896 thr->signal_ctx = 0;
897 UnmapOrDie(sctx, sizeof(*sctx));
898 }
899 DTLS_Destroy();
900 cur_thread_finalize();
901 }
902 } // namespace __tsan
903
904 #if !SANITIZER_MAC && !SANITIZER_NETBSD && !SANITIZER_FREEBSD
905 static void thread_finalize(void *v) {
906 uptr iter = (uptr)v;
907 if (iter > 1) {
908 if (pthread_setspecific(interceptor_ctx()->finalize_key,
909 (void*)(iter - 1))) {
910 Printf("ThreadSanitizer: failed to set thread key\n");
911 Die();
912 }
913 return;
914 }
915 DestroyThreadState();
916 }
917 #endif
918
919
920 struct ThreadParam {
921 void* (*callback)(void *arg);
922 void *param;
923 atomic_uintptr_t tid;
924 };
925
926 extern "C" void *__tsan_thread_start_func(void *arg) {
927 ThreadParam *p = (ThreadParam*)arg;
928 void* (*callback)(void *arg) = p->callback;
929 void *param = p->param;
930 int tid = 0;
931 {
932 cur_thread_init();
933 ThreadState *thr = cur_thread();
934 // Thread-local state is not initialized yet.
935 ScopedIgnoreInterceptors ignore;
936 #if !SANITIZER_MAC && !SANITIZER_NETBSD && !SANITIZER_FREEBSD
937 ThreadIgnoreBegin(thr, 0);
938 if (pthread_setspecific(interceptor_ctx()->finalize_key,
939 (void *)GetPthreadDestructorIterations())) {
940 Printf("ThreadSanitizer: failed to set thread key\n");
941 Die();
942 }
943 ThreadIgnoreEnd(thr, 0);
944 #endif
945 while ((tid = atomic_load(&p->tid, memory_order_acquire)) == 0)
946 internal_sched_yield();
947 Processor *proc = ProcCreate();
948 ProcWire(proc, thr);
949 ThreadStart(thr, tid, GetTid(), ThreadType::Regular);
950 atomic_store(&p->tid, 0, memory_order_release);
951 }
952 void *res = callback(param);
953 // Prevent the callback from being tail called,
954 // it mixes up stack traces.
955 volatile int foo = 42;
956 foo++;
957 return res;
958 }
959
960 TSAN_INTERCEPTOR(int, pthread_create,
961 void *th, void *attr, void *(*callback)(void*), void * param) {
962 SCOPED_INTERCEPTOR_RAW(pthread_create, th, attr, callback, param);
963
964 MaybeSpawnBackgroundThread();
965
966 if (ctx->after_multithreaded_fork) {
967 if (flags()->die_after_fork) {
968 Report("ThreadSanitizer: starting new threads after multi-threaded "
969 "fork is not supported. Dying (set die_after_fork=0 to override)\n");
970 Die();
971 } else {
972 VPrintf(1, "ThreadSanitizer: starting new threads after multi-threaded "
973 "fork is not supported (pid %d). Continuing because of "
974 "die_after_fork=0, but you are on your own\n", internal_getpid());
975 }
976 }
977 __sanitizer_pthread_attr_t myattr;
978 if (attr == 0) {
979 pthread_attr_init(&myattr);
980 attr = &myattr;
981 }
982 int detached = 0;
983 REAL(pthread_attr_getdetachstate)(attr, &detached);
984 AdjustStackSize(attr);
985
986 ThreadParam p;
987 p.callback = callback;
988 p.param = param;
989 atomic_store(&p.tid, 0, memory_order_relaxed);
990 int res = -1;
991 {
992 // Otherwise we see false positives in pthread stack manipulation.
993 ScopedIgnoreInterceptors ignore;
994 ThreadIgnoreBegin(thr, pc);
995 res = REAL(pthread_create)(th, attr, __tsan_thread_start_func, &p);
996 ThreadIgnoreEnd(thr, pc);
997 }
998 if (res == 0) {
999 int tid = ThreadCreate(thr, pc, *(uptr*)th, IsStateDetached(detached));
1000 CHECK_NE(tid, 0);
1001 // Synchronization on p.tid serves two purposes:
1002 // 1. ThreadCreate must finish before the new thread starts.
1003 // Otherwise the new thread can call pthread_detach, but the pthread_t
1004 // identifier is not yet registered in ThreadRegistry by ThreadCreate.
1005 // 2. ThreadStart must finish before this thread continues.
1006 // Otherwise, this thread can call pthread_detach and reset thr->sync
1007 // before the new thread got a chance to acquire from it in ThreadStart.
1008 atomic_store(&p.tid, tid, memory_order_release);
1009 while (atomic_load(&p.tid, memory_order_acquire) != 0)
1010 internal_sched_yield();
1011 }
1012 if (attr == &myattr)
1013 pthread_attr_destroy(&myattr);
1014 return res;
1015 }
1016
1017 TSAN_INTERCEPTOR(int, pthread_join, void *th, void **ret) {
1018 SCOPED_INTERCEPTOR_RAW(pthread_join, th, ret);
1019 int tid = ThreadTid(thr, pc, (uptr)th);
1020 ThreadIgnoreBegin(thr, pc);
1021 int res = BLOCK_REAL(pthread_join)(th, ret);
1022 ThreadIgnoreEnd(thr, pc);
1023 if (res == 0) {
1024 ThreadJoin(thr, pc, tid);
1025 }
1026 return res;
1027 }
1028
1029 DEFINE_REAL_PTHREAD_FUNCTIONS
1030
1031 TSAN_INTERCEPTOR(int, pthread_detach, void *th) {
1032 SCOPED_TSAN_INTERCEPTOR(pthread_detach, th);
1033 int tid = ThreadTid(thr, pc, (uptr)th);
1034 int res = REAL(pthread_detach)(th);
1035 if (res == 0) {
1036 ThreadDetach(thr, pc, tid);
1037 }
1038 return res;
1039 }
1040
1041 TSAN_INTERCEPTOR(void, pthread_exit, void *retval) {
1042 {
1043 SCOPED_INTERCEPTOR_RAW(pthread_exit, retval);
1044 #if !SANITIZER_MAC && !SANITIZER_ANDROID
1045 CHECK_EQ(thr, &cur_thread_placeholder);
1046 #endif
1047 }
1048 REAL(pthread_exit)(retval);
1049 }
1050
1051 #if SANITIZER_LINUX
1052 TSAN_INTERCEPTOR(int, pthread_tryjoin_np, void *th, void **ret) {
1053 SCOPED_TSAN_INTERCEPTOR(pthread_tryjoin_np, th, ret);
1054 int tid = ThreadTid(thr, pc, (uptr)th);
1055 ThreadIgnoreBegin(thr, pc);
1056 int res = REAL(pthread_tryjoin_np)(th, ret);
1057 ThreadIgnoreEnd(thr, pc);
1058 if (res == 0)
1059 ThreadJoin(thr, pc, tid);
1060 else
1061 ThreadNotJoined(thr, pc, tid, (uptr)th);
1062 return res;
1063 }
1064
1065 TSAN_INTERCEPTOR(int, pthread_timedjoin_np, void *th, void **ret,
1066 const struct timespec *abstime) {
1067 SCOPED_TSAN_INTERCEPTOR(pthread_timedjoin_np, th, ret, abstime);
1068 int tid = ThreadTid(thr, pc, (uptr)th);
1069 ThreadIgnoreBegin(thr, pc);
1070 int res = BLOCK_REAL(pthread_timedjoin_np)(th, ret, abstime);
1071 ThreadIgnoreEnd(thr, pc);
1072 if (res == 0)
1073 ThreadJoin(thr, pc, tid);
1074 else
1075 ThreadNotJoined(thr, pc, tid, (uptr)th);
1076 return res;
1077 }
1078 #endif
1079
1080 // Problem:
1081 // NPTL implementation of pthread_cond has 2 versions (2.2.5 and 2.3.2).
1082 // pthread_cond_t has different size in the different versions.
1083 // If call new REAL functions for old pthread_cond_t, they will corrupt memory
1084 // after pthread_cond_t (old cond is smaller).
1085 // If we call old REAL functions for new pthread_cond_t, we will lose some
1086 // functionality (e.g. old functions do not support waiting against
1087 // CLOCK_REALTIME).
1088 // Proper handling would require to have 2 versions of interceptors as well.
1089 // But this is messy, in particular requires linker scripts when sanitizer
1090 // runtime is linked into a shared library.
1091 // Instead we assume we don't have dynamic libraries built against old
1092 // pthread (2.2.5 is dated by 2002). And provide legacy_pthread_cond flag
1093 // that allows to work with old libraries (but this mode does not support
1094 // some features, e.g. pthread_condattr_getpshared).
1095 static void *init_cond(void *c, bool force = false) {
1096 // sizeof(pthread_cond_t) >= sizeof(uptr) in both versions.
1097 // So we allocate additional memory on the side large enough to hold
1098 // any pthread_cond_t object. Always call new REAL functions, but pass
1099 // the aux object to them.
1100 // Note: the code assumes that PTHREAD_COND_INITIALIZER initializes
1101 // first word of pthread_cond_t to zero.
1102 // It's all relevant only for linux.
1103 if (!common_flags()->legacy_pthread_cond)
1104 return c;
1105 atomic_uintptr_t *p = (atomic_uintptr_t*)c;
1106 uptr cond = atomic_load(p, memory_order_acquire);
1107 if (!force && cond != 0)
1108 return (void*)cond;
1109 void *newcond = WRAP(malloc)(pthread_cond_t_sz);
1110 internal_memset(newcond, 0, pthread_cond_t_sz);
1111 if (atomic_compare_exchange_strong(p, &cond, (uptr)newcond,
1112 memory_order_acq_rel))
1113 return newcond;
1114 WRAP(free)(newcond);
1115 return (void*)cond;
1116 }
1117
1118 struct CondMutexUnlockCtx {
1119 ScopedInterceptor *si;
1120 ThreadState *thr;
1121 uptr pc;
1122 void *m;
1123 };
1124
1125 static void cond_mutex_unlock(CondMutexUnlockCtx *arg) {
1126 // pthread_cond_wait interceptor has enabled async signal delivery
1127 // (see BlockingCall below). Disable async signals since we are running
1128 // tsan code. Also ScopedInterceptor and BlockingCall destructors won't run
1129 // since the thread is cancelled, so we have to manually execute them
1130 // (the thread still can run some user code due to pthread_cleanup_push).
1131 ThreadSignalContext *ctx = SigCtx(arg->thr);
1132 CHECK_EQ(atomic_load(&ctx->in_blocking_func, memory_order_relaxed), 1);
1133 atomic_store(&ctx->in_blocking_func, 0, memory_order_relaxed);
1134 MutexPostLock(arg->thr, arg->pc, (uptr)arg->m, MutexFlagDoPreLockOnPostLock);
1135 // Undo BlockingCall ctor effects.
1136 arg->thr->ignore_interceptors--;
1137 arg->si->~ScopedInterceptor();
1138 }
1139
1140 INTERCEPTOR(int, pthread_cond_init, void *c, void *a) {
1141 void *cond = init_cond(c, true);
1142 SCOPED_TSAN_INTERCEPTOR(pthread_cond_init, cond, a);
1143 MemoryAccessRange(thr, pc, (uptr)c, sizeof(uptr), true);
1144 return REAL(pthread_cond_init)(cond, a);
1145 }
1146
1147 static int cond_wait(ThreadState *thr, uptr pc, ScopedInterceptor *si,
1148 int (*fn)(void *c, void *m, void *abstime), void *c,
1149 void *m, void *t) {
1150 MemoryAccessRange(thr, pc, (uptr)c, sizeof(uptr), false);
1151 MutexUnlock(thr, pc, (uptr)m);
1152 CondMutexUnlockCtx arg = {si, thr, pc, m};
1153 int res = 0;
1154 // This ensures that we handle mutex lock even in case of pthread_cancel.
1155 // See test/tsan/cond_cancel.cpp.
1156 {
1157 // Enable signal delivery while the thread is blocked.
