comparison gcc/graphite-interchange.c @ 55:77e2b8dfacca gcc-4.4.5

update it from 4.4.3 to 4.5.0
author ryoma <e075725@ie.u-ryukyu.ac.jp>
date Fri, 12 Feb 2010 23:39:51 +0900
parents
children b7f97abdc517
comparison
equal deleted inserted replaced
52:c156f1bd5cd9 55:77e2b8dfacca
1 /* Interchange heuristics and transform for loop interchange on
2 polyhedral representation.
3
4 Copyright (C) 2009 Free Software Foundation, Inc.
5 Contributed by Sebastian Pop <sebastian.pop@amd.com> and
6 Harsha Jagasia <harsha.jagasia@amd.com>.
7
8 This file is part of GCC.
9
10 GCC is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3, or (at your option)
13 any later version.
14
15 GCC is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with GCC; see the file COPYING3. If not see
22 <http://www.gnu.org/licenses/>. */
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "ggc.h"
28 #include "tree.h"
29 #include "rtl.h"
30 #include "output.h"
31 #include "basic-block.h"
32 #include "diagnostic.h"
33 #include "tree-flow.h"
34 #include "toplev.h"
35 #include "tree-dump.h"
36 #include "timevar.h"
37 #include "cfgloop.h"
38 #include "tree-chrec.h"
39 #include "tree-data-ref.h"
40 #include "tree-scalar-evolution.h"
41 #include "tree-pass.h"
42 #include "domwalk.h"
43 #include "value-prof.h"
44 #include "pointer-set.h"
45 #include "gimple.h"
46 #include "params.h"
47
48 #ifdef HAVE_cloog
49 #include "cloog/cloog.h"
50 #include "ppl_c.h"
51 #include "sese.h"
52 #include "graphite-ppl.h"
53 #include "graphite.h"
54 #include "graphite-poly.h"
55
56 /* Builds a linear expression, of dimension DIM, representing PDR's
57 memory access:
58
59 L = r_{n}*r_{n-1}*...*r_{1}*s_{0} + ... + r_{n}*s_{n-1} + s_{n}.
60
61 For an array A[10][20] with two subscript locations s0 and s1, the
62 linear memory access is 20 * s0 + s1: a stride of 1 in subscript s0
63 corresponds to a memory stride of 20.
64
65 OFFSET is a number of dimensions to prepend before the
66 subscript dimensions: s_0, s_1, ..., s_n.
67
68 Thus, the final linear expression has the following format:
69 0 .. 0_{offset} | 0 .. 0_{nit} | 0 .. 0_{gd} | 0 | c_0 c_1 ... c_n
70 where the expression itself is:
71 c_0 * s_0 + c_1 * s_1 + ... c_n * s_n. */
72
73 static ppl_Linear_Expression_t
74 build_linearized_memory_access (ppl_dimension_type offset, poly_dr_p pdr)
75 {
76 ppl_Linear_Expression_t res;
77 ppl_Linear_Expression_t le;
78 ppl_dimension_type i;
79 ppl_dimension_type first = pdr_subscript_dim (pdr, 0);
80 ppl_dimension_type last = pdr_subscript_dim (pdr, PDR_NB_SUBSCRIPTS (pdr));
81 Value size, sub_size;
82 graphite_dim_t dim = offset + pdr_dim (pdr);
83
84 ppl_new_Linear_Expression_with_dimension (&res, dim);
85
86 value_init (size);
87 value_set_si (size, 1);
88 value_init (sub_size);
89 value_set_si (sub_size, 1);
90
91 for (i = last - 1; i >= first; i--)
92 {
93 ppl_set_coef_gmp (res, i + offset, size);
94
95 ppl_new_Linear_Expression_with_dimension (&le, dim - offset);
96 ppl_set_coef (le, i, 1);
97 ppl_max_for_le_pointset (PDR_ACCESSES (pdr), le, sub_size);
98 value_multiply (size, size, sub_size);
99 ppl_delete_Linear_Expression (le);
100 }
101
102 value_clear (sub_size);
103 value_clear (size);
104 return res;
105 }
106
107 /* Builds a partial difference equations and inserts them
108 into pointset powerset polyhedron P. Polyhedron is assumed
109 to have the format: T|I|T'|I'|G|S|S'|l1|l2.
