comparison gcc/calls.c~ @ 68:561a7518be6b

update gcc-4.6
author Nobuyasu Oshiro <dimolto@cr.ie.u-ryukyu.ac.jp>
date Sun, 21 Aug 2011 07:07:55 +0900
parents
children 895e19fe9c22 4a89a0a804df
comparison
equal deleted inserted replaced
67:f6334be47118 68:561a7518be6b
1 /* Convert function calls to rtl insns, for GNU C compiler.
2 Copyright (C) 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
4 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "rtl.h"
27 #include "tree.h"
28 #include "gimple.h"
29 #include "flags.h"
30 #include "expr.h"
31 #include "optabs.h"
32 #include "libfuncs.h"
33 #include "function.h"
34 #include "regs.h"
35 #include "diagnostic-core.h"
36 #include "output.h"
37 #include "tm_p.h"
38 #include "timevar.h"
39 #include "sbitmap.h"
40 #include "langhooks.h"
41 #include "target.h"
42 #include "debug.h"
43 #include "cgraph.h"
44 #include "except.h"
45 #include "dbgcnt.h"
46 #include "tree-flow.h"
47
48 /* Like PREFERRED_STACK_BOUNDARY but in units of bytes, not bits. */
49 #define STACK_BYTES (PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT)
50
51 /* Data structure and subroutines used within expand_call. */
52
53 struct arg_data
54 {
55 /* Tree node for this argument. */
56 tree tree_value;
57 /* Mode for value; TYPE_MODE unless promoted. */
58 enum machine_mode mode;
59 /* Current RTL value for argument, or 0 if it isn't precomputed. */
60 rtx value;
61 /* Initially-compute RTL value for argument; only for const functions. */
62 rtx initial_value;
63 /* Register to pass this argument in, 0 if passed on stack, or an
64 PARALLEL if the arg is to be copied into multiple non-contiguous
65 registers. */
66 rtx reg;
67 /* Register to pass this argument in when generating tail call sequence.
68 This is not the same register as for normal calls on machines with
69 register windows. */
70 rtx tail_call_reg;
71 /* If REG is a PARALLEL, this is a copy of VALUE pulled into the correct
72 form for emit_group_move. */
73 rtx parallel_value;
74 /* If REG was promoted from the actual mode of the argument expression,
75 indicates whether the promotion is sign- or zero-extended. */
76 int unsignedp;
77 /* Number of bytes to put in registers. 0 means put the whole arg
78 in registers. Also 0 if not passed in registers. */
79 int partial;
80 /* Nonzero if argument must be passed on stack.
81 Note that some arguments may be passed on the stack
82 even though pass_on_stack is zero, just because FUNCTION_ARG says so.
83 pass_on_stack identifies arguments that *cannot* go in registers. */
84 int pass_on_stack;
85 /* Some fields packaged up for locate_and_pad_parm. */
86 struct locate_and_pad_arg_data locate;
87 /* Location on the stack at which parameter should be stored. The store
88 has already been done if STACK == VALUE. */
89 rtx stack;
90 /* Location on the stack of the start of this argument slot. This can
91 differ from STACK if this arg pads downward. This location is known
92 to be aligned to TARGET_FUNCTION_ARG_BOUNDARY. */
93 rtx stack_slot;
94 /* Place that this stack area has been saved, if needed. */
95 rtx save_area;
96 /* If an argument's alignment does not permit direct copying into registers,
97 copy in smaller-sized pieces into pseudos. These are stored in a
98 block pointed to by this field. The next field says how many
99 word-sized pseudos we made. */
100 rtx *aligned_regs;
101 int n_aligned_regs;
102 };
103
104 /* A vector of one char per byte of stack space. A byte if nonzero if
105 the corresponding stack location has been used.
106 This vector is used to prevent a function call within an argument from
107 clobbering any stack already set up. */
108 static char *stack_usage_map;
109
110 /* Size of STACK_USAGE_MAP. */
111 static int highest_outgoing_arg_in_use;
112
113 /* A bitmap of virtual-incoming stack space. Bit is set if the corresponding
114 stack location's tail call argument has been already stored into the stack.
115 This bitmap is used to prevent sibling call optimization if function tries
116 to use parent's incoming argument slots when they have been already
117 overwritten with tail call arguments. */
118 static sbitmap stored_args_map;
119
120 /* stack_arg_under_construction is nonzero when an argument may be
121 initialized with a constructor call (including a C function that
122 returns a BLKmode struct) and expand_call must take special action
123 to make sure the object being constructed does not overlap the
124 argument list for the constructor call. */
125 static int stack_arg_under_construction;
126
127 static void emit_call_1 (rtx, tree, tree, tree, HOST_WIDE_INT, HOST_WIDE_INT,
128 HOST_WIDE_INT, rtx, rtx, int, rtx, int,
129 CUMULATIVE_ARGS *);
130 static void precompute_register_parameters (int, struct arg_data *, int *);
131 static int store_one_arg (struct arg_data *, rtx, int, int, int);
132 static void store_unaligned_arguments_into_pseudos (struct arg_data *, int);
133 static int finalize_must_preallocate (int, int, struct arg_data *,
134 struct args_size *);
135 static void precompute_arguments (int, struct arg_data *);
136 static int compute_argument_block_size (int, struct args_size *, tree, tree, int);
137 static void initialize_argument_information (int, struct arg_data *,
138 struct args_size *, int,
139 tree, tree,
140 tree, tree, CUMULATIVE_ARGS *, int,
141 rtx *, int *, int *, int *,
142 bool *, bool);
143 static void compute_argument_addresses (struct arg_data *, rtx, int);
144 static rtx rtx_for_function_call (tree, tree);
145 static void load_register_parameters (struct arg_data *, int, rtx *, int,
146 int, int *);
147 static rtx emit_library_call_value_1 (int, rtx, rtx, enum libcall_type,
148 enum machine_mode, int, va_list);
149 static int special_function_p (const_tree, int);
150 static int check_sibcall_argument_overlap_1 (rtx);
151 static int check_sibcall_argument_overlap (rtx, struct arg_data *, int);
152
153 static int combine_pending_stack_adjustment_and_call (int, struct args_size *,
154 unsigned int);
155 static tree split_complex_types (tree);
156
157 #ifdef REG_PARM_STACK_SPACE
158 static rtx save_fixed_argument_area (int, rtx, int *, int *);
159 static void restore_fixed_argument_area (rtx, rtx, int, int);
160 #endif
161
162 /* Force FUNEXP into a form suitable for the address of a CALL,
163 and return that as an rtx. Also load the static chain register
164 if FNDECL is a nested function.
165
166 CALL_FUSAGE points to a variable holding the prospective
167 CALL_INSN_FUNCTION_USAGE information. */
168
169 rtx
170 prepare_call_address (tree fndecl, rtx funexp, rtx static_chain_value,
171 rtx *call_fusage, int reg_parm_seen, int sibcallp)
172 {
173 /* Make a valid memory address and copy constants through pseudo-regs,
174 but not for a constant address if -fno-function-cse. */
175 if (GET_CODE (funexp) != SYMBOL_REF)
176 /* If we are using registers for parameters, force the
177 function address into a register now. */
178 funexp = ((reg_parm_seen
179 && targetm.small_register_classes_for_mode_p (FUNCTION_MODE))
180 ? force_not_mem (memory_address (FUNCTION_MODE, funexp))
181 : memory_address (FUNCTION_MODE, funexp));
182 else if (! sibcallp)
183 {
184 #ifndef NO_FUNCTION_CSE
185 if (optimize && ! flag_no_function_cse)
186 funexp = force_reg (Pmode, funexp);
187 #endif
188 }
189
190 if (static_chain_value != 0)
191 {
192 rtx chain;
193
194 gcc_assert (fndecl);
195 chain = targetm.calls.static_chain (fndecl, false);
196 static_chain_value = convert_memory_address (Pmode, static_chain_value);
197
198 emit_move_insn (chain, static_chain_value);
199 if (REG_P (chain))
200 use_reg (call_fusage, chain);
201 }
202
203 return funexp;
204 }
205
206 /* Generate instructions to call function FUNEXP,
207 and optionally pop the results.
208 The CALL_INSN is the first insn generated.
209
210 FNDECL is the declaration node of the function. This is given to the
211 hook TARGET_RETURN_POPS_ARGS to determine whether this function pops
212 its own args.
213
214 FUNTYPE is the data type of the function. This is given to the hook
215 TARGET_RETURN_POPS_ARGS to determine whether this function pops its
216 own args. We used to allow an identifier for library functions, but
217 that doesn't work when the return type is an aggregate type and the
218 calling convention says that the pointer to this aggregate is to be
219 popped by the callee.
220
221 STACK_SIZE is the number of bytes of arguments on the stack,
222 ROUNDED_STACK_SIZE is that number rounded up to
223 PREFERRED_STACK_BOUNDARY; zero if the size is variable. This is
224 both to put into the call insn and to generate explicit popping
225 code if necessary.
226
227 STRUCT_VALUE_SIZE is the number of bytes wanted in a structure value.
228 It is zero if this call doesn't want a structure value.
229
230 NEXT_ARG_REG is the rtx that results from executing
231 targetm.calls.function_arg (&args_so_far, VOIDmode, void_type_node, true)
232 just after all the args have had their registers assigned.
233 This could be whatever you like, but normally it is the first
234 arg-register beyond those used for args in this call,
235 or 0 if all the arg-registers are used in this call.
236 It is passed on to `gen_call' so you can put this info in the call insn.
237
238 VALREG is a hard register in which a value is returned,
239 or 0 if the call does not return a value.
240
241 OLD_INHIBIT_DEFER_POP is the value that `inhibit_defer_pop' had before
242 the args to this call were processed.
243 We restore `inhibit_defer_pop' to that value.
244
245 CALL_FUSAGE is either empty or an EXPR_LIST of USE expressions that
246 denote registers used by the called function. */
247
248 static void
249 emit_call_1 (rtx funexp, tree fntree ATTRIBUTE_UNUSED, tree fndecl ATTRIBUTE_UNUSED,
250 tree funtype ATTRIBUTE_UNUSED,
251 HOST_WIDE_INT stack_size ATTRIBUTE_UNUSED,
252 HOST_WIDE_INT rounded_stack_size,
253 HOST_WIDE_INT struct_value_size ATTRIBUTE_UNUSED,
254 rtx next_arg_reg ATTRIBUTE_UNUSED, rtx valreg,
255 int old_inhibit_defer_pop, rtx call_fusage, int ecf_flags,
256 CUMULATIVE_ARGS *args_so_far ATTRIBUTE_UNUSED)
257 {
258 rtx rounded_stack_size_rtx = GEN_INT (rounded_stack_size);
259 rtx call_insn;
260 int already_popped = 0;
261 HOST_WIDE_INT n_popped
262 = targetm.calls.return_pops_args (fndecl, funtype, stack_size);
263
264 #ifdef CALL_POPS_ARGS
265 n_popped += CALL_POPS_ARGS (* args_so_far);
266 #endif
267
268 /* Ensure address is valid. SYMBOL_REF is already valid, so no need,
269 and we don't want to load it into a register as an optimization,
270 because prepare_call_address already did it if it should be done. */
271 if (GET_CODE (funexp) != SYMBOL_REF)
272 funexp = memory_address (FUNCTION_MODE, funexp);
273
274 #if defined (HAVE_sibcall_pop) && defined (HAVE_sibcall_value_pop)
275 if ((ecf_flags & ECF_SIBCALL)
276 && HAVE_sibcall_pop && HAVE_sibcall_value_pop
277 && (n_popped > 0 || stack_size == 0))
278 {
279 rtx n_pop = GEN_INT (n_popped);
280 rtx pat;
281
282 /* If this subroutine pops its own args, record that in the call insn
283 if possible, for the sake of frame pointer elimination. */
284
285 if (valreg)
286 pat = GEN_SIBCALL_VALUE_POP (valreg,
287 gen_rtx_MEM (FUNCTION_MODE, funexp),
288 rounded_stack_size_rtx, next_arg_reg,
289 n_pop);
290 else
291 pat = GEN_SIBCALL_POP (gen_rtx_MEM (FUNCTION_MODE, funexp),
292 rounded_stack_size_rtx, next_arg_reg, n_pop);
293
294 emit_call_insn (pat);
295 already_popped = 1;
296 }
297 else
298 #endif
299
300 #if defined (HAVE_call_pop) && defined (HAVE_call_value_pop)
301 /* If the target has "call" or "call_value" insns, then prefer them
302 if no arguments are actually popped. If the target does not have
303 "call" or "call_value" insns, then we must use the popping versions
304 even if the call has no arguments to pop. */
305 #if defined (HAVE_call) && defined (HAVE_call_value)
306 if (HAVE_call && HAVE_call_value && HAVE_call_pop && HAVE_call_value_pop
307 && n_popped > 0)
308 #else
309 if (HAVE_call_pop && HAVE_call_value_pop)
310 #endif
311 {
312 rtx n_pop = GEN_INT (n_popped);
313 rtx pat;
314
315 /* If this subroutine pops its own args, record that in the call insn
316 if possible, for the sake of frame pointer elimination. */
317
318 if (valreg)
319 pat = GEN_CALL_VALUE_POP (valreg,
320 gen_rtx_MEM (FUNCTION_MODE, funexp),
321 rounded_stack_size_rtx, next_arg_reg, n_pop);
322 else
323 pat = GEN_CALL_POP (gen_rtx_MEM (FUNCTION_MODE, funexp),
324 rounded_stack_size_rtx, next_arg_reg, n_pop);
325
326 emit_call_insn (pat);
327 already_popped = 1;
328 }
329 else
330 #endif
331
332 #if defined (HAVE_sibcall) && defined (HAVE_sibcall_value)
333 if ((ecf_flags & ECF_SIBCALL)
334 && HAVE_sibcall && HAVE_sibcall_value)
335 {
336 if (valreg)
337 emit_call_insn (GEN_SIBCALL_VALUE (valreg,
338 gen_rtx_MEM (FUNCTION_MODE, funexp),
339 rounded_stack_size_rtx,
340 next_arg_reg, NULL_RTX));
341 else
342 emit_call_insn (GEN_SIBCALL (gen_rtx_MEM (FUNCTION_MODE, funexp),
343 rounded_stack_size_rtx, next_arg_reg,
344 GEN_INT (struct_value_size)));
345 }
346 else
347 #endif
348
349 #if defined (HAVE_call) && defined (HAVE_call_value)
350 if (HAVE_call && HAVE_call_value)
351 {
352 if (valreg)
353 emit_call_insn (GEN_CALL_VALUE (valreg,
354 gen_rtx_MEM (FUNCTION_MODE, funexp),
355 rounded_stack_size_rtx, next_arg_reg,
356 NULL_RTX));
357 else
358 emit_call_insn (GEN_CALL (gen_rtx_MEM (FUNCTION_MODE, funexp),
359 rounded_stack_size_rtx, next_arg_reg,
360 GEN_INT (struct_value_size)));
361 }
362 else
363 #endif
364 gcc_unreachable ();
365
366 /* Find the call we just emitted. */
367 call_insn = last_call_insn ();
368
369 /* Put the register usage information there. */
370 add_function_usage_to (call_insn, call_fusage);
371
372 /* If this is a const call, then set the insn's unchanging bit. */
373 if (ecf_flags & ECF_CONST)
374 RTL_CONST_CALL_P (call_insn) = 1;
375
376 /* If this is a pure call, then set the insn's unchanging bit. */
377 if (ecf_flags & ECF_PURE)
378 RTL_PURE_CALL_P (call_insn) = 1;
379
380 /* If this is a const call, then set the insn's unchanging bit. */
381 if (ecf_flags & ECF_LOOPING_CONST_OR_PURE)
382 RTL_LOOPING_CONST_OR_PURE_CALL_P (call_insn) = 1;
383
384 /* Create a nothrow REG_EH_REGION note, if needed. */
385 make_reg_eh_region_note (call_insn, ecf_flags, 0);
386
387 if (ecf_flags & ECF_NORETURN)
388 add_reg_note (call_insn, REG_NORETURN, const0_rtx);
389
390 if (ecf_flags & ECF_RETURNS_TWICE)
391 {
392 add_reg_note (call_insn, REG_SETJMP, const0_rtx);
393 cfun->calls_setjmp = 1;
394 }
395
396 SIBLING_CALL_P (call_insn) = ((ecf_flags & ECF_SIBCALL) != 0);
397
398 /* Record debug information for virtual calls. */
399 if (flag_enable_icf_debug && fndecl == NULL)
400 (*debug_hooks->virtual_call_token) (CALL_EXPR_FN (fntree),
401 INSN_UID (call_insn));
402
403 /* Restore this now, so that we do defer pops for this call's args
404 if the context of the call as a whole permits. */
405 inhibit_defer_pop = old_inhibit_defer_pop;
406
407 if (n_popped > 0)
408 {
409 if (!already_popped)
410 CALL_INSN_FUNCTION_USAGE (call_insn)
411 = gen_rtx_EXPR_LIST (VOIDmode,
412 gen_rtx_CLOBBER (VOIDmode, stack_pointer_rtx),
413 CALL_INSN_FUNCTION_USAGE (call_insn));
414 rounded_stack_size -= n_popped;
415 rounded_stack_size_rtx = GEN_INT (rounded_stack_size);
416 stack_pointer_delta -= n_popped;
417
418 /* If popup is needed, stack realign must use DRAP */
419 if (SUPPORTS_STACK_ALIGNMENT)
420 crtl->need_drap = true;
421 }
422
423 if (!ACCUMULATE_OUTGOING_ARGS)
424 {
425 /* If returning from the subroutine does not automatically pop the args,
426 we need an instruction to pop them sooner or later.
427 Perhaps do it now; perhaps just record how much space to pop later.
428
429 If returning from the subroutine does pop the args, indicate that the
430 stack pointer will be changed. */
431
432 if (rounded_stack_size != 0)
433 {
434 if (ecf_flags & ECF_NORETURN)
435 /* Just pretend we did the pop. */
436 stack_pointer_delta -= rounded_stack_size;
437 else if (flag_defer_pop && inhibit_defer_pop == 0
438 && ! (ecf_flags & (ECF_CONST | ECF_PURE)))
439 pending_stack_adjust += rounded_stack_size;
440 else
441 adjust_stack (rounded_stack_size_rtx);
442 }
443 }
444 /* When we accumulate outgoing args, we must avoid any stack manipulations.
445 Restore the stack pointer to its original value now. Usually
446 ACCUMULATE_OUTGOING_ARGS targets don't get here, but there are exceptions.
447 On i386 ACCUMULATE_OUTGOING_ARGS can be enabled on demand, and
448 popping variants of functions exist as well.
449
450 ??? We may optimize similar to defer_pop above, but it is
451 probably not worthwhile.
452
453 ??? It will be worthwhile to enable combine_stack_adjustments even for
454 such machines. */
455 else if (n_popped)
456 anti_adjust_stack (GEN_INT (n_popped));
457 }
458
459 /* Determine if the function identified by NAME and FNDECL is one with
460 special properties we wish to know about.
461
462 For example, if the function might return more than one time (setjmp), then
463 set RETURNS_TWICE to a nonzero value.
464
465 Similarly set NORETURN if the function is in the longjmp family.
466
467 Set MAY_BE_ALLOCA for any memory allocation function that might allocate
468 space from the stack such as alloca. */
469
470 static int
471 special_function_p (const_tree fndecl, int flags)
472 {
473 if (fndecl && DECL_NAME (fndecl)
474 && IDENTIFIER_LENGTH (DECL_NAME (fndecl)) <= 17
475 /* Exclude functions not at the file scope, or not `extern',
476 since they are not the magic functions we would otherwise
477 think they are.