1158 BlockingCall bc(thr);
1159 res = call_pthread_cancel_with_cleanup(
1160 fn, c, m, t, (void (*)(void *arg))cond_mutex_unlock, &arg);
1161 }
1162 if (res == errno_EOWNERDEAD) MutexRepair(thr, pc, (uptr)m);
1163 MutexPostLock(thr, pc, (uptr)m, MutexFlagDoPreLockOnPostLock);
1164 return res;
1165 }
1166
1167 INTERCEPTOR(int, pthread_cond_wait, void *c, void *m) {
1168 void *cond = init_cond(c);
1169 SCOPED_TSAN_INTERCEPTOR(pthread_cond_wait, cond, m);
1170 return cond_wait(thr, pc, &si, (int (*)(void *c, void *m, void *abstime))REAL(
1171 pthread_cond_wait),
1172 cond, m, 0);
1173 }
1174
1175 INTERCEPTOR(int, pthread_cond_timedwait, void *c, void *m, void *abstime) {
1176 void *cond = init_cond(c);
1177 SCOPED_TSAN_INTERCEPTOR(pthread_cond_timedwait, cond, m, abstime);
1178 return cond_wait(thr, pc, &si, REAL(pthread_cond_timedwait), cond, m,
1179 abstime);
1180 }
1181
1182 #if SANITIZER_MAC
1183 INTERCEPTOR(int, pthread_cond_timedwait_relative_np, void *c, void *m,
1184 void *reltime) {
1185 void *cond = init_cond(c);
1186 SCOPED_TSAN_INTERCEPTOR(pthread_cond_timedwait_relative_np, cond, m, reltime);
1187 return cond_wait(thr, pc, &si, REAL(pthread_cond_timedwait_relative_np), cond,
1188 m, reltime);
1189 }
1190 #endif
1191
1192 INTERCEPTOR(int, pthread_cond_signal, void *c) {
1193 void *cond = init_cond(c);
1194 SCOPED_TSAN_INTERCEPTOR(pthread_cond_signal, cond);
1195 MemoryAccessRange(thr, pc, (uptr)c, sizeof(uptr), false);
1196 return REAL(pthread_cond_signal)(cond);
1197 }
1198
1199 INTERCEPTOR(int, pthread_cond_broadcast, void *c) {
1200 void *cond = init_cond(c);
1201 SCOPED_TSAN_INTERCEPTOR(pthread_cond_broadcast, cond);
1202 MemoryAccessRange(thr, pc, (uptr)c, sizeof(uptr), false);
1203 return REAL(pthread_cond_broadcast)(cond);
1204 }
1205
1206 INTERCEPTOR(int, pthread_cond_destroy, void *c) {
1207 void *cond = init_cond(c);
1208 SCOPED_TSAN_INTERCEPTOR(pthread_cond_destroy, cond);
1209 MemoryAccessRange(thr, pc, (uptr)c, sizeof(uptr), true);
1210 int res = REAL(pthread_cond_destroy)(cond);
1211 if (common_flags()->legacy_pthread_cond) {
1212 // Free our aux cond and zero the pointer to not leave dangling pointers.
1213 WRAP(free)(cond);
1214 atomic_store((atomic_uintptr_t*)c, 0, memory_order_relaxed);
1215 }
1216 return res;
1217 }
1218
1219 TSAN_INTERCEPTOR(int, pthread_mutex_init, void *m, void *a) {
1220 SCOPED_TSAN_INTERCEPTOR(pthread_mutex_init, m, a);
1221 int res = REAL(pthread_mutex_init)(m, a);
1222 if (res == 0) {
1223 u32 flagz = 0;
1224 if (a) {
1225 int type = 0;
1226 if (REAL(pthread_mutexattr_gettype)(a, &type) == 0)
1227 if (type == PTHREAD_MUTEX_RECURSIVE ||
1228 type == PTHREAD_MUTEX_RECURSIVE_NP)
1229 flagz |= MutexFlagWriteReentrant;
1230 }
1231 MutexCreate(thr, pc, (uptr)m, flagz);
1232 }
1233 return res;
1234 }
1235
1236 TSAN_INTERCEPTOR(int, pthread_mutex_destroy, void *m) {
1237 SCOPED_TSAN_INTERCEPTOR(pthread_mutex_destroy, m);
1238 int res = REAL(pthread_mutex_destroy)(m);
1239 if (res == 0 || res == errno_EBUSY) {
1240 MutexDestroy(thr, pc, (uptr)m);
1241 }
1242 return res;
1243 }
1244
1245 TSAN_INTERCEPTOR(int, pthread_mutex_trylock, void *m) {
1246 SCOPED_TSAN_INTERCEPTOR(pthread_mutex_trylock, m);
1247 int res = REAL(pthread_mutex_trylock)(m);
1248 if (res == errno_EOWNERDEAD)
1249 MutexRepair(thr, pc, (uptr)m);
1250 if (res == 0 || res == errno_EOWNERDEAD)
1251 MutexPostLock(thr, pc, (uptr)m, MutexFlagTryLock);
1252 return res;
1253 }
1254
1255 #if !SANITIZER_MAC
1256 TSAN_INTERCEPTOR(int, pthread_mutex_timedlock, void *m, void *abstime) {
1257 SCOPED_TSAN_INTERCEPTOR(pthread_mutex_timedlock, m, abstime);
1258 int res = REAL(pthread_mutex_timedlock)(m, abstime);
1259 if (res == 0) {
1260 MutexPostLock(thr, pc, (uptr)m, MutexFlagTryLock);
1261 }
1262 return res;
1263 }
1264 #endif
1265
1266 #if !SANITIZER_MAC
1267 TSAN_INTERCEPTOR(int, pthread_spin_init, void *m, int pshared) {
1268 SCOPED_TSAN_INTERCEPTOR(pthread_spin_init, m, pshared);
1269 int res = REAL(pthread_spin_init)(m, pshared);
1270 if (res == 0) {
1271 MutexCreate(thr, pc, (uptr)m);
1272 }
1273 return res;
1274 }
1275
1276 TSAN_INTERCEPTOR(int, pthread_spin_destroy, void *m) {
1277 SCOPED_TSAN_INTERCEPTOR(pthread_spin_destroy, m);
1278 int res = REAL(pthread_spin_destroy)(m);
1279 if (res == 0) {
1280 MutexDestroy(thr, pc, (uptr)m);
1281 }
1282 return res;
1283 }
1284
1285 TSAN_INTERCEPTOR(int, pthread_spin_lock, void *m) {
1286 SCOPED_TSAN_INTERCEPTOR(pthread_spin_lock, m);
1287 MutexPreLock(thr, pc, (uptr)m);
1288 int res = REAL(pthread_spin_lock)(m);
1289 if (res == 0) {
1290 MutexPostLock(thr, pc, (uptr)m);
1291 }
1292 return res;
1293 }
1294
1295 TSAN_INTERCEPTOR(int, pthread_spin_trylock, void *m) {
1296 SCOPED_TSAN_INTERCEPTOR(pthread_spin_trylock, m);
1297 int res = REAL(pthread_spin_trylock)(m);
1298 if (res == 0) {
1299 MutexPostLock(thr, pc, (uptr)m, MutexFlagTryLock);
1300 }
1301 return res;
1302 }
1303
1304 TSAN_INTERCEPTOR(int, pthread_spin_unlock, void *m) {
1305 SCOPED_TSAN_INTERCEPTOR(pthread_spin_unlock, m);
1306 MutexUnlock(thr, pc, (uptr)m);
1307 int res = REAL(pthread_spin_unlock)(m);
1308 return res;
1309 }
1310 #endif
1311
1312 TSAN_INTERCEPTOR(int, pthread_rwlock_init, void *m, void *a) {
1313 SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_init, m, a);
1314 int res = REAL(pthread_rwlock_init)(m, a);
1315 if (res == 0) {
1316 MutexCreate(thr, pc, (uptr)m);
1317 }
1318 return res;
1319 }
1320
1321 TSAN_INTERCEPTOR(int, pthread_rwlock_destroy, void *m) {
1322 SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_destroy, m);
1323 int res = REAL(pthread_rwlock_destroy)(m);
1324 if (res == 0) {
1325 MutexDestroy(thr, pc, (uptr)m);
1326 }
1327 return res;
1328 }
1329
1330 TSAN_INTERCEPTOR(int, pthread_rwlock_rdlock, void *m) {
1331 SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_rdlock, m);
1332 MutexPreReadLock(thr, pc, (uptr)m);
1333 int res = REAL(pthread_rwlock_rdlock)(m);
1334 if (res == 0) {
1335 MutexPostReadLock(thr, pc, (uptr)m);
1336 }
1337 return res;
1338 }
1339
1340 TSAN_INTERCEPTOR(int, pthread_rwlock_tryrdlock, void *m) {
1341 SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_tryrdlock, m);
1342 int res = REAL(pthread_rwlock_tryrdlock)(m);
1343 if (res == 0) {
1344 MutexPostReadLock(thr, pc, (uptr)m, MutexFlagTryLock);
1345 }
1346 return res;
1347 }
1348
1349 #if !SANITIZER_MAC
1350 TSAN_INTERCEPTOR(int, pthread_rwlock_timedrdlock, void *m, void *abstime) {
1351 SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_timedrdlock, m, abstime);
1352 int res = REAL(pthread_rwlock_timedrdlock)(m, abstime);
1353 if (res == 0) {
1354 MutexPostReadLock(thr, pc, (uptr)m);
1355 }
1356 return res;
1357 }
1358 #endif
1359
1360 TSAN_INTERCEPTOR(int, pthread_rwlock_wrlock, void *m) {
1361 SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_wrlock, m);
1362 MutexPreLock(thr, pc, (uptr)m);
1363 int res = REAL(pthread_rwlock_wrlock)(m);
1364 if (res == 0) {
1365 MutexPostLock(thr, pc, (uptr)m);
1366 }
1367 return res;
1368 }
1369
1370 TSAN_INTERCEPTOR(int, pthread_rwlock_trywrlock, void *m) {
1371 SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_trywrlock, m);
1372 int res = REAL(pthread_rwlock_trywrlock)(m);
1373 if (res == 0) {
1374 MutexPostLock(thr, pc, (uptr)m, MutexFlagTryLock);
1375 }
1376 return res;
1377 }
1378
1379 #if !SANITIZER_MAC
1380 TSAN_INTERCEPTOR(int, pthread_rwlock_timedwrlock, void *m, void *abstime) {
1381 SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_timedwrlock, m, abstime);
1382 int res = REAL(pthread_rwlock_timedwrlock)(m, abstime);
1383 if (res == 0) {
1384 MutexPostLock(thr, pc, (uptr)m, MutexFlagTryLock);
1385 }
1386 return res;
1387 }
1388 #endif
1389
1390 TSAN_INTERCEPTOR(int, pthread_rwlock_unlock, void *m) {
1391 SCOPED_TSAN_INTERCEPTOR(pthread_rwlock_unlock, m);
1392 MutexReadOrWriteUnlock(thr, pc, (uptr)m);
1393 int res = REAL(pthread_rwlock_unlock)(m);
1394 return res;
1395 }
1396
1397 #if !SANITIZER_MAC
1398 TSAN_INTERCEPTOR(int, pthread_barrier_init, void *b, void *a, unsigned count) {
1399 SCOPED_TSAN_INTERCEPTOR(pthread_barrier_init, b, a, count);
1400 MemoryWrite(thr, pc, (uptr)b, kSizeLog1);
