comparison gcc/sel-sched-ir.c @ 55:77e2b8dfacca gcc-4.4.5

update it from 4.4.3 to 4.5.0
author ryoma <e075725@ie.u-ryukyu.ac.jp>
date Fri, 12 Feb 2010 23:39:51 +0900
parents a06113de4d67
children b7f97abdc517
comparison
equal deleted inserted replaced
52:c156f1bd5cd9 55:77e2b8dfacca
1 /* Instruction scheduling pass. Selective scheduler and pipeliner. 1 /* Instruction scheduling pass. Selective scheduler and pipeliner.
2 Copyright (C) 2006, 2007, 2008 Free Software Foundation, Inc. 2 Copyright (C) 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
3 3
4 This file is part of GCC. 4 This file is part of GCC.
5 5
6 GCC is free software; you can redistribute it and/or modify it under 6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free 7 the terms of the GNU General Public License as published by the Free
120 120
121 /* Its pointer. */ 121 /* Its pointer. */
122 int n; 122 int n;
123 123
124 /* Its size. */ 124 /* Its size. */
125 int s; 125 int s;
126 } nop_pool = { NULL, 0, 0 }; 126 } nop_pool = { NULL, 0, 0 };
127 127
128 /* The pool for basic block notes. */ 128 /* The pool for basic block notes. */
129 static rtx_vec_t bb_note_pool; 129 static rtx_vec_t bb_note_pool;
130 130
132 rtx nop_pattern = NULL_RTX; 132 rtx nop_pattern = NULL_RTX;
133 /* A special instruction that resides in EXIT_BLOCK. 133 /* A special instruction that resides in EXIT_BLOCK.
134 EXIT_INSN is successor of the insns that lead to EXIT_BLOCK. */ 134 EXIT_INSN is successor of the insns that lead to EXIT_BLOCK. */
135 rtx exit_insn = NULL_RTX; 135 rtx exit_insn = NULL_RTX;
136 136
137 /* TRUE if while scheduling current region, which is loop, its preheader 137 /* TRUE if while scheduling current region, which is loop, its preheader
138 was removed. */ 138 was removed. */
139 bool preheader_removed = false; 139 bool preheader_removed = false;
140 140
141 141
142 /* Forward static declarations. */ 142 /* Forward static declarations. */
155 static void sel_remove_loop_preheader (void); 155 static void sel_remove_loop_preheader (void);
156 156
157 static bool insn_is_the_only_one_in_bb_p (insn_t); 157 static bool insn_is_the_only_one_in_bb_p (insn_t);
158 static void create_initial_data_sets (basic_block); 158 static void create_initial_data_sets (basic_block);
159 159
160 static void free_av_set (basic_block);
160 static void invalidate_av_set (basic_block); 161 static void invalidate_av_set (basic_block);
161 static void extend_insn_data (void); 162 static void extend_insn_data (void);
162 static void sel_init_new_insn (insn_t, int); 163 static void sel_init_new_insn (insn_t, int);
163 static void finish_insns (void); 164 static void finish_insns (void);
164 165
256 FENCE_SCHEDULED_P (f) = false; 257 FENCE_SCHEDULED_P (f) = false;
257 } 258 }
258 259
259 /* Add new fence consisting of INSN and STATE to the list pointed to by LP. */ 260 /* Add new fence consisting of INSN and STATE to the list pointed to by LP. */
260 static void 261 static void
261 flist_add (flist_t *lp, insn_t insn, state_t state, deps_t dc, void *tc, 262 flist_add (flist_t *lp, insn_t insn, state_t state, deps_t dc, void *tc,
262 insn_t last_scheduled_insn, VEC(rtx,gc) *executing_insns, 263 insn_t last_scheduled_insn, VEC(rtx,gc) *executing_insns,
263 int *ready_ticks, int ready_ticks_size, insn_t sched_next, 264 int *ready_ticks, int ready_ticks_size, insn_t sched_next,
264 int cycle, int cycle_issued_insns, 265 int cycle, int cycle_issued_insns,
265 bool starts_cycle_p, bool after_stall_p) 266 bool starts_cycle_p, bool after_stall_p)
266 { 267 {
267 fence_t f; 268 fence_t f;
268 269
269 _list_add (lp); 270 _list_add (lp);
314 /* Add ORIGINAL_INSN the def list DL honoring CROSSES_CALL. */ 315 /* Add ORIGINAL_INSN the def list DL honoring CROSSES_CALL. */
315 void 316 void
316 def_list_add (def_list_t *dl, insn_t original_insn, bool crosses_call) 317 def_list_add (def_list_t *dl, insn_t original_insn, bool crosses_call)
317 { 318 {
318 def_t d; 319 def_t d;
319 320
320 _list_add (dl); 321 _list_add (dl);
321 d = DEF_LIST_DEF (*dl); 322 d = DEF_LIST_DEF (*dl);
322 323
323 d->orig_insn = original_insn; 324 d->orig_insn = original_insn;
324 d->crosses_call = crosses_call; 325 d->crosses_call = crosses_call;
325 } 326 }
326 327
327 328
328 /* Functions to work with target contexts. */ 329 /* Functions to work with target contexts. */
329 330
330 /* Bulk target context. It is convenient for debugging purposes to ensure 331 /* Bulk target context. It is convenient for debugging purposes to ensure
331 that there are no uninitialized (null) target contexts. */ 332 that there are no uninitialized (null) target contexts. */
332 static tc_t bulk_tc = (tc_t) 1; 333 static tc_t bulk_tc = (tc_t) 1;
333 334
334 /* Target hooks wrappers. In the future we can provide some default 335 /* Target hooks wrappers. In the future we can provide some default
335 implementations for them. */ 336 implementations for them. */
336 337
337 /* Allocate a store for the target context. */ 338 /* Allocate a store for the target context. */
338 static tc_t 339 static tc_t
339 alloc_target_context (void) 340 alloc_target_context (void)
421 { 422 {
422 clear_target_context (tc); 423 clear_target_context (tc);
423 init_target_context (tc, clean_p); 424 init_target_context (tc, clean_p);
424 } 425 }
425 426
426 /* Functions to work with dependence contexts. 427 /* Functions to work with dependence contexts.
427 Dc (aka deps context, aka deps_t, aka struct deps *) is short for dependence 428 Dc (aka deps context, aka deps_t, aka struct deps *) is short for dependence
428 context. It accumulates information about processed insns to decide if 429 context. It accumulates information about processed insns to decide if
429 current insn is dependent on the processed ones. */ 430 current insn is dependent on the processed ones. */
430 431
431 /* Make a copy of FROM in TO. */ 432 /* Make a copy of FROM in TO. */
432 static void 433 static void
433 copy_deps_context (deps_t to, deps_t from) 434 copy_deps_context (deps_t to, deps_t from)
434 { 435 {
435 init_deps (to); 436 init_deps (to, false);
436 deps_join (to, from); 437 deps_join (to, from);
437 } 438 }
438 439
439 /* Allocate store for dep context. */ 440 /* Allocate store for dep context. */
440 static deps_t 441 static deps_t
447 static deps_t 448 static deps_t
448 create_deps_context (void) 449 create_deps_context (void)
449 { 450 {
450 deps_t dc = alloc_deps_context (); 451 deps_t dc = alloc_deps_context ();
451 452
452 init_deps (dc); 453 init_deps (dc, false);
453 return dc; 454 return dc;
454 } 455 }
455 456
456 /* Create a copy of FROM. */ 457 /* Create a copy of FROM. */
457 static deps_t 458 static deps_t
481 /* Clear and init DC. */ 482 /* Clear and init DC. */
482 static void 483 static void
483 reset_deps_context (deps_t dc) 484 reset_deps_context (deps_t dc)
484 { 485 {
485 clear_deps_context (dc); 486 clear_deps_context (dc);
486 init_deps (dc); 487 init_deps (dc, false);
487 } 488 }
488 489
489 /* This structure describes the dependence analysis hooks for advancing 490 /* This structure describes the dependence analysis hooks for advancing
490 dependence context. */ 491 dependence context. */
491 static struct sched_deps_info_def advance_deps_context_sched_deps_info = 492 static struct sched_deps_info_def advance_deps_context_sched_deps_info =
492 { 493 {
493 NULL, 494 NULL,
494 495
595 { 596 {
596 insn_t succ; 597 insn_t succ;
597 succ_iterator si; 598 succ_iterator si;
598 bool first = true; 599 bool first = true;
599 int ready_ticks_size = get_max_uid () + 1; 600 int ready_ticks_size = get_max_uid () + 1;
600 601
601 FOR_EACH_SUCC_1 (succ, si, old_fence, 602 FOR_EACH_SUCC_1 (succ, si, old_fence,
602 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS) 603 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
603 { 604 {
604 605
605 if (first) 606 if (first)
606 first = false; 607 first = false;
607 else 608 else
608 gcc_assert (flag_sel_sched_pipelining_outer_loops); 609 gcc_assert (flag_sel_sched_pipelining_outer_loops);
609 610
610 flist_add (&fences, succ, 611 flist_add (&fences, succ,
611 state_create (), 612 state_create (),
612 create_deps_context () /* dc */, 613 create_deps_context () /* dc */,
613 create_target_context (true) /* tc */, 614 create_target_context (true) /* tc */,
614 NULL_RTX /* last_scheduled_insn */, 615 NULL_RTX /* last_scheduled_insn */,
615 NULL, /* executing_insns */ 616 NULL, /* executing_insns */
616 XCNEWVEC (int, ready_ticks_size), /* ready_ticks */ 617 XCNEWVEC (int, ready_ticks_size), /* ready_ticks */
617 ready_ticks_size, 618 ready_ticks_size,
618 NULL_RTX /* sched_next */, 619 NULL_RTX /* sched_next */,
619 1 /* cycle */, 0 /* cycle_issued_insns */, 620 1 /* cycle */, 0 /* cycle_issued_insns */,
620 1 /* starts_cycle_p */, 0 /* after_stall_p */); 621 1 /* starts_cycle_p */, 0 /* after_stall_p */);
621 } 622 }
622 } 623 }
623 624
624 /* Merges two fences (filling fields of fence F with resulting values) by 625 /* Merges two fences (filling fields of fence F with resulting values) by
625 following rules: 1) state, target context and last scheduled insn are 626 following rules: 1) state, target context and last scheduled insn are
626 propagated from fallthrough edge if it is available; 627 propagated from fallthrough edge if it is available;
627 2) deps context and cycle is propagated from more probable edge; 628 2) deps context and cycle is propagated from more probable edge;
628 3) all other fields are set to corresponding constant values. 629 3) all other fields are set to corresponding constant values.
629 630
630 INSN, STATE, DC, TC, LAST_SCHEDULED_INSN, EXECUTING_INSNS, 631 INSN, STATE, DC, TC, LAST_SCHEDULED_INSN, EXECUTING_INSNS,
631 READY_TICKS, READY_TICKS_SIZE, SCHED_NEXT, CYCLE and AFTER_STALL_P 632 READY_TICKS, READY_TICKS_SIZE, SCHED_NEXT, CYCLE and AFTER_STALL_P
632 are the corresponding fields of the second fence. */ 633 are the corresponding fields of the second fence. */
633 static void 634 static void
634 merge_fences (fence_t f, insn_t insn, 635 merge_fences (fence_t f, insn_t insn,
635 state_t state, deps_t dc, void *tc, 636 state_t state, deps_t dc, void *tc,
636 rtx last_scheduled_insn, VEC(rtx, gc) *executing_insns, 637 rtx last_scheduled_insn, VEC(rtx, gc) *executing_insns,
637 int *ready_ticks, int ready_ticks_size, 638 int *ready_ticks, int ready_ticks_size,
638 rtx sched_next, int cycle, bool after_stall_p) 639 rtx sched_next, int cycle, bool after_stall_p)
639 { 640 {
640 insn_t last_scheduled_insn_old = FENCE_LAST_SCHEDULED_INSN (f); 641 insn_t last_scheduled_insn_old = FENCE_LAST_SCHEDULED_INSN (f);
641 642
642 gcc_assert (sel_bb_head_p (FENCE_INSN (f)) 643 gcc_assert (sel_bb_head_p (FENCE_INSN (f))
643 && !sched_next && !FENCE_SCHED_NEXT (f)); 644 && !sched_next && !FENCE_SCHED_NEXT (f));
644 645
645 /* Check if we can decide which path fences came. 646 /* Check if we can decide which path fences came.
646 If we can't (or don't want to) - reset all. */ 647 If we can't (or don't want to) - reset all. */
647 if (last_scheduled_insn == NULL 648 if (last_scheduled_insn == NULL
648 || last_scheduled_insn_old == NULL 649 || last_scheduled_insn_old == NULL
649 /* This is a case when INSN is reachable on several paths from 650 /* This is a case when INSN is reachable on several paths from
650 one insn (this can happen when pipelining of outer loops is on and 651 one insn (this can happen when pipelining of outer loops is on and
651 there are two edges: one going around of inner loop and the other - 652 there are two edges: one going around of inner loop and the other -
652 right through it; in such case just reset everything). */ 653 right through it; in such case just reset everything). */
653 || last_scheduled_insn == last_scheduled_insn_old) 654 || last_scheduled_insn == last_scheduled_insn_old)
654 { 655 {
655 state_reset (FENCE_STATE (f)); 656 state_reset (FENCE_STATE (f));
656 state_free (state); 657 state_free (state);
657 658
658 reset_deps_context (FENCE_DC (f)); 659 reset_deps_context (FENCE_DC (f));
659 delete_deps_context (dc); 660 delete_deps_context (dc);
660 661
661 reset_target_context (FENCE_TC (f), true); 662 reset_target_context (FENCE_TC (f), true);
662 delete_target_context (tc); 663 delete_target_context (tc);
663 664
664 if (cycle > FENCE_CYCLE (f)) 665 if (cycle > FENCE_CYCLE (f))
665 FENCE_CYCLE (f) = cycle; 666 FENCE_CYCLE (f) = cycle;
666 667
667 FENCE_LAST_SCHEDULED_INSN (f) = NULL; 668 FENCE_LAST_SCHEDULED_INSN (f) = NULL;
668 VEC_free (rtx, gc, executing_insns); 669 VEC_free (rtx, gc, executing_insns);
669 free (ready_ticks); 670 free (ready_ticks);
670 if (FENCE_EXECUTING_INSNS (f)) 671 if (FENCE_EXECUTING_INSNS (f))
671 VEC_block_remove (rtx, FENCE_EXECUTING_INSNS (f), 0, 672 VEC_block_remove (rtx, FENCE_EXECUTING_INSNS (f), 0,
672 VEC_length (rtx, FENCE_EXECUTING_INSNS (f))); 673 VEC_length (rtx, FENCE_EXECUTING_INSNS (f)));
673 if (FENCE_READY_TICKS (f)) 674 if (FENCE_READY_TICKS (f))
674 memset (FENCE_READY_TICKS (f), 0, FENCE_READY_TICKS_SIZE (f)); 675 memset (FENCE_READY_TICKS (f), 0, FENCE_READY_TICKS_SIZE (f));
675 } 676 }
676 else 677 else
677 { 678 {
678 edge edge_old = NULL, edge_new = NULL; 679 edge edge_old = NULL, edge_new = NULL;
679 edge candidate; 680 edge candidate;
680 succ_iterator si; 681 succ_iterator si;
681 insn_t succ; 682 insn_t succ;
682 683
683 /* Find fallthrough edge. */ 684 /* Find fallthrough edge. */
684 gcc_assert (BLOCK_FOR_INSN (insn)->prev_bb); 685 gcc_assert (BLOCK_FOR_INSN (insn)->prev_bb);
685 candidate = find_fallthru_edge (BLOCK_FOR_INSN (insn)->prev_bb); 686 candidate = find_fallthru_edge (BLOCK_FOR_INSN (insn)->prev_bb);
686 687
687 if (!candidate 688 if (!candidate
689 && candidate->src != BLOCK_FOR_INSN (last_scheduled_insn_old))) 690 && candidate->src != BLOCK_FOR_INSN (last_scheduled_insn_old)))
690 { 691 {
691 /* No fallthrough edge leading to basic block of INSN. */ 692 /* No fallthrough edge leading to basic block of INSN. */
692 state_reset (FENCE_STATE (f)); 693 state_reset (FENCE_STATE (f));
693 state_free (state); 694 state_free (state);
694 695
695 reset_target_context (FENCE_TC (f), true); 696 reset_target_context (FENCE_TC (f), true);
696 delete_target_context (tc); 697 delete_target_context (tc);
697 698
698 FENCE_LAST_SCHEDULED_INSN (f) = NULL; 699 FENCE_LAST_SCHEDULED_INSN (f) = NULL;
699 } 700 }
700 else 701 else
701 if (candidate->src == BLOCK_FOR_INSN (last_scheduled_insn)) 702 if (candidate->src == BLOCK_FOR_INSN (last_scheduled_insn))
702 { 703 {
703 /* Would be weird if same insn is successor of several fallthrough 704 /* Would be weird if same insn is successor of several fallthrough
704 edges. */ 705 edges. */
705 gcc_assert (BLOCK_FOR_INSN (insn)->prev_bb 706 gcc_assert (BLOCK_FOR_INSN (insn)->prev_bb
706 != BLOCK_FOR_INSN (last_scheduled_insn_old)); 707 != BLOCK_FOR_INSN (last_scheduled_insn_old));
707 708
708 state_free (FENCE_STATE (f)); 709 state_free (FENCE_STATE (f));
751 { 752 {
752 reset_deps_context (FENCE_DC (f)); 753 reset_deps_context (FENCE_DC (f));
753 delete_deps_context (dc); 754 delete_deps_context (dc);
754 VEC_free (rtx, gc, executing_insns); 755 VEC_free (rtx, gc, executing_insns);
755 free (ready_ticks); 756 free (ready_ticks);
756 757
757 FENCE_CYCLE (f) = MAX (FENCE_CYCLE (f), cycle); 758 FENCE_CYCLE (f) = MAX (FENCE_CYCLE (f), cycle);
758 if (FENCE_EXECUTING_INSNS (f)) 759 if (FENCE_EXECUTING_INSNS (f))
759 VEC_block_remove (rtx, FENCE_EXECUTING_INSNS (f), 0, 760 VEC_block_remove (rtx, FENCE_EXECUTING_INSNS (f), 0,
760 VEC_length (rtx, FENCE_EXECUTING_INSNS (f))); 761 VEC_length (rtx, FENCE_EXECUTING_INSNS (f)));
761 if (FENCE_READY_TICKS (f)) 762 if (FENCE_READY_TICKS (f))
762 memset (FENCE_READY_TICKS (f), 0, FENCE_READY_TICKS_SIZE (f)); 763 memset (FENCE_READY_TICKS (f), 0, FENCE_READY_TICKS_SIZE (f));
763 } 764 }
764 else 765 else
789 FENCE_ISSUED_INSNS (f) = 0; 790 FENCE_ISSUED_INSNS (f) = 0;
790 FENCE_STARTS_CYCLE_P (f) = 1; 791 FENCE_STARTS_CYCLE_P (f) = 1;
791 FENCE_SCHED_NEXT (f) = NULL; 792 FENCE_SCHED_NEXT (f) = NULL;
792 } 793 }
793 794
794 /* Add a new fence to NEW_FENCES list, initializing it from all 795 /* Add a new fence to NEW_FENCES list, initializing it from all
795 other parameters. */ 796 other parameters. */
796 static void 797 static void
797 add_to_fences (flist_tail_t new_fences, insn_t insn, 798 add_to_fences (flist_tail_t new_fences, insn_t insn,
798 state_t state, deps_t dc, void *tc, rtx last_scheduled_insn, 799 state_t state, deps_t dc, void *tc, rtx last_scheduled_insn,
799 VEC(rtx, gc) *executing_insns, int *ready_ticks, 800 VEC(rtx, gc) *executing_insns, int *ready_ticks,
800 int ready_ticks_size, rtx sched_next, int cycle, 801 int ready_ticks_size, rtx sched_next, int cycle,
801 int cycle_issued_insns, bool starts_cycle_p, bool after_stall_p) 802 int cycle_issued_insns, bool starts_cycle_p, bool after_stall_p)
802 { 803 {
803 fence_t f = flist_lookup (FLIST_TAIL_HEAD (new_fences), insn); 804 fence_t f = flist_lookup (FLIST_TAIL_HEAD (new_fences), insn);
804 805
805 if (! f) 806 if (! f)
806 { 807 {
807 flist_add (FLIST_TAIL_TAILP (new_fences), insn, state, dc, tc, 808 flist_add (FLIST_TAIL_TAILP (new_fences), insn, state, dc, tc,
808 last_scheduled_insn, executing_insns, ready_ticks, 809 last_scheduled_insn, executing_insns, ready_ticks,
809 ready_ticks_size, sched_next, cycle, cycle_issued_insns, 810 ready_ticks_size, sched_next, cycle, cycle_issued_insns,
810 starts_cycle_p, after_stall_p); 811 starts_cycle_p, after_stall_p);
811 812
812 FLIST_TAIL_TAILP (new_fences) 813 FLIST_TAIL_TAILP (new_fences)
813 = &FLIST_NEXT (*FLIST_TAIL_TAILP (new_fences)); 814 = &FLIST_NEXT (*FLIST_TAIL_TAILP (new_fences));
814 } 815 }
815 else 816 else
816 { 817 {
817 merge_fences (f, insn, state, dc, tc, last_scheduled_insn, 818 merge_fences (f, insn, state, dc, tc, last_scheduled_insn,
818 executing_insns, ready_ticks, ready_ticks_size, 819 executing_insns, ready_ticks, ready_ticks_size,
819 sched_next, cycle, after_stall_p); 820 sched_next, cycle, after_stall_p);
820 } 821 }
821 } 822 }
822 823
823 /* Move the first fence in the OLD_FENCES list to NEW_FENCES. */ 824 /* Move the first fence in the OLD_FENCES list to NEW_FENCES. */
826 { 827 {
827 fence_t f, old; 828 fence_t f, old;
828 flist_t *tailp = FLIST_TAIL_TAILP (new_fences); 829 flist_t *tailp = FLIST_TAIL_TAILP (new_fences);
829 830
830 old = FLIST_FENCE (old_fences); 831 old = FLIST_FENCE (old_fences);
831 f = flist_lookup (FLIST_TAIL_HEAD (new_fences), 832 f = flist_lookup (FLIST_TAIL_HEAD (new_fences),
832 FENCE_INSN (FLIST_FENCE (old_fences))); 833 FENCE_INSN (FLIST_FENCE (old_fences)));
833 if (f) 834 if (f)
834 { 835 {
835 merge_fences (f, old->insn, old->state, old->dc, old->tc, 836 merge_fences (f, old->insn, old->state, old->dc, old->tc,
836 old->last_scheduled_insn, old->executing_insns, 837 old->last_scheduled_insn, old->executing_insns,
837 old->ready_ticks, old->ready_ticks_size, 838 old->ready_ticks, old->ready_ticks_size,
838 old->sched_next, old->cycle, 839 old->sched_next, old->cycle,
839 old->after_stall_p); 840 old->after_stall_p);
840 } 841 }
841 else 842 else
842 { 843 {
843 _list_add (tailp); 844 _list_add (tailp);
846 init_fence_for_scheduling (FLIST_FENCE (*tailp)); 847 init_fence_for_scheduling (FLIST_FENCE (*tailp));
847 } 848 }
848 FENCE_INSN (old) = NULL; 849 FENCE_INSN (old) = NULL;
849 } 850 }
850 851
851 /* Add a new fence to NEW_FENCES list and initialize most of its data 852 /* Add a new fence to NEW_FENCES list and initialize most of its data
852 as a clean one. */ 853 as a clean one. */
853 void 854 void
854 add_clean_fence_to_fences (flist_tail_t new_fences, insn_t succ, fence_t fence) 855 add_clean_fence_to_fences (flist_tail_t new_fences, insn_t succ, fence_t fence)
855 { 856 {
856 int ready_ticks_size = get_max_uid () + 1; 857 int ready_ticks_size = get_max_uid () + 1;
857 858
858 add_to_fences (new_fences, 859 add_to_fences (new_fences,
859 succ, state_create (), create_deps_context (), 860 succ, state_create (), create_deps_context (),
860 create_target_context (true), 861 create_target_context (true),
861 NULL_RTX, NULL, 862 NULL_RTX, NULL,
862 XCNEWVEC (int, ready_ticks_size), ready_ticks_size, 863 XCNEWVEC (int, ready_ticks_size), ready_ticks_size,
863 NULL_RTX, FENCE_CYCLE (fence) + 1, 864 NULL_RTX, FENCE_CYCLE (fence) + 1,
864 0, 1, FENCE_AFTER_STALL_P (fence)); 865 0, 1, FENCE_AFTER_STALL_P (fence));
865 } 866 }
866 867
867 /* Add a new fence to NEW_FENCES list and initialize all of its data 868 /* Add a new fence to NEW_FENCES list and initialize all of its data
868 from FENCE and SUCC. */ 869 from FENCE and SUCC. */
869 void 870 void
870 add_dirty_fence_to_fences (flist_tail_t new_fences, insn_t succ, fence_t fence) 871 add_dirty_fence_to_fences (flist_tail_t new_fences, insn_t succ, fence_t fence)
871 { 872 {
872 int * new_ready_ticks 873 int * new_ready_ticks
873 = XNEWVEC (int, FENCE_READY_TICKS_SIZE (fence)); 874 = XNEWVEC (int, FENCE_READY_TICKS_SIZE (fence));
874 875
875 memcpy (new_ready_ticks, FENCE_READY_TICKS (fence), 876 memcpy (new_ready_ticks, FENCE_READY_TICKS (fence),
876 FENCE_READY_TICKS_SIZE (fence) * sizeof (int)); 877 FENCE_READY_TICKS_SIZE (fence) * sizeof (int));
877 add_to_fences (new_fences, 878 add_to_fences (new_fences,
878 succ, state_create_copy (FENCE_STATE (fence)), 879 succ, state_create_copy (FENCE_STATE (fence)),
879 create_copy_of_deps_context (FENCE_DC (fence)), 880 create_copy_of_deps_context (FENCE_DC (fence)),
880 create_copy_of_target_context (FENCE_TC (fence)), 881 create_copy_of_target_context (FENCE_TC (fence)),
881 FENCE_LAST_SCHEDULED_INSN (fence), 882 FENCE_LAST_SCHEDULED_INSN (fence),
882 VEC_copy (rtx, gc, FENCE_EXECUTING_INSNS (fence)), 883 VEC_copy (rtx, gc, FENCE_EXECUTING_INSNS (fence)),
883 new_ready_ticks, 884 new_ready_ticks,
884 FENCE_READY_TICKS_SIZE (fence), 885 FENCE_READY_TICKS_SIZE (fence),
885 FENCE_SCHED_NEXT (fence), 886 FENCE_SCHED_NEXT (fence),
886 FENCE_CYCLE (fence), 887 FENCE_CYCLE (fence),
956 #ifdef ENABLE_CHECKING 957 #ifdef ENABLE_CHECKING
957 { 958 {
958 regset *v = regset_pool.v; 959 regset *v = regset_pool.v;
959 int i = 0; 960 int i = 0;
960 int n = regset_pool.n; 961 int n = regset_pool.n;
961 962
962 regset *vv = regset_pool.vv; 963 regset *vv = regset_pool.vv;
963 int ii = 0; 964 int ii = 0;
964 int nn = regset_pool.nn; 965 int nn = regset_pool.nn;
965 966
966 int diff = 0; 967 int diff = 0;
967 968
968 gcc_assert (n <= nn); 969 gcc_assert (n <= nn);
969 970
970 /* Sort both vectors so it will be possible to compare them. */ 971 /* Sort both vectors so it will be possible to compare them. */
971 qsort (v, n, sizeof (*v), cmp_v_in_regset_pool); 972 qsort (v, n, sizeof (*v), cmp_v_in_regset_pool);
972 qsort (vv, nn, sizeof (*vv), cmp_v_in_regset_pool); 973 qsort (vv, nn, sizeof (*vv), cmp_v_in_regset_pool);
973 974
974 while (ii < nn) 975 while (ii < nn)
975 { 976 {
976 if (v[i] == vv[ii]) 977 if (v[i] == vv[ii])
977 i++; 978 i++;
978 else 979 else
979 /* VV[II] was lost. */ 980 /* VV[II] was lost. */
980 diff++; 981 diff++;
981 982
982 ii++; 983 ii++;
983 } 984 }
984 985
985 gcc_assert (diff == regset_pool.diff); 986 gcc_assert (diff == regset_pool.diff);
986 } 987 }
987 #endif 988 #endif
988 989
989 /* If not true - we have a memory leak. */ 990 /* If not true - we have a memory leak. */
990 gcc_assert (regset_pool.diff == 0); 991 gcc_assert (regset_pool.diff == 0);
991 992
992 while (regset_pool.n) 993 while (regset_pool.n)
993 { 994 {
994 --regset_pool.n; 995 --regset_pool.n;
995 FREE_REG_SET (regset_pool.v[regset_pool.n]); 996 FREE_REG_SET (regset_pool.v[regset_pool.n]);
996 } 997 }
997 998
998 free (regset_pool.v); 999 free (regset_pool.v);
999 regset_pool.v = NULL; 1000 regset_pool.v = NULL;
1000 regset_pool.s = 0; 1001 regset_pool.s = 0;
1001 1002
1002 free (regset_pool.vv); 1003 free (regset_pool.vv);
1003 regset_pool.vv = NULL; 1004 regset_pool.vv = NULL;
1004 regset_pool.nn = 0; 1005 regset_pool.nn = 0;
1005 regset_pool.ss = 0; 1006 regset_pool.ss = 0;
1006 1007
1007 regset_pool.diff = 0; 1008 regset_pool.diff = 0;
1008 } 1009 }
1009 1010
1010 1011
1011 /* Functions to work with nop pools. NOP insns are used as temporary 1012 /* Functions to work with nop pools. NOP insns are used as temporary
1012 placeholders of the insns being scheduled to allow correct update of 1013 placeholders of the insns being scheduled to allow correct update of
1013 the data sets. When update is finished, NOPs are deleted. */ 1014 the data sets. When update is finished, NOPs are deleted. */
1014 1015
1015 /* A vinsn that is used to represent a nop. This vinsn is shared among all 1016 /* A vinsn that is used to represent a nop. This vinsn is shared among all
1016 nops sel-sched generates. */ 1017 nops sel-sched generates. */
1017 static vinsn_t nop_vinsn = NULL; 1018 static vinsn_t nop_vinsn = NULL;
1042 return nop; 1043 return nop;
1043 } 1044 }
1044 1045
1045 /* Remove NOP from the instruction stream and return it to the pool. */ 1046 /* Remove NOP from the instruction stream and return it to the pool. */
1046 void 1047 void
1047 return_nop_to_pool (insn_t nop) 1048 return_nop_to_pool (insn_t nop, bool full_tidying)
1048 { 1049 {
1049 gcc_assert (INSN_IN_STREAM_P (nop)); 1050 gcc_assert (INSN_IN_STREAM_P (nop));
1050 sel_remove_insn (nop, false, true); 1051 sel_remove_insn (nop, false, full_tidying);
1051 1052
1052 if (nop_pool.n == nop_pool.s) 1053 if (nop_pool.n == nop_pool.s)
1053 nop_pool.v = XRESIZEVEC (rtx, nop_pool.v, 1054 nop_pool.v = XRESIZEVEC (rtx, nop_pool.v,
1054 (nop_pool.s = 2 * nop_pool.s + 1)); 1055 (nop_pool.s = 2 * nop_pool.s + 1));
1055 nop_pool.v[nop_pool.n++] = nop; 1056 nop_pool.v[nop_pool.n++] = nop;
1056 } 1057 }
1057 1058
1058 /* Free the nop pool. */ 1059 /* Free the nop pool. */
1064 free (nop_pool.v); 1065 free (nop_pool.v);
1065 nop_pool.v = NULL; 1066 nop_pool.v = NULL;
1066 } 1067 }
1067 1068
1068 1069
1069 /* Skip unspec to support ia64 speculation. Called from rtx_equal_p_cb. 1070 /* Skip unspec to support ia64 speculation. Called from rtx_equal_p_cb.
