comparison gcc/sel-sched.c @ 55:77e2b8dfacca gcc-4.4.5

update it from 4.4.3 to 4.5.0
author ryoma <e075725@ie.u-ryukyu.ac.jp>
date Fri, 12 Feb 2010 23:39:51 +0900
parents a06113de4d67
children b7f97abdc517
comparison
equal deleted inserted replaced
52:c156f1bd5cd9 55:77e2b8dfacca
54 54
55 /* Implementation of selective scheduling approach. 55 /* Implementation of selective scheduling approach.
56 The below implementation follows the original approach with the following 56 The below implementation follows the original approach with the following
57 changes: 57 changes:
58 58
59 o the scheduler works after register allocation (but can be also tuned 59 o the scheduler works after register allocation (but can be also tuned
60 to work before RA); 60 to work before RA);
61 o some instructions are not copied or register renamed; 61 o some instructions are not copied or register renamed;
62 o conditional jumps are not moved with code duplication; 62 o conditional jumps are not moved with code duplication;
63 o several jumps in one parallel group are not supported; 63 o several jumps in one parallel group are not supported;
64 o when pipelining outer loops, code motion through inner loops 64 o when pipelining outer loops, code motion through inner loops
67 o some improvements for better compile time/performance were made. 67 o some improvements for better compile time/performance were made.
68 68
69 Terminology 69 Terminology
70 =========== 70 ===========
71 71
72 A vinsn, or virtual insn, is an insn with additional data characterizing 72 A vinsn, or virtual insn, is an insn with additional data characterizing
73 insn pattern, such as LHS, RHS, register sets used/set/clobbered, etc. 73 insn pattern, such as LHS, RHS, register sets used/set/clobbered, etc.
74 Vinsns also act as smart pointers to save memory by reusing them in 74 Vinsns also act as smart pointers to save memory by reusing them in
75 different expressions. A vinsn is described by vinsn_t type. 75 different expressions. A vinsn is described by vinsn_t type.
76 76
77 An expression is a vinsn with additional data characterizing its properties 77 An expression is a vinsn with additional data characterizing its properties
78 at some point in the control flow graph. The data may be its usefulness, 78 at some point in the control flow graph. The data may be its usefulness,
79 priority, speculative status, whether it was renamed/subsituted, etc. 79 priority, speculative status, whether it was renamed/subsituted, etc.
80 An expression is described by expr_t type. 80 An expression is described by expr_t type.
81 81
82 Availability set (av_set) is a set of expressions at a given control flow 82 Availability set (av_set) is a set of expressions at a given control flow
83 point. It is represented as av_set_t. The expressions in av sets are kept 83 point. It is represented as av_set_t. The expressions in av sets are kept
84 sorted in the terms of expr_greater_p function. It allows to truncate 84 sorted in the terms of expr_greater_p function. It allows to truncate
85 the set while leaving the best expressions. 85 the set while leaving the best expressions.
86 86
87 A fence is a point through which code motion is prohibited. On each step, 87 A fence is a point through which code motion is prohibited. On each step,
88 we gather a parallel group of insns at a fence. It is possible to have 88 we gather a parallel group of insns at a fence. It is possible to have
89 multiple fences. A fence is represented via fence_t. 89 multiple fences. A fence is represented via fence_t.
90 90
91 A boundary is the border between the fence group and the rest of the code. 91 A boundary is the border between the fence group and the rest of the code.
92 Currently, we never have more than one boundary per fence, as we finalize 92 Currently, we never have more than one boundary per fence, as we finalize
93 the fence group when a jump is scheduled. A boundary is represented 93 the fence group when a jump is scheduled. A boundary is represented
94 via bnd_t. 94 via bnd_t.
95 95
96 High-level overview 96 High-level overview
97 =================== 97 ===================
98 98
99 The scheduler finds regions to schedule, schedules each one, and finalizes. 99 The scheduler finds regions to schedule, schedules each one, and finalizes.
100 The regions are formed starting from innermost loops, so that when the inner 100 The regions are formed starting from innermost loops, so that when the inner
101 loop is pipelined, its prologue can be scheduled together with yet unprocessed 101 loop is pipelined, its prologue can be scheduled together with yet unprocessed
102 outer loop. The rest of acyclic regions are found using extend_rgns: 102 outer loop. The rest of acyclic regions are found using extend_rgns:
103 the blocks that are not yet allocated to any regions are traversed in top-down 103 the blocks that are not yet allocated to any regions are traversed in top-down
104 order, and a block is added to a region to which all its predecessors belong; 104 order, and a block is added to a region to which all its predecessors belong;
105 otherwise, the block starts its own region. 105 otherwise, the block starts its own region.
106 106
107 The main scheduling loop (sel_sched_region_2) consists of just 107 The main scheduling loop (sel_sched_region_2) consists of just
108 scheduling on each fence and updating fences. For each fence, 108 scheduling on each fence and updating fences. For each fence,
109 we fill a parallel group of insns (fill_insns) until some insns can be added. 109 we fill a parallel group of insns (fill_insns) until some insns can be added.
110 First, we compute available exprs (av-set) at the boundary of the current 110 First, we compute available exprs (av-set) at the boundary of the current
111 group. Second, we choose the best expression from it. If the stall is 111 group. Second, we choose the best expression from it. If the stall is
112 required to schedule any of the expressions, we advance the current cycle 112 required to schedule any of the expressions, we advance the current cycle
113 appropriately. So, the final group does not exactly correspond to a VLIW 113 appropriately. So, the final group does not exactly correspond to a VLIW
114 word. Third, we move the chosen expression to the boundary (move_op) 114 word. Third, we move the chosen expression to the boundary (move_op)
115 and update the intermediate av sets and liveness sets. We quit fill_insns 115 and update the intermediate av sets and liveness sets. We quit fill_insns
116 when either no insns left for scheduling or we have scheduled enough insns 116 when either no insns left for scheduling or we have scheduled enough insns
117 so we feel like advancing a scheduling point. 117 so we feel like advancing a scheduling point.
118 118
119 Computing available expressions 119 Computing available expressions
120 =============================== 120 ===============================
121 121
122 The computation (compute_av_set) is a bottom-up traversal. At each insn, 122 The computation (compute_av_set) is a bottom-up traversal. At each insn,
123 we're moving the union of its successors' sets through it via 123 we're moving the union of its successors' sets through it via
124 moveup_expr_set. The dependent expressions are removed. Local 124 moveup_expr_set. The dependent expressions are removed. Local
125 transformations (substitution, speculation) are applied to move more 125 transformations (substitution, speculation) are applied to move more
126 exprs. Then the expr corresponding to the current insn is added. 126 exprs. Then the expr corresponding to the current insn is added.
127 The result is saved on each basic block header. 127 The result is saved on each basic block header.
128 128
129 When traversing the CFG, we're moving down for no more than max_ws insns. 129 When traversing the CFG, we're moving down for no more than max_ws insns.
130 Also, we do not move down to ineligible successors (is_ineligible_successor), 130 Also, we do not move down to ineligible successors (is_ineligible_successor),
131 which include moving along a back-edge, moving to already scheduled code, 131 which include moving along a back-edge, moving to already scheduled code,
132 and moving to another fence. The first two restrictions are lifted during 132 and moving to another fence. The first two restrictions are lifted during
133 pipelining, which allows us to move insns along a back-edge. We always have 133 pipelining, which allows us to move insns along a back-edge. We always have
134 an acyclic region for scheduling because we forbid motion through fences. 134 an acyclic region for scheduling because we forbid motion through fences.
135 135
136 Choosing the best expression 136 Choosing the best expression
137 ============================ 137 ============================
138 138
139 We sort the final availability set via sel_rank_for_schedule, then we remove 139 We sort the final availability set via sel_rank_for_schedule, then we remove
140 expressions which are not yet ready (tick_check_p) or which dest registers 140 expressions which are not yet ready (tick_check_p) or which dest registers
141 cannot be used. For some of them, we choose another register via 141 cannot be used. For some of them, we choose another register via
142 find_best_reg. To do this, we run find_used_regs to calculate the set of 142 find_best_reg. To do this, we run find_used_regs to calculate the set of
143 registers which cannot be used. The find_used_regs function performs 143 registers which cannot be used. The find_used_regs function performs
144 a traversal of code motion paths for an expr. We consider for renaming 144 a traversal of code motion paths for an expr. We consider for renaming
145 only registers which are from the same regclass as the original one and 145 only registers which are from the same regclass as the original one and
146 using which does not interfere with any live ranges. Finally, we convert 146 using which does not interfere with any live ranges. Finally, we convert
147 the resulting set to the ready list format and use max_issue and reorder* 147 the resulting set to the ready list format and use max_issue and reorder*
148 hooks similarly to the Haifa scheduler. 148 hooks similarly to the Haifa scheduler.
149 149
150 Scheduling the best expression 150 Scheduling the best expression
151 ============================== 151 ==============================
152 152
153 We run the move_op routine to perform the same type of code motion paths 153 We run the move_op routine to perform the same type of code motion paths
154 traversal as in find_used_regs. (These are working via the same driver, 154 traversal as in find_used_regs. (These are working via the same driver,
155 code_motion_path_driver.) When moving down the CFG, we look for original 155 code_motion_path_driver.) When moving down the CFG, we look for original
156 instruction that gave birth to a chosen expression. We undo 156 instruction that gave birth to a chosen expression. We undo
157 the transformations performed on an expression via the history saved in it. 157 the transformations performed on an expression via the history saved in it.
158 When found, we remove the instruction or leave a reg-reg copy/speculation 158 When found, we remove the instruction or leave a reg-reg copy/speculation
159 check if needed. On a way up, we insert bookkeeping copies at each join 159 check if needed. On a way up, we insert bookkeeping copies at each join
160 point. If a copy is not needed, it will be removed later during this 160 point. If a copy is not needed, it will be removed later during this
161 traversal. We update the saved av sets and liveness sets on the way up, too. 161 traversal. We update the saved av sets and liveness sets on the way up, too.
162 162
163 Finalizing the schedule 163 Finalizing the schedule
164 ======================= 164 =======================
165 165
166 When pipelining, we reschedule the blocks from which insns were pipelined 166 When pipelining, we reschedule the blocks from which insns were pipelined
167 to get a tighter schedule. On Itanium, we also perform bundling via 167 to get a tighter schedule. On Itanium, we also perform bundling via
168 the same routine from ia64.c. 168 the same routine from ia64.c.
169 169
170 Dependence analysis changes 170 Dependence analysis changes
171 =========================== 171 ===========================
172 172
173 We augmented the sched-deps.c with hooks that get called when a particular 173 We augmented the sched-deps.c with hooks that get called when a particular
174 dependence is found in a particular part of an insn. Using these hooks, we 174 dependence is found in a particular part of an insn. Using these hooks, we
175 can do several actions such as: determine whether an insn can be moved through 175 can do several actions such as: determine whether an insn can be moved through
176 another (has_dependence_p, moveup_expr); find out whether an insn can be 176 another (has_dependence_p, moveup_expr); find out whether an insn can be
177 scheduled on the current cycle (tick_check_p); find out registers that 177 scheduled on the current cycle (tick_check_p); find out registers that
178 are set/used/clobbered by an insn and find out all the strange stuff that 178 are set/used/clobbered by an insn and find out all the strange stuff that
179 restrict its movement, like SCHED_GROUP_P or CANT_MOVE (done in 179 restrict its movement, like SCHED_GROUP_P or CANT_MOVE (done in
180 init_global_and_expr_for_insn). 180 init_global_and_expr_for_insn).
181 181
182 Initialization changes 182 Initialization changes
183 ====================== 183 ======================
184 184
185 There are parts of haifa-sched.c, sched-deps.c, and sched-rgn.c that are 185 There are parts of haifa-sched.c, sched-deps.c, and sched-rgn.c that are
186 reused in all of the schedulers. We have split up the initialization of data 186 reused in all of the schedulers. We have split up the initialization of data
187 of such parts into different functions prefixed with scheduler type and 187 of such parts into different functions prefixed with scheduler type and
188 postfixed with the type of data initialized: {,sel_,haifa_}sched_{init,finish}, 188 postfixed with the type of data initialized: {,sel_,haifa_}sched_{init,finish},
189 sched_rgn_init/finish, sched_deps_init/finish, sched_init_{luids/bbs}, etc. 189 sched_rgn_init/finish, sched_deps_init/finish, sched_init_{luids/bbs}, etc.
190 The same splitting is done with current_sched_info structure: 190 The same splitting is done with current_sched_info structure:
191 dependence-related parts are in sched_deps_info, common part is in 191 dependence-related parts are in sched_deps_info, common part is in
192 common_sched_info, and haifa/sel/etc part is in current_sched_info. 192 common_sched_info, and haifa/sel/etc part is in current_sched_info.
193 193
194 Target contexts 194 Target contexts
195 =============== 195 ===============
196 196
197 As we now have multiple-point scheduling, this would not work with backends 197 As we now have multiple-point scheduling, this would not work with backends
198 which save some of the scheduler state to use it in the target hooks. 198 which save some of the scheduler state to use it in the target hooks.
199 For this purpose, we introduce a concept of target contexts, which 199 For this purpose, we introduce a concept of target contexts, which
200 encapsulate such information. The backend should implement simple routines 200 encapsulate such information. The backend should implement simple routines
201 of allocating/freeing/setting such a context. The scheduler calls these 201 of allocating/freeing/setting such a context. The scheduler calls these
202 as target hooks and handles the target context as an opaque pointer (similar 202 as target hooks and handles the target context as an opaque pointer (similar
203 to the DFA state type, state_t). 203 to the DFA state type, state_t).
204 204
205 Various speedups 205 Various speedups
206 ================ 206 ================
207 207
208 As the correct data dependence graph is not supported during scheduling (which 208 As the correct data dependence graph is not supported during scheduling (which
209 is to be changed in mid-term), we cache as much of the dependence analysis 209 is to be changed in mid-term), we cache as much of the dependence analysis
210 results as possible to avoid reanalyzing. This includes: bitmap caches on 210 results as possible to avoid reanalyzing. This includes: bitmap caches on
211 each insn in stream of the region saying yes/no for a query with a pair of 211 each insn in stream of the region saying yes/no for a query with a pair of
212 UIDs; hashtables with the previously done transformations on each insn in 212 UIDs; hashtables with the previously done transformations on each insn in
213 stream; a vector keeping a history of transformations on each expr. 213 stream; a vector keeping a history of transformations on each expr.
214 214
215 Also, we try to minimize the dependence context used on each fence to check 215 Also, we try to minimize the dependence context used on each fence to check
216 whether the given expression is ready for scheduling by removing from it 216 whether the given expression is ready for scheduling by removing from it
217 insns that are definitely completed the execution. The results of 217 insns that are definitely completed the execution. The results of
218 tick_check_p checks are also cached in a vector on each fence. 218 tick_check_p checks are also cached in a vector on each fence.
219 219
220 We keep a valid liveness set on each insn in a region to avoid the high 220 We keep a valid liveness set on each insn in a region to avoid the high
221 cost of recomputation on large basic blocks. 221 cost of recomputation on large basic blocks.
222 222
223 Finally, we try to minimize the number of needed updates to the availability 223 Finally, we try to minimize the number of needed updates to the availability
224 sets. The updates happen in two cases: when fill_insns terminates, 224 sets. The updates happen in two cases: when fill_insns terminates,
225 we advance all fences and increase the stage number to show that the region 225 we advance all fences and increase the stage number to show that the region
226 has changed and the sets are to be recomputed; and when the next iteration 226 has changed and the sets are to be recomputed; and when the next iteration
227 of a loop in fill_insns happens (but this one reuses the saved av sets 227 of a loop in fill_insns happens (but this one reuses the saved av sets
228 on bb headers.) Thus, we try to break the fill_insns loop only when 228 on bb headers.) Thus, we try to break the fill_insns loop only when
229 "significant" number of insns from the current scheduling window was 229 "significant" number of insns from the current scheduling window was
230 scheduled. This should be made a target param. 230 scheduled. This should be made a target param.
231 231
232 232
233 TODO: correctly support the data dependence graph at all stages and get rid 233 TODO: correctly support the data dependence graph at all stages and get rid
234 of all caches. This should speed up the scheduler. 234 of all caches. This should speed up the scheduler.
235 TODO: implement moving cond jumps with bookkeeping copies on both targets. 235 TODO: implement moving cond jumps with bookkeeping copies on both targets.
236 TODO: tune the scheduler before RA so it does not create too much pseudos. 236 TODO: tune the scheduler before RA so it does not create too much pseudos.
237 237
238 238
239 References: 239 References:
240 S.-M. Moon and K. Ebcioglu. Parallelizing nonnumerical code with 240 S.-M. Moon and K. Ebcioglu. Parallelizing nonnumerical code with
241 selective scheduling and software pipelining. 241 selective scheduling and software pipelining.
242 ACM TOPLAS, Vol 19, No. 6, pages 853--898, Nov. 1997. 242 ACM TOPLAS, Vol 19, No. 6, pages 853--898, Nov. 1997.
243 243
244 Andrey Belevantsev, Maxim Kuvyrkov, Vladimir Makarov, Dmitry Melnik, 244 Andrey Belevantsev, Maxim Kuvyrkov, Vladimir Makarov, Dmitry Melnik,
245 and Dmitry Zhurikhin. An interblock VLIW-targeted instruction scheduler 245 and Dmitry Zhurikhin. An interblock VLIW-targeted instruction scheduler
246 for GCC. In Proceedings of GCC Developers' Summit 2006. 246 for GCC. In Proceedings of GCC Developers' Summit 2006.
247 247
248 Arutyun Avetisyan, Andrey Belevantsev, and Dmitry Melnik. GCC Instruction 248 Arutyun Avetisyan, Andrey Belevantsev, and Dmitry Melnik. GCC Instruction
249 Scheduler and Software Pipeliner on the Itanium Platform. EPIC-7 Workshop. 249 Scheduler and Software Pipeliner on the Itanium Platform. EPIC-7 Workshop.
250 http://rogue.colorado.edu/EPIC7/. 250 http://rogue.colorado.edu/EPIC7/.
251 251
252 */ 252 */
253 253
254 /* True when pipelining is enabled. */ 254 /* True when pipelining is enabled. */
255 bool pipelining_p; 255 bool pipelining_p;
256 256
262 262
263 263
264 /* Definitions of local types and macros. */ 264 /* Definitions of local types and macros. */
265 265
266 /* Represents possible outcomes of moving an expression through an insn. */ 266 /* Represents possible outcomes of moving an expression through an insn. */
267 enum MOVEUP_EXPR_CODE 267 enum MOVEUP_EXPR_CODE
268 { 268 {
269 /* The expression is not changed. */ 269 /* The expression is not changed. */
270 MOVEUP_EXPR_SAME, 270 MOVEUP_EXPR_SAME,
271 271
272 /* Not changed, but requires a new destination register. */ 272 /* Not changed, but requires a new destination register. */
273 MOVEUP_EXPR_AS_RHS, 273 MOVEUP_EXPR_AS_RHS,
274 274
275 /* Cannot be moved. */ 275 /* Cannot be moved. */
276 MOVEUP_EXPR_NULL, 276 MOVEUP_EXPR_NULL,
277 277
278 /* Changed (substituted or speculated). */ 278 /* Changed (substituted or speculated). */
279 MOVEUP_EXPR_CHANGED 279 MOVEUP_EXPR_CHANGED
280 }; 280 };
281 281
282 /* The container to be passed into rtx search & replace functions. */ 282 /* The container to be passed into rtx search & replace functions. */
283 struct rtx_search_arg 283 struct rtx_search_arg
284 { 284 {
289 int n; 289 int n;
290 }; 290 };
291 291
292 typedef struct rtx_search_arg *rtx_search_arg_p; 292 typedef struct rtx_search_arg *rtx_search_arg_p;
293 293
294 /* This struct contains precomputed hard reg sets that are needed when 294 /* This struct contains precomputed hard reg sets that are needed when
295 computing registers available for renaming. */ 295 computing registers available for renaming. */
296 struct hard_regs_data 296 struct hard_regs_data
297 { 297 {
298 /* For every mode, this stores registers available for use with 298 /* For every mode, this stores registers available for use with
299 that mode. */ 299 that mode. */
300 HARD_REG_SET regs_for_mode[NUM_MACHINE_MODES]; 300 HARD_REG_SET regs_for_mode[NUM_MACHINE_MODES];
301 301
302 /* True when regs_for_mode[mode] is initialized. */ 302 /* True when regs_for_mode[mode] is initialized. */
303 bool regs_for_mode_ok[NUM_MACHINE_MODES]; 303 bool regs_for_mode_ok[NUM_MACHINE_MODES];
305 /* For every register, it has regs that are ok to rename into it. 305 /* For every register, it has regs that are ok to rename into it.
306 The register in question is always set. If not, this means 306 The register in question is always set. If not, this means
307 that the whole set is not computed yet. */ 307 that the whole set is not computed yet. */
308 HARD_REG_SET regs_for_rename[FIRST_PSEUDO_REGISTER]; 308 HARD_REG_SET regs_for_rename[FIRST_PSEUDO_REGISTER];
309 309
310 /* For every mode, this stores registers not available due to 310 /* For every mode, this stores registers not available due to
311 call clobbering. */ 311 call clobbering. */
312 HARD_REG_SET regs_for_call_clobbered[NUM_MACHINE_MODES]; 312 HARD_REG_SET regs_for_call_clobbered[NUM_MACHINE_MODES];
313 313
314 /* All registers that are used or call used. */ 314 /* All registers that are used or call used. */
315 HARD_REG_SET regs_ever_used; 315 HARD_REG_SET regs_ever_used;
332 332
333 /* Whether this code motion path crosses a call. */ 333 /* Whether this code motion path crosses a call. */
334 bool crosses_call; 334 bool crosses_call;
335 }; 335 };
336 336
337 /* A global structure that contains the needed information about harg 337 /* A global structure that contains the needed information about harg
338 regs. */ 338 regs. */
339 static struct hard_regs_data sel_hrd; 339 static struct hard_regs_data sel_hrd;
340 340
341 341
342 /* This structure holds local data used in code_motion_path_driver hooks on 342 /* This structure holds local data used in code_motion_path_driver hooks on
343 the same or adjacent levels of recursion. Here we keep those parameters 343 the same or adjacent levels of recursion. Here we keep those parameters
344 that are not used in code_motion_path_driver routine itself, but only in 344 that are not used in code_motion_path_driver routine itself, but only in
345 its hooks. Moreover, all parameters that can be modified in hooks are 345 its hooks. Moreover, all parameters that can be modified in hooks are
346 in this structure, so all other parameters passed explicitly to hooks are 346 in this structure, so all other parameters passed explicitly to hooks are
347 read-only. */ 347 read-only. */
348 struct cmpd_local_params 348 struct cmpd_local_params
349 { 349 {
350 /* Local params used in move_op_* functions. */ 350 /* Local params used in move_op_* functions. */
351 351
359 /* Copy of the ORIGINAL_INSN list, stores the original insns already 359 /* Copy of the ORIGINAL_INSN list, stores the original insns already
360 found before entering the current level of code_motion_path_driver. */ 360 found before entering the current level of code_motion_path_driver. */
361 def_list_t old_original_insns; 361 def_list_t old_original_insns;
362 362
363 /* Local params used in move_op_* functions. */ 363 /* Local params used in move_op_* functions. */
364 /* True when we have removed last insn in the block which was 364 /* True when we have removed last insn in the block which was
365 also a boundary. Do not update anything or create bookkeeping copies. */ 365 also a boundary. Do not update anything or create bookkeeping copies. */
366 BOOL_BITFIELD removed_last_insn : 1; 366 BOOL_BITFIELD removed_last_insn : 1;
367 }; 367 };
368 368
369 /* Stores the static parameters for move_op_* calls. */ 369 /* Stores the static parameters for move_op_* calls. */
428 428
429 /* Called on the backward stage of recursion to do moveup_expr. 429 /* Called on the backward stage of recursion to do moveup_expr.
430 Used only with move_op_*. */ 430 Used only with move_op_*. */
431 void (*ascend) (insn_t, void *); 431 void (*ascend) (insn_t, void *);
432 432
433 /* Called on the ascending pass, before returning from the current basic 433 /* Called on the ascending pass, before returning from the current basic
434 block or from the whole traversal. */ 434 block or from the whole traversal. */
435 void (*at_first_insn) (insn_t, cmpd_local_params_p, void *); 435 void (*at_first_insn) (insn_t, cmpd_local_params_p, void *);
436 436
437 /* When processing successors in move_op we need only descend into 437 /* When processing successors in move_op we need only descend into
438 SUCCS_NORMAL successors, while in find_used_regs we need SUCCS_ALL. */ 438 SUCCS_NORMAL successors, while in find_used_regs we need SUCCS_ALL. */
439 int succ_flags; 439 int succ_flags;
440 440
441 /* The routine name to print in dumps ("move_op" of "find_used_regs"). */ 441 /* The routine name to print in dumps ("move_op" of "find_used_regs"). */
442 const char *routine_name; 442 const char *routine_name;
446 FUR_HOOKS. */ 446 FUR_HOOKS. */
447 struct code_motion_path_driver_info_def *code_motion_path_driver_info; 447 struct code_motion_path_driver_info_def *code_motion_path_driver_info;
448 448
449 /* Set of hooks for performing move_op and find_used_regs routines with 449 /* Set of hooks for performing move_op and find_used_regs routines with
450 code_motion_path_driver. */ 450 code_motion_path_driver. */
451 struct code_motion_path_driver_info_def move_op_hooks, fur_hooks; 451 extern struct code_motion_path_driver_info_def move_op_hooks, fur_hooks;
452 452
453 /* True if/when we want to emulate Haifa scheduler in the common code. 453 /* True if/when we want to emulate Haifa scheduler in the common code.
454 This is used in sched_rgn_local_init and in various places in 454 This is used in sched_rgn_local_init and in various places in
455 sched-deps.c. */ 455 sched-deps.c. */
456 int sched_emulate_haifa_p; 456 int sched_emulate_haifa_p;
457 457
458 /* GLOBAL_LEVEL is used to discard information stored in basic block headers 458 /* GLOBAL_LEVEL is used to discard information stored in basic block headers
459 av_sets. Av_set of bb header is valid if its (bb header's) level is equal 459 av_sets. Av_set of bb header is valid if its (bb header's) level is equal
467 /* True when separable insns should be scheduled as RHSes. */ 467 /* True when separable insns should be scheduled as RHSes. */
468 static bool enable_schedule_as_rhs_p; 468 static bool enable_schedule_as_rhs_p;
469 469
470 /* Used in verify_target_availability to assert that target reg is reported 470 /* Used in verify_target_availability to assert that target reg is reported
471 unavailabile by both TARGET_UNAVAILABLE and find_used_regs only if 471 unavailabile by both TARGET_UNAVAILABLE and find_used_regs only if
472 we haven't scheduled anything on the previous fence. 472 we haven't scheduled anything on the previous fence.
473 if scheduled_something_on_previous_fence is true, TARGET_UNAVAILABLE can 473 if scheduled_something_on_previous_fence is true, TARGET_UNAVAILABLE can
474 have more conservative value than the one returned by the 474 have more conservative value than the one returned by the
475 find_used_regs, thus we shouldn't assert that these values are equal. */ 475 find_used_regs, thus we shouldn't assert that these values are equal. */
476 static bool scheduled_something_on_previous_fence; 476 static bool scheduled_something_on_previous_fence;
477 477
478 /* All newly emitted insns will have their uids greater than this value. */ 478 /* All newly emitted insns will have their uids greater than this value. */
479 static int first_emitted_uid; 479 static int first_emitted_uid;
516 can't be moved up due to bookkeeping created during code motion to another 516 can't be moved up due to bookkeeping created during code motion to another
517 fence. See comment near the call to update_and_record_unavailable_insns 517 fence. See comment near the call to update_and_record_unavailable_insns
518 for the detailed explanations. */ 518 for the detailed explanations. */
519 static vinsn_vec_t vec_bookkeeping_blocked_vinsns = NULL; 519 static vinsn_vec_t vec_bookkeeping_blocked_vinsns = NULL;
520 520
521 /* This vector has vinsns which are scheduled with renaming on the first fence 521 /* This vector has vinsns which are scheduled with renaming on the first fence
522 and then seen on the second. For expressions with such vinsns, target 522 and then seen on the second. For expressions with such vinsns, target
523 availability information may be wrong. */ 523 availability information may be wrong. */
524 static vinsn_vec_t vec_target_unavailable_vinsns = NULL; 524 static vinsn_vec_t vec_target_unavailable_vinsns = NULL;
525 525
526 /* Vector to store temporary nops inserted in move_op to prevent removal 526 /* Vector to store temporary nops inserted in move_op to prevent removal
527 of empty bbs. */ 527 of empty bbs. */
528 DEF_VEC_P(insn_t); 528 DEF_VEC_P(insn_t);
529 DEF_VEC_ALLOC_P(insn_t,heap); 529 DEF_VEC_ALLOC_P(insn_t,heap);
530 static VEC(insn_t, heap) *vec_temp_moveop_nops = NULL; 530 static VEC(insn_t, heap) *vec_temp_moveop_nops = NULL;
531 531
532 /* These bitmaps record original instructions scheduled on the current 532 /* These bitmaps record original instructions scheduled on the current
533 iteration and bookkeeping copies created by them. */ 533 iteration and bookkeeping copies created by them. */
534 static bitmap current_originators = NULL; 534 static bitmap current_originators = NULL;
535 static bitmap current_copies = NULL; 535 static bitmap current_copies = NULL;
536 536
537 /* This bitmap marks the blocks visited by code_motion_path_driver so we don't 537 /* This bitmap marks the blocks visited by code_motion_path_driver so we don't
538 visit them afterwards. */ 538 visit them afterwards. */
555 555
556 /* Forward declarations of static functions. */ 556 /* Forward declarations of static functions. */
557 static bool rtx_ok_for_substitution_p (rtx, rtx); 557 static bool rtx_ok_for_substitution_p (rtx, rtx);
558 static int sel_rank_for_schedule (const void *, const void *); 558 static int sel_rank_for_schedule (const void *, const void *);
559 static av_set_t find_sequential_best_exprs (bnd_t, expr_t, bool); 559 static av_set_t find_sequential_best_exprs (bnd_t, expr_t, bool);
560 static basic_block find_block_for_bookkeeping (edge e1, edge e2, bool lax);
560 561
561 static rtx get_dest_from_orig_ops (av_set_t); 562 static rtx get_dest_from_orig_ops (av_set_t);
562 static basic_block generate_bookkeeping_insn (expr_t, edge, edge); 563 static basic_block generate_bookkeeping_insn (expr_t, edge, edge);
563 static bool find_used_regs (insn_t, av_set_t, regset, struct reg_rename *, 564 static bool find_used_regs (insn_t, av_set_t, regset, struct reg_rename *,
564 def_list_t *); 565 def_list_t *);
565 static bool move_op (insn_t, av_set_t, expr_t, rtx, expr_t, bool*); 566 static bool move_op (insn_t, av_set_t, expr_t, rtx, expr_t, bool*);
566 static int code_motion_path_driver (insn_t, av_set_t, ilist_t, 567 static int code_motion_path_driver (insn_t, av_set_t, ilist_t,
567 cmpd_local_params_p, void *); 568 cmpd_local_params_p, void *);
568 static void sel_sched_region_1 (void); 569 static void sel_sched_region_1 (void);
579 advance_one_cycle (fence_t fence) 580 advance_one_cycle (fence_t fence)
580 { 581 {
581 unsigned i; 582 unsigned i;
582 int cycle; 583 int cycle;
583 rtx insn; 584 rtx insn;
584 585
585 advance_state (FENCE_STATE (fence)); 586 advance_state (FENCE_STATE (fence));
586 cycle = ++FENCE_CYCLE (fence); 587 cycle = ++FENCE_CYCLE (fence);
587 FENCE_ISSUED_INSNS (fence) = 0; 588 FENCE_ISSUED_INSNS (fence) = 0;
588 FENCE_STARTS_CYCLE_P (fence) = 1; 589 FENCE_STARTS_CYCLE_P (fence) = 1;
589 can_issue_more = issue_rate; 590 can_issue_more = issue_rate;
624 bb = bb->next_bb; 625 bb = bb->next_bb;
625 626
626 return bb == BLOCK_FOR_INSN (succ); 627 return bb == BLOCK_FOR_INSN (succ);
627 } 628 }
628 629
629 /* Construct successor fences from OLD_FENCEs and put them in NEW_FENCES. 630 /* Construct successor fences from OLD_FENCEs and put them in NEW_FENCES.
630 When a successor will continue a ebb, transfer all parameters of a fence 631 When a successor will continue a ebb, transfer all parameters of a fence
631 to the new fence. ORIG_MAX_SEQNO is the maximal seqno before this round 632 to the new fence. ORIG_MAX_SEQNO is the maximal seqno before this round
632 of scheduling helping to distinguish between the old and the new code. */ 633 of scheduling helping to distinguish between the old and the new code. */
633 static void 634 static void
634 extract_new_fences_from (flist_t old_fences, flist_tail_t new_fences, 635 extract_new_fences_from (flist_t old_fences, flist_tail_t new_fences,
648 gcc_assert (!was_here_p); 649 gcc_assert (!was_here_p);
649 was_here_p = true; 650 was_here_p = true;
650 } 651 }
651 gcc_assert (was_here_p && insn != NULL_RTX); 652 gcc_assert (was_here_p && insn != NULL_RTX);
652 653
653 /* When in the "middle" of the block, just move this fence 654 /* When in the "middle" of the block, just move this fence
654 to the new list. */ 655 to the new list. */
655 bb = BLOCK_FOR_INSN (insn); 656 bb = BLOCK_FOR_INSN (insn);
656 if (! sel_bb_end_p (insn) 657 if (! sel_bb_end_p (insn)
657 || (single_succ_p (bb) 658 || (single_succ_p (bb)
658 && single_pred_p (single_succ (bb)))) 659 && single_pred_p (single_succ (bb))))
659 { 660 {
660 insn_t succ; 661 insn_t succ;
661 662
662 succ = (sel_bb_end_p (insn) 663 succ = (sel_bb_end_p (insn)
663 ? sel_bb_head (single_succ (bb)) 664 ? sel_bb_head (single_succ (bb))
664 : NEXT_INSN (insn)); 665 : NEXT_INSN (insn));
665 666
666 if (INSN_SEQNO (succ) > 0 667 if (INSN_SEQNO (succ) > 0
667 && INSN_SEQNO (succ) <= orig_max_seqno 668 && INSN_SEQNO (succ) <= orig_max_seqno
668 && INSN_SCHED_TIMES (succ) <= 0) 669 && INSN_SCHED_TIMES (succ) <= 0)
669 { 670 {
670 FENCE_INSN (fence) = succ; 671 FENCE_INSN (fence) = succ;
671 move_fence_to_fences (old_fences, new_fences); 672 move_fence_to_fences (old_fences, new_fences);
672 673
673 if (sched_verbose >= 1) 674 if (sched_verbose >= 1)
674 sel_print ("Fence %d continues as %d[%d] (state continue)\n", 675 sel_print ("Fence %d continues as %d[%d] (state continue)\n",
675 INSN_UID (insn), INSN_UID (succ), BLOCK_NUM (succ)); 676 INSN_UID (insn), INSN_UID (succ), BLOCK_NUM (succ));
676 } 677 }
677 return; 678 return;
678 } 679 }
679 680
684 685
685 if (0 < seqno && seqno <= orig_max_seqno 686 if (0 < seqno && seqno <= orig_max_seqno
686 && (pipelining_p || INSN_SCHED_TIMES (succ) <= 0)) 687 && (pipelining_p || INSN_SCHED_TIMES (succ) <= 0))
687 { 688 {
688 bool b = (in_same_ebb_p (insn, succ) 689 bool b = (in_same_ebb_p (insn, succ)
689 || in_fallthru_bb_p (insn, succ)); 690 || in_fallthru_bb_p (insn, succ));
690 691
691 if (sched_verbose >= 1) 692 if (sched_verbose >= 1)
692 sel_print ("Fence %d continues as %d[%d] (state %s)\n", 693 sel_print ("Fence %d continues as %d[%d] (state %s)\n",
693 INSN_UID (insn), INSN_UID (succ), 694 INSN_UID (insn), INSN_UID (succ),
694 BLOCK_NUM (succ), b ? "continue" : "reset"); 695 BLOCK_NUM (succ), b ? "continue" : "reset");
695 696
696 if (b) 697 if (b)
697 add_dirty_fence_to_fences (new_fences, succ, fence); 698 add_dirty_fence_to_fences (new_fences, succ, fence);
698 else 699 else
706 } 707 }
707 708
708 709
709 /* Functions to support substitution. */ 710 /* Functions to support substitution. */
710 711
711 /* Returns whether INSN with dependence status DS is eligible for 712 /* Returns whether INSN with dependence status DS is eligible for
712 substitution, i.e. it's a copy operation x := y, and RHS that is 713 substitution, i.e. it's a copy operation x := y, and RHS that is
713 moved up through this insn should be substituted. */ 714 moved up through this insn should be substituted. */
714 static bool 715 static bool
715 can_substitute_through_p (insn_t insn, ds_t ds) 716 can_substitute_through_p (insn_t insn, ds_t ds)
716 { 717 {
717 /* We can substitute only true dependencies. */ 718 /* We can substitute only true dependencies. */
719 || (ds & DEP_ANTI) 720 || (ds & DEP_ANTI)
720 || ! INSN_RHS (insn) 721 || ! INSN_RHS (insn)
721 || ! INSN_LHS (insn)) 722 || ! INSN_LHS (insn))
722 return false; 723 return false;
723 724
724 /* Now we just need to make sure the INSN_RHS consists of only one 725 /* Now we just need to make sure the INSN_RHS consists of only one
725 simple REG rtx. */ 726 simple REG rtx. */
726 if (REG_P (INSN_LHS (insn)) 727 if (REG_P (INSN_LHS (insn))
727 && REG_P (INSN_RHS (insn))) 728 && REG_P (INSN_RHS (insn)))
728 return true; 729 return true;
729 return false; 730 return false;
730 } 731 }
731 732
732 /* Substitute all occurences of INSN's destination in EXPR' vinsn with INSN's 733 /* Substitute all occurences of INSN's destination in EXPR' vinsn with INSN's
733 source (if INSN is eligible for substitution). Returns TRUE if 734 source (if INSN is eligible for substitution). Returns TRUE if
734 substitution was actually performed, FALSE otherwise. Substitution might 735 substitution was actually performed, FALSE otherwise. Substitution might
735 be not performed because it's either EXPR' vinsn doesn't contain INSN's 736 be not performed because it's either EXPR' vinsn doesn't contain INSN's
736 destination or the resulting insn is invalid for the target machine. 737 destination or the resulting insn is invalid for the target machine.
737 When UNDO is true, perform unsubstitution instead (the difference is in 738 When UNDO is true, perform unsubstitution instead (the difference is in
738 the part of rtx on which validate_replace_rtx is called). */ 739 the part of rtx on which validate_replace_rtx is called). */
739 static bool 740 static bool
740 substitute_reg_in_expr (expr_t expr, insn_t insn, bool undo) 741 substitute_reg_in_expr (expr_t expr, insn_t insn, bool undo)
741 { 742 {
744 vinsn_t *vi = &EXPR_VINSN (expr); 745 vinsn_t *vi = &EXPR_VINSN (expr);
745 bool has_rhs = VINSN_RHS (*vi) != NULL; 746 bool has_rhs = VINSN_RHS (*vi) != NULL;
746 rtx old, new_rtx; 747 rtx old, new_rtx;
747 748
748 /* Do not try to replace in SET_DEST. Although we'll choose new 749 /* Do not try to replace in SET_DEST. Although we'll choose new
749 register for the RHS, we don't want to change RHS' original reg. 750 register for the RHS, we don't want to change RHS' original reg.
750 If the insn is not SET, we may still be able to substitute something 751 If the insn is not SET, we may still be able to substitute something
751 in it, and if we're here (don't have deps), it doesn't write INSN's 752 in it, and if we're here (don't have deps), it doesn't write INSN's
752 dest. */ 753 dest. */
753 where = (has_rhs 754 where = (has_rhs
754 ? &VINSN_RHS (*vi) 755 ? &VINSN_RHS (*vi)
755 : &PATTERN (VINSN_INSN_RTX (*vi))); 756 : &PATTERN (VINSN_INSN_RTX (*vi)));
756 old = undo ? INSN_RHS (insn) : INSN_LHS (insn); 757 old = undo ? INSN_RHS (insn) : INSN_LHS (insn);
763 764
764 /* We should copy these rtxes before substitution. */ 765 /* We should copy these rtxes before substitution. */
765 new_rtx = copy_rtx (undo ? INSN_LHS (insn) : INSN_RHS (insn)); 766 new_rtx = copy_rtx (undo ? INSN_LHS (insn) : INSN_RHS (insn));
766 new_insn = create_copy_of_insn_rtx (VINSN_INSN_RTX (*vi)); 767 new_insn = create_copy_of_insn_rtx (VINSN_INSN_RTX (*vi));
767 768
768 /* Where we'll replace. 769 /* Where we'll replace.
769 WHERE_REPLACE should point inside NEW_INSN, so INSN_RHS couldn't be 770 WHERE_REPLACE should point inside NEW_INSN, so INSN_RHS couldn't be
770 used instead of SET_SRC. */ 771 used instead of SET_SRC. */
771 where_replace = (has_rhs 772 where_replace = (has_rhs
772 ? &SET_SRC (PATTERN (new_insn)) 773 ? &SET_SRC (PATTERN (new_insn))
773 : &PATTERN (new_insn)); 774 : &PATTERN (new_insn));
774 775
775 new_insn_valid 776 new_insn_valid
776 = validate_replace_rtx_part_nosimplify (old, new_rtx, where_replace, 777 = validate_replace_rtx_part_nosimplify (old, new_rtx, where_replace,
777 new_insn); 778 new_insn);
778 779
779 /* ??? Actually, constrain_operands result depends upon choice of 780 /* ??? Actually, constrain_operands result depends upon choice of
780 destination register. E.g. if we allow single register to be an rhs, 781 destination register. E.g. if we allow single register to be an rhs,
781 and if we try to move dx=ax(as rhs) through ax=dx, we'll result 782 and if we try to move dx=ax(as rhs) through ax=dx, we'll result
782 in invalid insn dx=dx, so we'll loose this rhs here. 783 in invalid insn dx=dx, so we'll loose this rhs here.
783 Just can't come up with significant testcase for this, so just 784 Just can't come up with significant testcase for this, so just
784 leaving it for now. */ 785 leaving it for now. */
785 if (new_insn_valid) 786 if (new_insn_valid)
786 { 787 {
787 change_vinsn_in_expr (expr, 788 change_vinsn_in_expr (expr,
788 create_vinsn_from_insn_rtx (new_insn, false)); 789 create_vinsn_from_insn_rtx (new_insn, false));
789 790
790 /* Do not allow clobbering the address register of speculative 791 /* Do not allow clobbering the address register of speculative
791 insns. */ 792 insns. */
792 if ((EXPR_SPEC_DONE_DS (expr) & SPECULATIVE) 793 if ((EXPR_SPEC_DONE_DS (expr) & SPECULATIVE)
793 && bitmap_bit_p (VINSN_REG_USES (EXPR_VINSN (expr)), 794 && bitmap_bit_p (VINSN_REG_USES (EXPR_VINSN (expr)),
794 expr_dest_regno (expr))) 795 expr_dest_regno (expr)))
795 EXPR_TARGET_AVAILABLE (expr) = false; 796 EXPR_TARGET_AVAILABLE (expr) = false;
796 797
797 return true; 798 return true;
798 } 799 }
802 else 803 else
803 return false; 804 return false;
804 } 805 }
805 806
806 /* Helper function for count_occurences_equiv. */ 807 /* Helper function for count_occurences_equiv. */
807 static int 808 static int
808 count_occurrences_1 (rtx *cur_rtx, void *arg) 809 count_occurrences_1 (rtx *cur_rtx, void *arg)
809 { 810 {
810 rtx_search_arg_p p = (rtx_search_arg_p) arg; 811 rtx_search_arg_p p = (rtx_search_arg_p) arg;
811 812
812 /* The last param FOR_GCSE is true, because otherwise it performs excessive 813 /* The last param FOR_GCSE is true, because otherwise it performs excessive
835 if (GET_CODE (*cur_rtx) == SUBREG 836 if (GET_CODE (*cur_rtx) == SUBREG
836 && REG_P (p->x) 837 && REG_P (p->x)
837 && REGNO (SUBREG_REG (*cur_rtx)) == REGNO (p->x)) 838 && REGNO (SUBREG_REG (*cur_rtx)) == REGNO (p->x))
838 { 839 {
839 /* ??? Do not support substituting regs inside subregs. In that case, 840 /* ??? Do not support substituting regs inside subregs. In that case,
840 simplify_subreg will be called by validate_replace_rtx, and 841 simplify_subreg will be called by validate_replace_rtx, and
841 unsubstitution will fail later. */ 842 unsubstitution will fail later. */
842 p->n = 0; 843 p->n = 0;
843 return 1; 844 return 1;
844 } 845 }
845 846
846 /* Continue search. */ 847 /* Continue search. */
847 return 0; 848 return 0;
848 } 849 }
849 850
850 /* Return the number of places WHAT appears within WHERE. 851 /* Return the number of places WHAT appears within WHERE.