110
111 TIME_DEPTH is the time dimension w.r.t. which we are
112 differentiating.
113 OFFSET represents the number of dimensions between
114 columns t_{time_depth} and t'_{time_depth}.
115 DIM_SCTR is the number of scattering dimensions. It is
116 essentially the dimensionality of the T vector.
117
118 The following equations are inserted into the polyhedron P:
119 | t_1 = t_1'
120 | ...
121 | t_{time_depth-1} = t'_{time_depth-1}
122 | t_{time_depth} = t'_{time_depth} + 1
123 | t_{time_depth+1} = t'_{time_depth + 1}
124 | ...
125 | t_{dim_sctr} = t'_{dim_sctr}. */
126
127 static void
128 build_partial_difference (ppl_Pointset_Powerset_C_Polyhedron_t *p,
129 ppl_dimension_type time_depth,
130 ppl_dimension_type offset,
131 ppl_dimension_type dim_sctr)
132 {
133 ppl_Constraint_t new_cstr;
134 ppl_Linear_Expression_t le;
135 ppl_dimension_type i;
136 ppl_dimension_type dim;
137 ppl_Pointset_Powerset_C_Polyhedron_t temp;
138
139 /* Add the equality: t_{time_depth} = t'_{time_depth} + 1.
140 This is the core part of this alogrithm, since this
141 constraint asks for the memory access stride (difference)
142 between two consecutive points in time dimensions. */
143
144 ppl_Pointset_Powerset_C_Polyhedron_space_dimension (*p, &dim);
145 ppl_new_Linear_Expression_with_dimension (&le, dim);
146 ppl_set_coef (le, time_depth, 1);
147 ppl_set_coef (le, time_depth + offset, -1);
148 ppl_set_inhomogeneous (le, 1);
149 ppl_new_Constraint (&new_cstr, le, PPL_CONSTRAINT_TYPE_EQUAL);
150 ppl_Pointset_Powerset_C_Polyhedron_add_constraint (*p, new_cstr);
151 ppl_delete_Linear_Expression (le);
152 ppl_delete_Constraint (new_cstr);
153
154 /* Add equalities:
155 | t1 = t1'
156 | ...
157 | t_{time_depth-1} = t'_{time_depth-1}
158 | t_{time_depth+1} = t'_{time_depth+1}
159 | ...
160 | t_{dim_sctr} = t'_{dim_sctr}
161
162 This means that all the time dimensions are equal except for
163 time_depth, where the constraint is t_{depth} = t'_{depth} + 1
164 step. More to this: we should be carefull not to add equalities
165 to the 'coupled' dimensions, which happens when the one dimension
166 is stripmined dimension, and the other dimension corresponds
167 to the point loop inside stripmined dimension. */
168
169 ppl_new_Pointset_Powerset_C_Polyhedron_from_Pointset_Powerset_C_Polyhedron (&temp, *p);
170
171 for (i = 0; i < dim_sctr; i++)
172 if (i != time_depth)
173 {
174 ppl_new_Linear_Expression_with_dimension (&le, dim);
175 ppl_set_coef (le, i, 1);
176 ppl_set_coef (le, i + offset, -1);
177 ppl_new_Constraint (&new_cstr, le, PPL_CONSTRAINT_TYPE_EQUAL);
178 ppl_Pointset_Powerset_C_Polyhedron_add_constraint (temp, new_cstr);
179
180 if (ppl_Pointset_Powerset_C_Polyhedron_is_empty (temp))
181 {
182 ppl_delete_Pointset_Powerset_C_Polyhedron (temp);