1070 The callback is given two rtxes XX and YY and writes the new rtxes 1071 The callback is given two rtxes XX and YY and writes the new rtxes
1071 to NX and NY in case some needs to be skipped. */ 1072 to NX and NY in case some needs to be skipped. */
1072 static int 1073 static int
1073 skip_unspecs_callback (const_rtx *xx, const_rtx *yy, rtx *nx, rtx* ny) 1074 skip_unspecs_callback (const_rtx *xx, const_rtx *yy, rtx *nx, rtx* ny)
1074 { 1075 {
1075 const_rtx x = *xx; 1076 const_rtx x = *xx;
1076 const_rtx y = *yy; 1077 const_rtx y = *yy;
1077 1078
1078 if (GET_CODE (x) == UNSPEC 1079 if (GET_CODE (x) == UNSPEC
1079 && (targetm.sched.skip_rtx_p == NULL 1080 && (targetm.sched.skip_rtx_p == NULL
1080 || targetm.sched.skip_rtx_p (x))) 1081 || targetm.sched.skip_rtx_p (x)))
1081 { 1082 {
1082 *nx = XVECEXP (x, 0, 0); 1083 *nx = XVECEXP (x, 0, 0);
1083 *ny = CONST_CAST_RTX (y); 1084 *ny = CONST_CAST_RTX (y);
1084 return 1; 1085 return 1;
1085 } 1086 }
1086 1087
1087 if (GET_CODE (y) == UNSPEC 1088 if (GET_CODE (y) == UNSPEC
1088 && (targetm.sched.skip_rtx_p == NULL 1089 && (targetm.sched.skip_rtx_p == NULL
1089 || targetm.sched.skip_rtx_p (y))) 1090 || targetm.sched.skip_rtx_p (y)))
1090 { 1091 {
1091 *nx = CONST_CAST_RTX (x); 1092 *nx = CONST_CAST_RTX (x);
1092 *ny = XVECEXP (y, 0, 0); 1093 *ny = XVECEXP (y, 0, 0);
1093 return 1; 1094 return 1;
1094 } 1095 }
1095 1096
1096 return 0; 1097 return 0;
1097 } 1098 }
1098 1099
1099 /* Callback, called from hash_rtx_cb. Helps to hash UNSPEC rtx X in a correct way 1100 /* Callback, called from hash_rtx_cb. Helps to hash UNSPEC rtx X in a correct way
1100 to support ia64 speculation. When changes are needed, new rtx X and new mode 1101 to support ia64 speculation. When changes are needed, new rtx X and new mode
1101 NMODE are written, and the callback returns true. */ 1102 NMODE are written, and the callback returns true. */
1102 static int 1103 static int
1103 hash_with_unspec_callback (const_rtx x, enum machine_mode mode ATTRIBUTE_UNUSED, 1104 hash_with_unspec_callback (const_rtx x, enum machine_mode mode ATTRIBUTE_UNUSED,
1104 rtx *nx, enum machine_mode* nmode) 1105 rtx *nx, enum machine_mode* nmode)
1105 { 1106 {
1106 if (GET_CODE (x) == UNSPEC 1107 if (GET_CODE (x) == UNSPEC
1107 && targetm.sched.skip_rtx_p 1108 && targetm.sched.skip_rtx_p
1108 && targetm.sched.skip_rtx_p (x)) 1109 && targetm.sched.skip_rtx_p (x))
1109 { 1110 {
1110 *nx = XVECEXP (x, 0 ,0); 1111 *nx = XVECEXP (x, 0 ,0);
1111 *nmode = 0; 1112 *nmode = VOIDmode;
1112 return 1; 1113 return 1;
1113 } 1114 }
1114 1115
1115 return 0; 1116 return 0;
1116 } 1117 }
1117 1118
1118 /* Returns LHS and RHS are ok to be scheduled separately. */ 1119 /* Returns LHS and RHS are ok to be scheduled separately. */
1119 static bool 1120 static bool
1120 lhs_and_rhs_separable_p (rtx lhs, rtx rhs) 1121 lhs_and_rhs_separable_p (rtx lhs, rtx rhs)
1121 { 1122 {
1122 if (lhs == NULL || rhs == NULL) 1123 if (lhs == NULL || rhs == NULL)
1123 return false; 1124 return false;
1124 1125
1125 /* Do not schedule CONST, CONST_INT and CONST_DOUBLE etc as rhs: no point 1126 /* Do not schedule CONST, CONST_INT and CONST_DOUBLE etc as rhs: no point
1126 to use reg, if const can be used. Moreover, scheduling const as rhs may 1127 to use reg, if const can be used. Moreover, scheduling const as rhs may
1127 lead to mode mismatch cause consts don't have modes but they could be 1128 lead to mode mismatch cause consts don't have modes but they could be
1128 merged from branches where the same const used in different modes. */ 1129 merged from branches where the same const used in different modes. */
1129 if (CONSTANT_P (rhs)) 1130 if (CONSTANT_P (rhs))
1130 return false; 1131 return false;
1131 1132
1132 /* ??? Do not rename predicate registers to avoid ICEs in bundling. */ 1133 /* ??? Do not rename predicate registers to avoid ICEs in bundling. */
1135 1136
1136 /* Do not allow single REG to be an rhs. */ 1137 /* Do not allow single REG to be an rhs. */
1137 if (REG_P (rhs)) 1138 if (REG_P (rhs))
1138 return false; 1139 return false;
1139 1140
1140 /* See comment at find_used_regs_1 (*1) for explanation of this 1141 /* See comment at find_used_regs_1 (*1) for explanation of this
1141 restriction. */ 1142 restriction. */
1142 /* FIXME: remove this later. */ 1143 /* FIXME: remove this later. */
1143 if (MEM_P (lhs)) 1144 if (MEM_P (lhs))
1144 return false; 1145 return false;
1145 1146
1149 return false; 1150 return false;
1150 1151
1151 return true; 1152 return true;
1152 } 1153 }
1153 1154
1154 /* Initialize vinsn VI for INSN. Only for use from vinsn_create (). When 1155 /* Initialize vinsn VI for INSN. Only for use from vinsn_create (). When
1155 FORCE_UNIQUE_P is true, the resulting vinsn will not be clonable. This is 1156 FORCE_UNIQUE_P is true, the resulting vinsn will not be clonable. This is
1156 used e.g. for insns from recovery blocks. */ 1157 used e.g. for insns from recovery blocks. */
1157 static void 1158 static void
1158 vinsn_init (vinsn_t vi, insn_t insn, bool force_unique_p) 1159 vinsn_init (vinsn_t vi, insn_t insn, bool force_unique_p)
1159 { 1160 {
1160 hash_rtx_callback_function hrcf; 1161 hash_rtx_callback_function hrcf;
1161 int insn_class; 1162 int insn_class;
1162 1163
1163 VINSN_INSN_RTX (vi) = insn; 1164 VINSN_INSN_RTX (vi) = insn;
1164 VINSN_COUNT (vi) = 0; 1165 VINSN_COUNT (vi) = 0;
1165 vi->cost = -1; 1166 vi->cost = -1;
1166 1167
1167 if (DF_INSN_UID_SAFE_GET (INSN_UID (insn)) != NULL) 1168 if (DF_INSN_UID_SAFE_GET (INSN_UID (insn)) != NULL)
1168 init_id_from_df (VINSN_ID (vi), insn, force_unique_p); 1169 init_id_from_df (VINSN_ID (vi), insn, force_unique_p);
1169 else 1170 else
1170 deps_init_id (VINSN_ID (vi), insn, force_unique_p); 1171 deps_init_id (VINSN_ID (vi), insn, force_unique_p);
1171 1172
1172 /* Hash vinsn depending on whether it is separable or not. */ 1173 /* Hash vinsn depending on whether it is separable or not. */
1173 hrcf = targetm.sched.skip_rtx_p ? hash_with_unspec_callback : NULL; 1174 hrcf = targetm.sched.skip_rtx_p ? hash_with_unspec_callback : NULL;
1174 if (VINSN_SEPARABLE_P (vi)) 1175 if (VINSN_SEPARABLE_P (vi))
1175 { 1176 {
1176 rtx rhs = VINSN_RHS (vi); 1177 rtx rhs = VINSN_RHS (vi);
1185 { 1186 {
1186 VINSN_HASH (vi) = hash_rtx_cb (VINSN_PATTERN (vi), VOIDmode, 1187 VINSN_HASH (vi) = hash_rtx_cb (VINSN_PATTERN (vi), VOIDmode,
1187 NULL, NULL, false, hrcf); 1188 NULL, NULL, false, hrcf);
1188 VINSN_HASH_RTX (vi) = VINSN_HASH (vi); 1189 VINSN_HASH_RTX (vi) = VINSN_HASH (vi);
1189 } 1190 }
1190 1191
1191 insn_class = haifa_classify_insn (insn); 1192 insn_class = haifa_classify_insn (insn);
1192 if (insn_class >= 2 1193 if (insn_class >= 2
1193 && (!targetm.sched.get_insn_spec_ds 1194 && (!targetm.sched.get_insn_spec_ds
1194 || ((targetm.sched.get_insn_spec_ds (insn) & BEGIN_CONTROL) 1195 || ((targetm.sched.get_insn_spec_ds (insn) & BEGIN_CONTROL)
1195 == 0))) 1196 == 0)))
1206 gcc_assert (VINSN_INSN_RTX (vi)); 1207 gcc_assert (VINSN_INSN_RTX (vi));
1207 1208
1208 VINSN_COUNT (vi)++; 1209 VINSN_COUNT (vi)++;
1209 } 1210 }
1210 1211
1211 /* Create and init VI from the INSN. Use UNIQUE_P for determining the correct 1212 /* Create and init VI from the INSN. Use UNIQUE_P for determining the correct
1212 VINSN_TYPE (VI). */ 1213 VINSN_TYPE (VI). */
1213 static vinsn_t 1214 static vinsn_t
1214 vinsn_create (insn_t insn, bool force_unique_p) 1215 vinsn_create (insn_t insn, bool force_unique_p)
1215 { 1216 {
1216 vinsn_t vi = XCNEW (struct vinsn_def); 1217 vinsn_t vi = XCNEW (struct vinsn_def);
1219 return vi; 1220 return vi;
1220 } 1221 }
1221 1222
1222 /* Return a copy of VI. When REATTACH_P is true, detach VI and attach 1223 /* Return a copy of VI. When REATTACH_P is true, detach VI and attach
1223 the copy. */ 1224 the copy. */
1224 vinsn_t 1225 vinsn_t
1225 vinsn_copy (vinsn_t vi, bool reattach_p) 1226 vinsn_copy (vinsn_t vi, bool reattach_p)
1226 { 1227 {
1227 rtx copy; 1228 rtx copy;
1228 bool unique = VINSN_UNIQUE_P (vi); 1229 bool unique = VINSN_UNIQUE_P (vi);
1229 vinsn_t new_vi; 1230 vinsn_t new_vi;
1230 1231
1231 copy = create_copy_of_insn_rtx (VINSN_INSN_RTX (vi)); 1232 copy = create_copy_of_insn_rtx (VINSN_INSN_RTX (vi));
1232 new_vi = create_vinsn_from_insn_rtx (copy, unique); 1233 new_vi = create_vinsn_from_insn_rtx (copy, unique);
1233 if (reattach_p) 1234 if (reattach_p)
1234 { 1235 {
1235 vinsn_detach (vi); 1236 vinsn_detach (vi);
1250 return_regset_to_pool (VINSN_REG_CLOBBERS (vi)); 1251 return_regset_to_pool (VINSN_REG_CLOBBERS (vi));
1251 1252
1252 free (vi); 1253 free (vi);
1253 } 1254 }
1254 1255
1255 /* Indicate that VI is no longer a part of some rtx object. 1256 /* Indicate that VI is no longer a part of some rtx object.
1256 Remove VI if it is no longer needed. */ 1257 Remove VI if it is no longer needed. */
1257 void 1258 void
1258 vinsn_detach (vinsn_t vi) 1259 vinsn_detach (vinsn_t vi)
1259 { 1260 {
1260 gcc_assert (VINSN_COUNT (vi) > 0); 1261 gcc_assert (VINSN_COUNT (vi) > 0);
1357 1358
1358 return insn; 1359 return insn;
1359 } 1360 }
1360 1361
1361 /* Emit new insn after AFTER based on EXPR and SEQNO. If VINSN is not NULL, 1362 /* Emit new insn after AFTER based on EXPR and SEQNO. If VINSN is not NULL,
1362 take it as a new vinsn instead of EXPR's vinsn. 1363 take it as a new vinsn instead of EXPR's vinsn.
1363 We simplify insns later, after scheduling region in 1364 We simplify insns later, after scheduling region in
1364 simplify_changed_insns. */ 1365 simplify_changed_insns. */
1365 insn_t 1366 insn_t
1366 sel_gen_insn_from_expr_after (expr_t expr, vinsn_t vinsn, int seqno, 1367 sel_gen_insn_from_expr_after (expr_t expr, vinsn_t vinsn, int seqno,
1367 insn_t after) 1368 insn_t after)
1368 { 1369 {
1369 expr_t emit_expr; 1370 expr_t emit_expr;
1370 insn_t insn; 1371 insn_t insn;
1371 int flags; 1372 int flags;
1372 1373
1373 emit_expr = set_insn_init (expr, vinsn ? vinsn : EXPR_VINSN (expr), 1374 emit_expr = set_insn_init (expr, vinsn ? vinsn : EXPR_VINSN (expr),
1374 seqno); 1375 seqno);
1375 insn = EXPR_INSN_RTX (emit_expr); 1376 insn = EXPR_INSN_RTX (emit_expr);
1376 add_insn_after (insn, after, BLOCK_FOR_INSN (insn)); 1377 add_insn_after (insn, after, BLOCK_FOR_INSN (insn));
1377 1378
1378 flags = INSN_INIT_TODO_SSID; 1379 flags = INSN_INIT_TODO_SSID;
1379 if (INSN_LUID (insn) == 0) 1380 if (INSN_LUID (insn) == 0)
1380 flags |= INSN_INIT_TODO_LUID; 1381 flags |= INSN_INIT_TODO_LUID;
1381 sel_init_new_insn (insn, flags); 1382 sel_init_new_insn (insn, flags);
1401 1402
1402 /* Update links from insn to bb and vice versa. */ 1403 /* Update links from insn to bb and vice versa. */
1403 df_insn_change_bb (insn, bb); 1404 df_insn_change_bb (insn, bb);
1404 if (BB_END (bb) == after) 1405 if (BB_END (bb) == after)
1405 BB_END (bb) = insn; 1406 BB_END (bb) = insn;
1406 1407
1407 prepare_insn_expr (insn, seqno); 1408 prepare_insn_expr (insn, seqno);
1408 return insn; 1409 return insn;
1409 } 1410 }
1410 1411
1411 1412
1412 /* Functions to work with right-hand sides. */ 1413 /* Functions to work with right-hand sides. */
1413 1414
1414 /* Search for a hash value determined by UID/NEW_VINSN in a sorted vector 1415 /* Search for a hash value determined by UID/NEW_VINSN in a sorted vector
1415 VECT and return true when found. Use NEW_VINSN for comparison only when 1416 VECT and return true when found. Use NEW_VINSN for comparison only when
1416 COMPARE_VINSNS is true. Write to INDP the index on which 1417 COMPARE_VINSNS is true. Write to INDP the index on which
1417 the search has stopped, such that inserting the new element at INDP will 1418 the search has stopped, such that inserting the new element at INDP will
1418 retain VECT's sort order. */ 1419 retain VECT's sort order. */
1419 static bool 1420 static bool
1420 find_in_history_vect_1 (VEC(expr_history_def, heap) *vect, 1421 find_in_history_vect_1 (VEC(expr_history_def, heap) *vect,
1421 unsigned uid, vinsn_t new_vinsn, 1422 unsigned uid, vinsn_t new_vinsn,
1422 bool compare_vinsns, int *indp) 1423 bool compare_vinsns, int *indp)
1423 { 1424 {
1424 expr_history_def *arr; 1425 expr_history_def *arr;
1425 int i, j, len = VEC_length (expr_history_def, vect); 1426 int i, j, len = VEC_length (expr_history_def, vect);
1426 1427
1434 i = 0, j = len - 1; 1435 i = 0, j = len - 1;
1435 1436
1436 while (i <= j) 1437 while (i <= j)
1437 { 1438 {
1438 unsigned auid = arr[i].uid; 1439 unsigned auid = arr[i].uid;
1439 vinsn_t avinsn = arr[i].new_expr_vinsn; 1440 vinsn_t avinsn = arr[i].new_expr_vinsn;
1440 1441
1441 if (auid == uid 1442 if (auid == uid
1442 /* When undoing transformation on a bookkeeping copy, the new vinsn 1443 /* When undoing transformation on a bookkeeping copy, the new vinsn
1443 may not be exactly equal to the one that is saved in the vector. 1444 may not be exactly equal to the one that is saved in the vector.
1444 This is because the insn whose copy we're checking was possibly 1445 This is because the insn whose copy we're checking was possibly
1445 substituted itself. */ 1446 substituted itself. */
1446 && (! compare_vinsns 1447 && (! compare_vinsns
1447 || vinsn_equal_p (avinsn, new_vinsn))) 1448 || vinsn_equal_p (avinsn, new_vinsn)))
1448 { 1449 {
1449 *indp = i; 1450 *indp = i;
1450 return true; 1451 return true;
1451 } 1452 }
1456 1457
1457 *indp = i; 1458 *indp = i;
1458 return false; 1459 return false;
1459 } 1460 }
1460 1461
1461 /* Search for a uid of INSN and NEW_VINSN in a sorted vector VECT. Return 1462 /* Search for a uid of INSN and NEW_VINSN in a sorted vector VECT. Return
1462 the position found or -1, if no such value is in vector. 1463 the position found or -1, if no such value is in vector.
