comparison gcc/tree-vect-loop-manip.c @ 55:77e2b8dfacca gcc-4.4.5

update it from 4.4.3 to 4.5.0
author ryoma <e075725@ie.u-ryukyu.ac.jp>
date Fri, 12 Feb 2010 23:39:51 +0900
parents
children b7f97abdc517
comparison
equal deleted inserted replaced
52:c156f1bd5cd9 55:77e2b8dfacca
1 /* Vectorizer Specific Loop Manipulations
2 Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008, 2009 Free Software
3 Foundation, Inc.
4 Contributed by Dorit Naishlos <dorit@il.ibm.com>
5 and Ira Rosen <irar@il.ibm.com>
6
7 This file is part of GCC.
8
9 GCC is free software; you can redistribute it and/or modify it under
10 the terms of the GNU General Public License as published by the Free
11 Software Foundation; either version 3, or (at your option) any later
12 version.
13
14 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15 WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3. If not see
21 <http://www.gnu.org/licenses/>. */
22
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "ggc.h"
28 #include "tree.h"
29 #include "basic-block.h"
30 #include "diagnostic.h"
31 #include "tree-flow.h"
32 #include "tree-dump.h"
33 #include "cfgloop.h"
34 #include "cfglayout.h"
35 #include "expr.h"
36 #include "toplev.h"
37 #include "tree-scalar-evolution.h"
38 #include "tree-vectorizer.h"
39 #include "langhooks.h"
40
41 /*************************************************************************
42 Simple Loop Peeling Utilities
43
44 Utilities to support loop peeling for vectorization purposes.
45 *************************************************************************/
46
47
48 /* Renames the use *OP_P. */
49
50 static void
51 rename_use_op (use_operand_p op_p)
52 {
53 tree new_name;
54
55 if (TREE_CODE (USE_FROM_PTR (op_p)) != SSA_NAME)
56 return;
57
58 new_name = get_current_def (USE_FROM_PTR (op_p));
59
60 /* Something defined outside of the loop. */
61 if (!new_name)
62 return;
63
64 /* An ordinary ssa name defined in the loop. */
65
66 SET_USE (op_p, new_name);
67 }
68
69
70 /* Renames the variables in basic block BB. */
71
72 void
73 rename_variables_in_bb (basic_block bb)
74 {
75 gimple_stmt_iterator gsi;
76 gimple stmt;
77 use_operand_p use_p;
78 ssa_op_iter iter;
79 edge e;
80 edge_iterator ei;
81 struct loop *loop = bb->loop_father;
82
83 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
84 {
85 stmt = gsi_stmt (gsi);
86 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_ALL_USES)
87 rename_use_op (use_p);
88 }
89
90 FOR_EACH_EDGE (e, ei, bb->succs)
91 {
92 if (!flow_bb_inside_loop_p (loop, e->dest))
93 continue;
94 for (gsi = gsi_start_phis (e->dest); !gsi_end_p (gsi); gsi_next (&gsi))
95 rename_use_op (PHI_ARG_DEF_PTR_FROM_EDGE (gsi_stmt (gsi), e));
96 }
97 }
98
99
100 /* Renames variables in new generated LOOP. */
101
102 void
103 rename_variables_in_loop (struct loop *loop)
104 {
105 unsigned i;
106 basic_block *bbs;
107
108 bbs = get_loop_body (loop);
109
110 for (i = 0; i < loop->num_nodes; i++)
111 rename_variables_in_bb (bbs[i]);
112
113 free (bbs);
114 }
115
116
117 /* Update the PHI nodes of NEW_LOOP.