478 FIXME: this should be handled with attributes, not with this
479 hacky imitation of DECL_ASSEMBLER_NAME. It's (also) wrong
480 because you can declare fork() inside a function if you
481 wish. */
482 && (DECL_CONTEXT (fndecl) == NULL_TREE
483 || TREE_CODE (DECL_CONTEXT (fndecl)) == TRANSLATION_UNIT_DECL)
484 && TREE_PUBLIC (fndecl))
485 {
486 const char *name = IDENTIFIER_POINTER (DECL_NAME (fndecl));
487 const char *tname = name;
488
489 /* We assume that alloca will always be called by name. It
490 makes no sense to pass it as a pointer-to-function to
491 anything that does not understand its behavior. */
492 if (((IDENTIFIER_LENGTH (DECL_NAME (fndecl)) == 6
493 && name[0] == 'a'
494 && ! strcmp (name, "alloca"))
495 || (IDENTIFIER_LENGTH (DECL_NAME (fndecl)) == 16
496 && name[0] == '_'
497 && ! strcmp (name, "__builtin_alloca"))))
498 flags |= ECF_MAY_BE_ALLOCA;
499
500 /* Disregard prefix _, __, __x or __builtin_. */
501 if (name[0] == '_')
502 {
503 if (name[1] == '_'
504 && name[2] == 'b'
505 && !strncmp (name + 3, "uiltin_", 7))
506 tname += 10;
507 else if (name[1] == '_' && name[2] == 'x')
508 tname += 3;
509 else if (name[1] == '_')
510 tname += 2;
511 else
512 tname += 1;
513 }
514
515 if (tname[0] == 's')
516 {
517 if ((tname[1] == 'e'
518 && (! strcmp (tname, "setjmp")
519 || ! strcmp (tname, "setjmp_syscall")))
520 || (tname[1] == 'i'
521 && ! strcmp (tname, "sigsetjmp"))
522 || (tname[1] == 'a'
523 && ! strcmp (tname, "savectx")))
524 flags |= ECF_RETURNS_TWICE;
525
526 if (tname[1] == 'i'
527 && ! strcmp (tname, "siglongjmp"))
528 flags |= ECF_NORETURN;
529 }
530 else if ((tname[0] == 'q' && tname[1] == 's'
531 && ! strcmp (tname, "qsetjmp"))
532 || (tname[0] == 'v' && tname[1] == 'f'
533 && ! strcmp (tname, "vfork"))
534 || (tname[0] == 'g' && tname[1] == 'e'
535 && !strcmp (tname, "getcontext")))
536 flags |= ECF_RETURNS_TWICE;
537
538 else if (tname[0] == 'l' && tname[1] == 'o'
539 && ! strcmp (tname, "longjmp"))
540 flags |= ECF_NORETURN;
541 }
542
543 return flags;
544 }
545
546 /* Return nonzero when FNDECL represents a call to setjmp. */
547
548 int
549 setjmp_call_p (const_tree fndecl)
550 {
551 return special_function_p (fndecl, 0) & ECF_RETURNS_TWICE;
552 }
553
554
555 /* Return true if STMT is an alloca call. */
556
557 bool
558 gimple_alloca_call_p (const_gimple stmt)
559 {
560 tree fndecl;
561
562 if (!is_gimple_call (stmt))
563 return false;
564
565 fndecl = gimple_call_fndecl (stmt);
566 if (fndecl && (special_function_p (fndecl, 0) & ECF_MAY_BE_ALLOCA))
567 return true;
568
569 return false;
570 }
571
572 /* Return true when exp contains alloca call. */
573
574 bool
575 alloca_call_p (const_tree exp)
576 {
577 if (TREE_CODE (exp) == CALL_EXPR
578 && TREE_CODE (CALL_EXPR_FN (exp)) == ADDR_EXPR
579 && (TREE_CODE (TREE_OPERAND (CALL_EXPR_FN (exp), 0)) == FUNCTION_DECL)
580 && (special_function_p (TREE_OPERAND (CALL_EXPR_FN (exp), 0), 0)
581 & ECF_MAY_BE_ALLOCA))
582 return true;
583 return false;
584 }
585
586 /* Detect flags (function attributes) from the function decl or type node. */
587
588 int
589 flags_from_decl_or_type (const_tree exp)
590 {
591 int flags = 0;
592
593 if (DECL_P (exp))
594 {
595 /* The function exp may have the `malloc' attribute. */
596 if (DECL_IS_MALLOC (exp))
597 flags |= ECF_MALLOC;
598
599 /* The function exp may have the `returns_twice' attribute. */
600 if (DECL_IS_RETURNS_TWICE (exp))
601 flags |= ECF_RETURNS_TWICE;
602
603 /* Process the pure and const attributes. */
604 if (TREE_READONLY (exp))
605 flags |= ECF_CONST;
606 if (DECL_PURE_P (exp))
607 flags |= ECF_PURE;
608 if (DECL_LOOPING_CONST_OR_PURE_P (exp))
609 flags |= ECF_LOOPING_CONST_OR_PURE;
610
611 if (DECL_IS_NOVOPS (exp))
612 flags |= ECF_NOVOPS;
613 if (lookup_attribute ("leaf", DECL_ATTRIBUTES (exp)))
614 flags |= ECF_LEAF;
615
616 if (TREE_NOTHROW (exp))
617 flags |= ECF_NOTHROW;
618
619 flags = special_function_p (exp, flags);
620 }
621 else if (TYPE_P (exp) && TYPE_READONLY (exp))
622 flags |= ECF_CONST;
623
624 if (TREE_THIS_VOLATILE (exp))
625 {
626 flags |= ECF_NORETURN;
627 if (flags & (ECF_CONST|ECF_PURE))
628 flags |= ECF_LOOPING_CONST_OR_PURE;
629 }
630
631 return flags;
632 }
633
634 /* Detect flags from a CALL_EXPR. */
635
636 int
637 call_expr_flags (const_tree t)
638 {
639 int flags;
640 tree decl = get_callee_fndecl (t);
641
642 if (decl)
643 flags = flags_from_decl_or_type (decl);
644 else
645 {
646 t = TREE_TYPE (CALL_EXPR_FN (t));
647 if (t && TREE_CODE (t) == POINTER_TYPE)
648 flags = flags_from_decl_or_type (TREE_TYPE (t));
649 else
650 flags = 0;
651 }
652
653 return flags;
654 }
655
656 /* Precompute all register parameters as described by ARGS, storing values
657 into fields within the ARGS array.
658
659 NUM_ACTUALS indicates the total number elements in the ARGS array.
660
661 Set REG_PARM_SEEN if we encounter a register parameter. */
662
663 static void
664 precompute_register_parameters (int num_actuals, struct arg_data *args,
665 int *reg_parm_seen)
666 {
667 int i;
668
669 *reg_parm_seen = 0;
670
671 for (i = 0; i < num_actuals; i++)
672 if (args[i].reg != 0 && ! args[i].pass_on_stack)
673 {
674 *reg_parm_seen = 1;
675
676 if (args[i].value == 0)
677 {
678 push_temp_slots ();
679 args[i].value = expand_normal (args[i].tree_value);
680 preserve_temp_slots (args[i].value);
681 pop_temp_slots ();
682 }
683
684 /* If the value is a non-legitimate constant, force it into a
685 pseudo now. TLS symbols sometimes need a call to resolve. */
686 if (CONSTANT_P (args[i].value)
687 && !LEGITIMATE_CONSTANT_P (args[i].value))
688 args[i].value = force_reg (args[i].mode, args[i].value);
689
690 /* If we are to promote the function arg to a wider mode,
691 do it now. */
692
693 if (args[i].mode != TYPE_MODE (TREE_TYPE (args[i].tree_value)))
694 args[i].value
695 = convert_modes (args[i].mode,
696 TYPE_MODE (TREE_TYPE (args[i].tree_value)),
697 args[i].value, args[i].unsignedp);
698
699 /* If we're going to have to load the value by parts, pull the
700 parts into pseudos. The part extraction process can involve
701 non-trivial computation. */
702 if (GET_CODE (args[i].reg) == PARALLEL)
703 {
704 tree type = TREE_TYPE (args[i].tree_value);
705 args[i].parallel_value
706 = emit_group_load_into_temps (args[i].reg, args[i].value,
707 type, int_size_in_bytes (type));
708 }
709
710 /* If the value is expensive, and we are inside an appropriately
711 short loop, put the value into a pseudo and then put the pseudo
712 into the hard reg.
713
714 For small register classes, also do this if this call uses
715 register parameters. This is to avoid reload conflicts while
716 loading the parameters registers. */
717
718 else if ((! (REG_P (args[i].value)
719 || (GET_CODE (args[i].value) == SUBREG
720 && REG_P (SUBREG_REG (args[i].value)))))
721 && args[i].mode != BLKmode
722 && rtx_cost (args[i].value, SET, optimize_insn_for_speed_p ())
723 > COSTS_N_INSNS (1)
724 && ((*reg_parm_seen
725 && targetm.small_register_classes_for_mode_p (args[i].mode))
726 || optimize))
727 args[i].value = copy_to_mode_reg (args[i].mode, args[i].value);
728 }
729 }
730
731 #ifdef REG_PARM_STACK_SPACE
732
733 /* The argument list is the property of the called routine and it
734 may clobber it. If the fixed area has been used for previous
735 parameters, we must save and restore it. */
736
737 static rtx
738 save_fixed_argument_area (int reg_parm_stack_space, rtx argblock, int *low_to_save, int *high_to_save)
739 {
740 int low;
741 int high;
742
743 /* Compute the boundary of the area that needs to be saved, if any. */
744 high = reg_parm_stack_space;
745 #ifdef ARGS_GROW_DOWNWARD
746 high += 1;
747 #endif
748 if (high > highest_outgoing_arg_in_use)
749 high = highest_outgoing_arg_in_use;
750
751 for (low = 0; low < high; low++)
752 if (stack_usage_map[low] != 0)
753 {
754 int num_to_save;
755 enum machine_mode save_mode;
756 int delta;
757 rtx stack_area;
758 rtx save_area;
759
760 while (stack_usage_map[--high] == 0)
761 ;
762
763 *low_to_save = low;
764 *high_to_save = high;
765
766 num_to_save = high - low + 1;
767 save_mode = mode_for_size (num_to_save * BITS_PER_UNIT, MODE_INT, 1);
768
769 /* If we don't have the required alignment, must do this
770 in BLKmode. */
771 if ((low & (MIN (GET_MODE_SIZE (save_mode),
772 BIGGEST_ALIGNMENT / UNITS_PER_WORD) - 1)))
773 save_mode = BLKmode;
774
775 #ifdef ARGS_GROW_DOWNWARD
776 delta = -high;
777 #else
778 delta = low;
779 #endif
780 stack_area = gen_rtx_MEM (save_mode,
781 memory_address (save_mode,
782 plus_constant (argblock,
783 delta)));
784
785 set_mem_align (stack_area, PARM_BOUNDARY);
786 if (save_mode == BLKmode)
787 {
788 save_area = assign_stack_temp (BLKmode, num_to_save, 0);
789 emit_block_move (validize_mem (save_area), stack_area,
790 GEN_INT (num_to_save), BLOCK_OP_CALL_PARM);
791 }
792 else
793 {
794 save_area = gen_reg_rtx (save_mode);
795 emit_move_insn (save_area, stack_area);
796 }
797
798 return save_area;
799 }
800
801 return NULL_RTX;
802 }
803
804 static void
805 restore_fixed_argument_area (rtx save_area, rtx argblock, int high_to_save, int low_to_save)
806 {
807 enum machine_mode save_mode = GET_MODE (save_area);
808 int delta;
809 rtx stack_area;
810
811 #ifdef ARGS_GROW_DOWNWARD
812 delta = -high_to_save;
813 #else
814 delta = low_to_save;
815 #endif
816 stack_area = gen_rtx_MEM (save_mode,
817 memory_address (save_mode,
818 plus_constant (argblock, delta)));
819 set_mem_align (stack_area, PARM_BOUNDARY);
820
821 if (save_mode != BLKmode)
822 emit_move_insn (stack_area, save_area);
823 else
824 emit_block_move (stack_area, validize_mem (save_area),
825 GEN_INT (high_to_save - low_to_save + 1),
826 BLOCK_OP_CALL_PARM);
827 }
828 #endif /* REG_PARM_STACK_SPACE */
829
830 /* If any elements in ARGS refer to parameters that are to be passed in
831 registers, but not in memory, and whose alignment does not permit a
832 direct copy into registers. Copy the values into a group of pseudos
833 which we will later copy into the appropriate hard registers.
834
835 Pseudos for each unaligned argument will be stored into the array
836 args[argnum].aligned_regs. The caller is responsible for deallocating
837 the aligned_regs array if it is nonzero. */
838
839 static void
840 store_unaligned_arguments_into_pseudos (struct arg_data *args, int num_actuals)
841 {
842 int i, j;
843
844 for (i = 0; i < num_actuals; i++)
845 if (args[i].reg != 0 && ! args[i].pass_on_stack
846 && args[i].mode == BLKmode
847 && MEM_P (args[i].value)
848 && (MEM_ALIGN (args[i].value)
849 < (unsigned int) MIN (BIGGEST_ALIGNMENT, BITS_PER_WORD)))
850 {
851 int bytes = int_size_in_bytes (TREE_TYPE (args[i].tree_value));
852 int endian_correction = 0;
853
854 if (args[i].partial)
855 {
856 gcc_assert (args[i].partial % UNITS_PER_WORD == 0);
857 args[i].n_aligned_regs = args[i].partial / UNITS_PER_WORD;
858 }
859 else
860 {
861 args[i].n_aligned_regs
862 = (bytes + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
863 }
864
865 args[i].aligned_regs = XNEWVEC (rtx, args[i].n_aligned_regs);
866
867 /* Structures smaller than a word are normally aligned to the
868 least significant byte. On a BYTES_BIG_ENDIAN machine,
869 this means we must skip the empty high order bytes when
870 calculating the bit offset. */
871 if (bytes < UNITS_PER_WORD
872 #ifdef BLOCK_REG_PADDING
873 && (BLOCK_REG_PADDING (args[i].mode,
874 TREE_TYPE (args[i].tree_value), 1)
875 == downward)
876 #else
877 && BYTES_BIG_ENDIAN
878 #endif
879 )
880 endian_correction = BITS_PER_WORD - bytes * BITS_PER_UNIT;
881
882 for (j = 0; j < args[i].n_aligned_regs; j++)
883 {
884 rtx reg = gen_reg_rtx (word_mode);
885 rtx word = operand_subword_force (args[i].value, j, BLKmode);
886 int bitsize = MIN (bytes * BITS_PER_UNIT, BITS_PER_WORD);
887
888 args[i].aligned_regs[j] = reg;
889 word = extract_bit_field (word, bitsize, 0, 1, false, NULL_RTX,
890 word_mode, word_mode);
891
892 /* There is no need to restrict this code to loading items
893 in TYPE_ALIGN sized hunks. The bitfield instructions can
894 load up entire word sized registers efficiently.
895
896 ??? This may not be needed anymore.
897 We use to emit a clobber here but that doesn't let later
898 passes optimize the instructions we emit. By storing 0 into
899 the register later passes know the first AND to zero out the
900 bitfield being set in the register is unnecessary. The store
901 of 0 will be deleted as will at least the first AND. */
902
903 emit_move_insn (reg, const0_rtx);
904
905 bytes -= bitsize / BITS_PER_UNIT;
906 store_bit_field (reg, bitsize, endian_correction, word_mode,
907 word);
908 }
909 }
910 }
911
912 /* Fill in ARGS_SIZE and ARGS array based on the parameters found in
913 CALL_EXPR EXP.
914
915 NUM_ACTUALS is the total number of parameters.
916
917 N_NAMED_ARGS is the total number of named arguments.
918
919 STRUCT_VALUE_ADDR_VALUE is the implicit argument for a struct return
920 value, or null.
921
922 FNDECL is the tree code for the target of this call (if known)
923
924 ARGS_SO_FAR holds state needed by the target to know where to place
925 the next argument.
926
927 REG_PARM_STACK_SPACE is the number of bytes of stack space reserved
928 for arguments which are passed in registers.
929
930 OLD_STACK_LEVEL is a pointer to an rtx which olds the old stack level
931 and may be modified by this routine.
932
933 OLD_PENDING_ADJ, MUST_PREALLOCATE and FLAGS are pointers to integer
934 flags which may may be modified by this routine.
935
936 MAY_TAILCALL is cleared if we encounter an invisible pass-by-reference
937 that requires allocation of stack space.
938
939 CALL_FROM_THUNK_P is true if this call is the jump from a thunk to
940 the thunked-to function. */
941
942 static void
943 initialize_argument_information (int num_actuals ATTRIBUTE_UNUSED,
944 struct arg_data *args,
945 struct args_size *args_size,
946 int n_named_args ATTRIBUTE_UNUSED,
947 tree exp, tree struct_value_addr_value,
948 tree fndecl, tree fntype,
949 CUMULATIVE_ARGS *args_so_far,
950 int reg_parm_stack_space,
951 rtx *old_stack_level, int *old_pending_adj,
952 int *must_preallocate, int *ecf_flags,
953 bool *may_tailcall, bool call_from_thunk_p)
954 {
955 location_t loc = EXPR_LOCATION (exp);
956 /* 1 if scanning parms front to back, -1 if scanning back to front. */
957 int inc;
958
959 /* Count arg position in order args appear. */
960 int argpos;
961
962 int i;
963
964 args_size->constant = 0;
965 args_size->var = 0;
966
967 /* In this loop, we consider args in the order they are written.
968 We fill up ARGS from the front or from the back if necessary
969 so that in any case the first arg to be pushed ends up at the front. */
970
971 if (PUSH_ARGS_REVERSED)
972 {
973 i = num_actuals - 1, inc = -1;
974 /* In this case, must reverse order of args
975 so that we compute and push the last arg first. */
976 }
977 else
978 {
979 i = 0, inc = 1;
980 }
981
982 /* First fill in the actual arguments in the ARGS array, splitting
983 complex arguments if necessary. */
984 {
985 int j = i;
986 call_expr_arg_iterator iter;
987 tree arg;
988
989 if (struct_value_addr_value)
990 {
991 args[j].tree_value = struct_value_addr_value;
992 j += inc;
993 }
994 FOR_EACH_CALL_EXPR_ARG (arg, iter, exp)
995 {
996 tree argtype = TREE_TYPE (arg);
997 if (targetm.calls.split_complex_arg
998 && argtype
999 && TREE_CODE (argtype) == COMPLEX_TYPE
1000 && targetm.calls.split_complex_arg (argtype))
1001 {
1002 tree subtype = TREE_TYPE (argtype);
1003 args[j].tree_value = build1 (REALPART_EXPR, subtype, arg);
1004 j += inc;
1005 args[j].tree_value = build1 (IMAGPART_EXPR, subtype, arg);
1006 }
1007 else
1008 args[j].tree_value = arg;
1009 j += inc;
1010 }
1011 }
1012
1013 /* I counts args in order (to be) pushed; ARGPOS counts in order written. */
1014 for (argpos = 0; argpos < num_actuals; i += inc, argpos++)
1015 {
1016 tree type = TREE_TYPE (args[i].tree_value);
1017 int unsignedp;
1018 enum machine_mode mode;
1019
1020 /* Replace erroneous argument with constant zero. */
1021 if (type == error_mark_node || !COMPLETE_TYPE_P (type))
1022 args[i].tree_value = integer_zero_node, type = integer_type_node;
1023
1024 /* If TYPE is a transparent union or record, pass things the way
1025 we would pass the first field of the union or record. We have
1026 already verified that the modes are the same. */
1027 if ((TREE_CODE (type) == UNION_TYPE || TREE_CODE (type) == RECORD_TYPE)
1028 && TYPE_TRANSPARENT_AGGR (type))
1029 type = TREE_TYPE (first_field (type));
1030
1031 /* Decide where to pass this arg.
1032
1033 args[i].reg is nonzero if all or part is passed in registers.
1034
1035 args[i].partial is nonzero if part but not all is passed in registers,
1036 and the exact value says how many bytes are passed in registers.
1037
1038 args[i].pass_on_stack is nonzero if the argument must at least be
1039 computed on the stack. It may then be loaded back into registers
1040 if args[i].reg is nonzero.
1041
1042 These decisions are driven by the FUNCTION_... macros and must agree
1043 with those made by function.c. */
1044
1045 /* See if this argument should be passed by invisible reference. */
1046 if (pass_by_reference (args_so_far, TYPE_MODE (type),
1047 type, argpos < n_named_args))
1048 {
1049 bool callee_copies;
1050 tree base;
1051
1052 callee_copies
1053 = reference_callee_copied (args_so_far, TYPE_MODE (type),
1054 type, argpos < n_named_args);
1055
1056 /* If we're compiling a thunk, pass through invisible references
1057 instead of making a copy. */
1058 if (call_from_thunk_p
1059 || (callee_copies
1060 && !TREE_ADDRESSABLE (type)
1061 && (base = get_base_address (args[i].tree_value))
1062 && TREE_CODE (base) != SSA_NAME
1063 && (!DECL_P (base) || MEM_P (DECL_RTL (base)))))
1064 {
1065 /* We can't use sibcalls if a callee-copied argument is
1066 stored in the current function's frame. */
1067 if (!call_from_thunk_p && DECL_P (base) && !TREE_STATIC (base))
1068 *may_tailcall = false;
1069
1070 args[i].tree_value = build_fold_addr_expr_loc (loc,
1071 args[i].tree_value);
1072 type = TREE_TYPE (args[i].tree_value);
1073
1074 if (*ecf_flags & ECF_CONST)
1075 *ecf_flags &= ~(ECF_CONST | ECF_LOOPING_CONST_OR_PURE);
1076 }
1077 else
1078 {
1079 /* We make a copy of the object and pass the address to the
1080 function being called. */
1081 rtx copy;
1082
1083 if (!COMPLETE_TYPE_P (type)
1084 || TREE_CODE (TYPE_SIZE_UNIT (type)) != INTEGER_CST
1085 || (flag_stack_check == GENERIC_STACK_CHECK
1086 && compare_tree_int (TYPE_SIZE_UNIT (type),
1087 STACK_CHECK_MAX_VAR_SIZE) > 0))
1088 {
1089 /* This is a variable-sized object. Make space on the stack
1090 for it. */
1091 rtx size_rtx = expr_size (args[i].tree_value);
1092
1093 if (*old_stack_level == 0)
1094 {
1095 emit_stack_save (SAVE_BLOCK, old_stack_level);
1096 *old_pending_adj = pending_stack_adjust;
1097 pending_stack_adjust = 0;
1098 }
1099
1100 /* We can pass TRUE as the 4th argument because we just
1101 saved the stack pointer and will restore it right after
1102 the call. */
1103 copy = allocate_dynamic_stack_space (size_rtx,
1104 TYPE_ALIGN (type),
1105 TYPE_ALIGN (type),
1106 true);
1107 copy = gen_rtx_MEM (BLKmode, copy);
1108 set_mem_attributes (copy, type, 1);
1109 }
1110 else
1111 copy = assign_temp (type, 0, 1, 0);
1112
1113 store_expr (args[i].tree_value, copy, 0, false);
1114
1115 /* Just change the const function to pure and then let
1116 the next test clear the pure based on
1117 callee_copies. */
1118 if (*ecf_flags & ECF_CONST)
1119 {
1120 *ecf_flags &= ~ECF_CONST;
1121 *ecf_flags |= ECF_PURE;
1122 }
1123
1124 if (!callee_copies && *ecf_flags & ECF_PURE)
1125 *ecf_flags &= ~(ECF_PURE | ECF_LOOPING_CONST_OR_PURE);
1126
1127 args[i].tree_value
1128 = build_fold_addr_expr_loc (loc, make_tree (type, copy));
1129 type = TREE_TYPE (args[i].tree_value);
1130 *may_tailcall = false;
1131 }
1132 }
1133
1134 unsignedp = TYPE_UNSIGNED (type);
1135 mode = promote_function_mode (type, TYPE_MODE (type), &unsignedp,
1136 fndecl ? TREE_TYPE (fndecl) : fntype, 0);
1137
1138 args[i].unsignedp = unsignedp;
1139 args[i].mode = mode;
1140
1141 args[i].reg = targetm.calls.function_arg (args_so_far, mode, type,
1142 argpos < n_named_args);
1143
1144 /* If this is a sibling call and the machine has register windows, the
1145 register window has to be unwinded before calling the routine, so
1146 arguments have to go into the incoming registers. */
1147 if (targetm.calls.function_incoming_arg != targetm.calls.function_arg)
1148 args[i].tail_call_reg
1149 = targetm.calls.function_incoming_arg (args_so_far, mode, type,
1150 argpos < n_named_args);
1151 else
1152 args[i].tail_call_reg = args[i].reg;
1153
1154 if (args[i].reg)
1155 args[i].partial
1156 = targetm.calls.arg_partial_bytes (args_so_far, mode, type,
1157 argpos < n_named_args);
1158
1159 args[i].pass_on_stack = targetm.calls.must_pass_in_stack (mode, type);
1160
1161 /* If FUNCTION_ARG returned a (parallel [(expr_list (nil) ...) ...]),
1162 it means that we are to pass this arg in the register(s) designated
1163 by the PARALLEL, but also to pass it in the stack. */
1164 if (args[i].reg && GET_CODE (args[i].reg) == PARALLEL
1165 && XEXP (XVECEXP (args[i].reg, 0, 0), 0) == 0)
1166 args[i].pass_on_stack = 1;
1167
1168 /* If this is an addressable type, we must preallocate the stack
1169 since we must evaluate the object into its final location.