183 ppl_new_Pointset_Powerset_C_Polyhedron_from_Pointset_Powerset_C_Polyhedron (&temp, *p);
184 }
185 else
186 ppl_Pointset_Powerset_C_Polyhedron_add_constraint (*p, new_cstr);
187 ppl_delete_Linear_Expression (le);
188 ppl_delete_Constraint (new_cstr);
189 }
190
191 ppl_delete_Pointset_Powerset_C_Polyhedron (temp);
192 }
193
194
195 /* Set STRIDE to the stride of PDR in memory by advancing by one in
196 the loop at DEPTH. */
197
198 static void
199 memory_stride_in_loop (Value stride, graphite_dim_t depth, poly_dr_p pdr)
200 {
201 ppl_dimension_type time_depth;
202 ppl_Linear_Expression_t le, lma;
203 ppl_Constraint_t new_cstr;
204 ppl_dimension_type i, *map;
205 ppl_Pointset_Powerset_C_Polyhedron_t p1, p2, sctr;
206 graphite_dim_t nb_subscripts = PDR_NB_SUBSCRIPTS (pdr) + 1;
207 poly_bb_p pbb = PDR_PBB (pdr);
208 ppl_dimension_type offset = pbb_nb_scattering_transform (pbb)
209 + pbb_nb_local_vars (pbb)
210 + pbb_dim_iter_domain (pbb);
211 ppl_dimension_type offsetg = offset + pbb_nb_params (pbb);
212 ppl_dimension_type dim_sctr = pbb_nb_scattering_transform (pbb)
213 + pbb_nb_local_vars (pbb);
214 ppl_dimension_type dim_L1 = offset + offsetg + 2 * nb_subscripts;
215 ppl_dimension_type dim_L2 = offset + offsetg + 2 * nb_subscripts + 1;
216 ppl_dimension_type new_dim = offset + offsetg + 2 * nb_subscripts + 2;
217
218 /* The resulting polyhedron should have the following format:
219 T|I|T'|I'|G|S|S'|l1|l2
220 where:
221 | T = t_1..t_{dim_sctr}
222 | I = i_1..i_{dim_iter_domain}
223 | T'= t'_1..t'_{dim_sctr}
224 | I'= i'_1..i'_{dim_iter_domain}
225 | G = g_1..g_{nb_params}
226 | S = s_1..s_{nb_subscripts}
227 | S'= s'_1..s'_{nb_subscripts}
228 | l1 and l2 are scalars.
229
230 Some invariants:
231 offset = dim_sctr + dim_iter_domain + nb_local_vars
232 offsetg = dim_sctr + dim_iter_domain + nb_local_vars + nb_params. */
233
234 /* Construct the T|I|0|0|G|0|0|0|0 part. */
235 {
236 ppl_new_Pointset_Powerset_C_Polyhedron_from_C_Polyhedron
237 (&sctr, PBB_TRANSFORMED_SCATTERING (pbb));
238 ppl_Pointset_Powerset_C_Polyhedron_add_space_dimensions_and_embed
239 (sctr, 2 * nb_subscripts + 2);
240 ppl_insert_dimensions_pointset (sctr, offset, offset);
241 }
242
243 /* Construct the 0|I|0|0|G|S|0|0|0 part. */
244 {
245 ppl_new_Pointset_Powerset_C_Polyhedron_from_Pointset_Powerset_C_Polyhedron
246 (&p1, PDR_ACCESSES (pdr));
247 ppl_Pointset_Powerset_C_Polyhedron_add_space_dimensions_and_embed
248 (p1, nb_subscripts + 2);
249 ppl_insert_dimensions_pointset (p1, 0, dim_sctr);
250 ppl_insert_dimensions_pointset (p1, offset, offset);
251 }
252
253 /* Construct the 0|0|0|0|0|S|0|l1|0 part. */
254 {
255 lma = build_linearized_memory_access (offset + dim_sctr, pdr);
256 ppl_set_coef (lma, dim_L1, -1);
257 ppl_new_Constraint (&new_cstr, lma, PPL_CONSTRAINT_TYPE_EQUAL);
258 ppl_Pointset_Powerset_C_Polyhedron_add_constraint (p1, new_cstr);