851 Bail out when we found a reference occupying several hard registers. */ 852 Bail out when we found a reference occupying several hard registers. */
852 static int 853 static int
853 count_occurrences_equiv (rtx what, rtx where) 854 count_occurrences_equiv (rtx what, rtx where)
854 { 855 {
855 struct rtx_search_arg arg; 856 struct rtx_search_arg arg;
856 857
857 arg.x = what; 858 arg.x = what;
887 insn_rtx = create_insn_rtx_from_pattern (pattern, NULL_RTX); 888 insn_rtx = create_insn_rtx_from_pattern (pattern, NULL_RTX);
888 889
889 return insn_rtx; 890 return insn_rtx;
890 } 891 }
891 892
892 /* Returns whether INSN's src can be replaced with register number 893 /* Returns whether INSN's src can be replaced with register number
893 NEW_SRC_REG. E.g. the following insn is valid for i386: 894 NEW_SRC_REG. E.g. the following insn is valid for i386:
894 895
895 (insn:HI 2205 6585 2207 727 ../../gcc/libiberty/regex.c:3337 896 (insn:HI 2205 6585 2207 727 ../../gcc/libiberty/regex.c:3337
896 (set (mem/s:QI (plus:SI (plus:SI (reg/f:SI 7 sp) 897 (set (mem/s:QI (plus:SI (plus:SI (reg/f:SI 7 sp)
897 (reg:SI 0 ax [orig:770 c1 ] [770])) 898 (reg:SI 0 ax [orig:770 c1 ] [770]))
898 (const_int 288 [0x120])) [0 str S1 A8]) 899 (const_int 288 [0x120])) [0 str S1 A8])
899 (const_int 0 [0x0])) 43 {*movqi_1} (nil) 900 (const_int 0 [0x0])) 43 {*movqi_1} (nil)
900 (nil)) 901 (nil))
901 902
902 But if we change (const_int 0 [0x0]) to (reg:QI 4 si), it will be invalid 903 But if we change (const_int 0 [0x0]) to (reg:QI 4 si), it will be invalid
903 because of operand constraints: 904 because of operand constraints:
904 905
905 (define_insn "*movqi_1" 906 (define_insn "*movqi_1"
906 [(set (match_operand:QI 0 "nonimmediate_operand" "=q,q ,q ,r,r ,?r,m") 907 [(set (match_operand:QI 0 "nonimmediate_operand" "=q,q ,q ,r,r ,?r,m")
907 (match_operand:QI 1 "general_operand" " q,qn,qm,q,rn,qm,qn") 908 (match_operand:QI 1 "general_operand" " q,qn,qm,q,rn,qm,qn")
908 )] 909 )]
909 910
910 So do constrain_operands here, before choosing NEW_SRC_REG as best 911 So do constrain_operands here, before choosing NEW_SRC_REG as best
911 reg for rhs. */ 912 reg for rhs. */
912 913
913 static bool 914 static bool
914 replace_src_with_reg_ok_p (insn_t insn, rtx new_src_reg) 915 replace_src_with_reg_ok_p (insn_t insn, rtx new_src_reg)
915 { 916 {
968 insn_rtx = create_insn_rtx_from_pattern (pattern, NULL_RTX); 969 insn_rtx = create_insn_rtx_from_pattern (pattern, NULL_RTX);
969 970
970 return insn_rtx; 971 return insn_rtx;
971 } 972 }
972 973
973 /* Substitute lhs in the given expression EXPR for the register with number 974 /* Substitute lhs in the given expression EXPR for the register with number
974 NEW_REGNO. SET_DEST may be arbitrary rtx, not only register. */ 975 NEW_REGNO. SET_DEST may be arbitrary rtx, not only register. */
975 static void 976 static void
976 replace_dest_with_reg_in_expr (expr_t expr, rtx new_reg) 977 replace_dest_with_reg_in_expr (expr_t expr, rtx new_reg)
977 { 978 {
978 rtx insn_rtx; 979 rtx insn_rtx;
987 } 988 }
988 989
989 /* Returns whether VI writes either one of the USED_REGS registers or, 990 /* Returns whether VI writes either one of the USED_REGS registers or,
990 if a register is a hard one, one of the UNAVAILABLE_HARD_REGS registers. */ 991 if a register is a hard one, one of the UNAVAILABLE_HARD_REGS registers. */
991 static bool 992 static bool
992 vinsn_writes_one_of_regs_p (vinsn_t vi, regset used_regs, 993 vinsn_writes_one_of_regs_p (vinsn_t vi, regset used_regs,
993 HARD_REG_SET unavailable_hard_regs) 994 HARD_REG_SET unavailable_hard_regs)
994 { 995 {
995 unsigned regno; 996 unsigned regno;
996 reg_set_iterator rsi; 997 reg_set_iterator rsi;
997 998
1014 } 1015 }
1015 1016
1016 return false; 1017 return false;
1017 } 1018 }
1018 1019
1019 /* Returns register class of the output register in INSN. 1020 /* Returns register class of the output register in INSN.
1020 Returns NO_REGS for call insns because some targets have constraints on 1021 Returns NO_REGS for call insns because some targets have constraints on
1021 destination register of a call insn. 1022 destination register of a call insn.
1022 1023
1023 Code adopted from regrename.c::build_def_use. */ 1024 Code adopted from regrename.c::build_def_use. */
1024 static enum reg_class 1025 static enum reg_class
1025 get_reg_class (rtx insn) 1026 get_reg_class (rtx insn)
1026 { 1027 {
1027 int alt, i, n_ops; 1028 int alt, i, n_ops;
1060 { 1061 {
1061 for (i = 0; i < n_ops + recog_data.n_dups; i++) 1062 for (i = 0; i < n_ops + recog_data.n_dups; i++)
1062 { 1063 {
1063 int opn = i < n_ops ? i : recog_data.dup_num[i - n_ops]; 1064 int opn = i < n_ops ? i : recog_data.dup_num[i - n_ops];
1064 enum reg_class cl = recog_op_alt[opn][alt].cl; 1065 enum reg_class cl = recog_op_alt[opn][alt].cl;
1065 1066
1066 if (recog_data.operand_type[opn] == OP_OUT || 1067 if (recog_data.operand_type[opn] == OP_OUT ||
1067 recog_data.operand_type[opn] == OP_INOUT) 1068 recog_data.operand_type[opn] == OP_INOUT)
1068 return cl; 1069 return cl;
1069 } 1070 }
1070 } 1071 }
1095 SET_HARD_REG_BIT (sel_hrd.regs_for_rename[regno], cur_reg); 1096 SET_HARD_REG_BIT (sel_hrd.regs_for_rename[regno], cur_reg);
1096 } 1097 }
1097 } 1098 }
1098 #endif 1099 #endif
1099 1100
1100 /* A wrapper around HARD_REGNO_RENAME_OK that will look into the hard regs 1101 /* A wrapper around HARD_REGNO_RENAME_OK that will look into the hard regs
1101 data first. */ 1102 data first. */
1102 static inline bool 1103 static inline bool
1103 sel_hard_regno_rename_ok (int from ATTRIBUTE_UNUSED, int to ATTRIBUTE_UNUSED) 1104 sel_hard_regno_rename_ok (int from ATTRIBUTE_UNUSED, int to ATTRIBUTE_UNUSED)
1104 { 1105 {
1105 #ifdef HARD_REGNO_RENAME_OK 1106 #ifdef HARD_REGNO_RENAME_OK
1118 /* Calculate set of registers that are capable of holding MODE. */ 1119 /* Calculate set of registers that are capable of holding MODE. */
1119 static void 1120 static void
1120 init_regs_for_mode (enum machine_mode mode) 1121 init_regs_for_mode (enum machine_mode mode)
1121 { 1122 {
1122 int cur_reg; 1123 int cur_reg;
1123 1124
1124 CLEAR_HARD_REG_SET (sel_hrd.regs_for_mode[mode]); 1125 CLEAR_HARD_REG_SET (sel_hrd.regs_for_mode[mode]);
1125 CLEAR_HARD_REG_SET (sel_hrd.regs_for_call_clobbered[mode]); 1126 CLEAR_HARD_REG_SET (sel_hrd.regs_for_call_clobbered[mode]);
1126 1127
1127 for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++) 1128 for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
1128 { 1129 {
1129 int nregs = hard_regno_nregs[cur_reg][mode]; 1130 int nregs = hard_regno_nregs[cur_reg][mode];
1130 int i; 1131 int i;
1131 1132
1132 for (i = nregs - 1; i >= 0; --i) 1133 for (i = nregs - 1; i >= 0; --i)
1133 if (fixed_regs[cur_reg + i] 1134 if (fixed_regs[cur_reg + i]
1134 || global_regs[cur_reg + i] 1135 || global_regs[cur_reg + i]
1135 /* Can't use regs which aren't saved by 1136 /* Can't use regs which aren't saved by
1136 the prologue. */ 1137 the prologue. */
1137 || !TEST_HARD_REG_BIT (sel_hrd.regs_ever_used, cur_reg + i) 1138 || !TEST_HARD_REG_BIT (sel_hrd.regs_ever_used, cur_reg + i)
1138 #ifdef LEAF_REGISTERS 1139 #ifdef LEAF_REGISTERS
1139 /* We can't use a non-leaf register if we're in a 1140 /* We can't use a non-leaf register if we're in a
1140 leaf function. */ 1141 leaf function. */
1141 || (current_function_is_leaf 1142 || (current_function_is_leaf
1142 && !LEAF_REGISTERS[cur_reg + i]) 1143 && !LEAF_REGISTERS[cur_reg + i])
1143 #endif 1144 #endif
1144 ) 1145 )
1145 break; 1146 break;
1146 1147
1147 if (i >= 0) 1148 if (i >= 0)
1148 continue; 1149 continue;
1149 1150
1150 /* See whether it accepts all modes that occur in 1151 /* See whether it accepts all modes that occur in
1151 original insns. */ 1152 original insns. */
1152 if (! HARD_REGNO_MODE_OK (cur_reg, mode)) 1153 if (! HARD_REGNO_MODE_OK (cur_reg, mode))
1153 continue; 1154 continue;
1154 1155
1155 if (HARD_REGNO_CALL_PART_CLOBBERED (cur_reg, mode)) 1156 if (HARD_REGNO_CALL_PART_CLOBBERED (cur_reg, mode))
1156 SET_HARD_REG_BIT (sel_hrd.regs_for_call_clobbered[mode], 1157 SET_HARD_REG_BIT (sel_hrd.regs_for_call_clobbered[mode],
1157 cur_reg); 1158 cur_reg);
1158 1159
1159 /* If the CUR_REG passed all the checks above, 1160 /* If the CUR_REG passed all the checks above,
1160 then it's ok. */ 1161 then it's ok. */
1161 SET_HARD_REG_BIT (sel_hrd.regs_for_mode[mode], cur_reg); 1162 SET_HARD_REG_BIT (sel_hrd.regs_for_mode[mode], cur_reg);
1162 } 1163 }
1163 1164
1164 sel_hrd.regs_for_mode_ok[mode] = true; 1165 sel_hrd.regs_for_mode_ok[mode] = true;
1167 /* Init all register sets gathered in HRD. */ 1168 /* Init all register sets gathered in HRD. */
1168 static void 1169 static void
1169 init_hard_regs_data (void) 1170 init_hard_regs_data (void)
1170 { 1171 {
1171 int cur_reg = 0; 1172 int cur_reg = 0;
1172 enum machine_mode cur_mode = 0; 1173 int cur_mode = 0;
1173 1174
1174 CLEAR_HARD_REG_SET (sel_hrd.regs_ever_used); 1175 CLEAR_HARD_REG_SET (sel_hrd.regs_ever_used);
1175 for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++) 1176 for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
1176 if (df_regs_ever_live_p (cur_reg) || call_used_regs[cur_reg]) 1177 if (df_regs_ever_live_p (cur_reg) || call_used_regs[cur_reg])
1177 SET_HARD_REG_BIT (sel_hrd.regs_ever_used, cur_reg); 1178 SET_HARD_REG_BIT (sel_hrd.regs_ever_used, cur_reg);
1178 1179
1179 /* Initialize registers that are valid based on mode when this is 1180 /* Initialize registers that are valid based on mode when this is
1180 really needed. */ 1181 really needed. */
1181 for (cur_mode = 0; cur_mode < NUM_MACHINE_MODES; cur_mode++) 1182 for (cur_mode = 0; cur_mode < NUM_MACHINE_MODES; cur_mode++)
1182 sel_hrd.regs_for_mode_ok[cur_mode] = false; 1183 sel_hrd.regs_for_mode_ok[cur_mode] = false;
1183 1184
1184 /* Mark that all HARD_REGNO_RENAME_OK is not calculated. */ 1185 /* Mark that all HARD_REGNO_RENAME_OK is not calculated. */
1185 for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++) 1186 for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
1186 CLEAR_HARD_REG_SET (sel_hrd.regs_for_rename[cur_reg]); 1187 CLEAR_HARD_REG_SET (sel_hrd.regs_for_rename[cur_reg]);
1187 1188
1188 #ifdef STACK_REGS 1189 #ifdef STACK_REGS
1189 CLEAR_HARD_REG_SET (sel_hrd.stack_regs); 1190 CLEAR_HARD_REG_SET (sel_hrd.stack_regs);
1190 1191
1191 for (cur_reg = FIRST_STACK_REG; cur_reg <= LAST_STACK_REG; cur_reg++) 1192 for (cur_reg = FIRST_STACK_REG; cur_reg <= LAST_STACK_REG; cur_reg++)
1192 SET_HARD_REG_BIT (sel_hrd.stack_regs, cur_reg); 1193 SET_HARD_REG_BIT (sel_hrd.stack_regs, cur_reg);
1193 #endif 1194 #endif
1194 } 1195 }
1195 1196
1196 /* Mark hardware regs in REG_RENAME_P that are not suitable 1197 /* Mark hardware regs in REG_RENAME_P that are not suitable
1197 for renaming rhs in INSN due to hardware restrictions (register class, 1198 for renaming rhs in INSN due to hardware restrictions (register class,
1198 modes compatibility etc). This doesn't affect original insn's dest reg, 1199 modes compatibility etc). This doesn't affect original insn's dest reg,
1199 if it isn't in USED_REGS. DEF is a definition insn of rhs for which the 1200 if it isn't in USED_REGS. DEF is a definition insn of rhs for which the
1200 destination register is sought. LHS (DEF->ORIG_INSN) may be REG or MEM. 1201 destination register is sought. LHS (DEF->ORIG_INSN) may be REG or MEM.
1201 Registers that are in used_regs are always marked in 1202 Registers that are in used_regs are always marked in
1213 1214
1214 gcc_assert (GET_CODE (PATTERN (def->orig_insn)) == SET); 1215 gcc_assert (GET_CODE (PATTERN (def->orig_insn)) == SET);
1215 gcc_assert (reg_rename_p); 1216 gcc_assert (reg_rename_p);
1216 1217
1217 orig_dest = SET_DEST (PATTERN (def->orig_insn)); 1218 orig_dest = SET_DEST (PATTERN (def->orig_insn));
1218 1219
1219 /* We have decided not to rename 'mem = something;' insns, as 'something' 1220 /* We have decided not to rename 'mem = something;' insns, as 'something'
1220 is usually a register. */ 1221 is usually a register. */
1221 if (!REG_P (orig_dest)) 1222 if (!REG_P (orig_dest))
1222 return; 1223 return;
1223 1224
1227 if (!reload_completed && !HARD_REGISTER_NUM_P (regno)) 1228 if (!reload_completed && !HARD_REGISTER_NUM_P (regno))
1228 return; 1229 return;
1229 1230
1230 mode = GET_MODE (orig_dest); 1231 mode = GET_MODE (orig_dest);
1231 1232
1232 /* Stop when mode is not supported for renaming. Also can't proceed 1233 /* Stop when mode is not supported for renaming. Also can't proceed
1233 if the original register is one of the fixed_regs, global_regs or 1234 if the original register is one of the fixed_regs, global_regs or
1234 frame pointer. */ 1235 frame pointer. */
1235 if (fixed_regs[regno] 1236 if (fixed_regs[regno]
1236 || global_regs[regno] 1237 || global_regs[regno]
1237 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM 1238 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
1238 || (frame_pointer_needed && regno == HARD_FRAME_POINTER_REGNUM) 1239 || (frame_pointer_needed && regno == HARD_FRAME_POINTER_REGNUM)
1239 #else 1240 #else
1240 || (frame_pointer_needed && regno == FRAME_POINTER_REGNUM) 1241 || (frame_pointer_needed && regno == FRAME_POINTER_REGNUM)
1249 1250
1250 return; 1251 return;
1251 } 1252 }
1252 1253
1253 /* If something allocated on stack in this function, mark frame pointer 1254 /* If something allocated on stack in this function, mark frame pointer
1254 register unavailable, considering also modes. 1255 register unavailable, considering also modes.
1255 FIXME: it is enough to do this once per all original defs. */ 1256 FIXME: it is enough to do this once per all original defs. */
1256 if (frame_pointer_needed) 1257 if (frame_pointer_needed)
1257 { 1258 {
1258 int i; 1259 int i;
1259 1260
1260 for (i = hard_regno_nregs[FRAME_POINTER_REGNUM][Pmode]; i--;) 1261 for (i = hard_regno_nregs[FRAME_POINTER_REGNUM][Pmode]; i--;)
1261 SET_HARD_REG_BIT (reg_rename_p->unavailable_hard_regs, 1262 SET_HARD_REG_BIT (reg_rename_p->unavailable_hard_regs,
1262 FRAME_POINTER_REGNUM + i); 1263 FRAME_POINTER_REGNUM + i);
1263 1264
1264 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM 1265 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
1265 for (i = hard_regno_nregs[HARD_FRAME_POINTER_REGNUM][Pmode]; i--;) 1266 for (i = hard_regno_nregs[HARD_FRAME_POINTER_REGNUM][Pmode]; i--;)
1266 SET_HARD_REG_BIT (reg_rename_p->unavailable_hard_regs, 1267 SET_HARD_REG_BIT (reg_rename_p->unavailable_hard_regs,
1267 HARD_FRAME_POINTER_REGNUM + i); 1268 HARD_FRAME_POINTER_REGNUM + i);
1268 #endif 1269 #endif
1269 } 1270 }
1270 1271
1271 #ifdef STACK_REGS 1272 #ifdef STACK_REGS
1272 /* For the stack registers the presence of FIRST_STACK_REG in USED_REGS 1273 /* For the stack registers the presence of FIRST_STACK_REG in USED_REGS
1273 is equivalent to as if all stack regs were in this set. 1274 is equivalent to as if all stack regs were in this set.
1274 I.e. no stack register can be renamed, and even if it's an original 1275 I.e. no stack register can be renamed, and even if it's an original
1275 register here we make sure it won't be lifted over it's previous def 1276 register here we make sure it won't be lifted over it's previous def
1276 (it's previous def will appear as if it's a FIRST_STACK_REG def. 1277 (it's previous def will appear as if it's a FIRST_STACK_REG def.
1277 The HARD_REGNO_RENAME_OK covers other cases in condition below. */ 1278 The HARD_REGNO_RENAME_OK covers other cases in condition below. */
1278 if (IN_RANGE (REGNO (orig_dest), FIRST_STACK_REG, LAST_STACK_REG) 1279 if (IN_RANGE (REGNO (orig_dest), FIRST_STACK_REG, LAST_STACK_REG)
1279 && REGNO_REG_SET_P (used_regs, FIRST_STACK_REG)) 1280 && REGNO_REG_SET_P (used_regs, FIRST_STACK_REG))
1280 IOR_HARD_REG_SET (reg_rename_p->unavailable_hard_regs, 1281 IOR_HARD_REG_SET (reg_rename_p->unavailable_hard_regs,
1281 sel_hrd.stack_regs); 1282 sel_hrd.stack_regs);
1282 #endif 1283 #endif
1283 1284
1284 /* If there's a call on this path, make regs from call_used_reg_set 1285 /* If there's a call on this path, make regs from call_used_reg_set
1285 unavailable. */ 1286 unavailable. */
1286 if (def->crosses_call) 1287 if (def->crosses_call)
1287 IOR_HARD_REG_SET (reg_rename_p->unavailable_hard_regs, 1288 IOR_HARD_REG_SET (reg_rename_p->unavailable_hard_regs,
1288 call_used_reg_set); 1289 call_used_reg_set);
1289 1290
1290 /* Stop here before reload: we need FRAME_REGS, STACK_REGS, and crosses_call, 1291 /* Stop here before reload: we need FRAME_REGS, STACK_REGS, and crosses_call,
1291 but not register classes. */ 1292 but not register classes. */
1292 if (!reload_completed) 1293 if (!reload_completed)
1293 return; 1294 return;
1294 1295
1295 /* Leave regs as 'available' only from the current 1296 /* Leave regs as 'available' only from the current
1296 register class. */ 1297 register class. */
1297 cl = get_reg_class (def->orig_insn); 1298 cl = get_reg_class (def->orig_insn);
1298 gcc_assert (cl != NO_REGS); 1299 gcc_assert (cl != NO_REGS);
1299 COPY_HARD_REG_SET (reg_rename_p->available_for_renaming, 1300 COPY_HARD_REG_SET (reg_rename_p->available_for_renaming,
1300 reg_class_contents[cl]); 1301 reg_class_contents[cl]);
1301 1302
1302 /* Leave only registers available for this mode. */ 1303 /* Leave only registers available for this mode. */
1303 if (!sel_hrd.regs_for_mode_ok[mode]) 1304 if (!sel_hrd.regs_for_mode_ok[mode])
1304 init_regs_for_mode (mode); 1305 init_regs_for_mode (mode);
1305 AND_HARD_REG_SET (reg_rename_p->available_for_renaming, 1306 AND_HARD_REG_SET (reg_rename_p->available_for_renaming,
1306 sel_hrd.regs_for_mode[mode]); 1307 sel_hrd.regs_for_mode[mode]);
1307 1308
1308 /* Exclude registers that are partially call clobbered. */ 1309 /* Exclude registers that are partially call clobbered. */
1309 if (def->crosses_call 1310 if (def->crosses_call
1310 && ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode)) 1311 && ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode))
1311 AND_COMPL_HARD_REG_SET (reg_rename_p->available_for_renaming, 1312 AND_COMPL_HARD_REG_SET (reg_rename_p->available_for_renaming,
1312 sel_hrd.regs_for_call_clobbered[mode]); 1313 sel_hrd.regs_for_call_clobbered[mode]);
1313 1314
1314 /* Leave only those that are ok to rename. */ 1315 /* Leave only those that are ok to rename. */
1315 EXECUTE_IF_SET_IN_HARD_REG_SET (reg_rename_p->available_for_renaming, 1316 EXECUTE_IF_SET_IN_HARD_REG_SET (reg_rename_p->available_for_renaming,
1316 0, cur_reg, hrsi) 1317 0, cur_reg, hrsi)
1323 1324
1324 for (i = nregs - 1; i >= 0; --i) 1325 for (i = nregs - 1; i >= 0; --i)
1325 if (! sel_hard_regno_rename_ok (regno + i, cur_reg + i)) 1326 if (! sel_hard_regno_rename_ok (regno + i, cur_reg + i))
1326 break; 1327 break;
1327 1328
1328 if (i >= 0) 1329 if (i >= 0)
1329 CLEAR_HARD_REG_BIT (reg_rename_p->available_for_renaming, 1330 CLEAR_HARD_REG_BIT (reg_rename_p->available_for_renaming,
1330 cur_reg); 1331 cur_reg);
1331 } 1332 }
1332 1333
1333 AND_COMPL_HARD_REG_SET (reg_rename_p->available_for_renaming, 1334 AND_COMPL_HARD_REG_SET (reg_rename_p->available_for_renaming,
1334 reg_rename_p->unavailable_hard_regs); 1335 reg_rename_p->unavailable_hard_regs);
1335 1336
1336 /* Regno is always ok from the renaming part of view, but it really 1337 /* Regno is always ok from the renaming part of view, but it really
1337 could be in *unavailable_hard_regs already, so set it here instead 1338 could be in *unavailable_hard_regs already, so set it here instead
1338 of there. */ 1339 of there. */
1344 static int reg_rename_tick[FIRST_PSEUDO_REGISTER]; 1345 static int reg_rename_tick[FIRST_PSEUDO_REGISTER];
1345 1346
1346 /* Indicates the number of times renaming happened before the current one. */ 1347 /* Indicates the number of times renaming happened before the current one. */
1347 static int reg_rename_this_tick; 1348 static int reg_rename_this_tick;
1348 1349
1349 /* Choose the register among free, that is suitable for storing 1350 /* Choose the register among free, that is suitable for storing
1350 the rhs value. 1351 the rhs value.
1351 1352
1352 ORIGINAL_INSNS is the list of insns where the operation (rhs) 1353 ORIGINAL_INSNS is the list of insns where the operation (rhs)
1353 originally appears. There could be multiple original operations 1354 originally appears. There could be multiple original operations
1354 for single rhs since we moving it up and merging along different 1355 for single rhs since we moving it up and merging along different
1355 paths. 1356 paths.
1356 1357
1357 Some code is adapted from regrename.c (regrename_optimize). 1358 Some code is adapted from regrename.c (regrename_optimize).
1358 If original register is available, function returns it. 1359 If original register is available, function returns it.
1359 Otherwise it performs the checks, so the new register should 1360 Otherwise it performs the checks, so the new register should
1360 comply with the following: 1361 comply with the following:
1361 - it should not violate any live ranges (such registers are in 1362 - it should not violate any live ranges (such registers are in
1362 REG_RENAME_P->available_for_renaming set); 1363 REG_RENAME_P->available_for_renaming set);
1363 - it should not be in the HARD_REGS_USED regset; 1364 - it should not be in the HARD_REGS_USED regset;
1364 - it should be in the class compatible with original uses; 1365 - it should be in the class compatible with original uses;
1365 - it should not be clobbered through reference with different mode; 1366 - it should not be clobbered through reference with different mode;
1366 - if we're in the leaf function, then the new register should 1367 - if we're in the leaf function, then the new register should
1367 not be in the LEAF_REGISTERS; 1368 not be in the LEAF_REGISTERS;
1368 - etc. 1369 - etc.
1369 1370
1370 If several registers meet the conditions, the register with smallest 1371 If several registers meet the conditions, the register with smallest
1371 tick is returned to achieve more even register allocation. 1372 tick is returned to achieve more even register allocation.
1372 1373
1373 If original register seems to be ok, we set *IS_ORIG_REG_P_PTR to true. 1374 If original register seems to be ok, we set *IS_ORIG_REG_P_PTR to true.
1374 1375
1375 If no register satisfies the above conditions, NULL_RTX is returned. */ 1376 If no register satisfies the above conditions, NULL_RTX is returned. */
1376 static rtx 1377 static rtx
1377 choose_best_reg_1 (HARD_REG_SET hard_regs_used, 1378 choose_best_reg_1 (HARD_REG_SET hard_regs_used,
1378 struct reg_rename *reg_rename_p, 1379 struct reg_rename *reg_rename_p,
1379 def_list_t original_insns, bool *is_orig_reg_p_ptr) 1380 def_list_t original_insns, bool *is_orig_reg_p_ptr)
1380 { 1381 {
1381 int best_new_reg; 1382 int best_new_reg;
1382 unsigned cur_reg; 1383 unsigned cur_reg;
1383 enum machine_mode mode = VOIDmode; 1384 enum machine_mode mode = VOIDmode;
1393 { 1394 {
1394 rtx orig_dest = SET_DEST (PATTERN (def->orig_insn)); 1395 rtx orig_dest = SET_DEST (PATTERN (def->orig_insn));
1395 1396
1396 gcc_assert (REG_P (orig_dest)); 1397 gcc_assert (REG_P (orig_dest));
1397 1398
1398 /* Check that all original operations have the same mode. 1399 /* Check that all original operations have the same mode.
1399 This is done for the next loop; if we'd return from this 1400 This is done for the next loop; if we'd return from this
1400 loop, we'd check only part of them, but in this case 1401 loop, we'd check only part of them, but in this case
1401 it doesn't matter. */ 1402 it doesn't matter. */
1402 if (mode == VOIDmode) 1403 if (mode == VOIDmode)
1403 mode = GET_MODE (orig_dest); 1404 mode = GET_MODE (orig_dest);
1404 gcc_assert (mode == GET_MODE (orig_dest)); 1405 gcc_assert (mode == GET_MODE (orig_dest));
1405 1406
1410 1411
1411 /* All hard registers are available. */ 1412 /* All hard registers are available. */
1412 if (i == n) 1413 if (i == n)
1413 { 1414 {
1414 gcc_assert (mode != VOIDmode); 1415 gcc_assert (mode != VOIDmode);
1415 1416
1416 /* Hard registers should not be shared. */ 1417 /* Hard registers should not be shared. */
1417 return gen_rtx_REG (mode, regno); 1418 return gen_rtx_REG (mode, regno);
1418 } 1419 }
1419 } 1420 }
1420 1421
1421 *is_orig_reg_p_ptr = false; 1422 *is_orig_reg_p_ptr = false;
1422 best_new_reg = -1; 1423 best_new_reg = -1;
1423 1424
1424 /* Among all available regs choose the register that was 1425 /* Among all available regs choose the register that was
1425 allocated earliest. */ 1426 allocated earliest. */
1426 EXECUTE_IF_SET_IN_HARD_REG_SET (reg_rename_p->available_for_renaming, 1427 EXECUTE_IF_SET_IN_HARD_REG_SET (reg_rename_p->available_for_renaming,
1427 0, cur_reg, hrsi) 1428 0, cur_reg, hrsi)
1428 if (! TEST_HARD_REG_BIT (hard_regs_used, cur_reg)) 1429 if (! TEST_HARD_REG_BIT (hard_regs_used, cur_reg))
1429 { 1430 {
1430 /* All hard registers are available. */ 1431 /* All hard registers are available. */
1431 if (best_new_reg < 0 1432 if (best_new_reg < 0
1432 || reg_rename_tick[cur_reg] < reg_rename_tick[best_new_reg]) 1433 || reg_rename_tick[cur_reg] < reg_rename_tick[best_new_reg])
1433 { 1434 {
1434 best_new_reg = cur_reg; 1435 best_new_reg = cur_reg;
1435 1436
1436 /* Return immediately when we know there's no better reg. */ 1437 /* Return immediately when we know there's no better reg. */
1437 if (! reg_rename_tick[best_new_reg]) 1438 if (! reg_rename_tick[best_new_reg])
1438 break; 1439 break;
1439 } 1440 }
1440 } 1441 }
1450 } 1451 }
1451 1452
1452 /* A wrapper around choose_best_reg_1 () to verify that we make correct 1453 /* A wrapper around choose_best_reg_1 () to verify that we make correct
1453 assumptions about available registers in the function. */ 1454 assumptions about available registers in the function. */
1454 static rtx 1455 static rtx
1455 choose_best_reg (HARD_REG_SET hard_regs_used, struct reg_rename *reg_rename_p, 1456 choose_best_reg (HARD_REG_SET hard_regs_used, struct reg_rename *reg_rename_p,
1456 def_list_t original_insns, bool *is_orig_reg_p_ptr) 1457 def_list_t original_insns, bool *is_orig_reg_p_ptr)
1457 { 1458 {
1458 rtx best_reg = choose_best_reg_1 (hard_regs_used, reg_rename_p, 1459 rtx best_reg = choose_best_reg_1 (hard_regs_used, reg_rename_p,
1459 original_insns, is_orig_reg_p_ptr); 1460 original_insns, is_orig_reg_p_ptr);
1460 1461
1461 gcc_assert (best_reg == NULL_RTX 1462 gcc_assert (best_reg == NULL_RTX
1462 || TEST_HARD_REG_BIT (sel_hrd.regs_ever_used, REGNO (best_reg))); 1463 || TEST_HARD_REG_BIT (sel_hrd.regs_ever_used, REGNO (best_reg)));
1463 1464
1464 return best_reg; 1465 return best_reg;
1465 } 1466 }
1466 1467
1467 /* Choose the pseudo register for storing rhs value. As this is supposed 1468 /* Choose the pseudo register for storing rhs value. As this is supposed
1468 to work before reload, we return either the original register or make 1469 to work before reload, we return either the original register or make
1469 the new one. The parameters are the same that in choose_nest_reg_1 1470 the new one. The parameters are the same that in choose_nest_reg_1
1470 functions, except that USED_REGS may contain pseudos. 1471 functions, except that USED_REGS may contain pseudos.
1471 If we work with hard regs, check also REG_RENAME_P->UNAVAILABLE_HARD_REGS. 1472 If we work with hard regs, check also REG_RENAME_P->UNAVAILABLE_HARD_REGS.
1472 1473
1473 TODO: take into account register pressure while doing this. Up to this 1474 TODO: take into account register pressure while doing this. Up to this
1474 moment, this function would never return NULL for pseudos, but we should 1475 moment, this function would never return NULL for pseudos, but we should
1475 not rely on this. */ 1476 not rely on this. */
1476 static rtx 1477 static rtx
1477 choose_best_pseudo_reg (regset used_regs, 1478 choose_best_pseudo_reg (regset used_regs,
1478 struct reg_rename *reg_rename_p, 1479 struct reg_rename *reg_rename_p,
1479 def_list_t original_insns, bool *is_orig_reg_p_ptr) 1480 def_list_t original_insns, bool *is_orig_reg_p_ptr)
1480 { 1481 {
1481 def_list_iterator i; 1482 def_list_iterator i;
1482 def_t def; 1483 def_t def;
1483 enum machine_mode mode = VOIDmode; 1484 enum machine_mode mode = VOIDmode;
1484 bool bad_hard_regs = false; 1485 bool bad_hard_regs = false;
1485 1486
1486 /* We should not use this after reload. */ 1487 /* We should not use this after reload. */
1487 gcc_assert (!reload_completed); 1488 gcc_assert (!reload_completed);
1488 1489
1489 /* If original register is available, return it. */ 1490 /* If original register is available, return it. */
1490 *is_orig_reg_p_ptr = true; 1491 *is_orig_reg_p_ptr = true;
1491 1492
1492 FOR_EACH_DEF (def, i, original_insns) 1493 FOR_EACH_DEF (def, i, original_insns)
1493 { 1494 {
1494 rtx dest = SET_DEST (PATTERN (def->orig_insn)); 1495 rtx dest = SET_DEST (PATTERN (def->orig_insn));
1495 int orig_regno; 1496 int orig_regno;
1496 1497
1497 gcc_assert (REG_P (dest)); 1498 gcc_assert (REG_P (dest));
1498 1499
1499 /* Check that all original operations have the same mode. */ 1500 /* Check that all original operations have the same mode. */
1500 if (mode == VOIDmode) 1501 if (mode == VOIDmode)
1501 mode = GET_MODE (dest); 1502 mode = GET_MODE (dest);
1502 else 1503 else
1503 gcc_assert (mode == GET_MODE (dest)); 1504 gcc_assert (mode == GET_MODE (dest));
1504 orig_regno = REGNO (dest); 1505 orig_regno = REGNO (dest);
1505 1506
1506 if (!REGNO_REG_SET_P (used_regs, orig_regno)) 1507 if (!REGNO_REG_SET_P (used_regs, orig_regno))
1507 { 1508 {
1508 if (orig_regno < FIRST_PSEUDO_REGISTER) 1509 if (orig_regno < FIRST_PSEUDO_REGISTER)
1509 { 1510 {
1510 gcc_assert (df_regs_ever_live_p (orig_regno)); 1511 gcc_assert (df_regs_ever_live_p (orig_regno));
1511 1512
1512 /* For hard registers, we have to check hardware imposed 1513 /* For hard registers, we have to check hardware imposed
1513 limitations (frame/stack registers, calls crossed). */ 1514 limitations (frame/stack registers, calls crossed). */
1514 if (!TEST_HARD_REG_BIT (reg_rename_p->unavailable_hard_regs, 1515 if (!TEST_HARD_REG_BIT (reg_rename_p->unavailable_hard_regs,
1515 orig_regno)) 1516 orig_regno))
1516 { 1517 {
1517 /* Don't let register cross a call if it doesn't already 1518 /* Don't let register cross a call if it doesn't already
1518 cross one. This condition is written in accordance with 1519 cross one. This condition is written in accordance with
1519 that in sched-deps.c sched_analyze_reg(). */ 1520 that in sched-deps.c sched_analyze_reg(). */
1520 if (!reg_rename_p->crosses_call 1521 if (!reg_rename_p->crosses_call
1521 || REG_N_CALLS_CROSSED (orig_regno) > 0) 1522 || REG_N_CALLS_CROSSED (orig_regno) > 0)
1522 return gen_rtx_REG (mode, orig_regno); 1523 return gen_rtx_REG (mode, orig_regno);
1523 } 1524 }
1524 1525
1525 bad_hard_regs = true; 1526 bad_hard_regs = true;
1526 } 1527 }
1527 else 1528 else
1528 return dest; 1529 return dest;
1529 } 1530 }
1530 } 1531 }
1531 1532
1532 *is_orig_reg_p_ptr = false; 1533 *is_orig_reg_p_ptr = false;
1533 1534
1534 /* We had some original hard registers that couldn't be used. 1535 /* We had some original hard registers that couldn't be used.
1535 Those were likely special. Don't try to create a pseudo. */ 1536 Those were likely special. Don't try to create a pseudo. */
1536 if (bad_hard_regs) 1537 if (bad_hard_regs)
1537 return NULL_RTX; 1538 return NULL_RTX;
1538 1539
1539 /* We haven't found a register from original operations. Get a new one. 1540 /* We haven't found a register from original operations. Get a new one.
1540 FIXME: control register pressure somehow. */ 1541 FIXME: control register pressure somehow. */
1541 { 1542 {
1542 rtx new_reg = gen_reg_rtx (mode); 1543 rtx new_reg = gen_reg_rtx (mode);
1543 1544
1544 gcc_assert (mode != VOIDmode); 1545 gcc_assert (mode != VOIDmode);
1552 } 1553 }
1553 1554
1554 /* True when target of EXPR is available due to EXPR_TARGET_AVAILABLE, 1555 /* True when target of EXPR is available due to EXPR_TARGET_AVAILABLE,
1555 USED_REGS and REG_RENAME_P->UNAVAILABLE_HARD_REGS. */ 1556 USED_REGS and REG_RENAME_P->UNAVAILABLE_HARD_REGS. */
1556 static void 1557 static void
1557 verify_target_availability (expr_t expr, regset used_regs, 1558 verify_target_availability (expr_t expr, regset used_regs,
1558 struct reg_rename *reg_rename_p) 1559 struct reg_rename *reg_rename_p)
1559 { 1560 {
1560 unsigned n, i, regno; 1561 unsigned n, i, regno;
1561 enum machine_mode mode; 1562 enum machine_mode mode;
1562 bool target_available, live_available, hard_available; 1563 bool target_available, live_available, hard_available;
1563 1564
1564 if (!REG_P (EXPR_LHS (expr)) || EXPR_TARGET_AVAILABLE (expr) < 0) 1565 if (!REG_P (EXPR_LHS (expr)) || EXPR_TARGET_AVAILABLE (expr) < 0)
1565 return; 1566 return;
1566 1567
1567 regno = expr_dest_regno (expr); 1568 regno = expr_dest_regno (expr);
1568 mode = GET_MODE (EXPR_LHS (expr)); 1569 mode = GET_MODE (EXPR_LHS (expr));
1569 target_available = EXPR_TARGET_AVAILABLE (expr) == 1; 1570 target_available = EXPR_TARGET_AVAILABLE (expr) == 1;
1570 n = reload_completed ? hard_regno_nregs[regno][mode] : 1; 1571 n = reload_completed ? hard_regno_nregs[regno][mode] : 1;
1571 1572
1576 live_available = false; 1577 live_available = false;
1577 if (TEST_HARD_REG_BIT (reg_rename_p->unavailable_hard_regs, regno + i)) 1578 if (TEST_HARD_REG_BIT (reg_rename_p->unavailable_hard_regs, regno + i))
1578 hard_available = false; 1579 hard_available = false;
1579 } 1580 }
1580 1581
1581 /* When target is not available, it may be due to hard register 1582 /* When target is not available, it may be due to hard register
1582 restrictions, e.g. crosses calls, so we check hard_available too. */ 1583 restrictions, e.g. crosses calls, so we check hard_available too. */
1583 if (target_available) 1584 if (target_available)
1584 gcc_assert (live_available); 1585 gcc_assert (live_available);
1585 else 1586 else
1586 /* Check only if we haven't scheduled something on the previous fence, 1587 /* Check only if we haven't scheduled something on the previous fence,
1587 cause due to MAX_SOFTWARE_LOOKAHEAD_WINDOW_SIZE issues 1588 cause due to MAX_SOFTWARE_LOOKAHEAD_WINDOW_SIZE issues
1588 and having more than one fence, we may end having targ_un in a block 1589 and having more than one fence, we may end having targ_un in a block
1589 in which successors target register is actually available. 1590 in which successors target register is actually available.
1590 1591
1591 The last condition handles the case when a dependence from a call insn 1592 The last condition handles the case when a dependence from a call insn
1592 was created in sched-deps.c for insns with destination registers that 1593 was created in sched-deps.c for insns with destination registers that
1593 never crossed a call before, but do cross one after our code motion. 1594 never crossed a call before, but do cross one after our code motion.
1594 1595
1595 FIXME: in the latter case, we just uselessly called find_used_regs, 1596 FIXME: in the latter case, we just uselessly called find_used_regs,
1596 because we can't move this expression with any other register 1597 because we can't move this expression with any other register
1597 as well. */ 1598 as well. */
1598 gcc_assert (scheduled_something_on_previous_fence || !live_available 1599 gcc_assert (scheduled_something_on_previous_fence || !live_available
1599 || !hard_available 1600 || !hard_available
1600 || (!reload_completed && reg_rename_p->crosses_call 1601 || (!reload_completed && reg_rename_p->crosses_call
1601 && REG_N_CALLS_CROSSED (regno) == 0)); 1602 && REG_N_CALLS_CROSSED (regno) == 0));
1602 } 1603 }
1603 1604
1604 /* Collect unavailable registers due to liveness for EXPR from BNDS 1605 /* Collect unavailable registers due to liveness for EXPR from BNDS
1605 into USED_REGS. Save additional information about available 1606 into USED_REGS. Save additional information about available
1606 registers and unavailable due to hardware restriction registers 1607 registers and unavailable due to hardware restriction registers
1607 into REG_RENAME_P structure. Save original insns into ORIGINAL_INSNS 1608 into REG_RENAME_P structure. Save original insns into ORIGINAL_INSNS
1608 list. */ 1609 list. */
1609 static void 1610 static void
1610 collect_unavailable_regs_from_bnds (expr_t expr, blist_t bnds, regset used_regs, 1611 collect_unavailable_regs_from_bnds (expr_t expr, blist_t bnds, regset used_regs,
1666 register. */ 1667 register. */
1667 replace_dest_with_reg_in_expr (expr, best_reg); 1668 replace_dest_with_reg_in_expr (expr, best_reg);
1668 return true; 1669 return true;
1669 } 1670 }
1670 1671
1671 /* Select and assign best register to EXPR searching from BNDS. 1672 /* Select and assign best register to EXPR searching from BNDS.