1170
1171 If this is to be passed in both registers and the stack, it is simpler
1172 to preallocate. */
1173 if (TREE_ADDRESSABLE (type)
1174 || (args[i].pass_on_stack && args[i].reg != 0))
1175 *must_preallocate = 1;
1176
1177 /* Compute the stack-size of this argument. */
1178 if (args[i].reg == 0 || args[i].partial != 0
1179 || reg_parm_stack_space > 0
1180 || args[i].pass_on_stack)
1181 locate_and_pad_parm (mode, type,
1182 #ifdef STACK_PARMS_IN_REG_PARM_AREA
1183 1,
1184 #else
1185 args[i].reg != 0,
1186 #endif
1187 args[i].pass_on_stack ? 0 : args[i].partial,
1188 fndecl, args_size, &args[i].locate);
1189 #ifdef BLOCK_REG_PADDING
1190 else
1191 /* The argument is passed entirely in registers. See at which
1192 end it should be padded. */
1193 args[i].locate.where_pad =
1194 BLOCK_REG_PADDING (mode, type,
1195 int_size_in_bytes (type) <= UNITS_PER_WORD);
1196 #endif
1197
1198 /* Update ARGS_SIZE, the total stack space for args so far. */
1199
1200 args_size->constant += args[i].locate.size.constant;
1201 if (args[i].locate.size.var)
1202 ADD_PARM_SIZE (*args_size, args[i].locate.size.var);
1203
1204 /* Increment ARGS_SO_FAR, which has info about which arg-registers
1205 have been used, etc. */
1206
1207 targetm.calls.function_arg_advance (args_so_far, TYPE_MODE (type),
1208 type, argpos < n_named_args);
1209 }
1210 }
1211
1212 /* Update ARGS_SIZE to contain the total size for the argument block.
1213 Return the original constant component of the argument block's size.
1214
1215 REG_PARM_STACK_SPACE holds the number of bytes of stack space reserved
1216 for arguments passed in registers. */
1217
1218 static int
1219 compute_argument_block_size (int reg_parm_stack_space,
1220 struct args_size *args_size,
1221 tree fndecl ATTRIBUTE_UNUSED,
1222 tree fntype ATTRIBUTE_UNUSED,
1223 int preferred_stack_boundary ATTRIBUTE_UNUSED)
1224 {
1225 int unadjusted_args_size = args_size->constant;
1226
1227 /* For accumulate outgoing args mode we don't need to align, since the frame
1228 will be already aligned. Align to STACK_BOUNDARY in order to prevent
1229 backends from generating misaligned frame sizes. */
1230 if (ACCUMULATE_OUTGOING_ARGS && preferred_stack_boundary > STACK_BOUNDARY)
1231 preferred_stack_boundary = STACK_BOUNDARY;
1232
1233 /* Compute the actual size of the argument block required. The variable
1234 and constant sizes must be combined, the size may have to be rounded,
1235 and there may be a minimum required size. */
1236
1237 if (args_size->var)
1238 {
1239 args_size->var = ARGS_SIZE_TREE (*args_size);
1240 args_size->constant = 0;
1241
1242 preferred_stack_boundary /= BITS_PER_UNIT;
1243 if (preferred_stack_boundary > 1)
1244 {
1245 /* We don't handle this case yet. To handle it correctly we have
1246 to add the delta, round and subtract the delta.
1247 Currently no machine description requires this support. */
1248 gcc_assert (!(stack_pointer_delta & (preferred_stack_boundary - 1)));
1249 args_size->var = round_up (args_size->var, preferred_stack_boundary);
1250 }
1251
1252 if (reg_parm_stack_space > 0)
1253 {
1254 args_size->var
1255 = size_binop (MAX_EXPR, args_size->var,
1256 ssize_int (reg_parm_stack_space));
1257
1258 /* The area corresponding to register parameters is not to count in
1259 the size of the block we need. So make the adjustment. */
1260 if (! OUTGOING_REG_PARM_STACK_SPACE ((!fndecl ? fntype : TREE_TYPE (fndecl))))
1261 args_size->var
1262 = size_binop (MINUS_EXPR, args_size->var,
1263 ssize_int (reg_parm_stack_space));
1264 }
1265 }
1266 else
1267 {
1268 preferred_stack_boundary /= BITS_PER_UNIT;
1269 if (preferred_stack_boundary < 1)
1270 preferred_stack_boundary = 1;
1271 args_size->constant = (((args_size->constant
1272 + stack_pointer_delta
1273 + preferred_stack_boundary - 1)
1274 / preferred_stack_boundary
1275 * preferred_stack_boundary)
1276 - stack_pointer_delta);
1277
1278 args_size->constant = MAX (args_size->constant,
1279 reg_parm_stack_space);
1280
1281 if (! OUTGOING_REG_PARM_STACK_SPACE ((!fndecl ? fntype : TREE_TYPE (fndecl))))
1282 args_size->constant -= reg_parm_stack_space;
1283 }
1284 return unadjusted_args_size;
1285 }
1286
1287 /* Precompute parameters as needed for a function call.
1288
1289 FLAGS is mask of ECF_* constants.
1290
1291 NUM_ACTUALS is the number of arguments.
1292
1293 ARGS is an array containing information for each argument; this
1294 routine fills in the INITIAL_VALUE and VALUE fields for each
1295 precomputed argument. */
1296
1297 static void
1298 precompute_arguments (int num_actuals, struct arg_data *args)
1299 {
1300 int i;
1301
1302 /* If this is a libcall, then precompute all arguments so that we do not
1303 get extraneous instructions emitted as part of the libcall sequence. */
1304
1305 /* If we preallocated the stack space, and some arguments must be passed
1306 on the stack, then we must precompute any parameter which contains a
1307 function call which will store arguments on the stack.
1308 Otherwise, evaluating the parameter may clobber previous parameters
1309 which have already been stored into the stack. (we have code to avoid
1310 such case by saving the outgoing stack arguments, but it results in
1311 worse code) */
1312 if (!ACCUMULATE_OUTGOING_ARGS)
1313 return;
1314
1315 for (i = 0; i < num_actuals; i++)
1316 {
1317 tree type;
1318 enum machine_mode mode;
1319
1320 if (TREE_CODE (args[i].tree_value) != CALL_EXPR)
1321 continue;
1322
1323 /* If this is an addressable type, we cannot pre-evaluate it. */
1324 type = TREE_TYPE (args[i].tree_value);
1325 gcc_assert (!TREE_ADDRESSABLE (type));
1326
1327 args[i].initial_value = args[i].value
1328 = expand_normal (args[i].tree_value);
1329
1330 mode = TYPE_MODE (type);
1331 if (mode != args[i].mode)
1332 {
1333 int unsignedp = args[i].unsignedp;
1334 args[i].value
1335 = convert_modes (args[i].mode, mode,
1336 args[i].value, args[i].unsignedp);
1337
1338 /* CSE will replace this only if it contains args[i].value
1339 pseudo, so convert it down to the declared mode using
1340 a SUBREG. */
1341 if (REG_P (args[i].value)
1342 && GET_MODE_CLASS (args[i].mode) == MODE_INT
1343 && promote_mode (type, mode, &unsignedp) != args[i].mode)
1344 {
1345 args[i].initial_value
1346 = gen_lowpart_SUBREG (mode, args[i].value);
1347 SUBREG_PROMOTED_VAR_P (args[i].initial_value) = 1;
1348 SUBREG_PROMOTED_UNSIGNED_SET (args[i].initial_value,
1349 args[i].unsignedp);
1350 }
1351 }
1352 }
1353 }
1354
1355 /* Given the current state of MUST_PREALLOCATE and information about
1356 arguments to a function call in NUM_ACTUALS, ARGS and ARGS_SIZE,
1357 compute and return the final value for MUST_PREALLOCATE. */
1358
1359 static int
1360 finalize_must_preallocate (int must_preallocate, int num_actuals,
1361 struct arg_data *args, struct args_size *args_size)
1362 {
1363 /* See if we have or want to preallocate stack space.
1364
1365 If we would have to push a partially-in-regs parm
1366 before other stack parms, preallocate stack space instead.
1367
1368 If the size of some parm is not a multiple of the required stack
1369 alignment, we must preallocate.
1370
1371 If the total size of arguments that would otherwise create a copy in
1372 a temporary (such as a CALL) is more than half the total argument list
1373 size, preallocation is faster.
1374
1375 Another reason to preallocate is if we have a machine (like the m88k)
1376 where stack alignment is required to be maintained between every
1377 pair of insns, not just when the call is made. However, we assume here
1378 that such machines either do not have push insns (and hence preallocation
1379 would occur anyway) or the problem is taken care of with
1380 PUSH_ROUNDING. */
1381
1382 if (! must_preallocate)
1383 {
1384 int partial_seen = 0;
1385 int copy_to_evaluate_size = 0;
1386 int i;
1387
1388 for (i = 0; i < num_actuals && ! must_preallocate; i++)
1389 {
1390 if (args[i].partial > 0 && ! args[i].pass_on_stack)
1391 partial_seen = 1;
1392 else if (partial_seen && args[i].reg == 0)
1393 must_preallocate = 1;
1394
1395 if (TYPE_MODE (TREE_TYPE (args[i].tree_value)) == BLKmode
1396 && (TREE_CODE (args[i].tree_value) == CALL_EXPR
1397 || TREE_CODE (args[i].tree_value) == TARGET_EXPR
1398 || TREE_CODE (args[i].tree_value) == COND_EXPR
1399 || TREE_ADDRESSABLE (TREE_TYPE (args[i].tree_value))))
1400 copy_to_evaluate_size
1401 += int_size_in_bytes (TREE_TYPE (args[i].tree_value));
1402 }
1403
1404 if (copy_to_evaluate_size * 2 >= args_size->constant
1405 && args_size->constant > 0)
1406 must_preallocate = 1;
1407 }
1408 return must_preallocate;
1409 }
1410
1411 /* If we preallocated stack space, compute the address of each argument
1412 and store it into the ARGS array.
1413
1414 We need not ensure it is a valid memory address here; it will be
1415 validized when it is used.
1416
1417 ARGBLOCK is an rtx for the address of the outgoing arguments. */
1418
1419 static void
1420 compute_argument_addresses (struct arg_data *args, rtx argblock, int num_actuals)
1421 {
1422 if (argblock)
1423 {
1424 rtx arg_reg = argblock;
1425 int i, arg_offset = 0;
1426
1427 if (GET_CODE (argblock) == PLUS)
1428 arg_reg = XEXP (argblock, 0), arg_offset = INTVAL (XEXP (argblock, 1));
1429
1430 for (i = 0; i < num_actuals; i++)
1431 {
1432 rtx offset = ARGS_SIZE_RTX (args[i].locate.offset);
1433 rtx slot_offset = ARGS_SIZE_RTX (args[i].locate.slot_offset);
1434 rtx addr;
1435 unsigned int align, boundary;
1436 unsigned int units_on_stack = 0;
1437 enum machine_mode partial_mode = VOIDmode;
1438
1439 /* Skip this parm if it will not be passed on the stack. */
1440 if (! args[i].pass_on_stack
1441 && args[i].reg != 0
1442 && args[i].partial == 0)
1443 continue;
1444
1445 if (CONST_INT_P (offset))
1446 addr = plus_constant (arg_reg, INTVAL (offset));
1447 else
1448 addr = gen_rtx_PLUS (Pmode, arg_reg, offset);
1449
1450 addr = plus_constant (addr, arg_offset);
1451
1452 if (args[i].partial != 0)
1453 {
1454 /* Only part of the parameter is being passed on the stack.
1455 Generate a simple memory reference of the correct size. */
1456 units_on_stack = args[i].locate.size.constant;
1457 partial_mode = mode_for_size (units_on_stack * BITS_PER_UNIT,
1458 MODE_INT, 1);
1459 args[i].stack = gen_rtx_MEM (partial_mode, addr);
1460 set_mem_size (args[i].stack, GEN_INT (units_on_stack));
1461 }
1462 else
1463 {
1464 args[i].stack = gen_rtx_MEM (args[i].mode, addr);
1465 set_mem_attributes (args[i].stack,
1466 TREE_TYPE (args[i].tree_value), 1);
1467 }
1468 align = BITS_PER_UNIT;
1469 boundary = args[i].locate.boundary;
1470 if (args[i].locate.where_pad != downward)
1471 align = boundary;
1472 else if (CONST_INT_P (offset))
1473 {
1474 align = INTVAL (offset) * BITS_PER_UNIT | boundary;
1475 align = align & -align;
1476 }
1477 set_mem_align (args[i].stack, align);
1478
1479 if (CONST_INT_P (slot_offset))
1480 addr = plus_constant (arg_reg, INTVAL (slot_offset));
1481 else
1482 addr = gen_rtx_PLUS (Pmode, arg_reg, slot_offset);
1483
1484 addr = plus_constant (addr, arg_offset);
1485
1486 if (args[i].partial != 0)
1487 {
1488 /* Only part of the parameter is being passed on the stack.
1489 Generate a simple memory reference of the correct size.
1490 */
1491 args[i].stack_slot = gen_rtx_MEM (partial_mode, addr);
1492 set_mem_size (args[i].stack_slot, GEN_INT (units_on_stack));
1493 }
1494 else
1495 {
1496 args[i].stack_slot = gen_rtx_MEM (args[i].mode, addr);
1497 set_mem_attributes (args[i].stack_slot,
1498 TREE_TYPE (args[i].tree_value), 1);
1499 }
1500 set_mem_align (args[i].stack_slot, args[i].locate.boundary);
1501
1502 /* Function incoming arguments may overlap with sibling call
1503 outgoing arguments and we cannot allow reordering of reads
1504 from function arguments with stores to outgoing arguments
1505 of sibling calls. */
1506 set_mem_alias_set (args[i].stack, 0);
1507 set_mem_alias_set (args[i].stack_slot, 0);
1508 }
1509 }
1510 }
1511
1512 /* Given a FNDECL and EXP, return an rtx suitable for use as a target address
1513 in a call instruction.
1514
1515 FNDECL is the tree node for the target function. For an indirect call
1516 FNDECL will be NULL_TREE.
1517
1518 ADDR is the operand 0 of CALL_EXPR for this call. */
1519
1520 static rtx
1521 rtx_for_function_call (tree fndecl, tree addr)
1522 {
1523 rtx funexp;
1524
1525 /* Get the function to call, in the form of RTL. */
1526 if (fndecl)
1527 {
1528 /* If this is the first use of the function, see if we need to
1529 make an external definition for it. */
1530 if (!TREE_USED (fndecl) && fndecl != current_function_decl)
1531 {
1532 assemble_external (fndecl);
1533 TREE_USED (fndecl) = 1;
1534 }
1535
1536 /* Get a SYMBOL_REF rtx for the function address. */
1537 funexp = XEXP (DECL_RTL (fndecl), 0);
1538 }
1539 else
1540 /* Generate an rtx (probably a pseudo-register) for the address. */
1541 {
1542 push_temp_slots ();
1543 funexp = expand_normal (addr);
1544 pop_temp_slots (); /* FUNEXP can't be BLKmode. */
1545 }
1546 return funexp;
1547 }
1548
1549 /* Return true if and only if SIZE storage units (usually bytes)
1550 starting from address ADDR overlap with already clobbered argument
1551 area. This function is used to determine if we should give up a
1552 sibcall. */
1553
1554 static bool
1555 mem_overlaps_already_clobbered_arg_p (rtx addr, unsigned HOST_WIDE_INT size)
1556 {
1557 HOST_WIDE_INT i;
1558
1559 if (addr == crtl->args.internal_arg_pointer)
1560 i = 0;
1561 else if (GET_CODE (addr) == PLUS
1562 && XEXP (addr, 0) == crtl->args.internal_arg_pointer
1563 && CONST_INT_P (XEXP (addr, 1)))
1564 i = INTVAL (XEXP (addr, 1));
1565 /* Return true for arg pointer based indexed addressing. */
1566 else if (GET_CODE (addr) == PLUS
1567 && (XEXP (addr, 0) == crtl->args.internal_arg_pointer
1568 || XEXP (addr, 1) == crtl->args.internal_arg_pointer))
1569 return true;
1570 else
1571 return false;
1572
1573 #ifdef ARGS_GROW_DOWNWARD
1574 i = -i - size;
1575 #endif
1576 if (size > 0)
1577 {
1578 unsigned HOST_WIDE_INT k;
1579
1580 for (k = 0; k < size; k++)
1581 if (i + k < stored_args_map->n_bits
1582 && TEST_BIT (stored_args_map, i + k))
1583 return true;
1584 }
1585
1586 return false;
1587 }
1588
1589 /* Do the register loads required for any wholly-register parms or any
1590 parms which are passed both on the stack and in a register. Their
1591 expressions were already evaluated.
1592
1593 Mark all register-parms as living through the call, putting these USE
1594 insns in the CALL_INSN_FUNCTION_USAGE field.