1401 int res = REAL(pthread_barrier_init)(b, a, count);
1402 return res;
1403 }
1404
1405 TSAN_INTERCEPTOR(int, pthread_barrier_destroy, void *b) {
1406 SCOPED_TSAN_INTERCEPTOR(pthread_barrier_destroy, b);
1407 MemoryWrite(thr, pc, (uptr)b, kSizeLog1);
1408 int res = REAL(pthread_barrier_destroy)(b);
1409 return res;
1410 }
1411
1412 TSAN_INTERCEPTOR(int, pthread_barrier_wait, void *b) {
1413 SCOPED_TSAN_INTERCEPTOR(pthread_barrier_wait, b);
1414 Release(thr, pc, (uptr)b);
1415 MemoryRead(thr, pc, (uptr)b, kSizeLog1);
1416 int res = REAL(pthread_barrier_wait)(b);
1417 MemoryRead(thr, pc, (uptr)b, kSizeLog1);
1418 if (res == 0 || res == PTHREAD_BARRIER_SERIAL_THREAD) {
1419 Acquire(thr, pc, (uptr)b);
1420 }
1421 return res;
1422 }
1423 #endif
1424
1425 TSAN_INTERCEPTOR(int, pthread_once, void *o, void (*f)()) {
1426 SCOPED_INTERCEPTOR_RAW(pthread_once, o, f);
1427 if (o == 0 || f == 0)
1428 return errno_EINVAL;
1429 atomic_uint32_t *a;
1430
1431 if (SANITIZER_MAC)
1432 a = static_cast<atomic_uint32_t*>((void *)((char *)o + sizeof(long_t)));
1433 else if (SANITIZER_NETBSD)
1434 a = static_cast<atomic_uint32_t*>
1435 ((void *)((char *)o + __sanitizer::pthread_mutex_t_sz));
1436 else
1437 a = static_cast<atomic_uint32_t*>(o);
1438
1439 u32 v = atomic_load(a, memory_order_acquire);
1440 if (v == 0 && atomic_compare_exchange_strong(a, &v, 1,
1441 memory_order_relaxed)) {
1442 (*f)();
1443 if (!thr->in_ignored_lib)
1444 Release(thr, pc, (uptr)o);
1445 atomic_store(a, 2, memory_order_release);
1446 } else {
1447 while (v != 2) {
1448 internal_sched_yield();
1449 v = atomic_load(a, memory_order_acquire);
1450 }
1451 if (!thr->in_ignored_lib)
1452 Acquire(thr, pc, (uptr)o);
1453 }
1454 return 0;
1455 }
1456
1457 #if SANITIZER_LINUX && !SANITIZER_ANDROID
1458 TSAN_INTERCEPTOR(int, __fxstat, int version, int fd, void *buf) {
1459 SCOPED_TSAN_INTERCEPTOR(__fxstat, version, fd, buf);
1460 if (fd > 0)
1461 FdAccess(thr, pc, fd);
1462 return REAL(__fxstat)(version, fd, buf);
1463 }
1464 #define TSAN_MAYBE_INTERCEPT___FXSTAT TSAN_INTERCEPT(__fxstat)
1465 #else
1466 #define TSAN_MAYBE_INTERCEPT___FXSTAT
1467 #endif
1468
1469 TSAN_INTERCEPTOR(int, fstat, int fd, void *buf) {
1470 #if SANITIZER_FREEBSD || SANITIZER_MAC || SANITIZER_ANDROID || SANITIZER_NETBSD
1471 SCOPED_TSAN_INTERCEPTOR(fstat, fd, buf);
1472 if (fd > 0)
1473 FdAccess(thr, pc, fd);
1474 return REAL(fstat)(fd, buf);
1475 #else
1476 SCOPED_TSAN_INTERCEPTOR(__fxstat, 0, fd, buf);
1477 if (fd > 0)
1478 FdAccess(thr, pc, fd);
1479 return REAL(__fxstat)(0, fd, buf);
1480 #endif
1481 }
1482
1483 #if SANITIZER_LINUX && !SANITIZER_ANDROID
1484 TSAN_INTERCEPTOR(int, __fxstat64, int version, int fd, void *buf) {
1485 SCOPED_TSAN_INTERCEPTOR(__fxstat64, version, fd, buf);
1486 if (fd > 0)
1487 FdAccess(thr, pc, fd);
1488 return REAL(__fxstat64)(version, fd, buf);
1489 }
1490 #define TSAN_MAYBE_INTERCEPT___FXSTAT64 TSAN_INTERCEPT(__fxstat64)
1491 #else
1492 #define TSAN_MAYBE_INTERCEPT___FXSTAT64
1493 #endif
1494
1495 #if SANITIZER_LINUX && !SANITIZER_ANDROID
1496 TSAN_INTERCEPTOR(int, fstat64, int fd, void *buf) {
1497 SCOPED_TSAN_INTERCEPTOR(__fxstat64, 0, fd, buf);
1498 if (fd > 0)
1499 FdAccess(thr, pc, fd);
1500 return REAL(__fxstat64)(0, fd, buf);
1501 }
1502 #define TSAN_MAYBE_INTERCEPT_FSTAT64 TSAN_INTERCEPT(fstat64)
1503 #else
1504 #define TSAN_MAYBE_INTERCEPT_FSTAT64
1505 #endif
1506
1507 TSAN_INTERCEPTOR(int, open, const char *name, int flags, int mode) {
1508 SCOPED_TSAN_INTERCEPTOR(open, name, flags, mode);
1509 READ_STRING(thr, pc, name, 0);
1510 int fd = REAL(open)(name, flags, mode);
1511 if (fd >= 0)
1512 FdFileCreate(thr, pc, fd);
1513 return fd;
1514 }
1515
1516 #if SANITIZER_LINUX
1517 TSAN_INTERCEPTOR(int, open64, const char *name, int flags, int mode) {
1518 SCOPED_TSAN_INTERCEPTOR(open64, name, flags, mode);
1519 READ_STRING(thr, pc, name, 0);
1520 int fd = REAL(open64)(name, flags, mode);
1521 if (fd >= 0)
1522 FdFileCreate(thr, pc, fd);
1523 return fd;
1524 }
1525 #define TSAN_MAYBE_INTERCEPT_OPEN64 TSAN_INTERCEPT(open64)
1526 #else
1527 #define TSAN_MAYBE_INTERCEPT_OPEN64
1528 #endif
1529
1530 TSAN_INTERCEPTOR(int, creat, const char *name, int mode) {
1531 SCOPED_TSAN_INTERCEPTOR(creat, name, mode);
1532 READ_STRING(thr, pc, name, 0);
1533 int fd = REAL(creat)(name, mode);
1534 if (fd >= 0)
1535 FdFileCreate(thr, pc, fd);
1536 return fd;
1537 }
1538
1539 #if SANITIZER_LINUX
1540 TSAN_INTERCEPTOR(int, creat64, const char *name, int mode) {
1541 SCOPED_TSAN_INTERCEPTOR(creat64, name, mode);
1542 READ_STRING(thr, pc, name, 0);
1543 int fd = REAL(creat64)(name, mode);
1544 if (fd >= 0)
1545 FdFileCreate(thr, pc, fd);
1546 return fd;
1547 }
1548 #define TSAN_MAYBE_INTERCEPT_CREAT64 TSAN_INTERCEPT(creat64)
1549 #else
1550 #define TSAN_MAYBE_INTERCEPT_CREAT64
1551 #endif
1552
1553 TSAN_INTERCEPTOR(int, dup, int oldfd) {
1554 SCOPED_TSAN_INTERCEPTOR(dup, oldfd);
1555 int newfd = REAL(dup)(oldfd);
1556 if (oldfd >= 0 && newfd >= 0 && newfd != oldfd)
1557 FdDup(thr, pc, oldfd, newfd, true);
1558 return newfd;
1559 }
1560
1561 TSAN_INTERCEPTOR(int, dup2, int oldfd, int newfd) {
1562 SCOPED_TSAN_INTERCEPTOR(dup2, oldfd, newfd);
1563 int newfd2 = REAL(dup2)(oldfd, newfd);
1564 if (oldfd >= 0 && newfd2 >= 0 && newfd2 != oldfd)
1565 FdDup(thr, pc, oldfd, newfd2, false);
1566 return newfd2;
1567 }
1568
1569 #if !SANITIZER_MAC
1570 TSAN_INTERCEPTOR(int, dup3, int oldfd, int newfd, int flags) {
1571 SCOPED_TSAN_INTERCEPTOR(dup3, oldfd, newfd, flags);
1572 int newfd2 = REAL(dup3)(oldfd, newfd, flags);
1573 if (oldfd >= 0 && newfd2 >= 0 && newfd2 != oldfd)
1574 FdDup(thr, pc, oldfd, newfd2, false);
1575 return newfd2;
1576 }
1577 #endif
1578
1579 #if SANITIZER_LINUX
1580 TSAN_INTERCEPTOR(int, eventfd, unsigned initval, int flags) {
1581 SCOPED_TSAN_INTERCEPTOR(eventfd, initval, flags);
1582 int fd = REAL(eventfd)(initval, flags);
1583 if (fd >= 0)
1584 FdEventCreate(thr, pc, fd);
1585 return fd;
1586 }
1587 #define TSAN_MAYBE_INTERCEPT_EVENTFD TSAN_INTERCEPT(eventfd)
1588 #else
1589 #define TSAN_MAYBE_INTERCEPT_EVENTFD
1590 #endif
1591
1592 #if SANITIZER_LINUX
1593 TSAN_INTERCEPTOR(int, signalfd, int fd, void *mask, int flags) {
1594 SCOPED_TSAN_INTERCEPTOR(signalfd, fd, mask, flags);
1595 if (fd >= 0)
1596 FdClose(thr, pc, fd);
1597 fd = REAL(signalfd)(fd, mask, flags);
1598 if (fd >= 0)
1599 FdSignalCreate(thr, pc, fd);
1600 return fd;
1601 }
1602 #define TSAN_MAYBE_INTERCEPT_SIGNALFD TSAN_INTERCEPT(signalfd)
1603 #else
1604 #define TSAN_MAYBE_INTERCEPT_SIGNALFD
1605 #endif
1606
1607 #if SANITIZER_LINUX
1608 TSAN_INTERCEPTOR(int, inotify_init, int fake) {
1609 SCOPED_TSAN_INTERCEPTOR(inotify_init, fake);
1610 int fd = REAL(inotify_init)(fake);
1611 if (fd >= 0)
1612 FdInotifyCreate(thr, pc, fd);
1613 return fd;
1614 }
1615 #define TSAN_MAYBE_INTERCEPT_INOTIFY_INIT TSAN_INTERCEPT(inotify_init)
1616 #else
1617 #define TSAN_MAYBE_INTERCEPT_INOTIFY_INIT
1618 #endif
1619
1620 #if SANITIZER_LINUX
1621 TSAN_INTERCEPTOR(int, inotify_init1, int flags) {
1622 SCOPED_TSAN_INTERCEPTOR(inotify_init1, flags);
1623 int fd = REAL(inotify_init1)(flags);
1624 if (fd >= 0)
1625 FdInotifyCreate(thr, pc, fd);
1626 return fd;
1627 }
1628 #define TSAN_MAYBE_INTERCEPT_INOTIFY_INIT1 TSAN_INTERCEPT(inotify_init1)
1629 #else
1630 #define TSAN_MAYBE_INTERCEPT_INOTIFY_INIT1
1631 #endif
1632
1633 TSAN_INTERCEPTOR(int, socket, int domain, int type, int protocol) {
1634 SCOPED_TSAN_INTERCEPTOR(socket, domain, type, protocol);
1635 int fd = REAL(socket)(domain, type, protocol);
1636 if (fd >= 0)
1637 FdSocketCreate(thr, pc, fd);
1638 return fd;
1639 }
1640
1641 TSAN_INTERCEPTOR(int, socketpair, int domain, int type, int protocol, int *fd) {
1642 SCOPED_TSAN_INTERCEPTOR(socketpair, domain, type, protocol, fd);
1643 int res = REAL(socketpair)(domain, type, protocol, fd);
1644 if (res == 0 && fd[0] >= 0 && fd[1] >= 0)
1645 FdPipeCreate(thr, pc, fd[0], fd[1]);
1646 return res;
1647 }
1648
1649 TSAN_INTERCEPTOR(int, connect, int fd, void *addr, unsigned addrlen) {
1650 SCOPED_TSAN_INTERCEPTOR(connect, fd, addr, addrlen);
1651 FdSocketConnecting(thr, pc, fd);
1652 int res = REAL(connect)(fd, addr, addrlen);