1463 Search also for UIDs of insn's originators, if ORIGINATORS_P is true. */ 1464 Search also for UIDs of insn's originators, if ORIGINATORS_P is true. */
1464 int 1465 int
1465 find_in_history_vect (VEC(expr_history_def, heap) *vect, rtx insn, 1466 find_in_history_vect (VEC(expr_history_def, heap) *vect, rtx insn,
1466 vinsn_t new_vinsn, bool originators_p) 1467 vinsn_t new_vinsn, bool originators_p)
1467 { 1468 {
1468 int ind; 1469 int ind;
1469 1470
1470 if (find_in_history_vect_1 (vect, INSN_UID (insn), new_vinsn, 1471 if (find_in_history_vect_1 (vect, INSN_UID (insn), new_vinsn,
1471 false, &ind)) 1472 false, &ind))
1472 return ind; 1473 return ind;
1473 1474
1474 if (INSN_ORIGINATORS (insn) && originators_p) 1475 if (INSN_ORIGINATORS (insn) && originators_p)
1475 { 1476 {
1478 1479
1479 EXECUTE_IF_SET_IN_BITMAP (INSN_ORIGINATORS (insn), 0, uid, bi) 1480 EXECUTE_IF_SET_IN_BITMAP (INSN_ORIGINATORS (insn), 0, uid, bi)
1480 if (find_in_history_vect_1 (vect, uid, new_vinsn, false, &ind)) 1481 if (find_in_history_vect_1 (vect, uid, new_vinsn, false, &ind))
1481 return ind; 1482 return ind;
1482 } 1483 }
1483 1484
1484 return -1; 1485 return -1;
1485 } 1486 }
1486 1487
1487 /* Insert new element in a sorted history vector pointed to by PVECT, 1488 /* Insert new element in a sorted history vector pointed to by PVECT,
1488 if it is not there already. The element is searched using 1489 if it is not there already. The element is searched using
1489 UID/NEW_EXPR_VINSN pair. TYPE, OLD_EXPR_VINSN and SPEC_DS save 1490 UID/NEW_EXPR_VINSN pair. TYPE, OLD_EXPR_VINSN and SPEC_DS save
1490 the history of a transformation. */ 1491 the history of a transformation. */
1491 void 1492 void
1492 insert_in_history_vect (VEC (expr_history_def, heap) **pvect, 1493 insert_in_history_vect (VEC (expr_history_def, heap) **pvect,
1493 unsigned uid, enum local_trans_type type, 1494 unsigned uid, enum local_trans_type type,
1494 vinsn_t old_expr_vinsn, vinsn_t new_expr_vinsn, 1495 vinsn_t old_expr_vinsn, vinsn_t new_expr_vinsn,
1495 ds_t spec_ds) 1496 ds_t spec_ds)
1496 { 1497 {
1497 VEC(expr_history_def, heap) *vect = *pvect; 1498 VEC(expr_history_def, heap) *vect = *pvect;
1498 expr_history_def temp; 1499 expr_history_def temp;
1499 bool res; 1500 bool res;
1503 1504
1504 if (res) 1505 if (res)
1505 { 1506 {
1506 expr_history_def *phist = VEC_index (expr_history_def, vect, ind); 1507 expr_history_def *phist = VEC_index (expr_history_def, vect, ind);
1507 1508
1508 /* When merging, either old vinsns are the *same* or, if not, both 1509 /* It is possible that speculation types of expressions that were
1509 old and new vinsns are different pointers. In the latter case,
1510 though, new vinsns should be equal. */
1511 gcc_assert (phist->old_expr_vinsn == old_expr_vinsn
1512 || (phist->new_expr_vinsn != new_expr_vinsn
1513 && (vinsn_equal_p
1514 (phist->old_expr_vinsn, old_expr_vinsn))));
1515
1516 /* It is possible that speculation types of expressions that were
1517 propagated through different paths will be different here. In this 1510 propagated through different paths will be different here. In this
1518 case, merge the status to get the correct check later. */ 1511 case, merge the status to get the correct check later. */
1519 if (phist->spec_ds != spec_ds) 1512 if (phist->spec_ds != spec_ds)
1520 phist->spec_ds = ds_max_merge (phist->spec_ds, spec_ds); 1513 phist->spec_ds = ds_max_merge (phist->spec_ds, spec_ds);
1521 return; 1514 return;
1522 } 1515 }
1523 1516
1524 temp.uid = uid; 1517 temp.uid = uid;
1525 temp.old_expr_vinsn = old_expr_vinsn; 1518 temp.old_expr_vinsn = old_expr_vinsn;
1526 temp.new_expr_vinsn = new_expr_vinsn; 1519 temp.new_expr_vinsn = new_expr_vinsn;
1527 temp.spec_ds = spec_ds; 1520 temp.spec_ds = spec_ds;
1528 temp.type = type; 1521 temp.type = type;
1529 1522
1530 vinsn_attach (old_expr_vinsn); 1523 vinsn_attach (old_expr_vinsn);
1531 vinsn_attach (new_expr_vinsn); 1524 vinsn_attach (new_expr_vinsn);
1540 unsigned i; 1533 unsigned i;
1541 expr_history_def *phist; 1534 expr_history_def *phist;
1542 1535
1543 if (! *pvect) 1536 if (! *pvect)
1544 return; 1537 return;
1545 1538
1546 for (i = 0; 1539 for (i = 0;
1547 VEC_iterate (expr_history_def, *pvect, i, phist); 1540 VEC_iterate (expr_history_def, *pvect, i, phist);
1548 i++) 1541 i++)
1549 { 1542 {
1550 vinsn_detach (phist->old_expr_vinsn); 1543 vinsn_detach (phist->old_expr_vinsn);
1551 vinsn_detach (phist->new_expr_vinsn); 1544 vinsn_detach (phist->new_expr_vinsn);
1552 } 1545 }
1553 1546
1554 VEC_free (expr_history_def, heap, *pvect); 1547 VEC_free (expr_history_def, heap, *pvect);
1555 *pvect = NULL; 1548 *pvect = NULL;
1556 } 1549 }
1557 1550
1558 1551
1570 1563
1571 if (VINSN_HASH (x) != VINSN_HASH (y)) 1564 if (VINSN_HASH (x) != VINSN_HASH (y))
1572 return false; 1565 return false;
1573 1566
1574 repcf = targetm.sched.skip_rtx_p ? skip_unspecs_callback : NULL; 1567 repcf = targetm.sched.skip_rtx_p ? skip_unspecs_callback : NULL;
1575 if (VINSN_SEPARABLE_P (x)) 1568 if (VINSN_SEPARABLE_P (x))
1576 { 1569 {
1577 /* Compare RHSes of VINSNs. */ 1570 /* Compare RHSes of VINSNs. */
1578 gcc_assert (VINSN_RHS (x)); 1571 gcc_assert (VINSN_RHS (x));
1579 gcc_assert (VINSN_RHS (y)); 1572 gcc_assert (VINSN_RHS (y));
1580 1573
1590 /* Initialize EXPR. */ 1583 /* Initialize EXPR. */
1591 static void 1584 static void
1592 init_expr (expr_t expr, vinsn_t vi, int spec, int use, int priority, 1585 init_expr (expr_t expr, vinsn_t vi, int spec, int use, int priority,
1593 int sched_times, int orig_bb_index, ds_t spec_done_ds, 1586 int sched_times, int orig_bb_index, ds_t spec_done_ds,
1594 ds_t spec_to_check_ds, int orig_sched_cycle, 1587 ds_t spec_to_check_ds, int orig_sched_cycle,
1595 VEC(expr_history_def, heap) *history, bool target_available, 1588 VEC(expr_history_def, heap) *history, bool target_available,
1596 bool was_substituted, bool was_renamed, bool needs_spec_check_p, 1589 bool was_substituted, bool was_renamed, bool needs_spec_check_p,
1597 bool cant_move) 1590 bool cant_move)
1598 { 1591 {
1599 vinsn_attach (vi); 1592 vinsn_attach (vi);
1600 1593
1631 { 1624 {
1632 unsigned i; 1625 unsigned i;
1633 expr_history_def *phist; 1626 expr_history_def *phist;
1634 1627
1635 temp = VEC_copy (expr_history_def, heap, EXPR_HISTORY_OF_CHANGES (from)); 1628 temp = VEC_copy (expr_history_def, heap, EXPR_HISTORY_OF_CHANGES (from));
1636 for (i = 0; 1629 for (i = 0;
1637 VEC_iterate (expr_history_def, temp, i, phist); 1630 VEC_iterate (expr_history_def, temp, i, phist);
1638 i++) 1631 i++)
1639 { 1632 {
1640 vinsn_attach (phist->old_expr_vinsn); 1633 vinsn_attach (phist->old_expr_vinsn);
1641 vinsn_attach (phist->new_expr_vinsn); 1634 vinsn_attach (phist->new_expr_vinsn);
1642 } 1635 }
1643 } 1636 }
1644 1637
1645 init_expr (to, EXPR_VINSN (from), EXPR_SPEC (from), 1638 init_expr (to, EXPR_VINSN (from), EXPR_SPEC (from),
1646 EXPR_USEFULNESS (from), EXPR_PRIORITY (from), 1639 EXPR_USEFULNESS (from), EXPR_PRIORITY (from),
1647 EXPR_SCHED_TIMES (from), EXPR_ORIG_BB_INDEX (from), 1640 EXPR_SCHED_TIMES (from), EXPR_ORIG_BB_INDEX (from),
1648 EXPR_SPEC_DONE_DS (from), EXPR_SPEC_TO_CHECK_DS (from), 1641 EXPR_SPEC_DONE_DS (from), EXPR_SPEC_TO_CHECK_DS (from),
1649 EXPR_ORIG_SCHED_CYCLE (from), temp, 1642 EXPR_ORIG_SCHED_CYCLE (from), temp,
1650 EXPR_TARGET_AVAILABLE (from), EXPR_WAS_SUBSTITUTED (from), 1643 EXPR_TARGET_AVAILABLE (from), EXPR_WAS_SUBSTITUTED (from),
1651 EXPR_WAS_RENAMED (from), EXPR_NEEDS_SPEC_CHECK_P (from), 1644 EXPR_WAS_RENAMED (from), EXPR_NEEDS_SPEC_CHECK_P (from),
1652 EXPR_CANT_MOVE (from)); 1645 EXPR_CANT_MOVE (from));
1653 } 1646 }
1654 1647
1655 /* Same, but the final expr will not ever be in av sets, so don't copy 1648 /* Same, but the final expr will not ever be in av sets, so don't copy
1656 "uninteresting" data such as bitmap cache. */ 1649 "uninteresting" data such as bitmap cache. */
1657 void 1650 void
1658 copy_expr_onside (expr_t to, expr_t from) 1651 copy_expr_onside (expr_t to, expr_t from)
1659 { 1652 {
1660 init_expr (to, EXPR_VINSN (from), EXPR_SPEC (from), EXPR_USEFULNESS (from), 1653 init_expr (to, EXPR_VINSN (from), EXPR_SPEC (from), EXPR_USEFULNESS (from),
1670 static void 1663 static void
1671 prepare_insn_expr (insn_t insn, int seqno) 1664 prepare_insn_expr (insn_t insn, int seqno)
1672 { 1665 {
1673 expr_t expr = INSN_EXPR (insn); 1666 expr_t expr = INSN_EXPR (insn);
1674 ds_t ds; 1667 ds_t ds;
1675 1668
1676 INSN_SEQNO (insn) = seqno; 1669 INSN_SEQNO (insn) = seqno;
1677 EXPR_ORIG_BB_INDEX (expr) = BLOCK_NUM (insn); 1670 EXPR_ORIG_BB_INDEX (expr) = BLOCK_NUM (insn);
1678 EXPR_SPEC (expr) = 0; 1671 EXPR_SPEC (expr) = 0;
1679 EXPR_ORIG_SCHED_CYCLE (expr) = 0; 1672 EXPR_ORIG_SCHED_CYCLE (expr) = 0;
1680 EXPR_WAS_SUBSTITUTED (expr) = 0; 1673 EXPR_WAS_SUBSTITUTED (expr) = 0;
1693 1686
1694 free_history_vect (&EXPR_HISTORY_OF_CHANGES (expr)); 1687 free_history_vect (&EXPR_HISTORY_OF_CHANGES (expr));
1695 } 1688 }
1696 1689
1697 /* Update target_available bits when merging exprs TO and FROM. SPLIT_POINT 1690 /* Update target_available bits when merging exprs TO and FROM. SPLIT_POINT
1698 is non-null when expressions are merged from different successors at 1691 is non-null when expressions are merged from different successors at
1699 a split point. */ 1692 a split point. */
1700 static void 1693 static void
1701 update_target_availability (expr_t to, expr_t from, insn_t split_point) 1694 update_target_availability (expr_t to, expr_t from, insn_t split_point)
1702 { 1695 {
1703 if (EXPR_TARGET_AVAILABLE (to) < 0 1696 if (EXPR_TARGET_AVAILABLE (to) < 0
1704 || EXPR_TARGET_AVAILABLE (from) < 0) 1697 || EXPR_TARGET_AVAILABLE (from) < 0)
1705 EXPR_TARGET_AVAILABLE (to) = -1; 1698 EXPR_TARGET_AVAILABLE (to) = -1;
1706 else 1699 else
1707 { 1700 {
1708 /* We try to detect the case when one of the expressions 1701 /* We try to detect the case when one of the expressions
1712 { 1705 {
1713 int toind, fromind; 1706 int toind, fromind;
1714 1707
1715 toind = EXPR_ORIG_BB_INDEX (to); 1708 toind = EXPR_ORIG_BB_INDEX (to);
1716 fromind = EXPR_ORIG_BB_INDEX (from); 1709 fromind = EXPR_ORIG_BB_INDEX (from);
1717 1710
1718 if (toind && toind == fromind) 1711 if (toind && toind == fromind)
1719 /* Do nothing -- everything is done in 1712 /* Do nothing -- everything is done in
1720 merge_with_other_exprs. */ 1713 merge_with_other_exprs. */
1721 ; 1714 ;
1722 else 1715 else
1723 EXPR_TARGET_AVAILABLE (to) = -1; 1716 EXPR_TARGET_AVAILABLE (to) = -1;
1724 } 1717 }
1726 EXPR_TARGET_AVAILABLE (to) &= EXPR_TARGET_AVAILABLE (from); 1719 EXPR_TARGET_AVAILABLE (to) &= EXPR_TARGET_AVAILABLE (from);
1727 } 1720 }
1728 } 1721 }
1729 1722
1730 /* Update speculation bits when merging exprs TO and FROM. SPLIT_POINT 1723 /* Update speculation bits when merging exprs TO and FROM. SPLIT_POINT
1731 is non-null when expressions are merged from different successors at 1724 is non-null when expressions are merged from different successors at
1732 a split point. */ 1725 a split point. */
1733 static void 1726 static void
1734 update_speculative_bits (expr_t to, expr_t from, insn_t split_point) 1727 update_speculative_bits (expr_t to, expr_t from, insn_t split_point)
1735 { 1728 {
1736 ds_t old_to_ds, old_from_ds; 1729 ds_t old_to_ds, old_from_ds;
1737 1730
1738 old_to_ds = EXPR_SPEC_DONE_DS (to); 1731 old_to_ds = EXPR_SPEC_DONE_DS (to);
1739 old_from_ds = EXPR_SPEC_DONE_DS (from); 1732 old_from_ds = EXPR_SPEC_DONE_DS (from);
1740 1733
1741 EXPR_SPEC_DONE_DS (to) = ds_max_merge (old_to_ds, old_from_ds); 1734 EXPR_SPEC_DONE_DS (to) = ds_max_merge (old_to_ds, old_from_ds);
1742 EXPR_SPEC_TO_CHECK_DS (to) |= EXPR_SPEC_TO_CHECK_DS (from); 1735 EXPR_SPEC_TO_CHECK_DS (to) |= EXPR_SPEC_TO_CHECK_DS (from);
1743 EXPR_NEEDS_SPEC_CHECK_P (to) |= EXPR_NEEDS_SPEC_CHECK_P (from); 1736 EXPR_NEEDS_SPEC_CHECK_P (to) |= EXPR_NEEDS_SPEC_CHECK_P (from);
1744 1737
1745 /* When merging e.g. control & data speculative exprs, or a control 1738 /* When merging e.g. control & data speculative exprs, or a control
1746 speculative with a control&data speculative one, we really have 1739 speculative with a control&data speculative one, we really have
1747 to change vinsn too. Also, when speculative status is changed, 1740 to change vinsn too. Also, when speculative status is changed,
1748 we also need to record this as a transformation in expr's history. */ 1741 we also need to record this as a transformation in expr's history. */
1749 if ((old_to_ds & SPECULATIVE) || (old_from_ds & SPECULATIVE)) 1742 if ((old_to_ds & SPECULATIVE) || (old_from_ds & SPECULATIVE))
1750 { 1743 {
1751 old_to_ds = ds_get_speculation_types (old_to_ds); 1744 old_to_ds = ds_get_speculation_types (old_to_ds);
1752 old_from_ds = ds_get_speculation_types (old_from_ds); 1745 old_from_ds = ds_get_speculation_types (old_from_ds);
1753 1746
1754 if (old_to_ds != old_from_ds) 1747 if (old_to_ds != old_from_ds)
1755 { 1748 {
1756 ds_t record_ds; 1749 ds_t record_ds;
1757 1750
1758 /* When both expressions are speculative, we need to change 1751 /* When both expressions are speculative, we need to change
1759 the vinsn first. */ 1752 the vinsn first. */
1760 if ((old_to_ds & SPECULATIVE) && (old_from_ds & SPECULATIVE)) 1753 if ((old_to_ds & SPECULATIVE) && (old_from_ds & SPECULATIVE))
1761 { 1754 {
1762 int res; 1755 int res;
1763 1756
1764 res = speculate_expr (to, EXPR_SPEC_DONE_DS (to)); 1757 res = speculate_expr (to, EXPR_SPEC_DONE_DS (to));
1765 gcc_assert (res >= 0); 1758 gcc_assert (res >= 0);
1766 } 1759 }
1767 1760
1768 if (split_point != NULL) 1761 if (split_point != NULL)
1769 { 1762 {
1770 /* Record the change with proper status. */ 1763 /* Record the change with proper status. */
1771 record_ds = EXPR_SPEC_DONE_DS (to) & SPECULATIVE; 1764 record_ds = EXPR_SPEC_DONE_DS (to) & SPECULATIVE;
1772 record_ds &= ~(old_to_ds & SPECULATIVE); 1765 record_ds &= ~(old_to_ds & SPECULATIVE);
1773 record_ds &= ~(old_from_ds & SPECULATIVE); 1766 record_ds &= ~(old_from_ds & SPECULATIVE);
1774 1767
1775 insert_in_history_vect (&EXPR_HISTORY_OF_CHANGES (to), 1768 insert_in_history_vect (&EXPR_HISTORY_OF_CHANGES (to),
1776 INSN_UID (split_point), TRANS_SPECULATION, 1769 INSN_UID (split_point), TRANS_SPECULATION,
1777 EXPR_VINSN (from), EXPR_VINSN (to), 1770 EXPR_VINSN (from), EXPR_VINSN (to),
1778 record_ds); 1771 record_ds);
1779 } 1772 }
1780 } 1773 }
1781 } 1774 }
1787 void 1780 void
1788 merge_expr_data (expr_t to, expr_t from, insn_t split_point) 1781 merge_expr_data (expr_t to, expr_t from, insn_t split_point)
1789 { 1782 {
1790 int i; 1783 int i;
1791 expr_history_def *phist; 1784 expr_history_def *phist;
1792 1785
1793 /* For now, we just set the spec of resulting expr to be minimum of the specs 1786 /* For now, we just set the spec of resulting expr to be minimum of the specs
1794 of merged exprs. */ 1787 of merged exprs. */
1795 if (EXPR_SPEC (to) > EXPR_SPEC (from)) 1788 if (EXPR_SPEC (to) > EXPR_SPEC (from))
1796 EXPR_SPEC (to) = EXPR_SPEC (from); 1789 EXPR_SPEC (to) = EXPR_SPEC (from);
1797 1790
1798 if (split_point) 1791 if (split_point)
1799 EXPR_USEFULNESS (to) += EXPR_USEFULNESS (from); 1792 EXPR_USEFULNESS (to) += EXPR_USEFULNESS (from);
1800 else 1793 else
1801 EXPR_USEFULNESS (to) = MAX (EXPR_USEFULNESS (to), 1794 EXPR_USEFULNESS (to) = MAX (EXPR_USEFULNESS (to),
1802 EXPR_USEFULNESS (from)); 1795 EXPR_USEFULNESS (from));
1803 1796
1804 if (EXPR_PRIORITY (to) < EXPR_PRIORITY (from)) 1797 if (EXPR_PRIORITY (to) < EXPR_PRIORITY (from))
1805 EXPR_PRIORITY (to) = EXPR_PRIORITY (from); 1798 EXPR_PRIORITY (to) = EXPR_PRIORITY (from);
1806 1799
1808 EXPR_SCHED_TIMES (to) = EXPR_SCHED_TIMES (from); 1801 EXPR_SCHED_TIMES (to) = EXPR_SCHED_TIMES (from);
1809 1802
1810 if (EXPR_ORIG_BB_INDEX (to) != EXPR_ORIG_BB_INDEX (from)) 1803 if (EXPR_ORIG_BB_INDEX (to) != EXPR_ORIG_BB_INDEX (from))
1811 EXPR_ORIG_BB_INDEX (to) = 0; 1804 EXPR_ORIG_BB_INDEX (to) = 0;
1812 1805
1813 EXPR_ORIG_SCHED_CYCLE (to) = MIN (EXPR_ORIG_SCHED_CYCLE (to), 1806 EXPR_ORIG_SCHED_CYCLE (to) = MIN (EXPR_ORIG_SCHED_CYCLE (to),
1814 EXPR_ORIG_SCHED_CYCLE (from)); 1807 EXPR_ORIG_SCHED_CYCLE (from));
1815 1808
1816 /* We keep this vector sorted. */ 1809 /* We keep this vector sorted. */
1817 for (i = 0; 1810 for (i = 0;
1818 VEC_iterate (expr_history_def, EXPR_HISTORY_OF_CHANGES (from), 1811 VEC_iterate (expr_history_def, EXPR_HISTORY_OF_CHANGES (from),
1819 i, phist); 1812 i, phist);
1820 i++) 1813 i++)
1821 insert_in_history_vect (&EXPR_HISTORY_OF_CHANGES (to), 1814 insert_in_history_vect (&EXPR_HISTORY_OF_CHANGES (to),
1822 phist->uid, phist->type, 1815 phist->uid, phist->type,
1823 phist->old_expr_vinsn, phist->new_expr_vinsn, 1816 phist->old_expr_vinsn, phist->new_expr_vinsn,
1824 phist->spec_ds); 1817 phist->spec_ds);
1825 1818
1826 EXPR_WAS_SUBSTITUTED (to) |= EXPR_WAS_SUBSTITUTED (from); 1819 EXPR_WAS_SUBSTITUTED (to) |= EXPR_WAS_SUBSTITUTED (from);
1827 EXPR_WAS_RENAMED (to) |= EXPR_WAS_RENAMED (from); 1820 EXPR_WAS_RENAMED (to) |= EXPR_WAS_RENAMED (from);
1828 EXPR_CANT_MOVE (to) |= EXPR_CANT_MOVE (from); 1821 EXPR_CANT_MOVE (to) |= EXPR_CANT_MOVE (from);
1830 update_target_availability (to, from, split_point); 1823 update_target_availability (to, from, split_point);
1831 update_speculative_bits (to, from, split_point); 1824 update_speculative_bits (to, from, split_point);
1832 } 1825 }
1833 1826
1834 /* Merge bits of FROM expr to TO expr. Vinsns in the exprs should be equal 1827 /* Merge bits of FROM expr to TO expr. Vinsns in the exprs should be equal
1835 in terms of vinsn_equal_p. SPLIT_POINT is non-null when expressions 1828 in terms of vinsn_equal_p. SPLIT_POINT is non-null when expressions
1836 are merged from different successors at a split point. */ 1829 are merged from different successors at a split point. */
1837 void 1830 void
1838 merge_expr (expr_t to, expr_t from, insn_t split_point) 1831 merge_expr (expr_t to, expr_t from, insn_t split_point)
1839 { 1832 {
1840 vinsn_t to_vi = EXPR_VINSN (to); 1833 vinsn_t to_vi = EXPR_VINSN (to);
1855 1848
1856 /* Clear the information of this EXPR. */ 1849 /* Clear the information of this EXPR. */
1857 void 1850 void
1858 clear_expr (expr_t expr) 1851 clear_expr (expr_t expr)
1859 { 1852 {
1860 1853
1861 vinsn_detach (EXPR_VINSN (expr)); 1854 vinsn_detach (EXPR_VINSN (expr));
1862 EXPR_VINSN (expr) = NULL; 1855 EXPR_VINSN (expr) = NULL;
1863 1856
1864 free_history_vect (&EXPR_HISTORY_OF_CHANGES (expr)); 1857 free_history_vect (&EXPR_HISTORY_OF_CHANGES (expr));
1865 } 1858 }
1871 if (EXPR_SEPARABLE_P (expr)) 1864 if (EXPR_SEPARABLE_P (expr))
1872 { 1865 {
1873 if (REG_P (EXPR_LHS (expr)) 1866 if (REG_P (EXPR_LHS (expr))
1874 && bitmap_bit_p (lv_set, REGNO (EXPR_LHS (expr)))) 1867 && bitmap_bit_p (lv_set, REGNO (EXPR_LHS (expr))))
1875 { 1868 {
1876 /* If it's an insn like r1 = use (r1, ...), and it exists in 1869 /* If it's an insn like r1 = use (r1, ...), and it exists in
1877 different forms in each of the av_sets being merged, we can't say 1870 different forms in each of the av_sets being merged, we can't say
1878 whether original destination register is available or not. 1871 whether original destination register is available or not.
1879 However, this still works if destination register is not used 1872 However, this still works if destination register is not used
1880 in the original expression: if the branch at which LV_SET we're 1873 in the original expression: if the branch at which LV_SET we're
1881 looking here is not actually 'other branch' in sense that same 1874 looking here is not actually 'other branch' in sense that same
1882 expression is available through it (but it can't be determined 1875 expression is available through it (but it can't be determined
1883 at computation stage because of transformations on one of the 1876 at computation stage because of transformations on one of the
1884 branches), it still won't affect the availability. 1877 branches), it still won't affect the availability.
1885 Liveness of a register somewhere on a code motion path means 1878 Liveness of a register somewhere on a code motion path means
1886 it's either read somewhere on a codemotion path, live on 1879 it's either read somewhere on a codemotion path, live on
1887 'other' branch, live at the point immediately following 1880 'other' branch, live at the point immediately following
1888 the original operation, or is read by the original operation. 1881 the original operation, or is read by the original operation.
1889 The latter case is filtered out in the condition below. 1882 The latter case is filtered out in the condition below.