1595
1596 When IS_SIBCALL, perform the check_sibcall_argument_overlap
1597 checking, setting *SIBCALL_FAILURE if appropriate. */
1598
1599 static void
1600 load_register_parameters (struct arg_data *args, int num_actuals,
1601 rtx *call_fusage, int flags, int is_sibcall,
1602 int *sibcall_failure)
1603 {
1604 int i, j;
1605
1606 for (i = 0; i < num_actuals; i++)
1607 {
1608 rtx reg = ((flags & ECF_SIBCALL)
1609 ? args[i].tail_call_reg : args[i].reg);
1610 if (reg)
1611 {
1612 int partial = args[i].partial;
1613 int nregs;
1614 int size = 0;
1615 rtx before_arg = get_last_insn ();
1616 /* Set non-negative if we must move a word at a time, even if
1617 just one word (e.g, partial == 4 && mode == DFmode). Set
1618 to -1 if we just use a normal move insn. This value can be
1619 zero if the argument is a zero size structure. */
1620 nregs = -1;
1621 if (GET_CODE (reg) == PARALLEL)
1622 ;
1623 else if (partial)
1624 {
1625 gcc_assert (partial % UNITS_PER_WORD == 0);
1626 nregs = partial / UNITS_PER_WORD;
1627 }
1628 else if (TYPE_MODE (TREE_TYPE (args[i].tree_value)) == BLKmode)
1629 {
1630 size = int_size_in_bytes (TREE_TYPE (args[i].tree_value));
1631 nregs = (size + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
1632 }
1633 else
1634 size = GET_MODE_SIZE (args[i].mode);
1635
1636 /* Handle calls that pass values in multiple non-contiguous
1637 locations. The Irix 6 ABI has examples of this. */
1638
1639 if (GET_CODE (reg) == PARALLEL)
1640 emit_group_move (reg, args[i].parallel_value);
1641
1642 /* If simple case, just do move. If normal partial, store_one_arg
1643 has already loaded the register for us. In all other cases,
1644 load the register(s) from memory. */
1645
1646 else if (nregs == -1)
1647 {
1648 emit_move_insn (reg, args[i].value);
1649 #ifdef BLOCK_REG_PADDING
1650 /* Handle case where we have a value that needs shifting
1651 up to the msb. eg. a QImode value and we're padding
1652 upward on a BYTES_BIG_ENDIAN machine. */
1653 if (size < UNITS_PER_WORD
1654 && (args[i].locate.where_pad
1655 == (BYTES_BIG_ENDIAN ? upward : downward)))
1656 {
1657 rtx x;
1658 int shift = (UNITS_PER_WORD - size) * BITS_PER_UNIT;
1659
1660 /* Assigning REG here rather than a temp makes CALL_FUSAGE
1661 report the whole reg as used. Strictly speaking, the
1662 call only uses SIZE bytes at the msb end, but it doesn't
1663 seem worth generating rtl to say that. */
1664 reg = gen_rtx_REG (word_mode, REGNO (reg));
1665 x = expand_shift (LSHIFT_EXPR, word_mode, reg,
1666 build_int_cst (NULL_TREE, shift),
1667 reg, 1);
1668 if (x != reg)
1669 emit_move_insn (reg, x);
1670 }
1671 #endif
1672 }
1673
1674 /* If we have pre-computed the values to put in the registers in
1675 the case of non-aligned structures, copy them in now. */
1676
1677 else if (args[i].n_aligned_regs != 0)
1678 for (j = 0; j < args[i].n_aligned_regs; j++)
1679 emit_move_insn (gen_rtx_REG (word_mode, REGNO (reg) + j),
1680 args[i].aligned_regs[j]);
1681
1682 else if (partial == 0 || args[i].pass_on_stack)
1683 {
1684 rtx mem = validize_mem (args[i].value);
1685
1686 /* Check for overlap with already clobbered argument area,
1687 providing that this has non-zero size. */
1688 if (is_sibcall
1689 && (size == 0
1690 || mem_overlaps_already_clobbered_arg_p
1691 (XEXP (args[i].value, 0), size)))
1692 *sibcall_failure = 1;
1693
1694 /* Handle a BLKmode that needs shifting. */
1695 if (nregs == 1 && size < UNITS_PER_WORD
1696 #ifdef BLOCK_REG_PADDING
1697 && args[i].locate.where_pad == downward
1698 #else
1699 && BYTES_BIG_ENDIAN
1700 #endif
1701 )
1702 {
1703 rtx tem = operand_subword_force (mem, 0, args[i].mode);
1704 rtx ri = gen_rtx_REG (word_mode, REGNO (reg));
1705 rtx x = gen_reg_rtx (word_mode);
1706 int shift = (UNITS_PER_WORD - size) * BITS_PER_UNIT;
1707 enum tree_code dir = BYTES_BIG_ENDIAN ? RSHIFT_EXPR
1708 : LSHIFT_EXPR;
1709
1710 emit_move_insn (x, tem);
1711 x = expand_shift (dir, word_mode, x,
1712 build_int_cst (NULL_TREE, shift),
1713 ri, 1);
1714 if (x != ri)
1715 emit_move_insn (ri, x);
1716 }
1717 else
1718 move_block_to_reg (REGNO (reg), mem, nregs, args[i].mode);
1719 }
1720
1721 /* When a parameter is a block, and perhaps in other cases, it is
1722 possible that it did a load from an argument slot that was
1723 already clobbered. */
1724 if (is_sibcall
1725 && check_sibcall_argument_overlap (before_arg, &args[i], 0))
1726 *sibcall_failure = 1;
1727
1728 /* Handle calls that pass values in multiple non-contiguous
1729 locations. The Irix 6 ABI has examples of this. */
1730 if (GET_CODE (reg) == PARALLEL)
1731 use_group_regs (call_fusage, reg);
1732 else if (nregs == -1)
1733 use_reg (call_fusage, reg);
1734 else if (nregs > 0)
1735 use_regs (call_fusage, REGNO (reg), nregs);
1736 }
1737 }
1738 }
1739
1740 /* We need to pop PENDING_STACK_ADJUST bytes. But, if the arguments
1741 wouldn't fill up an even multiple of PREFERRED_UNIT_STACK_BOUNDARY
1742 bytes, then we would need to push some additional bytes to pad the
1743 arguments. So, we compute an adjust to the stack pointer for an
1744 amount that will leave the stack under-aligned by UNADJUSTED_ARGS_SIZE
1745 bytes. Then, when the arguments are pushed the stack will be perfectly
1746 aligned. ARGS_SIZE->CONSTANT is set to the number of bytes that should
1747 be popped after the call. Returns the adjustment. */
1748
1749 static int
1750 combine_pending_stack_adjustment_and_call (int unadjusted_args_size,
1751 struct args_size *args_size,
1752 unsigned int preferred_unit_stack_boundary)
1753 {
1754 /* The number of bytes to pop so that the stack will be
1755 under-aligned by UNADJUSTED_ARGS_SIZE bytes. */
1756 HOST_WIDE_INT adjustment;
1757 /* The alignment of the stack after the arguments are pushed, if we
1758 just pushed the arguments without adjust the stack here. */
1759 unsigned HOST_WIDE_INT unadjusted_alignment;
1760
1761 unadjusted_alignment
1762 = ((stack_pointer_delta + unadjusted_args_size)
1763 % preferred_unit_stack_boundary);
1764
1765 /* We want to get rid of as many of the PENDING_STACK_ADJUST bytes
1766 as possible -- leaving just enough left to cancel out the
1767 UNADJUSTED_ALIGNMENT. In other words, we want to ensure that the
1768 PENDING_STACK_ADJUST is non-negative, and congruent to
1769 -UNADJUSTED_ALIGNMENT modulo the PREFERRED_UNIT_STACK_BOUNDARY. */
1770
1771 /* Begin by trying to pop all the bytes. */
1772 unadjusted_alignment
1773 = (unadjusted_alignment
1774 - (pending_stack_adjust % preferred_unit_stack_boundary));
1775 adjustment = pending_stack_adjust;
1776 /* Push enough additional bytes that the stack will be aligned
1777 after the arguments are pushed. */
1778 if (preferred_unit_stack_boundary > 1)
1779 {
1780 if (unadjusted_alignment > 0)
1781 adjustment -= preferred_unit_stack_boundary - unadjusted_alignment;
1782 else
1783 adjustment += unadjusted_alignment;
1784 }
1785
1786 /* Now, sets ARGS_SIZE->CONSTANT so that we pop the right number of
1787 bytes after the call. The right number is the entire
1788 PENDING_STACK_ADJUST less our ADJUSTMENT plus the amount required
1789 by the arguments in the first place. */
1790 args_size->constant
1791 = pending_stack_adjust - adjustment + unadjusted_args_size;
1792
1793 return adjustment;
1794 }
1795
1796 /* Scan X expression if it does not dereference any argument slots
1797 we already clobbered by tail call arguments (as noted in stored_args_map
1798 bitmap).
1799 Return nonzero if X expression dereferences such argument slots,
1800 zero otherwise. */
1801
1802 static int
1803 check_sibcall_argument_overlap_1 (rtx x)
1804 {
1805 RTX_CODE code;
1806 int i, j;
1807 const char *fmt;
1808
1809 if (x == NULL_RTX)
1810 return 0;
1811
1812 code = GET_CODE (x);
1813
1814 if (code == MEM)
1815 return mem_overlaps_already_clobbered_arg_p (XEXP (x, 0),
1816 GET_MODE_SIZE (GET_MODE (x)));
1817
1818 /* Scan all subexpressions. */
1819 fmt = GET_RTX_FORMAT (code);
1820 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
1821 {
1822 if (*fmt == 'e')
1823 {
1824 if (check_sibcall_argument_overlap_1 (XEXP (x, i)))
1825 return 1;
1826 }
1827 else if (*fmt == 'E')
1828 {
1829 for (j = 0; j < XVECLEN (x, i); j++)
1830 if (check_sibcall_argument_overlap_1 (XVECEXP (x, i, j)))
1831 return 1;
1832 }
1833 }
1834 return 0;
1835 }
1836
1837 /* Scan sequence after INSN if it does not dereference any argument slots
1838 we already clobbered by tail call arguments (as noted in stored_args_map
1839 bitmap). If MARK_STORED_ARGS_MAP, add stack slots for ARG to
1840 stored_args_map bitmap afterwards (when ARG is a register MARK_STORED_ARGS_MAP
1841 should be 0). Return nonzero if sequence after INSN dereferences such argument
1842 slots, zero otherwise. */
1843
1844 static int
1845 check_sibcall_argument_overlap (rtx insn, struct arg_data *arg, int mark_stored_args_map)
1846 {
1847 int low, high;
1848
1849 if (insn == NULL_RTX)
1850 insn = get_insns ();
1851 else
1852 insn = NEXT_INSN (insn);
1853
1854 for (; insn; insn = NEXT_INSN (insn))
1855 if (INSN_P (insn)
1856 && check_sibcall_argument_overlap_1 (PATTERN (insn)))
1857 break;
1858
1859 if (mark_stored_args_map)
1860 {
1861 #ifdef ARGS_GROW_DOWNWARD
1862 low = -arg->locate.slot_offset.constant - arg->locate.size.constant;
1863 #else
1864 low = arg->locate.slot_offset.constant;
1865 #endif
1866
1867 for (high = low + arg->locate.size.constant; low < high; low++)
1868 SET_BIT (stored_args_map, low);
1869 }
1870 return insn != NULL_RTX;
1871 }
1872
1873 /* Given that a function returns a value of mode MODE at the most
1874 significant end of hard register VALUE, shift VALUE left or right
1875 as specified by LEFT_P. Return true if some action was needed. */
1876
1877 bool
1878 shift_return_value (enum machine_mode mode, bool left_p, rtx value)
1879 {
1880 HOST_WIDE_INT shift;
1881
1882 gcc_assert (REG_P (value) && HARD_REGISTER_P (value));
1883 shift = GET_MODE_BITSIZE (GET_MODE (value)) - GET_MODE_BITSIZE (mode);
1884 if (shift == 0)
1885 return false;
1886
1887 /* Use ashr rather than lshr for right shifts. This is for the benefit
1888 of the MIPS port, which requires SImode values to be sign-extended
1889 when stored in 64-bit registers. */
1890 if (!force_expand_binop (GET_MODE (value), left_p ? ashl_optab : ashr_optab,
1891 value, GEN_INT (shift), value, 1, OPTAB_WIDEN))
1892 gcc_unreachable ();
1893 return true;
1894 }
1895
1896 /* If X is a likely-spilled register value, copy it to a pseudo
1897 register and return that register. Return X otherwise. */
1898
1899 static rtx
1900 avoid_likely_spilled_reg (rtx x)
1901 {
1902 rtx new_rtx;
1903
1904 if (REG_P (x)
1905 && HARD_REGISTER_P (x)
1906 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (x))))
1907 {
1908 /* Make sure that we generate a REG rather than a CONCAT.
1909 Moves into CONCATs can need nontrivial instructions,
1910 and the whole point of this function is to avoid
1911 using the hard register directly in such a situation. */
1912 generating_concat_p = 0;
1913 new_rtx = gen_reg_rtx (GET_MODE (x));
1914 generating_concat_p = 1;
1915 emit_move_insn (new_rtx, x);
1916 return new_rtx;
1917 }
1918 return x;
1919 }
1920
1921 /* Generate all the code for a CALL_EXPR exp
1922 and return an rtx for its value.
1923 Store the value in TARGET (specified as an rtx) if convenient.
1924 If the value is stored in TARGET then TARGET is returned.
1925 If IGNORE is nonzero, then we ignore the value of the function call. */
1926
1927 rtx
1928 expand_call (tree exp, rtx target, int ignore)
1929 {
1930 /* Nonzero if we are currently expanding a call. */
1931 static int currently_expanding_call = 0;
1932
1933 /* RTX for the function to be called. */
1934 rtx funexp;
1935 /* Sequence of insns to perform a normal "call". */
1936 rtx normal_call_insns = NULL_RTX;
1937 /* Sequence of insns to perform a tail "call". */
1938 rtx tail_call_insns = NULL_RTX;
1939 /* Data type of the function. */
1940 tree funtype;
1941 tree type_arg_types;
1942 tree rettype;
1943 /* Declaration of the function being called,
1944 or 0 if the function is computed (not known by name). */
1945 tree fndecl = 0;
1946 /* The type of the function being called. */
1947 tree fntype;
1948 bool try_tail_call = CALL_EXPR_TAILCALL (exp);
1949 int pass;
1950
1951 /* Register in which non-BLKmode value will be returned,
1952 or 0 if no value or if value is BLKmode. */
1953 rtx valreg;
1954 /* Address where we should return a BLKmode value;
1955 0 if value not BLKmode. */
1956 rtx structure_value_addr = 0;
1957 /* Nonzero if that address is being passed by treating it as
1958 an extra, implicit first parameter. Otherwise,
1959 it is passed by being copied directly into struct_value_rtx. */
1960 int structure_value_addr_parm = 0;
1961 /* Holds the value of implicit argument for the struct value. */
1962 tree structure_value_addr_value = NULL_TREE;
1963 /* Size of aggregate value wanted, or zero if none wanted
1964 or if we are using the non-reentrant PCC calling convention
1965 or expecting the value in registers. */
1966 HOST_WIDE_INT struct_value_size = 0;
1967 /* Nonzero if called function returns an aggregate in memory PCC style,
1968 by returning the address of where to find it. */
1969 int pcc_struct_value = 0;
1970 rtx struct_value = 0;
1971
1972 /* Number of actual parameters in this call, including struct value addr. */
1973 int num_actuals;
1974 /* Number of named args. Args after this are anonymous ones
1975 and they must all go on the stack. */
1976 int n_named_args;
1977 /* Number of complex actual arguments that need to be split. */
1978 int num_complex_actuals = 0;
1979
1980 /* Vector of information about each argument.
1981 Arguments are numbered in the order they will be pushed,
1982 not the order they are written. */
1983 struct arg_data *args;
1984
1985 /* Total size in bytes of all the stack-parms scanned so far. */
1986 struct args_size args_size;
1987 struct args_size adjusted_args_size;
1988 /* Size of arguments before any adjustments (such as rounding). */
1989 int unadjusted_args_size;
1990 /* Data on reg parms scanned so far. */
1991 CUMULATIVE_ARGS args_so_far;
1992 /* Nonzero if a reg parm has been scanned. */
1993 int reg_parm_seen;
1994 /* Nonzero if this is an indirect function call. */
1995
1996 /* Nonzero if we must avoid push-insns in the args for this call.
1997 If stack space is allocated for register parameters, but not by the
1998 caller, then it is preallocated in the fixed part of the stack frame.
1999 So the entire argument block must then be preallocated (i.e., we
2000 ignore PUSH_ROUNDING in that case). */
2001
2002 int must_preallocate = !PUSH_ARGS;
2003
2004 /* Size of the stack reserved for parameter registers. */
2005 int reg_parm_stack_space = 0;
2006
2007 /* Address of space preallocated for stack parms
2008 (on machines that lack push insns), or 0 if space not preallocated. */
2009 rtx argblock = 0;
2010
2011 /* Mask of ECF_ flags. */
2012 int flags = 0;
2013 #ifdef REG_PARM_STACK_SPACE
2014 /* Define the boundary of the register parm stack space that needs to be
2015 saved, if any. */
2016 int low_to_save, high_to_save;
2017 rtx save_area = 0; /* Place that it is saved */
2018 #endif
2019
2020 int initial_highest_arg_in_use = highest_outgoing_arg_in_use;
2021 char *initial_stack_usage_map = stack_usage_map;
2022 char *stack_usage_map_buf = NULL;
2023
2024 int old_stack_allocated;
2025
2026 /* State variables to track stack modifications. */
2027 rtx old_stack_level = 0;
2028 int old_stack_arg_under_construction = 0;
2029 int old_pending_adj = 0;
2030 int old_inhibit_defer_pop = inhibit_defer_pop;
2031
2032 /* Some stack pointer alterations we make are performed via
2033 allocate_dynamic_stack_space. This modifies the stack_pointer_delta,
2034 which we then also need to save/restore along the way. */
2035 int old_stack_pointer_delta = 0;
2036
2037 rtx call_fusage;
2038 tree addr = CALL_EXPR_FN (exp);
2039 int i;
2040 /* The alignment of the stack, in bits. */
2041 unsigned HOST_WIDE_INT preferred_stack_boundary;
2042 /* The alignment of the stack, in bytes. */
2043 unsigned HOST_WIDE_INT preferred_unit_stack_boundary;
2044 /* The static chain value to use for this call. */
2045 rtx static_chain_value;
2046 /* See if this is "nothrow" function call. */
2047 if (TREE_NOTHROW (exp))
2048 flags |= ECF_NOTHROW;
2049
2050 /* See if we can find a DECL-node for the actual function, and get the
2051 function attributes (flags) from the function decl or type node. */
2052 fndecl = get_callee_fndecl (exp);
2053 if (fndecl)
2054 {
2055 fntype = TREE_TYPE (fndecl);
2056 flags |= flags_from_decl_or_type (fndecl);
2057 }
2058 else
2059 {
2060 fntype = TREE_TYPE (TREE_TYPE (addr));
2061 flags |= flags_from_decl_or_type (fntype);
2062 }
2063 rettype = TREE_TYPE (exp);
2064
2065 struct_value = targetm.calls.struct_value_rtx (fntype, 0);
2066
2067 /* Warn if this value is an aggregate type,
2068 regardless of which calling convention we are using for it. */
2069 if (AGGREGATE_TYPE_P (rettype))
2070 warning (OPT_Waggregate_return, "function call has aggregate value");
2071
2072 /* If the result of a non looping pure or const function call is
2073 ignored (or void), and none of its arguments are volatile, we can
2074 avoid expanding the call and just evaluate the arguments for
2075 side-effects. */
2076 if ((flags & (ECF_CONST | ECF_PURE))
2077 && (!(flags & ECF_LOOPING_CONST_OR_PURE))
2078 && (ignore || target == const0_rtx
2079 || TYPE_MODE (rettype) == VOIDmode))
2080 {
2081 bool volatilep = false;
2082 tree arg;
2083 call_expr_arg_iterator iter;
2084
2085 FOR_EACH_CALL_EXPR_ARG (arg, iter, exp)
2086 if (TREE_THIS_VOLATILE (arg))
2087 {
2088 volatilep = true;
2089 break;
2090 }
2091
2092 if (! volatilep)
2093 {
2094 FOR_EACH_CALL_EXPR_ARG (arg, iter, exp)
2095 expand_expr (arg, const0_rtx, VOIDmode, EXPAND_NORMAL);
2096 return const0_rtx;
2097 }
2098 }
2099
2100 #ifdef REG_PARM_STACK_SPACE
2101 reg_parm_stack_space = REG_PARM_STACK_SPACE (!fndecl ? fntype : fndecl);
2102 #endif
2103
2104 if (! OUTGOING_REG_PARM_STACK_SPACE ((!fndecl ? fntype : TREE_TYPE (fndecl)))
2105 && reg_parm_stack_space > 0 && PUSH_ARGS)
2106 must_preallocate = 1;
2107
2108 /* Set up a place to return a structure. */
2109
2110 /* Cater to broken compilers. */
2111 if (aggregate_value_p (exp, fntype))
2112 {
2113 /* This call returns a big structure. */
2114 flags &= ~(ECF_CONST | ECF_PURE | ECF_LOOPING_CONST_OR_PURE);
2115
2116 #ifdef PCC_STATIC_STRUCT_RETURN
2117 {
2118 pcc_struct_value = 1;
2119 }
2120 #else /* not PCC_STATIC_STRUCT_RETURN */
2121 {
2122 struct_value_size = int_size_in_bytes (rettype);
2123
2124 if (target && MEM_P (target) && CALL_EXPR_RETURN_SLOT_OPT (exp))
2125 structure_value_addr = XEXP (target, 0);
2126 else
2127 {
2128 /* For variable-sized objects, we must be called with a target
2129 specified. If we were to allocate space on the stack here,
2130 we would have no way of knowing when to free it. */
2131 rtx d = assign_temp (rettype, 0, 1, 1);
2132
2133 mark_temp_addr_taken (d);
2134 structure_value_addr = XEXP (d, 0);
2135 target = 0;
2136 }
2137 }
2138 #endif /* not PCC_STATIC_STRUCT_RETURN */
2139 }
2140
2141 /* Figure out the amount to which the stack should be aligned. */
2142 preferred_stack_boundary = PREFERRED_STACK_BOUNDARY;
2143 if (fndecl)
2144 {
2145 struct cgraph_rtl_info *i = cgraph_rtl_info (fndecl);
2146 /* Without automatic stack alignment, we can't increase preferred
2147 stack boundary. With automatic stack alignment, it is
2148 unnecessary since unless we can guarantee that all callers will
2149 align the outgoing stack properly, callee has to align its
2150 stack anyway. */
2151 if (i
2152 && i->preferred_incoming_stack_boundary
2153 && i->preferred_incoming_stack_boundary < preferred_stack_boundary)
2154 preferred_stack_boundary = i->preferred_incoming_stack_boundary;
2155 }
2156
2157 /* Operand 0 is a pointer-to-function; get the type of the function. */
2158 funtype = TREE_TYPE (addr);
2159 gcc_assert (POINTER_TYPE_P (funtype));
2160 funtype = TREE_TYPE (funtype);
2161
2162 /* Count whether there are actual complex arguments that need to be split
2163 into their real and imaginary parts. Munge the type_arg_types
2164 appropriately here as well. */
2165 if (targetm.calls.split_complex_arg)
2166 {
2167 call_expr_arg_iterator iter;
2168 tree arg;
2169 FOR_EACH_CALL_EXPR_ARG (arg, iter, exp)
2170 {
2171 tree type = TREE_TYPE (arg);
2172 if (type && TREE_CODE (type) == COMPLEX_TYPE
2173 && targetm.calls.split_complex_arg (type))
2174 num_complex_actuals++;
2175 }
2176 type_arg_types = split_complex_types (TYPE_ARG_TYPES (funtype));
2177 }
2178 else
2179 type_arg_types = TYPE_ARG_TYPES (funtype);
2180
2181 if (flags & ECF_MAY_BE_ALLOCA)
2182 cfun->calls_alloca = 1;
2183
2184 /* If struct_value_rtx is 0, it means pass the address
2185 as if it were an extra parameter. Put the argument expression
2186 in structure_value_addr_value. */
2187 if (structure_value_addr && struct_value == 0)
2188 {
2189 /* If structure_value_addr is a REG other than
2190 virtual_outgoing_args_rtx, we can use always use it. If it
2191 is not a REG, we must always copy it into a register.
2192 If it is virtual_outgoing_args_rtx, we must copy it to another
2193 register in some cases. */
2194 rtx temp = (!REG_P (structure_value_addr)
2195 || (ACCUMULATE_OUTGOING_ARGS
2196 && stack_arg_under_construction
2197 && structure_value_addr == virtual_outgoing_args_rtx)
2198 ? copy_addr_to_reg (convert_memory_address
2199 (Pmode, structure_value_addr))
2200 : structure_value_addr);
2201
2202 structure_value_addr_value =
2203 make_tree (build_pointer_type (TREE_TYPE (funtype)), temp);
2204 structure_value_addr_parm = 1;
2205 }
2206
2207 /* Count the arguments and set NUM_ACTUALS. */
2208 num_actuals =
2209 call_expr_nargs (exp) + num_complex_actuals + structure_value_addr_parm;
2210
2211 /* Compute number of named args.