1653 if (res == 0 && fd >= 0)
1654 FdSocketConnect(thr, pc, fd);
1655 return res;
1656 }
1657
1658 TSAN_INTERCEPTOR(int, bind, int fd, void *addr, unsigned addrlen) {
1659 SCOPED_TSAN_INTERCEPTOR(bind, fd, addr, addrlen);
1660 int res = REAL(bind)(fd, addr, addrlen);
1661 if (fd > 0 && res == 0)
1662 FdAccess(thr, pc, fd);
1663 return res;
1664 }
1665
1666 TSAN_INTERCEPTOR(int, listen, int fd, int backlog) {
1667 SCOPED_TSAN_INTERCEPTOR(listen, fd, backlog);
1668 int res = REAL(listen)(fd, backlog);
1669 if (fd > 0 && res == 0)
1670 FdAccess(thr, pc, fd);
1671 return res;
1672 }
1673
1674 TSAN_INTERCEPTOR(int, close, int fd) {
1675 SCOPED_TSAN_INTERCEPTOR(close, fd);
1676 if (fd >= 0)
1677 FdClose(thr, pc, fd);
1678 return REAL(close)(fd);
1679 }
1680
1681 #if SANITIZER_LINUX
1682 TSAN_INTERCEPTOR(int, __close, int fd) {
1683 SCOPED_TSAN_INTERCEPTOR(__close, fd);
1684 if (fd >= 0)
1685 FdClose(thr, pc, fd);
1686 return REAL(__close)(fd);
1687 }
1688 #define TSAN_MAYBE_INTERCEPT___CLOSE TSAN_INTERCEPT(__close)
1689 #else
1690 #define TSAN_MAYBE_INTERCEPT___CLOSE
1691 #endif
1692
1693 // glibc guts
1694 #if SANITIZER_LINUX && !SANITIZER_ANDROID
1695 TSAN_INTERCEPTOR(void, __res_iclose, void *state, bool free_addr) {
1696 SCOPED_TSAN_INTERCEPTOR(__res_iclose, state, free_addr);
1697 int fds[64];
1698 int cnt = ExtractResolvFDs(state, fds, ARRAY_SIZE(fds));
1699 for (int i = 0; i < cnt; i++) {
1700 if (fds[i] > 0)
1701 FdClose(thr, pc, fds[i]);
1702 }
1703 REAL(__res_iclose)(state, free_addr);
1704 }
1705 #define TSAN_MAYBE_INTERCEPT___RES_ICLOSE TSAN_INTERCEPT(__res_iclose)
1706 #else
1707 #define TSAN_MAYBE_INTERCEPT___RES_ICLOSE
1708 #endif
1709
1710 TSAN_INTERCEPTOR(int, pipe, int *pipefd) {
1711 SCOPED_TSAN_INTERCEPTOR(pipe, pipefd);
1712 int res = REAL(pipe)(pipefd);
1713 if (res == 0 && pipefd[0] >= 0 && pipefd[1] >= 0)
1714 FdPipeCreate(thr, pc, pipefd[0], pipefd[1]);
1715 return res;
1716 }
1717
1718 #if !SANITIZER_MAC
1719 TSAN_INTERCEPTOR(int, pipe2, int *pipefd, int flags) {
1720 SCOPED_TSAN_INTERCEPTOR(pipe2, pipefd, flags);
1721 int res = REAL(pipe2)(pipefd, flags);
1722 if (res == 0 && pipefd[0] >= 0 && pipefd[1] >= 0)
1723 FdPipeCreate(thr, pc, pipefd[0], pipefd[1]);
1724 return res;
1725 }
1726 #endif
1727
1728 TSAN_INTERCEPTOR(int, unlink, char *path) {
1729 SCOPED_TSAN_INTERCEPTOR(unlink, path);
1730 Release(thr, pc, File2addr(path));
1731 int res = REAL(unlink)(path);
1732 return res;
1733 }
1734
1735 TSAN_INTERCEPTOR(void*, tmpfile, int fake) {
1736 SCOPED_TSAN_INTERCEPTOR(tmpfile, fake);
1737 void *res = REAL(tmpfile)(fake);
1738 if (res) {
1739 int fd = fileno_unlocked(res);
1740 if (fd >= 0)
1741 FdFileCreate(thr, pc, fd);
1742 }
1743 return res;
1744 }
1745
1746 #if SANITIZER_LINUX
1747 TSAN_INTERCEPTOR(void*, tmpfile64, int fake) {
1748 SCOPED_TSAN_INTERCEPTOR(tmpfile64, fake);
1749 void *res = REAL(tmpfile64)(fake);
1750 if (res) {
1751 int fd = fileno_unlocked(res);
1752 if (fd >= 0)
1753 FdFileCreate(thr, pc, fd);
1754 }
1755 return res;
1756 }
1757 #define TSAN_MAYBE_INTERCEPT_TMPFILE64 TSAN_INTERCEPT(tmpfile64)
1758 #else
1759 #define TSAN_MAYBE_INTERCEPT_TMPFILE64
1760 #endif
1761
1762 static void FlushStreams() {
1763 // Flushing all the streams here may freeze the process if a child thread is
1764 // performing file stream operations at the same time.
1765 REAL(fflush)(stdout);
1766 REAL(fflush)(stderr);
1767 }
1768
1769 TSAN_INTERCEPTOR(void, abort, int fake) {
1770 SCOPED_TSAN_INTERCEPTOR(abort, fake);
1771 FlushStreams();
1772 REAL(abort)(fake);
1773 }
1774
1775 TSAN_INTERCEPTOR(int, rmdir, char *path) {
1776 SCOPED_TSAN_INTERCEPTOR(rmdir, path);
1777 Release(thr, pc, Dir2addr(path));
1778 int res = REAL(rmdir)(path);
1779 return res;
1780 }
1781
1782 TSAN_INTERCEPTOR(int, closedir, void *dirp) {
1783 SCOPED_TSAN_INTERCEPTOR(closedir, dirp);
1784 if (dirp) {
1785 int fd = dirfd(dirp);
1786 FdClose(thr, pc, fd);
1787 }
1788 return REAL(closedir)(dirp);
1789 }
1790
1791 #if SANITIZER_LINUX
1792 TSAN_INTERCEPTOR(int, epoll_create, int size) {
1793 SCOPED_TSAN_INTERCEPTOR(epoll_create, size);
1794 int fd = REAL(epoll_create)(size);
1795 if (fd >= 0)
1796 FdPollCreate(thr, pc, fd);
1797 return fd;
1798 }
1799
1800 TSAN_INTERCEPTOR(int, epoll_create1, int flags) {
1801 SCOPED_TSAN_INTERCEPTOR(epoll_create1, flags);
1802 int fd = REAL(epoll_create1)(flags);
1803 if (fd >= 0)
1804 FdPollCreate(thr, pc, fd);
1805 return fd;
1806 }
1807
1808 TSAN_INTERCEPTOR(int, epoll_ctl, int epfd, int op, int fd, void *ev) {
1809 SCOPED_TSAN_INTERCEPTOR(epoll_ctl, epfd, op, fd, ev);
1810 if (epfd >= 0)
1811 FdAccess(thr, pc, epfd);
1812 if (epfd >= 0 && fd >= 0)
1813 FdAccess(thr, pc, fd);
1814 if (op == EPOLL_CTL_ADD && epfd >= 0)
1815 FdRelease(thr, pc, epfd);
1816 int res = REAL(epoll_ctl)(epfd, op, fd, ev);
1817 return res;
1818 }
1819
1820 TSAN_INTERCEPTOR(int, epoll_wait, int epfd, void *ev, int cnt, int timeout) {
1821 SCOPED_TSAN_INTERCEPTOR(epoll_wait, epfd, ev, cnt, timeout);
1822 if (epfd >= 0)
1823 FdAccess(thr, pc, epfd);
1824 int res = BLOCK_REAL(epoll_wait)(epfd, ev, cnt, timeout);
1825 if (res > 0 && epfd >= 0)
1826 FdAcquire(thr, pc, epfd);
1827 return res;
1828 }
1829
1830 TSAN_INTERCEPTOR(int, epoll_pwait, int epfd, void *ev, int cnt, int timeout,
1831 void *sigmask) {
1832 SCOPED_TSAN_INTERCEPTOR(epoll_pwait, epfd, ev, cnt, timeout, sigmask);
1833 if (epfd >= 0)
1834 FdAccess(thr, pc, epfd);
1835 int res = BLOCK_REAL(epoll_pwait)(epfd, ev, cnt, timeout, sigmask);
1836 if (res > 0 && epfd >= 0)
1837 FdAcquire(thr, pc, epfd);
1838 return res;
1839 }
1840
1841 #define TSAN_MAYBE_INTERCEPT_EPOLL \
1842 TSAN_INTERCEPT(epoll_create); \
1843 TSAN_INTERCEPT(epoll_create1); \
1844 TSAN_INTERCEPT(epoll_ctl); \
1845 TSAN_INTERCEPT(epoll_wait); \
1846 TSAN_INTERCEPT(epoll_pwait)
1847 #else
1848 #define TSAN_MAYBE_INTERCEPT_EPOLL
1849 #endif
1850
1851 // The following functions are intercepted merely to process pending signals.
1852 // If program blocks signal X, we must deliver the signal before the function
1853 // returns. Similarly, if program unblocks a signal (or returns from sigsuspend)
1854 // it's better to deliver the signal straight away.
1855 TSAN_INTERCEPTOR(int, sigsuspend, const __sanitizer_sigset_t *mask) {
1856 SCOPED_TSAN_INTERCEPTOR(sigsuspend, mask);
1857 return REAL(sigsuspend)(mask);
1858 }
1859
1860 TSAN_INTERCEPTOR(int, sigblock, int mask) {
1861 SCOPED_TSAN_INTERCEPTOR(sigblock, mask);
1862 return REAL(sigblock)(mask);
1863 }
1864
1865 TSAN_INTERCEPTOR(int, sigsetmask, int mask) {
1866 SCOPED_TSAN_INTERCEPTOR(sigsetmask, mask);
1867 return REAL(sigsetmask)(mask);
1868 }
1869
1870 TSAN_INTERCEPTOR(int, pthread_sigmask, int how, const __sanitizer_sigset_t *set,
1871 __sanitizer_sigset_t *oldset) {
1872 SCOPED_TSAN_INTERCEPTOR(pthread_sigmask, how, set, oldset);
1873 return REAL(pthread_sigmask)(how, set, oldset);
1874 }
1875
1876 namespace __tsan {
1877
1878 static void CallUserSignalHandler(ThreadState *thr, bool sync, bool acquire,
1879 bool sigact, int sig,
1880 __sanitizer_siginfo *info, void *uctx) {
1881 __sanitizer_sigaction *sigactions = interceptor_ctx()->sigactions;
1882 if (acquire)
1883 Acquire(thr, 0, (uptr)&sigactions[sig]);
1884 // Signals are generally asynchronous, so if we receive a signals when
1885 // ignores are enabled we should disable ignores. This is critical for sync
1886 // and interceptors, because otherwise we can miss syncronization and report
1887 // false races.
1888 int ignore_reads_and_writes = thr->ignore_reads_and_writes;
1889 int ignore_interceptors = thr->ignore_interceptors;
1890 int ignore_sync = thr->ignore_sync;
1891 if (!ctx->after_multithreaded_fork) {
1892 thr->ignore_reads_and_writes = 0;
1893 thr->fast_state.ClearIgnoreBit();
1894 thr->ignore_interceptors = 0;
1895 thr->ignore_sync = 0;
1896 }
1897 // Ensure that the handler does not spoil errno.
1898 const int saved_errno = errno;
1899 errno = 99;
1900 // This code races with sigaction. Be careful to not read sa_sigaction twice.
1901 // Also need to remember pc for reporting before the call,
1902 // because the handler can reset it.
