comparison libquadmath/math/complex.c @ 68:561a7518be6b

update gcc-4.6
author Nobuyasu Oshiro <dimolto@cr.ie.u-ryukyu.ac.jp>
date Sun, 21 Aug 2011 07:07:55 +0900
parents
children 04ced10e8804
comparison
equal deleted inserted replaced
67:f6334be47118 68:561a7518be6b
1 #include "quadmath-imp.h"
2
3
4 #define REALPART(z) (__real__(z))
5 #define IMAGPART(z) (__imag__(z))
6 #define COMPLEX_ASSIGN(z_, r_, i_) {__real__(z_) = (r_); __imag__(z_) = (i_);}
7
8
9 // Horrible... GCC doesn't know how to multiply or divide these
10 // __complex128 things. We have to do it on our own.
11 // Protect it around macros so, some day, we can switch it on
12
13 #if 0
14
15 # define C128_MULT(x,y) ((x)*(y))
16 # define C128_DIV(x,y) ((x)/(y))
17
18 #else
19
20 #define C128_MULT(x,y) mult_c128(x,y)
21 #define C128_DIV(x,y) div_c128(x,y)
22
23 static inline __complex128 mult_c128 (__complex128 x, __complex128 y)
24 {
25 __float128 r1 = REALPART(x), i1 = IMAGPART(x);
26 __float128 r2 = REALPART(y), i2 = IMAGPART(y);
27 __complex128 res;
28 COMPLEX_ASSIGN(res, r1*r2 - i1*i2, i2*r1 + i1*r2);
29 return res;
30 }
31
32
33 // Careful: the algorithm for the division sucks. A lot.
34 static inline __complex128 div_c128 (__complex128 x, __complex128 y)
35 {
36 __float128 n = hypotq (REALPART (y), IMAGPART (y));
37 __float128 r1 = REALPART(x), i1 = IMAGPART(x);
38 __float128 r2 = REALPART(y), i2 = IMAGPART(y);
39 __complex128 res;
40 COMPLEX_ASSIGN(res, r1*r2 + i1*i2, i1*r2 - i2*r1);
41 return res / n;
42 }
43
44 #endif
45
46
47
48 __float128
49 cabsq (__complex128 z)
50 {
51 return hypotq (REALPART (z), IMAGPART (z));
52 }
53
54
55 __complex128
56 cexpq (__complex128 z)
57 {
58 __float128 a, b;
59 __complex128 v;
60
61 a = REALPART (z);
62 b = IMAGPART (z);
63 COMPLEX_ASSIGN (v, cosq (b), sinq (b));
64 return expq (a) * v;
65 }
66
67
68 __complex128
69 cexpiq (__float128 x)
70 {
71 __complex128 v;
72 COMPLEX_ASSIGN (v, cosq (x), sinq (x));
73 return v;
74 }
75
76
77 __float128
78 cargq (__complex128 z)
79 {
80 return atan2q (IMAGPART (z), REALPART (z));
81 }
82
83
84 __complex128
85 clogq (__complex128 z)
86 {
87 __complex128 v;
88 COMPLEX_ASSIGN (v, logq (cabsq (z)), cargq (z));
89 return v;
90 }
91
92
93 __complex128
94 clog10q (__complex128 z)
95 {
96 __complex128 v;
97 COMPLEX_ASSIGN (v, log10q (cabsq (z)), cargq (z));
98 return v;
99 }
100
101
102 __complex128
103 cpowq (__complex128 base, __complex128 power)
104 {
105 return cexpq (C128_MULT(power, clogq (base)));
106 }
107
108
109 __complex128
110 csinq (__complex128 a)
111 {
112 __float128 r = REALPART (a), i = IMAGPART (a);
113 __complex128 v;
114 COMPLEX_ASSIGN (v, sinq (r) * coshq (i), cosq (r) * sinhq (i));
115 return v;
116 }
117
118
119 __complex128
120 csinhq (__complex128 a)
121 {
122 __float128 r = REALPART (a), i = IMAGPART (a);
123 __complex128 v;
124 COMPLEX_ASSIGN (v, sinhq (r) * cosq (i), coshq (r) * sinq (i));
125 return v;
126 }
127
128
129 __complex128
130 ccosq (__complex128 a)
131 {
132 __float128 r = REALPART (a), i = IMAGPART (a);
133 __complex128 v;
134 COMPLEX_ASSIGN (v, cosq (r) * coshq (i), - (sinq (r) * sinhq (i)));
135 return v;
136 }
137
138
139 __complex128
140 ccoshq (__complex128 a)
141 {
142 __float128 r = REALPART (a), i = IMAGPART (a);
143 __complex128 v;
144 COMPLEX_ASSIGN (v, coshq (r) * cosq (i), sinhq (r) * sinq (i));
145 return v;
146 }
147
148
149 __complex128
150 ctanq (__complex128 a)
151 {
152 __float128 rt = tanq (REALPART (a)), it = tanhq (IMAGPART (a));
153 __complex128 n, d;
154 COMPLEX_ASSIGN (n, rt, it);
155 COMPLEX_ASSIGN (d, 1, - (rt * it));
156 return C128_DIV(n,d);
157 }
158
159
160 __complex128
161 ctanhq (__complex128 a)
162 {
163 __float128 rt = tanhq (REALPART (a)), it = tanq (IMAGPART (a));
164 __complex128 n, d;
165 COMPLEX_ASSIGN (n, rt, it);
166 COMPLEX_ASSIGN (d, 1, rt * it);
167 return C128_DIV(n,d);
168 }
169
170
171 /* Square root algorithm from glibc. */
172 __complex128
173 csqrtq (__complex128 z)
174 {
175 __float128 re = REALPART(z), im = IMAGPART(z);
176 __complex128 v;
177
178 if (im == 0)
179 {
180 if (re < 0)
181 {
182 COMPLEX_ASSIGN (v, 0, copysignq (sqrtq (-re), im));
183 }
184 else
185 {
186 COMPLEX_ASSIGN (v, fabsq (sqrtq (re)), copysignq (0, im));
187 }
188 }
189 else if (re == 0)
190 {
191 __float128 r = sqrtq (0.5 * fabsq (im));
192 COMPLEX_ASSIGN (v, r, copysignq (r, im));
193 }
194 else
195 {
196 __float128 d = hypotq (re, im);
197 __float128 r, s;
198
199 /* Use the identity 2 Re res Im res = Im x
200 to avoid cancellation error in d +/- Re x. */
201 if (re > 0)
202 r = sqrtq (0.5 * d + 0.5 * re), s = (0.5 * im) / r;
203 else
204 s = sqrtq (0.5 * d - 0.5 * re), r = fabsq ((0.5 * im) / s);
205
206 COMPLEX_ASSIGN (v, r, copysignq (s, im));
207 }
208 return v;
209 }
210