2212 First, do a raw count of the args for INIT_CUMULATIVE_ARGS. */
2213
2214 if (type_arg_types != 0)
2215 n_named_args
2216 = (list_length (type_arg_types)
2217 /* Count the struct value address, if it is passed as a parm. */
2218 + structure_value_addr_parm);
2219 else
2220 /* If we know nothing, treat all args as named. */
2221 n_named_args = num_actuals;
2222
2223 /* Start updating where the next arg would go.
2224
2225 On some machines (such as the PA) indirect calls have a different
2226 calling convention than normal calls. The fourth argument in
2227 INIT_CUMULATIVE_ARGS tells the backend if this is an indirect call
2228 or not. */
2229 INIT_CUMULATIVE_ARGS (args_so_far, funtype, NULL_RTX, fndecl, n_named_args);
2230
2231 /* Now possibly adjust the number of named args.
2232 Normally, don't include the last named arg if anonymous args follow.
2233 We do include the last named arg if
2234 targetm.calls.strict_argument_naming() returns nonzero.
2235 (If no anonymous args follow, the result of list_length is actually
2236 one too large. This is harmless.)
2237
2238 If targetm.calls.pretend_outgoing_varargs_named() returns
2239 nonzero, and targetm.calls.strict_argument_naming() returns zero,
2240 this machine will be able to place unnamed args that were passed
2241 in registers into the stack. So treat all args as named. This
2242 allows the insns emitting for a specific argument list to be
2243 independent of the function declaration.
2244
2245 If targetm.calls.pretend_outgoing_varargs_named() returns zero,
2246 we do not have any reliable way to pass unnamed args in
2247 registers, so we must force them into memory. */
2248
2249 if (type_arg_types != 0
2250 && targetm.calls.strict_argument_naming (&args_so_far))
2251 ;
2252 else if (type_arg_types != 0
2253 && ! targetm.calls.pretend_outgoing_varargs_named (&args_so_far))
2254 /* Don't include the last named arg. */
2255 --n_named_args;
2256 else
2257 /* Treat all args as named. */
2258 n_named_args = num_actuals;
2259
2260 /* Make a vector to hold all the information about each arg. */
2261 args = XALLOCAVEC (struct arg_data, num_actuals);
2262 memset (args, 0, num_actuals * sizeof (struct arg_data));
2263
2264 /* Build up entries in the ARGS array, compute the size of the
2265 arguments into ARGS_SIZE, etc. */
2266 initialize_argument_information (num_actuals, args, &args_size,
2267 n_named_args, exp,
2268 structure_value_addr_value, fndecl, fntype,
2269 &args_so_far, reg_parm_stack_space,
2270 &old_stack_level, &old_pending_adj,
2271 &must_preallocate, &flags,
2272 &try_tail_call, CALL_FROM_THUNK_P (exp));
2273
2274 if (args_size.var)
2275 must_preallocate = 1;
2276
2277 /* Now make final decision about preallocating stack space. */
2278 must_preallocate = finalize_must_preallocate (must_preallocate,
2279 num_actuals, args,
2280 &args_size);
2281
2282 /* If the structure value address will reference the stack pointer, we
2283 must stabilize it. We don't need to do this if we know that we are
2284 not going to adjust the stack pointer in processing this call. */
2285
2286 if (structure_value_addr
2287 && (reg_mentioned_p (virtual_stack_dynamic_rtx, structure_value_addr)
2288 || reg_mentioned_p (virtual_outgoing_args_rtx,
2289 structure_value_addr))
2290 && (args_size.var
2291 || (!ACCUMULATE_OUTGOING_ARGS && args_size.constant)))
2292 structure_value_addr = copy_to_reg (structure_value_addr);
2293
2294 /* Tail calls can make things harder to debug, and we've traditionally
2295 pushed these optimizations into -O2. Don't try if we're already
2296 expanding a call, as that means we're an argument. Don't try if
2297 there's cleanups, as we know there's code to follow the call. */
2298
2299 if (currently_expanding_call++ != 0
2300 || !flag_optimize_sibling_calls
2301 || args_size.var
2302 || dbg_cnt (tail_call) == false)
2303 try_tail_call = 0;
2304
2305 /* Rest of purposes for tail call optimizations to fail. */
2306 if (
2307 #ifdef HAVE_sibcall_epilogue
2308 !HAVE_sibcall_epilogue
2309 #else
2310 1
2311 #endif
2312 || !try_tail_call
2313 /* Doing sibling call optimization needs some work, since
2314 structure_value_addr can be allocated on the stack.
2315 It does not seem worth the effort since few optimizable
2316 sibling calls will return a structure. */
2317 || structure_value_addr != NULL_RTX
2318 #ifdef REG_PARM_STACK_SPACE
2319 /* If outgoing reg parm stack space changes, we can not do sibcall. */
2320 || (OUTGOING_REG_PARM_STACK_SPACE (funtype)
2321 != OUTGOING_REG_PARM_STACK_SPACE (TREE_TYPE (current_function_decl)))
2322 || (reg_parm_stack_space != REG_PARM_STACK_SPACE (fndecl))
2323 #endif
2324 /* Check whether the target is able to optimize the call
2325 into a sibcall. */
2326 || !targetm.function_ok_for_sibcall (fndecl, exp)
2327 /* Functions that do not return exactly once may not be sibcall
2328 optimized. */
2329 || (flags & (ECF_RETURNS_TWICE | ECF_NORETURN))
2330 || TYPE_VOLATILE (TREE_TYPE (TREE_TYPE (addr)))
2331 /* If the called function is nested in the current one, it might access
2332 some of the caller's arguments, but could clobber them beforehand if
2333 the argument areas are shared. */
2334 || (fndecl && decl_function_context (fndecl) == current_function_decl)
2335 /* If this function requires more stack slots than the current
2336 function, we cannot change it into a sibling call.
2337 crtl->args.pretend_args_size is not part of the
2338 stack allocated by our caller. */
2339 || args_size.constant > (crtl->args.size
2340 - crtl->args.pretend_args_size)
2341 /* If the callee pops its own arguments, then it must pop exactly
2342 the same number of arguments as the current function. */
2343 || (targetm.calls.return_pops_args (fndecl, funtype, args_size.constant)
2344 != targetm.calls.return_pops_args (current_function_decl,
2345 TREE_TYPE (current_function_decl),
2346 crtl->args.size))
2347 || !lang_hooks.decls.ok_for_sibcall (fndecl))
2348 try_tail_call = 0;
2349
2350 /* Check if caller and callee disagree in promotion of function
2351 return value. */
2352 if (try_tail_call)
2353 {
2354 enum machine_mode caller_mode, caller_promoted_mode;
2355 enum machine_mode callee_mode, callee_promoted_mode;
2356 int caller_unsignedp, callee_unsignedp;
2357 tree caller_res = DECL_RESULT (current_function_decl);
2358
2359 caller_unsignedp = TYPE_UNSIGNED (TREE_TYPE (caller_res));
2360 caller_mode = DECL_MODE (caller_res);
2361 callee_unsignedp = TYPE_UNSIGNED (TREE_TYPE (funtype));
2362 callee_mode = TYPE_MODE (TREE_TYPE (funtype));
2363 caller_promoted_mode
2364 = promote_function_mode (TREE_TYPE (caller_res), caller_mode,
2365 &caller_unsignedp,
2366 TREE_TYPE (current_function_decl), 1);
2367 callee_promoted_mode
2368 = promote_function_mode (TREE_TYPE (funtype), callee_mode,
2369 &callee_unsignedp,
2370 funtype, 1);
2371 if (caller_mode != VOIDmode
2372 && (caller_promoted_mode != callee_promoted_mode
2373 || ((caller_mode != caller_promoted_mode
2374 || callee_mode != callee_promoted_mode)
2375 && (caller_unsignedp != callee_unsignedp
2376 || GET_MODE_BITSIZE (caller_mode)
2377 < GET_MODE_BITSIZE (callee_mode)))))
2378 try_tail_call = 0;
2379 }
2380
2381 /* Ensure current function's preferred stack boundary is at least
2382 what we need. Stack alignment may also increase preferred stack
2383 boundary. */
2384 if (crtl->preferred_stack_boundary < preferred_stack_boundary)
2385 crtl->preferred_stack_boundary = preferred_stack_boundary;
2386 else
2387 preferred_stack_boundary = crtl->preferred_stack_boundary;
2388
2389 preferred_unit_stack_boundary = preferred_stack_boundary / BITS_PER_UNIT;
2390
2391 /* We want to make two insn chains; one for a sibling call, the other
2392 for a normal call. We will select one of the two chains after
2393 initial RTL generation is complete. */
2394 for (pass = try_tail_call ? 0 : 1; pass < 2; pass++)
2395 {
2396 int sibcall_failure = 0;
2397 /* We want to emit any pending stack adjustments before the tail
2398 recursion "call". That way we know any adjustment after the tail
2399 recursion call can be ignored if we indeed use the tail
2400 call expansion. */
2401 int save_pending_stack_adjust = 0;
2402 int save_stack_pointer_delta = 0;
2403 rtx insns;
2404 rtx before_call, next_arg_reg, after_args;
2405
2406 if (pass == 0)
2407 {
2408 /* State variables we need to save and restore between
2409 iterations. */
2410 save_pending_stack_adjust = pending_stack_adjust;
2411 save_stack_pointer_delta = stack_pointer_delta;
2412 }
2413 if (pass)
2414 flags &= ~ECF_SIBCALL;
2415 else
2416 flags |= ECF_SIBCALL;
2417
2418 /* Other state variables that we must reinitialize each time
2419 through the loop (that are not initialized by the loop itself). */
2420 argblock = 0;
2421 call_fusage = 0;
2422
2423 /* Start a new sequence for the normal call case.
2424
2425 From this point on, if the sibling call fails, we want to set
2426 sibcall_failure instead of continuing the loop. */
2427 start_sequence ();
2428
2429 /* Don't let pending stack adjusts add up to too much.
2430 Also, do all pending adjustments now if there is any chance
2431 this might be a call to alloca or if we are expanding a sibling
2432 call sequence.
2433 Also do the adjustments before a throwing call, otherwise
2434 exception handling can fail; PR 19225. */
2435 if (pending_stack_adjust >= 32
2436 || (pending_stack_adjust > 0
2437 && (flags & ECF_MAY_BE_ALLOCA))
2438 || (pending_stack_adjust > 0
2439 && flag_exceptions && !(flags & ECF_NOTHROW))
2440 || pass == 0)
2441 do_pending_stack_adjust ();
2442
2443 /* Precompute any arguments as needed. */
2444 if (pass)
2445 precompute_arguments (num_actuals, args);
2446
2447 /* Now we are about to start emitting insns that can be deleted
2448 if a libcall is deleted. */
2449 if (pass && (flags & ECF_MALLOC))
2450 start_sequence ();
2451
2452 if (pass == 0 && crtl->stack_protect_guard)
2453 stack_protect_epilogue ();
2454
2455 adjusted_args_size = args_size;
2456 /* Compute the actual size of the argument block required. The variable
2457 and constant sizes must be combined, the size may have to be rounded,
2458 and there may be a minimum required size. When generating a sibcall
2459 pattern, do not round up, since we'll be re-using whatever space our
2460 caller provided. */
2461 unadjusted_args_size
2462 = compute_argument_block_size (reg_parm_stack_space,
2463 &adjusted_args_size,
2464 fndecl, fntype,
2465 (pass == 0 ? 0
2466 : preferred_stack_boundary));
2467
2468 old_stack_allocated = stack_pointer_delta - pending_stack_adjust;
2469
2470 /* The argument block when performing a sibling call is the
2471 incoming argument block. */
2472 if (pass == 0)
2473 {
2474 argblock = crtl->args.internal_arg_pointer;
2475 argblock
2476 #ifdef STACK_GROWS_DOWNWARD
2477 = plus_constant (argblock, crtl->args.pretend_args_size);
2478 #else
2479 = plus_constant (argblock, -crtl->args.pretend_args_size);
2480 #endif
2481 stored_args_map = sbitmap_alloc (args_size.constant);
2482 sbitmap_zero (stored_args_map);
2483 }
2484
2485 /* If we have no actual push instructions, or shouldn't use them,
2486 make space for all args right now. */
2487 else if (adjusted_args_size.var != 0)
2488 {
2489 if (old_stack_level == 0)
2490 {
2491 emit_stack_save (SAVE_BLOCK, &old_stack_level);
2492 old_stack_pointer_delta = stack_pointer_delta;
2493 old_pending_adj = pending_stack_adjust;
2494 pending_stack_adjust = 0;
2495 /* stack_arg_under_construction says whether a stack arg is
2496 being constructed at the old stack level. Pushing the stack
2497 gets a clean outgoing argument block. */
2498 old_stack_arg_under_construction = stack_arg_under_construction;
2499 stack_arg_under_construction = 0;
2500 }
2501 argblock = push_block (ARGS_SIZE_RTX (adjusted_args_size), 0, 0);
2502 if (flag_stack_usage)
2503 current_function_has_unbounded_dynamic_stack_size = 1;
2504 }
2505 else
2506 {
2507 /* Note that we must go through the motions of allocating an argument
2508 block even if the size is zero because we may be storing args
2509 in the area reserved for register arguments, which may be part of
2510 the stack frame. */
2511
2512 int needed = adjusted_args_size.constant;
2513
2514 /* Store the maximum argument space used. It will be pushed by
2515 the prologue (if ACCUMULATE_OUTGOING_ARGS, or stack overflow
2516 checking). */
2517
2518 if (needed > crtl->outgoing_args_size)
2519 crtl->outgoing_args_size = needed;
2520
2521 if (must_preallocate)
2522 {
2523 if (ACCUMULATE_OUTGOING_ARGS)
2524 {
2525 /* Since the stack pointer will never be pushed, it is
2526 possible for the evaluation of a parm to clobber
2527 something we have already written to the stack.
2528 Since most function calls on RISC machines do not use
2529 the stack, this is uncommon, but must work correctly.
2530
2531 Therefore, we save any area of the stack that was already
2532 written and that we are using. Here we set up to do this
2533 by making a new stack usage map from the old one. The
2534 actual save will be done by store_one_arg.
2535
2536 Another approach might be to try to reorder the argument
2537 evaluations to avoid this conflicting stack usage. */
2538
2539 /* Since we will be writing into the entire argument area,
2540 the map must be allocated for its entire size, not just
2541 the part that is the responsibility of the caller. */
2542 if (! OUTGOING_REG_PARM_STACK_SPACE ((!fndecl ? fntype : TREE_TYPE (fndecl))))
2543 needed += reg_parm_stack_space;
2544
2545 #ifdef ARGS_GROW_DOWNWARD
2546 highest_outgoing_arg_in_use = MAX (initial_highest_arg_in_use,
2547 needed + 1);
2548 #else
2549 highest_outgoing_arg_in_use = MAX (initial_highest_arg_in_use,
2550 needed);
2551 #endif
2552 if (stack_usage_map_buf)
2553 free (stack_usage_map_buf);
2554 stack_usage_map_buf = XNEWVEC (char, highest_outgoing_arg_in_use);
2555 stack_usage_map = stack_usage_map_buf;
2556
2557 if (initial_highest_arg_in_use)
2558 memcpy (stack_usage_map, initial_stack_usage_map,
2559 initial_highest_arg_in_use);
2560
2561 if (initial_highest_arg_in_use != highest_outgoing_arg_in_use)
2562 memset (&stack_usage_map[initial_highest_arg_in_use], 0,
2563 (highest_outgoing_arg_in_use
2564 - initial_highest_arg_in_use));
2565 needed = 0;
2566
2567 /* The address of the outgoing argument list must not be
2568 copied to a register here, because argblock would be left
2569 pointing to the wrong place after the call to
2570 allocate_dynamic_stack_space below. */
2571
2572 argblock = virtual_outgoing_args_rtx;
2573 }
2574 else
2575 {
2576 if (inhibit_defer_pop == 0)
2577 {
2578 /* Try to reuse some or all of the pending_stack_adjust
2579 to get this space. */
2580 needed
2581 = (combine_pending_stack_adjustment_and_call
2582 (unadjusted_args_size,
2583 &adjusted_args_size,
2584 preferred_unit_stack_boundary));
2585
2586 /* combine_pending_stack_adjustment_and_call computes
2587 an adjustment before the arguments are allocated.
2588 Account for them and see whether or not the stack
2589 needs to go up or down. */
2590 needed = unadjusted_args_size - needed;
2591
2592 if (needed < 0)
2593 {
2594 /* We're releasing stack space. */
2595 /* ??? We can avoid any adjustment at all if we're
2596 already aligned. FIXME. */
2597 pending_stack_adjust = -needed;
2598 do_pending_stack_adjust ();
2599 needed = 0;
2600 }
2601 else
2602 /* We need to allocate space. We'll do that in
2603 push_block below. */
2604 pending_stack_adjust = 0;
2605 }
2606
2607 /* Special case this because overhead of `push_block' in
2608 this case is non-trivial. */
2609 if (needed == 0)
2610 argblock = virtual_outgoing_args_rtx;
2611 else
2612 {
2613 argblock = push_block (GEN_INT (needed), 0, 0);
2614 #ifdef ARGS_GROW_DOWNWARD
2615 argblock = plus_constant (argblock, needed);
2616 #endif
2617 }
2618
2619 /* We only really need to call `copy_to_reg' in the case
2620 where push insns are going to be used to pass ARGBLOCK
2621 to a function call in ARGS. In that case, the stack
2622 pointer changes value from the allocation point to the
2623 call point, and hence the value of
2624 VIRTUAL_OUTGOING_ARGS_RTX changes as well. But might
2625 as well always do it. */
2626 argblock = copy_to_reg (argblock);
2627 }
2628 }
2629 }
2630
2631 if (ACCUMULATE_OUTGOING_ARGS)
2632 {
2633 /* The save/restore code in store_one_arg handles all
2634 cases except one: a constructor call (including a C
2635 function returning a BLKmode struct) to initialize
2636 an argument. */
2637 if (stack_arg_under_construction)
2638 {
2639 rtx push_size
2640 = GEN_INT (adjusted_args_size.constant
2641 + (OUTGOING_REG_PARM_STACK_SPACE ((!fndecl ? fntype
2642 : TREE_TYPE (fndecl))) ? 0
2643 : reg_parm_stack_space));
2644 if (old_stack_level == 0)
2645 {
2646 emit_stack_save (SAVE_BLOCK, &old_stack_level);
2647 old_stack_pointer_delta = stack_pointer_delta;
2648 old_pending_adj = pending_stack_adjust;
2649 pending_stack_adjust = 0;
2650 /* stack_arg_under_construction says whether a stack
2651 arg is being constructed at the old stack level.
2652 Pushing the stack gets a clean outgoing argument
2653 block. */
2654 old_stack_arg_under_construction
2655 = stack_arg_under_construction;
2656 stack_arg_under_construction = 0;
2657 /* Make a new map for the new argument list. */
2658 if (stack_usage_map_buf)
2659 free (stack_usage_map_buf);
2660 stack_usage_map_buf = XCNEWVEC (char, highest_outgoing_arg_in_use);
2661 stack_usage_map = stack_usage_map_buf;
2662 highest_outgoing_arg_in_use = 0;
2663 }
2664 /* We can pass TRUE as the 4th argument because we just
2665 saved the stack pointer and will restore it right after
2666 the call. */
2667 allocate_dynamic_stack_space (push_size, 0,
2668 BIGGEST_ALIGNMENT, true);
2669 }
2670
2671 /* If argument evaluation might modify the stack pointer,
2672 copy the address of the argument list to a register. */
2673 for (i = 0; i < num_actuals; i++)
2674 if (args[i].pass_on_stack)
2675 {
2676 argblock = copy_addr_to_reg (argblock);
2677 break;
2678 }
2679 }
2680
2681 compute_argument_addresses (args, argblock, num_actuals);
2682
2683 /* If we push args individually in reverse order, perform stack alignment
2684 before the first push (the last arg). */
2685 if (PUSH_ARGS_REVERSED && argblock == 0
2686 && adjusted_args_size.constant != unadjusted_args_size)
2687 {
2688 /* When the stack adjustment is pending, we get better code
2689 by combining the adjustments. */
2690 if (pending_stack_adjust
2691 && ! inhibit_defer_pop)
2692 {
2693 pending_stack_adjust
2694 = (combine_pending_stack_adjustment_and_call
2695 (unadjusted_args_size,
2696 &adjusted_args_size,
2697 preferred_unit_stack_boundary));
2698 do_pending_stack_adjust ();
2699 }
2700 else if (argblock == 0)
2701 anti_adjust_stack (GEN_INT (adjusted_args_size.constant
2702 - unadjusted_args_size));
2703 }
2704 /* Now that the stack is properly aligned, pops can't safely
2705 be deferred during the evaluation of the arguments. */
2706 NO_DEFER_POP;
2707
2708 /* Record the maximum pushed stack space size. We need to delay
2709 doing it this far to take into account the optimization done
2710 by combine_pending_stack_adjustment_and_call. */
2711 if (flag_stack_usage
2712 && !ACCUMULATE_OUTGOING_ARGS
2713 && pass
2714 && adjusted_args_size.var == 0)
2715 {
2716 int pushed = adjusted_args_size.constant + pending_stack_adjust;
2717 if (pushed > current_function_pushed_stack_size)
2718 current_function_pushed_stack_size = pushed;
2719 }
2720
2721 funexp = rtx_for_function_call (fndecl, addr);
2722
2723 /* Figure out the register where the value, if any, will come back. */
2724 valreg = 0;
2725 if (TYPE_MODE (rettype) != VOIDmode
2726 && ! structure_value_addr)
2727 {
2728 if (pcc_struct_value)
2729 valreg = hard_function_value (build_pointer_type (rettype),
2730 fndecl, NULL, (pass == 0));
2731 else
2732 valreg = hard_function_value (rettype, fndecl, fntype,
2733 (pass == 0));
2734
2735 /* If VALREG is a PARALLEL whose first member has a zero
2736 offset, use that. This is for targets such as m68k that
2737 return the same value in multiple places. */
2738 if (GET_CODE (valreg) == PARALLEL)
2739 {
2740 rtx elem = XVECEXP (valreg, 0, 0);
2741 rtx where = XEXP (elem, 0);
2742 rtx offset = XEXP (elem, 1);
2743 if (offset == const0_rtx
2744 && GET_MODE (where) == GET_MODE (valreg))
2745 valreg = where;
2746 }
2747 }
2748
2749 /* Precompute all register parameters. It isn't safe to compute anything
2750 once we have started filling any specific hard regs. */
2751 precompute_register_parameters (num_actuals, args, &reg_parm_seen);
2752
2753 if (CALL_EXPR_STATIC_CHAIN (exp))
2754 static_chain_value = expand_normal (CALL_EXPR_STATIC_CHAIN (exp));
2755 else
2756 static_chain_value = 0;
2757
2758 #ifdef REG_PARM_STACK_SPACE
2759 /* Save the fixed argument area if it's part of the caller's frame and
2760 is clobbered by argument setup for this call. */
2761 if (ACCUMULATE_OUTGOING_ARGS && pass)
2762 save_area = save_fixed_argument_area (reg_parm_stack_space, argblock,
2763 &low_to_save, &high_to_save);
2764 #endif
2765
2766 /* Now store (and compute if necessary) all non-register parms.