1903 volatile uptr pc =
1904 sigact ? (uptr)sigactions[sig].sigaction : (uptr)sigactions[sig].handler;
1905 if (pc != sig_dfl && pc != sig_ign) {
1906 if (sigact)
1907 ((__sanitizer_sigactionhandler_ptr)pc)(sig, info, uctx);
1908 else
1909 ((__sanitizer_sighandler_ptr)pc)(sig);
1910 }
1911 if (!ctx->after_multithreaded_fork) {
1912 thr->ignore_reads_and_writes = ignore_reads_and_writes;
1913 if (ignore_reads_and_writes)
1914 thr->fast_state.SetIgnoreBit();
1915 thr->ignore_interceptors = ignore_interceptors;
1916 thr->ignore_sync = ignore_sync;
1917 }
1918 // We do not detect errno spoiling for SIGTERM,
1919 // because some SIGTERM handlers do spoil errno but reraise SIGTERM,
1920 // tsan reports false positive in such case.
1921 // It's difficult to properly detect this situation (reraise),
1922 // because in async signal processing case (when handler is called directly
1923 // from rtl_generic_sighandler) we have not yet received the reraised
1924 // signal; and it looks too fragile to intercept all ways to reraise a signal.
1925 if (flags()->report_bugs && !sync && sig != SIGTERM && errno != 99) {
1926 VarSizeStackTrace stack;
1927 // StackTrace::GetNestInstructionPc(pc) is used because return address is
1928 // expected, OutputReport() will undo this.
1929 ObtainCurrentStack(thr, StackTrace::GetNextInstructionPc(pc), &stack);
1930 ThreadRegistryLock l(ctx->thread_registry);
1931 ScopedReport rep(ReportTypeErrnoInSignal);
1932 if (!IsFiredSuppression(ctx, ReportTypeErrnoInSignal, stack)) {
1933 rep.AddStack(stack, true);
1934 OutputReport(thr, rep);
1935 }
1936 }
1937 errno = saved_errno;
1938 }
1939
1940 void ProcessPendingSignals(ThreadState *thr) {
1941 ThreadSignalContext *sctx = SigCtx(thr);
1942 if (sctx == 0 ||
1943 atomic_load(&sctx->have_pending_signals, memory_order_relaxed) == 0)
1944 return;
1945 atomic_store(&sctx->have_pending_signals, 0, memory_order_relaxed);
1946 atomic_fetch_add(&thr->in_signal_handler, 1, memory_order_relaxed);
1947 internal_sigfillset(&sctx->emptyset);
1948 int res = REAL(pthread_sigmask)(SIG_SETMASK, &sctx->emptyset, &sctx->oldset);
1949 CHECK_EQ(res, 0);
1950 for (int sig = 0; sig < kSigCount; sig++) {
1951 SignalDesc *signal = &sctx->pending_signals[sig];
1952 if (signal->armed) {
1953 signal->armed = false;
1954 CallUserSignalHandler(thr, false, true, signal->sigaction, sig,
1955 &signal->siginfo, &signal->ctx);
1956 }
1957 }
1958 res = REAL(pthread_sigmask)(SIG_SETMASK, &sctx->oldset, 0);
1959 CHECK_EQ(res, 0);
1960 atomic_fetch_add(&thr->in_signal_handler, -1, memory_order_relaxed);
1961 }
1962
1963 } // namespace __tsan
1964
1965 static bool is_sync_signal(ThreadSignalContext *sctx, int sig) {
1966 return sig == SIGSEGV || sig == SIGBUS || sig == SIGILL || sig == SIGTRAP ||
1967 sig == SIGABRT || sig == SIGFPE || sig == SIGPIPE || sig == SIGSYS ||
1968 // If we are sending signal to ourselves, we must process it now.
1969 (sctx && sig == sctx->int_signal_send);
1970 }
1971
1972 void ALWAYS_INLINE rtl_generic_sighandler(bool sigact, int sig,
1973 __sanitizer_siginfo *info,
1974 void *ctx) {
1975 cur_thread_init();
1976 ThreadState *thr = cur_thread();
1977 ThreadSignalContext *sctx = SigCtx(thr);
1978 if (sig < 0 || sig >= kSigCount) {
1979 VPrintf(1, "ThreadSanitizer: ignoring signal %d\n", sig);
1980 return;
1981 }
1982 // Don't mess with synchronous signals.
1983 const bool sync = is_sync_signal(sctx, sig);
1984 if (sync ||
1985 // If we are in blocking function, we can safely process it now
1986 // (but check if we are in a recursive interceptor,
1987 // i.e. pthread_join()->munmap()).
1988 (sctx && atomic_load(&sctx->in_blocking_func, memory_order_relaxed))) {
1989 atomic_fetch_add(&thr->in_signal_handler, 1, memory_order_relaxed);
1990 if (sctx && atomic_load(&sctx->in_blocking_func, memory_order_relaxed)) {
1991 atomic_store(&sctx->in_blocking_func, 0, memory_order_relaxed);
1992 CallUserSignalHandler(thr, sync, true, sigact, sig, info, ctx);
1993 atomic_store(&sctx->in_blocking_func, 1, memory_order_relaxed);
1994 } else {
1995 // Be very conservative with when we do acquire in this case.
1996 // It's unsafe to do acquire in async handlers, because ThreadState
1997 // can be in inconsistent state.
1998 // SIGSYS looks relatively safe -- it's synchronous and can actually
1999 // need some global state.
2000 bool acq = (sig == SIGSYS);
2001 CallUserSignalHandler(thr, sync, acq, sigact, sig, info, ctx);
2002 }
2003 atomic_fetch_add(&thr->in_signal_handler, -1, memory_order_relaxed);
2004 return;
2005 }
2006
2007 if (sctx == 0)
2008 return;
2009 SignalDesc *signal = &sctx->pending_signals[sig];
2010 if (signal->armed == false) {
2011 signal->armed = true;
2012 signal->sigaction = sigact;
2013 if (info)
2014 internal_memcpy(&signal->siginfo, info, sizeof(*info));
2015 if (ctx)
2016 internal_memcpy(&signal->ctx, ctx, sizeof(signal->ctx));
2017 atomic_store(&sctx->have_pending_signals, 1, memory_order_relaxed);
2018 }
2019 }
2020
2021 static void rtl_sighandler(int sig) {
2022 rtl_generic_sighandler(false, sig, 0, 0);
2023 }
2024
2025 static void rtl_sigaction(int sig, __sanitizer_siginfo *info, void *ctx) {
2026 rtl_generic_sighandler(true, sig, info, ctx);
2027 }
2028
2029 TSAN_INTERCEPTOR(int, raise, int sig) {
2030 SCOPED_TSAN_INTERCEPTOR(raise, sig);
2031 ThreadSignalContext *sctx = SigCtx(thr);
2032 CHECK_NE(sctx, 0);
2033 int prev = sctx->int_signal_send;
2034 sctx->int_signal_send = sig;
2035 int res = REAL(raise)(sig);
2036 CHECK_EQ(sctx->int_signal_send, sig);
2037 sctx->int_signal_send = prev;
2038 return res;
2039 }
2040
2041 TSAN_INTERCEPTOR(int, kill, int pid, int sig) {
2042 SCOPED_TSAN_INTERCEPTOR(kill, pid, sig);
2043 ThreadSignalContext *sctx = SigCtx(thr);
2044 CHECK_NE(sctx, 0);
2045 int prev = sctx->int_signal_send;
2046 if (pid == (int)internal_getpid()) {
2047 sctx->int_signal_send = sig;
2048 }
2049 int res = REAL(kill)(pid, sig);
2050 if (pid == (int)internal_getpid()) {
2051 CHECK_EQ(sctx->int_signal_send, sig);
2052 sctx->int_signal_send = prev;
2053 }
2054 return res;
2055 }
2056
2057 TSAN_INTERCEPTOR(int, pthread_kill, void *tid, int sig) {
2058 SCOPED_TSAN_INTERCEPTOR(pthread_kill, tid, sig);
2059 ThreadSignalContext *sctx = SigCtx(thr);
2060 CHECK_NE(sctx, 0);
2061 int prev = sctx->int_signal_send;
2062 if (tid == pthread_self()) {
2063 sctx->int_signal_send = sig;
2064 }
2065 int res = REAL(pthread_kill)(tid, sig);
2066 if (tid == pthread_self()) {
2067 CHECK_EQ(sctx->int_signal_send, sig);
2068 sctx->int_signal_send = prev;
2069 }
2070 return res;
2071 }
2072
2073 TSAN_INTERCEPTOR(int, gettimeofday, void *tv, void *tz) {
2074 SCOPED_TSAN_INTERCEPTOR(gettimeofday, tv, tz);
2075 // It's intercepted merely to process pending signals.
2076 return REAL(gettimeofday)(tv, tz);
2077 }
2078
2079 TSAN_INTERCEPTOR(int, getaddrinfo, void *node, void *service,
2080 void *hints, void *rv) {
2081 SCOPED_TSAN_INTERCEPTOR(getaddrinfo, node, service, hints, rv);
2082 // We miss atomic synchronization in getaddrinfo,
2083 // and can report false race between malloc and free
2084 // inside of getaddrinfo. So ignore memory accesses.
2085 ThreadIgnoreBegin(thr, pc);
2086 int res = REAL(getaddrinfo)(node, service, hints, rv);
2087 ThreadIgnoreEnd(thr, pc);
2088 return res;
2089 }
2090
2091 TSAN_INTERCEPTOR(int, fork, int fake) {
2092 if (in_symbolizer())
2093 return REAL(fork)(fake);
2094 SCOPED_INTERCEPTOR_RAW(fork, fake);
2095 ForkBefore(thr, pc);
2096 int pid;
2097 {
2098 // On OS X, REAL(fork) can call intercepted functions (OSSpinLockLock), and
2099 // we'll assert in CheckNoLocks() unless we ignore interceptors.
2100 ScopedIgnoreInterceptors ignore;
2101 pid = REAL(fork)(fake);
2102 }
2103 if (pid == 0) {
2104 // child
2105 ForkChildAfter(thr, pc);
2106 FdOnFork(thr, pc);
2107 } else if (pid > 0) {
2108 // parent
2109 ForkParentAfter(thr, pc);
2110 } else {
2111 // error
2112 ForkParentAfter(thr, pc);
2113 }
2114 return pid;
2115 }
2116
2117 TSAN_INTERCEPTOR(int, vfork, int fake) {
2118 // Some programs (e.g. openjdk) call close for all file descriptors
2119 // in the child process. Under tsan it leads to false positives, because
2120 // address space is shared, so the parent process also thinks that
2121 // the descriptors are closed (while they are actually not).
2122 // This leads to false positives due to missed synchronization.
2123 // Strictly saying this is undefined behavior, because vfork child is not
2124 // allowed to call any functions other than exec/exit. But this is what
2125 // openjdk does, so we want to handle it.
2126 // We could disable interceptors in the child process. But it's not possible
2127 // to simply intercept and wrap vfork, because vfork child is not allowed
2128 // to return from the function that calls vfork, and that's exactly what
2129 // we would do. So this would require some assembly trickery as well.
2130 // Instead we simply turn vfork into fork.
2131 return WRAP(fork)(fake);
2132 }
2133
2134 #if !SANITIZER_MAC && !SANITIZER_ANDROID
2135 typedef int (*dl_iterate_phdr_cb_t)(__sanitizer_dl_phdr_info *info, SIZE_T size,
2136 void *data);
2137 struct dl_iterate_phdr_data {
2138 ThreadState *thr;
2139 uptr pc;
2140 dl_iterate_phdr_cb_t cb;
2141 void *data;
2142 };
2143
2144 static bool IsAppNotRodata(uptr addr) {
2145 return IsAppMem(addr) && *(u64*)MemToShadow(addr) != kShadowRodata;
2146 }
2147
2148 static int dl_iterate_phdr_cb(__sanitizer_dl_phdr_info *info, SIZE_T size,
2149 void *data) {
2150 dl_iterate_phdr_data *cbdata = (dl_iterate_phdr_data *)data;
2151 // dlopen/dlclose allocate/free dynamic-linker-internal memory, which is later
2152 // accessible in dl_iterate_phdr callback. But we don't see synchronization
2153 // inside of dynamic linker, so we "unpoison" it here in order to not
2154 // produce false reports. Ignoring malloc/free in dlopen/dlclose is not enough
2155 // because some libc functions call __libc_dlopen.