118
119 NEW_LOOP is a duplicate of ORIG_LOOP.
120 AFTER indicates whether NEW_LOOP executes before or after ORIG_LOOP:
121 AFTER is true if NEW_LOOP executes after ORIG_LOOP, and false if it
122 executes before it. */
123
124 static void
125 slpeel_update_phis_for_duplicate_loop (struct loop *orig_loop,
126 struct loop *new_loop, bool after)
127 {
128 tree new_ssa_name;
129 gimple phi_new, phi_orig;
130 tree def;
131 edge orig_loop_latch = loop_latch_edge (orig_loop);
132 edge orig_entry_e = loop_preheader_edge (orig_loop);
133 edge new_loop_exit_e = single_exit (new_loop);
134 edge new_loop_entry_e = loop_preheader_edge (new_loop);
135 edge entry_arg_e = (after ? orig_loop_latch : orig_entry_e);
136 gimple_stmt_iterator gsi_new, gsi_orig;
137
138 /*
139 step 1. For each loop-header-phi:
140 Add the first phi argument for the phi in NEW_LOOP
141 (the one associated with the entry of NEW_LOOP)
142
143 step 2. For each loop-header-phi:
144 Add the second phi argument for the phi in NEW_LOOP
145 (the one associated with the latch of NEW_LOOP)
146
147 step 3. Update the phis in the successor block of NEW_LOOP.
148
149 case 1: NEW_LOOP was placed before ORIG_LOOP:
150 The successor block of NEW_LOOP is the header of ORIG_LOOP.
151 Updating the phis in the successor block can therefore be done
152 along with the scanning of the loop header phis, because the
153 header blocks of ORIG_LOOP and NEW_LOOP have exactly the same
154 phi nodes, organized in the same order.
155
156 case 2: NEW_LOOP was placed after ORIG_LOOP:
157 The successor block of NEW_LOOP is the original exit block of
158 ORIG_LOOP - the phis to be updated are the loop-closed-ssa phis.
159 We postpone updating these phis to a later stage (when
160 loop guards are added).
161 */
162
163
164 /* Scan the phis in the headers of the old and new loops
165 (they are organized in exactly the same order). */
166
167 for (gsi_new = gsi_start_phis (new_loop->header),
168 gsi_orig = gsi_start_phis (orig_loop->header);
169 !gsi_end_p (gsi_new) && !gsi_end_p (gsi_orig);
170 gsi_next (&gsi_new), gsi_next (&gsi_orig))
171 {
172 source_location locus;
173 phi_new = gsi_stmt (gsi_new);
174 phi_orig = gsi_stmt (gsi_orig);
175
176 /* step 1. */
177 def = PHI_ARG_DEF_FROM_EDGE (phi_orig, entry_arg_e);
178 locus = gimple_phi_arg_location_from_edge (phi_orig, entry_arg_e);
179 add_phi_arg (phi_new, def, new_loop_entry_e, locus);
180
181 /* step 2. */
182 def = PHI_ARG_DEF_FROM_EDGE (phi_orig, orig_loop_latch);
183 locus = gimple_phi_arg_location_from_edge (phi_orig, orig_loop_latch);
184 if (TREE_CODE (def) != SSA_NAME)
185 continue;
186
187 new_ssa_name = get_current_def (def);
188 if (!new_ssa_name)
189 {
190 /* This only happens if there are no definitions
191 inside the loop. use the phi_result in this case. */
192 new_ssa_name = PHI_RESULT (phi_new);
193 }
194
195 /* An ordinary ssa name defined in the loop. */
196 add_phi_arg (phi_new, new_ssa_name, loop_latch_edge (new_loop), locus);
197
198 /* step 3 (case 1). */
199 if (!after)
200 {
201 gcc_assert (new_loop_exit_e == orig_entry_e);
202 SET_PHI_ARG_DEF (phi_orig,
203 new_loop_exit_e->dest_idx,
204 new_ssa_name);
205 }
206 }
207 }
208
209
210 /* Update PHI nodes for a guard of the LOOP.
211
212 Input:
213 - LOOP, GUARD_EDGE: LOOP is a loop for which we added guard code that
214 controls whether LOOP is to be executed. GUARD_EDGE is the edge that
215 originates from the guard-bb, skips LOOP and reaches the (unique) exit
216 bb of LOOP. This loop-exit-bb is an empty bb with one successor.