259 ppl_delete_Linear_Expression (lma);
260 ppl_delete_Constraint (new_cstr);
261 }
262
263 /* Now intersect all the parts to get the polyhedron P1:
264 T|I|0|0|G|0|0|0 |0
265 0|I|0|0|G|S|0|0 |0
266 0|0|0|0|0|S|0|l1|0
267 ------------------
268 T|I|0|0|G|S|0|l1|0. */
269
270 ppl_Pointset_Powerset_C_Polyhedron_intersection_assign (p1, sctr);
271 ppl_delete_Pointset_Powerset_C_Polyhedron (sctr);
272
273 /* Build P2, which would have the following form:
274 0|0|T'|I'|G|0|S'|0|l2
275
276 P2 is built, by remapping the P1 polyhedron:
277 T|I|0|0|G|S|0|l1|0
278
279 using the following mapping:
280 T->T'
281 I->I'
282 S->S'
283 l1->l2. */
284 {
285 ppl_new_Pointset_Powerset_C_Polyhedron_from_Pointset_Powerset_C_Polyhedron
286 (&p2, p1);
287
288 map = ppl_new_id_map (new_dim);
289
290 /* TI -> T'I'. */
291 for (i = 0; i < offset; i++)
292 ppl_interchange (map, i, i + offset);
293
294 /* l1 -> l2. */
295 ppl_interchange (map, dim_L1, dim_L2);
296
297 /* S -> S'. */
298 for (i = 0; i < nb_subscripts; i++)
299 ppl_interchange (map, offset + offsetg + i,
300 offset + offsetg + nb_subscripts + i);
301
302 ppl_Pointset_Powerset_C_Polyhedron_map_space_dimensions (p2, map, new_dim);
303 free (map);
304 }
305
306 time_depth = psct_dynamic_dim (pbb, depth);
307
308 /* P1 = P1 inter P2. */
309 ppl_Pointset_Powerset_C_Polyhedron_intersection_assign (p1, p2);
310 build_partial_difference (&p1, time_depth, offset, dim_sctr);
311
312 /* Maximise the expression L2 - L1. */
313 {
314 ppl_new_Linear_Expression_with_dimension (&le, new_dim);
315 ppl_set_coef (le, dim_L2, 1);
316 ppl_set_coef (le, dim_L1, -1);
317 ppl_max_for_le_pointset (p1, le, stride);
318 }
319
320 if (dump_file && (dump_flags & TDF_DETAILS))
321 {
322 fprintf (dump_file, "\nStride in BB_%d, DR_%d, depth %d:",
323 pbb_index (pbb), PDR_ID (pdr), (int) depth);
324 value_print (dump_file, " %s ", stride);
325 }
326
327 ppl_delete_Pointset_Powerset_C_Polyhedron (p1);
328 ppl_delete_Pointset_Powerset_C_Polyhedron (p2);
329 ppl_delete_Linear_Expression (le);
330 }
331
332 /* Sets STRIDES to the sum of all the strides of the data references accessed */
333
334 static void
335 memory_strides_in_loop_depth (poly_bb_p pbb, graphite_dim_t depth, Value strides)
336 {
337 int i;
338 poly_dr_p pdr;
339 Value s, n;
340
341 value_set_si (strides, 0);
342 value_init (s);
343 value_init (n);
344
345 for (i = 0; VEC_iterate (poly_dr_p, PBB_DRS (pbb), i, pdr); i++)
346 {
347 value_set_si (n, PDR_NB_REFS (pdr));
348
349 memory_stride_in_loop (s, depth, pdr);
350 value_multiply (s, s, n);
351 value_addto (strides, strides, s);
352 }
353
354 value_clear (s);
355 value_clear (n);
356 }
357
358 /* Returns true when it is profitable to interchange time dimensions DEPTH1
359 and DEPTH2 with DEPTH1 < DEPTH2 for PBB.