1890 It still doesn't cover the case when register is defined and used 1883 It still doesn't cover the case when register is defined and used
1891 somewhere within the code motion path, and in this case we could 1884 somewhere within the code motion path, and in this case we could
1892 miss a unifying code motion along both branches using a renamed 1885 miss a unifying code motion along both branches using a renamed
1893 register, but it won't affect a code correctness since upon 1886 register, but it won't affect a code correctness since upon
1894 an actual code motion a bookkeeping code would be generated. */ 1887 an actual code motion a bookkeeping code would be generated. */
1895 if (bitmap_bit_p (VINSN_REG_USES (EXPR_VINSN (expr)), 1888 if (bitmap_bit_p (VINSN_REG_USES (EXPR_VINSN (expr)),
1896 REGNO (EXPR_LHS (expr)))) 1889 REGNO (EXPR_LHS (expr))))
1897 EXPR_TARGET_AVAILABLE (expr) = -1; 1890 EXPR_TARGET_AVAILABLE (expr) = -1;
1898 else 1891 else
1899 EXPR_TARGET_AVAILABLE (expr) = false; 1892 EXPR_TARGET_AVAILABLE (expr) = false;
1900 } 1893 }
1901 } 1894 }
1902 else 1895 else
1903 { 1896 {
1904 unsigned regno; 1897 unsigned regno;
1905 reg_set_iterator rsi; 1898 reg_set_iterator rsi;
1906 1899
1907 EXECUTE_IF_SET_IN_REG_SET (VINSN_REG_SETS (EXPR_VINSN (expr)), 1900 EXECUTE_IF_SET_IN_REG_SET (VINSN_REG_SETS (EXPR_VINSN (expr)),
1908 0, regno, rsi) 1901 0, regno, rsi)
1909 if (bitmap_bit_p (lv_set, regno)) 1902 if (bitmap_bit_p (lv_set, regno))
1910 { 1903 {
1911 EXPR_TARGET_AVAILABLE (expr) = false; 1904 EXPR_TARGET_AVAILABLE (expr) = false;
1912 break; 1905 break;
1920 break; 1913 break;
1921 } 1914 }
1922 } 1915 }
1923 } 1916 }
1924 1917
1925 /* Try to make EXPR speculative. Return 1 when EXPR's pattern 1918 /* Try to make EXPR speculative. Return 1 when EXPR's pattern
1926 or dependence status have changed, 2 when also the target register 1919 or dependence status have changed, 2 when also the target register
1927 became unavailable, 0 if nothing had to be changed. */ 1920 became unavailable, 0 if nothing had to be changed. */
1928 int 1921 int
1929 speculate_expr (expr_t expr, ds_t ds) 1922 speculate_expr (expr_t expr, ds_t ds)
1930 { 1923 {
1945 switch (res) 1938 switch (res)
1946 { 1939 {
1947 case 0: 1940 case 0:
1948 EXPR_SPEC_DONE_DS (expr) = ds; 1941 EXPR_SPEC_DONE_DS (expr) = ds;
1949 return current_ds != ds ? 1 : 0; 1942 return current_ds != ds ? 1 : 0;
1950 1943
1951 case 1: 1944 case 1:
1952 { 1945 {
1953 rtx spec_insn_rtx = create_insn_rtx_from_pattern (spec_pat, NULL_RTX); 1946 rtx spec_insn_rtx = create_insn_rtx_from_pattern (spec_pat, NULL_RTX);
1954 vinsn_t spec_vinsn = create_vinsn_from_insn_rtx (spec_insn_rtx, false); 1947 vinsn_t spec_vinsn = create_vinsn_from_insn_rtx (spec_insn_rtx, false);
1955 1948
1956 change_vinsn_in_expr (expr, spec_vinsn); 1949 change_vinsn_in_expr (expr, spec_vinsn);
1957 EXPR_SPEC_DONE_DS (expr) = ds; 1950 EXPR_SPEC_DONE_DS (expr) = ds;
1958 EXPR_NEEDS_SPEC_CHECK_P (expr) = true; 1951 EXPR_NEEDS_SPEC_CHECK_P (expr) = true;
1959 1952
1960 /* Do not allow clobbering the address register of speculative 1953 /* Do not allow clobbering the address register of speculative
1961 insns. */ 1954 insns. */
1962 if (bitmap_bit_p (VINSN_REG_USES (EXPR_VINSN (expr)), 1955 if (bitmap_bit_p (VINSN_REG_USES (EXPR_VINSN (expr)),
1963 expr_dest_regno (expr))) 1956 expr_dest_regno (expr)))
1964 { 1957 {
1965 EXPR_TARGET_AVAILABLE (expr) = false; 1958 EXPR_TARGET_AVAILABLE (expr) = false;
1966 return 2; 1959 return 2;
1967 } 1960 }
1998 1991
1999 gcc_assert (dest != NULL_RTX); 1992 gcc_assert (dest != NULL_RTX);
2000 return REGNO (dest); 1993 return REGNO (dest);
2001 } 1994 }
2002 1995
2003 /* For a given LV_SET, mark all expressions in JOIN_SET, but not present in 1996 /* For a given LV_SET, mark all expressions in JOIN_SET, but not present in
2004 AV_SET having unavailable target register. */ 1997 AV_SET having unavailable target register. */
2005 void 1998 void
2006 mark_unavailable_targets (av_set_t join_set, av_set_t av_set, regset lv_set) 1999 mark_unavailable_targets (av_set_t join_set, av_set_t av_set, regset lv_set)
2007 { 2000 {
2008 expr_t expr; 2001 expr_t expr;
2029 /* Add EXPR to SETP. */ 2022 /* Add EXPR to SETP. */
2030 void 2023 void
2031 av_set_add (av_set_t *setp, expr_t expr) 2024 av_set_add (av_set_t *setp, expr_t expr)
2032 { 2025 {
2033 av_set_t elem; 2026 av_set_t elem;
2034 2027
2035 gcc_assert (!INSN_NOP_P (EXPR_INSN_RTX (expr))); 2028 gcc_assert (!INSN_NOP_P (EXPR_INSN_RTX (expr)));
2036 elem = av_set_add_element (setp); 2029 elem = av_set_add_element (setp);
2037 copy_expr (_AV_SET_EXPR (elem), expr); 2030 copy_expr (_AV_SET_EXPR (elem), expr);
2038 } 2031 }
2039 2032
2119 of the exprs would be controversial for different code. */ 2112 of the exprs would be controversial for different code. */
2120 EXPR_TARGET_AVAILABLE (expr2) = -1; 2113 EXPR_TARGET_AVAILABLE (expr2) = -1;
2121 EXPR_USEFULNESS (expr2) = 0; 2114 EXPR_USEFULNESS (expr2) = 0;
2122 2115
2123 merge_expr (expr2, expr, NULL); 2116 merge_expr (expr2, expr, NULL);
2124 2117
2125 /* Fix usefulness as it should be now REG_BR_PROB_BASE. */ 2118 /* Fix usefulness as it should be now REG_BR_PROB_BASE. */
2126 EXPR_USEFULNESS (expr2) = REG_BR_PROB_BASE; 2119 EXPR_USEFULNESS (expr2) = REG_BR_PROB_BASE;
2127 2120
2128 av_set_iter_remove (ip); 2121 av_set_iter_remove (ip);
2129 return expr2; 2122 return expr2;
2130 } 2123 }
2131 2124
2132 return expr; 2125 return expr;
2185 } 2178 }
2186 2179
2187 join_distinct_sets (i.lp, fromp); 2180 join_distinct_sets (i.lp, fromp);
2188 } 2181 }
2189 2182
2190 /* Same as above, but also update availability of target register in 2183 /* Same as above, but also update availability of target register in
2191 TOP judging by TO_LV_SET and FROM_LV_SET. */ 2184 TOP judging by TO_LV_SET and FROM_LV_SET. */
2192 void 2185 void
2193 av_set_union_and_live (av_set_t *top, av_set_t *fromp, regset to_lv_set, 2186 av_set_union_and_live (av_set_t *top, av_set_t *fromp, regset to_lv_set,
2194 regset from_lv_set, insn_t insn) 2187 regset from_lv_set, insn_t insn)
2195 { 2188 {
2202 { 2195 {
2203 expr_t expr2 = av_set_lookup_and_remove (fromp, EXPR_VINSN (expr1)); 2196 expr_t expr2 = av_set_lookup_and_remove (fromp, EXPR_VINSN (expr1));
2204 2197
2205 if (expr2) 2198 if (expr2)
2206 { 2199 {
2207 /* It may be that the expressions have different destination 2200 /* It may be that the expressions have different destination
2208 registers, in which case we need to check liveness here. */ 2201 registers, in which case we need to check liveness here. */
2209 if (EXPR_SEPARABLE_P (expr1)) 2202 if (EXPR_SEPARABLE_P (expr1))
2210 { 2203 {
2211 int regno1 = (REG_P (EXPR_LHS (expr1)) 2204 int regno1 = (REG_P (EXPR_LHS (expr1))
2212 ? (int) expr_dest_regno (expr1) : -1); 2205 ? (int) expr_dest_regno (expr1) : -1);
2213 int regno2 = (REG_P (EXPR_LHS (expr2)) 2206 int regno2 = (REG_P (EXPR_LHS (expr2))
2214 ? (int) expr_dest_regno (expr2) : -1); 2207 ? (int) expr_dest_regno (expr2) : -1);
2215 2208
2216 /* ??? We don't have a way to check restrictions for 2209 /* ??? We don't have a way to check restrictions for
2217 *other* register on the current path, we did it only 2210 *other* register on the current path, we did it only
2218 for the current target register. Give up. */ 2211 for the current target register. Give up. */
2219 if (regno1 != regno2) 2212 if (regno1 != regno2)
2220 EXPR_TARGET_AVAILABLE (expr2) = -1; 2213 EXPR_TARGET_AVAILABLE (expr2) = -1;
2221 } 2214 }
2225 merge_expr (expr2, expr1, insn); 2218 merge_expr (expr2, expr1, insn);
2226 av_set_add_nocopy (&in_both_set, expr2); 2219 av_set_add_nocopy (&in_both_set, expr2);
2227 av_set_iter_remove (&i); 2220 av_set_iter_remove (&i);
2228 } 2221 }
2229 else 2222 else
2230 /* EXPR1 is present in TOP, but not in FROMP. Check it on 2223 /* EXPR1 is present in TOP, but not in FROMP. Check it on
2231 FROM_LV_SET. */ 2224 FROM_LV_SET. */
2232 set_unavailable_target_for_expr (expr1, from_lv_set); 2225 set_unavailable_target_for_expr (expr1, from_lv_set);
2233 } 2226 }
2234 to_tailp = i.lp; 2227 to_tailp = i.lp;
2235 2228
2261 { 2254 {
2262 expr_t expr; 2255 expr_t expr;
2263 av_set_iterator i; 2256 av_set_iterator i;
2264 bool has_one_nonspec = false; 2257 bool has_one_nonspec = false;
2265 2258
2266 /* Keep all speculative exprs, and leave one non-speculative 2259 /* Keep all speculative exprs, and leave one non-speculative
2267 (the first one). */ 2260 (the first one). */
2268 FOR_EACH_EXPR_1 (expr, i, setp) 2261 FOR_EACH_EXPR_1 (expr, i, setp)
2269 { 2262 {
2270 if (!EXPR_SPEC_DONE_DS (expr)) 2263 if (!EXPR_SPEC_DONE_DS (expr))
2271 { 2264 {
2302 FOR_EACH_EXPR_1 (expr, i, avp) 2295 FOR_EACH_EXPR_1 (expr, i, avp)
2303 if (vinsn_cond_branch_p (EXPR_VINSN (expr))) 2296 if (vinsn_cond_branch_p (EXPR_VINSN (expr)))
2304 av_set_iter_remove (&i); 2297 av_set_iter_remove (&i);
2305 } 2298 }
2306 2299
2307 /* Multiplies usefulness attribute of each member of av-set *AVP by 2300 /* Multiplies usefulness attribute of each member of av-set *AVP by
2308 value PROB / ALL_PROB. */ 2301 value PROB / ALL_PROB. */
2309 void 2302 void
2310 av_set_split_usefulness (av_set_t av, int prob, int all_prob) 2303 av_set_split_usefulness (av_set_t av, int prob, int all_prob)
2311 { 2304 {
2312 av_set_iterator i; 2305 av_set_iterator i;
2313 expr_t expr; 2306 expr_t expr;
2314 2307
2315 FOR_EACH_EXPR (expr, i, av) 2308 FOR_EACH_EXPR (expr, i, av)
2316 EXPR_USEFULNESS (expr) = (all_prob 2309 EXPR_USEFULNESS (expr) = (all_prob
2317 ? (EXPR_USEFULNESS (expr) * prob) / all_prob 2310 ? (EXPR_USEFULNESS (expr) * prob) / all_prob
2318 : 0); 2311 : 0);
2319 } 2312 }
2320 2313
2321 /* Leave in AVP only those expressions, which are present in AV, 2314 /* Leave in AVP only those expressions, which are present in AV,
2351 /* True when insn should be treated as of type USE, i.e. never renamed. */ 2344 /* True when insn should be treated as of type USE, i.e. never renamed. */
2352 bool force_use_p; 2345 bool force_use_p;
2353 } deps_init_id_data; 2346 } deps_init_id_data;
2354 2347
2355 2348
2356 /* Setup ID for INSN. FORCE_UNIQUE_P is true when INSN should not be 2349 /* Setup ID for INSN. FORCE_UNIQUE_P is true when INSN should not be
2357 clonable. */ 2350 clonable. */
2358 static void 2351 static void
2359 setup_id_for_insn (idata_t id, insn_t insn, bool force_unique_p) 2352 setup_id_for_insn (idata_t id, insn_t insn, bool force_unique_p)
2360 { 2353 {
2361 int type; 2354 int type;
2362 2355
2363 /* Determine whether INSN could be cloned and return appropriate vinsn type. 2356 /* Determine whether INSN could be cloned and return appropriate vinsn type.
2364 That clonable insns which can be separated into lhs and rhs have type SET. 2357 That clonable insns which can be separated into lhs and rhs have type SET.
2365 Other clonable insns have type USE. */ 2358 Other clonable insns have type USE. */
2366 type = GET_CODE (insn); 2359 type = GET_CODE (insn);
2367 2360
2368 /* Only regular insns could be cloned. */ 2361 /* Only regular insns could be cloned. */
2369 if (type == INSN && !force_unique_p) 2362 if (type == INSN && !force_unique_p)
2370 type = SET; 2363 type = SET;
2371 else if (type == JUMP_INSN && simplejump_p (insn)) 2364 else if (type == JUMP_INSN && simplejump_p (insn))
2372 type = PC; 2365 type = PC;
2373 2366 else if (type == DEBUG_INSN)
2367 type = !force_unique_p ? USE : INSN;
2368
2374 IDATA_TYPE (id) = type; 2369 IDATA_TYPE (id) = type;
2375 IDATA_REG_SETS (id) = get_clear_regset_from_pool (); 2370 IDATA_REG_SETS (id) = get_clear_regset_from_pool ();
2376 IDATA_REG_USES (id) = get_clear_regset_from_pool (); 2371 IDATA_REG_USES (id) = get_clear_regset_from_pool ();
2377 IDATA_REG_CLOBBERS (id) = get_clear_regset_from_pool (); 2372 IDATA_REG_CLOBBERS (id) = get_clear_regset_from_pool ();
2378 } 2373 }
2420 2415
2421 if (IDATA_TYPE (deps_init_id_data.id) != PC) 2416 if (IDATA_TYPE (deps_init_id_data.id) != PC)
2422 SET_REGNO_REG_SET (IDATA_REG_SETS (deps_init_id_data.id), regno); 2417 SET_REGNO_REG_SET (IDATA_REG_SETS (deps_init_id_data.id), regno);
2423 2418
2424 #ifdef STACK_REGS 2419 #ifdef STACK_REGS
2425 /* Make instructions that set stack registers to be ineligible for 2420 /* Make instructions that set stack registers to be ineligible for
2426 renaming to avoid issues with find_used_regs. */ 2421 renaming to avoid issues with find_used_regs. */
2427 if (IN_RANGE (regno, FIRST_STACK_REG, LAST_STACK_REG)) 2422 if (IN_RANGE (regno, FIRST_STACK_REG, LAST_STACK_REG))
2428 deps_init_id_data.force_use_p = true; 2423 deps_init_id_data.force_use_p = true;
2429 #endif 2424 #endif
2430 } 2425 }
2487 rtx rhs = IDATA_RHS (deps_init_id_data.id); 2482 rtx rhs = IDATA_RHS (deps_init_id_data.id);
2488 2483
2489 if (lhs == NULL || rhs == NULL || !lhs_and_rhs_separable_p (lhs, rhs) 2484 if (lhs == NULL || rhs == NULL || !lhs_and_rhs_separable_p (lhs, rhs)
2490 || deps_init_id_data.force_use_p) 2485 || deps_init_id_data.force_use_p)
2491 { 2486 {
2492 /* This should be a USE, as we don't want to schedule its RHS 2487 /* This should be a USE, as we don't want to schedule its RHS
2493 separately. However, we still want to have them recorded 2488 separately. However, we still want to have them recorded
2494 for the purposes of substitution. That's why we don't 2489 for the purposes of substitution. That's why we don't
2495 simply call downgrade_to_use () here. */ 2490 simply call downgrade_to_use () here. */
2496 gcc_assert (IDATA_TYPE (deps_init_id_data.id) == SET); 2491 gcc_assert (IDATA_TYPE (deps_init_id_data.id) == SET);
2497 gcc_assert (!lhs == !rhs); 2492 gcc_assert (!lhs == !rhs);
2498 2493
2499 IDATA_TYPE (deps_init_id_data.id) = USE; 2494 IDATA_TYPE (deps_init_id_data.id) = USE;
2532 we don't actually need information about lhs and rhs. */ 2527 we don't actually need information about lhs and rhs. */
2533 static void 2528 static void
2534 setup_id_lhs_rhs (idata_t id, insn_t insn, bool force_unique_p) 2529 setup_id_lhs_rhs (idata_t id, insn_t insn, bool force_unique_p)
2535 { 2530 {
2536 rtx pat = PATTERN (insn); 2531 rtx pat = PATTERN (insn);
2537 2532
2538 if (GET_CODE (insn) == INSN 2533 if (NONJUMP_INSN_P (insn)
2539 && GET_CODE (pat) == SET 2534 && GET_CODE (pat) == SET
2540 && !force_unique_p) 2535 && !force_unique_p)
2541 { 2536 {
2542 IDATA_RHS (id) = SET_SRC (pat); 2537 IDATA_RHS (id) = SET_SRC (pat);
2543 IDATA_LHS (id) = SET_DEST (pat); 2538 IDATA_LHS (id) = SET_DEST (pat);
2544 } 2539 }
2553 bool must_be_use = false; 2548 bool must_be_use = false;
2554 unsigned uid = INSN_UID (insn); 2549 unsigned uid = INSN_UID (insn);
2555 df_ref *rec; 2550 df_ref *rec;
2556 rtx lhs = IDATA_LHS (id); 2551 rtx lhs = IDATA_LHS (id);
2557 rtx rhs = IDATA_RHS (id); 2552 rtx rhs = IDATA_RHS (id);
2558 2553
2559 /* We downgrade only SETs. */ 2554 /* We downgrade only SETs. */
2560 if (IDATA_TYPE (id) != SET) 2555 if (IDATA_TYPE (id) != SET)
2561 return; 2556 return;
2562 2557
2563 if (!lhs || !lhs_and_rhs_separable_p (lhs, rhs)) 2558 if (!lhs || !lhs_and_rhs_separable_p (lhs, rhs))
2564 { 2559 {
2565 IDATA_TYPE (id) = USE; 2560 IDATA_TYPE (id) = USE;
2566 return; 2561 return;
2567 } 2562 }
2568 2563
2569 for (rec = DF_INSN_UID_DEFS (uid); *rec; rec++) 2564 for (rec = DF_INSN_UID_DEFS (uid); *rec; rec++)
2570 { 2565 {
2571 df_ref def = *rec; 2566 df_ref def = *rec;
2572 2567
2573 if (DF_REF_INSN (def) 2568 if (DF_REF_INSN (def)
2574 && DF_REF_FLAGS_IS_SET (def, DF_REF_PRE_POST_MODIFY) 2569 && DF_REF_FLAGS_IS_SET (def, DF_REF_PRE_POST_MODIFY)
2575 && loc_mentioned_in_p (DF_REF_LOC (def), IDATA_RHS (id))) 2570 && loc_mentioned_in_p (DF_REF_LOC (def), IDATA_RHS (id)))
2576 { 2571 {
2577 must_be_use = true; 2572 must_be_use = true;
2578 break; 2573 break;
2579 } 2574 }
2580 2575
2581 #ifdef STACK_REGS 2576 #ifdef STACK_REGS
2582 /* Make instructions that set stack registers to be ineligible for 2577 /* Make instructions that set stack registers to be ineligible for
2583 renaming to avoid issues with find_used_regs. */ 2578 renaming to avoid issues with find_used_regs. */
2584 if (IN_RANGE (DF_REF_REGNO (def), FIRST_STACK_REG, LAST_STACK_REG)) 2579 if (IN_RANGE (DF_REF_REGNO (def), FIRST_STACK_REG, LAST_STACK_REG))
2585 { 2580 {
2586 must_be_use = true; 2581 must_be_use = true;
2587 break; 2582 break;
2588 } 2583 }
2589 #endif 2584 #endif
2590 } 2585 }
2591 2586
2592 if (must_be_use) 2587 if (must_be_use)
2593 IDATA_TYPE (id) = USE; 2588 IDATA_TYPE (id) = USE;
2594 } 2589 }
2595 2590
2596 /* Setup register sets describing INSN in ID. */ 2591 /* Setup register sets describing INSN in ID. */
2598 setup_id_reg_sets (idata_t id, insn_t insn) 2593 setup_id_reg_sets (idata_t id, insn_t insn)
2599 { 2594 {
2600 unsigned uid = INSN_UID (insn); 2595 unsigned uid = INSN_UID (insn);
2601 df_ref *rec; 2596 df_ref *rec;
2602 regset tmp = get_clear_regset_from_pool (); 2597 regset tmp = get_clear_regset_from_pool ();
2603 2598
2604 for (rec = DF_INSN_UID_DEFS (uid); *rec; rec++) 2599 for (rec = DF_INSN_UID_DEFS (uid); *rec; rec++)
2605 { 2600 {
2606 df_ref def = *rec; 2601 df_ref def = *rec;
2607 unsigned int regno = DF_REF_REGNO (def); 2602 unsigned int regno = DF_REF_REGNO (def);
2608 2603
2609 /* Post modifies are treated like clobbers by sched-deps.c. */ 2604 /* Post modifies are treated like clobbers by sched-deps.c. */
2610 if (DF_REF_FLAGS_IS_SET (def, (DF_REF_MUST_CLOBBER 2605 if (DF_REF_FLAGS_IS_SET (def, (DF_REF_MUST_CLOBBER
2611 | DF_REF_PRE_POST_MODIFY))) 2606 | DF_REF_PRE_POST_MODIFY)))
2612 SET_REGNO_REG_SET (IDATA_REG_CLOBBERS (id), regno); 2607 SET_REGNO_REG_SET (IDATA_REG_CLOBBERS (id), regno);
2613 else if (! DF_REF_FLAGS_IS_SET (def, DF_REF_MAY_CLOBBER)) 2608 else if (! DF_REF_FLAGS_IS_SET (def, DF_REF_MAY_CLOBBER))
2614 { 2609 {
2615 SET_REGNO_REG_SET (IDATA_REG_SETS (id), regno); 2610 SET_REGNO_REG_SET (IDATA_REG_SETS (id), regno);
2616 2611
2617 #ifdef STACK_REGS 2612 #ifdef STACK_REGS
2618 /* For stack registers, treat writes to them as writes 2613 /* For stack registers, treat writes to them as writes
2619 to the first one to be consistent with sched-deps.c. */ 2614 to the first one to be consistent with sched-deps.c. */
2620 if (IN_RANGE (regno, FIRST_STACK_REG, LAST_STACK_REG)) 2615 if (IN_RANGE (regno, FIRST_STACK_REG, LAST_STACK_REG))
2621 SET_REGNO_REG_SET (IDATA_REG_SETS (id), FIRST_STACK_REG); 2616 SET_REGNO_REG_SET (IDATA_REG_SETS (id), FIRST_STACK_REG);
2622 #endif 2617 #endif
2623 } 2618 }
2624 /* Mark special refs that generate read/write def pair. */ 2619 /* Mark special refs that generate read/write def pair. */
2625 if (DF_REF_FLAGS_IS_SET (def, DF_REF_CONDITIONAL) 2620 if (DF_REF_FLAGS_IS_SET (def, DF_REF_CONDITIONAL)
2626 || regno == STACK_POINTER_REGNUM) 2621 || regno == STACK_POINTER_REGNUM)
2627 bitmap_set_bit (tmp, regno); 2622 bitmap_set_bit (tmp, regno);
2628 } 2623 }
2629 2624
2630 for (rec = DF_INSN_UID_USES (uid); *rec; rec++) 2625 for (rec = DF_INSN_UID_USES (uid); *rec; rec++)
2631 { 2626 {
2632 df_ref use = *rec; 2627 df_ref use = *rec;
2633 unsigned int regno = DF_REF_REGNO (use); 2628 unsigned int regno = DF_REF_REGNO (use);
2634 2629
2639 else if (! DF_REF_FLAGS_IS_SET (use, DF_REF_CALL_STACK_USAGE)) 2634 else if (! DF_REF_FLAGS_IS_SET (use, DF_REF_CALL_STACK_USAGE))
2640 { 2635 {
2641 SET_REGNO_REG_SET (IDATA_REG_USES (id), regno); 2636 SET_REGNO_REG_SET (IDATA_REG_USES (id), regno);
2642 2637
2643 #ifdef STACK_REGS 2638 #ifdef STACK_REGS
2644 /* For stack registers, treat reads from them as reads from 2639 /* For stack registers, treat reads from them as reads from
2645 the first one to be consistent with sched-deps.c. */ 2640 the first one to be consistent with sched-deps.c. */
2646 if (IN_RANGE (regno, FIRST_STACK_REG, LAST_STACK_REG)) 2641 if (IN_RANGE (regno, FIRST_STACK_REG, LAST_STACK_REG))
2647 SET_REGNO_REG_SET (IDATA_REG_USES (id), FIRST_STACK_REG); 2642 SET_REGNO_REG_SET (IDATA_REG_USES (id), FIRST_STACK_REG);
2648 #endif 2643 #endif
2649 } 2644 }
2677 deps_init_id_data.where = DEPS_IN_NOWHERE; 2672 deps_init_id_data.where = DEPS_IN_NOWHERE;
2678 deps_init_id_data.id = id; 2673 deps_init_id_data.id = id;
2679 deps_init_id_data.force_unique_p = force_unique_p; 2674 deps_init_id_data.force_unique_p = force_unique_p;
2680 deps_init_id_data.force_use_p = false; 2675 deps_init_id_data.force_use_p = false;
2681 2676
2682 init_deps (dc); 2677 init_deps (dc, false);
2683 2678
2684 memcpy (&deps_init_id_sched_deps_info, 2679 memcpy (&deps_init_id_sched_deps_info,
2685 &const_deps_init_id_sched_deps_info, 2680 &const_deps_init_id_sched_deps_info,
2686 sizeof (deps_init_id_sched_deps_info)); 2681 sizeof (deps_init_id_sched_deps_info));
2687 2682
2737 vinsn_detach (pti->vinsn_old); 2732 vinsn_detach (pti->vinsn_old);
2738 vinsn_detach (pti->vinsn_new); 2733 vinsn_detach (pti->vinsn_new);
2739 free (pti); 2734 free (pti);
2740 } 2735 }
2741 2736
2742 /* Init the s_i_d data for INSN which should be inited just once, when 2737 /* Init the s_i_d data for INSN which should be inited just once, when
2743 we first see the insn. */ 2738 we first see the insn. */
2744 static void 2739 static void
2745 init_first_time_insn_data (insn_t insn) 2740 init_first_time_insn_data (insn_t insn)
2746 { 2741 {
2747 /* This should not be set if this is the first time we init data for 2742 /* This should not be set if this is the first time we init data for
2748 insn. */ 2743 insn. */
2749 gcc_assert (first_time_insn_init (insn)); 2744 gcc_assert (first_time_insn_init (insn));
2750 2745
2751 /* These are needed for nops too. */ 2746 /* These are needed for nops too. */
2752 INSN_LIVE (insn) = get_regset_from_pool (); 2747 INSN_LIVE (insn) = get_regset_from_pool ();
2753 INSN_LIVE_VALID_P (insn) = false; 2748 INSN_LIVE_VALID_P (insn) = false;
2754 2749
2755 if (!INSN_NOP_P (insn)) 2750 if (!INSN_NOP_P (insn))
2756 { 2751 {
2757 INSN_ANALYZED_DEPS (insn) = BITMAP_ALLOC (NULL); 2752 INSN_ANALYZED_DEPS (insn) = BITMAP_ALLOC (NULL);
2758 INSN_FOUND_DEPS (insn) = BITMAP_ALLOC (NULL); 2753 INSN_FOUND_DEPS (insn) = BITMAP_ALLOC (NULL);
2759 INSN_TRANSFORMED_INSNS (insn) 2754 INSN_TRANSFORMED_INSNS (insn)
2760 = htab_create (16, hash_transformed_insns, 2755 = htab_create (16, hash_transformed_insns,
2761 eq_transformed_insns, free_transformed_insns); 2756 eq_transformed_insns, free_transformed_insns);
2762 init_deps (&INSN_DEPS_CONTEXT (insn)); 2757 init_deps (&INSN_DEPS_CONTEXT (insn), true);
2763 } 2758 }
2764 } 2759 }
2765 2760
2766 /* Free the same data as above for INSN. */ 2761 /* Free almost all above data for INSN that is scheduled already.