217 We denote this bb NEW_MERGE_BB because before the guard code was added
218 it had a single predecessor (the LOOP header), and now it became a merge
219 point of two paths - the path that ends with the LOOP exit-edge, and
220 the path that ends with GUARD_EDGE.
221 - NEW_EXIT_BB: New basic block that is added by this function between LOOP
222 and NEW_MERGE_BB. It is used to place loop-closed-ssa-form exit-phis.
223
224 ===> The CFG before the guard-code was added:
225 LOOP_header_bb:
226 loop_body
227 if (exit_loop) goto update_bb
228 else goto LOOP_header_bb
229 update_bb:
230
231 ==> The CFG after the guard-code was added:
232 guard_bb:
233 if (LOOP_guard_condition) goto new_merge_bb
234 else goto LOOP_header_bb
235 LOOP_header_bb:
236 loop_body
237 if (exit_loop_condition) goto new_merge_bb
238 else goto LOOP_header_bb
239 new_merge_bb:
240 goto update_bb
241 update_bb:
242
243 ==> The CFG after this function:
244 guard_bb:
245 if (LOOP_guard_condition) goto new_merge_bb
246 else goto LOOP_header_bb
247 LOOP_header_bb:
248 loop_body
249 if (exit_loop_condition) goto new_exit_bb
250 else goto LOOP_header_bb
251 new_exit_bb:
252 new_merge_bb:
253 goto update_bb
254 update_bb:
255
256 This function:
257 1. creates and updates the relevant phi nodes to account for the new
258 incoming edge (GUARD_EDGE) into NEW_MERGE_BB. This involves:
259 1.1. Create phi nodes at NEW_MERGE_BB.
260 1.2. Update the phi nodes at the successor of NEW_MERGE_BB (denoted
261 UPDATE_BB). UPDATE_BB was the exit-bb of LOOP before NEW_MERGE_BB
262 2. preserves loop-closed-ssa-form by creating the required phi nodes
263 at the exit of LOOP (i.e, in NEW_EXIT_BB).
264
265 There are two flavors to this function:
266
267 slpeel_update_phi_nodes_for_guard1:
268 Here the guard controls whether we enter or skip LOOP, where LOOP is a
269 prolog_loop (loop1 below), and the new phis created in NEW_MERGE_BB are
270 for variables that have phis in the loop header.
271
272 slpeel_update_phi_nodes_for_guard2:
273 Here the guard controls whether we enter or skip LOOP, where LOOP is an
274 epilog_loop (loop2 below), and the new phis created in NEW_MERGE_BB are
275 for variables that have phis in the loop exit.
276
277 I.E., the overall structure is:
278
279 loop1_preheader_bb:
280 guard1 (goto loop1/merge1_bb)
281 loop1
282 loop1_exit_bb:
283 guard2 (goto merge1_bb/merge2_bb)
284 merge1_bb
285 loop2
286 loop2_exit_bb
287 merge2_bb
288 next_bb
289
290 slpeel_update_phi_nodes_for_guard1 takes care of creating phis in
291 loop1_exit_bb and merge1_bb. These are entry phis (phis for the vars
292 that have phis in loop1->header).
293
294 slpeel_update_phi_nodes_for_guard2 takes care of creating phis in
295 loop2_exit_bb and merge2_bb. These are exit phis (phis for the vars
296 that have phis in next_bb). It also adds some of these phis to
297 loop1_exit_bb.
298
299 slpeel_update_phi_nodes_for_guard1 is always called before
300 slpeel_update_phi_nodes_for_guard2. They are both needed in order
301 to create correct data-flow and loop-closed-ssa-form.