1672 Set *IS_ORIG_REG_P to TRUE if original register was selected. 1673 Set *IS_ORIG_REG_P to TRUE if original register was selected.
1673 Return FALSE if no register can be chosen, which could happen when: 1674 Return FALSE if no register can be chosen, which could happen when:
1674 * EXPR_SEPARABLE_P is true but we were unable to find suitable register; 1675 * EXPR_SEPARABLE_P is true but we were unable to find suitable register;
1675 * EXPR_SEPARABLE_P is false but the insn sets/clobbers one of the registers 1676 * EXPR_SEPARABLE_P is false but the insn sets/clobbers one of the registers
1676 that are used on the moving path. */ 1677 that are used on the moving path. */
1677 static bool 1678 static bool
1696 collect_unavailable_regs_from_bnds (expr, bnds, used_regs, &reg_rename_data, 1697 collect_unavailable_regs_from_bnds (expr, bnds, used_regs, &reg_rename_data,
1697 &original_insns); 1698 &original_insns);
1698 1699
1699 #ifdef ENABLE_CHECKING 1700 #ifdef ENABLE_CHECKING
1700 /* If after reload, make sure we're working with hard regs here. */ 1701 /* If after reload, make sure we're working with hard regs here. */
1701 if (reload_completed) 1702 if (reload_completed)
1702 { 1703 {
1703 reg_set_iterator rsi; 1704 reg_set_iterator rsi;
1704 unsigned i; 1705 unsigned i;
1705 1706
1706 EXECUTE_IF_SET_IN_REG_SET (used_regs, FIRST_PSEUDO_REGISTER, i, rsi) 1707 EXECUTE_IF_SET_IN_REG_SET (used_regs, FIRST_PSEUDO_REGISTER, i, rsi)
1707 gcc_unreachable (); 1708 gcc_unreachable ();
1708 } 1709 }
1709 #endif 1710 #endif
1710 1711
1873 In case of control speculation we must convert C_EXPR to control 1874 In case of control speculation we must convert C_EXPR to control
1874 speculative mode, because failing to do so will bring us an exception 1875 speculative mode, because failing to do so will bring us an exception
1875 thrown by the non-control-speculative load. */ 1876 thrown by the non-control-speculative load. */
1876 check_ds = ds_get_max_dep_weak (check_ds); 1877 check_ds = ds_get_max_dep_weak (check_ds);
1877 speculate_expr (c_expr, check_ds); 1878 speculate_expr (c_expr, check_ds);
1878 1879
1879 return insn; 1880 return insn;
1880 } 1881 }
1881 1882
1882 /* True when INSN is a "regN = regN" copy. */ 1883 /* True when INSN is a "regN = regN" copy. */
1883 static bool 1884 static bool
1899 return false; 1900 return false;
1900 1901
1901 return REGNO (lhs) == REGNO (rhs); 1902 return REGNO (lhs) == REGNO (rhs);
1902 } 1903 }
1903 1904
1904 /* Undo all transformations on *AV_PTR that were done when 1905 /* Undo all transformations on *AV_PTR that were done when
1905 moving through INSN. */ 1906 moving through INSN. */
1906 static void 1907 static void
1907 undo_transformations (av_set_t *av_ptr, rtx insn) 1908 undo_transformations (av_set_t *av_ptr, rtx insn)
1908 { 1909 {
1909 av_set_iterator av_iter; 1910 av_set_iterator av_iter;
1910 expr_t expr; 1911 expr_t expr;
1911 av_set_t new_set = NULL; 1912 av_set_t new_set = NULL;
1912 1913
1913 /* First, kill any EXPR that uses registers set by an insn. This is 1914 /* First, kill any EXPR that uses registers set by an insn. This is
1914 required for correctness. */ 1915 required for correctness. */
1915 FOR_EACH_EXPR_1 (expr, av_iter, av_ptr) 1916 FOR_EACH_EXPR_1 (expr, av_iter, av_ptr)
1916 if (!sched_insns_conditions_mutex_p (insn, EXPR_INSN_RTX (expr)) 1917 if (!sched_insns_conditions_mutex_p (insn, EXPR_INSN_RTX (expr))
1917 && bitmap_intersect_p (INSN_REG_SETS (insn), 1918 && bitmap_intersect_p (INSN_REG_SETS (insn),
1918 VINSN_REG_USES (EXPR_VINSN (expr))) 1919 VINSN_REG_USES (EXPR_VINSN (expr)))
1919 /* When an insn looks like 'r1 = r1', we could substitute through 1920 /* When an insn looks like 'r1 = r1', we could substitute through
1920 it, but the above condition will still hold. This happened with 1921 it, but the above condition will still hold. This happened with
1921 gcc.c-torture/execute/961125-1.c. */ 1922 gcc.c-torture/execute/961125-1.c. */
1922 && !identical_copy_p (insn)) 1923 && !identical_copy_p (insn))
1923 { 1924 {
1924 if (sched_verbose >= 6) 1925 if (sched_verbose >= 6)
1925 sel_print ("Expr %d removed due to use/set conflict\n", 1926 sel_print ("Expr %d removed due to use/set conflict\n",
1926 INSN_UID (EXPR_INSN_RTX (expr))); 1927 INSN_UID (EXPR_INSN_RTX (expr)));
1927 av_set_iter_remove (&av_iter); 1928 av_set_iter_remove (&av_iter);
1928 } 1929 }
1929 1930
1930 /* Undo transformations looking at the history vector. */ 1931 /* Undo transformations looking at the history vector. */
1935 1936
1936 if (index >= 0) 1937 if (index >= 0)
1937 { 1938 {
1938 expr_history_def *phist; 1939 expr_history_def *phist;
1939 1940
1940 phist = VEC_index (expr_history_def, 1941 phist = VEC_index (expr_history_def,
1941 EXPR_HISTORY_OF_CHANGES (expr), 1942 EXPR_HISTORY_OF_CHANGES (expr),
1942 index); 1943 index);
1943 1944
1944 switch (phist->type) 1945 switch (phist->type)
1945 { 1946 {
1946 case TRANS_SPECULATION: 1947 case TRANS_SPECULATION:
1947 { 1948 {
1948 ds_t old_ds, new_ds; 1949 ds_t old_ds, new_ds;
1949 1950
1950 /* Compute the difference between old and new speculative 1951 /* Compute the difference between old and new speculative
1951 statuses: that's what we need to check. 1952 statuses: that's what we need to check.
1952 Earlier we used to assert that the status will really 1953 Earlier we used to assert that the status will really
1953 change. This no longer works because only the probability 1954 change. This no longer works because only the probability
1954 bits in the status may have changed during compute_av_set, 1955 bits in the status may have changed during compute_av_set,
1955 and in the case of merging different probabilities of the 1956 and in the case of merging different probabilities of the
1956 same speculative status along different paths we do not 1957 same speculative status along different paths we do not
1957 record this in the history vector. */ 1958 record this in the history vector. */
1958 old_ds = phist->spec_ds; 1959 old_ds = phist->spec_ds;
1959 new_ds = EXPR_SPEC_DONE_DS (expr); 1960 new_ds = EXPR_SPEC_DONE_DS (expr);
1960 1961
1961 old_ds &= SPECULATIVE; 1962 old_ds &= SPECULATIVE;
1962 new_ds &= SPECULATIVE; 1963 new_ds &= SPECULATIVE;
1963 new_ds &= ~old_ds; 1964 new_ds &= ~old_ds;
1964 1965
1965 EXPR_SPEC_TO_CHECK_DS (expr) |= new_ds; 1966 EXPR_SPEC_TO_CHECK_DS (expr) |= new_ds;
1966 break; 1967 break;
1967 } 1968 }
1968 case TRANS_SUBSTITUTION: 1969 case TRANS_SUBSTITUTION:
1969 { 1970 {
1970 expr_def _tmp_expr, *tmp_expr = &_tmp_expr; 1971 expr_def _tmp_expr, *tmp_expr = &_tmp_expr;
1971 vinsn_t new_vi; 1972 vinsn_t new_vi;
1972 bool add = true; 1973 bool add = true;
1973 1974
1974 new_vi = phist->old_expr_vinsn; 1975 new_vi = phist->old_expr_vinsn;
1975 1976
1976 gcc_assert (VINSN_SEPARABLE_P (new_vi) 1977 gcc_assert (VINSN_SEPARABLE_P (new_vi)
1977 == EXPR_SEPARABLE_P (expr)); 1978 == EXPR_SEPARABLE_P (expr));
1978 copy_expr (tmp_expr, expr); 1979 copy_expr (tmp_expr, expr);
1979 1980
1980 if (vinsn_equal_p (phist->new_expr_vinsn, 1981 if (vinsn_equal_p (phist->new_expr_vinsn,
1981 EXPR_VINSN (tmp_expr))) 1982 EXPR_VINSN (tmp_expr)))
1982 change_vinsn_in_expr (tmp_expr, new_vi); 1983 change_vinsn_in_expr (tmp_expr, new_vi);
1983 else 1984 else
1984 /* This happens when we're unsubstituting on a bookkeeping 1985 /* This happens when we're unsubstituting on a bookkeeping
1985 copy, which was in turn substituted. The history is wrong 1986 copy, which was in turn substituted. The history is wrong
1992 } 1993 }
1993 default: 1994 default:
1994 gcc_unreachable (); 1995 gcc_unreachable ();
1995 } 1996 }
1996 } 1997 }
1997 1998
1998 } 1999 }
1999 2000
2000 av_set_union_and_clear (av_ptr, &new_set, NULL); 2001 av_set_union_and_clear (av_ptr, &new_set, NULL);
2001 } 2002 }
2002 2003
2003 2004
2004 /* Moveup_* helpers for code motion and computing av sets. */ 2005 /* Moveup_* helpers for code motion and computing av sets. */
2005 2006
2006 /* Propagates EXPR inside an insn group through THROUGH_INSN. 2007 /* Propagates EXPR inside an insn group through THROUGH_INSN.
2007 The difference from the below function is that only substitution is 2008 The difference from the below function is that only substitution is
2008 performed. */ 2009 performed. */
2009 static enum MOVEUP_EXPR_CODE 2010 static enum MOVEUP_EXPR_CODE
2010 moveup_expr_inside_insn_group (expr_t expr, insn_t through_insn) 2011 moveup_expr_inside_insn_group (expr_t expr, insn_t through_insn)
2011 { 2012 {
2012 vinsn_t vi = EXPR_VINSN (expr); 2013 vinsn_t vi = EXPR_VINSN (expr);
2023 /* Substitution is the possible choice in this case. */ 2024 /* Substitution is the possible choice in this case. */
2024 if (has_dep_p[DEPS_IN_RHS]) 2025 if (has_dep_p[DEPS_IN_RHS])
2025 { 2026 {
2026 /* Can't substitute UNIQUE VINSNs. */ 2027 /* Can't substitute UNIQUE VINSNs. */
2027 gcc_assert (!VINSN_UNIQUE_P (vi)); 2028 gcc_assert (!VINSN_UNIQUE_P (vi));
2028 2029
2029 if (can_substitute_through_p (through_insn, 2030 if (can_substitute_through_p (through_insn,
2030 has_dep_p[DEPS_IN_RHS]) 2031 has_dep_p[DEPS_IN_RHS])
2031 && substitute_reg_in_expr (expr, through_insn, false)) 2032 && substitute_reg_in_expr (expr, through_insn, false))
2032 { 2033 {
2033 EXPR_WAS_SUBSTITUTED (expr) = true; 2034 EXPR_WAS_SUBSTITUTED (expr) = true;
2034 return MOVEUP_EXPR_CHANGED; 2035 return MOVEUP_EXPR_CHANGED;
2040 } 2041 }
2041 2042
2042 /* This can catch output dependencies in COND_EXECs. */ 2043 /* This can catch output dependencies in COND_EXECs. */
2043 if (has_dep_p[DEPS_IN_INSN]) 2044 if (has_dep_p[DEPS_IN_INSN])
2044 return MOVEUP_EXPR_NULL; 2045 return MOVEUP_EXPR_NULL;
2045 2046
2046 /* This is either an output or an anti dependence, which usually have 2047 /* This is either an output or an anti dependence, which usually have
2047 a zero latency. Allow this here, if we'd be wrong, tick_check_p 2048 a zero latency. Allow this here, if we'd be wrong, tick_check_p
2048 will fix this. */ 2049 will fix this. */
2049 gcc_assert (has_dep_p[DEPS_IN_LHS]); 2050 gcc_assert (has_dep_p[DEPS_IN_LHS]);
2050 return MOVEUP_EXPR_AS_RHS; 2051 return MOVEUP_EXPR_AS_RHS;
2057 && !sel_insn_is_speculation_check (through_insn)) 2058 && !sel_insn_is_speculation_check (through_insn))
2058 2059
2059 /* True when a conflict on a target register was found during moveup_expr. */ 2060 /* True when a conflict on a target register was found during moveup_expr. */
2060 static bool was_target_conflict = false; 2061 static bool was_target_conflict = false;
2061 2062
2063 /* Return true when moving a debug INSN across THROUGH_INSN will
2064 create a bookkeeping block. We don't want to create such blocks,
2065 for they would cause codegen differences between compilations with
2066 and without debug info. */
2067
2068 static bool
2069 moving_insn_creates_bookkeeping_block_p (insn_t insn,
2070 insn_t through_insn)
2071 {
2072 basic_block bbi, bbt;
2073 edge e1, e2;
2074 edge_iterator ei1, ei2;
2075
2076 if (!bookkeeping_can_be_created_if_moved_through_p (through_insn))
2077 {
2078 if (sched_verbose >= 9)
2079 sel_print ("no bookkeeping required: ");
2080 return FALSE;
2081 }
2082
2083 bbi = BLOCK_FOR_INSN (insn);
2084
2085 if (EDGE_COUNT (bbi->preds) == 1)
2086 {
2087 if (sched_verbose >= 9)
2088 sel_print ("only one pred edge: ");
2089 return TRUE;
2090 }
2091
2092 bbt = BLOCK_FOR_INSN (through_insn);
2093
2094 FOR_EACH_EDGE (e1, ei1, bbt->succs)
2095 {
2096 FOR_EACH_EDGE (e2, ei2, bbi->preds)
2097 {
2098 if (find_block_for_bookkeeping (e1, e2, TRUE))
2099 {
2100 if (sched_verbose >= 9)
2101 sel_print ("found existing block: ");
2102 return FALSE;
2103 }
2104 }
2105 }
2106
2107 if (sched_verbose >= 9)
2108 sel_print ("would create bookkeeping block: ");
2109
2110 return TRUE;
2111 }
2112
2062 /* Modifies EXPR so it can be moved through the THROUGH_INSN, 2113 /* Modifies EXPR so it can be moved through the THROUGH_INSN,
2063 performing necessary transformations. Record the type of transformation 2114 performing necessary transformations. Record the type of transformation
2064 made in PTRANS_TYPE, when it is not NULL. When INSIDE_INSN_GROUP, 2115 made in PTRANS_TYPE, when it is not NULL. When INSIDE_INSN_GROUP,
2065 permit all dependencies except true ones, and try to remove those 2116 permit all dependencies except true ones, and try to remove those
2066 too via forward substitution. All cases when a non-eliminable 2117 too via forward substitution. All cases when a non-eliminable
2067 non-zero cost dependency exists inside an insn group will be fixed 2118 non-zero cost dependency exists inside an insn group will be fixed
2068 in tick_check_p instead. */ 2119 in tick_check_p instead. */
2069 static enum MOVEUP_EXPR_CODE 2120 static enum MOVEUP_EXPR_CODE
2070 moveup_expr (expr_t expr, insn_t through_insn, bool inside_insn_group, 2121 moveup_expr (expr_t expr, insn_t through_insn, bool inside_insn_group,
2071 enum local_trans_type *ptrans_type) 2122 enum local_trans_type *ptrans_type)
2072 { 2123 {
2089 dependencies allow to do so and jump is not speculative). */ 2140 dependencies allow to do so and jump is not speculative). */
2090 if (control_flow_insn_p (insn)) 2141 if (control_flow_insn_p (insn))
2091 { 2142 {
2092 basic_block fallthru_bb; 2143 basic_block fallthru_bb;
2093 2144
2094 /* Do not move checks and do not move jumps through other 2145 /* Do not move checks and do not move jumps through other
2095 jumps. */ 2146 jumps. */
2096 if (control_flow_insn_p (through_insn) 2147 if (control_flow_insn_p (through_insn)
2097 || sel_insn_is_speculation_check (insn)) 2148 || sel_insn_is_speculation_check (insn))
2098 return MOVEUP_EXPR_NULL; 2149 return MOVEUP_EXPR_NULL;
2099 2150
2100 /* Don't move jumps through CFG joins. */ 2151 /* Don't move jumps through CFG joins. */
2101 if (bookkeeping_can_be_created_if_moved_through_p (through_insn)) 2152 if (bookkeeping_can_be_created_if_moved_through_p (through_insn))
2102 return MOVEUP_EXPR_NULL; 2153 return MOVEUP_EXPR_NULL;
2103 2154
2104 /* The jump should have a clear fallthru block, and 2155 /* The jump should have a clear fallthru block, and
2105 this block should be in the current region. */ 2156 this block should be in the current region. */
2106 if ((fallthru_bb = fallthru_bb_of_jump (insn)) == NULL 2157 if ((fallthru_bb = fallthru_bb_of_jump (insn)) == NULL
2107 || ! in_current_region_p (fallthru_bb)) 2158 || ! in_current_region_p (fallthru_bb))
2108 return MOVEUP_EXPR_NULL; 2159 return MOVEUP_EXPR_NULL;
2109 2160
2110 /* And it should be mutually exclusive with through_insn, or 2161 /* And it should be mutually exclusive with through_insn, or
2111 be an unconditional jump. */ 2162 be an unconditional jump. */
2112 if (! any_uncondjump_p (insn) 2163 if (! any_uncondjump_p (insn)
2113 && ! sched_insns_conditions_mutex_p (insn, through_insn)) 2164 && ! sched_insns_conditions_mutex_p (insn, through_insn)
2165 && ! DEBUG_INSN_P (through_insn))
2114 return MOVEUP_EXPR_NULL; 2166 return MOVEUP_EXPR_NULL;
2115 } 2167 }
2116 2168
2117 /* Don't move what we can't move. */ 2169 /* Don't move what we can't move. */
2118 if (EXPR_CANT_MOVE (expr) 2170 if (EXPR_CANT_MOVE (expr)
2129 return MOVEUP_EXPR_NULL; 2181 return MOVEUP_EXPR_NULL;
2130 } 2182 }
2131 else 2183 else
2132 gcc_assert (!control_flow_insn_p (insn)); 2184 gcc_assert (!control_flow_insn_p (insn));
2133 2185
2186 /* Don't move debug insns if this would require bookkeeping. */
2187 if (DEBUG_INSN_P (insn)
2188 && BLOCK_FOR_INSN (through_insn) != BLOCK_FOR_INSN (insn)
2189 && moving_insn_creates_bookkeeping_block_p (insn, through_insn))
2190 return MOVEUP_EXPR_NULL;
2191
2134 /* Deal with data dependencies. */ 2192 /* Deal with data dependencies. */
2135 was_target_conflict = false; 2193 was_target_conflict = false;
2136 full_ds = has_dependence_p (expr, through_insn, &has_dep_p); 2194 full_ds = has_dependence_p (expr, through_insn, &has_dep_p);
2137 if (full_ds == 0) 2195 if (full_ds == 0)
2138 { 2196 {
2139 if (!CANT_MOVE_TRAPPING (expr, through_insn)) 2197 if (!CANT_MOVE_TRAPPING (expr, through_insn))
2140 return MOVEUP_EXPR_SAME; 2198 return MOVEUP_EXPR_SAME;
2141 } 2199 }
2142 else 2200 else
2143 { 2201 {
2144 /* We can move UNIQUE insn up only as a whole and unchanged, 2202 /* We can move UNIQUE insn up only as a whole and unchanged,
2145 so it shouldn't have any dependencies. */ 2203 so it shouldn't have any dependencies. */
2146 if (VINSN_UNIQUE_P (vi)) 2204 if (VINSN_UNIQUE_P (vi))
2147 return MOVEUP_EXPR_NULL; 2205 return MOVEUP_EXPR_NULL;
2148 } 2206 }
2149 2207
2168 if (has_dep_p[DEPS_IN_INSN]) 2226 if (has_dep_p[DEPS_IN_INSN])
2169 /* We have some dependency that cannot be discarded. */ 2227 /* We have some dependency that cannot be discarded. */
2170 return MOVEUP_EXPR_NULL; 2228 return MOVEUP_EXPR_NULL;
2171 2229
2172 if (has_dep_p[DEPS_IN_LHS]) 2230 if (has_dep_p[DEPS_IN_LHS])
2173 { 2231 {
2174 /* Only separable insns can be moved up with the new register. 2232 /* Only separable insns can be moved up with the new register.
2175 Anyways, we should mark that the original register is 2233 Anyways, we should mark that the original register is
2176 unavailable. */ 2234 unavailable. */
2177 if (!enable_schedule_as_rhs_p || !EXPR_SEPARABLE_P (expr)) 2235 if (!enable_schedule_as_rhs_p || !EXPR_SEPARABLE_P (expr))
2178 return MOVEUP_EXPR_NULL; 2236 return MOVEUP_EXPR_NULL;
2179 2237
2180 EXPR_TARGET_AVAILABLE (expr) = false; 2238 EXPR_TARGET_AVAILABLE (expr) = false;
2189 2247
2190 Ex. 1: Ex.2 2248 Ex. 1: Ex.2
2191 y = x; y = x; 2249 y = x; y = x;
2192 z = y*2; y = y*2; 2250 z = y*2; y = y*2;
2193 2251
2194 In Ex.1 y*2 can be substituted for x*2 and the whole operation can be 2252 In Ex.1 y*2 can be substituted for x*2 and the whole operation can be
2195 moved above y=x assignment as z=x*2. 2253 moved above y=x assignment as z=x*2.
2196 2254
2197 In Ex.2 y*2 also can be substituted for x*2, but only the right hand 2255 In Ex.2 y*2 also can be substituted for x*2, but only the right hand
2198 side can be moved because of the output dependency. The operation was 2256 side can be moved because of the output dependency. The operation was
2199 cropped to its rhs above. */ 2257 cropped to its rhs above. */
2200 if (has_dep_p[DEPS_IN_RHS]) 2258 if (has_dep_p[DEPS_IN_RHS])
2201 { 2259 {
2202 ds_t *rhs_dsp = &has_dep_p[DEPS_IN_RHS]; 2260 ds_t *rhs_dsp = &has_dep_p[DEPS_IN_RHS];
2205 gcc_assert (!VINSN_UNIQUE_P (vi)); 2263 gcc_assert (!VINSN_UNIQUE_P (vi));
2206 2264
2207 if (can_speculate_dep_p (*rhs_dsp)) 2265 if (can_speculate_dep_p (*rhs_dsp))
2208 { 2266 {
2209 int res; 2267 int res;
2210 2268
2211 res = speculate_expr (expr, *rhs_dsp); 2269 res = speculate_expr (expr, *rhs_dsp);
2212 if (res >= 0) 2270 if (res >= 0)
2213 { 2271 {
2214 /* Speculation was successful. */ 2272 /* Speculation was successful. */
2215 *rhs_dsp = 0; 2273 *rhs_dsp = 0;
2242 This check should be at the end to give a chance to control speculation 2300 This check should be at the end to give a chance to control speculation
2243 to perform its duties. */ 2301 to perform its duties. */
2244 if (CANT_MOVE_TRAPPING (expr, through_insn)) 2302 if (CANT_MOVE_TRAPPING (expr, through_insn))
2245 return MOVEUP_EXPR_NULL; 2303 return MOVEUP_EXPR_NULL;
2246 2304
2247 return (was_changed 2305 return (was_changed
2248 ? MOVEUP_EXPR_CHANGED 2306 ? MOVEUP_EXPR_CHANGED
2249 : (as_rhs 2307 : (as_rhs
2250 ? MOVEUP_EXPR_AS_RHS 2308 ? MOVEUP_EXPR_AS_RHS
2251 : MOVEUP_EXPR_SAME)); 2309 : MOVEUP_EXPR_SAME));
2252 } 2310 }
2253 2311
2254 /* Try to look at bitmap caches for EXPR and INSN pair, return true 2312 /* Try to look at bitmap caches for EXPR and INSN pair, return true
2255 if successful. When INSIDE_INSN_GROUP, also try ignore dependencies 2313 if successful. When INSIDE_INSN_GROUP, also try ignore dependencies
2256 that can exist within a parallel group. Write to RES the resulting 2314 that can exist within a parallel group. Write to RES the resulting
2257 code for moveup_expr. */ 2315 code for moveup_expr. */
2258 static bool 2316 static bool
2259 try_bitmap_cache (expr_t expr, insn_t insn, 2317 try_bitmap_cache (expr_t expr, insn_t insn,
2260 bool inside_insn_group, 2318 bool inside_insn_group,
2261 enum MOVEUP_EXPR_CODE *res) 2319 enum MOVEUP_EXPR_CODE *res)
2262 { 2320 {
2263 int expr_uid = INSN_UID (EXPR_INSN_RTX (expr)); 2321 int expr_uid = INSN_UID (EXPR_INSN_RTX (expr));
2264 2322
2265 /* First check whether we've analyzed this situation already. */ 2323 /* First check whether we've analyzed this situation already. */
2266 if (bitmap_bit_p (INSN_ANALYZED_DEPS (insn), expr_uid)) 2324 if (bitmap_bit_p (INSN_ANALYZED_DEPS (insn), expr_uid))
2267 { 2325 {
2268 if (bitmap_bit_p (INSN_FOUND_DEPS (insn), expr_uid)) 2326 if (bitmap_bit_p (INSN_FOUND_DEPS (insn), expr_uid))
2269 { 2327 {
2286 { 2344 {
2287 if (sched_verbose >= 6) 2345 if (sched_verbose >= 6)
2288 sel_print ("unchanged (as RHS, cached, inside insn group)\n"); 2346 sel_print ("unchanged (as RHS, cached, inside insn group)\n");
2289 *res = MOVEUP_EXPR_SAME; 2347 *res = MOVEUP_EXPR_SAME;
2290 return true; 2348 return true;
2291 2349
2292 } 2350 }
2293 else 2351 else
2294 EXPR_TARGET_AVAILABLE (expr) = false; 2352 EXPR_TARGET_AVAILABLE (expr) = false;
2295 2353
2296 /* This is the only case when propagation result can change over time, 2354 /* This is the only case when propagation result can change over time,
2297 as we can dynamically switch off scheduling as RHS. In this case, 2355 as we can dynamically switch off scheduling as RHS. In this case,
2298 just check the flag to reach the correct decision. */ 2356 just check the flag to reach the correct decision. */
2299 if (enable_schedule_as_rhs_p) 2357 if (enable_schedule_as_rhs_p)
2300 { 2358 {
2301 if (sched_verbose >= 6) 2359 if (sched_verbose >= 6)
2302 sel_print ("unchanged (as RHS, cached)\n"); 2360 sel_print ("unchanged (as RHS, cached)\n");
2314 } 2372 }
2315 2373
2316 return false; 2374 return false;
2317 } 2375 }
2318 2376
2319 /* Try to look at bitmap caches for EXPR and INSN pair, return true 2377 /* Try to look at bitmap caches for EXPR and INSN pair, return true
2320 if successful. Write to RES the resulting code for moveup_expr. */ 2378 if successful. Write to RES the resulting code for moveup_expr. */
2321 static bool 2379 static bool
2322 try_transformation_cache (expr_t expr, insn_t insn, 2380 try_transformation_cache (expr_t expr, insn_t insn,
2323 enum MOVEUP_EXPR_CODE *res) 2381 enum MOVEUP_EXPR_CODE *res)
2324 { 2382 {
2325 struct transformed_insns *pti 2383 struct transformed_insns *pti
2326 = (struct transformed_insns *) 2384 = (struct transformed_insns *)
2327 htab_find_with_hash (INSN_TRANSFORMED_INSNS (insn), 2385 htab_find_with_hash (INSN_TRANSFORMED_INSNS (insn),
2328 &EXPR_VINSN (expr), 2386 &EXPR_VINSN (expr),
2329 VINSN_HASH_RTX (EXPR_VINSN (expr))); 2387 VINSN_HASH_RTX (EXPR_VINSN (expr)));
2330 if (pti) 2388 if (pti)
2331 { 2389 {
2332 /* This EXPR was already moved through this insn and was 2390 /* This EXPR was already moved through this insn and was
2333 changed as a result. Fetch the proper data from 2391 changed as a result. Fetch the proper data from
2334 the hashtable. */ 2392 the hashtable. */
2335 insert_in_history_vect (&EXPR_HISTORY_OF_CHANGES (expr), 2393 insert_in_history_vect (&EXPR_HISTORY_OF_CHANGES (expr),
2336 INSN_UID (insn), pti->type, 2394 INSN_UID (insn), pti->type,
2337 pti->vinsn_old, pti->vinsn_new, 2395 pti->vinsn_old, pti->vinsn_new,
2338 EXPR_SPEC_DONE_DS (expr)); 2396 EXPR_SPEC_DONE_DS (expr));
2339 2397
2340 if (INSN_IN_STREAM_P (VINSN_INSN_RTX (pti->vinsn_new))) 2398 if (INSN_IN_STREAM_P (VINSN_INSN_RTX (pti->vinsn_new)))
2341 pti->vinsn_new = vinsn_copy (pti->vinsn_new, true); 2399 pti->vinsn_new = vinsn_copy (pti->vinsn_new, true);
2342 change_vinsn_in_expr (expr, pti->vinsn_new); 2400 change_vinsn_in_expr (expr, pti->vinsn_new);
2343 if (pti->was_target_conflict) 2401 if (pti->was_target_conflict)
2344 EXPR_TARGET_AVAILABLE (expr) = false; 2402 EXPR_TARGET_AVAILABLE (expr) = false;
2345 if (pti->type == TRANS_SPECULATION) 2403 if (pti->type == TRANS_SPECULATION)
2346 { 2404 {
2347 ds_t ds; 2405 ds_t ds;
2348 2406
2349 ds = EXPR_SPEC_DONE_DS (expr); 2407 ds = EXPR_SPEC_DONE_DS (expr);
2350 2408
2351 EXPR_SPEC_DONE_DS (expr) = pti->ds; 2409 EXPR_SPEC_DONE_DS (expr) = pti->ds;
2352 EXPR_NEEDS_SPEC_CHECK_P (expr) |= pti->needs_check; 2410 EXPR_NEEDS_SPEC_CHECK_P (expr) |= pti->needs_check;
2353 } 2411 }
2354 2412
2355 if (sched_verbose >= 6) 2413 if (sched_verbose >= 6)
2366 return false; 2424 return false;
2367 } 2425 }
2368 2426
2369 /* Update bitmap caches on INSN with result RES of propagating EXPR. */ 2427 /* Update bitmap caches on INSN with result RES of propagating EXPR. */
2370 static void 2428 static void
2371 update_bitmap_cache (expr_t expr, insn_t insn, bool inside_insn_group, 2429 update_bitmap_cache (expr_t expr, insn_t insn, bool inside_insn_group,
2372 enum MOVEUP_EXPR_CODE res) 2430 enum MOVEUP_EXPR_CODE res)
2373 { 2431 {
2374 int expr_uid = INSN_UID (EXPR_INSN_RTX (expr)); 2432 int expr_uid = INSN_UID (EXPR_INSN_RTX (expr));
2375 2433
2376 /* Do not cache result of propagating jumps through an insn group, 2434 /* Do not cache result of propagating jumps through an insn group,
2377 as it is always true, which is not useful outside the group. */ 2435 as it is always true, which is not useful outside the group. */
2378 if (inside_insn_group) 2436 if (inside_insn_group)
2379 return; 2437 return;
2380 2438
2381 if (res == MOVEUP_EXPR_NULL) 2439 if (res == MOVEUP_EXPR_NULL)
2382 { 2440 {
2383 bitmap_set_bit (INSN_ANALYZED_DEPS (insn), expr_uid); 2441 bitmap_set_bit (INSN_ANALYZED_DEPS (insn), expr_uid);
2384 bitmap_set_bit (INSN_FOUND_DEPS (insn), expr_uid); 2442 bitmap_set_bit (INSN_FOUND_DEPS (insn), expr_uid);
2385 } 2443 }
2398 } 2456 }
2399 2457
2400 /* Update hashtable on INSN with changed EXPR, old EXPR_OLD_VINSN 2458 /* Update hashtable on INSN with changed EXPR, old EXPR_OLD_VINSN
2401 and transformation type TRANS_TYPE. */ 2459 and transformation type TRANS_TYPE. */
2402 static void 2460 static void
2403 update_transformation_cache (expr_t expr, insn_t insn, 2461 update_transformation_cache (expr_t expr, insn_t insn,
2404 bool inside_insn_group, 2462 bool inside_insn_group,
2405 enum local_trans_type trans_type, 2463 enum local_trans_type trans_type,
2406 vinsn_t expr_old_vinsn) 2464 vinsn_t expr_old_vinsn)
2407 { 2465 {
2408 struct transformed_insns *pti; 2466 struct transformed_insns *pti;
2409 2467
2410 if (inside_insn_group) 2468 if (inside_insn_group)
2411 return; 2469 return;
2412 2470
2413 pti = XNEW (struct transformed_insns); 2471 pti = XNEW (struct transformed_insns);
2414 pti->vinsn_old = expr_old_vinsn; 2472 pti->vinsn_old = expr_old_vinsn;
2415 pti->vinsn_new = EXPR_VINSN (expr); 2473 pti->vinsn_new = EXPR_VINSN (expr);
2416 pti->type = trans_type; 2474 pti->type = trans_type;
2417 pti->was_target_conflict = was_target_conflict; 2475 pti->was_target_conflict = was_target_conflict;
2418 pti->ds = EXPR_SPEC_DONE_DS (expr); 2476 pti->ds = EXPR_SPEC_DONE_DS (expr);
2419 pti->needs_check = EXPR_NEEDS_SPEC_CHECK_P (expr); 2477 pti->needs_check = EXPR_NEEDS_SPEC_CHECK_P (expr);
2420 vinsn_attach (pti->vinsn_old); 2478 vinsn_attach (pti->vinsn_old);
2421 vinsn_attach (pti->vinsn_new); 2479 vinsn_attach (pti->vinsn_new);
2422 *((struct transformed_insns **) 2480 *((struct transformed_insns **)
2423 htab_find_slot_with_hash (INSN_TRANSFORMED_INSNS (insn), 2481 htab_find_slot_with_hash (INSN_TRANSFORMED_INSNS (insn),
2424 pti, VINSN_HASH_RTX (expr_old_vinsn), 2482 pti, VINSN_HASH_RTX (expr_old_vinsn),
2425 INSERT)) = pti; 2483 INSERT)) = pti;
2426 } 2484 }
2427 2485
2428 /* Same as moveup_expr, but first looks up the result of 2486 /* Same as moveup_expr, but first looks up the result of
2429 transformation in caches. */ 2487 transformation in caches. */
2430 static enum MOVEUP_EXPR_CODE 2488 static enum MOVEUP_EXPR_CODE
2431 moveup_expr_cached (expr_t expr, insn_t insn, bool inside_insn_group) 2489 moveup_expr_cached (expr_t expr, insn_t insn, bool inside_insn_group)
2432 { 2490 {
2433 enum MOVEUP_EXPR_CODE res; 2491 enum MOVEUP_EXPR_CODE res;
2434 bool got_answer = false; 2492 bool got_answer = false;
2435 2493
2436 if (sched_verbose >= 6) 2494 if (sched_verbose >= 6)
2437 { 2495 {
2438 sel_print ("Moving "); 2496 sel_print ("Moving ");
2439 dump_expr (expr); 2497 dump_expr (expr);
2440 sel_print (" through %d: ", INSN_UID (insn)); 2498 sel_print (" through %d: ", INSN_UID (insn));
2441 } 2499 }
2442 2500
2443 if (try_bitmap_cache (expr, insn, inside_insn_group, &res)) 2501 if (DEBUG_INSN_P (EXPR_INSN_RTX (expr))
2502 && (sel_bb_head (BLOCK_FOR_INSN (EXPR_INSN_RTX (expr)))
2503 == EXPR_INSN_RTX (expr)))
2504 /* Don't use cached information for debug insns that are heads of
2505 basic blocks. */;
2506 else if (try_bitmap_cache (expr, insn, inside_insn_group, &res))
2444 /* When inside insn group, we do not want remove stores conflicting 2507 /* When inside insn group, we do not want remove stores conflicting
2445 with previosly issued loads. */ 2508 with previosly issued loads. */
2446 got_answer = ! inside_insn_group || res != MOVEUP_EXPR_NULL; 2509 got_answer = ! inside_insn_group || res != MOVEUP_EXPR_NULL;
2447 else if (try_transformation_cache (expr, insn, &res)) 2510 else if (try_transformation_cache (expr, insn, &res))
2448 got_answer = true; 2511 got_answer = true;
2454 ds_t expr_old_spec_ds = EXPR_SPEC_DONE_DS (expr); 2517 ds_t expr_old_spec_ds = EXPR_SPEC_DONE_DS (expr);
2455 int expr_uid = INSN_UID (VINSN_INSN_RTX (expr_old_vinsn)); 2518 int expr_uid = INSN_UID (VINSN_INSN_RTX (expr_old_vinsn));
2456 bool unique_p = VINSN_UNIQUE_P (expr_old_vinsn); 2519 bool unique_p = VINSN_UNIQUE_P (expr_old_vinsn);
2457 enum local_trans_type trans_type = TRANS_SUBSTITUTION; 2520 enum local_trans_type trans_type = TRANS_SUBSTITUTION;
2458 2521
2459 /* ??? Invent something better than this. We can't allow old_vinsn 2522 /* ??? Invent something better than this. We can't allow old_vinsn
2460 to go, we need it for the history vector. */ 2523 to go, we need it for the history vector. */
2461 vinsn_attach (expr_old_vinsn); 2524 vinsn_attach (expr_old_vinsn);
2462 2525
2463 res = moveup_expr (expr, insn, inside_insn_group, 2526 res = moveup_expr (expr, insn, inside_insn_group,
2464 &trans_type); 2527 &trans_type);
2484 break; 2547 break;
2485 2548
2486 case MOVEUP_EXPR_CHANGED: 2549 case MOVEUP_EXPR_CHANGED:
2487 gcc_assert (INSN_UID (EXPR_INSN_RTX (expr)) != expr_uid 2550 gcc_assert (INSN_UID (EXPR_INSN_RTX (expr)) != expr_uid
2488 || EXPR_SPEC_DONE_DS (expr) != expr_old_spec_ds); 2551 || EXPR_SPEC_DONE_DS (expr) != expr_old_spec_ds);
2489 insert_in_history_vect (&EXPR_HISTORY_OF_CHANGES (expr), 2552 insert_in_history_vect (&EXPR_HISTORY_OF_CHANGES (expr),
2490 INSN_UID (insn), trans_type, 2553 INSN_UID (insn), trans_type,
2491 expr_old_vinsn, EXPR_VINSN (expr), 2554 expr_old_vinsn, EXPR_VINSN (expr),
2492 expr_old_spec_ds); 2555 expr_old_spec_ds);
2493 update_transformation_cache (expr, insn, inside_insn_group, 2556 update_transformation_cache (expr, insn, inside_insn_group,
2494 trans_type, expr_old_vinsn); 2557 trans_type, expr_old_vinsn);
2495 if (sched_verbose >= 6) 2558 if (sched_verbose >= 6)
2496 { 2559 {
2507 } 2570 }
2508 2571
2509 return res; 2572 return res;
2510 } 2573 }
2511 2574
2512 /* Moves an av set AVP up through INSN, performing necessary 2575 /* Moves an av set AVP up through INSN, performing necessary
2513 transformations. */ 2576 transformations. */
2514 static void 2577 static void
2515 moveup_set_expr (av_set_t *avp, insn_t insn, bool inside_insn_group) 2578 moveup_set_expr (av_set_t *avp, insn_t insn, bool inside_insn_group)
2516 { 2579 {
2517 av_set_iterator i; 2580 av_set_iterator i;
2518 expr_t expr; 2581 expr_t expr;
2519 2582
2520 FOR_EACH_EXPR_1 (expr, i, avp) 2583 FOR_EACH_EXPR_1 (expr, i, avp)
2521 { 2584 {
2522 2585
2523 switch (moveup_expr_cached (expr, insn, inside_insn_group)) 2586 switch (moveup_expr_cached (expr, insn, inside_insn_group))
2524 { 2587 {
2525 case MOVEUP_EXPR_SAME: 2588 case MOVEUP_EXPR_SAME:
2526 case MOVEUP_EXPR_AS_RHS: 2589 case MOVEUP_EXPR_AS_RHS:
2527 break; 2590 break;
2531 break; 2594 break;
2532 2595
2533 case MOVEUP_EXPR_CHANGED: 2596 case MOVEUP_EXPR_CHANGED:
2534 expr = merge_with_other_exprs (avp, &i, expr); 2597 expr = merge_with_other_exprs (avp, &i, expr);
2535 break; 2598 break;
2536 2599
2537 default: 2600 default:
2538 gcc_unreachable (); 2601 gcc_unreachable ();
2539 } 2602 }
2540 } 2603 }
2541 } 2604 }
2543 /* Moves AVP set along PATH. */ 2606 /* Moves AVP set along PATH. */
2544 static void 2607 static void
2545 moveup_set_inside_insn_group (av_set_t *avp, ilist_t path) 2608 moveup_set_inside_insn_group (av_set_t *avp, ilist_t path)
2546 { 2609 {
2547 int last_cycle; 2610 int last_cycle;
2548 2611
2549 if (sched_verbose >= 6) 2612 if (sched_verbose >= 6)
2550 sel_print ("Moving expressions up in the insn group...\n"); 2613 sel_print ("Moving expressions up in the insn group...\n");
2551 if (! path) 2614 if (! path)
2552 return; 2615 return;
2553 last_cycle = INSN_SCHED_CYCLE (ILIST_INSN (path)); 2616 last_cycle = INSN_SCHED_CYCLE (ILIST_INSN (path));
2554 while (path 2617 while (path
2555 && INSN_SCHED_CYCLE (ILIST_INSN (path)) == last_cycle) 2618 && INSN_SCHED_CYCLE (ILIST_INSN (path)) == last_cycle)
2556 { 2619 {
2557 moveup_set_expr (avp, ILIST_INSN (path), true); 2620 moveup_set_expr (avp, ILIST_INSN (path), true);
2558 path = ILIST_NEXT (path); 2621 path = ILIST_NEXT (path);
2559 } 2622 }
2567 int last_cycle; 2630 int last_cycle;
2568 bool res = true; 2631 bool res = true;
2569 2632
2570 copy_expr_onside (tmp, expr); 2633 copy_expr_onside (tmp, expr);
2571 last_cycle = path ? INSN_SCHED_CYCLE (ILIST_INSN (path)) : 0; 2634 last_cycle = path ? INSN_SCHED_CYCLE (ILIST_INSN (path)) : 0;
2572 while (path 2635 while (path
2573 && res 2636 && res
2574 && INSN_SCHED_CYCLE (ILIST_INSN (path)) == last_cycle) 2637 && INSN_SCHED_CYCLE (ILIST_INSN (path)) == last_cycle)
2575 { 2638 {
2576 res = (moveup_expr_cached (tmp, ILIST_INSN (path), true) 2639 res = (moveup_expr_cached (tmp, ILIST_INSN (path), true)
2577 != MOVEUP_EXPR_NULL); 2640 != MOVEUP_EXPR_NULL);
2578 path = ILIST_NEXT (path); 2641 path = ILIST_NEXT (path);
2579 } 2642 }
2580 2643
2581 if (res) 2644 if (res)
2592 } 2655 }
2593 2656
2594 2657
2595 /* Functions that compute av and lv sets. */ 2658 /* Functions that compute av and lv sets. */
2596 2659
2597 /* Returns true if INSN is not a downward continuation of the given path P in 2660 /* Returns true if INSN is not a downward continuation of the given path P in
2598 the current stage. */ 2661 the current stage. */
2599 static bool 2662 static bool
2600 is_ineligible_successor (insn_t insn, ilist_t p) 2663 is_ineligible_successor (insn_t insn, ilist_t p)
2601 { 2664 {
2602 insn_t prev_insn; 2665 insn_t prev_insn;
2616 if (/* a backward edge. */ 2679 if (/* a backward edge. */
2617 INSN_SEQNO (insn) < INSN_SEQNO (prev_insn) 2680 INSN_SEQNO (insn) < INSN_SEQNO (prev_insn)
2618 /* is already visited. */ 2681 /* is already visited. */
2619 || (INSN_SEQNO (insn) == INSN_SEQNO (prev_insn) 2682 || (INSN_SEQNO (insn) == INSN_SEQNO (prev_insn)
2620 && (ilist_is_in_p (p, insn) 2683 && (ilist_is_in_p (p, insn)
2621 /* We can reach another fence here and still seqno of insn 2684 /* We can reach another fence here and still seqno of insn
2622 would be equal to seqno of prev_insn. This is possible 2685 would be equal to seqno of prev_insn. This is possible
2623 when prev_insn is a previously created bookkeeping copy. 2686 when prev_insn is a previously created bookkeeping copy.