2156 if (info && IsAppNotRodata((uptr)info->dlpi_name))
2157 MemoryResetRange(cbdata->thr, cbdata->pc, (uptr)info->dlpi_name,
2158 internal_strlen(info->dlpi_name));
2159 int res = cbdata->cb(info, size, cbdata->data);
2160 // Perform the check one more time in case info->dlpi_name was overwritten
2161 // by user callback.
2162 if (info && IsAppNotRodata((uptr)info->dlpi_name))
2163 MemoryResetRange(cbdata->thr, cbdata->pc, (uptr)info->dlpi_name,
2164 internal_strlen(info->dlpi_name));
2165 return res;
2166 }
2167
2168 TSAN_INTERCEPTOR(int, dl_iterate_phdr, dl_iterate_phdr_cb_t cb, void *data) {
2169 SCOPED_TSAN_INTERCEPTOR(dl_iterate_phdr, cb, data);
2170 dl_iterate_phdr_data cbdata;
2171 cbdata.thr = thr;
2172 cbdata.pc = pc;
2173 cbdata.cb = cb;
2174 cbdata.data = data;
2175 int res = REAL(dl_iterate_phdr)(dl_iterate_phdr_cb, &cbdata);
2176 return res;
2177 }
2178 #endif
2179
2180 static int OnExit(ThreadState *thr) {
2181 int status = Finalize(thr);
2182 FlushStreams();
2183 return status;
2184 }
2185
2186 struct TsanInterceptorContext {
2187 ThreadState *thr;
2188 const uptr caller_pc;
2189 const uptr pc;
2190 };
2191
2192 #if !SANITIZER_MAC
2193 static void HandleRecvmsg(ThreadState *thr, uptr pc,
2194 __sanitizer_msghdr *msg) {
2195 int fds[64];
2196 int cnt = ExtractRecvmsgFDs(msg, fds, ARRAY_SIZE(fds));
2197 for (int i = 0; i < cnt; i++)
2198 FdEventCreate(thr, pc, fds[i]);
2199 }
2200 #endif
2201
2202 #include "sanitizer_common/sanitizer_platform_interceptors.h"
2203 // Causes interceptor recursion (getaddrinfo() and fopen())
2204 #undef SANITIZER_INTERCEPT_GETADDRINFO
2205 // We define our own.
2206 #if SANITIZER_INTERCEPT_TLS_GET_ADDR
2207 #define NEED_TLS_GET_ADDR
2208 #endif
2209 #undef SANITIZER_INTERCEPT_TLS_GET_ADDR
2210 #undef SANITIZER_INTERCEPT_PTHREAD_SIGMASK
2211
2212 #define COMMON_INTERCEPT_FUNCTION(name) INTERCEPT_FUNCTION(name)
2213 #define COMMON_INTERCEPT_FUNCTION_VER(name, ver) \
2214 INTERCEPT_FUNCTION_VER(name, ver)
2215
2216 #define COMMON_INTERCEPTOR_WRITE_RANGE(ctx, ptr, size) \
2217 MemoryAccessRange(((TsanInterceptorContext *)ctx)->thr, \
2218 ((TsanInterceptorContext *)ctx)->pc, (uptr)ptr, size, \
2219 true)
2220
2221 #define COMMON_INTERCEPTOR_READ_RANGE(ctx, ptr, size) \
2222 MemoryAccessRange(((TsanInterceptorContext *) ctx)->thr, \
2223 ((TsanInterceptorContext *) ctx)->pc, (uptr) ptr, size, \
2224 false)
2225
2226 #define COMMON_INTERCEPTOR_ENTER(ctx, func, ...) \
2227 SCOPED_TSAN_INTERCEPTOR(func, __VA_ARGS__); \
2228 TsanInterceptorContext _ctx = {thr, caller_pc, pc}; \
2229 ctx = (void *)&_ctx; \
2230 (void) ctx;
2231
2232 #define COMMON_INTERCEPTOR_ENTER_NOIGNORE(ctx, func, ...) \
2233 SCOPED_INTERCEPTOR_RAW(func, __VA_ARGS__); \
2234 TsanInterceptorContext _ctx = {thr, caller_pc, pc}; \
2235 ctx = (void *)&_ctx; \
2236 (void) ctx;
2237
2238 #define COMMON_INTERCEPTOR_FILE_OPEN(ctx, file, path) \
2239 if (path) \
2240 Acquire(thr, pc, File2addr(path)); \
2241 if (file) { \
2242 int fd = fileno_unlocked(file); \
2243 if (fd >= 0) FdFileCreate(thr, pc, fd); \
2244 }
2245
2246 #define COMMON_INTERCEPTOR_FILE_CLOSE(ctx, file) \
2247 if (file) { \
2248 int fd = fileno_unlocked(file); \
2249 if (fd >= 0) FdClose(thr, pc, fd); \
2250 }
2251
2252 #define COMMON_INTERCEPTOR_LIBRARY_LOADED(filename, handle) \
2253 libignore()->OnLibraryLoaded(filename)
2254
2255 #define COMMON_INTERCEPTOR_LIBRARY_UNLOADED() \
2256 libignore()->OnLibraryUnloaded()
2257
2258 #define COMMON_INTERCEPTOR_ACQUIRE(ctx, u) \
2259 Acquire(((TsanInterceptorContext *) ctx)->thr, pc, u)
2260
2261 #define COMMON_INTERCEPTOR_RELEASE(ctx, u) \
2262 Release(((TsanInterceptorContext *) ctx)->thr, pc, u)
2263
2264 #define COMMON_INTERCEPTOR_DIR_ACQUIRE(ctx, path) \
2265 Acquire(((TsanInterceptorContext *) ctx)->thr, pc, Dir2addr(path))
2266
2267 #define COMMON_INTERCEPTOR_FD_ACQUIRE(ctx, fd) \
2268 FdAcquire(((TsanInterceptorContext *) ctx)->thr, pc, fd)
2269
2270 #define COMMON_INTERCEPTOR_FD_RELEASE(ctx, fd) \
2271 FdRelease(((TsanInterceptorContext *) ctx)->thr, pc, fd)
2272
2273 #define COMMON_INTERCEPTOR_FD_ACCESS(ctx, fd) \
2274 FdAccess(((TsanInterceptorContext *) ctx)->thr, pc, fd)
2275
2276 #define COMMON_INTERCEPTOR_FD_SOCKET_ACCEPT(ctx, fd, newfd) \
2277 FdSocketAccept(((TsanInterceptorContext *) ctx)->thr, pc, fd, newfd)
2278
2279 #define COMMON_INTERCEPTOR_SET_THREAD_NAME(ctx, name) \
2280 ThreadSetName(((TsanInterceptorContext *) ctx)->thr, name)
2281
2282 #define COMMON_INTERCEPTOR_SET_PTHREAD_NAME(ctx, thread, name) \
2283 __tsan::ctx->thread_registry->SetThreadNameByUserId(thread, name)
2284
2285 #define COMMON_INTERCEPTOR_BLOCK_REAL(name) BLOCK_REAL(name)
2286
2287 #define COMMON_INTERCEPTOR_ON_EXIT(ctx) \
2288 OnExit(((TsanInterceptorContext *) ctx)->thr)
2289
2290 #define COMMON_INTERCEPTOR_MUTEX_PRE_LOCK(ctx, m) \
2291 MutexPreLock(((TsanInterceptorContext *)ctx)->thr, \
2292 ((TsanInterceptorContext *)ctx)->pc, (uptr)m)
2293
2294 #define COMMON_INTERCEPTOR_MUTEX_POST_LOCK(ctx, m) \
2295 MutexPostLock(((TsanInterceptorContext *)ctx)->thr, \
2296 ((TsanInterceptorContext *)ctx)->pc, (uptr)m)
2297
2298 #define COMMON_INTERCEPTOR_MUTEX_UNLOCK(ctx, m) \
2299 MutexUnlock(((TsanInterceptorContext *)ctx)->thr, \
2300 ((TsanInterceptorContext *)ctx)->pc, (uptr)m)
2301
2302 #define COMMON_INTERCEPTOR_MUTEX_REPAIR(ctx, m) \
2303 MutexRepair(((TsanInterceptorContext *)ctx)->thr, \
2304 ((TsanInterceptorContext *)ctx)->pc, (uptr)m)
2305
2306 #define COMMON_INTERCEPTOR_MUTEX_INVALID(ctx, m) \
2307 MutexInvalidAccess(((TsanInterceptorContext *)ctx)->thr, \
2308 ((TsanInterceptorContext *)ctx)->pc, (uptr)m)
2309
2310 #define COMMON_INTERCEPTOR_MMAP_IMPL(ctx, mmap, addr, sz, prot, flags, fd, \
2311 off) \
2312 do { \
2313 return mmap_interceptor(thr, pc, REAL(mmap), addr, sz, prot, flags, fd, \
2314 off); \
2315 } while (false)
2316
2317 #if !SANITIZER_MAC
2318 #define COMMON_INTERCEPTOR_HANDLE_RECVMSG(ctx, msg) \
2319 HandleRecvmsg(((TsanInterceptorContext *)ctx)->thr, \
2320 ((TsanInterceptorContext *)ctx)->pc, msg)
2321 #endif
2322
2323 #define COMMON_INTERCEPTOR_GET_TLS_RANGE(begin, end) \
2324 if (TsanThread *t = GetCurrentThread()) { \
2325 *begin = t->tls_begin(); \
2326 *end = t->tls_end(); \
2327 } else { \
2328 *begin = *end = 0; \
2329 }
2330
2331 #define COMMON_INTERCEPTOR_USER_CALLBACK_START() \
2332 SCOPED_TSAN_INTERCEPTOR_USER_CALLBACK_START()
2333
2334 #define COMMON_INTERCEPTOR_USER_CALLBACK_END() \
2335 SCOPED_TSAN_INTERCEPTOR_USER_CALLBACK_END()
2336
2337 #include "sanitizer_common/sanitizer_common_interceptors.inc"
2338
2339 static int sigaction_impl(int sig, const __sanitizer_sigaction *act,
2340 __sanitizer_sigaction *old);
2341 static __sanitizer_sighandler_ptr signal_impl(int sig,
2342 __sanitizer_sighandler_ptr h);
2343
2344 #define SIGNAL_INTERCEPTOR_SIGACTION_IMPL(signo, act, oldact) \
2345 { return sigaction_impl(signo, act, oldact); }
2346
2347 #define SIGNAL_INTERCEPTOR_SIGNAL_IMPL(func, signo, handler) \
2348 { return (uptr)signal_impl(signo, (__sanitizer_sighandler_ptr)handler); }
2349
2350 #include "sanitizer_common/sanitizer_signal_interceptors.inc"
2351
2352 int sigaction_impl(int sig, const __sanitizer_sigaction *act,
2353 __sanitizer_sigaction *old) {
2354 // Note: if we call REAL(sigaction) directly for any reason without proxying
2355 // the signal handler through rtl_sigaction, very bad things will happen.
2356 // The handler will run synchronously and corrupt tsan per-thread state.
2357 SCOPED_INTERCEPTOR_RAW(sigaction, sig, act, old);
2358 __sanitizer_sigaction *sigactions = interceptor_ctx()->sigactions;
2359 __sanitizer_sigaction old_stored;
2360 if (old) internal_memcpy(&old_stored, &sigactions[sig], sizeof(old_stored));
2361 __sanitizer_sigaction newact;
2362 if (act) {
2363 // Copy act into sigactions[sig].
2364 // Can't use struct copy, because compiler can emit call to memcpy.
2365 // Can't use internal_memcpy, because it copies byte-by-byte,
2366 // and signal handler reads the handler concurrently. It it can read
2367 // some bytes from old value and some bytes from new value.
2368 // Use volatile to prevent insertion of memcpy.