302
303 Generally slpeel_update_phi_nodes_for_guard1 creates phis for variables
304 that change between iterations of a loop (and therefore have a phi-node
305 at the loop entry), whereas slpeel_update_phi_nodes_for_guard2 creates
306 phis for variables that are used out of the loop (and therefore have
307 loop-closed exit phis). Some variables may be both updated between
308 iterations and used after the loop. This is why in loop1_exit_bb we
309 may need both entry_phis (created by slpeel_update_phi_nodes_for_guard1)
310 and exit phis (created by slpeel_update_phi_nodes_for_guard2).
311
312 - IS_NEW_LOOP: if IS_NEW_LOOP is true, then LOOP is a newly created copy of
313 an original loop. i.e., we have:
314
315 orig_loop
316 guard_bb (goto LOOP/new_merge)
317 new_loop <-- LOOP
318 new_exit
319 new_merge
320 next_bb
321
322 If IS_NEW_LOOP is false, then LOOP is an original loop, in which case we
323 have:
324
325 new_loop
326 guard_bb (goto LOOP/new_merge)
327 orig_loop <-- LOOP
328 new_exit
329 new_merge
330 next_bb
331
332 The SSA names defined in the original loop have a current
333 reaching definition that that records the corresponding new
334 ssa-name used in the new duplicated loop copy.
335 */
336
337 /* Function slpeel_update_phi_nodes_for_guard1
338
339 Input:
340 - GUARD_EDGE, LOOP, IS_NEW_LOOP, NEW_EXIT_BB - as explained above.
341 - DEFS - a bitmap of ssa names to mark new names for which we recorded
342 information.
343
344 In the context of the overall structure, we have:
345
346 loop1_preheader_bb:
347 guard1 (goto loop1/merge1_bb)
348 LOOP-> loop1
349 loop1_exit_bb:
350 guard2 (goto merge1_bb/merge2_bb)
351 merge1_bb
352 loop2
353 loop2_exit_bb
354 merge2_bb
355 next_bb
356
357 For each name updated between loop iterations (i.e - for each name that has
358 an entry (loop-header) phi in LOOP) we create a new phi in:
359 1. merge1_bb (to account for the edge from guard1)
360 2. loop1_exit_bb (an exit-phi to keep LOOP in loop-closed form)
361 */
362
363 static void
364 slpeel_update_phi_nodes_for_guard1 (edge guard_edge, struct loop *loop,
365 bool is_new_loop, basic_block *new_exit_bb,
366 bitmap *defs)
367 {
368 gimple orig_phi, new_phi;
369 gimple update_phi, update_phi2;
370 tree guard_arg, loop_arg;
371 basic_block new_merge_bb = guard_edge->dest;
372 edge e = EDGE_SUCC (new_merge_bb, 0);
373 basic_block update_bb = e->dest;
374 basic_block orig_bb = loop->header;
375 edge new_exit_e;
376 tree current_new_name;
377 gimple_stmt_iterator gsi_orig, gsi_update;
378
379 /* Create new bb between loop and new_merge_bb. */
380 *new_exit_bb = split_edge (single_exit (loop));
381
382 new_exit_e = EDGE_SUCC (*new_exit_bb, 0);
383
384 for (gsi_orig = gsi_start_phis (orig_bb),
385 gsi_update = gsi_start_phis (update_bb);
386 !gsi_end_p (gsi_orig) && !gsi_end_p (gsi_update);
387 gsi_next (&gsi_orig), gsi_next (&gsi_update))
388 {
389 source_location loop_locus, guard_locus;;
390 orig_phi = gsi_stmt (gsi_orig);
391 update_phi = gsi_stmt (gsi_update);
392
393 /** 1. Handle new-merge-point phis **/
394
395 /* 1.1. Generate new phi node in NEW_MERGE_BB: */
396 new_phi = create_phi_node (SSA_NAME_VAR (PHI_RESULT (orig_phi)),
397 new_merge_bb);
398
399 /* 1.2. NEW_MERGE_BB has two incoming edges: GUARD_EDGE and the exit-edge
400 of LOOP. Set the two phi args in NEW_PHI for these edges: */