2624 In that case it'd get a seqno of insn. Thus, check here 2687 In that case it'd get a seqno of insn. Thus, check here
2625 whether insn is in current fence too. */ 2688 whether insn is in current fence too. */
2626 || IN_CURRENT_FENCE_P (insn))) 2689 || IN_CURRENT_FENCE_P (insn)))
2627 /* Was already scheduled on this round. */ 2690 /* Was already scheduled on this round. */
2628 || (INSN_SEQNO (insn) > INSN_SEQNO (prev_insn) 2691 || (INSN_SEQNO (insn) > INSN_SEQNO (prev_insn)
2629 && IN_CURRENT_FENCE_P (insn)) 2692 && IN_CURRENT_FENCE_P (insn))
2630 /* An insn from another fence could also be 2693 /* An insn from another fence could also be
2631 scheduled earlier even if this insn is not in 2694 scheduled earlier even if this insn is not in
2632 a fence list right now. Check INSN_SCHED_CYCLE instead. */ 2695 a fence list right now. Check INSN_SCHED_CYCLE instead. */
2633 || (!pipelining_p 2696 || (!pipelining_p
2634 && INSN_SCHED_TIMES (insn) > 0)) 2697 && INSN_SCHED_TIMES (insn) > 0))
2635 return true; 2698 return true;
2636 else 2699 else
2637 return false; 2700 return false;
2638 } 2701 }
2639 2702
2640 /* Computes the av_set below the last bb insn INSN, doing all the 'dirty work' 2703 /* Computes the av_set below the last bb insn INSN, doing all the 'dirty work'
2641 of handling multiple successors and properly merging its av_sets. P is 2704 of handling multiple successors and properly merging its av_sets. P is
2642 the current path traversed. WS is the size of lookahead window. 2705 the current path traversed. WS is the size of lookahead window.
2643 Return the av set computed. */ 2706 Return the av set computed. */
2644 static av_set_t 2707 static av_set_t
2645 compute_av_set_at_bb_end (insn_t insn, ilist_t p, int ws) 2708 compute_av_set_at_bb_end (insn_t insn, ilist_t p, int ws)
2646 { 2709 {
2647 struct succs_info *sinfo; 2710 struct succs_info *sinfo;
2650 insn_t succ, zero_succ = NULL; 2713 insn_t succ, zero_succ = NULL;
2651 av_set_t av1 = NULL; 2714 av_set_t av1 = NULL;
2652 2715
2653 gcc_assert (sel_bb_end_p (insn)); 2716 gcc_assert (sel_bb_end_p (insn));
2654 2717
2655 /* Find different kind of successors needed for correct computing of 2718 /* Find different kind of successors needed for correct computing of
2656 SPEC and TARGET_AVAILABLE attributes. */ 2719 SPEC and TARGET_AVAILABLE attributes. */
2657 sinfo = compute_succs_info (insn, SUCCS_NORMAL); 2720 sinfo = compute_succs_info (insn, SUCCS_NORMAL);
2658 2721
2659 /* Debug output. */ 2722 /* Debug output. */
2660 if (sched_verbose >= 6) 2723 if (sched_verbose >= 6)
2674 av_set_t succ_set; 2737 av_set_t succ_set;
2675 2738
2676 /* We will edit SUCC_SET and EXPR_SPEC field of its elements. */ 2739 /* We will edit SUCC_SET and EXPR_SPEC field of its elements. */
2677 succ_set = compute_av_set_inside_bb (succ, p, ws, true); 2740 succ_set = compute_av_set_inside_bb (succ, p, ws, true);
2678 2741
2679 av_set_split_usefulness (succ_set, 2742 av_set_split_usefulness (succ_set,
2680 VEC_index (int, sinfo->probs_ok, is), 2743 VEC_index (int, sinfo->probs_ok, is),
2681 sinfo->all_prob); 2744 sinfo->all_prob);
2682 2745
2683 if (sinfo->all_succs_n > 1 2746 if (sinfo->all_succs_n > 1
2684 && sinfo->all_succs_n == sinfo->succs_ok_n) 2747 && sinfo->all_succs_n == sinfo->succs_ok_n)
2685 { 2748 {
2686 /* Find EXPR'es that came from *all* successors and save them 2749 /* Find EXPR'es that came from *all* successors and save them
2687 into expr_in_all_succ_branches. This set will be used later 2750 into expr_in_all_succ_branches. This set will be used later
2688 for calculating speculation attributes of EXPR'es. */ 2751 for calculating speculation attributes of EXPR'es. */
2689 if (is == 0) 2752 if (is == 0)
2690 { 2753 {
2691 expr_in_all_succ_branches = av_set_copy (succ_set); 2754 expr_in_all_succ_branches = av_set_copy (succ_set);
2695 } 2758 }
2696 else 2759 else
2697 { 2760 {
2698 av_set_iterator i; 2761 av_set_iterator i;
2699 expr_t expr; 2762 expr_t expr;
2700 2763
2701 FOR_EACH_EXPR_1 (expr, i, &expr_in_all_succ_branches) 2764 FOR_EACH_EXPR_1 (expr, i, &expr_in_all_succ_branches)
2702 if (!av_set_is_in_p (succ_set, EXPR_VINSN (expr))) 2765 if (!av_set_is_in_p (succ_set, EXPR_VINSN (expr)))
2703 av_set_iter_remove (&i); 2766 av_set_iter_remove (&i);
2704 } 2767 }
2705 } 2768 }
2710 { 2773 {
2711 basic_block bb0 = BLOCK_FOR_INSN (zero_succ); 2774 basic_block bb0 = BLOCK_FOR_INSN (zero_succ);
2712 basic_block bb1 = BLOCK_FOR_INSN (succ); 2775 basic_block bb1 = BLOCK_FOR_INSN (succ);
2713 2776
2714 gcc_assert (BB_LV_SET_VALID_P (bb0) && BB_LV_SET_VALID_P (bb1)); 2777 gcc_assert (BB_LV_SET_VALID_P (bb0) && BB_LV_SET_VALID_P (bb1));
2715 av_set_union_and_live (&av1, &succ_set, 2778 av_set_union_and_live (&av1, &succ_set,
2716 BB_LV_SET (bb0), 2779 BB_LV_SET (bb0),
2717 BB_LV_SET (bb1), 2780 BB_LV_SET (bb1),
2718 insn); 2781 insn);
2719 } 2782 }
2720 else 2783 else
2721 av_set_union_and_clear (&av1, &succ_set, insn); 2784 av_set_union_and_clear (&av1, &succ_set, insn);
2722 } 2785 }
2723 2786
2724 /* Check liveness restrictions via hard way when there are more than 2787 /* Check liveness restrictions via hard way when there are more than
2725 two successors. */ 2788 two successors. */
2726 if (sinfo->succs_ok_n > 2) 2789 if (sinfo->succs_ok_n > 2)
2727 for (is = 0; VEC_iterate (rtx, sinfo->succs_ok, is, succ); is++) 2790 for (is = 0; VEC_iterate (rtx, sinfo->succs_ok, is, succ); is++)
2728 { 2791 {
2729 basic_block succ_bb = BLOCK_FOR_INSN (succ); 2792 basic_block succ_bb = BLOCK_FOR_INSN (succ);
2730 2793
2731 gcc_assert (BB_LV_SET_VALID_P (succ_bb)); 2794 gcc_assert (BB_LV_SET_VALID_P (succ_bb));
2732 mark_unavailable_targets (av1, BB_AV_SET (succ_bb), 2795 mark_unavailable_targets (av1, BB_AV_SET (succ_bb),
2733 BB_LV_SET (succ_bb)); 2796 BB_LV_SET (succ_bb));
2734 } 2797 }
2735 2798
2736 /* Finally, check liveness restrictions on paths leaving the region. */ 2799 /* Finally, check liveness restrictions on paths leaving the region. */
2737 if (sinfo->all_succs_n > sinfo->succs_ok_n) 2800 if (sinfo->all_succs_n > sinfo->succs_ok_n)
2738 for (is = 0; VEC_iterate (rtx, sinfo->succs_other, is, succ); is++) 2801 for (is = 0; VEC_iterate (rtx, sinfo->succs_other, is, succ); is++)
2739 mark_unavailable_targets 2802 mark_unavailable_targets
2740 (av1, NULL, BB_LV_SET (BLOCK_FOR_INSN (succ))); 2803 (av1, NULL, BB_LV_SET (BLOCK_FOR_INSN (succ)));
2741 2804
2742 if (sinfo->all_succs_n > 1) 2805 if (sinfo->all_succs_n > 1)
2743 { 2806 {
2744 av_set_iterator i; 2807 av_set_iterator i;
2745 expr_t expr; 2808 expr_t expr;
2746 2809
2747 /* Increase the spec attribute of all EXPR'es that didn't come 2810 /* Increase the spec attribute of all EXPR'es that didn't come
2748 from all successors. */ 2811 from all successors. */
2749 FOR_EACH_EXPR (expr, i, av1) 2812 FOR_EACH_EXPR (expr, i, av1)
2750 if (!av_set_is_in_p (expr_in_all_succ_branches, EXPR_VINSN (expr))) 2813 if (!av_set_is_in_p (expr_in_all_succ_branches, EXPR_VINSN (expr)))
2751 EXPR_SPEC (expr)++; 2814 EXPR_SPEC (expr)++;
2752 2815
2753 av_set_clear (&expr_in_all_succ_branches); 2816 av_set_clear (&expr_in_all_succ_branches);
2754 2817
2755 /* Do not move conditional branches through other 2818 /* Do not move conditional branches through other
2756 conditional branches. So, remove all conditional 2819 conditional branches. So, remove all conditional
2757 branches from av_set if current operator is a conditional 2820 branches from av_set if current operator is a conditional
2758 branch. */ 2821 branch. */
2759 av_set_substract_cond_branches (&av1); 2822 av_set_substract_cond_branches (&av1);
2760 } 2823 }
2761 2824
2762 ilist_remove (&p); 2825 ilist_remove (&p);
2763 free_succs_info (sinfo); 2826 free_succs_info (sinfo);
2764 2827
2765 if (sched_verbose >= 6) 2828 if (sched_verbose >= 6)
2766 { 2829 {
2770 } 2833 }
2771 2834
2772 return av1; 2835 return av1;
2773 } 2836 }
2774 2837
2775 /* This function computes av_set for the FIRST_INSN by dragging valid 2838 /* This function computes av_set for the FIRST_INSN by dragging valid
2776 av_set through all basic block insns either from the end of basic block 2839 av_set through all basic block insns either from the end of basic block
2777 (computed using compute_av_set_at_bb_end) or from the insn on which 2840 (computed using compute_av_set_at_bb_end) or from the insn on which
2778 MAX_WS was exceeded. It uses compute_av_set_at_bb_end to compute av_set 2841 MAX_WS was exceeded. It uses compute_av_set_at_bb_end to compute av_set
2779 below the basic block and handling conditional branches. 2842 below the basic block and handling conditional branches.
2780 FIRST_INSN - the basic block head, P - path consisting of the insns 2843 FIRST_INSN - the basic block head, P - path consisting of the insns
2781 traversed on the way to the FIRST_INSN (the path is sparse, only bb heads 2844 traversed on the way to the FIRST_INSN (the path is sparse, only bb heads
2782 and bb ends are added to the path), WS - current window size, 2845 and bb ends are added to the path), WS - current window size,
2783 NEED_COPY_P - true if we'll make a copy of av_set before returning it. */ 2846 NEED_COPY_P - true if we'll make a copy of av_set before returning it. */
2784 static av_set_t 2847 static av_set_t
2785 compute_av_set_inside_bb (insn_t first_insn, ilist_t p, int ws, 2848 compute_av_set_inside_bb (insn_t first_insn, ilist_t p, int ws,
2786 bool need_copy_p) 2849 bool need_copy_p)
2787 { 2850 {
2788 insn_t cur_insn; 2851 insn_t cur_insn;
2789 int end_ws = ws; 2852 int end_ws = ws;
2790 insn_t bb_end = sel_bb_end (BLOCK_FOR_INSN (first_insn)); 2853 insn_t bb_end = sel_bb_end (BLOCK_FOR_INSN (first_insn));
2800 sel_print ("Insn %d is ineligible_successor\n", INSN_UID (first_insn)); 2863 sel_print ("Insn %d is ineligible_successor\n", INSN_UID (first_insn));
2801 2864
2802 return NULL; 2865 return NULL;
2803 } 2866 }
2804 2867
2805 /* If insn already has valid av(insn) computed, just return it. */ 2868 /* If insn already has valid av(insn) computed, just return it. */
2806 if (AV_SET_VALID_P (first_insn)) 2869 if (AV_SET_VALID_P (first_insn))
2807 { 2870 {
2808 av_set_t av_set; 2871 av_set_t av_set;
2809 2872
2810 if (sel_bb_head_p (first_insn)) 2873 if (sel_bb_head_p (first_insn))
2823 } 2886 }
2824 2887
2825 ilist_add (&p, first_insn); 2888 ilist_add (&p, first_insn);
2826 2889
2827 /* As the result after this loop have completed, in LAST_INSN we'll 2890 /* As the result after this loop have completed, in LAST_INSN we'll
2828 have the insn which has valid av_set to start backward computation 2891 have the insn which has valid av_set to start backward computation
2829 from: it either will be NULL because on it the window size was exceeded 2892 from: it either will be NULL because on it the window size was exceeded
2830 or other valid av_set as returned by compute_av_set for the last insn 2893 or other valid av_set as returned by compute_av_set for the last insn
2831 of the basic block. */ 2894 of the basic block. */
2832 for (last_insn = first_insn; last_insn != after_bb_end; 2895 for (last_insn = first_insn; last_insn != after_bb_end;
2833 last_insn = NEXT_INSN (last_insn)) 2896 last_insn = NEXT_INSN (last_insn))
2834 { 2897 {
2835 /* We may encounter valid av_set not only on bb_head, but also on 2898 /* We may encounter valid av_set not only on bb_head, but also on
2842 } 2905 }
2843 2906
2844 /* The special case: the last insn of the BB may be an 2907 /* The special case: the last insn of the BB may be an
2845 ineligible_successor due to its SEQ_NO that was set on 2908 ineligible_successor due to its SEQ_NO that was set on
2846 it as a bookkeeping. */ 2909 it as a bookkeeping. */
2847 if (last_insn != first_insn 2910 if (last_insn != first_insn
2848 && is_ineligible_successor (last_insn, p)) 2911 && is_ineligible_successor (last_insn, p))
2849 { 2912 {
2850 if (sched_verbose >= 6) 2913 if (sched_verbose >= 6)
2851 sel_print ("Insn %d is ineligible_successor\n", INSN_UID (last_insn)); 2914 sel_print ("Insn %d is ineligible_successor\n", INSN_UID (last_insn));
2852 break; 2915 break;
2853 } 2916 }
2917
2918 if (DEBUG_INSN_P (last_insn))
2919 continue;
2854 2920
2855 if (end_ws > max_ws) 2921 if (end_ws > max_ws)
2856 { 2922 {
2857 /* We can reach max lookahead size at bb_header, so clean av_set 2923 /* We can reach max lookahead size at bb_header, so clean av_set
2858 first. */ 2924 first. */
2859 INSN_WS_LEVEL (last_insn) = global_level; 2925 INSN_WS_LEVEL (last_insn) = global_level;
2860 2926
2861 if (sched_verbose >= 6) 2927 if (sched_verbose >= 6)
2862 sel_print ("Insn %d is beyond the software lookahead window size\n", 2928 sel_print ("Insn %d is beyond the software lookahead window size\n",
2872 the successors on the last insn of the current bb. */ 2938 the successors on the last insn of the current bb. */
2873 if (last_insn != after_bb_end) 2939 if (last_insn != after_bb_end)
2874 { 2940 {
2875 av = NULL; 2941 av = NULL;
2876 2942
2877 /* This is needed only to obtain av_sets that are identical to 2943 /* This is needed only to obtain av_sets that are identical to
2878 those computed by the old compute_av_set version. */ 2944 those computed by the old compute_av_set version. */
2879 if (last_insn == first_insn && !INSN_NOP_P (last_insn)) 2945 if (last_insn == first_insn && !INSN_NOP_P (last_insn))
2880 av_set_add (&av, INSN_EXPR (last_insn)); 2946 av_set_add (&av, INSN_EXPR (last_insn));
2881 } 2947 }
2882 else 2948 else
2884 av = compute_av_set_at_bb_end (bb_end, p, end_ws); 2950 av = compute_av_set_at_bb_end (bb_end, p, end_ws);
2885 2951
2886 /* Compute av_set in AV starting from below the LAST_INSN up to 2952 /* Compute av_set in AV starting from below the LAST_INSN up to
2887 location above the FIRST_INSN. */ 2953 location above the FIRST_INSN. */
2888 for (cur_insn = PREV_INSN (last_insn); cur_insn != PREV_INSN (first_insn); 2954 for (cur_insn = PREV_INSN (last_insn); cur_insn != PREV_INSN (first_insn);
2889 cur_insn = PREV_INSN (cur_insn)) 2955 cur_insn = PREV_INSN (cur_insn))
2890 if (!INSN_NOP_P (cur_insn)) 2956 if (!INSN_NOP_P (cur_insn))
2891 { 2957 {
2892 expr_t expr; 2958 expr_t expr;
2893 2959
2894 moveup_set_expr (&av, cur_insn, false); 2960 moveup_set_expr (&av, cur_insn, false);
2895 2961
2896 /* If the expression for CUR_INSN is already in the set, 2962 /* If the expression for CUR_INSN is already in the set,
2897 replace it by the new one. */ 2963 replace it by the new one. */
2898 expr = av_set_lookup (av, INSN_VINSN (cur_insn)); 2964 expr = av_set_lookup (av, INSN_VINSN (cur_insn));
2899 if (expr != NULL) 2965 if (expr != NULL)
2900 { 2966 {
2901 clear_expr (expr); 2967 clear_expr (expr);
2902 copy_expr (expr, INSN_EXPR (cur_insn)); 2968 copy_expr (expr, INSN_EXPR (cur_insn));
2903 } 2969 }
2990 3056
2991 /* Return the valid set if we're already on it. */ 3057 /* Return the valid set if we're already on it. */
2992 if (!ignore_first) 3058 if (!ignore_first)
2993 { 3059 {
2994 regset src = NULL; 3060 regset src = NULL;
2995 3061
2996 if (sel_bb_head_p (insn) && BB_LV_SET_VALID_P (bb)) 3062 if (sel_bb_head_p (insn) && BB_LV_SET_VALID_P (bb))
2997 src = BB_LV_SET (bb); 3063 src = BB_LV_SET (bb);
2998 else 3064 else
2999 { 3065 {
3000 gcc_assert (in_current_region_p (bb)); 3066 gcc_assert (in_current_region_p (bb));
3001 if (INSN_LIVE_VALID_P (insn)) 3067 if (INSN_LIVE_VALID_P (insn))
3002 src = INSN_LIVE (insn); 3068 src = INSN_LIVE (insn);
3003 } 3069 }
3004 3070
3005 if (src) 3071 if (src)
3006 { 3072 {
3007 lv = get_regset_from_pool (); 3073 lv = get_regset_from_pool ();
3008 COPY_REG_SET (lv, src); 3074 COPY_REG_SET (lv, src);
3009 3075
3010 if (sel_bb_head_p (insn) && ! BB_LV_SET_VALID_P (bb)) 3076 if (sel_bb_head_p (insn) && ! BB_LV_SET_VALID_P (bb))
3011 { 3077 {
3012 COPY_REG_SET (BB_LV_SET (bb), lv); 3078 COPY_REG_SET (BB_LV_SET (bb), lv);
3013 BB_LV_SET_VALID_P (bb) = true; 3079 BB_LV_SET_VALID_P (bb) = true;
3014 } 3080 }
3015 3081
3016 return_regset_to_pool (lv); 3082 return_regset_to_pool (lv);
3017 return lv; 3083 return lv;
3018 } 3084 }
3019 } 3085 }
3020 3086
3021 /* We've skipped the wrong lv_set. Don't skip the right one. */ 3087 /* We've skipped the wrong lv_set. Don't skip the right one. */
3022 ignore_first = false; 3088 ignore_first = false;
3023 gcc_assert (in_current_region_p (bb)); 3089 gcc_assert (in_current_region_p (bb));
3024 3090
3025 /* Find a valid LV set in this block or below, if needed. 3091 /* Find a valid LV set in this block or below, if needed.
3026 Start searching from the next insn: either ignore_first is true, or 3092 Start searching from the next insn: either ignore_first is true, or
3027 INSN doesn't have a correct live set. */ 3093 INSN doesn't have a correct live set. */
3028 temp = NEXT_INSN (insn); 3094 temp = NEXT_INSN (insn);
3029 final = NEXT_INSN (BB_END (bb)); 3095 final = NEXT_INSN (BB_END (bb));
3030 while (temp != final && ! INSN_LIVE_VALID_P (temp)) 3096 while (temp != final && ! INSN_LIVE_VALID_P (temp))
3031 temp = NEXT_INSN (temp); 3097 temp = NEXT_INSN (temp);
3052 3118
3053 /* Also put it in a BB. */ 3119 /* Also put it in a BB. */
3054 if (sel_bb_head_p (insn)) 3120 if (sel_bb_head_p (insn))
3055 { 3121 {
3056 basic_block bb = BLOCK_FOR_INSN (insn); 3122 basic_block bb = BLOCK_FOR_INSN (insn);
3057 3123
3058 COPY_REG_SET (BB_LV_SET (bb), lv); 3124 COPY_REG_SET (BB_LV_SET (bb), lv);
3059 BB_LV_SET_VALID_P (bb) = true; 3125 BB_LV_SET_VALID_P (bb) = true;
3060 } 3126 }
3061 3127
3062 /* We return LV to the pool, but will not clear it there. Thus we can 3128 /* We return LV to the pool, but will not clear it there. Thus we can
3063 legimatelly use LV till the next use of regset_pool_get (). */ 3129 legimatelly use LV till the next use of regset_pool_get (). */
3064 return_regset_to_pool (lv); 3130 return_regset_to_pool (lv);
3065 return lv; 3131 return lv;
3066 } 3132 }
3077 static inline void 3143 static inline void
3078 compute_live_below_insn (rtx insn, regset regs) 3144 compute_live_below_insn (rtx insn, regset regs)
3079 { 3145 {
3080 rtx succ; 3146 rtx succ;
3081 succ_iterator si; 3147 succ_iterator si;
3082 3148
3083 FOR_EACH_SUCC_1 (succ, si, insn, SUCCS_ALL) 3149 FOR_EACH_SUCC_1 (succ, si, insn, SUCCS_ALL)
3084 IOR_REG_SET (regs, compute_live (succ)); 3150 IOR_REG_SET (regs, compute_live (succ));
3085 } 3151 }
3086 3152
3087 /* Update the data gathered in av and lv sets starting from INSN. */ 3153 /* Update the data gathered in av and lv sets starting from INSN. */
3088 static void 3154 static void
3121 to_check_ds &= ~already_checked_ds; 3187 to_check_ds &= ~already_checked_ds;
3122 3188
3123 return to_check_ds; 3189 return to_check_ds;
3124 } 3190 }
3125 3191
3126 /* Find the set of registers that are unavailable for storing expres 3192 /* Find the set of registers that are unavailable for storing expres
3127 while moving ORIG_OPS up on the path starting from INSN due to 3193 while moving ORIG_OPS up on the path starting from INSN due to
3128 liveness (USED_REGS) or hardware restrictions (REG_RENAME_P). 3194 liveness (USED_REGS) or hardware restrictions (REG_RENAME_P).
3129 3195
3130 All the original operations found during the traversal are saved in the 3196 All the original operations found during the traversal are saved in the
3131 ORIGINAL_INSNS list. 3197 ORIGINAL_INSNS list.
3132 3198
3133 REG_RENAME_P denotes the set of hardware registers that 3199 REG_RENAME_P denotes the set of hardware registers that
3134 can not be used with renaming due to the register class restrictions, 3200 can not be used with renaming due to the register class restrictions,
3135 mode restrictions and other (the register we'll choose should be 3201 mode restrictions and other (the register we'll choose should be
3136 compatible class with the original uses, shouldn't be in call_used_regs, 3202 compatible class with the original uses, shouldn't be in call_used_regs,
3137 should be HARD_REGNO_RENAME_OK etc). 3203 should be HARD_REGNO_RENAME_OK etc).
3138 3204
3139 Returns TRUE if we've found all original insns, FALSE otherwise. 3205 Returns TRUE if we've found all original insns, FALSE otherwise.
3140 3206
3141 This function utilizes code_motion_path_driver (formerly find_used_regs_1) 3207 This function utilizes code_motion_path_driver (formerly find_used_regs_1)
3142 to traverse the code motion paths. This helper function finds registers 3208 to traverse the code motion paths. This helper function finds registers
3143 that are not available for storing expres while moving ORIG_OPS up on the 3209 that are not available for storing expres while moving ORIG_OPS up on the
3144 path starting from INSN. A register considered as used on the moving path, 3210 path starting from INSN. A register considered as used on the moving path,
3145 if one of the following conditions is not satisfied: 3211 if one of the following conditions is not satisfied:
3146 3212
3147 (1) a register not set or read on any path from xi to an instance of 3213 (1) a register not set or read on any path from xi to an instance of
3148 the original operation, 3214 the original operation,
3149 (2) not among the live registers of the point immediately following the 3215 (2) not among the live registers of the point immediately following the
3150 first original operation on a given downward path, except for the 3216 first original operation on a given downward path, except for the
3151 original target register of the operation, 3217 original target register of the operation,
3152 (3) not live on the other path of any conditional branch that is passed 3218 (3) not live on the other path of any conditional branch that is passed
3153 by the operation, in case original operations are not present on 3219 by the operation, in case original operations are not present on
3154 both paths of the conditional branch. 3220 both paths of the conditional branch.
3155 3221
3156 All the original operations found during the traversal are saved in the 3222 All the original operations found during the traversal are saved in the
3157 ORIGINAL_INSNS list. 3223 ORIGINAL_INSNS list.
3158 3224
3159 REG_RENAME_P->CROSSES_CALL is true, if there is a call insn on the path 3225 REG_RENAME_P->CROSSES_CALL is true, if there is a call insn on the path
3160 from INSN to original insn. In this case CALL_USED_REG_SET will be added 3226 from INSN to original insn. In this case CALL_USED_REG_SET will be added
3161 to unavailable hard regs at the point original operation is found. */ 3227 to unavailable hard regs at the point original operation is found. */
3162 3228
3163 static bool 3229 static bool
3164 find_used_regs (insn_t insn, av_set_t orig_ops, regset used_regs, 3230 find_used_regs (insn_t insn, av_set_t orig_ops, regset used_regs,
3165 struct reg_rename *reg_rename_p, def_list_t *original_insns) 3231 struct reg_rename *reg_rename_p, def_list_t *original_insns)
3178 3244
3179 /* Init parameters for code_motion_path_driver. */ 3245 /* Init parameters for code_motion_path_driver. */
3180 sparams.crosses_call = false; 3246 sparams.crosses_call = false;
3181 sparams.original_insns = original_insns; 3247 sparams.original_insns = original_insns;
3182 sparams.used_regs = used_regs; 3248 sparams.used_regs = used_regs;
3183 3249
3184 /* Set the appropriate hooks and data. */ 3250 /* Set the appropriate hooks and data. */
3185 code_motion_path_driver_info = &fur_hooks; 3251 code_motion_path_driver_info = &fur_hooks;
3186 3252
3187 res = code_motion_path_driver (insn, orig_ops, NULL, &lparams, &sparams); 3253 res = code_motion_path_driver (insn, orig_ops, NULL, &lparams, &sparams);
3188 3254
3189 reg_rename_p->crosses_call |= sparams.crosses_call; 3255 reg_rename_p->crosses_call |= sparams.crosses_call;
3190 3256
3191 gcc_assert (res == 1); 3257 gcc_assert (res == 1);
3192 gcc_assert (original_insns && *original_insns); 3258 gcc_assert (original_insns && *original_insns);
3193 3259
3194 /* ??? We calculate whether an expression needs a check when computing 3260 /* ??? We calculate whether an expression needs a check when computing
3195 av sets. This information is not as precise as it could be due to 3261 av sets. This information is not as precise as it could be due to
3196 merging this bit in merge_expr. We can do better in find_used_regs, 3262 merging this bit in merge_expr. We can do better in find_used_regs,
3197 but we want to avoid multiple traversals of the same code motion 3263 but we want to avoid multiple traversals of the same code motion
3198 paths. */ 3264 paths. */
3199 FOR_EACH_EXPR (expr, expr_iter, orig_ops) 3265 FOR_EACH_EXPR (expr, expr_iter, orig_ops)
3200 needs_spec_check_p |= EXPR_NEEDS_SPEC_CHECK_P (expr); 3266 needs_spec_check_p |= EXPR_NEEDS_SPEC_CHECK_P (expr);
3201 3267
3202 /* Mark hardware regs in REG_RENAME_P that are not suitable 3268 /* Mark hardware regs in REG_RENAME_P that are not suitable
3203 for renaming expr in INSN due to hardware restrictions (register class, 3269 for renaming expr in INSN due to hardware restrictions (register class,
3204 modes compatibility etc). */ 3270 modes compatibility etc). */
3205 FOR_EACH_DEF (def, i, *original_insns) 3271 FOR_EACH_DEF (def, i, *original_insns)
3206 { 3272 {
3207 vinsn_t vinsn = INSN_VINSN (def->orig_insn); 3273 vinsn_t vinsn = INSN_VINSN (def->orig_insn);
3208 3274
3209 if (VINSN_SEPARABLE_P (vinsn)) 3275 if (VINSN_SEPARABLE_P (vinsn))
3210 mark_unavailable_hard_regs (def, reg_rename_p, used_regs); 3276 mark_unavailable_hard_regs (def, reg_rename_p, used_regs);
3211 3277
3212 /* Do not allow clobbering of ld.[sa] address in case some of the 3278 /* Do not allow clobbering of ld.[sa] address in case some of the
3213 original operations need a check. */ 3279 original operations need a check. */
3214 if (needs_spec_check_p) 3280 if (needs_spec_check_p)
3215 IOR_REG_SET (used_regs, VINSN_REG_USES (vinsn)); 3281 IOR_REG_SET (used_regs, VINSN_REG_USES (vinsn));
3216 } 3282 }
3217 3283
3237 EXPR_PRIORITY_ADJ (expr) = new_priority - EXPR_PRIORITY (expr); 3303 EXPR_PRIORITY_ADJ (expr) = new_priority - EXPR_PRIORITY (expr);
3238 3304
3239 gcc_assert (EXPR_PRIORITY_ADJ (expr) >= 0); 3305 gcc_assert (EXPR_PRIORITY_ADJ (expr) >= 0);
3240 3306
3241 if (sched_verbose >= 2) 3307 if (sched_verbose >= 2)
3242 sel_print ("sel_target_adjust_priority: insn %d, %d +%d = %d.\n", 3308 sel_print ("sel_target_adjust_priority: insn %d, %d +%d = %d.\n",
3243 INSN_UID (EXPR_INSN_RTX (expr)), EXPR_PRIORITY (expr), 3309 INSN_UID (EXPR_INSN_RTX (expr)), EXPR_PRIORITY (expr),
3244 EXPR_PRIORITY_ADJ (expr), new_priority); 3310 EXPR_PRIORITY_ADJ (expr), new_priority);
3245 3311
3246 return new_priority; 3312 return new_priority;
3247 } 3313 }
3248 3314
3249 /* Rank two available exprs for schedule. Never return 0 here. */ 3315 /* Rank two available exprs for schedule. Never return 0 here. */
3250 static int 3316 static int
3251 sel_rank_for_schedule (const void *x, const void *y) 3317 sel_rank_for_schedule (const void *x, const void *y)
3252 { 3318 {
3253 expr_t tmp = *(const expr_t *) y; 3319 expr_t tmp = *(const expr_t *) y;
3254 expr_t tmp2 = *(const expr_t *) x; 3320 expr_t tmp2 = *(const expr_t *) x;
3255 insn_t tmp_insn, tmp2_insn; 3321 insn_t tmp_insn, tmp2_insn;
3258 3324
3259 tmp_vinsn = EXPR_VINSN (tmp); 3325 tmp_vinsn = EXPR_VINSN (tmp);
3260 tmp2_vinsn = EXPR_VINSN (tmp2); 3326 tmp2_vinsn = EXPR_VINSN (tmp2);
3261 tmp_insn = EXPR_INSN_RTX (tmp); 3327 tmp_insn = EXPR_INSN_RTX (tmp);
3262 tmp2_insn = EXPR_INSN_RTX (tmp2); 3328 tmp2_insn = EXPR_INSN_RTX (tmp2);
3263 3329
3330 /* Schedule debug insns as early as possible. */
3331 if (DEBUG_INSN_P (tmp_insn) && !DEBUG_INSN_P (tmp2_insn))
3332 return -1;
3333 else if (DEBUG_INSN_P (tmp2_insn))
3334 return 1;
3335
3264 /* Prefer SCHED_GROUP_P insns to any others. */ 3336 /* Prefer SCHED_GROUP_P insns to any others. */
3265 if (SCHED_GROUP_P (tmp_insn) != SCHED_GROUP_P (tmp2_insn)) 3337 if (SCHED_GROUP_P (tmp_insn) != SCHED_GROUP_P (tmp2_insn))
3266 { 3338 {
3267 if (VINSN_UNIQUE_P (tmp_vinsn) && VINSN_UNIQUE_P (tmp2_vinsn)) 3339 if (VINSN_UNIQUE_P (tmp_vinsn) && VINSN_UNIQUE_P (tmp2_vinsn))
3268 return SCHED_GROUP_P (tmp2_insn) ? 1 : -1; 3340 return SCHED_GROUP_P (tmp2_insn) ? 1 : -1;
3269 3341
3270 /* Now uniqueness means SCHED_GROUP_P is set, because schedule groups 3342 /* Now uniqueness means SCHED_GROUP_P is set, because schedule groups
3271 cannot be cloned. */ 3343 cannot be cloned. */
3272 if (VINSN_UNIQUE_P (tmp2_vinsn)) 3344 if (VINSN_UNIQUE_P (tmp2_vinsn))
3301 p1 = EXPR_PRIORITY (tmp) + EXPR_PRIORITY_ADJ (tmp); 3373 p1 = EXPR_PRIORITY (tmp) + EXPR_PRIORITY_ADJ (tmp);
3302 3374
3303 val = p2 * EXPR_USEFULNESS (tmp2) - p1 * EXPR_USEFULNESS (tmp); 3375 val = p2 * EXPR_USEFULNESS (tmp2) - p1 * EXPR_USEFULNESS (tmp);
3304 } 3376 }
3305 else 3377 else
3306 val = EXPR_PRIORITY (tmp2) - EXPR_PRIORITY (tmp) 3378 val = EXPR_PRIORITY (tmp2) - EXPR_PRIORITY (tmp)
3307 + EXPR_PRIORITY_ADJ (tmp2) - EXPR_PRIORITY_ADJ (tmp); 3379 + EXPR_PRIORITY_ADJ (tmp2) - EXPR_PRIORITY_ADJ (tmp);
3308 if (val) 3380 if (val)
3309 return val; 3381 return val;
3310 3382
3311 if (spec_info != NULL && spec_info->mask != 0) 3383 if (spec_info != NULL && spec_info->mask != 0)
3330 dw = dw2 - dw1; 3402 dw = dw2 - dw1;
3331 if (dw > (NO_DEP_WEAK / 8) || dw < -(NO_DEP_WEAK / 8)) 3403 if (dw > (NO_DEP_WEAK / 8) || dw < -(NO_DEP_WEAK / 8))
3332 return dw; 3404 return dw;
3333 } 3405 }
3334 3406
3335 tmp_insn = EXPR_INSN_RTX (tmp);
3336 tmp2_insn = EXPR_INSN_RTX (tmp2);
3337
3338 /* Prefer an old insn to a bookkeeping insn. */ 3407 /* Prefer an old insn to a bookkeeping insn. */
3339 if (INSN_UID (tmp_insn) < first_emitted_uid 3408 if (INSN_UID (tmp_insn) < first_emitted_uid
3340 && INSN_UID (tmp2_insn) >= first_emitted_uid) 3409 && INSN_UID (tmp2_insn) >= first_emitted_uid)
3341 return -1; 3410 return -1;
3342 if (INSN_UID (tmp_insn) >= first_emitted_uid 3411 if (INSN_UID (tmp_insn) >= first_emitted_uid
3343 && INSN_UID (tmp2_insn) < first_emitted_uid) 3412 && INSN_UID (tmp2_insn) < first_emitted_uid)
3344 return 1; 3413 return 1;
3345 3414
3346 /* Prefer an insn with smaller UID, as a last resort. 3415 /* Prefer an insn with smaller UID, as a last resort.
3347 We can't safely use INSN_LUID as it is defined only for those insns 3416 We can't safely use INSN_LUID as it is defined only for those insns
3348 that are in the stream. */ 3417 that are in the stream. */
3349 return INSN_UID (tmp_insn) - INSN_UID (tmp2_insn); 3418 return INSN_UID (tmp_insn) - INSN_UID (tmp2_insn);
3350 } 3419 }
3351 3420
3352 /* Filter out expressions from av set pointed to by AV_PTR 3421 /* Filter out expressions from av set pointed to by AV_PTR
3353 that are pipelined too many times. */ 3422 that are pipelined too many times. */
3354 static void 3423 static void
3355 process_pipelined_exprs (av_set_t *av_ptr) 3424 process_pipelined_exprs (av_set_t *av_ptr)
3356 { 3425 {
3357 expr_t expr; 3426 expr_t expr;
3358 av_set_iterator si; 3427 av_set_iterator si;
3359 3428
3360 /* Don't pipeline already pipelined code as that would increase 3429 /* Don't pipeline already pipelined code as that would increase
3361 number of unnecessary register moves. */ 3430 number of unnecessary register moves. */
3362 FOR_EACH_EXPR_1 (expr, si, av_ptr) 3431 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3363 { 3432 {
3364 if (EXPR_SCHED_TIMES (expr) 3433 if (EXPR_SCHED_TIMES (expr)
3365 >= PARAM_VALUE (PARAM_SELSCHED_MAX_SCHED_TIMES)) 3434 >= PARAM_VALUE (PARAM_SELSCHED_MAX_SCHED_TIMES))
3366 av_set_iter_remove (&si); 3435 av_set_iter_remove (&si);
3427 av_set_iter_remove (&si); 3496 av_set_iter_remove (&si);
3428 } 3497 }
3429 } 3498 }
3430 } 3499 }
3431 3500
3432 /* Search for any use-like insns in AV_PTR and decide on scheduling 3501 /* Search for any use-like insns in AV_PTR and decide on scheduling
3433 them. Return one when found, and NULL otherwise. 3502 them. Return one when found, and NULL otherwise.
3434 Note that we check here whether a USE could be scheduled to avoid 3503 Note that we check here whether a USE could be scheduled to avoid
3435 an infinite loop later. */ 3504 an infinite loop later. */
3436 static expr_t 3505 static expr_t
3437 process_use_exprs (av_set_t *av_ptr) 3506 process_use_exprs (av_set_t *av_ptr)
3438 { 3507 {
3510 { 3579 {
3511 /* For non-separable instructions, the blocking insn can have 3580 /* For non-separable instructions, the blocking insn can have
3512 another pattern due to substitution, and we can't choose 3581 another pattern due to substitution, and we can't choose
3513 different register as in the above case. Check all registers 3582 different register as in the above case. Check all registers
3514 being written instead. */ 3583 being written instead. */
3515 if (bitmap_intersect_p (VINSN_REG_SETS (vinsn), 3584 if (bitmap_intersect_p (VINSN_REG_SETS (vinsn),
3516 VINSN_REG_SETS (EXPR_VINSN (expr)))) 3585 VINSN_REG_SETS (EXPR_VINSN (expr))))
3517 return true; 3586 return true;
3518 } 3587 }
3519 3588
3520 return false; 3589 return false;
3571 unsigned len = VEC_length (vinsn_t, *vinsn_vec); 3640 unsigned len = VEC_length (vinsn_t, *vinsn_vec);
3572 if (len > 0) 3641 if (len > 0)
3573 { 3642 {
3574 vinsn_t vinsn; 3643 vinsn_t vinsn;
3575 int n; 3644 int n;
3576 3645
3577 for (n = 0; VEC_iterate (vinsn_t, *vinsn_vec, n, vinsn); n++) 3646 for (n = 0; VEC_iterate (vinsn_t, *vinsn_vec, n, vinsn); n++)
3578 vinsn_detach (vinsn); 3647 vinsn_detach (vinsn);
3579 VEC_block_remove (vinsn_t, *vinsn_vec, 0, len); 3648 VEC_block_remove (vinsn_t, *vinsn_vec, 0, len);
3580 } 3649 }
3581 } 3650 }
3586 { 3655 {
3587 vinsn_attach (EXPR_VINSN (expr)); 3656 vinsn_attach (EXPR_VINSN (expr));
3588 VEC_safe_push (vinsn_t, heap, *vinsn_vec, EXPR_VINSN (expr)); 3657 VEC_safe_push (vinsn_t, heap, *vinsn_vec, EXPR_VINSN (expr));
3589 } 3658 }
3590 3659
3591 /* Free the vector representing blocked expressions. */ 3660 /* Free the vector representing blocked expressions. */
3592 static void 3661 static void
3593 vinsn_vec_free (vinsn_vec_t *vinsn_vec) 3662 vinsn_vec_free (vinsn_vec_t *vinsn_vec)
3594 { 3663 {
3595 if (*vinsn_vec) 3664 if (*vinsn_vec)
3596 VEC_free (vinsn_t, heap, *vinsn_vec); 3665 VEC_free (vinsn_t, heap, *vinsn_vec);
3601 void sel_add_to_insn_priority (rtx insn, int amount) 3670 void sel_add_to_insn_priority (rtx insn, int amount)
3602 { 3671 {
3603 EXPR_PRIORITY_ADJ (INSN_EXPR (insn)) += amount; 3672 EXPR_PRIORITY_ADJ (INSN_EXPR (insn)) += amount;
3604 3673
3605 if (sched_verbose >= 2) 3674 if (sched_verbose >= 2)
3606 sel_print ("sel_add_to_insn_priority: insn %d, by %d (now %d+%d).\n", 3675 sel_print ("sel_add_to_insn_priority: insn %d, by %d (now %d+%d).\n",
3607 INSN_UID (insn), amount, EXPR_PRIORITY (INSN_EXPR (insn)), 3676 INSN_UID (insn), amount, EXPR_PRIORITY (INSN_EXPR (insn)),
3608 EXPR_PRIORITY_ADJ (INSN_EXPR (insn))); 3677 EXPR_PRIORITY_ADJ (INSN_EXPR (insn)));
3609 } 3678 }
3610 3679
3611 /* Turn AV into a vector, filter inappropriate insns and sort it. Return 3680 /* Turn AV into a vector, filter inappropriate insns and sort it. Return
3612 true if there is something to schedule. BNDS and FENCE are current 3681 true if there is something to schedule. BNDS and FENCE are current
3613 boundaries and fence, respectively. If we need to stall for some cycles 3682 boundaries and fence, respectively. If we need to stall for some cycles
3614 before an expr from AV would become available, write this number to 3683 before an expr from AV would become available, write this number to
3615 *PNEED_STALL. */ 3684 *PNEED_STALL. */
3616 static bool 3685 static bool
3617 fill_vec_av_set (av_set_t av, blist_t bnds, fence_t fence, 3686 fill_vec_av_set (av_set_t av, blist_t bnds, fence_t fence,
3618 int *pneed_stall) 3687 int *pneed_stall)
3619 { 3688 {
3635 3704
3636 /* Turn the set into a vector for sorting and call sel_target_adjust_priority 3705 /* Turn the set into a vector for sorting and call sel_target_adjust_priority
3637 for each insn. */ 3706 for each insn. */
3638 gcc_assert (VEC_empty (expr_t, vec_av_set)); 3707 gcc_assert (VEC_empty (expr_t, vec_av_set));
3639 FOR_EACH_EXPR (expr, si, av) 3708 FOR_EACH_EXPR (expr, si, av)
3640 { 3709 {
3641 VEC_safe_push (expr_t, heap, vec_av_set, expr); 3710 VEC_safe_push (expr_t, heap, vec_av_set, expr);
3642 3711
3643 gcc_assert (EXPR_PRIORITY_ADJ (expr) == 0 || *pneed_stall); 3712 gcc_assert (EXPR_PRIORITY_ADJ (expr) == 0 || *pneed_stall);
3644 3713
3645 /* Adjust priority using target backend hook. */ 3714 /* Adjust priority using target backend hook. */
3671 { 3740 {
3672 VEC_unordered_remove (expr_t, vec_av_set, n); 3741 VEC_unordered_remove (expr_t, vec_av_set, n);
3673 continue; 3742 continue;
3674 } 3743 }
3675 3744
3676 /* Set number of sched_next insns (just in case there 3745 /* Set number of sched_next insns (just in case there
3677 could be several). */ 3746 could be several). */
3678 if (FENCE_SCHED_NEXT (fence)) 3747 if (FENCE_SCHED_NEXT (fence))
3679 sched_next_worked++; 3748 sched_next_worked++;
3680 3749
3681 /* Check all liveness requirements and try renaming. 3750 /* Check all liveness requirements and try renaming.