2767 static void 2762 Used for extra-large basic blocks. */
2768 free_first_time_insn_data (insn_t insn) 2763 void
2764 free_data_for_scheduled_insn (insn_t insn)
2769 { 2765 {
2770 gcc_assert (! first_time_insn_init (insn)); 2766 gcc_assert (! first_time_insn_init (insn));
2767
2768 if (! INSN_ANALYZED_DEPS (insn))
2769 return;
2771 2770
2772 BITMAP_FREE (INSN_ANALYZED_DEPS (insn)); 2771 BITMAP_FREE (INSN_ANALYZED_DEPS (insn));
2773 BITMAP_FREE (INSN_FOUND_DEPS (insn)); 2772 BITMAP_FREE (INSN_FOUND_DEPS (insn));
2774 htab_delete (INSN_TRANSFORMED_INSNS (insn)); 2773 htab_delete (INSN_TRANSFORMED_INSNS (insn));
2775 return_regset_to_pool (INSN_LIVE (insn));
2776 INSN_LIVE (insn) = NULL;
2777 INSN_LIVE_VALID_P (insn) = false;
2778 2774
2779 /* This is allocated only for bookkeeping insns. */ 2775 /* This is allocated only for bookkeeping insns. */
2780 if (INSN_ORIGINATORS (insn)) 2776 if (INSN_ORIGINATORS (insn))
2781 BITMAP_FREE (INSN_ORIGINATORS (insn)); 2777 BITMAP_FREE (INSN_ORIGINATORS (insn));
2782 free_deps (&INSN_DEPS_CONTEXT (insn)); 2778 free_deps (&INSN_DEPS_CONTEXT (insn));
2779
2780 INSN_ANALYZED_DEPS (insn) = NULL;
2781
2782 /* Clear the readonly flag so we would ICE when trying to recalculate
2783 the deps context (as we believe that it should not happen). */
2784 (&INSN_DEPS_CONTEXT (insn))->readonly = 0;
2785 }
2786
2787 /* Free the same data as above for INSN. */
2788 static void
2789 free_first_time_insn_data (insn_t insn)
2790 {
2791 gcc_assert (! first_time_insn_init (insn));
2792
2793 free_data_for_scheduled_insn (insn);
2794 return_regset_to_pool (INSN_LIVE (insn));
2795 INSN_LIVE (insn) = NULL;
2796 INSN_LIVE_VALID_P (insn) = false;
2783 } 2797 }
2784 2798
2785 /* Initialize region-scope data structures for basic blocks. */ 2799 /* Initialize region-scope data structures for basic blocks. */
2786 static void 2800 static void
2787 init_global_and_expr_for_bb (basic_block bb) 2801 init_global_and_expr_for_bb (basic_block bb)
2840 2854
2841 /* Certain instructions cannot be cloned. */ 2855 /* Certain instructions cannot be cloned. */
2842 if (CANT_MOVE (insn) 2856 if (CANT_MOVE (insn)
2843 || INSN_ASM_P (insn) 2857 || INSN_ASM_P (insn)
2844 || SCHED_GROUP_P (insn) 2858 || SCHED_GROUP_P (insn)
2845 || prologue_epilogue_contains (insn) 2859 || prologue_epilogue_contains (insn)
2846 /* Exception handling insns are always unique. */ 2860 /* Exception handling insns are always unique. */
2847 || (flag_non_call_exceptions && can_throw_internal (insn)) 2861 || (flag_non_call_exceptions && can_throw_internal (insn))
2848 /* TRAP_IF though have an INSN code is control_flow_insn_p (). */ 2862 /* TRAP_IF though have an INSN code is control_flow_insn_p (). */
2849 || control_flow_insn_p (insn)) 2863 || control_flow_insn_p (insn))
2850 force_unique_p = true; 2864 force_unique_p = true;
2860 spec_done_ds = 0; 2874 spec_done_ds = 0;
2861 2875
2862 /* Initialize INSN's expr. */ 2876 /* Initialize INSN's expr. */
2863 init_expr (INSN_EXPR (insn), vinsn_create (insn, force_unique_p), 0, 2877 init_expr (INSN_EXPR (insn), vinsn_create (insn, force_unique_p), 0,
2864 REG_BR_PROB_BASE, INSN_PRIORITY (insn), 0, BLOCK_NUM (insn), 2878 REG_BR_PROB_BASE, INSN_PRIORITY (insn), 0, BLOCK_NUM (insn),
2865 spec_done_ds, 0, 0, NULL, true, false, false, false, 2879 spec_done_ds, 0, 0, NULL, true, false, false, false,
2866 CANT_MOVE (insn)); 2880 CANT_MOVE (insn));
2867 } 2881 }
2868 2882
2869 init_first_time_insn_data (insn); 2883 init_first_time_insn_data (insn);
2870 } 2884 }
2879 NULL, /* extend_bb */ 2893 NULL, /* extend_bb */
2880 init_global_and_expr_for_bb, /* init_bb */ 2894 init_global_and_expr_for_bb, /* init_bb */
2881 extend_insn_data, /* extend_insn */ 2895 extend_insn_data, /* extend_insn */
2882 init_global_and_expr_for_insn /* init_insn */ 2896 init_global_and_expr_for_insn /* init_insn */
2883 }; 2897 };
2884 2898
2885 sched_scan (&ssi, bbs, NULL, NULL, NULL); 2899 sched_scan (&ssi, bbs, NULL, NULL, NULL);
2886 } 2900 }
2887 2901
2888 /* Finalize region-scope data structures for basic blocks. */ 2902 /* Finalize region-scope data structures for basic blocks. */
2889 static void 2903 static void
2905 if (INSN_LUID (insn) > 0) 2919 if (INSN_LUID (insn) > 0)
2906 { 2920 {
2907 free_first_time_insn_data (insn); 2921 free_first_time_insn_data (insn);
2908 INSN_WS_LEVEL (insn) = 0; 2922 INSN_WS_LEVEL (insn) = 0;
2909 CANT_MOVE (insn) = 0; 2923 CANT_MOVE (insn) = 0;
2910 2924
2911 /* We can no longer assert this, as vinsns of this insn could be 2925 /* We can no longer assert this, as vinsns of this insn could be
2912 easily live in other insn's caches. This should be changed to 2926 easily live in other insn's caches. This should be changed to
2913 a counter-like approach among all vinsns. */ 2927 a counter-like approach among all vinsns. */
2914 gcc_assert (true || VINSN_COUNT (INSN_VINSN (insn)) == 1); 2928 gcc_assert (true || VINSN_COUNT (INSN_VINSN (insn)) == 1);
2915 clear_expr (INSN_EXPR (insn)); 2929 clear_expr (INSN_EXPR (insn));
2916 } 2930 }
2917 } 2931 }
2947 2961
2948 finish_insns (); 2962 finish_insns ();
2949 } 2963 }
2950 2964
2951 2965
2952 /* In the below hooks, we merely calculate whether or not a dependence 2966 /* In the below hooks, we merely calculate whether or not a dependence
2953 exists, and in what part of insn. However, we will need more data 2967 exists, and in what part of insn. However, we will need more data
2954 when we'll start caching dependence requests. */ 2968 when we'll start caching dependence requests. */
2955 2969
2956 /* Container to hold information for dependency analysis. */ 2970 /* Container to hold information for dependency analysis. */
2957 static struct 2971 static struct
2958 { 2972 {
3061 { 3075 {
3062 ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where]; 3076 ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
3063 3077
3064 if (reg_last->sets) 3078 if (reg_last->sets)
3065 *dsp = (*dsp & ~SPECULATIVE) | DEP_OUTPUT; 3079 *dsp = (*dsp & ~SPECULATIVE) | DEP_OUTPUT;
3066 3080
3067 if (reg_last->uses) 3081 if (reg_last->uses)
3068 *dsp = (*dsp & ~SPECULATIVE) | DEP_ANTI; 3082 *dsp = (*dsp & ~SPECULATIVE) | DEP_ANTI;
3069 } 3083 }
3070 } 3084 }
3071 3085
3214 /* Unconditional jump is just a transfer of control flow. 3228 /* Unconditional jump is just a transfer of control flow.
3215 Ignore it. */ 3229 Ignore it. */
3216 return false; 3230 return false;
3217 3231
3218 dc = &INSN_DEPS_CONTEXT (pred); 3232 dc = &INSN_DEPS_CONTEXT (pred);
3233
3234 /* We init this field lazily. */
3235 if (dc->reg_last == NULL)
3236 init_deps_reg_last (dc);
3237
3219 if (!dc->readonly) 3238 if (!dc->readonly)
3220 { 3239 {
3221 has_dependence_data.pro = NULL; 3240 has_dependence_data.pro = NULL;
3222 /* Initialize empty dep context with information about PRED. */ 3241 /* Initialize empty dep context with information about PRED. */
3223 advance_deps_context (dc, pred); 3242 advance_deps_context (dc, pred);
3243 else if (dc->last_reg_pending_barrier == MOVE_BARRIER) 3262 else if (dc->last_reg_pending_barrier == MOVE_BARRIER)
3244 has_dependence_data.has_dep_p[DEPS_IN_INSN] = DEP_ANTI; 3263 has_dependence_data.has_dep_p[DEPS_IN_INSN] = DEP_ANTI;
3245 3264
3246 /* Do not allow stores to memory to move through checks. Currently 3265 /* Do not allow stores to memory to move through checks. Currently
3247 we don't move this to sched-deps.c as the check doesn't have 3266 we don't move this to sched-deps.c as the check doesn't have
3248 obvious places to which this dependence can be attached. 3267 obvious places to which this dependence can be attached.
3249 FIMXE: this should go to a hook. */ 3268 FIMXE: this should go to a hook. */
3250 if (EXPR_LHS (expr) 3269 if (EXPR_LHS (expr)
3251 && MEM_P (EXPR_LHS (expr)) 3270 && MEM_P (EXPR_LHS (expr))
3252 && sel_insn_is_speculation_check (pred)) 3271 && sel_insn_is_speculation_check (pred))
3253 has_dependence_data.has_dep_p[DEPS_IN_INSN] = DEP_ANTI; 3272 has_dependence_data.has_dep_p[DEPS_IN_INSN] = DEP_ANTI;
3254 3273
3255 *has_dep_pp = has_dependence_data.has_dep_p; 3274 *has_dep_pp = has_dependence_data.has_dep_p;
3256 ds = 0; 3275 ds = 0;
3257 for (i = 0; i < DEPS_IN_NOWHERE; i++) 3276 for (i = 0; i < DEPS_IN_NOWHERE; i++)
3258 ds = ds_full_merge (ds, has_dependence_data.has_dep_p[i], 3277 ds = ds_full_merge (ds, has_dependence_data.has_dep_p[i],
3259 NULL_RTX, NULL_RTX); 3278 NULL_RTX, NULL_RTX);
3260 3279
3261 return ds; 3280 return ds;
3262 } 3281 }
3263 3282
3264 3283
3265 /* Dependence hooks implementation that checks dependence latency constraints 3284 /* Dependence hooks implementation that checks dependence latency constraints
3266 on the insns being scheduled. The entry point for these routines is 3285 on the insns being scheduled. The entry point for these routines is
3267 tick_check_p predicate. */ 3286 tick_check_p predicate. */
3268 3287
3269 static struct 3288 static struct
3270 { 3289 {
3271 /* An expr we are currently checking. */ 3290 /* An expr we are currently checking. */
3272 expr_t expr; 3291 expr_t expr;
3372 /* Initialize variables. */ 3391 /* Initialize variables. */
3373 tick_check_data.expr = expr; 3392 tick_check_data.expr = expr;
3374 tick_check_data.cycle = 0; 3393 tick_check_data.cycle = 0;
3375 tick_check_data.seen_true_dep_p = false; 3394 tick_check_data.seen_true_dep_p = false;
3376 sched_deps_info = &tick_check_sched_deps_info; 3395 sched_deps_info = &tick_check_sched_deps_info;
3377 3396
3378 gcc_assert (!dc->readonly); 3397 gcc_assert (!dc->readonly);
3379 dc->readonly = 1; 3398 dc->readonly = 1;
3380 deps_analyze_insn (dc, EXPR_INSN_RTX (expr)); 3399 deps_analyze_insn (dc, EXPR_INSN_RTX (expr));
3381 dc->readonly = 0; 3400 dc->readonly = 0;
3382 3401
3395 { 3414 {
3396 rtx lhs = INSN_LHS (insn); 3415 rtx lhs = INSN_LHS (insn);
3397 3416
3398 if (lhs == NULL || dest == NULL) 3417 if (lhs == NULL || dest == NULL)
3399 return false; 3418 return false;
3400 3419
3401 return rtx_equal_p (lhs, dest); 3420 return rtx_equal_p (lhs, dest);
3402 } 3421 }
3403 3422
3404 /* Return s_i_d entry of INSN. Callable from debugger. */ 3423 /* Return s_i_d entry of INSN. Callable from debugger. */
3405 sel_insn_data_def 3424 sel_insn_data_def
3415 sel_insn_is_speculation_check (rtx insn) 3434 sel_insn_is_speculation_check (rtx insn)
3416 { 3435 {
3417 return s_i_d && !! INSN_SPEC_CHECKED_DS (insn); 3436 return s_i_d && !! INSN_SPEC_CHECKED_DS (insn);
3418 } 3437 }
3419 3438
3420 /* Extracts machine mode MODE and destination location DST_LOC 3439 /* Extracts machine mode MODE and destination location DST_LOC
3421 for given INSN. */ 3440 for given INSN. */
3422 void 3441 void
3423 get_dest_and_mode (rtx insn, rtx *dst_loc, enum machine_mode *mode) 3442 get_dest_and_mode (rtx insn, rtx *dst_loc, enum machine_mode *mode)
3424 { 3443 {
3425 rtx pat = PATTERN (insn); 3444 rtx pat = PATTERN (insn);
3434 3453
3435 if (mode) 3454 if (mode)
3436 *mode = GET_MODE (*dst_loc); 3455 *mode = GET_MODE (*dst_loc);
3437 } 3456 }
3438 3457
3439 /* Returns true when moving through JUMP will result in bookkeeping 3458 /* Returns true when moving through JUMP will result in bookkeeping
3440 creation. */ 3459 creation. */
3441 bool 3460 bool
3442 bookkeeping_can_be_created_if_moved_through_p (insn_t jump) 3461 bookkeeping_can_be_created_if_moved_through_p (insn_t jump)
3443 { 3462 {
3444 insn_t succ; 3463 insn_t succ;
3457 { 3476 {
3458 return sel_bb_head_p (insn) && sel_bb_end_p (insn); 3477 return sel_bb_head_p (insn) && sel_bb_end_p (insn);
3459 } 3478 }
3460 3479
3461 #ifdef ENABLE_CHECKING 3480 #ifdef ENABLE_CHECKING
3462 /* Check that the region we're scheduling still has at most one 3481 /* Check that the region we're scheduling still has at most one
3463 backedge. */ 3482 backedge. */
3464 static void 3483 static void
3465 verify_backedges (void) 3484 verify_backedges (void)
3466 { 3485 {
3467 if (pipelining_p) 3486 if (pipelining_p)
3468 { 3487 {
3469 int i, n = 0; 3488 int i, n = 0;
3470 edge e; 3489 edge e;
3471 edge_iterator ei; 3490 edge_iterator ei;
3472 3491
3473 for (i = 0; i < current_nr_blocks; i++) 3492 for (i = 0; i < current_nr_blocks; i++)
3474 FOR_EACH_EDGE (e, ei, BASIC_BLOCK (BB_TO_BLOCK (i))->succs) 3493 FOR_EACH_EDGE (e, ei, BASIC_BLOCK (BB_TO_BLOCK (i))->succs)
3475 if (in_current_region_p (e->dest) 3494 if (in_current_region_p (e->dest)
3476 && BLOCK_TO_BB (e->dest->index) < i) 3495 && BLOCK_TO_BB (e->dest->index) < i)
3477 n++; 3496 n++;
3478 3497
3479 gcc_assert (n <= 1); 3498 gcc_assert (n <= 1);
3480 } 3499 }
3481 } 3500 }
3482 #endif 3501 #endif
3483 3502
3487 /* Tidy the possibly empty block BB. */ 3506 /* Tidy the possibly empty block BB. */
3488 bool 3507 bool
3489 maybe_tidy_empty_bb (basic_block bb) 3508 maybe_tidy_empty_bb (basic_block bb)
3490 { 3509 {
3491 basic_block succ_bb, pred_bb; 3510 basic_block succ_bb, pred_bb;
3511 edge e;
3512 edge_iterator ei;
3492 bool rescan_p; 3513 bool rescan_p;
3493 3514
3494 /* Keep empty bb only if this block immediately precedes EXIT and 3515 /* Keep empty bb only if this block immediately precedes EXIT and
3495 has incoming non-fallthrough edge. Otherwise remove it. */ 3516 has incoming non-fallthrough edge. Otherwise remove it. */
3496 if (!sel_bb_empty_p (bb) 3517 if (!sel_bb_empty_p (bb)
3497 || (single_succ_p (bb) 3518 || (single_succ_p (bb)
3498 && single_succ (bb) == EXIT_BLOCK_PTR 3519 && single_succ (bb) == EXIT_BLOCK_PTR
3499 && (!single_pred_p (bb) 3520 && (!single_pred_p (bb)
3500 || !(single_pred_edge (bb)->flags & EDGE_FALLTHRU)))) 3521 || !(single_pred_edge (bb)->flags & EDGE_FALLTHRU))))
3501 return false; 3522 return false;
3523
3524 /* Do not attempt to redirect complex edges. */
3525 FOR_EACH_EDGE (e, ei, bb->preds)
3526 if (e->flags & EDGE_COMPLEX)
3527 return false;
3502 3528
3503 free_data_sets (bb); 3529 free_data_sets (bb);
3504 3530
3505 /* Do not delete BB if it has more than one successor. 3531 /* Do not delete BB if it has more than one successor.
3506 That can occur when we moving a jump. */ 3532 That can occur when we moving a jump. */
3516 pred_bb = NULL; 3542 pred_bb = NULL;
3517 3543
3518 /* Redirect all non-fallthru edges to the next bb. */ 3544 /* Redirect all non-fallthru edges to the next bb. */
3519 while (rescan_p) 3545 while (rescan_p)
3520 { 3546 {
3521 edge e;
3522 edge_iterator ei;
3523
3524 rescan_p = false; 3547 rescan_p = false;
3525 3548
3526 FOR_EACH_EDGE (e, ei, bb->preds) 3549 FOR_EACH_EDGE (e, ei, bb->preds)
3527 { 3550 {
3528 pred_bb = e->src; 3551 pred_bb = e->src;
3554 #endif 3577 #endif
3555 3578
3556 return true; 3579 return true;
3557 } 3580 }
3558 3581
3559 /* Tidy the control flow after we have removed original insn from 3582 /* Tidy the control flow after we have removed original insn from
3560 XBB. Return true if we have removed some blocks. When FULL_TIDYING 3583 XBB. Return true if we have removed some blocks. When FULL_TIDYING
3561 is true, also try to optimize control flow on non-empty blocks. */ 3584 is true, also try to optimize control flow on non-empty blocks. */
3562 bool 3585 bool
3563 tidy_control_flow (basic_block xbb, bool full_tidying) 3586 tidy_control_flow (basic_block xbb, bool full_tidying)
3564 { 3587 {
3565 bool changed = true; 3588 bool changed = true;
3566 3589 insn_t first, last;
3590
3567 /* First check whether XBB is empty. */ 3591 /* First check whether XBB is empty. */
3568 changed = maybe_tidy_empty_bb (xbb); 3592 changed = maybe_tidy_empty_bb (xbb);
3569 if (changed || !full_tidying) 3593 if (changed || !full_tidying)
3570 return changed; 3594 return changed;
3571 3595
3572 /* Check if there is a unnecessary jump after insn left. */ 3596 /* Check if there is a unnecessary jump after insn left. */
3573 if (jump_leads_only_to_bb_p (BB_END (xbb), xbb->next_bb) 3597 if (jump_leads_only_to_bb_p (BB_END (xbb), xbb->next_bb)
3574 && INSN_SCHED_TIMES (BB_END (xbb)) == 0 3598 && INSN_SCHED_TIMES (BB_END (xbb)) == 0
3575 && !IN_CURRENT_FENCE_P (BB_END (xbb))) 3599 && !IN_CURRENT_FENCE_P (BB_END (xbb)))
3576 { 3600 {
3577 if (sel_remove_insn (BB_END (xbb), false, false)) 3601 if (sel_remove_insn (BB_END (xbb), false, false))
3578 return true; 3602 return true;
3579 tidy_fallthru_edge (EDGE_SUCC (xbb, 0)); 3603 tidy_fallthru_edge (EDGE_SUCC (xbb, 0));
3580 } 3604 }
3581 3605
3606 first = sel_bb_head (xbb);
3607 last = sel_bb_end (xbb);
3608 if (MAY_HAVE_DEBUG_INSNS)
3609 {
3610 if (first != last && DEBUG_INSN_P (first))
3611 do
3612 first = NEXT_INSN (first);
3613 while (first != last && (DEBUG_INSN_P (first) || NOTE_P (first)));
3614
3615 if (first != last && DEBUG_INSN_P (last))
3616 do
3617 last = PREV_INSN (last);
3618 while (first != last && (DEBUG_INSN_P (last) || NOTE_P (last)));
3619 }
3582 /* Check if there is an unnecessary jump in previous basic block leading 3620 /* Check if there is an unnecessary jump in previous basic block leading
3583 to next basic block left after removing INSN from stream. 3621 to next basic block left after removing INSN from stream.
3584 If it is so, remove that jump and redirect edge to current 3622 If it is so, remove that jump and redirect edge to current
3585 basic block (where there was INSN before deletion). This way 3623 basic block (where there was INSN before deletion). This way
3586 when NOP will be deleted several instructions later with its 3624 when NOP will be deleted several instructions later with its
3587 basic block we will not get a jump to next instruction, which 3625 basic block we will not get a jump to next instruction, which
3588 can be harmful. */ 3626 can be harmful. */
3589 if (sel_bb_head (xbb) == sel_bb_end (xbb) 3627 if (first == last
3590 && !sel_bb_empty_p (xbb) 3628 && !sel_bb_empty_p (xbb)
3591 && INSN_NOP_P (sel_bb_end (xbb)) 3629 && INSN_NOP_P (last)
3592 /* Flow goes fallthru from current block to the next. */ 3630 /* Flow goes fallthru from current block to the next. */
3593 && EDGE_COUNT (xbb->succs) == 1 3631 && EDGE_COUNT (xbb->succs) == 1
3594 && (EDGE_SUCC (xbb, 0)->flags & EDGE_FALLTHRU) 3632 && (EDGE_SUCC (xbb, 0)->flags & EDGE_FALLTHRU)
3595 /* When successor is an EXIT block, it may not be the next block. */ 3633 /* When successor is an EXIT block, it may not be the next block. */
3596 && single_succ (xbb) != EXIT_BLOCK_PTR 3634 && single_succ (xbb) != EXIT_BLOCK_PTR
3616 } 3654 }
3617 3655
3618 return changed; 3656 return changed;
3619 } 3657 }
3620 3658
3621 /* Rip-off INSN from the insn stream. When ONLY_DISCONNECT is true, 3659 /* Rip-off INSN from the insn stream. When ONLY_DISCONNECT is true,
3622 do not delete insn's data, because it will be later re-emitted. 3660 do not delete insn's data, because it will be later re-emitted.
3623 Return true if we have removed some blocks afterwards. */ 3661 Return true if we have removed some blocks afterwards. */
3624 bool 3662 bool
3625 sel_remove_insn (insn_t insn, bool only_disconnect, bool full_tidying) 3663 sel_remove_insn (insn_t insn, bool only_disconnect, bool full_tidying)
3626 { 3664 {
3627 basic_block bb = BLOCK_FOR_INSN (insn); 3665 basic_block bb = BLOCK_FOR_INSN (insn);
3628 3666
3629 gcc_assert (INSN_IN_STREAM_P (insn)); 3667 gcc_assert (INSN_IN_STREAM_P (insn));
3668
3669 if (DEBUG_INSN_P (insn) && BB_AV_SET_VALID_P (bb))
3670 {
3671 expr_t expr;
3672 av_set_iterator i;
3673
3674 /* When we remove a debug insn that is head of a BB, it remains
3675 in the AV_SET of the block, but it shouldn't. */
3676 FOR_EACH_EXPR_1 (expr, i, &BB_AV_SET (bb))
3677 if (EXPR_INSN_RTX (expr) == insn)
3678 {
3679 av_set_iter_remove (&i);
3680 break;
3681 }
3682 }
3630 3683
3631 if (only_disconnect) 3684 if (only_disconnect)
3632 { 3685 {
3633 insn_t prev = PREV_INSN (insn); 3686 insn_t prev = PREV_INSN (insn);
3634 insn_t next = NEXT_INSN (insn); 3687 insn_t next = NEXT_INSN (insn);
3664 { 3717 {
3665 int res = 0; 3718 int res = 0;
3666 insn_t insn = NEXT_INSN (BB_HEAD (bb)), next_tail = NEXT_INSN (BB_END (bb)); 3719 insn_t insn = NEXT_INSN (BB_HEAD (bb)), next_tail = NEXT_INSN (BB_END (bb));
3667 3720
3668 for (; insn != next_tail; insn = NEXT_INSN (insn)) 3721 for (; insn != next_tail; insn = NEXT_INSN (insn))
3669 if (INSN_P (insn)) 3722 if (NONDEBUG_INSN_P (insn))
3670 res++; 3723 res++;
3671 3724
3672 return res; 3725 return res;
3673 } 3726 }
3674 3727
3697 3750
3698 if (single_pred_p (bb) 3751 if (single_pred_p (bb)
3699 && !in_current_region_p (single_pred (bb))) 3752 && !in_current_region_p (single_pred (bb)))
3700 { 3753 {
3701 /* We can have preds outside a region when splitting edges 3754 /* We can have preds outside a region when splitting edges
3702 for pipelining of an outer loop. Use succ instead. 3755 for pipelining of an outer loop. Use succ instead.