2369 sigactions[sig].handler =
2370 *(volatile __sanitizer_sighandler_ptr const *)&act->handler;
2371 sigactions[sig].sa_flags = *(volatile int const *)&act->sa_flags;
2372 internal_memcpy(&sigactions[sig].sa_mask, &act->sa_mask,
2373 sizeof(sigactions[sig].sa_mask));
2374 #if !SANITIZER_FREEBSD && !SANITIZER_MAC && !SANITIZER_NETBSD
2375 sigactions[sig].sa_restorer = act->sa_restorer;
2376 #endif
2377 internal_memcpy(&newact, act, sizeof(newact));
2378 internal_sigfillset(&newact.sa_mask);
2379 if ((uptr)act->handler != sig_ign && (uptr)act->handler != sig_dfl) {
2380 if (newact.sa_flags & SA_SIGINFO)
2381 newact.sigaction = rtl_sigaction;
2382 else
2383 newact.handler = rtl_sighandler;
2384 }
2385 ReleaseStore(thr, pc, (uptr)&sigactions[sig]);
2386 act = &newact;
2387 }
2388 int res = REAL(sigaction)(sig, act, old);
2389 if (res == 0 && old) {
2390 uptr cb = (uptr)old->sigaction;
2391 if (cb == (uptr)rtl_sigaction || cb == (uptr)rtl_sighandler) {
2392 internal_memcpy(old, &old_stored, sizeof(*old));
2393 }
2394 }
2395 return res;
2396 }
2397
2398 static __sanitizer_sighandler_ptr signal_impl(int sig,
2399 __sanitizer_sighandler_ptr h) {
2400 __sanitizer_sigaction act;
2401 act.handler = h;
2402 internal_memset(&act.sa_mask, -1, sizeof(act.sa_mask));
2403 act.sa_flags = 0;
2404 __sanitizer_sigaction old;
2405 int res = sigaction_symname(sig, &act, &old);
2406 if (res) return (__sanitizer_sighandler_ptr)sig_err;
2407 return old.handler;
2408 }
2409
2410 #define TSAN_SYSCALL() \
2411 ThreadState *thr = cur_thread(); \
2412 if (thr->ignore_interceptors) \
2413 return; \
2414 ScopedSyscall scoped_syscall(thr) \
2415 /**/
2416
2417 struct ScopedSyscall {
2418 ThreadState *thr;
2419
2420 explicit ScopedSyscall(ThreadState *thr)
2421 : thr(thr) {
2422 Initialize(thr);
2423 }
2424
2425 ~ScopedSyscall() {
2426 ProcessPendingSignals(thr);
2427 }
2428 };
2429
2430 #if !SANITIZER_FREEBSD && !SANITIZER_MAC
2431 static void syscall_access_range(uptr pc, uptr p, uptr s, bool write) {
2432 TSAN_SYSCALL();
2433 MemoryAccessRange(thr, pc, p, s, write);
2434 }
2435
2436 static void syscall_acquire(uptr pc, uptr addr) {
2437 TSAN_SYSCALL();
2438 Acquire(thr, pc, addr);
2439 DPrintf("syscall_acquire(%p)\n", addr);
2440 }
2441
2442 static void syscall_release(uptr pc, uptr addr) {
2443 TSAN_SYSCALL();
2444 DPrintf("syscall_release(%p)\n", addr);
2445 Release(thr, pc, addr);
2446 }
2447
2448 static void syscall_fd_close(uptr pc, int fd) {
2449 TSAN_SYSCALL();
2450 FdClose(thr, pc, fd);
2451 }
2452
2453 static USED void syscall_fd_acquire(uptr pc, int fd) {
2454 TSAN_SYSCALL();
2455 FdAcquire(thr, pc, fd);
2456 DPrintf("syscall_fd_acquire(%p)\n", fd);
2457 }
2458
2459 static USED void syscall_fd_release(uptr pc, int fd) {
2460 TSAN_SYSCALL();
2461 DPrintf("syscall_fd_release(%p)\n", fd);
2462 FdRelease(thr, pc, fd);
2463 }
2464
2465 static void syscall_pre_fork(uptr pc) {
2466 TSAN_SYSCALL();
2467 ForkBefore(thr, pc);
2468 }
2469
2470 static void syscall_post_fork(uptr pc, int pid) {
2471 TSAN_SYSCALL();
2472 if (pid == 0) {
2473 // child
2474 ForkChildAfter(thr, pc);
2475 FdOnFork(thr, pc);
2476 } else if (pid > 0) {
2477 // parent
2478 ForkParentAfter(thr, pc);
2479 } else {
2480 // error
2481 ForkParentAfter(thr, pc);
2482 }
2483 }
2484 #endif
2485
2486 #define COMMON_SYSCALL_PRE_READ_RANGE(p, s) \
2487 syscall_access_range(GET_CALLER_PC(), (uptr)(p), (uptr)(s), false)
2488
2489 #define COMMON_SYSCALL_PRE_WRITE_RANGE(p, s) \
2490 syscall_access_range(GET_CALLER_PC(), (uptr)(p), (uptr)(s), true)
2491
2492 #define COMMON_SYSCALL_POST_READ_RANGE(p, s) \
2493 do { \
2494 (void)(p); \
2495 (void)(s); \
2496 } while (false)
2497
2498 #define COMMON_SYSCALL_POST_WRITE_RANGE(p, s) \
2499 do { \
2500 (void)(p); \
2501 (void)(s); \
2502 } while (false)
2503
2504 #define COMMON_SYSCALL_ACQUIRE(addr) \
2505 syscall_acquire(GET_CALLER_PC(), (uptr)(addr))
2506
2507 #define COMMON_SYSCALL_RELEASE(addr) \
2508 syscall_release(GET_CALLER_PC(), (uptr)(addr))
2509
2510 #define COMMON_SYSCALL_FD_CLOSE(fd) syscall_fd_close(GET_CALLER_PC(), fd)
2511
2512 #define COMMON_SYSCALL_FD_ACQUIRE(fd) syscall_fd_acquire(GET_CALLER_PC(), fd)
2513
2514 #define COMMON_SYSCALL_FD_RELEASE(fd) syscall_fd_release(GET_CALLER_PC(), fd)
2515
2516 #define COMMON_SYSCALL_PRE_FORK() \
2517 syscall_pre_fork(GET_CALLER_PC())
2518
2519 #define COMMON_SYSCALL_POST_FORK(res) \
2520 syscall_post_fork(GET_CALLER_PC(), res)
2521
2522 #include "sanitizer_common/sanitizer_common_syscalls.inc"
2523 #include "sanitizer_common/sanitizer_syscalls_netbsd.inc"
2524
2525 #ifdef NEED_TLS_GET_ADDR
2526 // Define own interceptor instead of sanitizer_common's for three reasons:
2527 // 1. It must not process pending signals.
2528 // Signal handlers may contain MOVDQA instruction (see below).
2529 // 2. It must be as simple as possible to not contain MOVDQA.
2530 // 3. Sanitizer_common version uses COMMON_INTERCEPTOR_INITIALIZE_RANGE which
2531 // is empty for tsan (meant only for msan).
2532 // Note: __tls_get_addr can be called with mis-aligned stack due to:
2533 // https://gcc.gnu.org/bugzilla/show_bug.cgi?id=58066
2534 // So the interceptor must work with mis-aligned stack, in particular, does not
2535 // execute MOVDQA with stack addresses.
2536 TSAN_INTERCEPTOR(void *, __tls_get_addr, void *arg) {
2537 void *res = REAL(__tls_get_addr)(arg);
2538 ThreadState *thr = cur_thread();
2539 if (!thr)
2540 return res;
2541 DTLS::DTV *dtv = DTLS_on_tls_get_addr(arg, res, thr->tls_addr,
2542 thr->tls_addr + thr->tls_size);
2543 if (!dtv)
2544 return res;
2545 // New DTLS block has been allocated.
2546 MemoryResetRange(thr, 0, dtv->beg, dtv->size);
2547 return res;
2548 }
2549 #endif
2550
2551 #if SANITIZER_NETBSD
2552 TSAN_INTERCEPTOR(void, _lwp_exit) {
2553 SCOPED_TSAN_INTERCEPTOR(_lwp_exit);
2554 DestroyThreadState();
2555 REAL(_lwp_exit)();
2556 }
2557 #define TSAN_MAYBE_INTERCEPT__LWP_EXIT TSAN_INTERCEPT(_lwp_exit)
2558 #else
2559 #define TSAN_MAYBE_INTERCEPT__LWP_EXIT
2560 #endif
2561
2562 #if SANITIZER_FREEBSD
2563 TSAN_INTERCEPTOR(void, thr_exit, tid_t *state) {
2564 SCOPED_TSAN_INTERCEPTOR(thr_exit, state);
2565 DestroyThreadState();
2566 REAL(thr_exit(state));
2567 }
2568 #define TSAN_MAYBE_INTERCEPT_THR_EXIT TSAN_INTERCEPT(thr_exit)
2569 #else
2570 #define TSAN_MAYBE_INTERCEPT_THR_EXIT
2571 #endif
2572
2573 TSAN_INTERCEPTOR_NETBSD_ALIAS(int, cond_init, void *c, void *a)
2574 TSAN_INTERCEPTOR_NETBSD_ALIAS(int, cond_signal, void *c)
2575 TSAN_INTERCEPTOR_NETBSD_ALIAS(int, cond_broadcast, void *c)
2576 TSAN_INTERCEPTOR_NETBSD_ALIAS(int, cond_wait, void *c, void *m)
2577 TSAN_INTERCEPTOR_NETBSD_ALIAS(int, cond_destroy, void *c)
2578 TSAN_INTERCEPTOR_NETBSD_ALIAS(int, mutex_init, void *m, void *a)
2579 TSAN_INTERCEPTOR_NETBSD_ALIAS(int, mutex_destroy, void *m)
2580 TSAN_INTERCEPTOR_NETBSD_ALIAS(int, mutex_trylock, void *m)
2581 TSAN_INTERCEPTOR_NETBSD_ALIAS(int, rwlock_init, void *m, void *a)
2582 TSAN_INTERCEPTOR_NETBSD_ALIAS(int, rwlock_destroy, void *m)
2583 TSAN_INTERCEPTOR_NETBSD_ALIAS(int, rwlock_rdlock, void *m)
2584 TSAN_INTERCEPTOR_NETBSD_ALIAS(int, rwlock_tryrdlock, void *m)
2585 TSAN_INTERCEPTOR_NETBSD_ALIAS(int, rwlock_wrlock, void *m)
2586 TSAN_INTERCEPTOR_NETBSD_ALIAS(int, rwlock_trywrlock, void *m)
2587 TSAN_INTERCEPTOR_NETBSD_ALIAS(int, rwlock_unlock, void *m)
2588 TSAN_INTERCEPTOR_NETBSD_ALIAS_THR(int, once, void *o, void (*f)())
2589 TSAN_INTERCEPTOR_NETBSD_ALIAS_THR2(int, sigsetmask, sigmask, int a, void *b,
2590 void *c)
2591
2592 namespace __tsan {
2593
2594 static void finalize(void *arg) {
2595 ThreadState *thr = cur_thread();
2596 int status = Finalize(thr);
2597 // Make sure the output is not lost.
2598 FlushStreams();
2599 if (status)
2600 Die();
2601 }
2602
2603 #if !SANITIZER_MAC && !SANITIZER_ANDROID
2604 static void unreachable() {
2605 Report("FATAL: ThreadSanitizer: unreachable called\n");
2606 Die();
2607 }
2608 #endif
2609
2610 // Define default implementation since interception of libdispatch is optional.
2611 SANITIZER_WEAK_ATTRIBUTE void InitializeLibdispatchInterceptors() {}
2612
2613 void InitializeInterceptors() {
2614 #if !SANITIZER_MAC
2615 // We need to setup it early, because functions like dlsym() can call it.
2616 REAL(memset) = internal_memset;
2617 REAL(memcpy) = internal_memcpy;
2618 #endif
2619
2620 // Instruct libc malloc to consume less memory.