2767 These come before register parms, since they can require block-moves,
2768 which could clobber the registers used for register parms.
2769 Parms which have partial registers are not stored here,
2770 but we do preallocate space here if they want that. */
2771
2772 for (i = 0; i < num_actuals; i++)
2773 {
2774 if (args[i].reg == 0 || args[i].pass_on_stack)
2775 {
2776 rtx before_arg = get_last_insn ();
2777
2778 if (store_one_arg (&args[i], argblock, flags,
2779 adjusted_args_size.var != 0,
2780 reg_parm_stack_space)
2781 || (pass == 0
2782 && check_sibcall_argument_overlap (before_arg,
2783 &args[i], 1)))
2784 sibcall_failure = 1;
2785 }
2786
2787 if (((flags & ECF_CONST)
2788 || ((flags & ECF_PURE) && ACCUMULATE_OUTGOING_ARGS))
2789 && args[i].stack)
2790 call_fusage = gen_rtx_EXPR_LIST (VOIDmode,
2791 gen_rtx_USE (VOIDmode,
2792 args[i].stack),
2793 call_fusage);
2794 }
2795
2796 /* If we have a parm that is passed in registers but not in memory
2797 and whose alignment does not permit a direct copy into registers,
2798 make a group of pseudos that correspond to each register that we
2799 will later fill. */
2800 if (STRICT_ALIGNMENT)
2801 store_unaligned_arguments_into_pseudos (args, num_actuals);
2802
2803 /* Now store any partially-in-registers parm.
2804 This is the last place a block-move can happen. */
2805 if (reg_parm_seen)
2806 for (i = 0; i < num_actuals; i++)
2807 if (args[i].partial != 0 && ! args[i].pass_on_stack)
2808 {
2809 rtx before_arg = get_last_insn ();
2810
2811 if (store_one_arg (&args[i], argblock, flags,
2812 adjusted_args_size.var != 0,
2813 reg_parm_stack_space)
2814 || (pass == 0
2815 && check_sibcall_argument_overlap (before_arg,
2816 &args[i], 1)))
2817 sibcall_failure = 1;
2818 }
2819
2820 /* If we pushed args in forward order, perform stack alignment
2821 after pushing the last arg. */
2822 if (!PUSH_ARGS_REVERSED && argblock == 0)
2823 anti_adjust_stack (GEN_INT (adjusted_args_size.constant
2824 - unadjusted_args_size));
2825
2826 /* If register arguments require space on the stack and stack space
2827 was not preallocated, allocate stack space here for arguments
2828 passed in registers. */
2829 if (OUTGOING_REG_PARM_STACK_SPACE ((!fndecl ? fntype : TREE_TYPE (fndecl)))
2830 && !ACCUMULATE_OUTGOING_ARGS
2831 && must_preallocate == 0 && reg_parm_stack_space > 0)
2832 anti_adjust_stack (GEN_INT (reg_parm_stack_space));
2833
2834 /* Pass the function the address in which to return a
2835 structure value. */
2836 if (pass != 0 && structure_value_addr && ! structure_value_addr_parm)
2837 {
2838 structure_value_addr
2839 = convert_memory_address (Pmode, structure_value_addr);
2840 emit_move_insn (struct_value,
2841 force_reg (Pmode,
2842 force_operand (structure_value_addr,
2843 NULL_RTX)));
2844
2845 if (REG_P (struct_value))
2846 use_reg (&call_fusage, struct_value);
2847 }
2848
2849 after_args = get_last_insn ();
2850 funexp = prepare_call_address (fndecl, funexp, static_chain_value,
2851 &call_fusage, reg_parm_seen, pass == 0);
2852
2853 load_register_parameters (args, num_actuals, &call_fusage, flags,
2854 pass == 0, &sibcall_failure);
2855
2856 /* Save a pointer to the last insn before the call, so that we can
2857 later safely search backwards to find the CALL_INSN. */
2858 before_call = get_last_insn ();
2859
2860 /* Set up next argument register. For sibling calls on machines
2861 with register windows this should be the incoming register. */
2862 if (pass == 0)
2863 next_arg_reg = targetm.calls.function_incoming_arg (&args_so_far,
2864 VOIDmode,
2865 void_type_node,
2866 true);
2867 else
2868 next_arg_reg = targetm.calls.function_arg (&args_so_far,
2869 VOIDmode, void_type_node,
2870 true);
2871
2872 /* All arguments and registers used for the call must be set up by
2873 now! */
2874
2875 /* Stack must be properly aligned now. */
2876 gcc_assert (!pass
2877 || !(stack_pointer_delta % preferred_unit_stack_boundary));
2878
2879 /* Generate the actual call instruction. */
2880 emit_call_1 (funexp, exp, fndecl, funtype, unadjusted_args_size,
2881 adjusted_args_size.constant, struct_value_size,
2882 next_arg_reg, valreg, old_inhibit_defer_pop, call_fusage,
2883 flags, & args_so_far);
2884
2885 /* If the call setup or the call itself overlaps with anything
2886 of the argument setup we probably clobbered our call address.
2887 In that case we can't do sibcalls. */
2888 if (pass == 0
2889 && check_sibcall_argument_overlap (after_args, 0, 0))
2890 sibcall_failure = 1;
2891
2892 /* If a non-BLKmode value is returned at the most significant end
2893 of a register, shift the register right by the appropriate amount
2894 and update VALREG accordingly. BLKmode values are handled by the
2895 group load/store machinery below. */
2896 if (!structure_value_addr
2897 && !pcc_struct_value
2898 && TYPE_MODE (rettype) != BLKmode
2899 && targetm.calls.return_in_msb (rettype))
2900 {
2901 if (shift_return_value (TYPE_MODE (rettype), false, valreg))
2902 sibcall_failure = 1;
2903 valreg = gen_rtx_REG (TYPE_MODE (rettype), REGNO (valreg));
2904 }
2905
2906 if (pass && (flags & ECF_MALLOC))
2907 {
2908 rtx temp = gen_reg_rtx (GET_MODE (valreg));
2909 rtx last, insns;
2910
2911 /* The return value from a malloc-like function is a pointer. */
2912 if (TREE_CODE (rettype) == POINTER_TYPE)
2913 mark_reg_pointer (temp, BIGGEST_ALIGNMENT);
2914
2915 emit_move_insn (temp, valreg);
2916
2917 /* The return value from a malloc-like function can not alias
2918 anything else. */
2919 last = get_last_insn ();
2920 add_reg_note (last, REG_NOALIAS, temp);
2921
2922 /* Write out the sequence. */
2923 insns = get_insns ();
2924 end_sequence ();
2925 emit_insn (insns);
2926 valreg = temp;
2927 }
2928
2929 /* For calls to `setjmp', etc., inform
2930 function.c:setjmp_warnings that it should complain if
2931 nonvolatile values are live. For functions that cannot
2932 return, inform flow that control does not fall through. */
2933
2934 if ((flags & ECF_NORETURN) || pass == 0)
2935 {
2936 /* The barrier must be emitted
2937 immediately after the CALL_INSN. Some ports emit more
2938 than just a CALL_INSN above, so we must search for it here. */
2939
2940 rtx last = get_last_insn ();
2941 while (!CALL_P (last))
2942 {
2943 last = PREV_INSN (last);
2944 /* There was no CALL_INSN? */
2945 gcc_assert (last != before_call);
2946 }
2947
2948 emit_barrier_after (last);
2949
2950 /* Stack adjustments after a noreturn call are dead code.
2951 However when NO_DEFER_POP is in effect, we must preserve
2952 stack_pointer_delta. */
2953 if (inhibit_defer_pop == 0)
2954 {
2955 stack_pointer_delta = old_stack_allocated;
2956 pending_stack_adjust = 0;
2957 }
2958 }
2959
2960 /* If value type not void, return an rtx for the value. */
2961
2962 if (TYPE_MODE (rettype) == VOIDmode
2963 || ignore)
2964 target = const0_rtx;
2965 else if (structure_value_addr)
2966 {
2967 if (target == 0 || !MEM_P (target))
2968 {
2969 target
2970 = gen_rtx_MEM (TYPE_MODE (rettype),
2971 memory_address (TYPE_MODE (rettype),
2972 structure_value_addr));
2973 set_mem_attributes (target, rettype, 1);
2974 }
2975 }
2976 else if (pcc_struct_value)
2977 {
2978 /* This is the special C++ case where we need to
2979 know what the true target was. We take care to
2980 never use this value more than once in one expression. */
2981 target = gen_rtx_MEM (TYPE_MODE (rettype),
2982 copy_to_reg (valreg));
2983 set_mem_attributes (target, rettype, 1);
2984 }
2985 /* Handle calls that return values in multiple non-contiguous locations.
2986 The Irix 6 ABI has examples of this. */
2987 else if (GET_CODE (valreg) == PARALLEL)
2988 {
2989 if (target == 0)
2990 {
2991 /* This will only be assigned once, so it can be readonly. */
2992 tree nt = build_qualified_type (rettype,
2993 (TYPE_QUALS (rettype)
2994 | TYPE_QUAL_CONST));
2995
2996 target = assign_temp (nt, 0, 1, 1);
2997 }
2998
2999 if (! rtx_equal_p (target, valreg))
3000 emit_group_store (target, valreg, rettype,
3001 int_size_in_bytes (rettype));
3002
3003 /* We can not support sibling calls for this case. */
3004 sibcall_failure = 1;
3005 }
3006 else if (target
3007 && GET_MODE (target) == TYPE_MODE (rettype)
3008 && GET_MODE (target) == GET_MODE (valreg))
3009 {
3010 bool may_overlap = false;
3011
3012 /* We have to copy a return value in a CLASS_LIKELY_SPILLED hard
3013 reg to a plain register. */
3014 if (!REG_P (target) || HARD_REGISTER_P (target))
3015 valreg = avoid_likely_spilled_reg (valreg);
3016
3017 /* If TARGET is a MEM in the argument area, and we have
3018 saved part of the argument area, then we can't store
3019 directly into TARGET as it may get overwritten when we
3020 restore the argument save area below. Don't work too
3021 hard though and simply force TARGET to a register if it
3022 is a MEM; the optimizer is quite likely to sort it out. */
3023 if (ACCUMULATE_OUTGOING_ARGS && pass && MEM_P (target))
3024 for (i = 0; i < num_actuals; i++)
3025 if (args[i].save_area)
3026 {
3027 may_overlap = true;
3028 break;
3029 }
3030
3031 if (may_overlap)
3032 target = copy_to_reg (valreg);
3033 else
3034 {
3035 /* TARGET and VALREG cannot be equal at this point
3036 because the latter would not have
3037 REG_FUNCTION_VALUE_P true, while the former would if
3038 it were referring to the same register.
3039
3040 If they refer to the same register, this move will be
3041 a no-op, except when function inlining is being
3042 done. */
3043 emit_move_insn (target, valreg);
3044
3045 /* If we are setting a MEM, this code must be executed.
3046 Since it is emitted after the call insn, sibcall
3047 optimization cannot be performed in that case. */
3048 if (MEM_P (target))
3049 sibcall_failure = 1;
3050 }
3051 }
3052 else if (TYPE_MODE (rettype) == BLKmode)
3053 {
3054 rtx val = valreg;
3055 if (GET_MODE (val) != BLKmode)
3056 val = avoid_likely_spilled_reg (val);
3057 target = copy_blkmode_from_reg (target, val, rettype);
3058
3059 /* We can not support sibling calls for this case. */
3060 sibcall_failure = 1;
3061 }
3062 else
3063 target = copy_to_reg (avoid_likely_spilled_reg (valreg));
3064
3065 /* If we promoted this return value, make the proper SUBREG.
3066 TARGET might be const0_rtx here, so be careful. */
3067 if (REG_P (target)
3068 && TYPE_MODE (rettype) != BLKmode
3069 && GET_MODE (target) != TYPE_MODE (rettype))
3070 {
3071 tree type = rettype;
3072 int unsignedp = TYPE_UNSIGNED (type);
3073 int offset = 0;
3074 enum machine_mode pmode;
3075
3076 /* Ensure we promote as expected, and get the new unsignedness. */
3077 pmode = promote_function_mode (type, TYPE_MODE (type), &unsignedp,
3078 funtype, 1);
3079 gcc_assert (GET_MODE (target) == pmode);
3080
3081 if ((WORDS_BIG_ENDIAN || BYTES_BIG_ENDIAN)
3082 && (GET_MODE_SIZE (GET_MODE (target))
3083 > GET_MODE_SIZE (TYPE_MODE (type))))
3084 {
3085 offset = GET_MODE_SIZE (GET_MODE (target))
3086 - GET_MODE_SIZE (TYPE_MODE (type));
3087 if (! BYTES_BIG_ENDIAN)
3088 offset = (offset / UNITS_PER_WORD) * UNITS_PER_WORD;
3089 else if (! WORDS_BIG_ENDIAN)
3090 offset %= UNITS_PER_WORD;
3091 }
3092
3093 target = gen_rtx_SUBREG (TYPE_MODE (type), target, offset);
3094 SUBREG_PROMOTED_VAR_P (target) = 1;
3095 SUBREG_PROMOTED_UNSIGNED_SET (target, unsignedp);
3096 }
3097
3098 /* If size of args is variable or this was a constructor call for a stack
3099 argument, restore saved stack-pointer value. */
3100
3101 if (old_stack_level)
3102 {
3103 emit_stack_restore (SAVE_BLOCK, old_stack_level);
3104 stack_pointer_delta = old_stack_pointer_delta;
3105 pending_stack_adjust = old_pending_adj;
3106 old_stack_allocated = stack_pointer_delta - pending_stack_adjust;
3107 stack_arg_under_construction = old_stack_arg_under_construction;
3108 highest_outgoing_arg_in_use = initial_highest_arg_in_use;
3109 stack_usage_map = initial_stack_usage_map;
3110 sibcall_failure = 1;
3111 }
3112 else if (ACCUMULATE_OUTGOING_ARGS && pass)
3113 {
3114 #ifdef REG_PARM_STACK_SPACE
3115 if (save_area)
3116 restore_fixed_argument_area (save_area, argblock,
3117 high_to_save, low_to_save);
3118 #endif
3119
3120 /* If we saved any argument areas, restore them. */
3121 for (i = 0; i < num_actuals; i++)
3122 if (args[i].save_area)
3123 {
3124 enum machine_mode save_mode = GET_MODE (args[i].save_area);
3125 rtx stack_area
3126 = gen_rtx_MEM (save_mode,
3127 memory_address (save_mode,
3128 XEXP (args[i].stack_slot, 0)));
3129
3130 if (save_mode != BLKmode)
3131 emit_move_insn (stack_area, args[i].save_area);
3132 else
3133 emit_block_move (stack_area, args[i].save_area,
3134 GEN_INT (args[i].locate.size.constant),
3135 BLOCK_OP_CALL_PARM);
3136 }
3137
3138 highest_outgoing_arg_in_use = initial_highest_arg_in_use;
3139 stack_usage_map = initial_stack_usage_map;
3140 }
3141
3142 /* If this was alloca, record the new stack level for nonlocal gotos.
3143 Check for the handler slots since we might not have a save area
3144 for non-local gotos. */
3145
3146 if ((flags & ECF_MAY_BE_ALLOCA) && cfun->nonlocal_goto_save_area != 0)
3147 update_nonlocal_goto_save_area ();
3148
3149 /* Free up storage we no longer need. */
3150 for (i = 0; i < num_actuals; ++i)
3151 if (args[i].aligned_regs)
3152 free (args[i].aligned_regs);
3153
3154 insns = get_insns ();
3155 end_sequence ();
3156
3157 if (pass == 0)
3158 {
3159 tail_call_insns = insns;
3160
3161 /* Restore the pending stack adjustment now that we have
3162 finished generating the sibling call sequence. */
3163
3164 pending_stack_adjust = save_pending_stack_adjust;
3165 stack_pointer_delta = save_stack_pointer_delta;
3166
3167 /* Prepare arg structure for next iteration. */
3168 for (i = 0; i < num_actuals; i++)
3169 {
3170 args[i].value = 0;
3171 args[i].aligned_regs = 0;
3172 args[i].stack = 0;
3173 }
3174
3175 sbitmap_free (stored_args_map);
3176 }
3177 else
3178 {
3179 normal_call_insns = insns;
3180
3181 /* Verify that we've deallocated all the stack we used. */
3182 gcc_assert ((flags & ECF_NORETURN)
3183 || (old_stack_allocated
3184 == stack_pointer_delta - pending_stack_adjust));
3185 }
3186
3187 /* If something prevents making this a sibling call,
3188 zero out the sequence. */
3189 if (sibcall_failure)
3190 tail_call_insns = NULL_RTX;
3191 else
3192 break;
3193 }
3194
3195 /* If tail call production succeeded, we need to remove REG_EQUIV notes on
3196 arguments too, as argument area is now clobbered by the call. */
3197 if (tail_call_insns)
3198 {
3199 emit_insn (tail_call_insns);
3200 crtl->tail_call_emit = true;
3201 }
3202 else
3203 emit_insn (normal_call_insns);
3204
3205 currently_expanding_call--;
3206
3207 if (stack_usage_map_buf)
3208 free (stack_usage_map_buf);
3209
3210 return target;
3211 }
3212
3213 /* A sibling call sequence invalidates any REG_EQUIV notes made for
3214 this function's incoming arguments.
3215
3216 At the start of RTL generation we know the only REG_EQUIV notes
3217 in the rtl chain are those for incoming arguments, so we can look
3218 for REG_EQUIV notes between the start of the function and the
3219 NOTE_INSN_FUNCTION_BEG.
3220
3221 This is (slight) overkill. We could keep track of the highest
3222 argument we clobber and be more selective in removing notes, but it
3223 does not seem to be worth the effort. */
3224
3225 void
3226 fixup_tail_calls (void)
3227 {
3228 rtx insn;
3229
3230 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
3231 {
3232 rtx note;
3233
3234 /* There are never REG_EQUIV notes for the incoming arguments
3235 after the NOTE_INSN_FUNCTION_BEG note, so stop if we see it. */
3236 if (NOTE_P (insn)
3237 && NOTE_KIND (insn) == NOTE_INSN_FUNCTION_BEG)
3238 break;
3239
3240 note = find_reg_note (insn, REG_EQUIV, 0);
3241 if (note)
3242 remove_note (insn, note);
3243 note = find_reg_note (insn, REG_EQUIV, 0);
3244 gcc_assert (!note);
3245 }
3246 }
3247
3248 /* Traverse a list of TYPES and expand all complex types into their
3249 components. */
3250 static tree
3251 split_complex_types (tree types)
3252 {
3253 tree p;
3254
3255 /* Before allocating memory, check for the common case of no complex. */
3256 for (p = types; p; p = TREE_CHAIN (p))
3257 {
3258 tree type = TREE_VALUE (p);
3259 if (TREE_CODE (type) == COMPLEX_TYPE
3260 && targetm.calls.split_complex_arg (type))
3261 goto found;
3262 }
3263 return types;
3264
3265 found:
3266 types = copy_list (types);
3267
3268 for (p = types; p; p = TREE_CHAIN (p))
3269 {
3270 tree complex_type = TREE_VALUE (p);
3271
3272 if (TREE_CODE (complex_type) == COMPLEX_TYPE
3273 && targetm.calls.split_complex_arg (complex_type))
3274 {
3275 tree next, imag;
3276
3277 /* Rewrite complex type with component type. */
3278 TREE_VALUE (p) = TREE_TYPE (complex_type);
3279 next = TREE_CHAIN (p);
3280
3281 /* Add another component type for the imaginary part. */
3282 imag = build_tree_list (NULL_TREE, TREE_VALUE (p));
3283 TREE_CHAIN (p) = imag;
3284 TREE_CHAIN (imag) = next;
3285
3286 /* Skip the newly created node. */
3287 p = TREE_CHAIN (p);
3288 }
3289 }
3290
3291 return types;
3292 }
3293
3294 /* Output a library call to function FUN (a SYMBOL_REF rtx).