401 loop_arg = PHI_ARG_DEF_FROM_EDGE (orig_phi, EDGE_SUCC (loop->latch, 0));
402 loop_locus = gimple_phi_arg_location_from_edge (orig_phi,
403 EDGE_SUCC (loop->latch,
404 0));
405 guard_arg = PHI_ARG_DEF_FROM_EDGE (orig_phi, loop_preheader_edge (loop));
406 guard_locus
407 = gimple_phi_arg_location_from_edge (orig_phi,
408 loop_preheader_edge (loop));
409
410 add_phi_arg (new_phi, loop_arg, new_exit_e, loop_locus);
411 add_phi_arg (new_phi, guard_arg, guard_edge, guard_locus);
412
413 /* 1.3. Update phi in successor block. */
414 gcc_assert (PHI_ARG_DEF_FROM_EDGE (update_phi, e) == loop_arg
415 || PHI_ARG_DEF_FROM_EDGE (update_phi, e) == guard_arg);
416 SET_PHI_ARG_DEF (update_phi, e->dest_idx, PHI_RESULT (new_phi));
417 update_phi2 = new_phi;
418
419
420 /** 2. Handle loop-closed-ssa-form phis **/
421
422 if (!is_gimple_reg (PHI_RESULT (orig_phi)))
423 continue;
424
425 /* 2.1. Generate new phi node in NEW_EXIT_BB: */
426 new_phi = create_phi_node (SSA_NAME_VAR (PHI_RESULT (orig_phi)),
427 *new_exit_bb);
428
429 /* 2.2. NEW_EXIT_BB has one incoming edge: the exit-edge of the loop. */
430 add_phi_arg (new_phi, loop_arg, single_exit (loop), loop_locus);
431
432 /* 2.3. Update phi in successor of NEW_EXIT_BB: */
433 gcc_assert (PHI_ARG_DEF_FROM_EDGE (update_phi2, new_exit_e) == loop_arg);
434 SET_PHI_ARG_DEF (update_phi2, new_exit_e->dest_idx, PHI_RESULT (new_phi));
435
436 /* 2.4. Record the newly created name with set_current_def.
437 We want to find a name such that
438 name = get_current_def (orig_loop_name)
439 and to set its current definition as follows:
440 set_current_def (name, new_phi_name)
441
442 If LOOP is a new loop then loop_arg is already the name we're
443 looking for. If LOOP is the original loop, then loop_arg is
444 the orig_loop_name and the relevant name is recorded in its
445 current reaching definition. */
446 if (is_new_loop)
447 current_new_name = loop_arg;
448 else
449 {
450 current_new_name = get_current_def (loop_arg);
451 /* current_def is not available only if the variable does not
452 change inside the loop, in which case we also don't care
453 about recording a current_def for it because we won't be
454 trying to create loop-exit-phis for it. */
455 if (!current_new_name)
456 continue;
457 }
458 gcc_assert (get_current_def (current_new_name) == NULL_TREE);
459
460 set_current_def (current_new_name, PHI_RESULT (new_phi));
461 bitmap_set_bit (*defs, SSA_NAME_VERSION (current_new_name));
462 }
463 }
464
465
466 /* Function slpeel_update_phi_nodes_for_guard2
467
468 Input:
469 - GUARD_EDGE, LOOP, IS_NEW_LOOP, NEW_EXIT_BB - as explained above.
470
471 In the context of the overall structure, we have:
472
473 loop1_preheader_bb:
474 guard1 (goto loop1/merge1_bb)
475 loop1
476 loop1_exit_bb:
477 guard2 (goto merge1_bb/merge2_bb)
478 merge1_bb
479 LOOP-> loop2
480 loop2_exit_bb
481 merge2_bb
482 next_bb
483
484 For each name used out side the loop (i.e - for each name that has an exit
485 phi in next_bb) we create a new phi in:
486 1. merge2_bb (to account for the edge from guard_bb)
487 2. loop2_exit_bb (an exit-phi to keep LOOP in loop-closed form)
488 3. guard2 bb (an exit phi to keep the preceding loop in loop-closed form),
489 if needed (if it wasn't handled by slpeel_update_phis_nodes_for_phi1).