3682 FIXME: try to minimize calls to this. */ 3751 FIXME: try to minimize calls to this. */
3683 target_available = EXPR_TARGET_AVAILABLE (expr); 3752 target_available = EXPR_TARGET_AVAILABLE (expr);
3684 3753
3685 /* If insn was already scheduled on the current fence, 3754 /* If insn was already scheduled on the current fence,
3686 set TARGET_AVAILABLE to -1 no matter what expr's attribute says. */ 3755 set TARGET_AVAILABLE to -1 no matter what expr's attribute says. */
3697 if (sched_verbose >= 4) 3766 if (sched_verbose >= 4)
3698 sel_print ("Expr %d is blocked by bookkeeping inserted earlier\n", 3767 sel_print ("Expr %d is blocked by bookkeeping inserted earlier\n",
3699 INSN_UID (insn)); 3768 INSN_UID (insn));
3700 continue; 3769 continue;
3701 } 3770 }
3702 3771
3703 if (target_available == true) 3772 if (target_available == true)
3704 { 3773 {
3705 /* Do nothing -- we can use an existing register. */ 3774 /* Do nothing -- we can use an existing register. */
3706 is_orig_reg_p = EXPR_SEPARABLE_P (expr); 3775 is_orig_reg_p = EXPR_SEPARABLE_P (expr);
3707 } 3776 }
3708 else if (/* Non-separable instruction will never 3777 else if (/* Non-separable instruction will never
3709 get another register. */ 3778 get another register. */
3710 (target_available == false 3779 (target_available == false
3711 && !EXPR_SEPARABLE_P (expr)) 3780 && !EXPR_SEPARABLE_P (expr))
3712 /* Don't try to find a register for low-priority expression. */ 3781 /* Don't try to find a register for low-priority expression. */
3713 || (int) VEC_length (expr_t, vec_av_set) - 1 - n >= max_insns_to_rename 3782 || (int) VEC_length (expr_t, vec_av_set) - 1 - n >= max_insns_to_rename
3715 || (EXPR_SPEC_DONE_DS (expr) & BEGIN_DATA) 3784 || (EXPR_SPEC_DONE_DS (expr) & BEGIN_DATA)
3716 || ! find_best_reg_for_expr (expr, bnds, &is_orig_reg_p)) 3785 || ! find_best_reg_for_expr (expr, bnds, &is_orig_reg_p))
3717 { 3786 {
3718 VEC_unordered_remove (expr_t, vec_av_set, n); 3787 VEC_unordered_remove (expr_t, vec_av_set, n);
3719 if (sched_verbose >= 4) 3788 if (sched_verbose >= 4)
3720 sel_print ("Expr %d has no suitable target register\n", 3789 sel_print ("Expr %d has no suitable target register\n",
3721 INSN_UID (insn)); 3790 INSN_UID (insn));
3722 continue; 3791 continue;
3723 } 3792 }
3724 3793
3725 /* Filter expressions that need to be renamed or speculated when 3794 /* Filter expressions that need to be renamed or speculated when
3783 EXPR_PRIORITY (expr) + need_cycles); 3852 EXPR_PRIORITY (expr) + need_cycles);
3784 3853
3785 if (need_cycles > 0) 3854 if (need_cycles > 0)
3786 { 3855 {
3787 stalled++; 3856 stalled++;
3788 min_need_stall = (min_need_stall < 0 3857 min_need_stall = (min_need_stall < 0
3789 ? need_cycles 3858 ? need_cycles
3790 : MIN (min_need_stall, need_cycles)); 3859 : MIN (min_need_stall, need_cycles));
3791 VEC_unordered_remove (expr_t, vec_av_set, n); 3860 VEC_unordered_remove (expr_t, vec_av_set, n);
3792 3861
3793 if (sched_verbose >= 4) 3862 if (sched_verbose >= 4)
3794 sel_print ("Expr %d is not ready until cycle %d (cached)\n", 3863 sel_print ("Expr %d is not ready until cycle %d (cached)\n",
3795 INSN_UID (insn), 3864 INSN_UID (insn),
3796 FENCE_READY_TICKS (fence)[INSN_UID (insn)]); 3865 FENCE_READY_TICKS (fence)[INSN_UID (insn)]);
3797 continue; 3866 continue;
3798 } 3867 }
3799 } 3868 }
3800 3869
3801 /* Now resort to dependence analysis to find whether EXPR might be 3870 /* Now resort to dependence analysis to find whether EXPR might be
3802 stalled due to dependencies from FENCE's context. */ 3871 stalled due to dependencies from FENCE's context. */
3803 need_cycles = tick_check_p (expr, dc, fence); 3872 need_cycles = tick_check_p (expr, dc, fence);
3804 new_prio = EXPR_PRIORITY (expr) + EXPR_PRIORITY_ADJ (expr) + need_cycles; 3873 new_prio = EXPR_PRIORITY (expr) + EXPR_PRIORITY_ADJ (expr) + need_cycles;
3805 3874
3806 if (EXPR_ORIG_SCHED_CYCLE (expr) <= 0) 3875 if (EXPR_ORIG_SCHED_CYCLE (expr) <= 0)
3810 if (need_cycles > 0) 3879 if (need_cycles > 0)
3811 { 3880 {
3812 if (INSN_UID (insn) >= FENCE_READY_TICKS_SIZE (fence)) 3881 if (INSN_UID (insn) >= FENCE_READY_TICKS_SIZE (fence))
3813 { 3882 {
3814 int new_size = INSN_UID (insn) * 3 / 2; 3883 int new_size = INSN_UID (insn) * 3 / 2;
3815 3884
3816 FENCE_READY_TICKS (fence) 3885 FENCE_READY_TICKS (fence)
3817 = (int *) xrecalloc (FENCE_READY_TICKS (fence), 3886 = (int *) xrecalloc (FENCE_READY_TICKS (fence),
3818 new_size, FENCE_READY_TICKS_SIZE (fence), 3887 new_size, FENCE_READY_TICKS_SIZE (fence),
3819 sizeof (int)); 3888 sizeof (int));
3820 } 3889 }
3821 FENCE_READY_TICKS (fence)[INSN_UID (insn)] 3890 FENCE_READY_TICKS (fence)[INSN_UID (insn)]
3822 = FENCE_CYCLE (fence) + need_cycles; 3891 = FENCE_CYCLE (fence) + need_cycles;
3823 3892
3824 stalled++; 3893 stalled++;
3825 min_need_stall = (min_need_stall < 0 3894 min_need_stall = (min_need_stall < 0
3826 ? need_cycles 3895 ? need_cycles
3827 : MIN (min_need_stall, need_cycles)); 3896 : MIN (min_need_stall, need_cycles));
3828 3897
3829 VEC_unordered_remove (expr_t, vec_av_set, n); 3898 VEC_unordered_remove (expr_t, vec_av_set, n);
3830 3899
3831 if (sched_verbose >= 4) 3900 if (sched_verbose >= 4)
3832 sel_print ("Expr %d is not ready yet until cycle %d\n", 3901 sel_print ("Expr %d is not ready yet until cycle %d\n",
3833 INSN_UID (insn), 3902 INSN_UID (insn),
3834 FENCE_READY_TICKS (fence)[INSN_UID (insn)]); 3903 FENCE_READY_TICKS (fence)[INSN_UID (insn)]);
3835 continue; 3904 continue;
3836 } 3905 }
3837 3906
3862 gcc_assert (min_need_stall == 0); 3931 gcc_assert (min_need_stall == 0);
3863 3932
3864 /* Sort the vector. */ 3933 /* Sort the vector. */
3865 qsort (VEC_address (expr_t, vec_av_set), VEC_length (expr_t, vec_av_set), 3934 qsort (VEC_address (expr_t, vec_av_set), VEC_length (expr_t, vec_av_set),
3866 sizeof (expr_t), sel_rank_for_schedule); 3935 sizeof (expr_t), sel_rank_for_schedule);
3867 3936
3868 if (sched_verbose >= 4) 3937 if (sched_verbose >= 4)
3869 { 3938 {
3870 sel_print ("Total ready exprs: %d, stalled: %d\n", 3939 sel_print ("Total ready exprs: %d, stalled: %d\n",
3871 VEC_length (expr_t, vec_av_set), stalled); 3940 VEC_length (expr_t, vec_av_set), stalled);
3872 sel_print ("Sorted av set (%d): ", VEC_length (expr_t, vec_av_set)); 3941 sel_print ("Sorted av set (%d): ", VEC_length (expr_t, vec_av_set));
3873 for (n = 0; VEC_iterate (expr_t, vec_av_set, n, expr); n++) 3942 for (n = 0; VEC_iterate (expr_t, vec_av_set, n, expr); n++)
3874 dump_expr (expr); 3943 dump_expr (expr);
3875 sel_print ("\n"); 3944 sel_print ("\n");
3888 expr_t expr; 3957 expr_t expr;
3889 3958
3890 /* Allocate and fill the ready list from the sorted vector. */ 3959 /* Allocate and fill the ready list from the sorted vector. */
3891 ready.n_ready = VEC_length (expr_t, vec_av_set); 3960 ready.n_ready = VEC_length (expr_t, vec_av_set);
3892 ready.first = ready.n_ready - 1; 3961 ready.first = ready.n_ready - 1;
3893 3962
3894 gcc_assert (ready.n_ready > 0); 3963 gcc_assert (ready.n_ready > 0);
3895 3964
3896 if (ready.n_ready > max_issue_size) 3965 if (ready.n_ready > max_issue_size)
3897 { 3966 {
3898 max_issue_size = ready.n_ready; 3967 max_issue_size = ready.n_ready;
3899 sched_extend_ready_list (ready.n_ready); 3968 sched_extend_ready_list (ready.n_ready);
3900 } 3969 }
3901 3970
3902 for (n = 0; VEC_iterate (expr_t, vec_av_set, n, expr); n++) 3971 for (n = 0; VEC_iterate (expr_t, vec_av_set, n, expr); n++)
3903 { 3972 {
3904 vinsn_t vi = EXPR_VINSN (expr); 3973 vinsn_t vi = EXPR_VINSN (expr);
3905 insn_t insn = VINSN_INSN_RTX (vi); 3974 insn_t insn = VINSN_INSN_RTX (vi);
3906 3975
3909 } 3978 }
3910 } 3979 }
3911 3980
3912 /* Initialize ready list from *AV_PTR for the max_issue () call. 3981 /* Initialize ready list from *AV_PTR for the max_issue () call.
3913 If any unrecognizable insn found in *AV_PTR, return it (and skip 3982 If any unrecognizable insn found in *AV_PTR, return it (and skip
3914 max_issue). BND and FENCE are current boundary and fence, 3983 max_issue). BND and FENCE are current boundary and fence,
3915 respectively. If we need to stall for some cycles before an expr 3984 respectively. If we need to stall for some cycles before an expr
3916 from *AV_PTR would become available, write this number to *PNEED_STALL. */ 3985 from *AV_PTR would become available, write this number to *PNEED_STALL. */
3917 static expr_t 3986 static expr_t
3918 fill_ready_list (av_set_t *av_ptr, blist_t bnds, fence_t fence, 3987 fill_ready_list (av_set_t *av_ptr, blist_t bnds, fence_t fence,
3919 int *pneed_stall) 3988 int *pneed_stall)
3920 { 3989 {
3921 expr_t expr; 3990 expr_t expr;
3922 3991
3923 /* We do not support multiple boundaries per fence. */ 3992 /* We do not support multiple boundaries per fence. */
3924 gcc_assert (BLIST_NEXT (bnds) == NULL); 3993 gcc_assert (BLIST_NEXT (bnds) == NULL);
3925 3994
3926 /* Process expressions required special handling, i.e. pipelined, 3995 /* Process expressions required special handling, i.e. pipelined,
3927 speculative and recog() < 0 expressions first. */ 3996 speculative and recog() < 0 expressions first. */
3928 process_pipelined_exprs (av_ptr); 3997 process_pipelined_exprs (av_ptr);
3929 process_spec_exprs (av_ptr); 3998 process_spec_exprs (av_ptr);
3930 3999
3931 /* A USE could be scheduled immediately. */ 4000 /* A USE could be scheduled immediately. */
3950 4019
3951 /* Wrapper for dfa_new_cycle (). Returns TRUE if cycle was advanced. */ 4020 /* Wrapper for dfa_new_cycle (). Returns TRUE if cycle was advanced. */
3952 static bool 4021 static bool
3953 sel_dfa_new_cycle (insn_t insn, fence_t fence) 4022 sel_dfa_new_cycle (insn_t insn, fence_t fence)
3954 { 4023 {
3955 int last_scheduled_cycle = FENCE_LAST_SCHEDULED_INSN (fence) 4024 int last_scheduled_cycle = FENCE_LAST_SCHEDULED_INSN (fence)
3956 ? INSN_SCHED_CYCLE (FENCE_LAST_SCHEDULED_INSN (fence)) 4025 ? INSN_SCHED_CYCLE (FENCE_LAST_SCHEDULED_INSN (fence))
3957 : FENCE_CYCLE (fence) - 1; 4026 : FENCE_CYCLE (fence) - 1;
3958 bool res = false; 4027 bool res = false;
3959 int sort_p = 0; 4028 int sort_p = 0;
3960 4029
3961 if (!targetm.sched.dfa_new_cycle) 4030 if (!targetm.sched.dfa_new_cycle)
4013 } 4082 }
4014 else if (targetm.sched.reorder2 4083 else if (targetm.sched.reorder2
4015 && !SCHED_GROUP_P (ready_element (&ready, 0))) 4084 && !SCHED_GROUP_P (ready_element (&ready, 0)))
4016 { 4085 {
4017 if (ready.n_ready == 1) 4086 if (ready.n_ready == 1)
4018 issue_more = 4087 issue_more =
4019 targetm.sched.reorder2 (sched_dump, sched_verbose, 4088 targetm.sched.reorder2 (sched_dump, sched_verbose,
4020 ready_lastpos (&ready), 4089 ready_lastpos (&ready),
4021 &ready.n_ready, FENCE_CYCLE (fence)); 4090 &ready.n_ready, FENCE_CYCLE (fence));
4022 else 4091 else
4023 { 4092 {
4034 ++ready.n_ready; 4103 ++ready.n_ready;
4035 } 4104 }
4036 4105
4037 ran_hook = true; 4106 ran_hook = true;
4038 } 4107 }
4039 else 4108 else
4040 issue_more = issue_rate; 4109 issue_more = issue_rate;
4041 4110
4042 /* Ensure that ready list and vec_av_set are in line with each other, 4111 /* Ensure that ready list and vec_av_set are in line with each other,
4043 i.e. vec_av_set[i] == ready_element (&ready, i). */ 4112 i.e. vec_av_set[i] == ready_element (&ready, i). */
4044 if (issue_more && ran_hook) 4113 if (issue_more && ran_hook)
4055 for (j = i; j < n; j++) 4124 for (j = i; j < n; j++)
4056 if (EXPR_INSN_RTX (vec[j]) == arr[i]) 4125 if (EXPR_INSN_RTX (vec[j]) == arr[i])
4057 break; 4126 break;
4058 gcc_assert (j < n); 4127 gcc_assert (j < n);
4059 4128
4060 tmp = vec[i]; 4129 tmp = vec[i];
4061 vec[i] = vec[j]; 4130 vec[i] = vec[j];
4062 vec[j] = tmp; 4131 vec[j] = tmp;
4063 } 4132 }
4064 } 4133 }
4065 4134
4066 return issue_more; 4135 return issue_more;
4067 } 4136 }
4068 4137
4069 /* Return an EXPR correponding to INDEX element of ready list, if 4138 /* Return an EXPR correponding to INDEX element of ready list, if
4070 FOLLOW_READY_ELEMENT is true (i.e., an expr of 4139 FOLLOW_READY_ELEMENT is true (i.e., an expr of
4071 ready_element (&ready, INDEX) will be returned), and to INDEX element of 4140 ready_element (&ready, INDEX) will be returned), and to INDEX element of
4072 ready.vec otherwise. */ 4141 ready.vec otherwise. */
4073 static inline expr_t 4142 static inline expr_t
4074 find_expr_for_ready (int index, bool follow_ready_element) 4143 find_expr_for_ready (int index, bool follow_ready_element)
4075 { 4144 {
4076 expr_t expr; 4145 expr_t expr;
4088 of such insns found. */ 4157 of such insns found. */
4089 static int 4158 static int
4090 invoke_dfa_lookahead_guard (void) 4159 invoke_dfa_lookahead_guard (void)
4091 { 4160 {
4092 int i, n; 4161 int i, n;
4093 bool have_hook 4162 bool have_hook
4094 = targetm.sched.first_cycle_multipass_dfa_lookahead_guard != NULL; 4163 = targetm.sched.first_cycle_multipass_dfa_lookahead_guard != NULL;
4095 4164
4096 if (sched_verbose >= 2) 4165 if (sched_verbose >= 2)
4097 sel_print ("ready after reorder: "); 4166 sel_print ("ready after reorder: ");
4098 4167
4100 { 4169 {
4101 expr_t expr; 4170 expr_t expr;
4102 insn_t insn; 4171 insn_t insn;
4103 int r; 4172 int r;
4104 4173
4105 /* In this loop insn is Ith element of the ready list given by 4174 /* In this loop insn is Ith element of the ready list given by
4106 ready_element, not Ith element of ready.vec. */ 4175 ready_element, not Ith element of ready.vec. */
4107 insn = ready_element (&ready, i); 4176 insn = ready_element (&ready, i);
4108 4177
4109 if (! have_hook || i == 0) 4178 if (! have_hook || i == 0)
4110 r = 0; 4179 r = 0;
4111 else 4180 else
4112 r = !targetm.sched.first_cycle_multipass_dfa_lookahead_guard (insn); 4181 r = !targetm.sched.first_cycle_multipass_dfa_lookahead_guard (insn);
4113 4182
4114 gcc_assert (INSN_CODE (insn) >= 0); 4183 gcc_assert (INSN_CODE (insn) >= 0);
4115 4184
4116 /* Only insns with ready_try = 0 can get here 4185 /* Only insns with ready_try = 0 can get here
4117 from fill_ready_list. */ 4186 from fill_ready_list. */
4118 gcc_assert (ready_try [i] == 0); 4187 gcc_assert (ready_try [i] == 0);
4119 ready_try[i] = r; 4188 ready_try[i] = r;
4120 if (!r) 4189 if (!r)
4121 n++; 4190 n++;
4122 4191
4123 expr = find_expr_for_ready (i, true); 4192 expr = find_expr_for_ready (i, true);
4124 4193
4125 if (sched_verbose >= 2) 4194 if (sched_verbose >= 2)
4126 { 4195 {
4127 dump_vinsn (EXPR_VINSN (expr)); 4196 dump_vinsn (EXPR_VINSN (expr));
4128 sel_print (":%d; ", ready_try[i]); 4197 sel_print (":%d; ", ready_try[i]);
4129 } 4198 }
4150 if (! min_spec_expr) 4219 if (! min_spec_expr)
4151 { 4220 {
4152 min_spec_insn = ready_element (&ready, i); 4221 min_spec_insn = ready_element (&ready, i);
4153 min_spec_expr = find_expr_for_ready (i, true); 4222 min_spec_expr = find_expr_for_ready (i, true);
4154 } 4223 }
4155 4224
4156 cur_insn = ready_element (&ready, i); 4225 cur_insn = ready_element (&ready, i);
4157 cur_expr = find_expr_for_ready (i, true); 4226 cur_expr = find_expr_for_ready (i, true);
4158 4227
4159 if (EXPR_SPEC (cur_expr) > EXPR_SPEC (min_spec_expr)) 4228 if (EXPR_SPEC (cur_expr) > EXPR_SPEC (min_spec_expr))
4160 break; 4229 break;
4169 sel_print ("privileged_n: %d insns with SPEC %d\n", 4238 sel_print ("privileged_n: %d insns with SPEC %d\n",
4170 privileged_n, privileged_n ? EXPR_SPEC (min_spec_expr) : -1); 4239 privileged_n, privileged_n ? EXPR_SPEC (min_spec_expr) : -1);
4171 return privileged_n; 4240 return privileged_n;
4172 } 4241 }
4173 4242
4174 /* Call the rest of the hooks after the choice was made. Return 4243 /* Call the rest of the hooks after the choice was made. Return
4175 the number of insns that still can be issued given that the current 4244 the number of insns that still can be issued given that the current
4176 number is ISSUE_MORE. FENCE and BEST_INSN are the current fence 4245 number is ISSUE_MORE. FENCE and BEST_INSN are the current fence
4177 and the insn chosen for scheduling, respectively. */ 4246 and the insn chosen for scheduling, respectively. */
4178 static int 4247 static int
4179 invoke_aftermath_hooks (fence_t fence, rtx best_insn, int issue_more) 4248 invoke_aftermath_hooks (fence_t fence, rtx best_insn, int issue_more)
4180 { 4249 {
4181 gcc_assert (INSN_P (best_insn)); 4250 gcc_assert (INSN_P (best_insn));
4182 4251
4183 /* First, call dfa_new_cycle, and then variable_issue, if available. */ 4252 /* First, call dfa_new_cycle, and then variable_issue, if available. */
4184 sel_dfa_new_cycle (best_insn, fence); 4253 sel_dfa_new_cycle (best_insn, fence);
4185 4254
4186 if (targetm.sched.variable_issue) 4255 if (targetm.sched.variable_issue)
4187 { 4256 {
4188 memcpy (curr_state, FENCE_STATE (fence), dfa_state_size); 4257 memcpy (curr_state, FENCE_STATE (fence), dfa_state_size);
4189 issue_more = 4258 issue_more =
4190 targetm.sched.variable_issue (sched_dump, sched_verbose, best_insn, 4259 targetm.sched.variable_issue (sched_dump, sched_verbose, best_insn,
4191 issue_more); 4260 issue_more);
4192 memcpy (FENCE_STATE (fence), curr_state, dfa_state_size); 4261 memcpy (FENCE_STATE (fence), curr_state, dfa_state_size);
4193 } 4262 }
4194 else if (GET_CODE (PATTERN (best_insn)) != USE 4263 else if (GET_CODE (PATTERN (best_insn)) != USE
4216 else if (cost == 0) 4285 else if (cost == 0)
4217 return 1; 4286 return 1;
4218 return cost; 4287 return cost;
4219 } 4288 }
4220 4289
4221 /* Return the cost of issuing EXPR on the FENCE as estimated by DFA. 4290 /* Return the cost of issuing EXPR on the FENCE as estimated by DFA.
4222 This function properly handles ASMs, USEs etc. */ 4291 This function properly handles ASMs, USEs etc. */
4223 static int 4292 static int
4224 get_expr_cost (expr_t expr, fence_t fence) 4293 get_expr_cost (expr_t expr, fence_t fence)
4225 { 4294 {
4226 rtx insn = EXPR_INSN_RTX (expr); 4295 rtx insn = EXPR_INSN_RTX (expr);
4227 4296
4228 if (recog_memoized (insn) < 0) 4297 if (recog_memoized (insn) < 0)
4229 { 4298 {
4230 if (!FENCE_STARTS_CYCLE_P (fence) 4299 if (!FENCE_STARTS_CYCLE_P (fence)
4231 /* FIXME: Is this condition necessary? */ 4300 /* FIXME: Is this condition necessary? */
4232 && VINSN_UNIQUE_P (EXPR_VINSN (expr)) 4301 && VINSN_UNIQUE_P (EXPR_VINSN (expr))
4233 && INSN_ASM_P (insn)) 4302 && INSN_ASM_P (insn))
4234 /* This is asm insn which is tryed to be issued on the 4303 /* This is asm insn which is tryed to be issued on the
4235 cycle not first. Issue it on the next cycle. */ 4304 cycle not first. Issue it on the next cycle. */
4243 } 4312 }
4244 else 4313 else
4245 return estimate_insn_cost (insn, FENCE_STATE (fence)); 4314 return estimate_insn_cost (insn, FENCE_STATE (fence));
4246 } 4315 }
4247 4316
4248 /* Find the best insn for scheduling, either via max_issue or just take 4317 /* Find the best insn for scheduling, either via max_issue or just take
4249 the most prioritized available. */ 4318 the most prioritized available. */
4250 static int 4319 static int
4251 choose_best_insn (fence_t fence, int privileged_n, int *index) 4320 choose_best_insn (fence_t fence, int privileged_n, int *index)
4252 { 4321 {
4253 int can_issue = 0; 4322 int can_issue = 0;
4290 } 4359 }
4291 4360
4292 return can_issue; 4361 return can_issue;
4293 } 4362 }
4294 4363
4295 /* Choose the best expr from *AV_VLIW_PTR and a suitable register for it. 4364 /* Choose the best expr from *AV_VLIW_PTR and a suitable register for it.
4296 BNDS and FENCE are current boundaries and scheduling fence respectively. 4365 BNDS and FENCE are current boundaries and scheduling fence respectively.
4297 Return the expr found and NULL if nothing can be issued atm. 4366 Return the expr found and NULL if nothing can be issued atm.
4298 Write to PNEED_STALL the number of cycles to stall if no expr was found. */ 4367 Write to PNEED_STALL the number of cycles to stall if no expr was found. */
4299 static expr_t 4368 static expr_t
4300 find_best_expr (av_set_t *av_vliw_ptr, blist_t bnds, fence_t fence, 4369 find_best_expr (av_set_t *av_vliw_ptr, blist_t bnds, fence_t fence,
4301 int *pneed_stall) 4370 int *pneed_stall)
4302 { 4371 {
4303 expr_t best; 4372 expr_t best;
4304 4373
4305 /* Choose the best insn for scheduling via: 4374 /* Choose the best insn for scheduling via:
4306 1) sorting the ready list based on priority; 4375 1) sorting the ready list based on priority;
4307 2) calling the reorder hook; 4376 2) calling the reorder hook;
4308 3) calling max_issue. */ 4377 3) calling max_issue. */
4309 best = fill_ready_list (av_vliw_ptr, bnds, fence, pneed_stall); 4378 best = fill_ready_list (av_vliw_ptr, bnds, fence, pneed_stall);
4312 int privileged_n, index, avail_n; 4381 int privileged_n, index, avail_n;
4313 4382
4314 can_issue_more = invoke_reorder_hooks (fence); 4383 can_issue_more = invoke_reorder_hooks (fence);
4315 if (can_issue_more > 0) 4384 if (can_issue_more > 0)
4316 { 4385 {
4317 /* Try choosing the best insn until we find one that is could be 4386 /* Try choosing the best insn until we find one that is could be
4318 scheduled due to liveness restrictions on its destination register. 4387 scheduled due to liveness restrictions on its destination register.
4319 In the future, we'd like to choose once and then just probe insns 4388 In the future, we'd like to choose once and then just probe insns
4320 in the order of their priority. */ 4389 in the order of their priority. */
4321 avail_n = invoke_dfa_lookahead_guard (); 4390 avail_n = invoke_dfa_lookahead_guard ();
4322 privileged_n = calculate_privileged_insns (); 4391 privileged_n = calculate_privileged_insns ();
4323 can_issue_more = choose_best_insn (fence, privileged_n, &index); 4392 can_issue_more = choose_best_insn (fence, privileged_n, &index);
4324 if (can_issue_more) 4393 if (can_issue_more)
4325 best = find_expr_for_ready (index, true); 4394 best = find_expr_for_ready (index, true);
4326 } 4395 }
4327 /* We had some available insns, so if we can't issue them, 4396 /* We had some available insns, so if we can't issue them,
4328 we have a stall. */ 4397 we have a stall. */
4329 if (can_issue_more == 0) 4398 if (can_issue_more == 0)
4330 { 4399 {
4331 best = NULL; 4400 best = NULL;
4332 *pneed_stall = 1; 4401 *pneed_stall = 1;
4338 can_issue_more = invoke_aftermath_hooks (fence, EXPR_INSN_RTX (best), 4407 can_issue_more = invoke_aftermath_hooks (fence, EXPR_INSN_RTX (best),
4339 can_issue_more); 4408 can_issue_more);
4340 if (can_issue_more == 0) 4409 if (can_issue_more == 0)
4341 *pneed_stall = 1; 4410 *pneed_stall = 1;
4342 } 4411 }
4343 4412
4344 if (sched_verbose >= 2) 4413 if (sched_verbose >= 2)
4345 { 4414 {
4346 if (best != NULL) 4415 if (best != NULL)
4347 { 4416 {
4348 sel_print ("Best expression (vliw form): "); 4417 sel_print ("Best expression (vliw form): ");
4358 4427
4359 4428
4360 /* Functions that implement the core of the scheduler. */ 4429 /* Functions that implement the core of the scheduler. */
4361 4430
4362 4431
4363 /* Emit an instruction from EXPR with SEQNO and VINSN after 4432 /* Emit an instruction from EXPR with SEQNO and VINSN after
4364 PLACE_TO_INSERT. */ 4433 PLACE_TO_INSERT. */
4365 static insn_t 4434 static insn_t
4366 emit_insn_from_expr_after (expr_t expr, vinsn_t vinsn, int seqno, 4435 emit_insn_from_expr_after (expr_t expr, vinsn_t vinsn, int seqno,
4367 insn_t place_to_insert) 4436 insn_t place_to_insert)
4368 { 4437 {
4369 /* This assert fails when we have identical instructions 4438 /* This assert fails when we have identical instructions
4370 one of which dominates the other. In this case move_op () 4439 one of which dominates the other. In this case move_op ()
4371 finds the first instruction and doesn't search for second one. 4440 finds the first instruction and doesn't search for second one.
4375 gcc_assert (!INSN_IN_STREAM_P (EXPR_INSN_RTX (expr))); 4444 gcc_assert (!INSN_IN_STREAM_P (EXPR_INSN_RTX (expr)));
4376 4445
4377 if (EXPR_WAS_RENAMED (expr)) 4446 if (EXPR_WAS_RENAMED (expr))
4378 { 4447 {
4379 unsigned regno = expr_dest_regno (expr); 4448 unsigned regno = expr_dest_regno (expr);
4380 4449
4381 if (HARD_REGISTER_NUM_P (regno)) 4450 if (HARD_REGISTER_NUM_P (regno))
4382 { 4451 {
4383 df_set_regs_ever_live (regno, true); 4452 df_set_regs_ever_live (regno, true);
4384 reg_rename_tick[regno] = ++reg_rename_this_tick; 4453 reg_rename_tick[regno] = ++reg_rename_this_tick;
4385 } 4454 }
4386 } 4455 }
4387 4456
4388 return sel_gen_insn_from_expr_after (expr, vinsn, seqno, 4457 return sel_gen_insn_from_expr_after (expr, vinsn, seqno,
4389 place_to_insert); 4458 place_to_insert);
4390 } 4459 }
4391 4460
4392 /* Return TRUE if BB can hold bookkeeping code. */ 4461 /* Return TRUE if BB can hold bookkeeping code. */
4393 static bool 4462 static bool
4410 } 4479 }
4411 4480
4412 /* Attempt to find a block that can hold bookkeeping code for path(s) incoming 4481 /* Attempt to find a block that can hold bookkeeping code for path(s) incoming
4413 into E2->dest, except from E1->src (there may be a sequence of empty basic 4482 into E2->dest, except from E1->src (there may be a sequence of empty basic
4414 blocks between E1->src and E2->dest). Return found block, or NULL if new 4483 blocks between E1->src and E2->dest). Return found block, or NULL if new
4415 one must be created. */ 4484 one must be created. If LAX holds, don't assume there is a simple path
4485 from E1->src to E2->dest. */
4416 static basic_block 4486 static basic_block
4417 find_block_for_bookkeeping (edge e1, edge e2) 4487 find_block_for_bookkeeping (edge e1, edge e2, bool lax)
4418 { 4488 {
4419 basic_block candidate_block = NULL; 4489 basic_block candidate_block = NULL;
4420 edge e; 4490 edge e;
4421 4491
4422 /* Loop over edges from E1 to E2, inclusive. */ 4492 /* Loop over edges from E1 to E2, inclusive. */
4423 for (e = e1; ; e = EDGE_SUCC (e->dest, 0)) 4493 for (e = e1; !lax || e->dest != EXIT_BLOCK_PTR; e = EDGE_SUCC (e->dest, 0))
4424 { 4494 {
4425 if (EDGE_COUNT (e->dest->preds) == 2) 4495 if (EDGE_COUNT (e->dest->preds) == 2)
4426 { 4496 {
4427 if (candidate_block == NULL) 4497 if (candidate_block == NULL)
4428 candidate_block = (EDGE_PRED (e->dest, 0) == e 4498 candidate_block = (EDGE_PRED (e->dest, 0) == e
4436 else if (EDGE_COUNT (e->dest->preds) > 2) 4506 else if (EDGE_COUNT (e->dest->preds) > 2)
4437 /* Several edges leading to path from e1 to e2 from aside. */ 4507 /* Several edges leading to path from e1 to e2 from aside. */
4438 return NULL; 4508 return NULL;
4439 4509
4440 if (e == e2) 4510 if (e == e2)
4441 return (block_valid_for_bookkeeping_p (candidate_block) 4511 return ((!lax || candidate_block)
4512 && block_valid_for_bookkeeping_p (candidate_block)
4442 ? candidate_block 4513 ? candidate_block
4443 : NULL); 4514 : NULL);
4444 } 4515
4516 if (lax && EDGE_COUNT (e->dest->succs) != 1)
4517 return NULL;
4518 }
4519
4520 if (lax)
4521 return NULL;
4522
4445 gcc_unreachable (); 4523 gcc_unreachable ();
4446 } 4524 }
4447 4525
4448 /* Create new basic block for bookkeeping code for path(s) incoming into 4526 /* Create new basic block for bookkeeping code for path(s) incoming into
4449 E2->dest, except from E1->src. Return created block. */ 4527 E2->dest, except from E1->src. Return created block. */
4483 sel_redirect_edge_and_branch (e1, new_bb); 4561 sel_redirect_edge_and_branch (e1, new_bb);
4484 4562
4485 gcc_assert (e1->dest == new_bb); 4563 gcc_assert (e1->dest == new_bb);
4486 gcc_assert (sel_bb_empty_p (bb)); 4564 gcc_assert (sel_bb_empty_p (bb));
4487 4565
4566 /* To keep basic block numbers in sync between debug and non-debug
4567 compilations, we have to rotate blocks here. Consider that we
4568 started from (a,b)->d, (c,d)->e, and d contained only debug
4569 insns. It would have been removed before if the debug insns
4570 weren't there, so we'd have split e rather than d. So what we do
4571 now is to swap the block numbers of new_bb and
4572 single_succ(new_bb) == e, so that the insns that were in e before
4573 get the new block number. */
4574
4575 if (MAY_HAVE_DEBUG_INSNS)
4576 {
4577 basic_block succ;
4578 insn_t insn = sel_bb_head (new_bb);
4579 insn_t last;
4580
4581 if (DEBUG_INSN_P (insn)
4582 && single_succ_p (new_bb)
4583 && (succ = single_succ (new_bb))
4584 && succ != EXIT_BLOCK_PTR
4585 && DEBUG_INSN_P ((last = sel_bb_end (new_bb))))
4586 {
4587 while (insn != last && (DEBUG_INSN_P (insn) || NOTE_P (insn)))
4588 insn = NEXT_INSN (insn);
4589
4590 if (insn == last)
4591 {
4592 sel_global_bb_info_def gbi;
4593 sel_region_bb_info_def rbi;
4594 int i;
4595
4596 if (sched_verbose >= 2)
4597 sel_print ("Swapping block ids %i and %i\n",
4598 new_bb->index, succ->index);
4599
4600 i = new_bb->index;
4601 new_bb->index = succ->index;
4602 succ->index = i;
4603
4604 SET_BASIC_BLOCK (new_bb->index, new_bb);
4605 SET_BASIC_BLOCK (succ->index, succ);
4606
4607 memcpy (&gbi, SEL_GLOBAL_BB_INFO (new_bb), sizeof (gbi));
4608 memcpy (SEL_GLOBAL_BB_INFO (new_bb), SEL_GLOBAL_BB_INFO (succ),
4609 sizeof (gbi));
4610 memcpy (SEL_GLOBAL_BB_INFO (succ), &gbi, sizeof (gbi));
4611
4612 memcpy (&rbi, SEL_REGION_BB_INFO (new_bb), sizeof (rbi));
4613 memcpy (SEL_REGION_BB_INFO (new_bb), SEL_REGION_BB_INFO (succ),
4614 sizeof (rbi));
4615 memcpy (SEL_REGION_BB_INFO (succ), &rbi, sizeof (rbi));
4616
4617 i = BLOCK_TO_BB (new_bb->index);
4618 BLOCK_TO_BB (new_bb->index) = BLOCK_TO_BB (succ->index);
4619 BLOCK_TO_BB (succ->index) = i;
4620
4621 i = CONTAINING_RGN (new_bb->index);
4622 CONTAINING_RGN (new_bb->index) = CONTAINING_RGN (succ->index);
4623 CONTAINING_RGN (succ->index) = i;
4624
4625 for (i = 0; i < current_nr_blocks; i++)
4626 if (BB_TO_BLOCK (i) == succ->index)
4627 BB_TO_BLOCK (i) = new_bb->index;
4628 else if (BB_TO_BLOCK (i) == new_bb->index)
4629 BB_TO_BLOCK (i) = succ->index;
4630
4631 FOR_BB_INSNS (new_bb, insn)
4632 if (INSN_P (insn))
4633 EXPR_ORIG_BB_INDEX (INSN_EXPR (insn)) = new_bb->index;
4634
4635 FOR_BB_INSNS (succ, insn)
4636 if (INSN_P (insn))
4637 EXPR_ORIG_BB_INDEX (INSN_EXPR (insn)) = succ->index;
4638
4639 if (bitmap_bit_p (code_motion_visited_blocks, new_bb->index))
4640 {
4641 bitmap_set_bit (code_motion_visited_blocks, succ->index);
4642 bitmap_clear_bit (code_motion_visited_blocks, new_bb->index);
4643 }
4644
4645 gcc_assert (LABEL_P (BB_HEAD (new_bb))
4646 && LABEL_P (BB_HEAD (succ)));
4647
4648 if (sched_verbose >= 4)
4649 sel_print ("Swapping code labels %i and %i\n",
4650 CODE_LABEL_NUMBER (BB_HEAD (new_bb)),
4651 CODE_LABEL_NUMBER (BB_HEAD (succ)));
4652
4653 i = CODE_LABEL_NUMBER (BB_HEAD (new_bb));
4654 CODE_LABEL_NUMBER (BB_HEAD (new_bb))
4655 = CODE_LABEL_NUMBER (BB_HEAD (succ));
4656 CODE_LABEL_NUMBER (BB_HEAD (succ)) = i;
4657 }
4658 }
4659 }
4660
4488 return bb; 4661 return bb;
4489 } 4662 }
4490 4663
4491 /* Return insn after which we must insert bookkeeping code for path(s) incoming 4664 /* Return insn after which we must insert bookkeeping code for path(s) incoming
4492 into E2->dest, except from E1->src. */ 4665 into E2->dest, except from E1->src. */
4494 find_place_for_bookkeeping (edge e1, edge e2) 4667 find_place_for_bookkeeping (edge e1, edge e2)
4495 { 4668 {
4496 insn_t place_to_insert; 4669 insn_t place_to_insert;
4497 /* Find a basic block that can hold bookkeeping. If it can be found, do not 4670 /* Find a basic block that can hold bookkeeping. If it can be found, do not
4498 create new basic block, but insert bookkeeping there. */ 4671 create new basic block, but insert bookkeeping there. */
4499 basic_block book_block = find_block_for_bookkeeping (e1, e2); 4672 basic_block book_block = find_block_for_bookkeeping (e1, e2, FALSE);
4673
4674 if (book_block)
4675 {
4676 place_to_insert = BB_END (book_block);
4677
4678 /* Don't use a block containing only debug insns for
4679 bookkeeping, this causes scheduling differences between debug
4680 and non-debug compilations, for the block would have been
4681 removed already. */
4682 if (DEBUG_INSN_P (place_to_insert))
4683 {
4684 rtx insn = sel_bb_head (book_block);
4685
4686 while (insn != place_to_insert &&
4687 (DEBUG_INSN_P (insn) || NOTE_P (insn)))
4688 insn = NEXT_INSN (insn);
4689
4690 if (insn == place_to_insert)
4691 book_block = NULL;
4692 }
4693 }
4500 4694
4501 if (!book_block) 4695 if (!book_block)
4502 book_block = create_block_for_bookkeeping (e1, e2); 4696 {
4503 4697 book_block = create_block_for_bookkeeping (e1, e2);
4504 place_to_insert = BB_END (book_block); 4698 place_to_insert = BB_END (book_block);
4699 if (sched_verbose >= 9)
4700 sel_print ("New block is %i, split from bookkeeping block %i\n",
4701 EDGE_SUCC (book_block, 0)->dest->index, book_block->index);
4702 }
4703 else
4704 {
4705 if (sched_verbose >= 9)
4706 sel_print ("Pre-existing bookkeeping block is %i\n", book_block->index);
4707 }
4505 4708
4506 /* If basic block ends with a jump, insert bookkeeping code right before it. */ 4709 /* If basic block ends with a jump, insert bookkeeping code right before it. */
4507 if (INSN_P (place_to_insert) && control_flow_insn_p (place_to_insert)) 4710 if (INSN_P (place_to_insert) && control_flow_insn_p (place_to_insert))
4508 place_to_insert = PREV_INSN (place_to_insert); 4711 place_to_insert = PREV_INSN (place_to_insert);
4509 4712
4519 rtx next; 4722 rtx next;
4520 4723
4521 /* Check if we are about to insert bookkeeping copy before a jump, and use 4724 /* Check if we are about to insert bookkeeping copy before a jump, and use
4522 jump's seqno for the copy; otherwise, use JOIN_POINT's seqno. */ 4725 jump's seqno for the copy; otherwise, use JOIN_POINT's seqno. */
4523 next = NEXT_INSN (place_to_insert); 4726 next = NEXT_INSN (place_to_insert);
4524 if (INSN_P (next) 4727 if (INSN_P (next)
4525 && JUMP_P (next) 4728 && JUMP_P (next)
4526 && BLOCK_FOR_INSN (next) == BLOCK_FOR_INSN (place_to_insert)) 4729 && BLOCK_FOR_INSN (next) == BLOCK_FOR_INSN (place_to_insert))
4527 seqno = INSN_SEQNO (next); 4730 {
4731 gcc_assert (INSN_SCHED_TIMES (next) == 0);
4732 seqno = INSN_SEQNO (next);
4733 }
4528 else if (INSN_SEQNO (join_point) > 0) 4734 else if (INSN_SEQNO (join_point) > 0)
4529 seqno = INSN_SEQNO (join_point); 4735 seqno = INSN_SEQNO (join_point);
4530 else 4736 else
4531 seqno = get_seqno_by_preds (place_to_insert); 4737 {
4532 4738 seqno = get_seqno_by_preds (place_to_insert);
4739
4740 /* Sometimes the fences can move in such a way that there will be
4741 no instructions with positive seqno around this bookkeeping.