3703 There should be only one of them. */ 3756 There should be only one of them. */
3704 insn_t succ = NULL; 3757 insn_t succ = NULL;
3705 succ_iterator si; 3758 succ_iterator si;
3706 bool first = true; 3759 bool first = true;
3707 3760
3708 gcc_assert (flag_sel_sched_pipelining_outer_loops 3761 gcc_assert (flag_sel_sched_pipelining_outer_loops
3709 && current_loop_nest); 3762 && current_loop_nest);
3710 FOR_EACH_SUCC_1 (succ, si, insn, 3763 FOR_EACH_SUCC_1 (succ, si, insn,
3711 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS) 3764 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
3712 { 3765 {
3713 gcc_assert (first); 3766 gcc_assert (first);
3714 first = false; 3767 first = false;
3715 } 3768 }
3724 3777
3725 cfg_preds (BLOCK_FOR_INSN (insn), &preds, &n); 3778 cfg_preds (BLOCK_FOR_INSN (insn), &preds, &n);
3726 gcc_assert (n == 1); 3779 gcc_assert (n == 1);
3727 3780
3728 seqno = INSN_SEQNO (preds[0]); 3781 seqno = INSN_SEQNO (preds[0]);
3729 3782
3730 free (preds); 3783 free (preds);
3731 } 3784 }
3732 } 3785 }
3733 3786
3734 return seqno; 3787 return seqno;
3735 } 3788 }
3736 3789
3737 /* Find the proper seqno for inserting at INSN. */ 3790 /* Find the proper seqno for inserting at INSN. Returns -1 if no predecessors
3791 with positive seqno exist. */
3738 int 3792 int
3739 get_seqno_by_preds (rtx insn) 3793 get_seqno_by_preds (rtx insn)
3740 { 3794 {
3741 basic_block bb = BLOCK_FOR_INSN (insn); 3795 basic_block bb = BLOCK_FOR_INSN (insn);
3742 rtx tmp = insn, head = BB_HEAD (bb); 3796 rtx tmp = insn, head = BB_HEAD (bb);
3746 while (tmp != head) 3800 while (tmp != head)
3747 if (INSN_P (tmp)) 3801 if (INSN_P (tmp))
3748 return INSN_SEQNO (tmp); 3802 return INSN_SEQNO (tmp);
3749 else 3803 else
3750 tmp = PREV_INSN (tmp); 3804 tmp = PREV_INSN (tmp);
3751 3805
3752 cfg_preds (bb, &preds, &n); 3806 cfg_preds (bb, &preds, &n);
3753 for (i = 0, seqno = -1; i < n; i++) 3807 for (i = 0, seqno = -1; i < n; i++)
3754 seqno = MAX (seqno, INSN_SEQNO (preds[i])); 3808 seqno = MAX (seqno, INSN_SEQNO (preds[i]));
3755 3809
3756 gcc_assert (seqno > 0);
3757 return seqno; 3810 return seqno;
3758 } 3811 }
3759 3812
3760 3813
3761 3814
3807 /* Extend data structures for insns from current region. */ 3860 /* Extend data structures for insns from current region. */
3808 static void 3861 static void
3809 extend_insn_data (void) 3862 extend_insn_data (void)
3810 { 3863 {
3811 int reserve; 3864 int reserve;
3812 3865
3813 sched_extend_target (); 3866 sched_extend_target ();
3814 sched_deps_init (false); 3867 sched_deps_init (false);
3815 3868
3816 /* Extend data structures for insns from current region. */ 3869 /* Extend data structures for insns from current region. */
3817 reserve = (sched_max_luid + 1 3870 reserve = (sched_max_luid + 1
3818 - VEC_length (sel_insn_data_def, s_i_d)); 3871 - VEC_length (sel_insn_data_def, s_i_d));
3819 if (reserve > 0 3872 if (reserve > 0
3820 && ! VEC_space (sel_insn_data_def, s_i_d, reserve)) 3873 && ! VEC_space (sel_insn_data_def, s_i_d, reserve))
3821 VEC_safe_grow_cleared (sel_insn_data_def, heap, s_i_d, 3874 {
3822 3 * sched_max_luid / 2); 3875 int size;
3876
3877 if (sched_max_luid / 2 > 1024)
3878 size = sched_max_luid + 1024;
3879 else
3880 size = 3 * sched_max_luid / 2;
3881
3882
3883 VEC_safe_grow_cleared (sel_insn_data_def, heap, s_i_d, size);
3884 }
3823 } 3885 }
3824 3886
3825 /* Finalize data structures for insns from current region. */ 3887 /* Finalize data structures for insns from current region. */
3826 static void 3888 static void
3827 finish_insns (void) 3889 finish_insns (void)
3831 /* Clear here all dependence contexts that may have left from insns that were 3893 /* Clear here all dependence contexts that may have left from insns that were
3832 removed during the scheduling. */ 3894 removed during the scheduling. */
3833 for (i = 0; i < VEC_length (sel_insn_data_def, s_i_d); i++) 3895 for (i = 0; i < VEC_length (sel_insn_data_def, s_i_d); i++)
3834 { 3896 {
3835 sel_insn_data_def *sid_entry = VEC_index (sel_insn_data_def, s_i_d, i); 3897 sel_insn_data_def *sid_entry = VEC_index (sel_insn_data_def, s_i_d, i);
3836 3898
3837 if (sid_entry->live) 3899 if (sid_entry->live)
3838 return_regset_to_pool (sid_entry->live); 3900 return_regset_to_pool (sid_entry->live);
3839 if (sid_entry->analyzed_deps) 3901 if (sid_entry->analyzed_deps)
3840 { 3902 {
3841 BITMAP_FREE (sid_entry->analyzed_deps); 3903 BITMAP_FREE (sid_entry->analyzed_deps);
3844 free_deps (&sid_entry->deps_context); 3906 free_deps (&sid_entry->deps_context);
3845 } 3907 }
3846 if (EXPR_VINSN (&sid_entry->expr)) 3908 if (EXPR_VINSN (&sid_entry->expr))
3847 { 3909 {
3848 clear_expr (&sid_entry->expr); 3910 clear_expr (&sid_entry->expr);
3849 3911
3850 /* Also, clear CANT_MOVE bit here, because we really don't want it 3912 /* Also, clear CANT_MOVE bit here, because we really don't want it
3851 to be passed to the next region. */ 3913 to be passed to the next region. */
3852 CANT_MOVE_BY_LUID (i) = 0; 3914 CANT_MOVE_BY_LUID (i) = 0;
3853 } 3915 }
3854 } 3916 }
3855 3917
3856 VEC_free (sel_insn_data_def, heap, s_i_d); 3918 VEC_free (sel_insn_data_def, heap, s_i_d);
3857 } 3919 }
3858 3920
3859 /* A proxy to pass initialization data to init_insn (). */ 3921 /* A proxy to pass initialization data to init_insn (). */
3860 static sel_insn_data_def _insn_init_ssid; 3922 static sel_insn_data_def _insn_init_ssid;
3899 copy_expr (expr, &ssid->expr); 3961 copy_expr (expr, &ssid->expr);
3900 prepare_insn_expr (insn, ssid->seqno); 3962 prepare_insn_expr (insn, ssid->seqno);
3901 3963
3902 if (insn_init_create_new_vinsn_p) 3964 if (insn_init_create_new_vinsn_p)
3903 change_vinsn_in_expr (expr, vinsn_create (insn, init_insn_force_unique_p)); 3965 change_vinsn_in_expr (expr, vinsn_create (insn, init_insn_force_unique_p));
3904 3966
3905 if (first_time_insn_init (insn)) 3967 if (first_time_insn_init (insn))
3906 init_first_time_insn_data (insn); 3968 init_first_time_insn_data (insn);
3907 } 3969 }
3908 3970
3909 /* This is used to initialize spurious jumps generated by 3971 /* This is used to initialize spurious jumps generated by
3910 sel_redirect_edge (). */ 3972 sel_redirect_edge (). */
3911 static void 3973 static void
3912 init_simplejump_data (insn_t insn) 3974 init_simplejump_data (insn_t insn)
3913 { 3975 {
3914 init_expr (INSN_EXPR (insn), vinsn_create (insn, false), 0, 3976 init_expr (INSN_EXPR (insn), vinsn_create (insn, false), 0,
3915 REG_BR_PROB_BASE, 0, 0, 0, 0, 0, 0, NULL, true, false, false, 3977 REG_BR_PROB_BASE, 0, 0, 0, 0, 0, 0, NULL, true, false, false,
3916 false, true); 3978 false, true);
3917 INSN_SEQNO (insn) = get_seqno_of_a_pred (insn); 3979 INSN_SEQNO (insn) = get_seqno_of_a_pred (insn);
3918 init_first_time_insn_data (insn); 3980 init_first_time_insn_data (insn);
3919 } 3981 }
3920 3982
3921 /* Perform deferred initialization of insns. This is used to process 3983 /* Perform deferred initialization of insns. This is used to process
3922 a new jump that may be created by redirect_edge. */ 3984 a new jump that may be created by redirect_edge. */
3923 void 3985 void
3924 sel_init_new_insn (insn_t insn, int flags) 3986 sel_init_new_insn (insn_t insn, int flags)
3925 { 3987 {
3926 /* We create data structures for bb when the first insn is emitted in it. */ 3988 /* We create data structures for bb when the first insn is emitted in it. */
3929 && insn_is_the_only_one_in_bb_p (insn)) 3991 && insn_is_the_only_one_in_bb_p (insn))
3930 { 3992 {
3931 extend_bb_info (); 3993 extend_bb_info ();
3932 create_initial_data_sets (BLOCK_FOR_INSN (insn)); 3994 create_initial_data_sets (BLOCK_FOR_INSN (insn));
3933 } 3995 }
3934 3996
3935 if (flags & INSN_INIT_TODO_LUID) 3997 if (flags & INSN_INIT_TODO_LUID)
3936 sched_init_luids (NULL, NULL, NULL, insn); 3998 sched_init_luids (NULL, NULL, NULL, insn);
3937 3999
3938 if (flags & INSN_INIT_TODO_SSID) 4000 if (flags & INSN_INIT_TODO_SSID)
3939 { 4001 {
3945 if (flags & INSN_INIT_TODO_SIMPLEJUMP) 4007 if (flags & INSN_INIT_TODO_SIMPLEJUMP)
3946 { 4008 {
3947 extend_insn_data (); 4009 extend_insn_data ();
3948 init_simplejump_data (insn); 4010 init_simplejump_data (insn);
3949 } 4011 }
3950 4012
3951 gcc_assert (CONTAINING_RGN (BLOCK_NUM (insn)) 4013 gcc_assert (CONTAINING_RGN (BLOCK_NUM (insn))
3952 == CONTAINING_RGN (BB_TO_BLOCK (0))); 4014 == CONTAINING_RGN (BB_TO_BLOCK (0)));
3953 } 4015 }
3954 4016
3955 4017
3960 init_lv_set (basic_block bb) 4022 init_lv_set (basic_block bb)
3961 { 4023 {
3962 gcc_assert (!BB_LV_SET_VALID_P (bb)); 4024 gcc_assert (!BB_LV_SET_VALID_P (bb));
3963 4025
3964 BB_LV_SET (bb) = get_regset_from_pool (); 4026 BB_LV_SET (bb) = get_regset_from_pool ();
3965 COPY_REG_SET (BB_LV_SET (bb), DF_LR_IN (bb)); 4027 COPY_REG_SET (BB_LV_SET (bb), DF_LR_IN (bb));
3966 BB_LV_SET_VALID_P (bb) = true; 4028 BB_LV_SET_VALID_P (bb) = true;
3967 } 4029 }
3968 4030
3969 /* Copy liveness information to BB from FROM_BB. */ 4031 /* Copy liveness information to BB from FROM_BB. */
3970 static void 4032 static void
3971 copy_lv_set_from (basic_block bb, basic_block from_bb) 4033 copy_lv_set_from (basic_block bb, basic_block from_bb)
3972 { 4034 {
3973 gcc_assert (!BB_LV_SET_VALID_P (bb)); 4035 gcc_assert (!BB_LV_SET_VALID_P (bb));
3974 4036
3975 COPY_REG_SET (BB_LV_SET (bb), BB_LV_SET (from_bb)); 4037 COPY_REG_SET (BB_LV_SET (bb), BB_LV_SET (from_bb));
3976 BB_LV_SET_VALID_P (bb) = true; 4038 BB_LV_SET_VALID_P (bb) = true;
3977 } 4039 }
3978 4040
3979 /* Initialize lv set of all bb headers. */ 4041 /* Initialize lv set of all bb headers. */
3980 void 4042 void
3981 init_lv_sets (void) 4043 init_lv_sets (void)
3982 { 4044 {
4259 return single_succ (BLOCK_FOR_INSN (jump)); 4321 return single_succ (BLOCK_FOR_INSN (jump));
4260 4322
4261 if (!any_condjump_p (jump)) 4323 if (!any_condjump_p (jump))
4262 return NULL; 4324 return NULL;
4263 4325
4326 /* A basic block that ends with a conditional jump may still have one successor
4327 (and be followed by a barrier), we are not interested. */
4328 if (single_succ_p (BLOCK_FOR_INSN (jump)))
4329 return NULL;
4330
4264 return FALLTHRU_EDGE (BLOCK_FOR_INSN (jump))->dest; 4331 return FALLTHRU_EDGE (BLOCK_FOR_INSN (jump))->dest;
4265 } 4332 }
4266 4333
4267 /* Remove all notes from BB. */ 4334 /* Remove all notes from BB. */
4268 static void 4335 static void
4348 alloc_succs_info (void) 4415 alloc_succs_info (void)
4349 { 4416 {
4350 if (succs_info_pool.top == succs_info_pool.max_top) 4417 if (succs_info_pool.top == succs_info_pool.max_top)
4351 { 4418 {
4352 int i; 4419 int i;
4353 4420
4354 if (++succs_info_pool.max_top >= succs_info_pool.size) 4421 if (++succs_info_pool.max_top >= succs_info_pool.size)
4355 gcc_unreachable (); 4422 gcc_unreachable ();
4356 4423
4357 i = ++succs_info_pool.top; 4424 i = ++succs_info_pool.top;
4358 succs_info_pool.stack[i].succs_ok = VEC_alloc (rtx, heap, 10); 4425 succs_info_pool.stack[i].succs_ok = VEC_alloc (rtx, heap, 10);
4367 4434
4368 /* Free successor's info. */ 4435 /* Free successor's info. */
4369 void 4436 void
4370 free_succs_info (struct succs_info * sinfo) 4437 free_succs_info (struct succs_info * sinfo)
4371 { 4438 {
4372 gcc_assert (succs_info_pool.top >= 0 4439 gcc_assert (succs_info_pool.top >= 0
4373 && &succs_info_pool.stack[succs_info_pool.top] == sinfo); 4440 && &succs_info_pool.stack[succs_info_pool.top] == sinfo);
4374 succs_info_pool.top--; 4441 succs_info_pool.top--;
4375 4442
4376 /* Clear stale info. */ 4443 /* Clear stale info. */
4377 VEC_block_remove (rtx, sinfo->succs_ok, 4444 VEC_block_remove (rtx, sinfo->succs_ok,
4378 0, VEC_length (rtx, sinfo->succs_ok)); 4445 0, VEC_length (rtx, sinfo->succs_ok));
4379 VEC_block_remove (rtx, sinfo->succs_other, 4446 VEC_block_remove (rtx, sinfo->succs_other,
4380 0, VEC_length (rtx, sinfo->succs_other)); 4447 0, VEC_length (rtx, sinfo->succs_other));
4381 VEC_block_remove (int, sinfo->probs_ok, 4448 VEC_block_remove (int, sinfo->probs_ok,
4382 0, VEC_length (int, sinfo->probs_ok)); 4449 0, VEC_length (int, sinfo->probs_ok));
4383 sinfo->all_prob = 0; 4450 sinfo->all_prob = 0;
4384 sinfo->succs_ok_n = 0; 4451 sinfo->succs_ok_n = 0;
4385 sinfo->all_succs_n = 0; 4452 sinfo->all_succs_n = 0;
4386 } 4453 }
4387 4454
4388 /* Compute successor info for INSN. FLAGS are the flags passed 4455 /* Compute successor info for INSN. FLAGS are the flags passed
4389 to the FOR_EACH_SUCC_1 iterator. */ 4456 to the FOR_EACH_SUCC_1 iterator. */
4390 struct succs_info * 4457 struct succs_info *
4391 compute_succs_info (insn_t insn, short flags) 4458 compute_succs_info (insn_t insn, short flags)
4392 { 4459 {
4393 succ_iterator si; 4460 succ_iterator si;
4403 4470
4404 if (current_flags & flags) 4471 if (current_flags & flags)
4405 { 4472 {
4406 VEC_safe_push (rtx, heap, sinfo->succs_ok, succ); 4473 VEC_safe_push (rtx, heap, sinfo->succs_ok, succ);
4407 VEC_safe_push (int, heap, sinfo->probs_ok, 4474 VEC_safe_push (int, heap, sinfo->probs_ok,
4408 /* FIXME: Improve calculation when skipping 4475 /* FIXME: Improve calculation when skipping
4409 inner loop to exits. */ 4476 inner loop to exits. */
4410 (si.bb_end 4477 (si.bb_end
4411 ? si.e1->probability 4478 ? si.e1->probability
4412 : REG_BR_PROB_BASE)); 4479 : REG_BR_PROB_BASE));
4413 sinfo->succs_ok_n++; 4480 sinfo->succs_ok_n++;
4414 } 4481 }
4415 else 4482 else
4416 VEC_safe_push (rtx, heap, sinfo->succs_other, succ); 4483 VEC_safe_push (rtx, heap, sinfo->succs_other, succ);
4425 } 4492 }
4426 4493
4427 return sinfo; 4494 return sinfo;
4428 } 4495 }
4429 4496
4430 /* Return the predecessors of BB in PREDS and their number in N. 4497 /* Return the predecessors of BB in PREDS and their number in N.
4431 Empty blocks are skipped. SIZE is used to allocate PREDS. */ 4498 Empty blocks are skipped. SIZE is used to allocate PREDS. */
4432 static void 4499 static void
4433 cfg_preds_1 (basic_block bb, insn_t **preds, int *n, int *size) 4500 cfg_preds_1 (basic_block bb, insn_t **preds, int *n, int *size)
4434 { 4501 {
4435 edge e; 4502 edge e;
4448 if (sel_bb_empty_p (pred_bb)) 4515 if (sel_bb_empty_p (pred_bb))
4449 cfg_preds_1 (pred_bb, preds, n, size); 4516 cfg_preds_1 (pred_bb, preds, n, size);
4450 else 4517 else
4451 { 4518 {
4452 if (*n == *size) 4519 if (*n == *size)
4453 *preds = XRESIZEVEC (insn_t, *preds, 4520 *preds = XRESIZEVEC (insn_t, *preds,
4454 (*size = 2 * *size + 1)); 4521 (*size = 2 * *size + 1));
4455 (*preds)[(*n)++] = bb_end; 4522 (*preds)[(*n)++] = bb_end;
4456 } 4523 }
4457 } 4524 }
4458 4525
4459 gcc_assert (*n != 0); 4526 gcc_assert (*n != 0);
4460 } 4527 }
4461 4528
4462 /* Find all predecessors of BB and record them in PREDS and their number 4529 /* Find all predecessors of BB and record them in PREDS and their number
4463 in N. Empty blocks are skipped, and only normal (forward in-region) 4530 in N. Empty blocks are skipped, and only normal (forward in-region)
4464 edges are processed. */ 4531 edges are processed. */
4465 static void 4532 static void
4466 cfg_preds (basic_block bb, insn_t **preds, int *n) 4533 cfg_preds (basic_block bb, insn_t **preds, int *n)
4467 { 4534 {
4468 int size = 0; 4535 int size = 0;
4496 } 4563 }
4497 4564
4498 return false; 4565 return false;
4499 } 4566 }
4500 4567
4501 /* Returns true when BB should be the end of an ebb. Adapted from the 4568 /* Returns true when BB should be the end of an ebb. Adapted from the
4502 code in sched-ebb.c. */ 4569 code in sched-ebb.c. */
4503 bool 4570 bool
4504 bb_ends_ebb_p (basic_block bb) 4571 bb_ends_ebb_p (basic_block bb)
4505 { 4572 {
4506 basic_block next_bb = bb_next_bb (bb); 4573 basic_block next_bb = bb_next_bb (bb);
4507 edge e; 4574 edge e;
4508 edge_iterator ei; 4575 edge_iterator ei;
4509 4576
4510 if (next_bb == EXIT_BLOCK_PTR 4577 if (next_bb == EXIT_BLOCK_PTR
4511 || bitmap_bit_p (forced_ebb_heads, next_bb->index) 4578 || bitmap_bit_p (forced_ebb_heads, next_bb->index)
4512 || (LABEL_P (BB_HEAD (next_bb)) 4579 || (LABEL_P (BB_HEAD (next_bb))
4513 /* NB: LABEL_NUSES () is not maintained outside of jump.c. 4580 /* NB: LABEL_NUSES () is not maintained outside of jump.c.
4514 Work around that. */ 4581 Work around that. */
4538 4605
4539 for(;;) 4606 for(;;)
4540 { 4607 {
4541 if (ptr == BLOCK_FOR_INSN (succ)) 4608 if (ptr == BLOCK_FOR_INSN (succ))
4542 return true; 4609 return true;
4543 4610
4544 if (bb_ends_ebb_p (ptr)) 4611 if (bb_ends_ebb_p (ptr))
4545 return false; 4612 return false;
4546 4613
4547 ptr = bb_next_bb (ptr); 4614 ptr = bb_next_bb (ptr);
4548 } 4615 }
4560 int *postorder; 4627 int *postorder;
4561 int n_blocks, i; 4628 int n_blocks, i;
4562 4629
4563 if (!rev_top_order_index || rev_top_order_index_len < last_basic_block) 4630 if (!rev_top_order_index || rev_top_order_index_len < last_basic_block)
4564 { 4631 {
4565 rev_top_order_index_len = last_basic_block; 4632 rev_top_order_index_len = last_basic_block;
4566 rev_top_order_index = XRESIZEVEC (int, rev_top_order_index, 4633 rev_top_order_index = XRESIZEVEC (int, rev_top_order_index,
4567 rev_top_order_index_len); 4634 rev_top_order_index_len);
4568 } 4635 }
4569 4636
4570 postorder = XNEWVEC (int, n_basic_blocks); 4637 postorder = XNEWVEC (int, n_basic_blocks);
4596 INSN_AFTER_STALL_P (insn) = 0; 4663 INSN_AFTER_STALL_P (insn) = 0;
4597 INSN_SCHED_TIMES (insn) = 0; 4664 INSN_SCHED_TIMES (insn) = 0;
4598 EXPR_PRIORITY_ADJ (INSN_EXPR (insn)) = 0; 4665 EXPR_PRIORITY_ADJ (INSN_EXPR (insn)) = 0;
4599 4666
4600 /* We cannot use the changed caches, as previously we could ignore 4667 /* We cannot use the changed caches, as previously we could ignore
4601 the LHS dependence due to enabled renaming and transform 4668 the LHS dependence due to enabled renaming and transform
4602 the expression, and currently we'll be unable to do this. */ 4669 the expression, and currently we'll be unable to do this. */
4603 htab_empty (INSN_TRANSFORMED_INSNS (insn)); 4670 htab_empty (INSN_TRANSFORMED_INSNS (insn));
4604 } 4671 }
4605 } 4672 }
4606 4673
4647 alloc_sched_pools (void) 4714 alloc_sched_pools (void)
4648 { 4715 {
4649 int succs_size; 4716 int succs_size;
4650 4717
4651 succs_size = MAX_WS + 1; 4718 succs_size = MAX_WS + 1;
4652 succs_info_pool.stack = XCNEWVEC (struct succs_info, succs_size); 4719 succs_info_pool.stack = XCNEWVEC (struct succs_info, succs_size);
4653 succs_info_pool.size = succs_size; 4720 succs_info_pool.size = succs_size;
4654 succs_info_pool.top = -1; 4721 succs_info_pool.top = -1;
4655 succs_info_pool.max_top = -1; 4722 succs_info_pool.max_top = -1;
4656 4723
4657 sched_lists_pool = create_alloc_pool ("sel-sched-lists", 4724 sched_lists_pool = create_alloc_pool ("sel-sched-lists",
4658 sizeof (struct _list_node), 500); 4725 sizeof (struct _list_node), 500);
4659 } 4726 }
4660 4727
4661 /* Free the pools. */ 4728 /* Free the pools. */
4662 void 4729 void
4663 free_sched_pools (void) 4730 free_sched_pools (void)
4664 { 4731 {
4665 int i; 4732 int i;
4666 4733
4667 free_alloc_pool (sched_lists_pool); 4734 free_alloc_pool (sched_lists_pool);
4668 gcc_assert (succs_info_pool.top == -1); 4735 gcc_assert (succs_info_pool.top == -1);
4669 for (i = 0; i < succs_info_pool.max_top; i++) 4736 for (i = 0; i < succs_info_pool.max_top; i++)
4670 { 4737 {
4671 VEC_free (rtx, heap, succs_info_pool.stack[i].succs_ok); 4738 VEC_free (rtx, heap, succs_info_pool.stack[i].succs_ok);
4674 } 4741 }
4675 free (succs_info_pool.stack); 4742 free (succs_info_pool.stack);
4676 } 4743 }
4677 4744
4678 4745
4679 /* Returns a position in RGN where BB can be inserted retaining 4746 /* Returns a position in RGN where BB can be inserted retaining
4680 topological order. */ 4747 topological order. */
4681 static int 4748 static int
4682 find_place_to_insert_bb (basic_block bb, int rgn) 4749 find_place_to_insert_bb (basic_block bb, int rgn)
4683 { 4750 {
4684 bool has_preds_outside_rgn = false; 4751 bool has_preds_outside_rgn = false;
4685 edge e; 4752 edge e;
4686 edge_iterator ei; 4753 edge_iterator ei;
4687 4754
4688 /* Find whether we have preds outside the region. */ 4755 /* Find whether we have preds outside the region. */
4689 FOR_EACH_EDGE (e, ei, bb->preds) 4756 FOR_EACH_EDGE (e, ei, bb->preds)
4690 if (!in_current_region_p (e->src)) 4757 if (!in_current_region_p (e->src))
4691 { 4758 {
4692 has_preds_outside_rgn = true; 4759 has_preds_outside_rgn = true;
4693 break; 4760 break;
4694 } 4761 }
4695 4762
4696 /* Recompute the top order -- needed when we have > 1 pred 4763 /* Recompute the top order -- needed when we have > 1 pred
4697 and in case we don't have preds outside. */ 4764 and in case we don't have preds outside. */
4698 if (flag_sel_sched_pipelining_outer_loops 4765 if (flag_sel_sched_pipelining_outer_loops
4699 && (has_preds_outside_rgn || EDGE_COUNT (bb->preds) > 1)) 4766 && (has_preds_outside_rgn || EDGE_COUNT (bb->preds) > 1))
4700 { 4767 {
4702 4769
4703 recompute_rev_top_order (); 4770 recompute_rev_top_order ();
4704 for (i = RGN_NR_BLOCKS (rgn) - 1; i >= 0; i--) 4771 for (i = RGN_NR_BLOCKS (rgn) - 1; i >= 0; i--)
4705 { 4772 {
4706 cur_bbi = BB_TO_BLOCK (i); 4773 cur_bbi = BB_TO_BLOCK (i);
4707 if (rev_top_order_index[bbi] 4774 if (rev_top_order_index[bbi]
4708 < rev_top_order_index[cur_bbi]) 4775 < rev_top_order_index[cur_bbi])
4709 break; 4776 break;
4710 } 4777 }
4711 4778
4712 /* We skipped the right block, so we increase i. We accomodate 4779 /* We skipped the right block, so we increase i. We accomodate
4713 it for increasing by step later, so we decrease i. */ 4780 it for increasing by step later, so we decrease i. */
4714 return (i + 1) - 1; 4781 return (i + 1) - 1;
4715 } 4782 }
4716 else if (has_preds_outside_rgn) 4783 else if (has_preds_outside_rgn)
4729 the pipelining of outer loops, and that is handled above. 4796 the pipelining of outer loops, and that is handled above.