3295 The RETVAL parameter specifies whether return value needs to be saved, other
3296 parameters are documented in the emit_library_call function below. */
3297
3298 static rtx
3299 emit_library_call_value_1 (int retval, rtx orgfun, rtx value,
3300 enum libcall_type fn_type,
3301 enum machine_mode outmode, int nargs, va_list p)
3302 {
3303 /* Total size in bytes of all the stack-parms scanned so far. */
3304 struct args_size args_size;
3305 /* Size of arguments before any adjustments (such as rounding). */
3306 struct args_size original_args_size;
3307 int argnum;
3308 rtx fun;
3309 /* Todo, choose the correct decl type of orgfun. Sadly this information
3310 isn't present here, so we default to native calling abi here. */
3311 tree fndecl ATTRIBUTE_UNUSED = NULL_TREE; /* library calls default to host calling abi ? */
3312 tree fntype ATTRIBUTE_UNUSED = NULL_TREE; /* library calls default to host calling abi ? */
3313 int inc;
3314 int count;
3315 rtx argblock = 0;
3316 CUMULATIVE_ARGS args_so_far;
3317 struct arg
3318 {
3319 rtx value;
3320 enum machine_mode mode;
3321 rtx reg;
3322 int partial;
3323 struct locate_and_pad_arg_data locate;
3324 rtx save_area;
3325 };
3326 struct arg *argvec;
3327 int old_inhibit_defer_pop = inhibit_defer_pop;
3328 rtx call_fusage = 0;
3329 rtx mem_value = 0;
3330 rtx valreg;
3331 int pcc_struct_value = 0;
3332 int struct_value_size = 0;
3333 int flags;
3334 int reg_parm_stack_space = 0;
3335 int needed;
3336 rtx before_call;
3337 tree tfom; /* type_for_mode (outmode, 0) */
3338
3339 #ifdef REG_PARM_STACK_SPACE
3340 /* Define the boundary of the register parm stack space that needs to be
3341 save, if any. */
3342 int low_to_save = 0, high_to_save = 0;
3343 rtx save_area = 0; /* Place that it is saved. */
3344 #endif
3345
3346 /* Size of the stack reserved for parameter registers. */
3347 int initial_highest_arg_in_use = highest_outgoing_arg_in_use;
3348 char *initial_stack_usage_map = stack_usage_map;
3349 char *stack_usage_map_buf = NULL;
3350
3351 rtx struct_value = targetm.calls.struct_value_rtx (0, 0);
3352
3353 #ifdef REG_PARM_STACK_SPACE
3354 reg_parm_stack_space = REG_PARM_STACK_SPACE ((tree) 0);
3355 #endif
3356
3357 /* By default, library functions can not throw. */
3358 flags = ECF_NOTHROW;
3359
3360 switch (fn_type)
3361 {
3362 case LCT_NORMAL:
3363 break;
3364 case LCT_CONST:
3365 flags |= ECF_CONST;
3366 break;
3367 case LCT_PURE:
3368 flags |= ECF_PURE;
3369 break;
3370 case LCT_NORETURN:
3371 flags |= ECF_NORETURN;
3372 break;
3373 case LCT_THROW:
3374 flags = ECF_NORETURN;
3375 break;
3376 case LCT_RETURNS_TWICE:
3377 flags = ECF_RETURNS_TWICE;
3378 break;
3379 }
3380 fun = orgfun;
3381
3382 /* Ensure current function's preferred stack boundary is at least
3383 what we need. */
3384 if (crtl->preferred_stack_boundary < PREFERRED_STACK_BOUNDARY)
3385 crtl->preferred_stack_boundary = PREFERRED_STACK_BOUNDARY;
3386
3387 /* If this kind of value comes back in memory,
3388 decide where in memory it should come back. */
3389 if (outmode != VOIDmode)
3390 {
3391 tfom = lang_hooks.types.type_for_mode (outmode, 0);
3392 if (aggregate_value_p (tfom, 0))
3393 {
3394 #ifdef PCC_STATIC_STRUCT_RETURN
3395 rtx pointer_reg
3396 = hard_function_value (build_pointer_type (tfom), 0, 0, 0);
3397 mem_value = gen_rtx_MEM (outmode, pointer_reg);
3398 pcc_struct_value = 1;
3399 if (value == 0)
3400 value = gen_reg_rtx (outmode);
3401 #else /* not PCC_STATIC_STRUCT_RETURN */
3402 struct_value_size = GET_MODE_SIZE (outmode);
3403 if (value != 0 && MEM_P (value))
3404 mem_value = value;
3405 else
3406 mem_value = assign_temp (tfom, 0, 1, 1);
3407 #endif
3408 /* This call returns a big structure. */
3409 flags &= ~(ECF_CONST | ECF_PURE | ECF_LOOPING_CONST_OR_PURE);
3410 }
3411 }
3412 else
3413 tfom = void_type_node;
3414
3415 /* ??? Unfinished: must pass the memory address as an argument. */
3416
3417 /* Copy all the libcall-arguments out of the varargs data
3418 and into a vector ARGVEC.
3419
3420 Compute how to pass each argument. We only support a very small subset
3421 of the full argument passing conventions to limit complexity here since
3422 library functions shouldn't have many args. */
3423
3424 argvec = XALLOCAVEC (struct arg, nargs + 1);
3425 memset (argvec, 0, (nargs + 1) * sizeof (struct arg));
3426
3427 #ifdef INIT_CUMULATIVE_LIBCALL_ARGS
3428 INIT_CUMULATIVE_LIBCALL_ARGS (args_so_far, outmode, fun);
3429 #else
3430 INIT_CUMULATIVE_ARGS (args_so_far, NULL_TREE, fun, 0, nargs);
3431 #endif
3432
3433 args_size.constant = 0;
3434 args_size.var = 0;
3435
3436 count = 0;
3437
3438 push_temp_slots ();
3439
3440 /* If there's a structure value address to be passed,
3441 either pass it in the special place, or pass it as an extra argument. */
3442 if (mem_value && struct_value == 0 && ! pcc_struct_value)
3443 {
3444 rtx addr = XEXP (mem_value, 0);
3445
3446 nargs++;
3447
3448 /* Make sure it is a reasonable operand for a move or push insn. */
3449 if (!REG_P (addr) && !MEM_P (addr)
3450 && ! (CONSTANT_P (addr) && LEGITIMATE_CONSTANT_P (addr)))
3451 addr = force_operand (addr, NULL_RTX);
3452
3453 argvec[count].value = addr;
3454 argvec[count].mode = Pmode;
3455 argvec[count].partial = 0;
3456
3457 argvec[count].reg = targetm.calls.function_arg (&args_so_far,
3458 Pmode, NULL_TREE, true);
3459 gcc_assert (targetm.calls.arg_partial_bytes (&args_so_far, Pmode,
3460 NULL_TREE, 1) == 0);
3461
3462 locate_and_pad_parm (Pmode, NULL_TREE,
3463 #ifdef STACK_PARMS_IN_REG_PARM_AREA
3464 1,
3465 #else
3466 argvec[count].reg != 0,
3467 #endif
3468 0, NULL_TREE, &args_size, &argvec[count].locate);
3469
3470 if (argvec[count].reg == 0 || argvec[count].partial != 0
3471 || reg_parm_stack_space > 0)
3472 args_size.constant += argvec[count].locate.size.constant;
3473
3474 targetm.calls.function_arg_advance (&args_so_far, Pmode, (tree) 0, true);
3475
3476 count++;
3477 }
3478
3479 for (; count < nargs; count++)
3480 {
3481 rtx val = va_arg (p, rtx);
3482 enum machine_mode mode = (enum machine_mode) va_arg (p, int);
3483
3484 /* We cannot convert the arg value to the mode the library wants here;
3485 must do it earlier where we know the signedness of the arg. */
3486 gcc_assert (mode != BLKmode
3487 && (GET_MODE (val) == mode || GET_MODE (val) == VOIDmode));
3488
3489 /* Make sure it is a reasonable operand for a move or push insn. */
3490 if (!REG_P (val) && !MEM_P (val)
3491 && ! (CONSTANT_P (val) && LEGITIMATE_CONSTANT_P (val)))
3492 val = force_operand (val, NULL_RTX);
3493
3494 if (pass_by_reference (&args_so_far, mode, NULL_TREE, 1))
3495 {
3496 rtx slot;
3497 int must_copy
3498 = !reference_callee_copied (&args_so_far, mode, NULL_TREE, 1);
3499
3500 /* If this was a CONST function, it is now PURE since it now
3501 reads memory. */
3502 if (flags & ECF_CONST)
3503 {
3504 flags &= ~ECF_CONST;
3505 flags |= ECF_PURE;
3506 }
3507
3508 if (MEM_P (val) && !must_copy)
3509 slot = val;
3510 else
3511 {
3512 slot = assign_temp (lang_hooks.types.type_for_mode (mode, 0),
3513 0, 1, 1);
3514 emit_move_insn (slot, val);
3515 }
3516
3517 call_fusage = gen_rtx_EXPR_LIST (VOIDmode,
3518 gen_rtx_USE (VOIDmode, slot),
3519 call_fusage);
3520 if (must_copy)
3521 call_fusage = gen_rtx_EXPR_LIST (VOIDmode,
3522 gen_rtx_CLOBBER (VOIDmode,
3523 slot),
3524 call_fusage);
3525
3526 mode = Pmode;
3527 val = force_operand (XEXP (slot, 0), NULL_RTX);
3528 }
3529
3530 argvec[count].value = val;
3531 argvec[count].mode = mode;
3532
3533 argvec[count].reg = targetm.calls.function_arg (&args_so_far, mode,
3534 NULL_TREE, true);
3535
3536 argvec[count].partial
3537 = targetm.calls.arg_partial_bytes (&args_so_far, mode, NULL_TREE, 1);
3538
3539 locate_and_pad_parm (mode, NULL_TREE,
3540 #ifdef STACK_PARMS_IN_REG_PARM_AREA
3541 1,
3542 #else
3543 argvec[count].reg != 0,
3544 #endif
3545 argvec[count].partial,
3546 NULL_TREE, &args_size, &argvec[count].locate);
3547
3548 gcc_assert (!argvec[count].locate.size.var);
3549
3550 if (argvec[count].reg == 0 || argvec[count].partial != 0
3551 || reg_parm_stack_space > 0)
3552 args_size.constant += argvec[count].locate.size.constant;
3553
3554 targetm.calls.function_arg_advance (&args_so_far, mode, (tree) 0, true);
3555 }
3556
3557 /* If this machine requires an external definition for library
3558 functions, write one out. */
3559 assemble_external_libcall (fun);
3560
3561 original_args_size = args_size;
3562 args_size.constant = (((args_size.constant
3563 + stack_pointer_delta
3564 + STACK_BYTES - 1)
3565 / STACK_BYTES
3566 * STACK_BYTES)
3567 - stack_pointer_delta);
3568
3569 args_size.constant = MAX (args_size.constant,
3570 reg_parm_stack_space);
3571
3572 if (! OUTGOING_REG_PARM_STACK_SPACE ((!fndecl ? fntype : TREE_TYPE (fndecl))))
3573 args_size.constant -= reg_parm_stack_space;
3574
3575 if (args_size.constant > crtl->outgoing_args_size)
3576 crtl->outgoing_args_size = args_size.constant;
3577
3578 if (flag_stack_usage && !ACCUMULATE_OUTGOING_ARGS)
3579 {
3580 int pushed = args_size.constant + pending_stack_adjust;
3581 if (pushed > current_function_pushed_stack_size)
3582 current_function_pushed_stack_size = pushed;
3583 }
3584
3585 if (ACCUMULATE_OUTGOING_ARGS)
3586 {
3587 /* Since the stack pointer will never be pushed, it is possible for
3588 the evaluation of a parm to clobber something we have already
3589 written to the stack. Since most function calls on RISC machines
3590 do not use the stack, this is uncommon, but must work correctly.
3591
3592 Therefore, we save any area of the stack that was already written
3593 and that we are using. Here we set up to do this by making a new
3594 stack usage map from the old one.
3595
3596 Another approach might be to try to reorder the argument
3597 evaluations to avoid this conflicting stack usage. */
3598
3599 needed = args_size.constant;
3600
3601 /* Since we will be writing into the entire argument area, the
3602 map must be allocated for its entire size, not just the part that
3603 is the responsibility of the caller. */
3604 if (! OUTGOING_REG_PARM_STACK_SPACE ((!fndecl ? fntype : TREE_TYPE (fndecl))))
3605 needed += reg_parm_stack_space;
3606
3607 #ifdef ARGS_GROW_DOWNWARD
3608 highest_outgoing_arg_in_use = MAX (initial_highest_arg_in_use,
3609 needed + 1);
3610 #else
3611 highest_outgoing_arg_in_use = MAX (initial_highest_arg_in_use,
3612 needed);
3613 #endif
3614 stack_usage_map_buf = XNEWVEC (char, highest_outgoing_arg_in_use);
3615 stack_usage_map = stack_usage_map_buf;
3616
3617 if (initial_highest_arg_in_use)
3618 memcpy (stack_usage_map, initial_stack_usage_map,
3619 initial_highest_arg_in_use);
3620
3621 if (initial_highest_arg_in_use != highest_outgoing_arg_in_use)
3622 memset (&stack_usage_map[initial_highest_arg_in_use], 0,
3623 highest_outgoing_arg_in_use - initial_highest_arg_in_use);
3624 needed = 0;
3625
3626 /* We must be careful to use virtual regs before they're instantiated,
3627 and real regs afterwards. Loop optimization, for example, can create
3628 new libcalls after we've instantiated the virtual regs, and if we
3629 use virtuals anyway, they won't match the rtl patterns. */
3630
3631 if (virtuals_instantiated)
3632 argblock = plus_constant (stack_pointer_rtx, STACK_POINTER_OFFSET);
3633 else
3634 argblock = virtual_outgoing_args_rtx;
3635 }
3636 else
3637 {
3638 if (!PUSH_ARGS)
3639 argblock = push_block (GEN_INT (args_size.constant), 0, 0);
3640 }
3641
3642 /* If we push args individually in reverse order, perform stack alignment
3643 before the first push (the last arg). */
3644 if (argblock == 0 && PUSH_ARGS_REVERSED)
3645 anti_adjust_stack (GEN_INT (args_size.constant
3646 - original_args_size.constant));
3647
3648 if (PUSH_ARGS_REVERSED)
3649 {
3650 inc = -1;
3651 argnum = nargs - 1;
3652 }
3653 else
3654 {
3655 inc = 1;
3656 argnum = 0;
3657 }
3658
3659 #ifdef REG_PARM_STACK_SPACE
3660 if (ACCUMULATE_OUTGOING_ARGS)
3661 {
3662 /* The argument list is the property of the called routine and it
3663 may clobber it. If the fixed area has been used for previous
3664 parameters, we must save and restore it. */
3665 save_area = save_fixed_argument_area (reg_parm_stack_space, argblock,
3666 &low_to_save, &high_to_save);
3667 }
3668 #endif
3669
3670 /* Push the args that need to be pushed. */
3671
3672 /* ARGNUM indexes the ARGVEC array in the order in which the arguments
3673 are to be pushed. */
3674 for (count = 0; count < nargs; count++, argnum += inc)
3675 {
3676 enum machine_mode mode = argvec[argnum].mode;
3677 rtx val = argvec[argnum].value;
3678 rtx reg = argvec[argnum].reg;
3679 int partial = argvec[argnum].partial;
3680 unsigned int parm_align = argvec[argnum].locate.boundary;
3681 int lower_bound = 0, upper_bound = 0, i;
3682
3683 if (! (reg != 0 && partial == 0))
3684 {
3685 if (ACCUMULATE_OUTGOING_ARGS)
3686 {
3687 /* If this is being stored into a pre-allocated, fixed-size,
3688 stack area, save any previous data at that location. */
3689
3690 #ifdef ARGS_GROW_DOWNWARD
3691 /* stack_slot is negative, but we want to index stack_usage_map
3692 with positive values. */
3693 upper_bound = -argvec[argnum].locate.slot_offset.constant + 1;
3694 lower_bound = upper_bound - argvec[argnum].locate.size.constant;
3695 #else
3696 lower_bound = argvec[argnum].locate.slot_offset.constant;
3697 upper_bound = lower_bound + argvec[argnum].locate.size.constant;
3698 #endif
3699
3700 i = lower_bound;
3701 /* Don't worry about things in the fixed argument area;
3702 it has already been saved. */
3703 if (i < reg_parm_stack_space)
3704 i = reg_parm_stack_space;
3705 while (i < upper_bound && stack_usage_map[i] == 0)
3706 i++;
3707
3708 if (i < upper_bound)
3709 {
3710 /* We need to make a save area. */
3711 unsigned int size
3712 = argvec[argnum].locate.size.constant * BITS_PER_UNIT;
3713 enum machine_mode save_mode
3714 = mode_for_size (size, MODE_INT, 1);
3715 rtx adr
3716 = plus_constant (argblock,
3717 argvec[argnum].locate.offset.constant);
3718 rtx stack_area
3719 = gen_rtx_MEM (save_mode, memory_address (save_mode, adr));
3720
3721 if (save_mode == BLKmode)
3722 {
3723 argvec[argnum].save_area
3724 = assign_stack_temp (BLKmode,
3725 argvec[argnum].locate.size.constant,
3726 0);
3727
3728 emit_block_move (validize_mem (argvec[argnum].save_area),
3729 stack_area,
3730 GEN_INT (argvec[argnum].locate.size.constant),
3731 BLOCK_OP_CALL_PARM);
3732 }
3733 else
3734 {
3735 argvec[argnum].save_area = gen_reg_rtx (save_mode);
3736
3737 emit_move_insn (argvec[argnum].save_area, stack_area);
3738 }
3739 }
3740 }
3741
3742 emit_push_insn (val, mode, NULL_TREE, NULL_RTX, parm_align,
3743 partial, reg, 0, argblock,
3744 GEN_INT (argvec[argnum].locate.offset.constant),
3745 reg_parm_stack_space,
3746 ARGS_SIZE_RTX (argvec[argnum].locate.alignment_pad));
3747
3748 /* Now mark the segment we just used. */
3749 if (ACCUMULATE_OUTGOING_ARGS)
3750 for (i = lower_bound; i < upper_bound; i++)
3751 stack_usage_map[i] = 1;
3752
3753 NO_DEFER_POP;
3754
3755 if ((flags & ECF_CONST)
3756 || ((flags & ECF_PURE) && ACCUMULATE_OUTGOING_ARGS))
3757 {
3758 rtx use;
3759
3760 /* Indicate argument access so that alias.c knows that these
3761 values are live. */
3762 if (argblock)
3763 use = plus_constant (argblock,
3764 argvec[argnum].locate.offset.constant);
3765 else
3766 /* When arguments are pushed, trying to tell alias.c where
3767 exactly this argument is won't work, because the
3768 auto-increment causes confusion. So we merely indicate
3769 that we access something with a known mode somewhere on
3770 the stack. */
3771 use = gen_rtx_PLUS (Pmode, virtual_outgoing_args_rtx,
3772 gen_rtx_SCRATCH (Pmode));
3773 use = gen_rtx_MEM (argvec[argnum].mode, use);
3774 use = gen_rtx_USE (VOIDmode, use);
3775 call_fusage = gen_rtx_EXPR_LIST (VOIDmode, use, call_fusage);
3776 }
3777 }
3778 }
3779
3780 /* If we pushed args in forward order, perform stack alignment
3781 after pushing the last arg. */
3782 if (argblock == 0 && !PUSH_ARGS_REVERSED)
3783 anti_adjust_stack (GEN_INT (args_size.constant
3784 - original_args_size.constant));
3785
3786 if (PUSH_ARGS_REVERSED)
3787 argnum = nargs - 1;
3788 else
3789 argnum = 0;
3790
3791 fun = prepare_call_address (NULL, fun, NULL, &call_fusage, 0, 0);
3792
3793 /* Now load any reg parms into their regs. */
3794
3795 /* ARGNUM indexes the ARGVEC array in the order in which the arguments
3796 are to be pushed. */
3797 for (count = 0; count < nargs; count++, argnum += inc)
3798 {
3799 enum machine_mode mode = argvec[argnum].mode;
3800 rtx val = argvec[argnum].value;
3801 rtx reg = argvec[argnum].reg;
3802 int partial = argvec[argnum].partial;
3803
3804 /* Handle calls that pass values in multiple non-contiguous
3805 locations. The PA64 has examples of this for library calls. */
3806 if (reg != 0 && GET_CODE (reg) == PARALLEL)
3807 emit_group_load (reg, val, NULL_TREE, GET_MODE_SIZE (mode));
3808 else if (reg != 0 && partial == 0)
3809 emit_move_insn (reg, val);
3810
3811 NO_DEFER_POP;
3812 }
3813
3814 /* Any regs containing parms remain in use through the call. */
3815 for (count = 0; count < nargs; count++)
3816 {
3817 rtx reg = argvec[count].reg;
3818 if (reg != 0 && GET_CODE (reg) == PARALLEL)
3819 use_group_regs (&call_fusage, reg);
3820 else if (reg != 0)
3821 {
3822 int partial = argvec[count].partial;
3823 if (partial)
3824 {
3825 int nregs;
3826 gcc_assert (partial % UNITS_PER_WORD == 0);
3827 nregs = partial / UNITS_PER_WORD;
3828 use_regs (&call_fusage, REGNO (reg), nregs);
3829 }
3830 else
3831 use_reg (&call_fusage, reg);
3832 }
3833 }
3834
3835 /* Pass the function the address in which to return a structure value. */
3836 if (mem_value != 0 && struct_value != 0 && ! pcc_struct_value)
3837 {
3838 emit_move_insn (struct_value,
3839 force_reg (Pmode,
3840 force_operand (XEXP (mem_value, 0),
3841 NULL_RTX)));
3842 if (REG_P (struct_value))
3843 use_reg (&call_fusage, struct_value);
3844 }
3845
3846 /* Don't allow popping to be deferred, since then
3847 cse'ing of library calls could delete a call and leave the pop. */
3848 NO_DEFER_POP;
3849 valreg = (mem_value == 0 && outmode != VOIDmode
3850 ? hard_libcall_value (outmode, orgfun) : NULL_RTX);
3851
3852 /* Stack must be properly aligned now. */
3853 gcc_assert (!(stack_pointer_delta
3854 & (PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT - 1)));
3855
3856 before_call = get_last_insn ();
3857
3858 /* We pass the old value of inhibit_defer_pop + 1 to emit_call_1, which
3859 will set inhibit_defer_pop to that value. */
3860 /* The return type is needed to decide how many bytes the function pops.