4742 This means that there will be no way to get to it by a regular
4743 fence movement. Never mind because we pick up such pieces for
4744 rescheduling anyways, so any positive value will do for now. */
4745 if (seqno < 0)
4746 {
4747 gcc_assert (pipelining_p);
4748 seqno = 1;
4749 }
4750 }
4751
4533 gcc_assert (seqno > 0); 4752 gcc_assert (seqno > 0);
4534 return seqno; 4753 return seqno;
4535 } 4754 }
4536 4755
4537 /* Insert bookkeeping copy of C_EXPS's insn after PLACE_TO_INSERT, assigning 4756 /* Insert bookkeeping copy of C_EXPS's insn after PLACE_TO_INSERT, assigning
4569 sel_print ("Generating bookkeeping insn (%d->%d)\n", e1->src->index, 4788 sel_print ("Generating bookkeeping insn (%d->%d)\n", e1->src->index,
4570 e2->dest->index); 4789 e2->dest->index);
4571 4790
4572 join_point = sel_bb_head (e2->dest); 4791 join_point = sel_bb_head (e2->dest);
4573 place_to_insert = find_place_for_bookkeeping (e1, e2); 4792 place_to_insert = find_place_for_bookkeeping (e1, e2);
4793 if (!place_to_insert)
4794 return NULL;
4574 new_seqno = find_seqno_for_bookkeeping (place_to_insert, join_point); 4795 new_seqno = find_seqno_for_bookkeeping (place_to_insert, join_point);
4575 need_to_exchange_data_sets 4796 need_to_exchange_data_sets
4576 = sel_bb_empty_p (BLOCK_FOR_INSN (place_to_insert)); 4797 = sel_bb_empty_p (BLOCK_FOR_INSN (place_to_insert));
4577 4798
4578 new_insn = emit_bookkeeping_insn (place_to_insert, c_expr, new_seqno); 4799 new_insn = emit_bookkeeping_insn (place_to_insert, c_expr, new_seqno);
4591 4812
4592 stat_bookkeeping_copies++; 4813 stat_bookkeeping_copies++;
4593 return BLOCK_FOR_INSN (new_insn); 4814 return BLOCK_FOR_INSN (new_insn);
4594 } 4815 }
4595 4816
4596 /* Remove from AV_PTR all insns that may need bookkeeping when scheduling 4817 /* Remove from AV_PTR all insns that may need bookkeeping when scheduling
4597 on FENCE, but we are unable to copy them. */ 4818 on FENCE, but we are unable to copy them. */
4598 static void 4819 static void
4599 remove_insns_that_need_bookkeeping (fence_t fence, av_set_t *av_ptr) 4820 remove_insns_that_need_bookkeeping (fence_t fence, av_set_t *av_ptr)
4600 { 4821 {
4601 expr_t expr; 4822 expr_t expr;
4602 av_set_iterator i; 4823 av_set_iterator i;
4603 4824
4604 /* An expression does not need bookkeeping if it is available on all paths 4825 /* An expression does not need bookkeeping if it is available on all paths
4605 from current block to original block and current block dominates 4826 from current block to original block and current block dominates
4606 original block. We check availability on all paths by examining 4827 original block. We check availability on all paths by examining
4607 EXPR_SPEC; this is not equivalent, because it may be positive even 4828 EXPR_SPEC; this is not equivalent, because it may be positive even
4608 if expr is available on all paths (but if expr is not available on 4829 if expr is available on all paths (but if expr is not available on
4609 any path, EXPR_SPEC will be positive). */ 4830 any path, EXPR_SPEC will be positive). */
4610 4831
4611 FOR_EACH_EXPR_1 (expr, i, av_ptr) 4832 FOR_EACH_EXPR_1 (expr, i, av_ptr)
4612 { 4833 {
4613 if (!control_flow_insn_p (EXPR_INSN_RTX (expr)) 4834 if (!control_flow_insn_p (EXPR_INSN_RTX (expr))
4636 (p8) mov [r14]=r23 4857 (p8) mov [r14]=r23
4637 (!p8) jump L1;; 4858 (!p8) jump L1;;
4638 NOTE BASIC BLOCK: 4859 NOTE BASIC BLOCK:
4639 ... 4860 ...
4640 4861
4641 We can schedule jump one cycle earlier, than mov, because they cannot be 4862 We can schedule jump one cycle earlier, than mov, because they cannot be
4642 executed together as their predicates are mutually exclusive. 4863 executed together as their predicates are mutually exclusive.
4643 4864
4644 This is done in this way: first, new fallthrough basic block is created 4865 This is done in this way: first, new fallthrough basic block is created
4645 after jump (it is always can be done, because there already should be a 4866 after jump (it is always can be done, because there already should be a
4646 fallthrough block, where control flow goes in case of predicate being true - 4867 fallthrough block, where control flow goes in case of predicate being true -
4647 in our example; otherwise there should be a dependence between those 4868 in our example; otherwise there should be a dependence between those
4648 instructions and jump and we cannot schedule jump right now); 4869 instructions and jump and we cannot schedule jump right now);
4649 next, all instructions between jump and current scheduling point are moved 4870 next, all instructions between jump and current scheduling point are moved
4650 to this new block. And the result is this: 4871 to this new block. And the result is this:
4651 4872
4652 NOTE BASIC BLOCK: 4873 NOTE BASIC BLOCK:
4653 (!p8) jump L1 <- current scheduling point 4874 (!p8) jump L1 <- current scheduling point
4654 NOTE BASIC BLOCK: <- bb header 4875 NOTE BASIC BLOCK: <- bb header
4730 } 4951 }
4731 4952
4732 /* Remove nops generated during move_op for preventing removal of empty 4953 /* Remove nops generated during move_op for preventing removal of empty
4733 basic blocks. */ 4954 basic blocks. */
4734 static void 4955 static void
4735 remove_temp_moveop_nops (void) 4956 remove_temp_moveop_nops (bool full_tidying)
4736 { 4957 {
4737 int i; 4958 int i;
4738 insn_t insn; 4959 insn_t insn;
4739 4960
4740 for (i = 0; VEC_iterate (insn_t, vec_temp_moveop_nops, i, insn); i++) 4961 for (i = 0; VEC_iterate (insn_t, vec_temp_moveop_nops, i, insn); i++)
4741 { 4962 {
4742 gcc_assert (INSN_NOP_P (insn)); 4963 gcc_assert (INSN_NOP_P (insn));
4743 return_nop_to_pool (insn); 4964 return_nop_to_pool (insn, full_tidying);
4744 } 4965 }
4745 4966
4746 /* Empty the vector. */ 4967 /* Empty the vector. */
4747 if (VEC_length (insn_t, vec_temp_moveop_nops) > 0) 4968 if (VEC_length (insn_t, vec_temp_moveop_nops) > 0)
4748 VEC_block_remove (insn_t, vec_temp_moveop_nops, 0, 4969 VEC_block_remove (insn_t, vec_temp_moveop_nops, 0,
4749 VEC_length (insn_t, vec_temp_moveop_nops)); 4970 VEC_length (insn_t, vec_temp_moveop_nops));
4750 } 4971 }
4751 4972
4752 /* Records the maximal UID before moving up an instruction. Used for 4973 /* Records the maximal UID before moving up an instruction. Used for
4753 distinguishing between bookkeeping copies and original insns. */ 4974 distinguishing between bookkeeping copies and original insns. */
4772 if (EXPR_INSN_RTX (expr) != next) 4993 if (EXPR_INSN_RTX (expr) != next)
4773 av_set_iter_remove (&av_it); 4994 av_set_iter_remove (&av_it);
4774 } 4995 }
4775 } 4996 }
4776 4997
4777 /* Compute available instructions on BNDS. FENCE is the current fence. Write 4998 /* Compute available instructions on BNDS. FENCE is the current fence. Write
4778 the computed set to *AV_VLIW_P. */ 4999 the computed set to *AV_VLIW_P. */
4779 static void 5000 static void
4780 compute_av_set_on_boundaries (fence_t fence, blist_t bnds, av_set_t *av_vliw_p) 5001 compute_av_set_on_boundaries (fence_t fence, blist_t bnds, av_set_t *av_vliw_p)
4781 { 5002 {
4782 if (sched_verbose >= 2) 5003 if (sched_verbose >= 2)
4817 5038
4818 av_set_clear (&BND_AV1 (bnd)); 5039 av_set_clear (&BND_AV1 (bnd));
4819 BND_AV1 (bnd) = av_set_copy (BND_AV (bnd)); 5040 BND_AV1 (bnd) = av_set_copy (BND_AV (bnd));
4820 5041
4821 moveup_set_inside_insn_group (&BND_AV1 (bnd), NULL); 5042 moveup_set_inside_insn_group (&BND_AV1 (bnd), NULL);
4822 5043
4823 av1_copy = av_set_copy (BND_AV1 (bnd)); 5044 av1_copy = av_set_copy (BND_AV1 (bnd));
4824 av_set_union_and_clear (av_vliw_p, &av1_copy, NULL); 5045 av_set_union_and_clear (av_vliw_p, &av1_copy, NULL);
4825 } 5046 }
4826 5047
4827 if (sched_verbose >= 2) 5048 if (sched_verbose >= 2)
4830 dump_av_set (*av_vliw_p); 5051 dump_av_set (*av_vliw_p);
4831 sel_print ("\n"); 5052 sel_print ("\n");
4832 } 5053 }
4833 } 5054 }
4834 5055
4835 /* Calculate the sequential av set on BND corresponding to the EXPR_VLIW 5056 /* Calculate the sequential av set on BND corresponding to the EXPR_VLIW
4836 expression. When FOR_MOVEOP is true, also replace the register of 5057 expression. When FOR_MOVEOP is true, also replace the register of
4837 expressions found with the register from EXPR_VLIW. */ 5058 expressions found with the register from EXPR_VLIW. */
4838 static av_set_t 5059 static av_set_t
4839 find_sequential_best_exprs (bnd_t bnd, expr_t expr_vliw, bool for_moveop) 5060 find_sequential_best_exprs (bnd_t bnd, expr_t expr_vliw, bool for_moveop)
4840 { 5061 {
4841 av_set_t expr_seq = NULL; 5062 av_set_t expr_seq = NULL;
4842 expr_t expr; 5063 expr_t expr;
4843 av_set_iterator i; 5064 av_set_iterator i;
4844 5065
4845 FOR_EACH_EXPR (expr, i, BND_AV (bnd)) 5066 FOR_EACH_EXPR (expr, i, BND_AV (bnd))
4846 { 5067 {
4847 if (equal_after_moveup_path_p (expr, NULL, expr_vliw)) 5068 if (equal_after_moveup_path_p (expr, NULL, expr_vliw))
4848 { 5069 {
4849 if (for_moveop) 5070 if (for_moveop)
4850 { 5071 {
4851 /* The sequential expression has the right form to pass 5072 /* The sequential expression has the right form to pass
4852 to move_op except when renaming happened. Put the 5073 to move_op except when renaming happened. Put the
4853 correct register in EXPR then. */ 5074 correct register in EXPR then. */
4854 if (EXPR_SEPARABLE_P (expr) && REG_P (EXPR_LHS (expr))) 5075 if (EXPR_SEPARABLE_P (expr) && REG_P (EXPR_LHS (expr)))
4855 { 5076 {
4856 if (expr_dest_regno (expr) != expr_dest_regno (expr_vliw)) 5077 if (expr_dest_regno (expr) != expr_dest_regno (expr_vliw))
4857 { 5078 {
4858 replace_dest_with_reg_in_expr (expr, EXPR_LHS (expr_vliw)); 5079 replace_dest_with_reg_in_expr (expr, EXPR_LHS (expr_vliw));
4859 stat_renamed_scheduled++; 5080 stat_renamed_scheduled++;
4860 } 5081 }
4861 /* Also put the correct TARGET_AVAILABLE bit on the expr. 5082 /* Also put the correct TARGET_AVAILABLE bit on the expr.
4862 This is needed when renaming came up with original 5083 This is needed when renaming came up with original
4863 register. */ 5084 register. */
4864 else if (EXPR_TARGET_AVAILABLE (expr) 5085 else if (EXPR_TARGET_AVAILABLE (expr)
4865 != EXPR_TARGET_AVAILABLE (expr_vliw)) 5086 != EXPR_TARGET_AVAILABLE (expr_vliw))
4866 { 5087 {
4867 gcc_assert (EXPR_TARGET_AVAILABLE (expr_vliw) == 1); 5088 gcc_assert (EXPR_TARGET_AVAILABLE (expr_vliw) == 1);
4868 EXPR_TARGET_AVAILABLE (expr) = 1; 5089 EXPR_TARGET_AVAILABLE (expr) = 1;
4869 } 5090 }
4871 if (EXPR_WAS_SUBSTITUTED (expr)) 5092 if (EXPR_WAS_SUBSTITUTED (expr))
4872 stat_substitutions_total++; 5093 stat_substitutions_total++;
4873 } 5094 }
4874 5095
4875 av_set_add (&expr_seq, expr); 5096 av_set_add (&expr_seq, expr);
4876 5097
4877 /* With substitution inside insn group, it is possible 5098 /* With substitution inside insn group, it is possible
4878 that more than one expression in expr_seq will correspond 5099 that more than one expression in expr_seq will correspond
4879 to expr_vliw. In this case, choose one as the attempt to 5100 to expr_vliw. In this case, choose one as the attempt to
4880 move both leads to miscompiles. */ 5101 move both leads to miscompiles. */
4881 break; 5102 break;
4882 } 5103 }
4883 } 5104 }
4884 5105
4886 { 5107 {
4887 sel_print ("Best expression(s) (sequential form): "); 5108 sel_print ("Best expression(s) (sequential form): ");
4888 dump_av_set (expr_seq); 5109 dump_av_set (expr_seq);
4889 sel_print ("\n"); 5110 sel_print ("\n");
4890 } 5111 }
4891 5112
4892 return expr_seq; 5113 return expr_seq;
4893 } 5114 }
4894 5115
4895 5116
4896 /* Move nop to previous block. */ 5117 /* Move nop to previous block. */
4897 static void ATTRIBUTE_UNUSED 5118 static void ATTRIBUTE_UNUSED
4898 move_nop_to_previous_block (insn_t nop, basic_block prev_bb) 5119 move_nop_to_previous_block (insn_t nop, basic_block prev_bb)
4899 { 5120 {
4900 insn_t prev_insn, next_insn, note; 5121 insn_t prev_insn, next_insn, note;
4901 5122
4902 gcc_assert (sel_bb_head_p (nop) 5123 gcc_assert (sel_bb_head_p (nop)
4903 && prev_bb == BLOCK_FOR_INSN (nop)->prev_bb); 5124 && prev_bb == BLOCK_FOR_INSN (nop)->prev_bb);
4904 note = bb_note (BLOCK_FOR_INSN (nop)); 5125 note = bb_note (BLOCK_FOR_INSN (nop));
4905 prev_insn = sel_bb_end (prev_bb); 5126 prev_insn = sel_bb_end (prev_bb);
4906 next_insn = NEXT_INSN (nop); 5127 next_insn = NEXT_INSN (nop);
4907 gcc_assert (prev_insn != NULL_RTX 5128 gcc_assert (prev_insn != NULL_RTX
4931 if (/* If this is not the first insn scheduled. */ 5152 if (/* If this is not the first insn scheduled. */
4932 BND_PTR (bnd)) 5153 BND_PTR (bnd))
4933 { 5154 {
4934 /* Add it after last scheduled. */ 5155 /* Add it after last scheduled. */
4935 place_to_insert = ILIST_INSN (BND_PTR (bnd)); 5156 place_to_insert = ILIST_INSN (BND_PTR (bnd));
5157 if (DEBUG_INSN_P (place_to_insert))
5158 {
5159 ilist_t l = BND_PTR (bnd);
5160 while ((l = ILIST_NEXT (l)) &&
5161 DEBUG_INSN_P (ILIST_INSN (l)))
5162 ;
5163 if (!l)
5164 place_to_insert = NULL;
5165 }
4936 } 5166 }
4937 else 5167 else
5168 place_to_insert = NULL;
5169
5170 if (!place_to_insert)
4938 { 5171 {
4939 /* Add it before BND_TO. The difference is in the 5172 /* Add it before BND_TO. The difference is in the
4940 basic block, where INSN will be added. */ 5173 basic block, where INSN will be added. */
4941 place_to_insert = get_nop_from_pool (BND_TO (bnd)); 5174 place_to_insert = get_nop_from_pool (BND_TO (bnd));
4942 gcc_assert (BLOCK_FOR_INSN (place_to_insert) 5175 gcc_assert (BLOCK_FOR_INSN (place_to_insert)
4944 } 5177 }
4945 5178
4946 return place_to_insert; 5179 return place_to_insert;
4947 } 5180 }
4948 5181
4949 /* Find original instructions for EXPR_SEQ and move it to BND boundary. 5182 /* Find original instructions for EXPR_SEQ and move it to BND boundary.
4950 Return the expression to emit in C_EXPR. */ 5183 Return the expression to emit in C_EXPR. */
4951 static bool 5184 static bool
4952 move_exprs_to_boundary (bnd_t bnd, expr_t expr_vliw, 5185 move_exprs_to_boundary (bnd_t bnd, expr_t expr_vliw,
4953 av_set_t expr_seq, expr_t c_expr) 5186 av_set_t expr_seq, expr_t c_expr)
4954 { 5187 {
4955 bool b, should_move; 5188 bool b, should_move;
4956 unsigned book_uid; 5189 unsigned book_uid;
4957 bitmap_iterator bi; 5190 bitmap_iterator bi;
4964 n_bookkeeping_copies_before_moveop = stat_bookkeeping_copies; 5197 n_bookkeeping_copies_before_moveop = stat_bookkeeping_copies;
4965 max_uid_before_move_op = get_max_uid (); 5198 max_uid_before_move_op = get_max_uid ();
4966 bitmap_clear (current_copies); 5199 bitmap_clear (current_copies);
4967 bitmap_clear (current_originators); 5200 bitmap_clear (current_originators);
4968 5201
4969 b = move_op (BND_TO (bnd), expr_seq, expr_vliw, 5202 b = move_op (BND_TO (bnd), expr_seq, expr_vliw,
4970 get_dest_from_orig_ops (expr_seq), c_expr, &should_move); 5203 get_dest_from_orig_ops (expr_seq), c_expr, &should_move);
4971 5204
4972 /* We should be able to find the expression we've chosen for 5205 /* We should be able to find the expression we've chosen for
4973 scheduling. */ 5206 scheduling. */
4974 gcc_assert (b); 5207 gcc_assert (b);
4975 5208
4976 if (stat_bookkeeping_copies > n_bookkeeping_copies_before_moveop) 5209 if (stat_bookkeeping_copies > n_bookkeeping_copies_before_moveop)
4977 stat_insns_needed_bookkeeping++; 5210 stat_insns_needed_bookkeeping++;
4978 5211
4979 EXECUTE_IF_SET_IN_BITMAP (current_copies, 0, book_uid, bi) 5212 EXECUTE_IF_SET_IN_BITMAP (current_copies, 0, book_uid, bi)
4980 { 5213 {
4981 /* We allocate these bitmaps lazily. */ 5214 /* We allocate these bitmaps lazily. */
4982 if (! INSN_ORIGINATORS_BY_UID (book_uid)) 5215 if (! INSN_ORIGINATORS_BY_UID (book_uid))
4983 INSN_ORIGINATORS_BY_UID (book_uid) = BITMAP_ALLOC (NULL); 5216 INSN_ORIGINATORS_BY_UID (book_uid) = BITMAP_ALLOC (NULL);
4984 5217
4985 bitmap_copy (INSN_ORIGINATORS_BY_UID (book_uid), 5218 bitmap_copy (INSN_ORIGINATORS_BY_UID (book_uid),
4986 current_originators); 5219 current_originators);
4987 } 5220 }
4988 5221
4989 return should_move; 5222 return should_move;
4990 } 5223 }
5001 for (i = 0, p = (unsigned char *) state; i < size; i++) 5234 for (i = 0, p = (unsigned char *) state; i < size; i++)
5002 sel_print (" %d", p[i]); 5235 sel_print (" %d", p[i]);
5003 sel_print ("\n"); 5236 sel_print ("\n");
5004 } 5237 }
5005 5238
5006 /* Advance state on FENCE with INSN. Return true if INSN is 5239 /* Advance state on FENCE with INSN. Return true if INSN is
5007 an ASM, and we should advance state once more. */ 5240 an ASM, and we should advance state once more. */
5008 static bool 5241 static bool
5009 advance_state_on_fence (fence_t fence, insn_t insn) 5242 advance_state_on_fence (fence_t fence, insn_t insn)
5010 { 5243 {
5011 bool asm_p; 5244 bool asm_p;
5012 5245
5013 if (recog_memoized (insn) >= 0) 5246 if (recog_memoized (insn) >= 0)
5014 { 5247 {
5015 int res; 5248 int res;
5016 state_t temp_state = alloca (dfa_state_size); 5249 state_t temp_state = alloca (dfa_state_size);
5017 5250
5018 gcc_assert (!INSN_ASM_P (insn)); 5251 gcc_assert (!INSN_ASM_P (insn));
5019 asm_p = false; 5252 asm_p = false;
5020 5253
5021 memcpy (temp_state, FENCE_STATE (fence), dfa_state_size); 5254 memcpy (temp_state, FENCE_STATE (fence), dfa_state_size);
5022 res = state_transition (FENCE_STATE (fence), insn); 5255 res = state_transition (FENCE_STATE (fence), insn);
5028 5261
5029 /* We should never issue more than issue_rate insns. */ 5262 /* We should never issue more than issue_rate insns. */
5030 if (FENCE_ISSUED_INSNS (fence) > issue_rate) 5263 if (FENCE_ISSUED_INSNS (fence) > issue_rate)
5031 gcc_unreachable (); 5264 gcc_unreachable ();
5032 } 5265 }
5033 } 5266 }
5034 else 5267 else
5035 { 5268 {
5036 /* This could be an ASM insn which we'd like to schedule 5269 /* This could be an ASM insn which we'd like to schedule
5037 on the next cycle. */ 5270 on the next cycle. */
5038 asm_p = INSN_ASM_P (insn); 5271 asm_p = INSN_ASM_P (insn);
5039 if (!FENCE_STARTS_CYCLE_P (fence) && asm_p) 5272 if (!FENCE_STARTS_CYCLE_P (fence) && asm_p)
5040 advance_one_cycle (fence); 5273 advance_one_cycle (fence);
5041 } 5274 }
5042 5275
5043 if (sched_verbose >= 2) 5276 if (sched_verbose >= 2)
5044 debug_state (FENCE_STATE (fence)); 5277 debug_state (FENCE_STATE (fence));
5045 FENCE_STARTS_CYCLE_P (fence) = 0; 5278 if (!DEBUG_INSN_P (insn))
5279 FENCE_STARTS_CYCLE_P (fence) = 0;
5046 return asm_p; 5280 return asm_p;
5047 } 5281 }
5048 5282
5049 /* Update FENCE on which INSN was scheduled and this INSN, too. NEED_STALL 5283 /* Update FENCE on which INSN was scheduled and this INSN, too. NEED_STALL
5050 is nonzero if we need to stall after issuing INSN. */ 5284 is nonzero if we need to stall after issuing INSN. */
5051 static void 5285 static void
5052 update_fence_and_insn (fence_t fence, insn_t insn, int need_stall) 5286 update_fence_and_insn (fence_t fence, insn_t insn, int need_stall)
5053 { 5287 {
5054 bool asm_p; 5288 bool asm_p;
5055 5289
5056 /* First, reflect that something is scheduled on this fence. */ 5290 /* First, reflect that something is scheduled on this fence. */
5057 asm_p = advance_state_on_fence (fence, insn); 5291 asm_p = advance_state_on_fence (fence, insn);
5058 FENCE_LAST_SCHEDULED_INSN (fence) = insn; 5292 FENCE_LAST_SCHEDULED_INSN (fence) = insn;
5059 VEC_safe_push (rtx, gc, FENCE_EXECUTING_INSNS (fence), insn); 5293 VEC_safe_push (rtx, gc, FENCE_EXECUTING_INSNS (fence), insn);
5060 if (SCHED_GROUP_P (insn)) 5294 if (SCHED_GROUP_P (insn))
5074 EXPR_ORIG_SCHED_CYCLE (INSN_EXPR (insn)) = FENCE_CYCLE (fence); 5308 EXPR_ORIG_SCHED_CYCLE (INSN_EXPR (insn)) = FENCE_CYCLE (fence);
5075 INSN_AFTER_STALL_P (insn) = FENCE_AFTER_STALL_P (fence); 5309 INSN_AFTER_STALL_P (insn) = FENCE_AFTER_STALL_P (fence);
5076 INSN_SCHED_CYCLE (insn) = FENCE_CYCLE (fence); 5310 INSN_SCHED_CYCLE (insn) = FENCE_CYCLE (fence);
5077 5311
5078 /* This does not account for adjust_cost hooks, just add the biggest 5312 /* This does not account for adjust_cost hooks, just add the biggest
5079 constant the hook may add to the latency. TODO: make this 5313 constant the hook may add to the latency. TODO: make this
5080 a target dependent constant. */ 5314 a target dependent constant. */
5081 INSN_READY_CYCLE (insn) 5315 INSN_READY_CYCLE (insn)
5082 = INSN_SCHED_CYCLE (insn) + (INSN_CODE (insn) < 0 5316 = INSN_SCHED_CYCLE (insn) + (INSN_CODE (insn) < 0
5083 ? 1 5317 ? 1
5084 : maximal_insn_latency (insn) + 1); 5318 : maximal_insn_latency (insn) + 1);
5085 5319
5086 /* Change these fields last, as they're used above. */ 5320 /* Change these fields last, as they're used above. */
5087 FENCE_AFTER_STALL_P (fence) = 0; 5321 FENCE_AFTER_STALL_P (fence) = 0;
5088 if (asm_p || need_stall) 5322 if (asm_p || need_stall)
5089 advance_one_cycle (fence); 5323 advance_one_cycle (fence);
5090 5324
5091 /* Indicate that we've scheduled something on this fence. */ 5325 /* Indicate that we've scheduled something on this fence. */
5092 FENCE_SCHEDULED_P (fence) = true; 5326 FENCE_SCHEDULED_P (fence) = true;
5093 scheduled_something_on_previous_fence = true; 5327 scheduled_something_on_previous_fence = true;
5094 5328
5095 /* Print debug information when insn's fields are updated. */ 5329 /* Print debug information when insn's fields are updated. */
5099 dump_insn_1 (insn, 1); 5333 dump_insn_1 (insn, 1);
5100 sel_print ("\n"); 5334 sel_print ("\n");
5101 } 5335 }
5102 } 5336 }
5103 5337
5104 /* Update boundary BND with INSN, remove the old boundary from 5338 /* Update boundary BND (and, if needed, FENCE) with INSN, remove the
5105 BNDSP, add new boundaries to BNDS_TAIL_P and return it. */ 5339 old boundary from BNDSP, add new boundaries to BNDS_TAIL_P and
5340 return it. */
5106 static blist_t * 5341 static blist_t *
5107 update_boundaries (bnd_t bnd, insn_t insn, blist_t *bndsp, 5342 update_boundaries (fence_t fence, bnd_t bnd, insn_t insn, blist_t *bndsp,
5108 blist_t *bnds_tailp) 5343 blist_t *bnds_tailp)
5109 { 5344 {
5110 succ_iterator si; 5345 succ_iterator si;
5111 insn_t succ; 5346 insn_t succ;
5112 5347
5113 advance_deps_context (BND_DC (bnd), insn); 5348 advance_deps_context (BND_DC (bnd), insn);
5114 FOR_EACH_SUCC_1 (succ, si, insn, 5349 FOR_EACH_SUCC_1 (succ, si, insn,
5115 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS) 5350 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
5116 { 5351 {
5117 ilist_t ptr = ilist_copy (BND_PTR (bnd)); 5352 ilist_t ptr = ilist_copy (BND_PTR (bnd));
5118 5353
5119 ilist_add (&ptr, insn); 5354 ilist_add (&ptr, insn);
5355
5356 if (DEBUG_INSN_P (insn) && sel_bb_end_p (insn)
5357 && is_ineligible_successor (succ, ptr))
5358 {
5359 ilist_clear (&ptr);
5360 continue;
5361 }
5362
5363 if (FENCE_INSN (fence) == insn && !sel_bb_end_p (insn))
5364 {
5365 if (sched_verbose >= 9)
5366 sel_print ("Updating fence insn from %i to %i\n",
5367 INSN_UID (insn), INSN_UID (succ));
5368 FENCE_INSN (fence) = succ;
5369 }
5120 blist_add (bnds_tailp, succ, ptr, BND_DC (bnd)); 5370 blist_add (bnds_tailp, succ, ptr, BND_DC (bnd));
5121 bnds_tailp = &BLIST_NEXT (*bnds_tailp); 5371 bnds_tailp = &BLIST_NEXT (*bnds_tailp);
5122 } 5372 }
5123 5373
5124 blist_remove (bndsp); 5374 blist_remove (bndsp);
5125 return bnds_tailp; 5375 return bnds_tailp;
5126 } 5376 }
5127 5377
5128 /* Schedule EXPR_VLIW on BND. Return the insn emitted. */ 5378 /* Schedule EXPR_VLIW on BND. Return the insn emitted. */
5136 bool should_move; 5386 bool should_move;
5137 5387
5138 expr_seq = find_sequential_best_exprs (bnd, expr_vliw, true); 5388 expr_seq = find_sequential_best_exprs (bnd, expr_vliw, true);
5139 5389
5140 /* In case of scheduling a jump skipping some other instructions, 5390 /* In case of scheduling a jump skipping some other instructions,
5141 prepare CFG. After this, jump is at the boundary and can be 5391 prepare CFG. After this, jump is at the boundary and can be
5142 scheduled as usual insn by MOVE_OP. */ 5392 scheduled as usual insn by MOVE_OP. */
5143 if (vinsn_cond_branch_p (EXPR_VINSN (expr_vliw))) 5393 if (vinsn_cond_branch_p (EXPR_VINSN (expr_vliw)))
5144 { 5394 {
5145 insn = EXPR_INSN_RTX (expr_vliw); 5395 insn = EXPR_INSN_RTX (expr_vliw);
5146 5396
5147 /* Speculative jumps are not handled. */ 5397 /* Speculative jumps are not handled. */
5148 if (insn != BND_TO (bnd) 5398 if (insn != BND_TO (bnd)
5149 && !sel_insn_is_speculation_check (insn)) 5399 && !sel_insn_is_speculation_check (insn))
5150 move_cond_jump (insn, bnd); 5400 move_cond_jump (insn, bnd);
5151 } 5401 }
5152 5402
5153 /* Find a place for C_EXPR to schedule. */ 5403 /* Find a place for C_EXPR to schedule. */
5154 place_to_insert = prepare_place_to_insert (bnd); 5404 place_to_insert = prepare_place_to_insert (bnd);
5155 should_move = move_exprs_to_boundary (bnd, expr_vliw, expr_seq, c_expr); 5405 should_move = move_exprs_to_boundary (bnd, expr_vliw, expr_seq, c_expr);
5156 clear_expr (c_expr); 5406 clear_expr (c_expr);
5157 5407
5158 /* Add the instruction. The corner case to care about is when 5408 /* Add the instruction. The corner case to care about is when
5159 the expr_seq set has more than one expr, and we chose the one that 5409 the expr_seq set has more than one expr, and we chose the one that
5160 is not equal to expr_vliw. Then expr_vliw may be insn in stream, and 5410 is not equal to expr_vliw. Then expr_vliw may be insn in stream, and
5161 we can't use it. Generate the new vinsn. */ 5411 we can't use it. Generate the new vinsn. */
5162 if (INSN_IN_STREAM_P (EXPR_INSN_RTX (expr_vliw))) 5412 if (INSN_IN_STREAM_P (EXPR_INSN_RTX (expr_vliw)))
5163 { 5413 {
5164 vinsn_t vinsn_new; 5414 vinsn_t vinsn_new;
5165 5415
5166 vinsn_new = vinsn_copy (EXPR_VINSN (expr_vliw), false); 5416 vinsn_new = vinsn_copy (EXPR_VINSN (expr_vliw), false);
5167 change_vinsn_in_expr (expr_vliw, vinsn_new); 5417 change_vinsn_in_expr (expr_vliw, vinsn_new);
5168 should_move = false; 5418 should_move = false;
5169 } 5419 }
5170 if (should_move) 5420 if (should_move)
5171 insn = sel_move_insn (expr_vliw, seqno, place_to_insert); 5421 insn = sel_move_insn (expr_vliw, seqno, place_to_insert);
5172 else 5422 else
5173 insn = emit_insn_from_expr_after (expr_vliw, NULL, seqno, 5423 insn = emit_insn_from_expr_after (expr_vliw, NULL, seqno,
5174 place_to_insert); 5424 place_to_insert);
5175 5425
5176 /* Return the nops generated for preserving of data sets back 5426 /* Return the nops generated for preserving of data sets back
5177 into pool. */ 5427 into pool. */
5178 if (INSN_NOP_P (place_to_insert)) 5428 if (INSN_NOP_P (place_to_insert))
5179 return_nop_to_pool (place_to_insert); 5429 return_nop_to_pool (place_to_insert, !DEBUG_INSN_P (insn));
5180 remove_temp_moveop_nops (); 5430 remove_temp_moveop_nops (!DEBUG_INSN_P (insn));
5181 5431
5182 av_set_clear (&expr_seq); 5432 av_set_clear (&expr_seq);
5183 5433
5184 /* Save the expression scheduled so to reset target availability if we'll 5434 /* Save the expression scheduled so to reset target availability if we'll
5185 meet it later on the same fence. */ 5435 meet it later on the same fence. */
5186 if (EXPR_WAS_RENAMED (expr_vliw)) 5436 if (EXPR_WAS_RENAMED (expr_vliw))
5187 vinsn_vec_add (&vec_target_unavailable_vinsns, INSN_EXPR (insn)); 5437 vinsn_vec_add (&vec_target_unavailable_vinsns, INSN_EXPR (insn));
5188 5438
5189 /* Check that the recent movement didn't destroyed loop 5439 /* Check that the recent movement didn't destroyed loop
5197 /* Stall for N cycles on FENCE. */ 5447 /* Stall for N cycles on FENCE. */
5198 static void 5448 static void
5199 stall_for_cycles (fence_t fence, int n) 5449 stall_for_cycles (fence_t fence, int n)
5200 { 5450 {
5201 int could_more; 5451 int could_more;
5202 5452
5203 could_more = n > 1 || FENCE_ISSUED_INSNS (fence) < issue_rate; 5453 could_more = n > 1 || FENCE_ISSUED_INSNS (fence) < issue_rate;
5204 while (n--) 5454 while (n--)
5205 advance_one_cycle (fence); 5455 advance_one_cycle (fence);
5206 if (could_more) 5456 if (could_more)
5207 FENCE_AFTER_STALL_P (fence) = 1; 5457 FENCE_AFTER_STALL_P (fence) = 1;
5208 } 5458 }
5209 5459
5210 /* Gather a parallel group of insns at FENCE and assign their seqno 5460 /* Gather a parallel group of insns at FENCE and assign their seqno
5211 to SEQNO. All scheduled insns are gathered in SCHEDULED_INSNS_TAILPP 5461 to SEQNO. All scheduled insns are gathered in SCHEDULED_INSNS_TAILPP
5212 list for later recalculation of seqnos. */ 5462 list for later recalculation of seqnos. */
5213 static void 5463 static void
5214 fill_insns (fence_t fence, int seqno, ilist_t **scheduled_insns_tailpp) 5464 fill_insns (fence_t fence, int seqno, ilist_t **scheduled_insns_tailpp)
5215 { 5465 {
5216 blist_t bnds = NULL, *bnds_tailp; 5466 blist_t bnds = NULL, *bnds_tailp;
5217 av_set_t av_vliw = NULL; 5467 av_set_t av_vliw = NULL;
5218 insn_t insn = FENCE_INSN (fence); 5468 insn_t insn = FENCE_INSN (fence);
5219 5469
5220 if (sched_verbose >= 2) 5470 if (sched_verbose >= 2)
5221 sel_print ("Starting fill_insns for insn %d, cycle %d\n", 5471 sel_print ("Starting fill_insns for insn %d, cycle %d\n",
5222 INSN_UID (insn), FENCE_CYCLE (fence)); 5472 INSN_UID (insn), FENCE_CYCLE (fence));
5223 5473
5224 blist_add (&bnds, insn, NULL, FENCE_DC (fence)); 5474 blist_add (&bnds, insn, NULL, FENCE_DC (fence));
5225 bnds_tailp = &BLIST_NEXT (bnds); 5475 bnds_tailp = &BLIST_NEXT (bnds);
5226 set_target_context (FENCE_TC (fence)); 5476 set_target_context (FENCE_TC (fence));
5233 expr_t expr_vliw; 5483 expr_t expr_vliw;
5234 int need_stall; 5484 int need_stall;
5235 int was_stall = 0, scheduled_insns = 0, stall_iterations = 0; 5485 int was_stall = 0, scheduled_insns = 0, stall_iterations = 0;
5236 int max_insns = pipelining_p ? issue_rate : 2 * issue_rate; 5486 int max_insns = pipelining_p ? issue_rate : 2 * issue_rate;
5237 int max_stall = pipelining_p ? 1 : 3; 5487 int max_stall = pipelining_p ? 1 : 3;
5238 5488 bool last_insn_was_debug = false;
5489 bool was_debug_bb_end_p = false;
5490
5239 compute_av_set_on_boundaries (fence, bnds, &av_vliw); 5491 compute_av_set_on_boundaries (fence, bnds, &av_vliw);
5240 remove_insns_that_need_bookkeeping (fence, &av_vliw); 5492 remove_insns_that_need_bookkeeping (fence, &av_vliw);
5241 remove_insns_for_debug (bnds, &av_vliw); 5493 remove_insns_for_debug (bnds, &av_vliw);
5242 5494
5243 /* Return early if we have nothing to schedule. */ 5495 /* Return early if we have nothing to schedule. */
5267 break; 5519 break;
5268 } 5520 }
5269 } 5521 }
5270 } 5522 }
5271 while (! expr_vliw && need_stall); 5523 while (! expr_vliw && need_stall);
5272 5524
5273 /* Now either we've selected expr_vliw or we have nothing to schedule. */ 5525 /* Now either we've selected expr_vliw or we have nothing to schedule. */
5274 if (!expr_vliw) 5526 if (!expr_vliw)
5275 { 5527 {
5276 av_set_clear (&av_vliw); 5528 av_set_clear (&av_vliw);
5277 break; 5529 break;
5279 5531
5280 bndsp = &bnds; 5532 bndsp = &bnds;
5281 bnds_tailp1 = bnds_tailp; 5533 bnds_tailp1 = bnds_tailp;
5282 5534
5283 do 5535 do
5284 /* This code will be executed only once until we'd have several 5536 /* This code will be executed only once until we'd have several
5285 boundaries per fence. */ 5537 boundaries per fence. */
5286 { 5538 {
5287 bnd_t bnd = BLIST_BND (*bndsp); 5539 bnd_t bnd = BLIST_BND (*bndsp);
5288 5540
5289 if (!av_set_is_in_p (BND_AV1 (bnd), EXPR_VINSN (expr_vliw))) 5541 if (!av_set_is_in_p (BND_AV1 (bnd), EXPR_VINSN (expr_vliw)))
5290 { 5542 {
5291 bndsp = &BLIST_NEXT (*bndsp); 5543 bndsp = &BLIST_NEXT (*bndsp);
5292 continue; 5544 continue;
5293 } 5545 }
5294 5546
5295 insn = schedule_expr_on_boundary (bnd, expr_vliw, seqno); 5547 insn = schedule_expr_on_boundary (bnd, expr_vliw, seqno);
5548 last_insn_was_debug = DEBUG_INSN_P (insn);
5549 if (last_insn_was_debug)
5550 was_debug_bb_end_p = (insn == BND_TO (bnd) && sel_bb_end_p (insn));
5296 update_fence_and_insn (fence, insn, need_stall); 5551 update_fence_and_insn (fence, insn, need_stall);
5297 bnds_tailp = update_boundaries (bnd, insn, bndsp, bnds_tailp); 5552 bnds_tailp = update_boundaries (fence, bnd, insn, bndsp, bnds_tailp);
5298 5553
5299 /* Add insn to the list of scheduled on this cycle instructions. */ 5554 /* Add insn to the list of scheduled on this cycle instructions. */
5300 ilist_add (*scheduled_insns_tailpp, insn); 5555 ilist_add (*scheduled_insns_tailpp, insn);
5301 *scheduled_insns_tailpp = &ILIST_NEXT (**scheduled_insns_tailpp); 5556 *scheduled_insns_tailpp = &ILIST_NEXT (**scheduled_insns_tailpp);
5302 } 5557 }
5303 while (*bndsp != *bnds_tailp1); 5558 while (*bndsp != *bnds_tailp1);
5304 5559
5305 av_set_clear (&av_vliw); 5560 av_set_clear (&av_vliw);
5306 scheduled_insns++; 5561 if (!last_insn_was_debug)
5562 scheduled_insns++;
5307 5563
5308 /* We currently support information about candidate blocks only for 5564 /* We currently support information about candidate blocks only for
5309 one 'target_bb' block. Hence we can't schedule after jump insn, 5565 one 'target_bb' block. Hence we can't schedule after jump insn,
5310 as this will bring two boundaries and, hence, necessity to handle 5566 as this will bring two boundaries and, hence, necessity to handle
5311 information for two or more blocks concurrently. */ 5567 information for two or more blocks concurrently. */
5312 if (sel_bb_end_p (insn) 5568 if ((last_insn_was_debug ? was_debug_bb_end_p : sel_bb_end_p (insn))
5313 || (was_stall 5569 || (was_stall
5314 && (was_stall >= max_stall 5570 && (was_stall >= max_stall
5315 || scheduled_insns >= max_insns))) 5571 || scheduled_insns >= max_insns)))
5316 break; 5572 break;
5317 } 5573 }
5318 while (bnds); 5574 while (bnds);
5319 5575
5320 gcc_assert (!FENCE_BNDS (fence)); 5576 gcc_assert (!FENCE_BNDS (fence));
5321 5577
5322 /* Update boundaries of the FENCE. */ 5578 /* Update boundaries of the FENCE. */
5323 while (bnds) 5579 while (bnds)
5324 { 5580 {
5325 ilist_t ptr = BND_PTR (BLIST_BND (bnds)); 5581 ilist_t ptr = BND_PTR (BLIST_BND (bnds));
5326 5582
5329 insn = ILIST_INSN (ptr); 5585 insn = ILIST_INSN (ptr);
5330 5586
5331 if (!ilist_is_in_p (FENCE_BNDS (fence), insn)) 5587 if (!ilist_is_in_p (FENCE_BNDS (fence), insn))
5332 ilist_add (&FENCE_BNDS (fence), insn); 5588 ilist_add (&FENCE_BNDS (fence), insn);
5333 } 5589 }
5334 5590
5335 blist_remove (&bnds); 5591 blist_remove (&bnds);
5336 } 5592 }
5337 5593
5338 /* Update target context on the fence. */ 5594 /* Update target context on the fence. */
5339 reset_target_context (FENCE_TC (fence), false); 5595 reset_target_context (FENCE_TC (fence), false);
5375 av_set_iterator i; 5631 av_set_iterator i;
5376 av_set_t old_av_set = NULL; 5632 av_set_t old_av_set = NULL;
5377 expr_t cur_expr; 5633 expr_t cur_expr;
5378 rtx bb_end = sel_bb_end (book_block); 5634 rtx bb_end = sel_bb_end (book_block);
5379 5635
5380 /* First, get correct liveness in the bookkeeping block. The problem is 5636 /* First, get correct liveness in the bookkeeping block. The problem is
5381 the range between the bookeeping insn and the end of block. */ 5637 the range between the bookeeping insn and the end of block. */
5382 update_liveness_on_insn (bb_end); 5638 update_liveness_on_insn (bb_end);
5383 if (control_flow_insn_p (bb_end)) 5639 if (control_flow_insn_p (bb_end))
5384 update_liveness_on_insn (PREV_INSN (bb_end)); 5640 update_liveness_on_insn (PREV_INSN (bb_end));
5385 5641
5388 actually blocked from moving up with the bookkeeping we create here. */ 5644 actually blocked from moving up with the bookkeeping we create here. */
5389 if (AV_SET_VALID_P (sel_bb_head (book_block))) 5645 if (AV_SET_VALID_P (sel_bb_head (book_block)))
5390 { 5646 {
5391 old_av_set = av_set_copy (BB_AV_SET (book_block)); 5647 old_av_set = av_set_copy (BB_AV_SET (book_block));
5392 update_data_sets (sel_bb_head (book_block)); 5648 update_data_sets (sel_bb_head (book_block));
5393 5649
5394 /* Traverse all the expressions in the old av_set and check whether 5650 /* Traverse all the expressions in the old av_set and check whether
5395 CUR_EXPR is in new AV_SET. */ 5651 CUR_EXPR is in new AV_SET. */
5396 FOR_EACH_EXPR (cur_expr, i, old_av_set) 5652 FOR_EACH_EXPR (cur_expr, i, old_av_set)
5397 { 5653 {
5398 expr_t new_expr = av_set_lookup (BB_AV_SET (book_block), 5654 expr_t new_expr = av_set_lookup (BB_AV_SET (book_block),
5399 EXPR_VINSN (cur_expr)); 5655 EXPR_VINSN (cur_expr));
5400 5656
5401 if (! new_expr 5657 if (! new_expr
5402 /* In this case, we can just turn off the E_T_A bit, but we can't 5658 /* In this case, we can just turn off the E_T_A bit, but we can't
5403 represent this information with the current vector. */ 5659 represent this information with the current vector. */
5404 || EXPR_TARGET_AVAILABLE (new_expr) 5660 || EXPR_TARGET_AVAILABLE (new_expr)
5405 != EXPR_TARGET_AVAILABLE (cur_expr)) 5661 != EXPR_TARGET_AVAILABLE (cur_expr))
5406 /* Unfortunately, the below code could be also fired up on 5662 /* Unfortunately, the below code could be also fired up on
5407 separable insns. 5663 separable insns.