2621 #if SANITIZER_LINUX
2622 mallopt(1, 0); // M_MXFAST
2623 mallopt(-3, 32*1024); // M_MMAP_THRESHOLD
2624 #endif
2625
2626 new(interceptor_ctx()) InterceptorContext();
2627
2628 InitializeCommonInterceptors();
2629 InitializeSignalInterceptors();
2630 InitializeLibdispatchInterceptors();
2631
2632 #if !SANITIZER_MAC
2633 // We can not use TSAN_INTERCEPT to get setjmp addr,
2634 // because it does &setjmp and setjmp is not present in some versions of libc.
2635 using __interception::InterceptFunction;
2636 InterceptFunction(TSAN_STRING_SETJMP, (uptr*)&REAL(setjmp_symname), 0, 0);
2637 InterceptFunction("_setjmp", (uptr*)&REAL(_setjmp), 0, 0);
2638 InterceptFunction(TSAN_STRING_SIGSETJMP, (uptr*)&REAL(sigsetjmp_symname), 0,
2639 0);
2640 #if !SANITIZER_NETBSD
2641 InterceptFunction("__sigsetjmp", (uptr*)&REAL(__sigsetjmp), 0, 0);
2642 #endif
2643 #endif
2644
2645 TSAN_INTERCEPT(longjmp_symname);
2646 TSAN_INTERCEPT(siglongjmp_symname);
2647 #if SANITIZER_NETBSD
2648 TSAN_INTERCEPT(_longjmp);
2649 #endif
2650
2651 TSAN_INTERCEPT(malloc);
2652 TSAN_INTERCEPT(__libc_memalign);
2653 TSAN_INTERCEPT(calloc);
2654 TSAN_INTERCEPT(realloc);
2655 TSAN_INTERCEPT(reallocarray);
2656 TSAN_INTERCEPT(free);
2657 TSAN_INTERCEPT(cfree);
2658 TSAN_INTERCEPT(munmap);
2659 TSAN_MAYBE_INTERCEPT_MEMALIGN;
2660 TSAN_INTERCEPT(valloc);
2661 TSAN_MAYBE_INTERCEPT_PVALLOC;
2662 TSAN_INTERCEPT(posix_memalign);
2663
2664 TSAN_INTERCEPT(strcpy);
2665 TSAN_INTERCEPT(strncpy);
2666 TSAN_INTERCEPT(strdup);
2667
2668 TSAN_INTERCEPT(pthread_create);
2669 TSAN_INTERCEPT(pthread_join);
2670 TSAN_INTERCEPT(pthread_detach);
2671 TSAN_INTERCEPT(pthread_exit);
2672 #if SANITIZER_LINUX
2673 TSAN_INTERCEPT(pthread_tryjoin_np);
2674 TSAN_INTERCEPT(pthread_timedjoin_np);
2675 #endif
2676
2677 TSAN_INTERCEPT_VER(pthread_cond_init, PTHREAD_ABI_BASE);
2678 TSAN_INTERCEPT_VER(pthread_cond_signal, PTHREAD_ABI_BASE);
2679 TSAN_INTERCEPT_VER(pthread_cond_broadcast, PTHREAD_ABI_BASE);
2680 TSAN_INTERCEPT_VER(pthread_cond_wait, PTHREAD_ABI_BASE);
2681 TSAN_INTERCEPT_VER(pthread_cond_timedwait, PTHREAD_ABI_BASE);
2682 TSAN_INTERCEPT_VER(pthread_cond_destroy, PTHREAD_ABI_BASE);
2683
2684 TSAN_INTERCEPT(pthread_mutex_init);
2685 TSAN_INTERCEPT(pthread_mutex_destroy);
2686 TSAN_INTERCEPT(pthread_mutex_trylock);
2687 TSAN_INTERCEPT(pthread_mutex_timedlock);
2688
2689 TSAN_INTERCEPT(pthread_spin_init);
2690 TSAN_INTERCEPT(pthread_spin_destroy);
2691 TSAN_INTERCEPT(pthread_spin_lock);
2692 TSAN_INTERCEPT(pthread_spin_trylock);
2693 TSAN_INTERCEPT(pthread_spin_unlock);
2694
2695 TSAN_INTERCEPT(pthread_rwlock_init);
2696 TSAN_INTERCEPT(pthread_rwlock_destroy);
2697 TSAN_INTERCEPT(pthread_rwlock_rdlock);
2698 TSAN_INTERCEPT(pthread_rwlock_tryrdlock);
2699 TSAN_INTERCEPT(pthread_rwlock_timedrdlock);
2700 TSAN_INTERCEPT(pthread_rwlock_wrlock);
2701 TSAN_INTERCEPT(pthread_rwlock_trywrlock);
2702 TSAN_INTERCEPT(pthread_rwlock_timedwrlock);
2703 TSAN_INTERCEPT(pthread_rwlock_unlock);
2704
2705 TSAN_INTERCEPT(pthread_barrier_init);
2706 TSAN_INTERCEPT(pthread_barrier_destroy);
2707 TSAN_INTERCEPT(pthread_barrier_wait);
2708
2709 TSAN_INTERCEPT(pthread_once);
2710
2711 TSAN_INTERCEPT(fstat);
2712 TSAN_MAYBE_INTERCEPT___FXSTAT;
2713 TSAN_MAYBE_INTERCEPT_FSTAT64;
2714 TSAN_MAYBE_INTERCEPT___FXSTAT64;
2715 TSAN_INTERCEPT(open);
2716 TSAN_MAYBE_INTERCEPT_OPEN64;
2717 TSAN_INTERCEPT(creat);
2718 TSAN_MAYBE_INTERCEPT_CREAT64;
2719 TSAN_INTERCEPT(dup);
2720 TSAN_INTERCEPT(dup2);
2721 TSAN_INTERCEPT(dup3);
2722 TSAN_MAYBE_INTERCEPT_EVENTFD;
2723 TSAN_MAYBE_INTERCEPT_SIGNALFD;
2724 TSAN_MAYBE_INTERCEPT_INOTIFY_INIT;
2725 TSAN_MAYBE_INTERCEPT_INOTIFY_INIT1;
2726 TSAN_INTERCEPT(socket);
2727 TSAN_INTERCEPT(socketpair);
2728 TSAN_INTERCEPT(connect);
2729 TSAN_INTERCEPT(bind);
2730 TSAN_INTERCEPT(listen);
2731 TSAN_MAYBE_INTERCEPT_EPOLL;
2732 TSAN_INTERCEPT(close);
2733 TSAN_MAYBE_INTERCEPT___CLOSE;
2734 TSAN_MAYBE_INTERCEPT___RES_ICLOSE;
2735 TSAN_INTERCEPT(pipe);
2736 TSAN_INTERCEPT(pipe2);
2737
2738 TSAN_INTERCEPT(unlink);
2739 TSAN_INTERCEPT(tmpfile);
2740 TSAN_MAYBE_INTERCEPT_TMPFILE64;
2741 TSAN_INTERCEPT(abort);
2742 TSAN_INTERCEPT(rmdir);
2743 TSAN_INTERCEPT(closedir);
2744
2745 TSAN_INTERCEPT(sigsuspend);
2746 TSAN_INTERCEPT(sigblock);
2747 TSAN_INTERCEPT(sigsetmask);
2748 TSAN_INTERCEPT(pthread_sigmask);
2749 TSAN_INTERCEPT(raise);
2750 TSAN_INTERCEPT(kill);
2751 TSAN_INTERCEPT(pthread_kill);
2752 TSAN_INTERCEPT(sleep);
2753 TSAN_INTERCEPT(usleep);
2754 TSAN_INTERCEPT(nanosleep);
2755 TSAN_INTERCEPT(pause);
2756 TSAN_INTERCEPT(gettimeofday);
2757 TSAN_INTERCEPT(getaddrinfo);
2758
2759 TSAN_INTERCEPT(fork);
2760 TSAN_INTERCEPT(vfork);
2761 #if !SANITIZER_ANDROID
2762 TSAN_INTERCEPT(dl_iterate_phdr);
2763 #endif
2764 TSAN_MAYBE_INTERCEPT_ON_EXIT;
2765 TSAN_INTERCEPT(__cxa_atexit);
2766 TSAN_INTERCEPT(_exit);
2767
2768 #ifdef NEED_TLS_GET_ADDR
2769 TSAN_INTERCEPT(__tls_get_addr);
2770 #endif
2771
2772 TSAN_MAYBE_INTERCEPT__LWP_EXIT;
2773 TSAN_MAYBE_INTERCEPT_THR_EXIT;
2774
2775 #if !SANITIZER_MAC && !SANITIZER_ANDROID
2776 // Need to setup it, because interceptors check that the function is resolved.
2777 // But atexit is emitted directly into the module, so can't be resolved.
2778 REAL(atexit) = (int(*)(void(*)()))unreachable;
2779 #endif
2780
2781 if (REAL(__cxa_atexit)(&finalize, 0, 0)) {
2782 Printf("ThreadSanitizer: failed to setup atexit callback\n");
2783 Die();
2784 }
2785
2786 #if !SANITIZER_MAC && !SANITIZER_NETBSD && !SANITIZER_FREEBSD
2787 if (pthread_key_create(&interceptor_ctx()->finalize_key, &thread_finalize)) {
2788 Printf("ThreadSanitizer: failed to create thread key\n");
2789 Die();
2790 }
2791 #endif
2792
2793 TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(cond_init);
2794 TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(cond_signal);
2795 TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(cond_broadcast);
2796 TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(cond_wait);
2797 TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(cond_destroy);
2798 TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(mutex_init);
2799 TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(mutex_destroy);
2800 TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(mutex_trylock);
2801 TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(rwlock_init);
2802 TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(rwlock_destroy);
2803 TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(rwlock_rdlock);
2804 TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(rwlock_tryrdlock);
2805 TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(rwlock_wrlock);
2806 TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(rwlock_trywrlock);
2807 TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS(rwlock_unlock);
2808 TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS_THR(once);
2809 TSAN_MAYBE_INTERCEPT_NETBSD_ALIAS_THR(sigsetmask);
2810
2811 FdInit();
2812 }
2813
2814 } // namespace __tsan
2815
2816 // Invisible barrier for tests.
2817 // There were several unsuccessful iterations for this functionality:
2818 // 1. Initially it was implemented in user code using
2819 // REAL(pthread_barrier_wait). But pthread_barrier_wait is not supported on
2820 // MacOS. Futexes are linux-specific for this matter.
2821 // 2. Then we switched to atomics+usleep(10). But usleep produced parasitic
2822 // "as-if synchronized via sleep" messages in reports which failed some
2823 // output tests.
2824 // 3. Then we switched to atomics+sched_yield. But this produced tons of tsan-
2825 // visible events, which lead to "failed to restore stack trace" failures.
2826 // Note that no_sanitize_thread attribute does not turn off atomic interception
2827 // so attaching it to the function defined in user code does not help.
2828 // That's why we now have what we have.
2829 extern "C" SANITIZER_INTERFACE_ATTRIBUTE
2830 void __tsan_testonly_barrier_init(u64 *barrier, u32 count) {
2831 if (count >= (1 << 8)) {
2832 Printf("barrier_init: count is too large (%d)\n", count);
2833 Die();
2834 }
2835 // 8 lsb is thread count, the remaining are count of entered threads.
2836 *barrier = count;
2837 }
2838
2839 extern "C" SANITIZER_INTERFACE_ATTRIBUTE
2840 void __tsan_testonly_barrier_wait(u64 *barrier) {
2841 unsigned old = __atomic_fetch_add(barrier, 1 << 8, __ATOMIC_RELAXED);
2842 unsigned old_epoch = (old >> 8) / (old & 0xff);
2843 for (;;) {
2844 unsigned cur = __atomic_load_n(barrier, __ATOMIC_RELAXED);
2845 unsigned cur_epoch = (cur >> 8) / (cur & 0xff);
2846 if (cur_epoch != old_epoch)
2847 return;
2848 internal_sched_yield();
2849 }
2850 }