360
361 Example:
362
363 | int a[100][100];
364 |
365 | int
366 | foo (int N)
367 | {
368 | int j;
369 | int i;
370 |
371 | for (i = 0; i < N; i++)
372 | for (j = 0; j < N; j++)
373 | a[j][2 * i] += 1;
374 |
375 | return a[N][12];
376 | }
377
378 The data access A[j][i] is described like this:
379
380 | i j N a s0 s1 1
381 | 0 0 0 1 0 0 -5 = 0
382 | 0 -1 0 0 1 0 0 = 0
383 |-2 0 0 0 0 1 0 = 0
384 | 0 0 0 0 1 0 0 >= 0
385 | 0 0 0 0 0 1 0 >= 0
386 | 0 0 0 0 -1 0 100 >= 0
387 | 0 0 0 0 0 -1 100 >= 0
388
389 The linearized memory access L to A[100][100] is:
390
391 | i j N a s0 s1 1
392 | 0 0 0 0 100 1 0
393
394 TODO: the shown format is not valid as it does not show the fact
395 that the iteration domain "i j" is transformed using the scattering.
396
397 Next, to measure the impact of iterating once in loop "i", we build
398 a maximization problem: first, we add to DR accesses the dimensions
399 k, s2, s3, L1 = 100 * s0 + s1, L2, and D1: this is the polyhedron P1.
400 L1 and L2 are the linearized memory access functions.
401
402 | i j N a s0 s1 k s2 s3 L1 L2 D1 1
403 | 0 0 0 1 0 0 0 0 0 0 0 0 -5 = 0 alias = 5
404 | 0 -1 0 0 1 0 0 0 0 0 0 0 0 = 0 s0 = j
405 |-2 0 0 0 0 1 0 0 0 0 0 0 0 = 0 s1 = 2 * i
406 | 0 0 0 0 1 0 0 0 0 0 0 0 0 >= 0
407 | 0 0 0 0 0 1 0 0 0 0 0 0 0 >= 0
408 | 0 0 0 0 -1 0 0 0 0 0 0 0 100 >= 0
409 | 0 0 0 0 0 -1 0 0 0 0 0 0 100 >= 0
410 | 0 0 0 0 100 1 0 0 0 -1 0 0 0 = 0 L1 = 100 * s0 + s1
411
412 Then, we generate the polyhedron P2 by interchanging the dimensions
413 (s0, s2), (s1, s3), (L1, L2), (k, i)
414
415 | i j N a s0 s1 k s2 s3 L1 L2 D1 1
416 | 0 0 0 1 0 0 0 0 0 0 0 0 -5 = 0 alias = 5
417 | 0 -1 0 0 0 0 0 1 0 0 0 0 0 = 0 s2 = j
418 | 0 0 0 0 0 0 -2 0 1 0 0 0 0 = 0 s3 = 2 * k
419 | 0 0 0 0 0 0 0 1 0 0 0 0 0 >= 0
420 | 0 0 0 0 0 0 0 0 1 0 0 0 0 >= 0
421 | 0 0 0 0 0 0 0 -1 0 0 0 0 100 >= 0
422 | 0 0 0 0 0 0 0 0 -1 0 0 0 100 >= 0
423 | 0 0 0 0 0 0 0 100 1 0 -1 0 0 = 0 L2 = 100 * s2 + s3
424
425 then we add to P2 the equality k = i + 1:
426
427 |-1 0 0 0 0 0 1 0 0 0 0 0 -1 = 0 k = i + 1
428
429 and finally we maximize the expression "D1 = max (P1 inter P2, L2 - L1)".
430
431 Similarly, to determine the impact of one iteration on loop "j", we
432 interchange (k, j), we add "k = j + 1", and we compute D2 the
433 maximal value of the difference.