5408 FIXME: add an example of how this could happen. */ 5664 FIXME: add an example of how this could happen. */
5409 vinsn_vec_add (&vec_bookkeeping_blocked_vinsns, cur_expr); 5665 vinsn_vec_add (&vec_bookkeeping_blocked_vinsns, cur_expr);
5411 5667
5412 av_set_clear (&old_av_set); 5668 av_set_clear (&old_av_set);
5413 } 5669 }
5414 } 5670 }
5415 5671
5416 /* The main effect of this function is that sparams->c_expr is merged 5672 /* The main effect of this function is that sparams->c_expr is merged
5417 with (or copied to) lparams->c_expr_merged. If there's only one successor, 5673 with (or copied to) lparams->c_expr_merged. If there's only one successor,
5418 we avoid merging anything by copying sparams->c_expr to lparams->c_expr_merged. 5674 we avoid merging anything by copying sparams->c_expr to lparams->c_expr_merged.
5419 lparams->c_expr_merged is copied back to sparams->c_expr after all 5675 lparams->c_expr_merged is copied back to sparams->c_expr after all
5420 successors has been traversed. lparams->c_expr_local is an expr allocated 5676 successors has been traversed. lparams->c_expr_local is an expr allocated
5421 on stack in the caller function, and is used if there is more than one 5677 on stack in the caller function, and is used if there is more than one
5422 successor. 5678 successor.
5423 5679
5424 SUCC is one of the SUCCS_NORMAL successors of INSN, 5680 SUCC is one of the SUCCS_NORMAL successors of INSN,
5425 MOVEOP_DRV_CALL_RES is the result of call code_motion_path_driver on succ, 5681 MOVEOP_DRV_CALL_RES is the result of call code_motion_path_driver on succ,
5426 LPARAMS and STATIC_PARAMS contain the parameters described above. */ 5682 LPARAMS and STATIC_PARAMS contain the parameters described above. */
5427 static void 5683 static void
5428 move_op_merge_succs (insn_t insn ATTRIBUTE_UNUSED, 5684 move_op_merge_succs (insn_t insn ATTRIBUTE_UNUSED,
5429 insn_t succ ATTRIBUTE_UNUSED, 5685 insn_t succ ATTRIBUTE_UNUSED,
5430 int moveop_drv_call_res, 5686 int moveop_drv_call_res,
5431 cmpd_local_params_p lparams, void *static_params) 5687 cmpd_local_params_p lparams, void *static_params)
5432 { 5688 {
5433 moveop_static_params_p sparams = (moveop_static_params_p) static_params; 5689 moveop_static_params_p sparams = (moveop_static_params_p) static_params;
5434 5690
5435 /* Nothing to do, if original expr wasn't found below. */ 5691 /* Nothing to do, if original expr wasn't found below. */
5450 speculation success probability and only then with the 5706 speculation success probability and only then with the
5451 good probability. As a result the insn will get epsilon 5707 good probability. As a result the insn will get epsilon
5452 probability and will never be scheduled because of 5708 probability and will never be scheduled because of
5453 weakness_cutoff in find_best_expr. 5709 weakness_cutoff in find_best_expr.
5454 5710
5455 We call merge_expr_data here instead of merge_expr 5711 We call merge_expr_data here instead of merge_expr
5456 because due to speculation C_EXPR and X may have the 5712 because due to speculation C_EXPR and X may have the
5457 same insns with different speculation types. And as of 5713 same insns with different speculation types. And as of
5458 now such insns are considered non-equal. 5714 now such insns are considered non-equal.
5459 5715
5460 However, EXPR_SCHED_TIMES is different -- we must get 5716 However, EXPR_SCHED_TIMES is different -- we must get
5461 SCHED_TIMES from a real insn, not a bookkeeping copy. 5717 SCHED_TIMES from a real insn, not a bookkeeping copy.
5462 We force this here. Instead, we may consider merging 5718 We force this here. Instead, we may consider merging
5463 SCHED_TIMES to the maximum instead of minimum in the 5719 SCHED_TIMES to the maximum instead of minimum in the
5464 below function. */ 5720 below function. */
5465 int old_times = EXPR_SCHED_TIMES (lparams->c_expr_merged); 5721 int old_times = EXPR_SCHED_TIMES (lparams->c_expr_merged);
5466 5722
5467 merge_expr_data (lparams->c_expr_merged, sparams->c_expr, NULL); 5723 merge_expr_data (lparams->c_expr_merged, sparams->c_expr, NULL);
5468 if (EXPR_SCHED_TIMES (sparams->c_expr) == 0) 5724 if (EXPR_SCHED_TIMES (sparams->c_expr) == 0)
5477 SUCC is one of the SUCCS_NORMAL successors of INSN, 5733 SUCC is one of the SUCCS_NORMAL successors of INSN,
5478 MOVEOP_DRV_CALL_RES is the result of call code_motion_path_driver on succ or 0, 5734 MOVEOP_DRV_CALL_RES is the result of call code_motion_path_driver on succ or 0,
5479 if SUCC is one of SUCCS_BACK or SUCCS_OUT. 5735 if SUCC is one of SUCCS_BACK or SUCCS_OUT.
5480 STATIC_PARAMS contain USED_REGS set. */ 5736 STATIC_PARAMS contain USED_REGS set. */
5481 static void 5737 static void
5482 fur_merge_succs (insn_t insn ATTRIBUTE_UNUSED, insn_t succ, 5738 fur_merge_succs (insn_t insn ATTRIBUTE_UNUSED, insn_t succ,
5483 int moveop_drv_call_res, 5739 int moveop_drv_call_res,
5484 cmpd_local_params_p lparams ATTRIBUTE_UNUSED, 5740 cmpd_local_params_p lparams ATTRIBUTE_UNUSED,
5485 void *static_params) 5741 void *static_params)
5486 { 5742 {
5487 regset succ_live; 5743 regset succ_live;
5488 fur_static_params_p sparams = (fur_static_params_p) static_params; 5744 fur_static_params_p sparams = (fur_static_params_p) static_params;
5489 5745
5490 /* Here we compute live regsets only for branches that do not lie 5746 /* Here we compute live regsets only for branches that do not lie
5491 on the code motion paths. These branches correspond to value 5747 on the code motion paths. These branches correspond to value
5492 MOVEOP_DRV_CALL_RES==0 and include SUCCS_BACK and SUCCS_OUT, though 5748 MOVEOP_DRV_CALL_RES==0 and include SUCCS_BACK and SUCCS_OUT, though
5493 for such branches code_motion_path_driver is not called. */ 5749 for such branches code_motion_path_driver is not called. */
5494 if (moveop_drv_call_res != 0) 5750 if (moveop_drv_call_res != 0)
5495 return; 5751 return;
5496 5752
5505 5761
5506 /* This function is called after the last successor. Copies LP->C_EXPR_MERGED 5762 /* This function is called after the last successor. Copies LP->C_EXPR_MERGED
5507 into SP->CEXPR. */ 5763 into SP->CEXPR. */
5508 static void 5764 static void
5509 move_op_after_merge_succs (cmpd_local_params_p lp, void *sparams) 5765 move_op_after_merge_succs (cmpd_local_params_p lp, void *sparams)
5510 { 5766 {
5511 moveop_static_params_p sp = (moveop_static_params_p) sparams; 5767 moveop_static_params_p sp = (moveop_static_params_p) sparams;
5512 5768
5513 sp->c_expr = lp->c_expr_merged; 5769 sp->c_expr = lp->c_expr_merged;
5514 } 5770 }
5515 5771
5526 { 5782 {
5527 /* Note that original block needs to be rescheduled, as we pulled an 5783 /* Note that original block needs to be rescheduled, as we pulled an
5528 instruction out of it. */ 5784 instruction out of it. */
5529 if (INSN_SCHED_TIMES (insn) > 0) 5785 if (INSN_SCHED_TIMES (insn) > 0)
5530 bitmap_set_bit (blocks_to_reschedule, BLOCK_FOR_INSN (insn)->index); 5786 bitmap_set_bit (blocks_to_reschedule, BLOCK_FOR_INSN (insn)->index);
5531 else if (INSN_UID (insn) < first_emitted_uid) 5787 else if (INSN_UID (insn) < first_emitted_uid && !DEBUG_INSN_P (insn))
5532 num_insns_scheduled++; 5788 num_insns_scheduled++;
5533 } 5789 }
5534 else 5790 else
5535 bitmap_clear_bit (current_copies, INSN_UID (insn)); 5791 bitmap_clear_bit (current_copies, INSN_UID (insn));
5536 5792
5540 For expr we must make insn look like "INSN_REG (insn) := c_expr". */ 5796 For expr we must make insn look like "INSN_REG (insn) := c_expr". */
5541 if (INSN_UID (insn) > max_uid_before_move_op) 5797 if (INSN_UID (insn) > max_uid_before_move_op)
5542 stat_bookkeeping_copies--; 5798 stat_bookkeeping_copies--;
5543 } 5799 }
5544 5800
5545 /* Emit a register-register copy for INSN if needed. Return true if 5801 /* Emit a register-register copy for INSN if needed. Return true if
5546 emitted one. PARAMS is the move_op static parameters. */ 5802 emitted one. PARAMS is the move_op static parameters. */
5547 static bool 5803 static bool
5548 maybe_emit_renaming_copy (rtx insn, 5804 maybe_emit_renaming_copy (rtx insn,
5549 moveop_static_params_p params) 5805 moveop_static_params_p params)
5550 { 5806 {
5551 bool insn_emitted = false; 5807 bool insn_emitted = false;
5552 rtx cur_reg = expr_dest_reg (params->c_expr); 5808 rtx cur_reg = expr_dest_reg (params->c_expr);
5553 5809
5557 that expr is not original operation's dest reg, substitute 5813 that expr is not original operation's dest reg, substitute
5558 operation's right hand side with the register chosen. */ 5814 operation's right hand side with the register chosen. */
5559 if (cur_reg != NULL_RTX && REGNO (params->dest) != REGNO (cur_reg)) 5815 if (cur_reg != NULL_RTX && REGNO (params->dest) != REGNO (cur_reg))
5560 { 5816 {
5561 insn_t reg_move_insn, reg_move_insn_rtx; 5817 insn_t reg_move_insn, reg_move_insn_rtx;
5562 5818
5563 reg_move_insn_rtx = create_insn_rtx_with_rhs (INSN_VINSN (insn), 5819 reg_move_insn_rtx = create_insn_rtx_with_rhs (INSN_VINSN (insn),
5564 params->dest); 5820 params->dest);
5565 reg_move_insn = sel_gen_insn_from_rtx_after (reg_move_insn_rtx, 5821 reg_move_insn = sel_gen_insn_from_rtx_after (reg_move_insn_rtx,
5566 INSN_EXPR (insn), 5822 INSN_EXPR (insn),
5567 INSN_SEQNO (insn), 5823 INSN_SEQNO (insn),
5568 insn); 5824 insn);
5569 EXPR_SPEC_DONE_DS (INSN_EXPR (reg_move_insn)) = 0; 5825 EXPR_SPEC_DONE_DS (INSN_EXPR (reg_move_insn)) = 0;
5570 replace_dest_with_reg_in_expr (params->c_expr, params->dest); 5826 replace_dest_with_reg_in_expr (params->c_expr, params->dest);
5571 5827
5572 insn_emitted = true; 5828 insn_emitted = true;
5573 params->was_renamed = true; 5829 params->was_renamed = true;
5574 } 5830 }
5575 5831
5576 return insn_emitted; 5832 return insn_emitted;
5577 } 5833 }
5578 5834
5579 /* Emit a speculative check for INSN speculated as EXPR if needed. 5835 /* Emit a speculative check for INSN speculated as EXPR if needed.
5580 Return true if we've emitted one. PARAMS is the move_op static 5836 Return true if we've emitted one. PARAMS is the move_op static
5581 parameters. */ 5837 parameters. */
5582 static bool 5838 static bool
5583 maybe_emit_speculative_check (rtx insn, expr_t expr, 5839 maybe_emit_speculative_check (rtx insn, expr_t expr,
5584 moveop_static_params_p params) 5840 moveop_static_params_p params)
5585 { 5841 {
5597 else 5853 else
5598 { 5854 {
5599 EXPR_SPEC_DONE_DS (INSN_EXPR (insn)) = 0; 5855 EXPR_SPEC_DONE_DS (INSN_EXPR (insn)) = 0;
5600 x = insn; 5856 x = insn;
5601 } 5857 }
5602 5858
5603 gcc_assert (EXPR_SPEC_DONE_DS (INSN_EXPR (x)) == 0 5859 gcc_assert (EXPR_SPEC_DONE_DS (INSN_EXPR (x)) == 0
5604 && EXPR_SPEC_TO_CHECK_DS (INSN_EXPR (x)) == 0); 5860 && EXPR_SPEC_TO_CHECK_DS (INSN_EXPR (x)) == 0);
5605 return insn_emitted; 5861 return insn_emitted;
5606 } 5862 }
5607 5863
5608 /* Handle transformations that leave an insn in place of original 5864 /* Handle transformations that leave an insn in place of original
5609 insn such as renaming/speculation. Return true if one of such 5865 insn such as renaming/speculation. Return true if one of such
5610 transformations actually happened, and we have emitted this insn. */ 5866 transformations actually happened, and we have emitted this insn. */
5611 static bool 5867 static bool
5612 handle_emitting_transformations (rtx insn, expr_t expr, 5868 handle_emitting_transformations (rtx insn, expr_t expr,
5613 moveop_static_params_p params) 5869 moveop_static_params_p params)
5614 { 5870 {
5615 bool insn_emitted = false; 5871 bool insn_emitted = false;
5616 5872
5617 insn_emitted = maybe_emit_renaming_copy (insn, params); 5873 insn_emitted = maybe_emit_renaming_copy (insn, params);
5618 insn_emitted |= maybe_emit_speculative_check (insn, expr, params); 5874 insn_emitted |= maybe_emit_speculative_check (insn, expr, params);
5619 5875
5620 return insn_emitted; 5876 return insn_emitted;
5621 } 5877 }
5622 5878
5623 /* Remove INSN from stream. When ONLY_DISCONNECT is true, its data 5879 /* If INSN is the only insn in the basic block (not counting JUMP,
5880 which may be a jump to next insn, and DEBUG_INSNs), we want to
5881 leave a NOP there till the return to fill_insns. */
5882
5883 static bool
5884 need_nop_to_preserve_insn_bb (rtx insn)
5885 {
5886 insn_t bb_head, bb_end, bb_next, in_next;
5887 basic_block bb = BLOCK_FOR_INSN (insn);
5888
5889 bb_head = sel_bb_head (bb);
5890 bb_end = sel_bb_end (bb);
5891
5892 if (bb_head == bb_end)
5893 return true;
5894
5895 while (bb_head != bb_end && DEBUG_INSN_P (bb_head))
5896 bb_head = NEXT_INSN (bb_head);
5897
5898 if (bb_head == bb_end)
5899 return true;
5900
5901 while (bb_head != bb_end && DEBUG_INSN_P (bb_end))
5902 bb_end = PREV_INSN (bb_end);
5903
5904 if (bb_head == bb_end)
5905 return true;
5906
5907 bb_next = NEXT_INSN (bb_head);
5908 while (bb_next != bb_end && DEBUG_INSN_P (bb_next))
5909 bb_next = NEXT_INSN (bb_next);
5910
5911 if (bb_next == bb_end && JUMP_P (bb_end))
5912 return true;
5913
5914 in_next = NEXT_INSN (insn);
5915 while (DEBUG_INSN_P (in_next))
5916 in_next = NEXT_INSN (in_next);
5917
5918 if (IN_CURRENT_FENCE_P (in_next))
5919 return true;
5920
5921 return false;
5922 }
5923
5924 /* Remove INSN from stream. When ONLY_DISCONNECT is true, its data
5624 is not removed but reused when INSN is re-emitted. */ 5925 is not removed but reused when INSN is re-emitted. */
5625 static void 5926 static void
5626 remove_insn_from_stream (rtx insn, bool only_disconnect) 5927 remove_insn_from_stream (rtx insn, bool only_disconnect)
5627 { 5928 {
5628 insn_t nop, bb_head, bb_end;
5629 bool need_nop_to_preserve_bb;
5630 basic_block bb = BLOCK_FOR_INSN (insn);
5631
5632 /* If INSN is the only insn in the basic block (not counting JUMP,
5633 which may be a jump to next insn), leave NOP there till the
5634 return to fill_insns. */
5635 bb_head = sel_bb_head (bb);
5636 bb_end = sel_bb_end (bb);
5637 need_nop_to_preserve_bb = ((bb_head == bb_end)
5638 || (NEXT_INSN (bb_head) == bb_end
5639 && JUMP_P (bb_end))
5640 || IN_CURRENT_FENCE_P (NEXT_INSN (insn)));
5641
5642 /* If there's only one insn in the BB, make sure that a nop is 5929 /* If there's only one insn in the BB, make sure that a nop is
5643 inserted into it, so the basic block won't disappear when we'll 5930 inserted into it, so the basic block won't disappear when we'll
5644 delete INSN below with sel_remove_insn. It should also survive 5931 delete INSN below with sel_remove_insn. It should also survive
5645 till the return to fill_insns. */ 5932 till the return to fill_insns. */
5646 if (need_nop_to_preserve_bb) 5933 if (need_nop_to_preserve_insn_bb (insn))
5647 { 5934 {
5648 nop = get_nop_from_pool (insn); 5935 insn_t nop = get_nop_from_pool (insn);
5649 gcc_assert (INSN_NOP_P (nop)); 5936 gcc_assert (INSN_NOP_P (nop));
5650 VEC_safe_push (insn_t, heap, vec_temp_moveop_nops, nop); 5937 VEC_safe_push (insn_t, heap, vec_temp_moveop_nops, nop);
5651 } 5938 }
5652 5939
5653 sel_remove_insn (insn, only_disconnect, false); 5940 sel_remove_insn (insn, only_disconnect, false);
5654 } 5941 }
5655 5942
5656 /* This function is called when original expr is found. 5943 /* This function is called when original expr is found.
5657 INSN - current insn traversed, EXPR - the corresponding expr found. 5944 INSN - current insn traversed, EXPR - the corresponding expr found.
5658 LPARAMS is the local parameters of code modion driver, STATIC_PARAMS 5945 LPARAMS is the local parameters of code modion driver, STATIC_PARAMS
5659 is static parameters of move_op. */ 5946 is static parameters of move_op. */
5660 static void 5947 static void
5661 move_op_orig_expr_found (insn_t insn, expr_t expr, 5948 move_op_orig_expr_found (insn_t insn, expr_t expr,
5662 cmpd_local_params_p lparams ATTRIBUTE_UNUSED, 5949 cmpd_local_params_p lparams ATTRIBUTE_UNUSED,
5663 void *static_params) 5950 void *static_params)
5664 { 5951 {
5665 bool only_disconnect, insn_emitted; 5952 bool only_disconnect, insn_emitted;
5666 moveop_static_params_p params = (moveop_static_params_p) static_params; 5953 moveop_static_params_p params = (moveop_static_params_p) static_params;
5667 5954
5668 copy_expr_onside (params->c_expr, INSN_EXPR (insn)); 5955 copy_expr_onside (params->c_expr, INSN_EXPR (insn));
5669 track_scheduled_insns_and_blocks (insn); 5956 track_scheduled_insns_and_blocks (insn);
5670 insn_emitted = handle_emitting_transformations (insn, expr, params); 5957 insn_emitted = handle_emitting_transformations (insn, expr, params);
5671 only_disconnect = (params->uid == INSN_UID (insn) 5958 only_disconnect = (params->uid == INSN_UID (insn)
5672 && ! insn_emitted && ! EXPR_WAS_CHANGED (expr)); 5959 && ! insn_emitted && ! EXPR_WAS_CHANGED (expr));
5692 params->crosses_call = true; 5979 params->crosses_call = true;
5693 5980
5694 def_list_add (params->original_insns, insn, params->crosses_call); 5981 def_list_add (params->original_insns, insn, params->crosses_call);
5695 5982
5696 /* Mark the registers that do not meet the following condition: 5983 /* Mark the registers that do not meet the following condition:
5697 (2) not among the live registers of the point 5984 (2) not among the live registers of the point
5698 immediately following the first original operation on 5985 immediately following the first original operation on
5699 a given downward path, except for the original target 5986 a given downward path, except for the original target
5700 register of the operation. */ 5987 register of the operation. */
5701 tmp = get_clear_regset_from_pool (); 5988 tmp = get_clear_regset_from_pool ();
5702 compute_live_below_insn (insn, tmp); 5989 compute_live_below_insn (insn, tmp);
5703 AND_COMPL_REG_SET (tmp, INSN_REG_SETS (insn)); 5990 AND_COMPL_REG_SET (tmp, INSN_REG_SETS (insn));
5714 427: [ax+dx+0x1]=ax 6001 427: [ax+dx+0x1]=ax
5715 REG_DEAD: ax 6002 REG_DEAD: ax
5716 168: di=dx 6003 168: di=dx
5717 REG_DEAD: dx 6004 REG_DEAD: dx
5718 */ 6005 */
5719 /* FIXME: see comment above and enable MEM_P 6006 /* FIXME: see comment above and enable MEM_P
5720 in vinsn_separable_p. */ 6007 in vinsn_separable_p. */
5721 gcc_assert (!VINSN_SEPARABLE_P (INSN_VINSN (insn)) 6008 gcc_assert (!VINSN_SEPARABLE_P (INSN_VINSN (insn))
5722 || !MEM_P (INSN_LHS (insn))); 6009 || !MEM_P (INSN_LHS (insn)));
5723 } 6010 }
5724 6011
5725 /* This function is called on the ascending pass, before returning from 6012 /* This function is called on the ascending pass, before returning from
5726 current basic block. */ 6013 current basic block. */
5727 static void 6014 static void
5728 move_op_at_first_insn (insn_t insn, cmpd_local_params_p lparams, 6015 move_op_at_first_insn (insn_t insn, cmpd_local_params_p lparams,
5729 void *static_params) 6016 void *static_params)
5730 { 6017 {
5731 moveop_static_params_p sparams = (moveop_static_params_p) static_params; 6018 moveop_static_params_p sparams = (moveop_static_params_p) static_params;
5732 basic_block book_block = NULL; 6019 basic_block book_block = NULL;
5733 6020
5734 /* When we have removed the boundary insn for scheduling, which also 6021 /* When we have removed the boundary insn for scheduling, which also
5735 happened to be the end insn in its bb, we don't need to update sets. */ 6022 happened to be the end insn in its bb, we don't need to update sets. */
5736 if (!lparams->removed_last_insn 6023 if (!lparams->removed_last_insn
5737 && lparams->e1 6024 && lparams->e1
5738 && sel_bb_head_p (insn)) 6025 && sel_bb_head_p (insn))
5739 { 6026 {
5740 /* We should generate bookkeeping code only if we are not at the 6027 /* We should generate bookkeeping code only if we are not at the
5741 top level of the move_op. */ 6028 top level of the move_op. */
5743 book_block = generate_bookkeeping_insn (sparams->c_expr, 6030 book_block = generate_bookkeeping_insn (sparams->c_expr,
5744 lparams->e1, lparams->e2); 6031 lparams->e1, lparams->e2);
5745 /* Update data sets for the current insn. */ 6032 /* Update data sets for the current insn. */
5746 update_data_sets (insn); 6033 update_data_sets (insn);
5747 } 6034 }
5748 6035
5749 /* If bookkeeping code was inserted, we need to update av sets of basic 6036 /* If bookkeeping code was inserted, we need to update av sets of basic
5750 block that received bookkeeping. After generation of bookkeeping insn, 6037 block that received bookkeeping. After generation of bookkeeping insn,
5751 bookkeeping block does not contain valid av set because we are not following 6038 bookkeeping block does not contain valid av set because we are not following
5752 the original algorithm in every detail with regards to e.g. renaming 6039 the original algorithm in every detail with regards to e.g. renaming
5753 simple reg-reg copies. Consider example: 6040 simple reg-reg copies. Consider example:
5754 6041
5755 bookkeeping block scheduling fence 6042 bookkeeping block scheduling fence
5756 \ / 6043 \ /
5757 \ join / 6044 \ join /
5758 ---------- 6045 ----------
5759 | | 6046 | |
5760 ---------- 6047 ----------
5761 / \ 6048 / \
5762 / \ 6049 / \
5763 r1 := r2 r1 := r3 6050 r1 := r2 r1 := r3
5764 6051
5765 We try to schedule insn "r1 := r3" on the current 6052 We try to schedule insn "r1 := r3" on the current
5766 scheduling fence. Also, note that av set of bookkeeping block 6053 scheduling fence. Also, note that av set of bookkeeping block
5767 contain both insns "r1 := r2" and "r1 := r3". When the insn has 6054 contain both insns "r1 := r2" and "r1 := r3". When the insn has
5768 been scheduled, the CFG is as follows: 6055 been scheduled, the CFG is as follows:
5769 6056
5770 r1 := r3 r1 := r3 6057 r1 := r3 r1 := r3
5780 6067
5781 Here, insn "r1 := r3" was scheduled at the current scheduling point 6068 Here, insn "r1 := r3" was scheduled at the current scheduling point
5782 and bookkeeping code was generated at the bookeeping block. This 6069 and bookkeeping code was generated at the bookeeping block. This
5783 way insn "r1 := r2" is no longer available as a whole instruction 6070 way insn "r1 := r2" is no longer available as a whole instruction
5784 (but only as expr) ahead of insn "r1 := r3" in bookkeeping block. 6071 (but only as expr) ahead of insn "r1 := r3" in bookkeeping block.
5785 This situation is handled by calling update_data_sets. 6072 This situation is handled by calling update_data_sets.
5786 6073
5787 Since update_data_sets is called only on the bookkeeping block, and 6074 Since update_data_sets is called only on the bookkeeping block, and
5788 it also may have predecessors with av_sets, containing instructions that 6075 it also may have predecessors with av_sets, containing instructions that
5789 are no longer available, we save all such expressions that become 6076 are no longer available, we save all such expressions that become
5790 unavailable during data sets update on the bookkeeping block in 6077 unavailable during data sets update on the bookkeeping block in
5791 VEC_BOOKKEEPING_BLOCKED_VINSNS. Later we avoid selecting such 6078 VEC_BOOKKEEPING_BLOCKED_VINSNS. Later we avoid selecting such
5792 expressions for scheduling. This allows us to avoid recomputation of 6079 expressions for scheduling. This allows us to avoid recomputation of
5793 av_sets outside the code motion path. */ 6080 av_sets outside the code motion path. */
5794 6081
5795 if (book_block) 6082 if (book_block)
5796 update_and_record_unavailable_insns (book_block); 6083 update_and_record_unavailable_insns (book_block);
5797 6084
5798 /* If INSN was previously marked for deletion, it's time to do it. */ 6085 /* If INSN was previously marked for deletion, it's time to do it. */
5799 if (lparams->removed_last_insn) 6086 if (lparams->removed_last_insn)
5800 insn = PREV_INSN (insn); 6087 insn = PREV_INSN (insn);
5801 6088
5802 /* Do not tidy control flow at the topmost moveop, as we can erroneously 6089 /* Do not tidy control flow at the topmost moveop, as we can erroneously
5803 kill a block with a single nop in which the insn should be emitted. */ 6090 kill a block with a single nop in which the insn should be emitted. */
5804 if (lparams->e1) 6091 if (lparams->e1)
5805 tidy_control_flow (BLOCK_FOR_INSN (insn), true); 6092 tidy_control_flow (BLOCK_FOR_INSN (insn), true);
5806 } 6093 }
5807 6094
5808 /* This function is called on the ascending pass, before returning from the 6095 /* This function is called on the ascending pass, before returning from the
5809 current basic block. */ 6096 current basic block. */
5810 static void 6097 static void
5811 fur_at_first_insn (insn_t insn, 6098 fur_at_first_insn (insn_t insn,
5812 cmpd_local_params_p lparams ATTRIBUTE_UNUSED, 6099 cmpd_local_params_p lparams ATTRIBUTE_UNUSED,
5813 void *static_params ATTRIBUTE_UNUSED) 6100 void *static_params ATTRIBUTE_UNUSED)
5814 { 6101 {
5815 gcc_assert (!sel_bb_head_p (insn) || AV_SET_VALID_P (insn) 6102 gcc_assert (!sel_bb_head_p (insn) || AV_SET_VALID_P (insn)
5816 || AV_LEVEL (insn) == -1); 6103 || AV_LEVEL (insn) == -1);
5817 } 6104 }
5832 6119
5833 /* Update liveness for this insn as it was invalidated. */ 6120 /* Update liveness for this insn as it was invalidated. */
5834 update_liveness_on_insn (insn); 6121 update_liveness_on_insn (insn);
5835 } 6122 }
5836 6123
5837 /* This function is called on enter to the basic block. 6124 /* This function is called on enter to the basic block.
5838 Returns TRUE if this block already have been visited and 6125 Returns TRUE if this block already have been visited and
5839 code_motion_path_driver should return 1, FALSE otherwise. */ 6126 code_motion_path_driver should return 1, FALSE otherwise. */
5840 static int 6127 static int
5841 fur_on_enter (insn_t insn ATTRIBUTE_UNUSED, cmpd_local_params_p local_params, 6128 fur_on_enter (insn_t insn ATTRIBUTE_UNUSED, cmpd_local_params_p local_params,
5842 void *static_params, bool visited_p) 6129 void *static_params, bool visited_p)
5843 { 6130 {
5844 fur_static_params_p sparams = (fur_static_params_p) static_params; 6131 fur_static_params_p sparams = (fur_static_params_p) static_params;
5845 6132
5846 if (visited_p) 6133 if (visited_p)
5860 return 1; 6147 return 1;
5861 } 6148 }
5862 6149
5863 /* Same as above but for move_op. */ 6150 /* Same as above but for move_op. */
5864 static int 6151 static int
5865 move_op_on_enter (insn_t insn ATTRIBUTE_UNUSED, 6152 move_op_on_enter (insn_t insn ATTRIBUTE_UNUSED,
5866 cmpd_local_params_p local_params ATTRIBUTE_UNUSED, 6153 cmpd_local_params_p local_params ATTRIBUTE_UNUSED,
5867 void *static_params ATTRIBUTE_UNUSED, bool visited_p) 6154 void *static_params ATTRIBUTE_UNUSED, bool visited_p)
5868 { 6155 {
5869 if (visited_p) 6156 if (visited_p)
5870 return -1; 6157 return -1;
5871 return 1; 6158 return 1;
5872 } 6159 }
5873 6160
5874 /* This function is called while descending current basic block if current 6161 /* This function is called while descending current basic block if current
5875 insn is not the original EXPR we're searching for. 6162 insn is not the original EXPR we're searching for.
5876 6163
5877 Return value: FALSE, if code_motion_path_driver should perform a local 6164 Return value: FALSE, if code_motion_path_driver should perform a local
5878 cleanup and return 0 itself; 6165 cleanup and return 0 itself;
5879 TRUE, if code_motion_path_driver should continue. */ 6166 TRUE, if code_motion_path_driver should continue. */
5880 static bool 6167 static bool
5881 move_op_orig_expr_not_found (insn_t insn, av_set_t orig_ops ATTRIBUTE_UNUSED, 6168 move_op_orig_expr_not_found (insn_t insn, av_set_t orig_ops ATTRIBUTE_UNUSED,
5882 void *static_params) 6169 void *static_params)
5886 #ifdef ENABLE_CHECKING 6173 #ifdef ENABLE_CHECKING
5887 sparams->failed_insn = insn; 6174 sparams->failed_insn = insn;
5888 #endif 6175 #endif
5889 6176
5890 /* If we're scheduling separate expr, in order to generate correct code 6177 /* If we're scheduling separate expr, in order to generate correct code
5891 we need to stop the search at bookkeeping code generated with the 6178 we need to stop the search at bookkeeping code generated with the
5892 same destination register or memory. */ 6179 same destination register or memory. */
5893 if (lhs_of_insn_equals_to_dest_p (insn, sparams->dest)) 6180 if (lhs_of_insn_equals_to_dest_p (insn, sparams->dest))
5894 return false; 6181 return false;
5895 return true; 6182 return true;
5896 } 6183 }
5897 6184
5898 /* This function is called while descending current basic block if current 6185 /* This function is called while descending current basic block if current
5899 insn is not the original EXPR we're searching for. 6186 insn is not the original EXPR we're searching for.
5900 6187
5901 Return value: TRUE (code_motion_path_driver should continue). */ 6188 Return value: TRUE (code_motion_path_driver should continue). */
5902 static bool 6189 static bool
5903 fur_orig_expr_not_found (insn_t insn, av_set_t orig_ops, void *static_params) 6190 fur_orig_expr_not_found (insn_t insn, av_set_t orig_ops, void *static_params)
5907 av_set_iterator avi; 6194 av_set_iterator avi;
5908 fur_static_params_p sparams = (fur_static_params_p) static_params; 6195 fur_static_params_p sparams = (fur_static_params_p) static_params;
5909 6196
5910 if (CALL_P (insn)) 6197 if (CALL_P (insn))
5911 sparams->crosses_call = true; 6198 sparams->crosses_call = true;
6199 else if (DEBUG_INSN_P (insn))
6200 return true;
5912 6201
5913 /* If current insn we are looking at cannot be executed together 6202 /* If current insn we are looking at cannot be executed together
5914 with original insn, then we can skip it safely. 6203 with original insn, then we can skip it safely.
5915 6204
5916 Example: ORIG_OPS = { (p6) r14 = sign_extend (r15); } 6205 Example: ORIG_OPS = { (p6) r14 = sign_extend (r15); }
5953 move_op_at_first_insn, 6242 move_op_at_first_insn,
5954 SUCCS_NORMAL, 6243 SUCCS_NORMAL,
5955 "move_op" 6244 "move_op"
5956 }; 6245 };
5957 6246
5958 /* Hooks and data to perform find_used_regs operations 6247 /* Hooks and data to perform find_used_regs operations
5959 with code_motion_path_driver. */ 6248 with code_motion_path_driver. */
5960 struct code_motion_path_driver_info_def fur_hooks = { 6249 struct code_motion_path_driver_info_def fur_hooks = {
5961 fur_on_enter, 6250 fur_on_enter,
5962 fur_orig_expr_found, 6251 fur_orig_expr_found,
5963 fur_orig_expr_not_found, 6252 fur_orig_expr_not_found,
5968 SUCCS_ALL, 6257 SUCCS_ALL,
5969 "find_used_regs" 6258 "find_used_regs"
5970 }; 6259 };
5971 6260
5972 /* Traverse all successors of INSN. For each successor that is SUCCS_NORMAL 6261 /* Traverse all successors of INSN. For each successor that is SUCCS_NORMAL
5973 code_motion_path_driver is called recursively. Original operation 6262 code_motion_path_driver is called recursively. Original operation
5974 was found at least on one path that is starting with one of INSN's 6263 was found at least on one path that is starting with one of INSN's
5975 successors (this fact is asserted). ORIG_OPS is expressions we're looking 6264 successors (this fact is asserted). ORIG_OPS is expressions we're looking
5976 for, PATH is the path we've traversed, STATIC_PARAMS is the parameters 6265 for, PATH is the path we've traversed, STATIC_PARAMS is the parameters
5977 of either move_op or find_used_regs depending on the caller. 6266 of either move_op or find_used_regs depending on the caller.
5978 6267
5979 Return 0 if we haven't found expression, 1 if we found it, -1 if we don't 6268 Return 0 if we haven't found expression, 1 if we found it, -1 if we don't
5980 know for sure at this point. */ 6269 know for sure at this point. */
5981 static int 6270 static int
5982 code_motion_process_successors (insn_t insn, av_set_t orig_ops, 6271 code_motion_process_successors (insn_t insn, av_set_t orig_ops,
5983 ilist_t path, void *static_params) 6272 ilist_t path, void *static_params)
5984 { 6273 {
5985 int res = 0; 6274 int res = 0;
5986 succ_iterator succ_i; 6275 succ_iterator succ_i;
5987 rtx succ; 6276 rtx succ;
5994 6283
5995 lparams.c_expr_local = &_x; 6284 lparams.c_expr_local = &_x;
5996 lparams.c_expr_merged = NULL; 6285 lparams.c_expr_merged = NULL;
5997 6286
5998 /* We need to process only NORMAL succs for move_op, and collect live 6287 /* We need to process only NORMAL succs for move_op, and collect live
5999 registers from ALL branches (including those leading out of the 6288 registers from ALL branches (including those leading out of the
6000 region) for find_used_regs. 6289 region) for find_used_regs.
6001 6290
6002 In move_op, there can be a case when insn's bb number has changed 6291 In move_op, there can be a case when insn's bb number has changed
6003 due to created bookkeeping. This happens very rare, as we need to 6292 due to created bookkeeping. This happens very rare, as we need to
6004 move expression from the beginning to the end of the same block. 6293 move expression from the beginning to the end of the same block.
6005 Rescan successors in this case. */ 6294 Rescan successors in this case. */
6006 6295
6007 rescan: 6296 rescan:
6008 bb = BLOCK_FOR_INSN (insn); 6297 bb = BLOCK_FOR_INSN (insn);
6009 old_index = bb->index; 6298 old_index = bb->index;
6010 old_succs = EDGE_COUNT (bb->succs); 6299 old_succs = EDGE_COUNT (bb->succs);
6011 6300
6012 FOR_EACH_SUCC_1 (succ, succ_i, insn, code_motion_path_driver_info->succ_flags) 6301 FOR_EACH_SUCC_1 (succ, succ_i, insn, code_motion_path_driver_info->succ_flags)
6013 { 6302 {
6014 int b; 6303 int b;
6015 6304
6016 lparams.e1 = succ_i.e1; 6305 lparams.e1 = succ_i.e1;
6017 lparams.e2 = succ_i.e2; 6306 lparams.e2 = succ_i.e2;
6018 6307
6019 /* Go deep into recursion only for NORMAL edges (non-backedges within the 6308 /* Go deep into recursion only for NORMAL edges (non-backedges within the
6020 current region). */ 6309 current region). */
6021 if (succ_i.current_flags == SUCCS_NORMAL) 6310 if (succ_i.current_flags == SUCCS_NORMAL)
6022 b = code_motion_path_driver (succ, orig_ops, path, &lparams, 6311 b = code_motion_path_driver (succ, orig_ops, path, &lparams,
6023 static_params); 6312 static_params);
6024 else 6313 else
6025 b = 0; 6314 b = 0;
6026 6315
6027 /* Merge c_expres found or unify live register sets from different 6316 /* Merge c_expres found or unify live register sets from different
6039 || EDGE_COUNT (bb->succs) != old_succs) 6328 || EDGE_COUNT (bb->succs) != old_succs)
6040 goto rescan; 6329 goto rescan;
6041 } 6330 }
6042 6331
6043 #ifdef ENABLE_CHECKING 6332 #ifdef ENABLE_CHECKING
6044 /* Here, RES==1 if original expr was found at least for one of the 6333 /* Here, RES==1 if original expr was found at least for one of the
6045 successors. After the loop, RES may happen to have zero value 6334 successors. After the loop, RES may happen to have zero value
6046 only if at some point the expr searched is present in av_set, but is 6335 only if at some point the expr searched is present in av_set, but is
6047 not found below. In most cases, this situation is an error. 6336 not found below. In most cases, this situation is an error.
6048 The exception is when the original operation is blocked by 6337 The exception is when the original operation is blocked by
6049 bookkeeping generated for another fence or for another path in current 6338 bookkeeping generated for another fence or for another path in current
6050 move_op. */ 6339 move_op. */
6051 gcc_assert (res == 1 6340 gcc_assert (res == 1
6052 || (res == 0 6341 || (res == 0
6053 && av_set_could_be_blocked_by_bookkeeping_p (orig_ops, 6342 && av_set_could_be_blocked_by_bookkeeping_p (orig_ops,
6054 static_params)) 6343 static_params))
6055 || res == -1); 6344 || res == -1);
6056 #endif 6345 #endif
6057 6346
6058 /* Merge data, clean up, etc. */ 6347 /* Merge data, clean up, etc. */
6059 if (res != -1 && code_motion_path_driver_info->after_merge_succs) 6348 if (res != -1 && code_motion_path_driver_info->after_merge_succs)
6060 code_motion_path_driver_info->after_merge_succs (&lparams, static_params); 6349 code_motion_path_driver_info->after_merge_succs (&lparams, static_params);
6061 6350
6062 return res; 6351 return res;
6063 } 6352 }
6064 6353
6065 6354
6066 /* Perform a cleanup when the driver is about to terminate. ORIG_OPS_P 6355 /* Perform a cleanup when the driver is about to terminate. ORIG_OPS_P
6067 is the pointer to the av set with expressions we were looking for, 6356 is the pointer to the av set with expressions we were looking for,
6068 PATH_P is the pointer to the traversed path. */ 6357 PATH_P is the pointer to the traversed path. */
6069 static inline void 6358 static inline void
6070 code_motion_path_driver_cleanup (av_set_t *orig_ops_p, ilist_t *path_p) 6359 code_motion_path_driver_cleanup (av_set_t *orig_ops_p, ilist_t *path_p)
6071 { 6360 {
6072 ilist_remove (path_p); 6361 ilist_remove (path_p);
6073 av_set_clear (orig_ops_p); 6362 av_set_clear (orig_ops_p);
6074 } 6363 }
6075 6364
6076 /* The driver function that implements move_op or find_used_regs 6365 /* The driver function that implements move_op or find_used_regs
6077 functionality dependent whether code_motion_path_driver_INFO is set to 6366 functionality dependent whether code_motion_path_driver_INFO is set to
6078 &MOVE_OP_HOOKS or &FUR_HOOKS. This function implements the common parts 6367 &MOVE_OP_HOOKS or &FUR_HOOKS. This function implements the common parts
6079 of code (CFG traversal etc) that are shared among both functions. INSN 6368 of code (CFG traversal etc) that are shared among both functions. INSN
6080 is the insn we're starting the search from, ORIG_OPS are the expressions 6369 is the insn we're starting the search from, ORIG_OPS are the expressions
6081 we're searching for, PATH is traversed path, LOCAL_PARAMS_IN are local 6370 we're searching for, PATH is traversed path, LOCAL_PARAMS_IN are local
6082 parameters of the driver, and STATIC_PARAMS are static parameters of 6371 parameters of the driver, and STATIC_PARAMS are static parameters of
6083 the caller. 6372 the caller.