3861 Signedness plays no role in that, so for simplicity, we pretend it's
3862 always signed. We also assume that the list of arguments passed has
3863 no impact, so we pretend it is unknown. */
3864
3865 emit_call_1 (fun, NULL,
3866 get_identifier (XSTR (orgfun, 0)),
3867 build_function_type (tfom, NULL_TREE),
3868 original_args_size.constant, args_size.constant,
3869 struct_value_size,
3870 targetm.calls.function_arg (&args_so_far,
3871 VOIDmode, void_type_node, true),
3872 valreg,
3873 old_inhibit_defer_pop + 1, call_fusage, flags, & args_so_far);
3874
3875 /* For calls to `setjmp', etc., inform function.c:setjmp_warnings
3876 that it should complain if nonvolatile values are live. For
3877 functions that cannot return, inform flow that control does not
3878 fall through. */
3879
3880 if (flags & ECF_NORETURN)
3881 {
3882 /* The barrier note must be emitted
3883 immediately after the CALL_INSN. Some ports emit more than
3884 just a CALL_INSN above, so we must search for it here. */
3885
3886 rtx last = get_last_insn ();
3887 while (!CALL_P (last))
3888 {
3889 last = PREV_INSN (last);
3890 /* There was no CALL_INSN? */
3891 gcc_assert (last != before_call);
3892 }
3893
3894 emit_barrier_after (last);
3895 }
3896
3897 /* Now restore inhibit_defer_pop to its actual original value. */
3898 OK_DEFER_POP;
3899
3900 pop_temp_slots ();
3901
3902 /* Copy the value to the right place. */
3903 if (outmode != VOIDmode && retval)
3904 {
3905 if (mem_value)
3906 {
3907 if (value == 0)
3908 value = mem_value;
3909 if (value != mem_value)
3910 emit_move_insn (value, mem_value);
3911 }
3912 else if (GET_CODE (valreg) == PARALLEL)
3913 {
3914 if (value == 0)
3915 value = gen_reg_rtx (outmode);
3916 emit_group_store (value, valreg, NULL_TREE, GET_MODE_SIZE (outmode));
3917 }
3918 else
3919 {
3920 /* Convert to the proper mode if a promotion has been active. */
3921 if (GET_MODE (valreg) != outmode)
3922 {
3923 int unsignedp = TYPE_UNSIGNED (tfom);
3924
3925 gcc_assert (promote_function_mode (tfom, outmode, &unsignedp,
3926 fndecl ? TREE_TYPE (fndecl) : fntype, 1)
3927 == GET_MODE (valreg));
3928 valreg = convert_modes (outmode, GET_MODE (valreg), valreg, 0);
3929 }
3930
3931 if (value != 0)
3932 emit_move_insn (value, valreg);
3933 else
3934 value = valreg;
3935 }
3936 }
3937
3938 if (ACCUMULATE_OUTGOING_ARGS)
3939 {
3940 #ifdef REG_PARM_STACK_SPACE
3941 if (save_area)
3942 restore_fixed_argument_area (save_area, argblock,
3943 high_to_save, low_to_save);
3944 #endif
3945
3946 /* If we saved any argument areas, restore them. */
3947 for (count = 0; count < nargs; count++)
3948 if (argvec[count].save_area)
3949 {
3950 enum machine_mode save_mode = GET_MODE (argvec[count].save_area);
3951 rtx adr = plus_constant (argblock,
3952 argvec[count].locate.offset.constant);
3953 rtx stack_area = gen_rtx_MEM (save_mode,
3954 memory_address (save_mode, adr));
3955
3956 if (save_mode == BLKmode)
3957 emit_block_move (stack_area,
3958 validize_mem (argvec[count].save_area),
3959 GEN_INT (argvec[count].locate.size.constant),
3960 BLOCK_OP_CALL_PARM);
3961 else
3962 emit_move_insn (stack_area, argvec[count].save_area);
3963 }
3964
3965 highest_outgoing_arg_in_use = initial_highest_arg_in_use;
3966 stack_usage_map = initial_stack_usage_map;
3967 }
3968
3969 if (stack_usage_map_buf)
3970 free (stack_usage_map_buf);
3971
3972 return value;
3973
3974 }
3975
3976 /* Output a library call to function FUN (a SYMBOL_REF rtx)
3977 (emitting the queue unless NO_QUEUE is nonzero),
3978 for a value of mode OUTMODE,
3979 with NARGS different arguments, passed as alternating rtx values
3980 and machine_modes to convert them to.
3981
3982 FN_TYPE should be LCT_NORMAL for `normal' calls, LCT_CONST for
3983 `const' calls, LCT_PURE for `pure' calls, or other LCT_ value for
3984 other types of library calls. */
3985
3986 void
3987 emit_library_call (rtx orgfun, enum libcall_type fn_type,
3988 enum machine_mode outmode, int nargs, ...)
3989 {
3990 va_list p;
3991
3992 va_start (p, nargs);
3993 emit_library_call_value_1 (0, orgfun, NULL_RTX, fn_type, outmode, nargs, p);
3994 va_end (p);
3995 }
3996
3997 /* Like emit_library_call except that an extra argument, VALUE,
3998 comes second and says where to store the result.
3999 (If VALUE is zero, this function chooses a convenient way
4000 to return the value.
4001
4002 This function returns an rtx for where the value is to be found.
4003 If VALUE is nonzero, VALUE is returned. */
4004
4005 rtx
4006 emit_library_call_value (rtx orgfun, rtx value,
4007 enum libcall_type fn_type,
4008 enum machine_mode outmode, int nargs, ...)
4009 {
4010 rtx result;
4011 va_list p;
4012
4013 va_start (p, nargs);
4014 result = emit_library_call_value_1 (1, orgfun, value, fn_type, outmode,
4015 nargs, p);
4016 va_end (p);
4017
4018 return result;
4019 }
4020
4021 /* Store a single argument for a function call
4022 into the register or memory area where it must be passed.
4023 *ARG describes the argument value and where to pass it.
4024
4025 ARGBLOCK is the address of the stack-block for all the arguments,
4026 or 0 on a machine where arguments are pushed individually.
4027
4028 MAY_BE_ALLOCA nonzero says this could be a call to `alloca'
4029 so must be careful about how the stack is used.
4030
4031 VARIABLE_SIZE nonzero says that this was a variable-sized outgoing
4032 argument stack. This is used if ACCUMULATE_OUTGOING_ARGS to indicate
4033 that we need not worry about saving and restoring the stack.
4034
4035 FNDECL is the declaration of the function we are calling.
4036
4037 Return nonzero if this arg should cause sibcall failure,
4038 zero otherwise. */
4039
4040 static int
4041 store_one_arg (struct arg_data *arg, rtx argblock, int flags,
4042 int variable_size ATTRIBUTE_UNUSED, int reg_parm_stack_space)
4043 {
4044 tree pval = arg->tree_value;
4045 rtx reg = 0;
4046 int partial = 0;
4047 int used = 0;
4048 int i, lower_bound = 0, upper_bound = 0;
4049 int sibcall_failure = 0;
4050
4051 if (TREE_CODE (pval) == ERROR_MARK)
4052 return 1;
4053
4054 /* Push a new temporary level for any temporaries we make for
4055 this argument. */
4056 push_temp_slots ();
4057
4058 if (ACCUMULATE_OUTGOING_ARGS && !(flags & ECF_SIBCALL))
4059 {
4060 /* If this is being stored into a pre-allocated, fixed-size, stack area,
4061 save any previous data at that location. */
4062 if (argblock && ! variable_size && arg->stack)
4063 {
4064 #ifdef ARGS_GROW_DOWNWARD
4065 /* stack_slot is negative, but we want to index stack_usage_map
4066 with positive values. */
4067 if (GET_CODE (XEXP (arg->stack_slot, 0)) == PLUS)
4068 upper_bound = -INTVAL (XEXP (XEXP (arg->stack_slot, 0), 1)) + 1;
4069 else
4070 upper_bound = 0;
4071
4072 lower_bound = upper_bound - arg->locate.size.constant;
4073 #else
4074 if (GET_CODE (XEXP (arg->stack_slot, 0)) == PLUS)
4075 lower_bound = INTVAL (XEXP (XEXP (arg->stack_slot, 0), 1));
4076 else
4077 lower_bound = 0;
4078
4079 upper_bound = lower_bound + arg->locate.size.constant;
4080 #endif
4081
4082 i = lower_bound;
4083 /* Don't worry about things in the fixed argument area;
4084 it has already been saved. */
4085 if (i < reg_parm_stack_space)
4086 i = reg_parm_stack_space;
4087 while (i < upper_bound && stack_usage_map[i] == 0)
4088 i++;
4089
4090 if (i < upper_bound)
4091 {
4092 /* We need to make a save area. */
4093 unsigned int size = arg->locate.size.constant * BITS_PER_UNIT;
4094 enum machine_mode save_mode = mode_for_size (size, MODE_INT, 1);
4095 rtx adr = memory_address (save_mode, XEXP (arg->stack_slot, 0));
4096 rtx stack_area = gen_rtx_MEM (save_mode, adr);
4097
4098 if (save_mode == BLKmode)
4099 {
4100 tree ot = TREE_TYPE (arg->tree_value);
4101 tree nt = build_qualified_type (ot, (TYPE_QUALS (ot)
4102 | TYPE_QUAL_CONST));
4103
4104 arg->save_area = assign_temp (nt, 0, 1, 1);
4105 preserve_temp_slots (arg->save_area);
4106 emit_block_move (validize_mem (arg->save_area), stack_area,
4107 GEN_INT (arg->locate.size.constant),
4108 BLOCK_OP_CALL_PARM);
4109 }
4110 else
4111 {
4112 arg->save_area = gen_reg_rtx (save_mode);
4113 emit_move_insn (arg->save_area, stack_area);
4114 }
4115 }
4116 }
4117 }
4118
4119 /* If this isn't going to be placed on both the stack and in registers,
4120 set up the register and number of words. */
4121 if (! arg->pass_on_stack)
4122 {
4123 if (flags & ECF_SIBCALL)
4124 reg = arg->tail_call_reg;
4125 else
4126 reg = arg->reg;
4127 partial = arg->partial;
4128 }
4129
4130 /* Being passed entirely in a register. We shouldn't be called in
4131 this case. */
4132 gcc_assert (reg == 0 || partial != 0);
4133
4134 /* If this arg needs special alignment, don't load the registers
4135 here. */
4136 if (arg->n_aligned_regs != 0)
4137 reg = 0;
4138
4139 /* If this is being passed partially in a register, we can't evaluate
4140 it directly into its stack slot. Otherwise, we can. */
4141 if (arg->value == 0)
4142 {
4143 /* stack_arg_under_construction is nonzero if a function argument is
4144 being evaluated directly into the outgoing argument list and
4145 expand_call must take special action to preserve the argument list
4146 if it is called recursively.
4147
4148 For scalar function arguments stack_usage_map is sufficient to
4149 determine which stack slots must be saved and restored. Scalar
4150 arguments in general have pass_on_stack == 0.
4151
4152 If this argument is initialized by a function which takes the
4153 address of the argument (a C++ constructor or a C function
4154 returning a BLKmode structure), then stack_usage_map is
4155 insufficient and expand_call must push the stack around the
4156 function call. Such arguments have pass_on_stack == 1.
4157
4158 Note that it is always safe to set stack_arg_under_construction,
4159 but this generates suboptimal code if set when not needed. */
4160
4161 if (arg->pass_on_stack)
4162 stack_arg_under_construction++;
4163
4164 arg->value = expand_expr (pval,
4165 (partial
4166 || TYPE_MODE (TREE_TYPE (pval)) != arg->mode)
4167 ? NULL_RTX : arg->stack,
4168 VOIDmode, EXPAND_STACK_PARM);
4169
4170 /* If we are promoting object (or for any other reason) the mode
4171 doesn't agree, convert the mode. */
4172
4173 if (arg->mode != TYPE_MODE (TREE_TYPE (pval)))
4174 arg->value = convert_modes (arg->mode, TYPE_MODE (TREE_TYPE (pval)),
4175 arg->value, arg->unsignedp);
4176
4177 if (arg->pass_on_stack)
4178 stack_arg_under_construction--;
4179 }
4180
4181 /* Check for overlap with already clobbered argument area. */
4182 if ((flags & ECF_SIBCALL)
4183 && MEM_P (arg->value)
4184 && mem_overlaps_already_clobbered_arg_p (XEXP (arg->value, 0),
4185 arg->locate.size.constant))
4186 sibcall_failure = 1;
4187
4188 /* Don't allow anything left on stack from computation
4189 of argument to alloca. */
4190 if (flags & ECF_MAY_BE_ALLOCA)
4191 do_pending_stack_adjust ();
4192
4193 if (arg->value == arg->stack)
4194 /* If the value is already in the stack slot, we are done. */
4195 ;
4196 else if (arg->mode != BLKmode)
4197 {
4198 int size;
4199 unsigned int parm_align;
4200
4201 /* Argument is a scalar, not entirely passed in registers.
4202 (If part is passed in registers, arg->partial says how much
4203 and emit_push_insn will take care of putting it there.)
4204
4205 Push it, and if its size is less than the
4206 amount of space allocated to it,
4207 also bump stack pointer by the additional space.
4208 Note that in C the default argument promotions
4209 will prevent such mismatches. */
4210
4211 size = GET_MODE_SIZE (arg->mode);
4212 /* Compute how much space the push instruction will push.
4213 On many machines, pushing a byte will advance the stack
4214 pointer by a halfword. */
4215 #ifdef PUSH_ROUNDING
4216 size = PUSH_ROUNDING (size);
4217 #endif
4218 used = size;
4219
4220 /* Compute how much space the argument should get:
4221 round up to a multiple of the alignment for arguments. */
4222 if (none != FUNCTION_ARG_PADDING (arg->mode, TREE_TYPE (pval)))
4223 used = (((size + PARM_BOUNDARY / BITS_PER_UNIT - 1)
4224 / (PARM_BOUNDARY / BITS_PER_UNIT))
4225 * (PARM_BOUNDARY / BITS_PER_UNIT));
4226
4227 /* Compute the alignment of the pushed argument. */
4228 parm_align = arg->locate.boundary;
4229 if (FUNCTION_ARG_PADDING (arg->mode, TREE_TYPE (pval)) == downward)
4230 {
4231 int pad = used - size;
4232 if (pad)
4233 {
4234 unsigned int pad_align = (pad & -pad) * BITS_PER_UNIT;
4235 parm_align = MIN (parm_align, pad_align);
4236 }
4237 }
4238
4239 /* This isn't already where we want it on the stack, so put it there.
4240 This can either be done with push or copy insns. */
4241 emit_push_insn (arg->value, arg->mode, TREE_TYPE (pval), NULL_RTX,
4242 parm_align, partial, reg, used - size, argblock,
4243 ARGS_SIZE_RTX (arg->locate.offset), reg_parm_stack_space,
4244 ARGS_SIZE_RTX (arg->locate.alignment_pad));
4245
4246 /* Unless this is a partially-in-register argument, the argument is now
4247 in the stack. */
4248 if (partial == 0)
4249 arg->value = arg->stack;
4250 }
4251 else
4252 {
4253 /* BLKmode, at least partly to be pushed. */
4254
4255 unsigned int parm_align;
4256 int excess;
4257 rtx size_rtx;
4258
4259 /* Pushing a nonscalar.
4260 If part is passed in registers, PARTIAL says how much
4261 and emit_push_insn will take care of putting it there. */
4262
4263 /* Round its size up to a multiple
4264 of the allocation unit for arguments. */
4265
4266 if (arg->locate.size.var != 0)
4267 {
4268 excess = 0;
4269 size_rtx = ARGS_SIZE_RTX (arg->locate.size);
4270 }
4271 else
4272 {
4273 /* PUSH_ROUNDING has no effect on us, because emit_push_insn
4274 for BLKmode is careful to avoid it. */
4275 excess = (arg->locate.size.constant
4276 - int_size_in_bytes (TREE_TYPE (pval))
4277 + partial);
4278 size_rtx = expand_expr (size_in_bytes (TREE_TYPE (pval)),
4279 NULL_RTX, TYPE_MODE (sizetype),
4280 EXPAND_NORMAL);
4281 }
4282
4283 parm_align = arg->locate.boundary;
4284
4285 /* When an argument is padded down, the block is aligned to
4286 PARM_BOUNDARY, but the actual argument isn't. */
4287 if (FUNCTION_ARG_PADDING (arg->mode, TREE_TYPE (pval)) == downward)
4288 {
4289 if (arg->locate.size.var)
4290 parm_align = BITS_PER_UNIT;
4291 else if (excess)
4292 {
4293 unsigned int excess_align = (excess & -excess) * BITS_PER_UNIT;
4294 parm_align = MIN (parm_align, excess_align);
4295 }
4296 }
4297
4298 if ((flags & ECF_SIBCALL) && MEM_P (arg->value))
4299 {
4300 /* emit_push_insn might not work properly if arg->value and
4301 argblock + arg->locate.offset areas overlap. */
4302 rtx x = arg->value;
4303 int i = 0;
4304
4305 if (XEXP (x, 0) == crtl->args.internal_arg_pointer
4306 || (GET_CODE (XEXP (x, 0)) == PLUS
4307 && XEXP (XEXP (x, 0), 0) ==
4308 crtl->args.internal_arg_pointer
4309 && CONST_INT_P (XEXP (XEXP (x, 0), 1))))
4310 {
4311 if (XEXP (x, 0) != crtl->args.internal_arg_pointer)
4312 i = INTVAL (XEXP (XEXP (x, 0), 1));
4313
4314 /* expand_call should ensure this. */
4315 gcc_assert (!arg->locate.offset.var
4316 && arg->locate.size.var == 0
4317 && CONST_INT_P (size_rtx));
4318
4319 if (arg->locate.offset.constant > i)
4320 {
4321 if (arg->locate.offset.constant < i + INTVAL (size_rtx))
4322 sibcall_failure = 1;
4323 }
4324 else if (arg->locate.offset.constant < i)
4325 {
4326 /* Use arg->locate.size.constant instead of size_rtx
4327 because we only care about the part of the argument
4328 on the stack. */
4329 if (i < (arg->locate.offset.constant
4330 + arg->locate.size.constant))
4331 sibcall_failure = 1;
4332 }
4333 else
4334 {
4335 /* Even though they appear to be at the same location,
4336 if part of the outgoing argument is in registers,
4337 they aren't really at the same location. Check for
4338 this by making sure that the incoming size is the
4339 same as the outgoing size. */
4340 if (arg->locate.size.constant != INTVAL (size_rtx))
4341 sibcall_failure = 1;
4342 }
4343 }
4344 }
4345
4346 emit_push_insn (arg->value, arg->mode, TREE_TYPE (pval), size_rtx,
4347 parm_align, partial, reg, excess, argblock,
4348 ARGS_SIZE_RTX (arg->locate.offset), reg_parm_stack_space,
4349 ARGS_SIZE_RTX (arg->locate.alignment_pad));
4350
4351 /* Unless this is a partially-in-register argument, the argument is now
4352 in the stack.
4353
4354 ??? Unlike the case above, in which we want the actual
4355 address of the data, so that we can load it directly into a
4356 register, here we want the address of the stack slot, so that
4357 it's properly aligned for word-by-word copying or something
4358 like that. It's not clear that this is always correct. */
4359 if (partial == 0)
4360 arg->value = arg->stack_slot;
4361 }
4362
4363 if (arg->reg && GET_CODE (arg->reg) == PARALLEL)
4364 {
4365 tree type = TREE_TYPE (arg->tree_value);
4366 arg->parallel_value
4367 = emit_group_load_into_temps (arg->reg, arg->value, type,
4368 int_size_in_bytes (type));
4369 }
4370
4371 /* Mark all slots this store used. */
4372 if (ACCUMULATE_OUTGOING_ARGS && !(flags & ECF_SIBCALL)
4373 && argblock && ! variable_size && arg->stack)
4374 for (i = lower_bound; i < upper_bound; i++)
4375 stack_usage_map[i] = 1;
4376
4377 /* Once we have pushed something, pops can't safely
4378 be deferred during the rest of the arguments. */
4379 NO_DEFER_POP;
4380
4381 /* Free any temporary slots made in processing this argument. Show
4382 that we might have taken the address of something and pushed that
4383 as an operand. */
4384 preserve_temp_slots (NULL_RTX);
4385 free_temp_slots ();
4386 pop_temp_slots ();
4387
4388 return sibcall_failure;
4389 }
4390
4391 /* Nonzero if we do not know how to pass TYPE solely in registers. */
4392
4393 bool
4394 must_pass_in_stack_var_size (enum machine_mode mode ATTRIBUTE_UNUSED,
4395 const_tree type)
4396 {
4397 if (!type)
4398 return false;
4399
4400 /* If the type has variable size... */
4401 if (TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
4402 return true;
4403
4404 /* If the type is marked as addressable (it is required
4405 to be constructed into the stack)... */
4406 if (TREE_ADDRESSABLE (type))
4407 return true;
4408
4409 return false;
4410 }
4411
4412 /* Another version of the TARGET_MUST_PASS_IN_STACK hook. This one
4413 takes trailing padding of a structure into account. */
4414 /* ??? Should be able to merge these two by examining BLOCK_REG_PADDING. */
4415
4416 bool
4417 must_pass_in_stack_var_size_or_pad (enum machine_mode mode, const_tree type)
4418 {
4419 if (!type)
4420 return false;
4421
4422 /* If the type has variable size... */
4423 if (TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
4424 return true;
4425
4426 /* If the type is marked as addressable (it is required
4427 to be constructed into the stack)... */
4428 if (TREE_ADDRESSABLE (type))
4429 return true;
4430
4431 /* If the padding and mode of the type is such that a copy into
4432 a register would put it into the wrong part of the register. */
4433 if (mode == BLKmode
4434 && int_size_in_bytes (type) % (PARM_BOUNDARY / BITS_PER_UNIT)
4435 && (FUNCTION_ARG_PADDING (mode, type)
4436 == (BYTES_BIG_ENDIAN ? upward : downward)))
4437 return true;
4438
4439 return false;
4440 }