434
435 Finally, the profitability test is D1 < D2: if in the outer loop
436 the strides are smaller than in the inner loop, then it is
437 profitable to interchange the loops at DEPTH1 and DEPTH2. */
438
439 static bool
440 pbb_interchange_profitable_p (graphite_dim_t depth1, graphite_dim_t depth2,
441 poly_bb_p pbb)
442 {
443 Value d1, d2;
444 bool res;
445
446 gcc_assert (depth1 < depth2);
447
448 value_init (d1);
449 value_init (d2);
450
451 memory_strides_in_loop_depth (pbb, depth1, d1);
452 memory_strides_in_loop_depth (pbb, depth2, d2);
453
454 res = value_lt (d1, d2);
455
456 value_clear (d1);
457 value_clear (d2);
458
459 return res;
460 }
461
462 /* Interchanges the loops at DEPTH1 and DEPTH2 of the original
463 scattering and assigns the resulting polyhedron to the transformed
464 scattering. */
465
466 static void
467 pbb_interchange_loop_depths (graphite_dim_t depth1, graphite_dim_t depth2,
468 poly_bb_p pbb)
469 {
470 ppl_dimension_type i, dim;
471 ppl_dimension_type *map;
472 ppl_Polyhedron_t poly = PBB_TRANSFORMED_SCATTERING (pbb);
473 ppl_dimension_type dim1 = psct_dynamic_dim (pbb, depth1);
474 ppl_dimension_type dim2 = psct_dynamic_dim (pbb, depth2);
475
476 ppl_Polyhedron_space_dimension (poly, &dim);
477 map = (ppl_dimension_type *) XNEWVEC (ppl_dimension_type, dim);
478
479 for (i = 0; i < dim; i++)
480 map[i] = i;
481
482 map[dim1] = dim2;
483 map[dim2] = dim1;
484
485 ppl_Polyhedron_map_space_dimensions (poly, map, dim);
486 free (map);
487 }
488
489 /* Apply the interchange of loops at depths DEPTH1 and DEPTH2 to all
490 the statements below LST. */
491
492 static void
493 lst_apply_interchange (lst_p lst, int depth1, int depth2)
494 {
495 if (!lst)
496 return;
497
498 if (LST_LOOP_P (lst))
499 {
500 int i;
501 lst_p l;
502
503 for (i = 0; VEC_iterate (lst_p, LST_SEQ (lst), i, l); i++)
504 lst_apply_interchange (l, depth1, depth2);
505 }
506 else
507 pbb_interchange_loop_depths (depth1, depth2, LST_PBB (lst));
508 }
509
510 /* Return true when the interchange of loops at depths DEPTH1 and
511 DEPTH2 to all the statements below LST is profitable. */
512
513 static bool
514 lst_interchange_profitable_p (lst_p lst, int depth1, int depth2)
515 {
516 if (!lst)
517 return false;
518
519 if (LST_LOOP_P (lst))
520 {
521 int i;
522 lst_p l;
523 bool res = false;
524
525 for (i = 0; VEC_iterate (lst_p, LST_SEQ (lst), i, l); i++)
526 {
527 bool profitable = lst_interchange_profitable_p (l, depth1, depth2);
528
529 if (profitable && !LST_LOOP_P (lst)
530 && dump_file && (dump_flags & TDF_DETAILS))
531 fprintf (dump_file,
532 "Interchanging loops at depths %d and %d is profitable for stmt_%d.\n",
533 depth1, depth2, pbb_index (LST_PBB (lst)));
534
535 res |= profitable;
536 }
537
538 return res;
539 }
540 else
541 return pbb_interchange_profitable_p (depth1, depth2, LST_PBB (lst));
542 }
543
544 /* Return true when the nest starting at LOOP1 and ending on LOOP2 is
545 perfect: i.e. there are no sequence of statements. */
546
547 static bool
548 lst_perfectly_nested_p (lst_p loop1, lst_p loop2)
549 {
550 if (loop1 == loop2)
551 return true;
552