6084 6373
6085 Returns whether original instructions were found. Note that top-level 6374 Returns whether original instructions were found. Note that top-level
6086 code_motion_path_driver always returns true. */ 6375 code_motion_path_driver always returns true. */
6087 static int 6376 static int
6088 code_motion_path_driver (insn_t insn, av_set_t orig_ops, ilist_t path, 6377 code_motion_path_driver (insn_t insn, av_set_t orig_ops, ilist_t path,
6089 cmpd_local_params_p local_params_in, 6378 cmpd_local_params_p local_params_in,
6090 void *static_params) 6379 void *static_params)
6091 { 6380 {
6092 expr_t expr = NULL; 6381 expr_t expr = NULL;
6093 basic_block bb = BLOCK_FOR_INSN (insn); 6382 basic_block bb = BLOCK_FOR_INSN (insn);
6094 insn_t first_insn, bb_tail, before_first; 6383 insn_t first_insn, bb_tail, before_first;
6110 { 6399 {
6111 if (sched_verbose >= 6) 6400 if (sched_verbose >= 6)
6112 sel_print ("Insn %d is ineligible successor\n", INSN_UID (insn)); 6401 sel_print ("Insn %d is ineligible successor\n", INSN_UID (insn));
6113 return false; 6402 return false;
6114 } 6403 }
6115 6404
6116 /* The block can have invalid av set, in which case it was created earlier 6405 /* The block can have invalid av set, in which case it was created earlier
6117 during move_op. Return immediately. */ 6406 during move_op. Return immediately. */
6118 if (sel_bb_head_p (insn)) 6407 if (sel_bb_head_p (insn))
6119 { 6408 {
6120 if (! AV_SET_VALID_P (insn)) 6409 if (! AV_SET_VALID_P (insn))
6127 6416
6128 if (bitmap_bit_p (code_motion_visited_blocks, bb->index)) 6417 if (bitmap_bit_p (code_motion_visited_blocks, bb->index))
6129 { 6418 {
6130 /* We have already found an original operation on this branch, do not 6419 /* We have already found an original operation on this branch, do not
6131 go any further and just return TRUE here. If we don't stop here, 6420 go any further and just return TRUE here. If we don't stop here,
6132 function can have exponential behaviour even on the small code 6421 function can have exponential behaviour even on the small code
6133 with many different paths (e.g. with data speculation and 6422 with many different paths (e.g. with data speculation and
6134 recovery blocks). */ 6423 recovery blocks). */
6135 if (sched_verbose >= 6) 6424 if (sched_verbose >= 6)
6136 sel_print ("Block %d already visited in this traversal\n", bb->index); 6425 sel_print ("Block %d already visited in this traversal\n", bb->index);
6137 if (code_motion_path_driver_info->on_enter) 6426 if (code_motion_path_driver_info->on_enter)
6138 return code_motion_path_driver_info->on_enter (insn, 6427 return code_motion_path_driver_info->on_enter (insn,
6139 local_params_in, 6428 local_params_in,
6140 static_params, 6429 static_params,
6141 true); 6430 true);
6142 } 6431 }
6143 } 6432 }
6144 6433
6145 if (code_motion_path_driver_info->on_enter) 6434 if (code_motion_path_driver_info->on_enter)
6146 code_motion_path_driver_info->on_enter (insn, local_params_in, 6435 code_motion_path_driver_info->on_enter (insn, local_params_in,
6147 static_params, false); 6436 static_params, false);
6148 orig_ops = av_set_copy (orig_ops); 6437 orig_ops = av_set_copy (orig_ops);
6149 6438
6158 sel_print ("No intersection with av set of block %d\n", bb->index); 6447 sel_print ("No intersection with av set of block %d\n", bb->index);
6159 return false; 6448 return false;
6160 } 6449 }
6161 6450
6162 /* For non-speculative insns we have to leave only one form of the 6451 /* For non-speculative insns we have to leave only one form of the
6163 original operation, because if we don't, we may end up with 6452 original operation, because if we don't, we may end up with
6164 different C_EXPRes and, consequently, with bookkeepings for different 6453 different C_EXPRes and, consequently, with bookkeepings for different
6165 expression forms along the same code motion path. That may lead to 6454 expression forms along the same code motion path. That may lead to
6166 generation of incorrect code. So for each code motion we stick to 6455 generation of incorrect code. So for each code motion we stick to
6167 the single form of the instruction, except for speculative insns 6456 the single form of the instruction, except for speculative insns
6168 which we need to keep in different forms with all speculation 6457 which we need to keep in different forms with all speculation
6169 types. */ 6458 types. */
6170 av_set_leave_one_nonspec (&orig_ops); 6459 av_set_leave_one_nonspec (&orig_ops);
6171 6460
6172 /* It is not possible that all ORIG_OPS are filtered out. */ 6461 /* It is not possible that all ORIG_OPS are filtered out. */
6173 gcc_assert (orig_ops); 6462 gcc_assert (orig_ops);
6177 ilist_add (&path, insn); 6466 ilist_add (&path, insn);
6178 first_insn = insn; 6467 first_insn = insn;
6179 bb_tail = sel_bb_end (bb); 6468 bb_tail = sel_bb_end (bb);
6180 6469
6181 /* Descend the basic block in search of the original expr; this part 6470 /* Descend the basic block in search of the original expr; this part
6182 corresponds to the part of the original move_op procedure executed 6471 corresponds to the part of the original move_op procedure executed
6183 before the recursive call. */ 6472 before the recursive call. */
6184 for (;;) 6473 for (;;)
6185 { 6474 {
6186 /* Look at the insn and decide if it could be an ancestor of currently 6475 /* Look at the insn and decide if it could be an ancestor of currently
6187 scheduling operation. If it is so, then the insn "dest = op" could 6476 scheduling operation. If it is so, then the insn "dest = op" could
6188 either be replaced with "dest = reg", because REG now holds the result 6477 either be replaced with "dest = reg", because REG now holds the result
6189 of OP, or just removed, if we've scheduled the insn as a whole. 6478 of OP, or just removed, if we've scheduled the insn as a whole.
6190 6479
6191 If this insn doesn't contain currently scheduling OP, then proceed 6480 If this insn doesn't contain currently scheduling OP, then proceed
6192 with searching and look at its successors. Operations we're searching 6481 with searching and look at its successors. Operations we're searching
6193 for could have changed when moving up through this insn via 6482 for could have changed when moving up through this insn via
6194 substituting. In this case, perform unsubstitution on them first. 6483 substituting. In this case, perform unsubstitution on them first.
6195 6484
6196 When traversing the DAG below this insn is finished, insert 6485 When traversing the DAG below this insn is finished, insert
6197 bookkeeping code, if the insn is a joint point, and remove 6486 bookkeeping code, if the insn is a joint point, and remove
6198 leftovers. */ 6487 leftovers. */
6204 6493
6205 /* We have found the original operation. */ 6494 /* We have found the original operation. */
6206 if (sched_verbose >= 6) 6495 if (sched_verbose >= 6)
6207 sel_print ("Found original operation at insn %d\n", INSN_UID (insn)); 6496 sel_print ("Found original operation at insn %d\n", INSN_UID (insn));
6208 6497
6209 code_motion_path_driver_info->orig_expr_found 6498 code_motion_path_driver_info->orig_expr_found
6210 (insn, expr, local_params_in, static_params); 6499 (insn, expr, local_params_in, static_params);
6211 6500
6212 /* Step back, so on the way back we'll start traversing from the 6501 /* Step back, so on the way back we'll start traversing from the
6213 previous insn (or we'll see that it's bb_note and skip that 6502 previous insn (or we'll see that it's bb_note and skip that
6214 loop). */ 6503 loop). */
6215 if (insn == first_insn) 6504 if (insn == first_insn)
6216 { 6505 {
6217 first_insn = NEXT_INSN (last_insn); 6506 first_insn = NEXT_INSN (last_insn);
6218 removed_last_insn = sel_bb_end_p (last_insn); 6507 removed_last_insn = sel_bb_end_p (last_insn);
6222 } 6511 }
6223 else 6512 else
6224 { 6513 {
6225 /* We haven't found the original expr, continue descending the basic 6514 /* We haven't found the original expr, continue descending the basic
6226 block. */ 6515 block. */
6227 if (code_motion_path_driver_info->orig_expr_not_found 6516 if (code_motion_path_driver_info->orig_expr_not_found
6228 (insn, orig_ops, static_params)) 6517 (insn, orig_ops, static_params))
6229 { 6518 {
6230 /* Av set ops could have been changed when moving through this 6519 /* Av set ops could have been changed when moving through this
6231 insn. To find them below it, we have to un-substitute them. */ 6520 insn. To find them below it, we have to un-substitute them. */
6232 undo_transformations (&orig_ops, insn); 6521 undo_transformations (&orig_ops, insn);
6233 } 6522 }
6234 else 6523 else
6235 { 6524 {
6236 /* Clean up and return, if the hook tells us to do so. It may 6525 /* Clean up and return, if the hook tells us to do so. It may
6237 happen if we've encountered the previously created 6526 happen if we've encountered the previously created
6238 bookkeeping. */ 6527 bookkeeping. */
6239 code_motion_path_driver_cleanup (&orig_ops, &path); 6528 code_motion_path_driver_cleanup (&orig_ops, &path);
6240 return -1; 6529 return -1;
6241 } 6530 }
6242 6531
6248 break; 6537 break;
6249 6538
6250 insn = NEXT_INSN (insn); 6539 insn = NEXT_INSN (insn);
6251 } 6540 }
6252 6541
6253 /* Here INSN either points to the insn before the original insn (may be 6542 /* Here INSN either points to the insn before the original insn (may be
6254 bb_note, if original insn was a bb_head) or to the bb_end. */ 6543 bb_note, if original insn was a bb_head) or to the bb_end. */
6255 if (!expr) 6544 if (!expr)
6256 { 6545 {
6257 int res; 6546 int res;
6258 6547
6261 /* Add bb tail to PATH (but it doesn't make any sense if it's a bb_head - 6550 /* Add bb tail to PATH (but it doesn't make any sense if it's a bb_head -
6262 it's already in PATH then). */ 6551 it's already in PATH then). */
6263 if (insn != first_insn) 6552 if (insn != first_insn)
6264 ilist_add (&path, insn); 6553 ilist_add (&path, insn);
6265 6554
6266 /* Process_successors should be able to find at least one 6555 /* Process_successors should be able to find at least one
6267 successor for which code_motion_path_driver returns TRUE. */ 6556 successor for which code_motion_path_driver returns TRUE. */
6268 res = code_motion_process_successors (insn, orig_ops, 6557 res = code_motion_process_successors (insn, orig_ops,
6269 path, static_params); 6558 path, static_params);
6270 6559
6271 /* Remove bb tail from path. */ 6560 /* Remove bb tail from path. */
6272 if (insn != first_insn) 6561 if (insn != first_insn)
6273 ilist_remove (&path); 6562 ilist_remove (&path);
6274 6563
6275 if (res != 1) 6564 if (res != 1)
6276 { 6565 {
6277 /* This is the case when one of the original expr is no longer available 6566 /* This is the case when one of the original expr is no longer available
6278 due to bookkeeping created on this branch with the same register. 6567 due to bookkeeping created on this branch with the same register.
6279 In the original algorithm, which doesn't have update_data_sets call 6568 In the original algorithm, which doesn't have update_data_sets call
6280 on a bookkeeping block, it would simply result in returning 6569 on a bookkeeping block, it would simply result in returning
6281 FALSE when we've encountered a previously generated bookkeeping 6570 FALSE when we've encountered a previously generated bookkeeping
6282 insn in moveop_orig_expr_not_found. */ 6571 insn in moveop_orig_expr_not_found. */
6283 code_motion_path_driver_cleanup (&orig_ops, &path); 6572 code_motion_path_driver_cleanup (&orig_ops, &path);
6284 return res; 6573 return res;
6285 } 6574 }
6286 } 6575 }
6287 6576
6288 /* Don't need it any more. */ 6577 /* Don't need it any more. */
6289 av_set_clear (&orig_ops); 6578 av_set_clear (&orig_ops);
6290 6579
6291 /* Backward pass: now, when we have C_EXPR computed, we'll drag it to 6580 /* Backward pass: now, when we have C_EXPR computed, we'll drag it to
6292 the beginning of the basic block. */ 6581 the beginning of the basic block. */
6293 before_first = PREV_INSN (first_insn); 6582 before_first = PREV_INSN (first_insn);
6294 while (insn != before_first) 6583 while (insn != before_first)
6295 { 6584 {
6296 if (code_motion_path_driver_info->ascend) 6585 if (code_motion_path_driver_info->ascend)
6297 code_motion_path_driver_info->ascend (insn, static_params); 6586 code_motion_path_driver_info->ascend (insn, static_params);
6298 6587
6299 insn = PREV_INSN (insn); 6588 insn = PREV_INSN (insn);
6300 } 6589 }
6301 6590
6302 /* Now we're at the bb head. */ 6591 /* Now we're at the bb head. */
6303 insn = first_insn; 6592 insn = first_insn;
6304 ilist_remove (&path); 6593 ilist_remove (&path);
6305 local_params_in->removed_last_insn = removed_last_insn; 6594 local_params_in->removed_last_insn = removed_last_insn;
6306 code_motion_path_driver_info->at_first_insn (insn, local_params_in, static_params); 6595 code_motion_path_driver_info->at_first_insn (insn, local_params_in, static_params);
6307 6596
6308 /* This should be the very last operation as at bb head we could change 6597 /* This should be the very last operation as at bb head we could change
6309 the numbering by creating bookkeeping blocks. */ 6598 the numbering by creating bookkeeping blocks. */
6310 if (removed_last_insn) 6599 if (removed_last_insn)
6311 insn = PREV_INSN (insn); 6600 insn = PREV_INSN (insn);
6312 bitmap_set_bit (code_motion_visited_blocks, BLOCK_FOR_INSN (insn)->index); 6601 bitmap_set_bit (code_motion_visited_blocks, BLOCK_FOR_INSN (insn)->index);
6313 return true; 6602 return true;
6314 } 6603 }
6315 6604
6316 /* Move up the operations from ORIG_OPS set traversing the dag starting 6605 /* Move up the operations from ORIG_OPS set traversing the dag starting
6317 from INSN. PATH represents the edges traversed so far. 6606 from INSN. PATH represents the edges traversed so far.
6318 DEST is the register chosen for scheduling the current expr. Insert 6607 DEST is the register chosen for scheduling the current expr. Insert
6319 bookkeeping code in the join points. EXPR_VLIW is the chosen expression, 6608 bookkeeping code in the join points. EXPR_VLIW is the chosen expression,
6320 C_EXPR is how it looks like at the given cfg point. 6609 C_EXPR is how it looks like at the given cfg point.
6321 Set *SHOULD_MOVE to indicate whether we have only disconnected 6610 Set *SHOULD_MOVE to indicate whether we have only disconnected
6322 one of the insns found. 6611 one of the insns found.
6323 6612
6324 Returns whether original instructions were found, which is asserted 6613 Returns whether original instructions were found, which is asserted
6325 to be true in the caller. */ 6614 to be true in the caller. */
6326 static bool 6615 static bool
6327 move_op (insn_t insn, av_set_t orig_ops, expr_t expr_vliw, 6616 move_op (insn_t insn, av_set_t orig_ops, expr_t expr_vliw,
6328 rtx dest, expr_t c_expr, bool *should_move) 6617 rtx dest, expr_t c_expr, bool *should_move)
6329 { 6618 {
6330 struct moveop_static_params sparams; 6619 struct moveop_static_params sparams;
6331 struct cmpd_local_params lparams; 6620 struct cmpd_local_params lparams;
6332 bool res; 6621 bool res;
6333 6622
6334 /* Init params for code_motion_path_driver. */ 6623 /* Init params for code_motion_path_driver. */
6335 sparams.dest = dest; 6624 sparams.dest = dest;
6336 sparams.c_expr = c_expr; 6625 sparams.c_expr = c_expr;
6337 sparams.uid = INSN_UID (EXPR_INSN_RTX (expr_vliw)); 6626 sparams.uid = INSN_UID (EXPR_INSN_RTX (expr_vliw));
6338 #ifdef ENABLE_CHECKING 6627 #ifdef ENABLE_CHECKING
6339 sparams.failed_insn = NULL; 6628 sparams.failed_insn = NULL;
6341 sparams.was_renamed = false; 6630 sparams.was_renamed = false;
6342 lparams.e1 = NULL; 6631 lparams.e1 = NULL;
6343 6632
6344 /* We haven't visited any blocks yet. */ 6633 /* We haven't visited any blocks yet. */
6345 bitmap_clear (code_motion_visited_blocks); 6634 bitmap_clear (code_motion_visited_blocks);
6346 6635
6347 /* Set appropriate hooks and data. */ 6636 /* Set appropriate hooks and data. */
6348 code_motion_path_driver_info = &move_op_hooks; 6637 code_motion_path_driver_info = &move_op_hooks;
6349 res = code_motion_path_driver (insn, orig_ops, NULL, &lparams, &sparams); 6638 res = code_motion_path_driver (insn, orig_ops, NULL, &lparams, &sparams);
6350 6639
6351 if (sparams.was_renamed) 6640 if (sparams.was_renamed)
6360 /* Functions that work with regions. */ 6649 /* Functions that work with regions. */
6361 6650
6362 /* Current number of seqno used in init_seqno and init_seqno_1. */ 6651 /* Current number of seqno used in init_seqno and init_seqno_1. */
6363 static int cur_seqno; 6652 static int cur_seqno;
6364 6653
6365 /* A helper for init_seqno. Traverse the region starting from BB and 6654 /* A helper for init_seqno. Traverse the region starting from BB and
6366 compute seqnos for visited insns, marking visited bbs in VISITED_BBS. 6655 compute seqnos for visited insns, marking visited bbs in VISITED_BBS.
6367 Clear visited blocks from BLOCKS_TO_RESCHEDULE. */ 6656 Clear visited blocks from BLOCKS_TO_RESCHEDULE. */
6368 static void 6657 static void
6369 init_seqno_1 (basic_block bb, sbitmap visited_bbs, bitmap blocks_to_reschedule) 6658 init_seqno_1 (basic_block bb, sbitmap visited_bbs, bitmap blocks_to_reschedule)
6370 { 6659 {
6371 int bbi = BLOCK_TO_BB (bb->index); 6660 int bbi = BLOCK_TO_BB (bb->index);
6375 6664
6376 SET_BIT (visited_bbs, bbi); 6665 SET_BIT (visited_bbs, bbi);
6377 if (blocks_to_reschedule) 6666 if (blocks_to_reschedule)
6378 bitmap_clear_bit (blocks_to_reschedule, bb->index); 6667 bitmap_clear_bit (blocks_to_reschedule, bb->index);
6379 6668
6380 FOR_EACH_SUCC_1 (succ_insn, si, BB_END (bb), 6669 FOR_EACH_SUCC_1 (succ_insn, si, BB_END (bb),
6381 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS) 6670 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
6382 { 6671 {
6383 basic_block succ = BLOCK_FOR_INSN (succ_insn); 6672 basic_block succ = BLOCK_FOR_INSN (succ_insn);
6384 int succ_bbi = BLOCK_TO_BB (succ->index); 6673 int succ_bbi = BLOCK_TO_BB (succ->index);
6385 6674
6396 for (insn = BB_END (bb); insn != note; insn = PREV_INSN (insn)) 6685 for (insn = BB_END (bb); insn != note; insn = PREV_INSN (insn))
6397 INSN_SEQNO (insn) = cur_seqno--; 6686 INSN_SEQNO (insn) = cur_seqno--;
6398 } 6687 }
6399 6688
6400 /* Initialize seqnos for the current region. NUMBER_OF_INSNS is the number 6689 /* Initialize seqnos for the current region. NUMBER_OF_INSNS is the number
6401 of instructions in the region, BLOCKS_TO_RESCHEDULE contains blocks on 6690 of instructions in the region, BLOCKS_TO_RESCHEDULE contains blocks on
6402 which we're rescheduling when pipelining, FROM is the block where 6691 which we're rescheduling when pipelining, FROM is the block where
6403 traversing region begins (it may not be the head of the region when 6692 traversing region begins (it may not be the head of the region when
6404 pipelining, but the head of the loop instead). 6693 pipelining, but the head of the loop instead).
6405 6694
6406 Returns the maximal seqno found. */ 6695 Returns the maximal seqno found. */
6407 static int 6696 static int
6408 init_seqno (int number_of_insns, bitmap blocks_to_reschedule, basic_block from) 6697 init_seqno (int number_of_insns, bitmap blocks_to_reschedule, basic_block from)
6409 { 6698 {
6440 static void 6729 static void
6441 sel_setup_region_sched_flags (void) 6730 sel_setup_region_sched_flags (void)
6442 { 6731 {
6443 enable_schedule_as_rhs_p = 1; 6732 enable_schedule_as_rhs_p = 1;
6444 bookkeeping_p = 1; 6733 bookkeeping_p = 1;
6445 pipelining_p = (bookkeeping_p 6734 pipelining_p = (bookkeeping_p
6446 && (flag_sel_sched_pipelining != 0) 6735 && (flag_sel_sched_pipelining != 0)
6447 && current_loop_nest != NULL); 6736 && current_loop_nest != NULL);
6448 max_insns_to_rename = PARAM_VALUE (PARAM_SELSCHED_INSNS_TO_RENAME); 6737 max_insns_to_rename = PARAM_VALUE (PARAM_SELSCHED_INSNS_TO_RENAME);
6449 max_ws = MAX_WS; 6738 max_ws = MAX_WS;
6450 } 6739 }
6481 6770
6482 /* Purge meaningless empty blocks in the middle of a region. */ 6771 /* Purge meaningless empty blocks in the middle of a region. */
6483 static void 6772 static void
6484 purge_empty_blocks (void) 6773 purge_empty_blocks (void)
6485 { 6774 {
6486 int i ; 6775 /* Do not attempt to delete preheader. */
6487 6776 int i = sel_is_loop_preheader_p (BASIC_BLOCK (BB_TO_BLOCK (0))) ? 1 : 0;
6488 for (i = 1; i < current_nr_blocks; ) 6777
6778 while (i < current_nr_blocks)
6489 { 6779 {
6490 basic_block b = BASIC_BLOCK (BB_TO_BLOCK (i)); 6780 basic_block b = BASIC_BLOCK (BB_TO_BLOCK (i));
6491 6781
6492 if (maybe_tidy_empty_bb (b)) 6782 if (maybe_tidy_empty_bb (b))
6493 continue; 6783 continue;
6520 int i; 6810 int i;
6521 bb_vec_t bbs; 6811 bb_vec_t bbs;
6522 6812
6523 rgn_setup_region (rgn); 6813 rgn_setup_region (rgn);
6524 6814
6525 /* Even if sched_is_disabled_for_current_region_p() is true, we still 6815 /* Even if sched_is_disabled_for_current_region_p() is true, we still
6526 do region initialization here so the region can be bundled correctly, 6816 do region initialization here so the region can be bundled correctly,
6527 but we'll skip the scheduling in sel_sched_region (). */ 6817 but we'll skip the scheduling in sel_sched_region (). */
6528 if (current_region_empty_p ()) 6818 if (current_region_empty_p ())
6529 return true; 6819 return true;
6530 6820
6569 int header = (sel_is_loop_preheader_p (BASIC_BLOCK (BB_TO_BLOCK (0))) 6859 int header = (sel_is_loop_preheader_p (BASIC_BLOCK (BB_TO_BLOCK (0)))
6570 ? 1 6860 ? 1
6571 : 0); 6861 : 0);
6572 6862
6573 if (current_nr_blocks == header + 1) 6863 if (current_nr_blocks == header + 1)
6574 update_liveness_on_insn 6864 update_liveness_on_insn
6575 (sel_bb_head (BASIC_BLOCK (BB_TO_BLOCK (header)))); 6865 (sel_bb_head (BASIC_BLOCK (BB_TO_BLOCK (header))));
6576 } 6866 }
6577 6867
6578 /* Set hooks so that no newly generated insn will go out unnoticed. */ 6868 /* Set hooks so that no newly generated insn will go out unnoticed. */
6579 sel_register_cfg_hooks (); 6869 sel_register_cfg_hooks ();
6580 6870
6581 /* !!! We call target.sched.md_init () for the whole region, but we invoke 6871 /* !!! We call target.sched.md_init () for the whole region, but we invoke
6582 targetm.sched.md_finish () for every ebb. */ 6872 targetm.sched.md_finish () for every ebb. */
6616 FOR_BB_INSNS (bb, insn) 6906 FOR_BB_INSNS (bb, insn)
6617 if (INSN_P (insn)) 6907 if (INSN_P (insn))
6618 { 6908 {
6619 expr_t expr = INSN_EXPR (insn); 6909 expr_t expr = INSN_EXPR (insn);
6620 6910
6621 if (EXPR_WAS_SUBSTITUTED (expr)) 6911 if (EXPR_WAS_SUBSTITUTED (expr))
6622 validate_simplify_insn (insn); 6912 validate_simplify_insn (insn);
6623 } 6913 }
6624 } 6914 }
6625 } 6915 }
6626 6916
6671 targetm.sched.md_init (sched_dump, sched_verbose, -1); 6961 targetm.sched.md_init (sched_dump, sched_verbose, -1);
6672 } 6962 }
6673 6963
6674 state_reset (curr_state); 6964 state_reset (curr_state);
6675 advance_state (curr_state); 6965 advance_state (curr_state);
6676 6966
6677 for (insn = current_sched_info->head; 6967 for (insn = current_sched_info->head;
6678 insn != current_sched_info->next_tail; 6968 insn != current_sched_info->next_tail;
6679 insn = NEXT_INSN (insn)) 6969 insn = NEXT_INSN (insn))
6680 { 6970 {
6681 int cost, haifa_cost; 6971 int cost, haifa_cost;
6700 if (asm_p) 6990 if (asm_p)
6701 /* This is asm insn which *had* to be scheduled first 6991 /* This is asm insn which *had* to be scheduled first
6702 on the cycle. */ 6992 on the cycle. */
6703 haifa_cost = 1; 6993 haifa_cost = 1;
6704 else 6994 else
6705 /* This is a use/clobber insn. It should not change 6995 /* This is a use/clobber insn. It should not change
6706 cost. */ 6996 cost. */
6707 haifa_cost = 0; 6997 haifa_cost = 0;
6708 } 6998 }
6709 else 6999 else
6710 haifa_cost = estimate_insn_cost (insn, curr_state); 7000 haifa_cost = estimate_insn_cost (insn, curr_state);
6730 { 7020 {
6731 sel_print ("advance_state (state_transition)\n"); 7021 sel_print ("advance_state (state_transition)\n");
6732 debug_state (curr_state); 7022 debug_state (curr_state);
6733 } 7023 }
6734 7024
6735 /* The DFA may report that e.g. insn requires 2 cycles to be 7025 /* The DFA may report that e.g. insn requires 2 cycles to be
6736 issued, but on the next cycle it says that insn is ready 7026 issued, but on the next cycle it says that insn is ready
6737 to go. Check this here. */ 7027 to go. Check this here. */
6738 if (!after_stall 7028 if (!after_stall
6739 && real_insn 7029 && real_insn
6740 && haifa_cost > 0 7030 && haifa_cost > 0
6741 && estimate_insn_cost (insn, curr_state) == 0) 7031 && estimate_insn_cost (insn, curr_state) == 0)
6742 break; 7032 break;
6743 } 7033 }
6744 7034
6817 if (sched_verbose >= 2) 7107 if (sched_verbose >= 2)
6818 sel_print ("Cost for insn %d is %d\n", INSN_UID (insn), cost); 7108 sel_print ("Cost for insn %d is %d\n", INSN_UID (insn), cost);
6819 } 7109 }
6820 } 7110 }
6821 7111
6822 /* Perform MD_FINISH on EBBs comprising current region. When 7112 /* Perform MD_FINISH on EBBs comprising current region. When
6823 RESET_SCHED_CYCLES_P is true, run a pass emulating the scheduler 7113 RESET_SCHED_CYCLES_P is true, run a pass emulating the scheduler
6824 to produce correct sched cycles on insns. */ 7114 to produce correct sched cycles on insns. */
6825 static void 7115 static void
6826 sel_region_target_finish (bool reset_sched_cycles_p) 7116 sel_region_target_finish (bool reset_sched_cycles_p)
6827 { 7117 {
6863 7153
6864 BITMAP_FREE (scheduled_blocks); 7154 BITMAP_FREE (scheduled_blocks);
6865 } 7155 }
6866 7156
6867 /* Free the scheduling data for the current region. When RESET_SCHED_CYCLES_P 7157 /* Free the scheduling data for the current region. When RESET_SCHED_CYCLES_P
6868 is true, make an additional pass emulating scheduler to get correct insn 7158 is true, make an additional pass emulating scheduler to get correct insn
6869 cycles for md_finish calls. */ 7159 cycles for md_finish calls. */
6870 static void 7160 static void
6871 sel_region_finish (bool reset_sched_cycles_p) 7161 sel_region_finish (bool reset_sched_cycles_p)
6872 { 7162 {
6873 simplify_changed_insns (); 7163 simplify_changed_insns ();
6944 { 7234 {
6945 fence_t fence = NULL; 7235 fence_t fence = NULL;
6946 int seqno = 0; 7236 int seqno = 0;
6947 flist_t fences2; 7237 flist_t fences2;
6948 bool first_p = true; 7238 bool first_p = true;
6949 7239
6950 /* Choose the next fence group to schedule. 7240 /* Choose the next fence group to schedule.
6951 The fact that insn can be scheduled only once 7241 The fact that insn can be scheduled only once
6952 on the cycle is guaranteed by two properties: 7242 on the cycle is guaranteed by two properties:
6953 1. seqnos of parallel groups decrease with each iteration. 7243 1. seqnos of parallel groups decrease with each iteration.
6954 2. If is_ineligible_successor () sees the larger seqno, it 7244 2. If is_ineligible_successor () sees the larger seqno, it
6980 fill_insns (fence, seqno, scheduled_insns_tailpp); 7270 fill_insns (fence, seqno, scheduled_insns_tailpp);
6981 FENCE_PROCESSED_P (fence) = true; 7271 FENCE_PROCESSED_P (fence) = true;
6982 } 7272 }
6983 7273
6984 /* All av_sets are invalidated by GLOBAL_LEVEL increase, thus we 7274 /* All av_sets are invalidated by GLOBAL_LEVEL increase, thus we
6985 don't need to keep bookkeeping-invalidated and target-unavailable 7275 don't need to keep bookkeeping-invalidated and target-unavailable
6986 vinsns any more. */ 7276 vinsns any more. */
6987 vinsn_vec_clear (&vec_bookkeeping_blocked_vinsns); 7277 vinsn_vec_clear (&vec_bookkeeping_blocked_vinsns);
6988 vinsn_vec_clear (&vec_target_unavailable_vinsns); 7278 vinsn_vec_clear (&vec_target_unavailable_vinsns);
6989 } 7279 }
6990 7280
6996 7286
6997 /* The first element is already processed. */ 7287 /* The first element is already processed. */
6998 while ((fences = FLIST_NEXT (fences))) 7288 while ((fences = FLIST_NEXT (fences)))
6999 { 7289 {
7000 int seqno = INSN_SEQNO (FENCE_INSN (FLIST_FENCE (fences))); 7290 int seqno = INSN_SEQNO (FENCE_INSN (FLIST_FENCE (fences)));
7001 7291
7002 if (*min_seqno > seqno) 7292 if (*min_seqno > seqno)
7003 *min_seqno = seqno; 7293 *min_seqno = seqno;
7004 else if (*max_seqno < seqno) 7294 else if (*max_seqno < seqno)
7005 *max_seqno = seqno; 7295 *max_seqno = seqno;
7006 } 7296 }
7007 } 7297 }
7008 7298
7009 /* Calculate new fences from FENCES. */ 7299 /* Calculate new fences from FENCES. */
7010 static flist_t 7300 static flist_t
7011 calculate_new_fences (flist_t fences, int orig_max_seqno) 7301 calculate_new_fences (flist_t fences, int orig_max_seqno)
7012 { 7302 {
7013 flist_t old_fences = fences; 7303 flist_t old_fences = fences;
7014 struct flist_tail_def _new_fences, *new_fences = &_new_fences; 7304 struct flist_tail_def _new_fences, *new_fences = &_new_fences;
7015 7305
7016 flist_tail_init (new_fences); 7306 flist_tail_init (new_fences);
7017 for (; fences; fences = FLIST_NEXT (fences)) 7307 for (; fences; fences = FLIST_NEXT (fences))
7018 { 7308 {
7019 fence_t fence = FLIST_FENCE (fences); 7309 fence_t fence = FLIST_FENCE (fences);
7020 insn_t insn; 7310 insn_t insn;
7021 7311
7022 if (!FENCE_BNDS (fence)) 7312 if (!FENCE_BNDS (fence))
7023 { 7313 {
7024 /* This fence doesn't have any successors. */ 7314 /* This fence doesn't have any successors. */
7025 if (!FENCE_SCHEDULED_P (fence)) 7315 if (!FENCE_SCHEDULED_P (fence))
7026 { 7316 {
7030 insn = FENCE_INSN (fence); 7320 insn = FENCE_INSN (fence);
7031 seqno = INSN_SEQNO (insn); 7321 seqno = INSN_SEQNO (insn);
7032 gcc_assert (seqno > 0 && seqno <= orig_max_seqno); 7322 gcc_assert (seqno > 0 && seqno <= orig_max_seqno);
7033 7323
7034 if (sched_verbose >= 1) 7324 if (sched_verbose >= 1)
7035 sel_print ("Fence %d[%d] has not changed\n", 7325 sel_print ("Fence %d[%d] has not changed\n",
7036 INSN_UID (insn), 7326 INSN_UID (insn),
7037 BLOCK_NUM (insn)); 7327 BLOCK_NUM (insn));
7038 move_fence_to_fences (fences, new_fences); 7328 move_fence_to_fences (fences, new_fences);
7039 } 7329 }
7040 } 7330 }
7048 7338
7049 /* Update seqnos of insns given by PSCHEDULED_INSNS. MIN_SEQNO and MAX_SEQNO 7339 /* Update seqnos of insns given by PSCHEDULED_INSNS. MIN_SEQNO and MAX_SEQNO
7050 are the miminum and maximum seqnos of the group, HIGHEST_SEQNO_IN_USE is 7340 are the miminum and maximum seqnos of the group, HIGHEST_SEQNO_IN_USE is
7051 the highest seqno used in a region. Return the updated highest seqno. */ 7341 the highest seqno used in a region. Return the updated highest seqno. */
7052 static int 7342 static int
7053 update_seqnos_and_stage (int min_seqno, int max_seqno, 7343 update_seqnos_and_stage (int min_seqno, int max_seqno,
7054 int highest_seqno_in_use, 7344 int highest_seqno_in_use,
7055 ilist_t *pscheduled_insns) 7345 ilist_t *pscheduled_insns)
7056 { 7346 {
7057 int new_hs; 7347 int new_hs;
7058 ilist_iterator ii; 7348 ilist_iterator ii;
7059 insn_t insn; 7349 insn_t insn;
7060 7350
7061 /* Actually, new_hs is the seqno of the instruction, that was 7351 /* Actually, new_hs is the seqno of the instruction, that was
7062 scheduled first (i.e. it is the first one in SCHEDULED_INSNS). */ 7352 scheduled first (i.e. it is the first one in SCHEDULED_INSNS). */
7063 if (*pscheduled_insns) 7353 if (*pscheduled_insns)
7064 { 7354 {
7065 new_hs = (INSN_SEQNO (ILIST_INSN (*pscheduled_insns)) 7355 new_hs = (INSN_SEQNO (ILIST_INSN (*pscheduled_insns))
7072 FOR_EACH_INSN (insn, ii, *pscheduled_insns) 7362 FOR_EACH_INSN (insn, ii, *pscheduled_insns)
7073 { 7363 {
7074 gcc_assert (INSN_SEQNO (insn) < 0); 7364 gcc_assert (INSN_SEQNO (insn) < 0);
7075 INSN_SEQNO (insn) += highest_seqno_in_use + max_seqno - min_seqno + 2; 7365 INSN_SEQNO (insn) += highest_seqno_in_use + max_seqno - min_seqno + 2;
7076 gcc_assert (INSN_SEQNO (insn) <= new_hs); 7366 gcc_assert (INSN_SEQNO (insn) <= new_hs);
7367
7368 /* When not pipelining, purge unneeded insn info on the scheduled insns.
7369 For example, having reg_last array of INSN_DEPS_CONTEXT in memory may
7370 require > 1GB of memory e.g. on limit-fnargs.c. */
7371 if (! pipelining_p)
7372 free_data_for_scheduled_insn (insn);
7077 } 7373 }
7078 7374
7079 ilist_clear (pscheduled_insns); 7375 ilist_clear (pscheduled_insns);
7080 global_level++; 7376 global_level++;
7081 7377
7082 return new_hs; 7378 return new_hs;
7083 } 7379 }
7084 7380
7085 /* The main driver for scheduling a region. This function is responsible 7381 /* The main driver for scheduling a region. This function is responsible
7086 for correct propagation of fences (i.e. scheduling points) and creating 7382 for correct propagation of fences (i.e. scheduling points) and creating
7087 a group of parallel insns at each of them. It also supports 7383 a group of parallel insns at each of them. It also supports
7088 pipelining. ORIG_MAX_SEQNO is the maximal seqno before this pass 7384 pipelining. ORIG_MAX_SEQNO is the maximal seqno before this pass
7089 of scheduling. */ 7385 of scheduling. */
7090 static void 7386 static void
7091 sel_sched_region_2 (int orig_max_seqno) 7387 sel_sched_region_2 (int orig_max_seqno)
7092 { 7388 {
7119 stat_insns_needed_bookkeeping, 7415 stat_insns_needed_bookkeeping,
7120 stat_renamed_scheduled, 7416 stat_renamed_scheduled,
7121 stat_substitutions_total); 7417 stat_substitutions_total);
7122 } 7418 }
7123 7419
7124 /* Schedule a region. When pipelining, search for possibly never scheduled 7420 /* Schedule a region. When pipelining, search for possibly never scheduled
7125 bookkeeping code and schedule it. Reschedule pipelined code without 7421 bookkeeping code and schedule it. Reschedule pipelined code without
7126 pipelining after. */ 7422 pipelining after. */
7127 static void 7423 static void
7128 sel_sched_region_1 (void) 7424 sel_sched_region_1 (void)
7129 { 7425 {
7130 int number_of_insns; 7426 int number_of_insns;
7131 int orig_max_seqno; 7427 int orig_max_seqno;
7132 7428
7133 /* Remove empty blocks that might be in the region from the beginning. 7429 /* Remove empty blocks that might be in the region from the beginning.
7134 We need to do save sched_max_luid before that, as it actually shows 7430 We need to do save sched_max_luid before that, as it actually shows
7135 the number of insns in the region, and purge_empty_blocks can 7431 the number of insns in the region, and purge_empty_blocks can
7136 alter it. */ 7432 alter it. */
7137 number_of_insns = sched_max_luid - 1; 7433 number_of_insns = sched_max_luid - 1;
7138 purge_empty_blocks (); 7434 purge_empty_blocks ();
7139 7435
7140 orig_max_seqno = init_seqno (number_of_insns, NULL, NULL); 7436 orig_max_seqno = init_seqno (number_of_insns, NULL, NULL);
7197 7493
7198 for (i = 0; i < current_nr_blocks; i++) 7494 for (i = 0; i < current_nr_blocks; i++)
7199 { 7495 {
7200 bb = EBB_FIRST_BB (i); 7496 bb = EBB_FIRST_BB (i);
7201 7497
7202 /* While pipelining outer loops, skip bundling for loop 7498 /* While pipelining outer loops, skip bundling for loop
7203 preheaders. Those will be rescheduled in the outer 7499 preheaders. Those will be rescheduled in the outer
7204 loop. */ 7500 loop. */
7205 if (sel_is_loop_preheader_p (bb)) 7501 if (sel_is_loop_preheader_p (bb))
7206 { 7502 {
7207 clear_outdated_rtx_info (bb); 7503 clear_outdated_rtx_info (bb);
7208 continue; 7504 continue;
7209 } 7505 }
7210 7506
7211 if (bitmap_bit_p (blocks_to_reschedule, bb->index)) 7507 if (bitmap_bit_p (blocks_to_reschedule, bb->index))
7212 { 7508 {
7213 flist_tail_init (new_fences); 7509 flist_tail_init (new_fences);
7214 7510
7215 orig_max_seqno = init_seqno (0, blocks_to_reschedule, bb); 7511 orig_max_seqno = init_seqno (0, blocks_to_reschedule, bb);
7216 7512
7217 /* Mark BB as head of the new ebb. */ 7513 /* Mark BB as head of the new ebb. */
7218 bitmap_set_bit (forced_ebb_heads, bb->index); 7514 bitmap_set_bit (forced_ebb_heads, bb->index);
7219 7515
7220 bitmap_clear_bit (blocks_to_reschedule, bb->index); 7516 bitmap_clear_bit (blocks_to_reschedule, bb->index);
7221 7517
7222 gcc_assert (fences == NULL); 7518 gcc_assert (fences == NULL);
7223 7519
7224 init_fences (bb_note (bb)); 7520 init_fences (bb_note (bb));
7225 7521
7226 sel_sched_region_2 (orig_max_seqno); 7522 sel_sched_region_2 (orig_max_seqno);
7227 7523
7228 do_p = true; 7524 do_p = true;
7229 break; 7525 break;
7230 } 7526 }
7231 } 7527 }
7232 } 7528 }
7252 if (schedule_p) 7548 if (schedule_p)
7253 sel_sched_region_1 (); 7549 sel_sched_region_1 ();
7254 else 7550 else
7255 /* Force initialization of INSN_SCHED_CYCLEs for correct bundling. */ 7551 /* Force initialization of INSN_SCHED_CYCLEs for correct bundling. */
7256 reset_sched_cycles_p = true; 7552 reset_sched_cycles_p = true;
7257 7553
7258 sel_region_finish (reset_sched_cycles_p); 7554 sel_region_finish (reset_sched_cycles_p);
7259 } 7555 }
7260 7556
7261 /* Perform global init for the scheduler. */ 7557 /* Perform global init for the scheduler. */
7262 static void 7558 static void
7273 sched_init (); 7569 sched_init ();
7274 7570
7275 sched_init_bbs (); 7571 sched_init_bbs ();
7276 /* Reset AFTER_RECOVERY if it has been set by the 1st scheduler pass. */ 7572 /* Reset AFTER_RECOVERY if it has been set by the 1st scheduler pass. */
7277 after_recovery = 0; 7573 after_recovery = 0;
7278 can_issue_more = issue_rate; 7574 can_issue_more = issue_rate;
7279 7575
7280 sched_extend_target (); 7576 sched_extend_target ();
7281 sched_deps_init (true); 7577 sched_deps_init (true);
7282 setup_nop_and_exit_insns (); 7578 setup_nop_and_exit_insns ();
7283 sel_extend_global_bb_info (); 7579 sel_extend_global_bb_info ();