4730 Just take the bbi of this single pred. */ 4797 Just take the bbi of this single pred. */
4731 if (EDGE_COUNT (bb->succs) > 0) 4798 if (EDGE_COUNT (bb->succs) > 0)
4732 { 4799 {
4733 int pred_bbi; 4800 int pred_bbi;
4734 4801
4735 gcc_assert (EDGE_COUNT (bb->preds) == 1); 4802 gcc_assert (EDGE_COUNT (bb->preds) == 1);
4736 4803
4737 pred_bbi = EDGE_PRED (bb, 0)->src->index; 4804 pred_bbi = EDGE_PRED (bb, 0)->src->index;
4738 return BLOCK_TO_BB (pred_bbi); 4805 return BLOCK_TO_BB (pred_bbi);
4739 } 4806 }
4740 else 4807 else
4741 /* BB has no successors. It is safe to put it in the end. */ 4808 /* BB has no successors. It is safe to put it in the end. */
4751 if (BB_LV_SET (bb)) 4818 if (BB_LV_SET (bb))
4752 free_lv_set (bb); 4819 free_lv_set (bb);
4753 4820
4754 bitmap_clear_bit (blocks_to_reschedule, bb->index); 4821 bitmap_clear_bit (blocks_to_reschedule, bb->index);
4755 4822
4756 /* Can't assert av_set properties because we use sel_aremove_bb 4823 /* Can't assert av_set properties because we use sel_aremove_bb
4757 when removing loop preheader from the region. At the point of 4824 when removing loop preheader from the region. At the point of
4758 removing the preheader we already have deallocated sel_region_bb_info. */ 4825 removing the preheader we already have deallocated sel_region_bb_info. */
4759 gcc_assert (BB_LV_SET (bb) == NULL 4826 gcc_assert (BB_LV_SET (bb) == NULL
4760 && !BB_LV_SET_VALID_P (bb) 4827 && !BB_LV_SET_VALID_P (bb)
4761 && BB_AV_LEVEL (bb) == 0 4828 && BB_AV_LEVEL (bb) == 0
4762 && BB_AV_SET (bb) == NULL); 4829 && BB_AV_SET (bb) == NULL);
4763 4830
4764 delete_basic_block (bb); 4831 delete_basic_block (bb);
4765 } 4832 }
4766 4833
4767 /* Add BB to the current region and update the region data. */ 4834 /* Add BB to the current region and update the region data. */
4768 static void 4835 static void
4775 bbi += 1; 4842 bbi += 1;
4776 pos = RGN_BLOCKS (rgn) + bbi; 4843 pos = RGN_BLOCKS (rgn) + bbi;
4777 4844
4778 gcc_assert (RGN_HAS_REAL_EBB (rgn) == 0 4845 gcc_assert (RGN_HAS_REAL_EBB (rgn) == 0
4779 && ebb_head[bbi] == pos); 4846 && ebb_head[bbi] == pos);
4780 4847
4781 /* Make a place for the new block. */ 4848 /* Make a place for the new block. */
4782 extend_regions (); 4849 extend_regions ();
4783 4850
4784 for (i = RGN_BLOCKS (rgn + 1) - 1; i >= pos; i--) 4851 for (i = RGN_BLOCKS (rgn + 1) - 1; i >= pos; i--)
4785 BLOCK_TO_BB (rgn_bb_table[i])++; 4852 BLOCK_TO_BB (rgn_bb_table[i])++;
4786 4853
4787 memmove (rgn_bb_table + pos + 1, 4854 memmove (rgn_bb_table + pos + 1,
4788 rgn_bb_table + pos, 4855 rgn_bb_table + pos,
4789 (RGN_BLOCKS (nr_regions) - pos) * sizeof (*rgn_bb_table)); 4856 (RGN_BLOCKS (nr_regions) - pos) * sizeof (*rgn_bb_table));
4790 4857
4791 /* Initialize data for BB. */ 4858 /* Initialize data for BB. */
4792 rgn_bb_table[pos] = bb->index; 4859 rgn_bb_table[pos] = bb->index;
4793 BLOCK_TO_BB (bb->index) = bbi; 4860 BLOCK_TO_BB (bb->index) = bbi;
4794 CONTAINING_RGN (bb->index) = rgn; 4861 CONTAINING_RGN (bb->index) = rgn;
4795 4862
4796 RGN_NR_BLOCKS (rgn)++; 4863 RGN_NR_BLOCKS (rgn)++;
4797 4864
4798 for (i = rgn + 1; i <= nr_regions; i++) 4865 for (i = rgn + 1; i <= nr_regions; i++)
4799 RGN_BLOCKS (i)++; 4866 RGN_BLOCKS (i)++;
4800 } 4867 }
4801 4868
4802 /* Remove BB from the current region and update the region data. */ 4869 /* Remove BB from the current region and update the region data. */
4822 RGN_NR_BLOCKS (rgn)--; 4889 RGN_NR_BLOCKS (rgn)--;
4823 for (i = rgn + 1; i <= nr_regions; i++) 4890 for (i = rgn + 1; i <= nr_regions; i++)
4824 RGN_BLOCKS (i)--; 4891 RGN_BLOCKS (i)--;
4825 } 4892 }
4826 4893
4827 /* Add BB to the current region and update all data. If BB is NULL, add all 4894 /* Add BB to the current region and update all data. If BB is NULL, add all
4828 blocks from last_added_blocks vector. */ 4895 blocks from last_added_blocks vector. */
4829 static void 4896 static void
4830 sel_add_bb (basic_block bb) 4897 sel_add_bb (basic_block bb)
4831 { 4898 {
4832 /* Extend luids so that new notes will receive zero luids. */ 4899 /* Extend luids so that new notes will receive zero luids. */
4833 sched_init_luids (NULL, NULL, NULL, NULL); 4900 sched_init_luids (NULL, NULL, NULL, NULL);
4834 sched_init_bbs (); 4901 sched_init_bbs ();
4835 sel_init_bbs (last_added_blocks, NULL); 4902 sel_init_bbs (last_added_blocks, NULL);
4836 4903
4837 /* When bb is passed explicitly, the vector should contain 4904 /* When bb is passed explicitly, the vector should contain
4838 the only element that equals to bb; otherwise, the vector 4905 the only element that equals to bb; otherwise, the vector
4839 should not be NULL. */ 4906 should not be NULL. */
4840 gcc_assert (last_added_blocks != NULL); 4907 gcc_assert (last_added_blocks != NULL);
4841 4908
4842 if (bb != NULL) 4909 if (bb != NULL)
4843 { 4910 {
4844 gcc_assert (VEC_length (basic_block, last_added_blocks) == 1 4911 gcc_assert (VEC_length (basic_block, last_added_blocks) == 1
4845 && VEC_index (basic_block, 4912 && VEC_index (basic_block,
4846 last_added_blocks, 0) == bb); 4913 last_added_blocks, 0) == bb);
4847 add_block_to_current_region (bb); 4914 add_block_to_current_region (bb);
4848 4915
4849 /* We associate creating/deleting data sets with the first insn 4916 /* We associate creating/deleting data sets with the first insn
4850 appearing / disappearing in the bb. */ 4917 appearing / disappearing in the bb. */
4851 if (!sel_bb_empty_p (bb) && BB_LV_SET (bb) == NULL) 4918 if (!sel_bb_empty_p (bb) && BB_LV_SET (bb) == NULL)
4852 create_initial_data_sets (bb); 4919 create_initial_data_sets (bb);
4853 4920
4854 VEC_free (basic_block, heap, last_added_blocks); 4921 VEC_free (basic_block, heap, last_added_blocks);
4855 } 4922 }
4856 else 4923 else
4857 /* BB is NULL - process LAST_ADDED_BLOCKS instead. */ 4924 /* BB is NULL - process LAST_ADDED_BLOCKS instead. */
4858 { 4925 {
4859 int i; 4926 int i;
4860 basic_block temp_bb = NULL; 4927 basic_block temp_bb = NULL;
4861 4928
4862 for (i = 0; 4929 for (i = 0;
4863 VEC_iterate (basic_block, last_added_blocks, i, bb); i++) 4930 VEC_iterate (basic_block, last_added_blocks, i, bb); i++)
4864 { 4931 {
4865 add_block_to_current_region (bb); 4932 add_block_to_current_region (bb);
4866 temp_bb = bb; 4933 temp_bb = bb;
4867 } 4934 }
4868 4935
4869 /* We need to fetch at least one bb so we know the region 4936 /* We need to fetch at least one bb so we know the region
4870 to update. */ 4937 to update. */
4871 gcc_assert (temp_bb != NULL); 4938 gcc_assert (temp_bb != NULL);
4872 bb = temp_bb; 4939 bb = temp_bb;
4873 4940
4874 VEC_free (basic_block, heap, last_added_blocks); 4941 VEC_free (basic_block, heap, last_added_blocks);
4875 } 4942 }
4876 4943
4877 rgn_setup_region (CONTAINING_RGN (bb->index)); 4944 rgn_setup_region (CONTAINING_RGN (bb->index));
4878 } 4945 }
4879 4946
4880 /* Remove BB from the current region and update all data. 4947 /* Remove BB from the current region and update all data.
4881 If REMOVE_FROM_CFG_PBB is true, also remove the block cfom cfg. */ 4948 If REMOVE_FROM_CFG_PBB is true, also remove the block cfom cfg. */
4882 static void 4949 static void
4883 sel_remove_bb (basic_block bb, bool remove_from_cfg_p) 4950 sel_remove_bb (basic_block bb, bool remove_from_cfg_p)
4884 { 4951 {
4885 gcc_assert (bb != NULL && BB_NOTE_LIST (bb) == NULL_RTX); 4952 gcc_assert (bb != NULL && BB_NOTE_LIST (bb) == NULL_RTX);
4886 4953
4887 remove_bb_from_region (bb); 4954 remove_bb_from_region (bb);
4888 return_bb_to_pool (bb); 4955 return_bb_to_pool (bb);
4889 bitmap_clear_bit (blocks_to_reschedule, bb->index); 4956 bitmap_clear_bit (blocks_to_reschedule, bb->index);
4890 4957
4891 if (remove_from_cfg_p) 4958 if (remove_from_cfg_p)
4892 delete_and_free_basic_block (bb); 4959 delete_and_free_basic_block (bb);
4893 4960
4894 rgn_setup_region (CONTAINING_RGN (bb->index)); 4961 rgn_setup_region (CONTAINING_RGN (bb->index));
4895 } 4962 }
4898 static void 4965 static void
4899 move_bb_info (basic_block merge_bb, basic_block empty_bb) 4966 move_bb_info (basic_block merge_bb, basic_block empty_bb)
4900 { 4967 {
4901 gcc_assert (in_current_region_p (merge_bb)); 4968 gcc_assert (in_current_region_p (merge_bb));
4902 4969
4903 concat_note_lists (BB_NOTE_LIST (empty_bb), 4970 concat_note_lists (BB_NOTE_LIST (empty_bb),
4904 &BB_NOTE_LIST (merge_bb)); 4971 &BB_NOTE_LIST (merge_bb));
4905 BB_NOTE_LIST (empty_bb) = NULL_RTX; 4972 BB_NOTE_LIST (empty_bb) = NULL_RTX;
4906 4973
4907 } 4974 }
4908 4975
4909 /* Remove an empty basic block EMPTY_BB. When MERGE_UP_P is true, we put 4976 /* Remove an empty basic block EMPTY_BB. When MERGE_UP_P is true, we put
4910 EMPTY_BB's note lists into its predecessor instead of putting them 4977 EMPTY_BB's note lists into its predecessor instead of putting them
4911 into the successor. When REMOVE_FROM_CFG_P is true, also remove 4978 into the successor. When REMOVE_FROM_CFG_P is true, also remove
4912 the empty block. */ 4979 the empty block. */
4913 void 4980 void
4914 sel_remove_empty_bb (basic_block empty_bb, bool merge_up_p, 4981 sel_remove_empty_bb (basic_block empty_bb, bool merge_up_p,
4915 bool remove_from_cfg_p) 4982 bool remove_from_cfg_p)
4916 { 4983 {
4929 edge e; 4996 edge e;
4930 edge_iterator ei; 4997 edge_iterator ei;
4931 4998
4932 merge_bb = bb_next_bb (empty_bb); 4999 merge_bb = bb_next_bb (empty_bb);
4933 5000
4934 /* Redirect incoming edges (except fallthrough one) of EMPTY_BB to its 5001 /* Redirect incoming edges (except fallthrough one) of EMPTY_BB to its
4935 successor block. */ 5002 successor block. */
4936 for (ei = ei_start (empty_bb->preds); 5003 for (ei = ei_start (empty_bb->preds);
4937 (e = ei_safe_edge (ei)); ) 5004 (e = ei_safe_edge (ei)); )
4938 { 5005 {
4939 if (! (e->flags & EDGE_FALLTHRU)) 5006 if (! (e->flags & EDGE_FALLTHRU))
5015 5082
5016 /* Finish removing. */ 5083 /* Finish removing. */
5017 sel_remove_bb (empty_bb, remove_from_cfg_p); 5084 sel_remove_bb (empty_bb, remove_from_cfg_p);
5018 } 5085 }
5019 5086
5020 /* An implementation of create_basic_block hook, which additionally updates 5087 /* An implementation of create_basic_block hook, which additionally updates
5021 per-bb data structures. */ 5088 per-bb data structures. */
5022 static basic_block 5089 static basic_block
5023 sel_create_basic_block (void *headp, void *endp, basic_block after) 5090 sel_create_basic_block (void *headp, void *endp, basic_block after)
5024 { 5091 {
5025 basic_block new_bb; 5092 basic_block new_bb;
5026 insn_t new_bb_note; 5093 insn_t new_bb_note;
5027 5094
5028 gcc_assert (flag_sel_sched_pipelining_outer_loops 5095 gcc_assert (flag_sel_sched_pipelining_outer_loops
5029 || last_added_blocks == NULL); 5096 || last_added_blocks == NULL);
5030 5097
5031 new_bb_note = get_bb_note_from_pool (); 5098 new_bb_note = get_bb_note_from_pool ();
5032 5099
5033 if (new_bb_note == NULL_RTX) 5100 if (new_bb_note == NULL_RTX)
5073 gcc_assert (loop_latch_edge (loop)); 5140 gcc_assert (loop_latch_edge (loop));
5074 } 5141 }
5075 } 5142 }
5076 } 5143 }
5077 5144
5078 /* Splits BB on two basic blocks, adding it to the region and extending 5145 /* Splits BB on two basic blocks, adding it to the region and extending
5079 per-bb data structures. Returns the newly created bb. */ 5146 per-bb data structures. Returns the newly created bb. */
5080 static basic_block 5147 static basic_block
5081 sel_split_block (basic_block bb, rtx after) 5148 sel_split_block (basic_block bb, rtx after)
5082 { 5149 {
5083 basic_block new_bb; 5150 basic_block new_bb;
5085 5152
5086 new_bb = sched_split_block_1 (bb, after); 5153 new_bb = sched_split_block_1 (bb, after);
5087 sel_add_bb (new_bb); 5154 sel_add_bb (new_bb);
5088 5155
5089 /* This should be called after sel_add_bb, because this uses 5156 /* This should be called after sel_add_bb, because this uses
5090 CONTAINING_RGN for the new block, which is not yet initialized. 5157 CONTAINING_RGN for the new block, which is not yet initialized.
5091 FIXME: this function may be a no-op now. */ 5158 FIXME: this function may be a no-op now. */
5092 change_loops_latches (bb, new_bb); 5159 change_loops_latches (bb, new_bb);
5093 5160
5094 /* Update ORIG_BB_INDEX for insns moved into the new block. */ 5161 /* Update ORIG_BB_INDEX for insns moved into the new block. */
5095 FOR_BB_INSNS (new_bb, insn) 5162 FOR_BB_INSNS (new_bb, insn)
5125 if (end && INSN_UID (end) >= prev_max_uid) 5192 if (end && INSN_UID (end) >= prev_max_uid)
5126 return end; 5193 return end;
5127 return NULL; 5194 return NULL;
5128 } 5195 }
5129 5196
5130 /* Look for a new jump either in FROM_BB block or in newly created JUMP_BB block. 5197 /* Look for a new jump either in FROM_BB block or in newly created JUMP_BB block.
5131 New means having UID at least equal to PREV_MAX_UID. */ 5198 New means having UID at least equal to PREV_MAX_UID. */
5132 static rtx 5199 static rtx
5133 find_new_jump (basic_block from, basic_block jump_bb, int prev_max_uid) 5200 find_new_jump (basic_block from, basic_block jump_bb, int prev_max_uid)
5134 { 5201 {
5135 rtx jump; 5202 rtx jump;
5136 5203
5137 /* Return immediately if no new insns were emitted. */ 5204 /* Return immediately if no new insns were emitted. */
5138 if (get_max_uid () == prev_max_uid) 5205 if (get_max_uid () == prev_max_uid)
5139 return NULL; 5206 return NULL;
5140 5207
5141 /* Now check both blocks for new jumps. It will ever be only one. */ 5208 /* Now check both blocks for new jumps. It will ever be only one. */
5142 if ((jump = check_for_new_jump (from, prev_max_uid))) 5209 if ((jump = check_for_new_jump (from, prev_max_uid)))
5143 return jump; 5210 return jump;
5144 5211
5145 if (jump_bb != NULL 5212 if (jump_bb != NULL
5159 5226
5160 src = e->src; 5227 src = e->src;
5161 prev_max_uid = get_max_uid (); 5228 prev_max_uid = get_max_uid ();
5162 new_bb = split_edge (e); 5229 new_bb = split_edge (e);
5163 5230
5164 if (flag_sel_sched_pipelining_outer_loops 5231 if (flag_sel_sched_pipelining_outer_loops
5165 && current_loop_nest) 5232 && current_loop_nest)
5166 { 5233 {
5167 int i; 5234 int i;
5168 basic_block bb; 5235 basic_block bb;
5169 5236
5170 /* Some of the basic blocks might not have been added to the loop. 5237 /* Some of the basic blocks might not have been added to the loop.