553 if (!LST_LOOP_P (loop1))
554 return false;
555
556 return VEC_length (lst_p, LST_SEQ (loop1)) == 1
557 && lst_perfectly_nested_p (VEC_index (lst_p, LST_SEQ (loop1), 0), loop2);
558 }
559
560 /* Transform the loop nest between LOOP1 and LOOP2 into a perfect
561 nest. To continue the naming tradition, this function is called
562 after perfect_nestify. NEST is set to the perfectly nested loop
563 that is created. BEFORE/AFTER are set to the loops distributed
564 before/after the loop NEST. */
565
566 static void
567 lst_perfect_nestify (lst_p loop1, lst_p loop2, lst_p *before,
568 lst_p *nest, lst_p *after)
569 {
570 poly_bb_p first, last;
571
572 gcc_assert (loop1 && loop2
573 && loop1 != loop2
574 && LST_LOOP_P (loop1) && LST_LOOP_P (loop2));
575
576 first = LST_PBB (lst_find_first_pbb (loop2));
577 last = LST_PBB (lst_find_last_pbb (loop2));
578
579 *before = copy_lst (loop1);
580 *nest = copy_lst (loop1);
581 *after = copy_lst (loop1);
582
583 lst_remove_all_before_including_pbb (*before, first, false);
584 lst_remove_all_before_including_pbb (*after, last, true);
585
586 lst_remove_all_before_excluding_pbb (*nest, first, true);
587 lst_remove_all_before_excluding_pbb (*nest, last, false);
588
589 if (lst_empty_p (*before))
590 *before = NULL;
591 if (lst_empty_p (*after))
592 *after = NULL;
593 if (lst_empty_p (*nest))
594 *nest = NULL;
595 }
596
597 /* Try to interchange LOOP1 with LOOP2 for all the statements of the
598 body of LOOP2. LOOP1 contains LOOP2. Return true if it did the
599 interchange. CREATED_LOOP_BEFORE/CREATED_LOOP_AFTER are set to
600 true if the loop distribution created a loop before/after LOOP1. */
601
602 static bool
603 lst_try_interchange_loops (scop_p scop, lst_p loop1, lst_p loop2,
604 lst_p *before, lst_p *nest, lst_p *after)
605 {
606 int depth1 = lst_depth (loop1);
607 int depth2 = lst_depth (loop2);
608 lst_p transformed;
609
610 *before = NULL;
611 *after = NULL;
612 *nest = NULL;
613
614 if (!lst_interchange_profitable_p (loop2, depth1, depth2))
615 return false;
616
617 if (!lst_perfectly_nested_p (loop1, loop2))
618 lst_perfect_nestify (loop1, loop2, before, nest, after);
619
620 lst_apply_interchange (loop2, depth1, depth2);
621
622 /* Sync the transformed LST information and the PBB scatterings
623 before using the scatterings in the data dependence analysis. */
624 if (*before || *nest || *after)
625 {
626 transformed = lst_substitute_3 (SCOP_TRANSFORMED_SCHEDULE (scop), loop1,
627 *before, *nest, *after);
628 lst_update_scattering (transformed);
629 free_lst (transformed);
630 }
631
632 if (graphite_legal_transform (scop))
633 {
634 if (dump_file && (dump_flags & TDF_DETAILS))
635 fprintf (dump_file,
636 "Loops at depths %d and %d will be interchanged.\n",
637 depth1, depth2);
638
639 /* Transform the SCOP_TRANSFORMED_SCHEDULE of the SCOP. */
640 lst_insert_in_sequence (*before, loop1, true);
641 lst_insert_in_sequence (*after, loop1, false);
642
643 if (*nest)
644 {
645 lst_replace (loop1, *nest);
646 free_lst (loop1);
647 }
648
649 return true;
650 }
651
652 /* Undo the transform. */
653 lst_apply_interchange (loop2, depth2, depth1);
654 *before = NULL;
655 *after = NULL;
656 *nest = NULL;
657 return false;
658 }
659
660 static bool lst_interchange_select_inner (scop_p, lst_p, int, lst_p);
661
662 /* Try to interchange loop OUTER of LST_SEQ (OUTER_FATHER) with all
663 the loop INNER and with all the loops contained in the body of
664 INNER. Return true if it did interchanged some loops. */
665
666 static bool
667 lst_try_interchange (scop_p scop, lst_p outer_father, int outer, lst_p inner)
668 {
669 lst_p before, nest, after;
670 bool res;
671 lst_p loop1 = VEC_index (lst_p, LST_SEQ (outer_father), outer);
672 lst_p loop2 = inner;
673
674 gcc_assert (LST_LOOP_P (loop1)
675 && LST_LOOP_P (loop2));
676
677 res = lst_try_interchange_loops (scop, loop1, loop2, &before, &nest, &after);
678
679 if (before)
680 res |= lst_interchange_select_inner (scop, outer_father, outer, before);
681 else if (nest)
682 res |= lst_interchange_select_inner (scop, outer_father, outer, nest);
683 else
684 res |= lst_interchange_select_inner (scop, outer_father, outer, loop2);
685
686 return res;
687 }
688
689 /* Selects the inner loop in LST_SEQ (INNER_FATHER) to be interchanged
690 with the loop OUTER in LST_SEQ (OUTER_FATHER). */
691
692 static bool
693 lst_interchange_select_inner (scop_p scop, lst_p outer_father, int outer,
694 lst_p inner_father)
695 {
696 lst_p l;
697 bool res = false;
698 int inner;
699
700 gcc_assert (outer_father
701 && LST_LOOP_P (outer_father)
702 && LST_LOOP_P (VEC_index (lst_p, LST_SEQ (outer_father), outer))
703 && inner_father
704 && LST_LOOP_P (inner_father));
705
706 for (inner = 0; VEC_iterate (lst_p, LST_SEQ (inner_father), inner, l); inner++)
707 if (LST_LOOP_P (l))
708 res |= lst_try_interchange (scop, outer_father, outer, l);
709
710 return res;
711 }
712
713 /* Interchanges all the loops of LOOP and the loops of its body that
714 are considered profitable to interchange. Return true if it did
715 interchanged some loops. OUTER is the index in LST_SEQ (LOOP) that
716 points to the next outer loop to be considered for interchange. */
717
718 static bool
719 lst_interchange_select_outer (scop_p scop, lst_p loop, int outer)
720 {
721 lst_p l;
722 bool res = false;
723 int i = 0;
724 lst_p father;
725
726 if (!loop || !LST_LOOP_P (loop))
727 return false;
728
729 father = LST_LOOP_FATHER (loop);
730 if (father)
731 {
732 res = lst_interchange_select_inner (scop, father, outer, loop);
733
734 if (VEC_length (lst_p, LST_SEQ (father)) <= (unsigned) outer)
735 return res;
736
737 loop = VEC_index (lst_p, LST_SEQ (father), outer);
738 }
739
740 if (LST_LOOP_P (loop))
741 for (i = 0; VEC_iterate (lst_p, LST_SEQ (loop), i, l); i++)
742 if (LST_LOOP_P (l))
743 res |= lst_interchange_select_outer (scop, l, i);
744
745 return res;
746 }
747
748 /* Interchanges all the loop depths that are considered profitable for SCOP. */
749
750 bool
751 scop_do_interchange (scop_p scop)
752 {
753 bool res = lst_interchange_select_outer
754 (scop, SCOP_TRANSFORMED_SCHEDULE (scop), 0);
755
756 lst_update_scattering (SCOP_TRANSFORMED_SCHEDULE (scop));
757
758 return res;
759 }
760
761
762 #endif
763