5171 Add them here, until this is fixed in force_fallthru. */ 5238 Add them here, until this is fixed in force_fallthru. */
5172 for (i = 0; 5239 for (i = 0;
5173 VEC_iterate (basic_block, last_added_blocks, i, bb); i++) 5240 VEC_iterate (basic_block, last_added_blocks, i, bb); i++)
5174 if (!bb->loop_father) 5241 if (!bb->loop_father)
5175 { 5242 {
5176 add_bb_to_loop (bb, e->dest->loop_father); 5243 add_bb_to_loop (bb, e->dest->loop_father);
5177 5244
5236 5303
5237 gcc_assert (sel_bb_empty_p (recovery_block)); 5304 gcc_assert (sel_bb_empty_p (recovery_block));
5238 sched_create_recovery_edges (first_bb, recovery_block, second_bb); 5305 sched_create_recovery_edges (first_bb, recovery_block, second_bb);
5239 if (current_loops != NULL) 5306 if (current_loops != NULL)
5240 add_bb_to_loop (recovery_block, first_bb->loop_father); 5307 add_bb_to_loop (recovery_block, first_bb->loop_father);
5241 5308
5242 sel_add_bb (recovery_block); 5309 sel_add_bb (recovery_block);
5243 5310
5244 jump = BB_END (recovery_block); 5311 jump = BB_END (recovery_block);
5245 gcc_assert (sel_bb_head (recovery_block) == jump); 5312 gcc_assert (sel_bb_head (recovery_block) == jump);
5246 sel_init_new_insn (jump, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SIMPLEJUMP); 5313 sel_init_new_insn (jump, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SIMPLEJUMP);
5247 5314
5248 return recovery_block; 5315 return recovery_block;
5250 5317
5251 /* Merge basic block B into basic block A. */ 5318 /* Merge basic block B into basic block A. */
5252 void 5319 void
5253 sel_merge_blocks (basic_block a, basic_block b) 5320 sel_merge_blocks (basic_block a, basic_block b)
5254 { 5321 {
5255 gcc_assert (can_merge_blocks_p (a, b));
5256
5257 sel_remove_empty_bb (b, true, false); 5322 sel_remove_empty_bb (b, true, false);
5258 merge_blocks (a, b); 5323 merge_blocks (a, b);
5259 5324
5260 change_loops_latches (b, a); 5325 change_loops_latches (b, a);
5261 } 5326 }
5267 sel_redirect_edge_and_branch_force (edge e, basic_block to) 5332 sel_redirect_edge_and_branch_force (edge e, basic_block to)
5268 { 5333 {
5269 basic_block jump_bb, src; 5334 basic_block jump_bb, src;
5270 int prev_max_uid; 5335 int prev_max_uid;
5271 rtx jump; 5336 rtx jump;
5272 5337
5273 gcc_assert (!sel_bb_empty_p (e->src)); 5338 gcc_assert (!sel_bb_empty_p (e->src));
5274 5339
5275 src = e->src; 5340 src = e->src;
5276 prev_max_uid = get_max_uid (); 5341 prev_max_uid = get_max_uid ();
5277 jump_bb = redirect_edge_and_branch_force (e, to); 5342 jump_bb = redirect_edge_and_branch_force (e, to);
5278 5343
5279 if (jump_bb != NULL) 5344 if (jump_bb != NULL)
5282 /* This function could not be used to spoil the loop structure by now, 5347 /* This function could not be used to spoil the loop structure by now,
5283 thus we don't care to update anything. But check it to be sure. */ 5348 thus we don't care to update anything. But check it to be sure. */
5284 if (current_loop_nest 5349 if (current_loop_nest
5285 && pipelining_p) 5350 && pipelining_p)
5286 gcc_assert (loop_latch_edge (current_loop_nest)); 5351 gcc_assert (loop_latch_edge (current_loop_nest));
5287 5352
5288 jump = find_new_jump (src, jump_bb, prev_max_uid); 5353 jump = find_new_jump (src, jump_bb, prev_max_uid);
5289 if (jump) 5354 if (jump)
5290 sel_init_new_insn (jump, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SIMPLEJUMP); 5355 sel_init_new_insn (jump, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SIMPLEJUMP);
5291 } 5356 }
5292 5357
5296 { 5361 {
5297 bool latch_edge_p; 5362 bool latch_edge_p;
5298 basic_block src; 5363 basic_block src;
5299 int prev_max_uid; 5364 int prev_max_uid;
5300 rtx jump; 5365 rtx jump;
5366 edge redirected;
5301 5367
5302 latch_edge_p = (pipelining_p 5368 latch_edge_p = (pipelining_p
5303 && current_loop_nest 5369 && current_loop_nest
5304 && e == loop_latch_edge (current_loop_nest)); 5370 && e == loop_latch_edge (current_loop_nest));
5305 5371
5306 src = e->src; 5372 src = e->src;
5307 prev_max_uid = get_max_uid (); 5373 prev_max_uid = get_max_uid ();
5308 5374
5309 redirect_edge_and_branch (e, to); 5375 redirected = redirect_edge_and_branch (e, to);
5310 gcc_assert (last_added_blocks == NULL); 5376
5377 gcc_assert (redirected && last_added_blocks == NULL);
5311 5378
5312 /* When we've redirected a latch edge, update the header. */ 5379 /* When we've redirected a latch edge, update the header. */
5313 if (latch_edge_p) 5380 if (latch_edge_p)
5314 { 5381 {
5315 current_loop_nest->header = to; 5382 current_loop_nest->header = to;
5365 5432
5366 start_sequence (); 5433 start_sequence ();
5367 5434
5368 if (label == NULL_RTX) 5435 if (label == NULL_RTX)
5369 insn_rtx = emit_insn (pattern); 5436 insn_rtx = emit_insn (pattern);
5437 else if (DEBUG_INSN_P (label))
5438 insn_rtx = emit_debug_insn (pattern);
5370 else 5439 else
5371 { 5440 {
5372 insn_rtx = emit_jump_insn (pattern); 5441 insn_rtx = emit_jump_insn (pattern);
5373 JUMP_LABEL (insn_rtx) = label; 5442 JUMP_LABEL (insn_rtx) = label;
5374 ++LABEL_NUSES (label); 5443 ++LABEL_NUSES (label);
5400 rtx 5469 rtx
5401 create_copy_of_insn_rtx (rtx insn_rtx) 5470 create_copy_of_insn_rtx (rtx insn_rtx)
5402 { 5471 {
5403 rtx res; 5472 rtx res;
5404 5473
5474 if (DEBUG_INSN_P (insn_rtx))
5475 return create_insn_rtx_from_pattern (copy_rtx (PATTERN (insn_rtx)),
5476 insn_rtx);
5477
5405 gcc_assert (NONJUMP_INSN_P (insn_rtx)); 5478 gcc_assert (NONJUMP_INSN_P (insn_rtx));
5406 5479
5407 res = create_insn_rtx_from_pattern (copy_rtx (PATTERN (insn_rtx)), 5480 res = create_insn_rtx_from_pattern (copy_rtx (PATTERN (insn_rtx)),
5408 NULL_RTX); 5481 NULL_RTX);
5409 return res; 5482 return res;
5420 } 5493 }
5421 5494
5422 /* Helpers for global init. */ 5495 /* Helpers for global init. */
5423 /* This structure is used to be able to call existing bundling mechanism 5496 /* This structure is used to be able to call existing bundling mechanism
5424 and calculate insn priorities. */ 5497 and calculate insn priorities. */
5425 static struct haifa_sched_info sched_sel_haifa_sched_info = 5498 static struct haifa_sched_info sched_sel_haifa_sched_info =
5426 { 5499 {
5427 NULL, /* init_ready_list */ 5500 NULL, /* init_ready_list */
5428 NULL, /* can_schedule_ready_p */ 5501 NULL, /* can_schedule_ready_p */
5429 NULL, /* schedule_more_p */ 5502 NULL, /* schedule_more_p */
5430 NULL, /* new_ready */ 5503 NULL, /* new_ready */
5431 NULL, /* rgn_rank */ 5504 NULL, /* rgn_rank */
5432 sel_print_insn, /* rgn_print_insn */ 5505 sel_print_insn, /* rgn_print_insn */
5433 contributes_to_priority, 5506 contributes_to_priority,
5507 NULL, /* insn_finishes_block_p */
5434 5508
5435 NULL, NULL, 5509 NULL, NULL,
5436 NULL, NULL, 5510 NULL, NULL,
5437 0, 0, 5511 0, 0,
5438 5512
5441 NULL, /* advance_target_bb */ 5515 NULL, /* advance_target_bb */
5442 SEL_SCHED | NEW_BBS 5516 SEL_SCHED | NEW_BBS
5443 }; 5517 };
5444 5518
5445 /* Setup special insns used in the scheduler. */ 5519 /* Setup special insns used in the scheduler. */
5446 void 5520 void
5447 setup_nop_and_exit_insns (void) 5521 setup_nop_and_exit_insns (void)
5448 { 5522 {
5449 gcc_assert (nop_pattern == NULL_RTX 5523 gcc_assert (nop_pattern == NULL_RTX
5450 && exit_insn == NULL_RTX); 5524 && exit_insn == NULL_RTX);
5451 5525
5485 5559
5486 /* Call a set_sched_flags hook. */ 5560 /* Call a set_sched_flags hook. */
5487 void 5561 void
5488 sel_set_sched_flags (void) 5562 sel_set_sched_flags (void)
5489 { 5563 {
5490 /* ??? This means that set_sched_flags were called, and we decided to 5564 /* ??? This means that set_sched_flags were called, and we decided to
5491 support speculation. However, set_sched_flags also modifies flags 5565 support speculation. However, set_sched_flags also modifies flags
5492 on current_sched_info, doing this only at global init. And we 5566 on current_sched_info, doing this only at global init. And we
5493 sometimes change c_s_i later. So put the correct flags again. */ 5567 sometimes change c_s_i later. So put the correct flags again. */
5494 if (spec_info && targetm.sched.set_sched_flags) 5568 if (spec_info && targetm.sched.set_sched_flags)
5495 targetm.sched.set_sched_flags (spec_info); 5569 targetm.sched.set_sched_flags (spec_info);
5496 } 5570 }
5497 5571
5512 sel_common_sched_info.sched_pass_id = SCHED_SEL_PASS; 5586 sel_common_sched_info.sched_pass_id = SCHED_SEL_PASS;
5513 5587
5514 common_sched_info = &sel_common_sched_info; 5588 common_sched_info = &sel_common_sched_info;
5515 5589
5516 current_sched_info = &sched_sel_haifa_sched_info; 5590 current_sched_info = &sched_sel_haifa_sched_info;
5517 current_sched_info->sched_max_insns_priority = 5591 current_sched_info->sched_max_insns_priority =
5518 get_rgn_sched_max_insns_priority (); 5592 get_rgn_sched_max_insns_priority ();
5519 5593
5520 sel_set_sched_flags (); 5594 sel_set_sched_flags ();
5521 } 5595 }
5522 5596
5523 5597
5524 /* Adds basic block BB to region RGN at the position *BB_ORD_INDEX, 5598 /* Adds basic block BB to region RGN at the position *BB_ORD_INDEX,
5548 5622
5549 RGN_NR_BLOCKS (new_rgn_number) = 0; 5623 RGN_NR_BLOCKS (new_rgn_number) = 0;
5550 5624
5551 /* FIXME: This will work only when EBBs are not created. */ 5625 /* FIXME: This will work only when EBBs are not created. */
5552 if (new_rgn_number != 0) 5626 if (new_rgn_number != 0)
5553 RGN_BLOCKS (new_rgn_number) = RGN_BLOCKS (new_rgn_number - 1) + 5627 RGN_BLOCKS (new_rgn_number) = RGN_BLOCKS (new_rgn_number - 1) +
5554 RGN_NR_BLOCKS (new_rgn_number - 1); 5628 RGN_NR_BLOCKS (new_rgn_number - 1);
5555 else 5629 else
5556 RGN_BLOCKS (new_rgn_number) = 0; 5630 RGN_BLOCKS (new_rgn_number) = 0;
5557 5631
5558 /* Set the blocks of the next region so the other functions may 5632 /* Set the blocks of the next region so the other functions may
5559 calculate the number of blocks in the region. */ 5633 calculate the number of blocks in the region. */
5560 RGN_BLOCKS (new_rgn_number + 1) = RGN_BLOCKS (new_rgn_number) + 5634 RGN_BLOCKS (new_rgn_number + 1) = RGN_BLOCKS (new_rgn_number) +
5561 RGN_NR_BLOCKS (new_rgn_number); 5635 RGN_NR_BLOCKS (new_rgn_number);
5562 5636
5563 nr_regions++; 5637 nr_regions++;
5564 5638
5565 return new_rgn_number; 5639 return new_rgn_number;
5571 bb_top_order_comparator (const void *x, const void *y) 5645 bb_top_order_comparator (const void *x, const void *y)
5572 { 5646 {
5573 basic_block bb1 = *(const basic_block *) x; 5647 basic_block bb1 = *(const basic_block *) x;
5574 basic_block bb2 = *(const basic_block *) y; 5648 basic_block bb2 = *(const basic_block *) y;
5575 5649
5576 gcc_assert (bb1 == bb2 5650 gcc_assert (bb1 == bb2
5577 || rev_top_order_index[bb1->index] 5651 || rev_top_order_index[bb1->index]
5578 != rev_top_order_index[bb2->index]); 5652 != rev_top_order_index[bb2->index]);
5579 5653
5580 /* It's a reverse topological order in REV_TOP_ORDER_INDEX, so 5654 /* It's a reverse topological order in REV_TOP_ORDER_INDEX, so
5581 bbs with greater number should go earlier. */ 5655 bbs with greater number should go earlier. */
5582 if (rev_top_order_index[bb1->index] > rev_top_order_index[bb2->index]) 5656 if (rev_top_order_index[bb1->index] > rev_top_order_index[bb2->index])
5583 return -1; 5657 return -1;
5584 else 5658 else
5585 return 1; 5659 return 1;
5586 } 5660 }
5587 5661
5588 /* Create a region for LOOP and return its number. If we don't want 5662 /* Create a region for LOOP and return its number. If we don't want
5589 to pipeline LOOP, return -1. */ 5663 to pipeline LOOP, return -1. */
5590 static int 5664 static int
5591 make_region_from_loop (struct loop *loop) 5665 make_region_from_loop (struct loop *loop)
5592 { 5666 {
5593 unsigned int i; 5667 unsigned int i;
5597 /* Basic block index, to be assigned to BLOCK_TO_BB. */ 5671 /* Basic block index, to be assigned to BLOCK_TO_BB. */
5598 int bb_ord_index = 0; 5672 int bb_ord_index = 0;
5599 basic_block *loop_blocks; 5673 basic_block *loop_blocks;
5600 basic_block preheader_block; 5674 basic_block preheader_block;
5601 5675
5602 if (loop->num_nodes 5676 if (loop->num_nodes
5603 > (unsigned) PARAM_VALUE (PARAM_MAX_PIPELINE_REGION_BLOCKS)) 5677 > (unsigned) PARAM_VALUE (PARAM_MAX_PIPELINE_REGION_BLOCKS))
5604 return -1; 5678 return -1;
5605 5679
5606 /* Don't pipeline loops whose latch belongs to some of its inner loops. */ 5680 /* Don't pipeline loops whose latch belongs to some of its inner loops. */
5607 for (inner = loop->inner; inner; inner = inner->inner) 5681 for (inner = loop->inner; inner; inner = inner->inner)
5608 if (flow_bb_inside_loop_p (inner, loop->latch)) 5682 if (flow_bb_inside_loop_p (inner, loop->latch))
5609 return -1; 5683 return -1;
5610 5684
5632 5706
5633 for (i = 0; i < loop->num_nodes; i++) 5707 for (i = 0; i < loop->num_nodes; i++)
5634 { 5708 {
5635 /* Add only those blocks that haven't been scheduled in the inner loop. 5709 /* Add only those blocks that haven't been scheduled in the inner loop.
5636 The exception is the basic blocks with bookkeeping code - they should 5710 The exception is the basic blocks with bookkeeping code - they should
5637 be added to the region (and they actually don't belong to the loop 5711 be added to the region (and they actually don't belong to the loop
5638 body, but to the region containing that loop body). */ 5712 body, but to the region containing that loop body). */
5639 5713
5640 gcc_assert (new_rgn_number >= 0); 5714 gcc_assert (new_rgn_number >= 0);
5641 5715
5642 if (! TEST_BIT (bbs_in_loop_rgns, loop_blocks[i]->index)) 5716 if (! TEST_BIT (bbs_in_loop_rgns, loop_blocks[i]->index))
5643 { 5717 {
5644 sel_add_block_to_region (loop_blocks[i], &bb_ord_index, 5718 sel_add_block_to_region (loop_blocks[i], &bb_ord_index,
5645 new_rgn_number); 5719 new_rgn_number);
5646 SET_BIT (bbs_in_loop_rgns, loop_blocks[i]->index); 5720 SET_BIT (bbs_in_loop_rgns, loop_blocks[i]->index);
5647 } 5721 }
5648 } 5722 }
5649 5723
5677 gcc_assert (*loop_blocks == NULL); 5751 gcc_assert (*loop_blocks == NULL);
5678 } 5752 }
5679 5753
5680 5754
5681 /* Create region(s) from loop nest LOOP, such that inner loops will be 5755 /* Create region(s) from loop nest LOOP, such that inner loops will be
5682 pipelined before outer loops. Returns true when a region for LOOP 5756 pipelined before outer loops. Returns true when a region for LOOP
5683 is created. */ 5757 is created. */
5684 static bool 5758 static bool
5685 make_regions_from_loop_nest (struct loop *loop) 5759 make_regions_from_loop_nest (struct loop *loop)
5686 { 5760 {
5687 struct loop *cur_loop; 5761 struct loop *cur_loop;
5688 int rgn_number; 5762 int rgn_number;
5689 5763
5690 /* Traverse all inner nodes of the loop. */ 5764 /* Traverse all inner nodes of the loop. */
5691 for (cur_loop = loop->inner; cur_loop; cur_loop = cur_loop->next) 5765 for (cur_loop = loop->inner; cur_loop; cur_loop = cur_loop->next)
5737 considered_for_pipelining_p (struct loop *loop) 5811 considered_for_pipelining_p (struct loop *loop)
5738 { 5812 {
5739 if (loop_depth (loop) == 0) 5813 if (loop_depth (loop) == 0)
5740 return false; 5814 return false;
5741 5815
5742 /* Now, the loop could be too large or irreducible. Check whether its 5816 /* Now, the loop could be too large or irreducible. Check whether its
5743 region is in LOOP_NESTS. 5817 region is in LOOP_NESTS.
5744 We determine the region number of LOOP as the region number of its 5818 We determine the region number of LOOP as the region number of its
5745 latch. We can't use header here, because this header could be 5819 latch. We can't use header here, because this header could be
5746 just removed preheader and it will give us the wrong region number. 5820 just removed preheader and it will give us the wrong region number.
5747 Latch can't be used because it could be in the inner loop too. */ 5821 Latch can't be used because it could be in the inner loop too. */
5748 if (LOOP_MARKED_FOR_PIPELINING_P (loop) && pipelining_p) 5822 if (LOOP_MARKED_FOR_PIPELINING_P (loop) && pipelining_p)
5749 { 5823 {
5750 int rgn = CONTAINING_RGN (loop->latch->index); 5824 int rgn = CONTAINING_RGN (loop->latch->index);
5751 5825
5752 gcc_assert ((unsigned) rgn < VEC_length (loop_p, loop_nests)); 5826 gcc_assert ((unsigned) rgn < VEC_length (loop_p, loop_nests));
5753 return true; 5827 return true;
5754 } 5828 }
5755 5829
5756 return false; 5830 return false;
5757 } 5831 }
5758 5832
5759 /* Makes regions from the rest of the blocks, after loops are chosen 5833 /* Makes regions from the rest of the blocks, after loops are chosen
5760 for pipelining. */ 5834 for pipelining. */
5761 static void 5835 static void
5762 make_regions_from_the_rest (void) 5836 make_regions_from_the_rest (void)
5763 { 5837 {
5764 int cur_rgn_blocks; 5838 int cur_rgn_blocks;
5767 5841
5768 basic_block bb; 5842 basic_block bb;
5769 edge e; 5843 edge e;
5770 edge_iterator ei; 5844 edge_iterator ei;
5771 int *degree; 5845 int *degree;
5772 int new_regions;
5773 5846
5774 /* Index in rgn_bb_table where to start allocating new regions. */ 5847 /* Index in rgn_bb_table where to start allocating new regions. */
5775 cur_rgn_blocks = nr_regions ? RGN_BLOCKS (nr_regions) : 0; 5848 cur_rgn_blocks = nr_regions ? RGN_BLOCKS (nr_regions) : 0;
5776 new_regions = nr_regions; 5849
5777 5850 /* Make regions from all the rest basic blocks - those that don't belong to
5778 /* Make regions from all the rest basic blocks - those that don't belong to
5779 any loop or belong to irreducible loops. Prepare the data structures 5851 any loop or belong to irreducible loops. Prepare the data structures
5780 for extend_rgns. */ 5852 for extend_rgns. */
5781 5853
5782 /* LOOP_HDR[I] == -1 if I-th bb doesn't belong to any loop, 5854 /* LOOP_HDR[I] == -1 if I-th bb doesn't belong to any loop,
5783 LOOP_HDR[I] == LOOP_HDR[J] iff basic blocks I and J reside within the same 5855 LOOP_HDR[I] == LOOP_HDR[J] iff basic blocks I and J reside within the same
5796 if (bb->loop_father && !bb->loop_father->num == 0 5868 if (bb->loop_father && !bb->loop_father->num == 0
5797 && !(bb->flags & BB_IRREDUCIBLE_LOOP)) 5869 && !(bb->flags & BB_IRREDUCIBLE_LOOP))
5798 loop_hdr[bb->index] = bb->loop_father->num; 5870 loop_hdr[bb->index] = bb->loop_father->num;
5799 } 5871 }
5800 5872
5801 /* For each basic block degree is calculated as the number of incoming 5873 /* For each basic block degree is calculated as the number of incoming
5802 edges, that are going out of bbs that are not yet scheduled. 5874 edges, that are going out of bbs that are not yet scheduled.
5803 The basic blocks that are scheduled have degree value of zero. */ 5875 The basic blocks that are scheduled have degree value of zero. */
5804 FOR_EACH_BB (bb) 5876 FOR_EACH_BB (bb)
5805 { 5877 {
5806 degree[bb->index] = 0; 5878 degree[bb->index] = 0;
5807 5879
5808 if (!TEST_BIT (bbs_in_loop_rgns, bb->index)) 5880 if (!TEST_BIT (bbs_in_loop_rgns, bb->index))
5809 { 5881 {
5851 5923
5852 free (rev_top_order_index); 5924 free (rev_top_order_index);
5853 rev_top_order_index = NULL; 5925 rev_top_order_index = NULL;
5854 } 5926 }
5855 5927
5856 /* This function replaces the find_rgns when 5928 /* This function replaces the find_rgns when
5857 FLAG_SEL_SCHED_PIPELINING_OUTER_LOOPS is set. */ 5929 FLAG_SEL_SCHED_PIPELINING_OUTER_LOOPS is set. */
5858 void 5930 void
5859 sel_find_rgns (void) 5931 sel_find_rgns (void)
5860 { 5932 {
5861 sel_init_pipelining (); 5933 sel_init_pipelining ();
5862 extend_regions (); 5934 extend_regions ();
5863 5935
5871 : LI_ONLY_INNERMOST)) 5943 : LI_ONLY_INNERMOST))
5872 make_regions_from_loop_nest (loop); 5944 make_regions_from_loop_nest (loop);
5873 } 5945 }
5874 5946
5875 /* Make regions from all the rest basic blocks and schedule them. 5947 /* Make regions from all the rest basic blocks and schedule them.
5876 These blocks include blocks that don't belong to any loop or belong 5948 These blocks include blocks that don't belong to any loop or belong
5877 to irreducible loops. */ 5949 to irreducible loops. */
5878 make_regions_from_the_rest (); 5950 make_regions_from_the_rest ();
5879 5951
5880 /* We don't need bbs_in_loop_rgns anymore. */ 5952 /* We don't need bbs_in_loop_rgns anymore. */
5881 sbitmap_free (bbs_in_loop_rgns); 5953 sbitmap_free (bbs_in_loop_rgns);
5882 bbs_in_loop_rgns = NULL; 5954 bbs_in_loop_rgns = NULL;
5883 } 5955 }
5884 5956
5885 /* Adds the preheader blocks from previous loop to current region taking 5957 /* Adds the preheader blocks from previous loop to current region taking
5886 it from LOOP_PREHEADER_BLOCKS (current_loop_nest). 5958 it from LOOP_PREHEADER_BLOCKS (current_loop_nest).
5887 This function is only used with -fsel-sched-pipelining-outer-loops. */ 5959 This function is only used with -fsel-sched-pipelining-outer-loops. */
5888 void 5960 void
5889 sel_add_loop_preheaders (void) 5961 sel_add_loop_preheaders (void)
5890 { 5962 {
5891 int i; 5963 int i;
5892 basic_block bb; 5964 basic_block bb;
5893 VEC(basic_block, heap) *preheader_blocks 5965 VEC(basic_block, heap) *preheader_blocks
5894 = LOOP_PREHEADER_BLOCKS (current_loop_nest); 5966 = LOOP_PREHEADER_BLOCKS (current_loop_nest);
5895 5967
5896 for (i = 0; 5968 for (i = 0;
5897 VEC_iterate (basic_block, preheader_blocks, i, bb); 5969 VEC_iterate (basic_block, preheader_blocks, i, bb);
5898 i++) 5970 i++)
5899 sel_add_bb (bb); 5971 sel_add_bb (bb);
5900 5972
5901 VEC_free (basic_block, heap, preheader_blocks); 5973 VEC_free (basic_block, heap, preheader_blocks);
5902 } 5974 }
5903 5975
5904 /* While pipelining outer loops, returns TRUE if BB is a loop preheader. 5976 /* While pipelining outer loops, returns TRUE if BB is a loop preheader.
5905 Please note that the function should also work when pipelining_p is 5977 Please note that the function should also work when pipelining_p is
5906 false, because it is used when deciding whether we should or should 5978 false, because it is used when deciding whether we should or should
5907 not reschedule pipelined code. */ 5979 not reschedule pipelined code. */
5908 bool 5980 bool
5909 sel_is_loop_preheader_p (basic_block bb) 5981 sel_is_loop_preheader_p (basic_block bb)
5910 { 5982 {
5911 if (current_loop_nest) 5983 if (current_loop_nest)
5921 5993
5922 /* We used to find a preheader with the topological information. 5994 /* We used to find a preheader with the topological information.
5923 Check that the above code is equivalent to what we did before. */ 5995 Check that the above code is equivalent to what we did before. */
5924 5996
5925 if (in_current_region_p (current_loop_nest->header)) 5997 if (in_current_region_p (current_loop_nest->header))
5926 gcc_assert (!(BLOCK_TO_BB (bb->index) 5998 gcc_assert (!(BLOCK_TO_BB (bb->index)
5927 < BLOCK_TO_BB (current_loop_nest->header->index))); 5999 < BLOCK_TO_BB (current_loop_nest->header->index)));
5928 6000
5929 /* Support the situation when the latch block of outer loop 6001 /* Support the situation when the latch block of outer loop
5930 could be from here. */ 6002 could be from here. */
5931 for (outer = loop_outer (current_loop_nest); 6003 for (outer = loop_outer (current_loop_nest);
5942 bool 6014 bool
5943 jump_leads_only_to_bb_p (insn_t jump, basic_block dest_bb) 6015 jump_leads_only_to_bb_p (insn_t jump, basic_block dest_bb)
5944 { 6016 {
5945 basic_block jump_bb = BLOCK_FOR_INSN (jump); 6017 basic_block jump_bb = BLOCK_FOR_INSN (jump);
5946 6018
5947 /* It is not jump, jump with side-effects or jump can lead to several 6019 /* It is not jump, jump with side-effects or jump can lead to several
5948 basic blocks. */ 6020 basic blocks. */
5949 if (!onlyjump_p (jump) 6021 if (!onlyjump_p (jump)
5950 || !any_uncondjump_p (jump)) 6022 || !any_uncondjump_p (jump))
5951 return false; 6023 return false;
5952 6024
5953 /* Several outgoing edges, abnormal edge or destination of jump is 6025 /* Several outgoing edges, abnormal edge or destination of jump is
5954 not DEST_BB. */ 6026 not DEST_BB. */
5955 if (EDGE_COUNT (jump_bb->succs) != 1 6027 if (EDGE_COUNT (jump_bb->succs) != 1
5956 || EDGE_SUCC (jump_bb, 0)->flags & EDGE_ABNORMAL 6028 || EDGE_SUCC (jump_bb, 0)->flags & EDGE_ABNORMAL
5957 || EDGE_SUCC (jump_bb, 0)->dest != dest_bb) 6029 || EDGE_SUCC (jump_bb, 0)->dest != dest_bb)
5958 return false; 6030 return false;
5960 /* If not anything of the upper. */ 6032 /* If not anything of the upper. */
5961 return true; 6033 return true;
5962 } 6034 }
5963 6035
5964 /* Removes the loop preheader from the current region and saves it in 6036 /* Removes the loop preheader from the current region and saves it in
5965 PREHEADER_BLOCKS of the father loop, so they will be added later to 6037 PREHEADER_BLOCKS of the father loop, so they will be added later to
5966 region that represents an outer loop. */ 6038 region that represents an outer loop. */
5967 static void 6039 static void
5968 sel_remove_loop_preheader (void) 6040 sel_remove_loop_preheader (void)
5969 { 6041 {
5970 int i, old_len; 6042 int i, old_len;
5971 int cur_rgn = CONTAINING_RGN (BB_TO_BLOCK (0)); 6043 int cur_rgn = CONTAINING_RGN (BB_TO_BLOCK (0));
5972 basic_block bb; 6044 basic_block bb;
5973 bool all_empty_p = true; 6045 bool all_empty_p = true;
5974 VEC(basic_block, heap) *preheader_blocks 6046 VEC(basic_block, heap) *preheader_blocks
5975 = LOOP_PREHEADER_BLOCKS (loop_outer (current_loop_nest)); 6047 = LOOP_PREHEADER_BLOCKS (loop_outer (current_loop_nest));
5976 6048
5977 gcc_assert (current_loop_nest); 6049 gcc_assert (current_loop_nest);
5978 old_len = VEC_length (basic_block, preheader_blocks); 6050 old_len = VEC_length (basic_block, preheader_blocks);
5979 6051
5980 /* Add blocks that aren't within the current loop to PREHEADER_BLOCKS. */ 6052 /* Add blocks that aren't within the current loop to PREHEADER_BLOCKS. */
5981 for (i = 0; i < RGN_NR_BLOCKS (cur_rgn); i++) 6053 for (i = 0; i < RGN_NR_BLOCKS (cur_rgn); i++)
5982 { 6054 {
5983 bb = BASIC_BLOCK (BB_TO_BLOCK (i)); 6055 bb = BASIC_BLOCK (BB_TO_BLOCK (i));
5984 6056
5985 /* If the basic block belongs to region, but doesn't belong to 6057 /* If the basic block belongs to region, but doesn't belong to
5986 corresponding loop, then it should be a preheader. */ 6058 corresponding loop, then it should be a preheader. */
5987 if (sel_is_loop_preheader_p (bb)) 6059 if (sel_is_loop_preheader_p (bb))
5988 { 6060 {
5989 VEC_safe_push (basic_block, heap, preheader_blocks, bb); 6061 VEC_safe_push (basic_block, heap, preheader_blocks, bb);
5990 if (BB_END (bb) != bb_note (bb)) 6062 if (BB_END (bb) != bb_note (bb))
5991 all_empty_p = false; 6063 all_empty_p = false;
5992 } 6064 }
5993 } 6065 }
5994 6066
5995 /* Remove these blocks only after iterating over the whole region. */ 6067 /* Remove these blocks only after iterating over the whole region. */
5996 for (i = VEC_length (basic_block, preheader_blocks) - 1; 6068 for (i = VEC_length (basic_block, preheader_blocks) - 1;
5997 i >= old_len; 6069 i >= old_len;
5998 i--) 6070 i--)
5999 { 6071 {
6000 bb = VEC_index (basic_block, preheader_blocks, i); 6072 bb = VEC_index (basic_block, preheader_blocks, i);
6001 sel_remove_bb (bb, false); 6073 sel_remove_bb (bb, false);
6002 } 6074 }
6003 6075
6004 if (!considered_for_pipelining_p (loop_outer (current_loop_nest))) 6076 if (!considered_for_pipelining_p (loop_outer (current_loop_nest)))
6005 { 6077 {
6025 redirect_edge_succ (e, bb->next_bb); 6097 redirect_edge_succ (e, bb->next_bb);
6026 } 6098 }
6027 gcc_assert (BB_NOTE_LIST (bb) == NULL); 6099 gcc_assert (BB_NOTE_LIST (bb) == NULL);
6028 delete_and_free_basic_block (bb); 6100 delete_and_free_basic_block (bb);
6029 6101
6030 /* Check if after deleting preheader there is a nonconditional 6102 /* Check if after deleting preheader there is a nonconditional
6031 jump in PREV_BB that leads to the next basic block NEXT_BB. 6103 jump in PREV_BB that leads to the next basic block NEXT_BB.
6032 If it is so - delete this jump and clear data sets of its 6104 If it is so - delete this jump and clear data sets of its
6033 basic block if it becomes empty. */ 6105 basic block if it becomes empty. */
6034 if (next_bb->prev_bb == prev_bb 6106 if (next_bb->prev_bb == prev_bb
6035 && prev_bb != ENTRY_BLOCK_PTR 6107 && prev_bb != ENTRY_BLOCK_PTR
6036 && jump_leads_only_to_bb_p (BB_END (prev_bb), next_bb)) 6108 && jump_leads_only_to_bb_p (BB_END (prev_bb), next_bb))
6037 { 6109 {