490 */
491
492 static void
493 slpeel_update_phi_nodes_for_guard2 (edge guard_edge, struct loop *loop,
494 bool is_new_loop, basic_block *new_exit_bb)
495 {
496 gimple orig_phi, new_phi;
497 gimple update_phi, update_phi2;
498 tree guard_arg, loop_arg;
499 basic_block new_merge_bb = guard_edge->dest;
500 edge e = EDGE_SUCC (new_merge_bb, 0);
501 basic_block update_bb = e->dest;
502 edge new_exit_e;
503 tree orig_def, orig_def_new_name;
504 tree new_name, new_name2;
505 tree arg;
506 gimple_stmt_iterator gsi;
507
508 /* Create new bb between loop and new_merge_bb. */
509 *new_exit_bb = split_edge (single_exit (loop));
510
511 new_exit_e = EDGE_SUCC (*new_exit_bb, 0);
512
513 for (gsi = gsi_start_phis (update_bb); !gsi_end_p (gsi); gsi_next (&gsi))
514 {
515 update_phi = gsi_stmt (gsi);
516 orig_phi = update_phi;
517 orig_def = PHI_ARG_DEF_FROM_EDGE (orig_phi, e);
518 /* This loop-closed-phi actually doesn't represent a use
519 out of the loop - the phi arg is a constant. */
520 if (TREE_CODE (orig_def) != SSA_NAME)
521 continue;
522 orig_def_new_name = get_current_def (orig_def);
523 arg = NULL_TREE;
524
525 /** 1. Handle new-merge-point phis **/
526
527 /* 1.1. Generate new phi node in NEW_MERGE_BB: */
528 new_phi = create_phi_node (SSA_NAME_VAR (PHI_RESULT (orig_phi)),
529 new_merge_bb);
530
531 /* 1.2. NEW_MERGE_BB has two incoming edges: GUARD_EDGE and the exit-edge
532 of LOOP. Set the two PHI args in NEW_PHI for these edges: */
533 new_name = orig_def;
534 new_name2 = NULL_TREE;
535 if (orig_def_new_name)
536 {
537 new_name = orig_def_new_name;
538 /* Some variables have both loop-entry-phis and loop-exit-phis.
539 Such variables were given yet newer names by phis placed in
540 guard_bb by slpeel_update_phi_nodes_for_guard1. I.e:
541 new_name2 = get_current_def (get_current_def (orig_name)). */
542 new_name2 = get_current_def (new_name);
543 }
544
545 if (is_new_loop)
546 {
547 guard_arg = orig_def;
548 loop_arg = new_name;
549 }
550 else
551 {
552 guard_arg = new_name;
553 loop_arg = orig_def;
554 }
555 if (new_name2)
556 guard_arg = new_name2;
557
558 add_phi_arg (new_phi, loop_arg, new_exit_e, UNKNOWN_LOCATION);
559 add_phi_arg (new_phi, guard_arg, guard_edge, UNKNOWN_LOCATION);
560
561 /* 1.3. Update phi in successor block. */
562 gcc_assert (PHI_ARG_DEF_FROM_EDGE (update_phi, e) == orig_def);
563 SET_PHI_ARG_DEF (update_phi, e->dest_idx, PHI_RESULT (new_phi));
564 update_phi2 = new_phi;
565
566
567 /** 2. Handle loop-closed-ssa-form phis **/
568
569 /* 2.1. Generate new phi node in NEW_EXIT_BB: */
570 new_phi = create_phi_node (SSA_NAME_VAR (PHI_RESULT (orig_phi)),
571 *new_exit_bb);
572
573 /* 2.2. NEW_EXIT_BB has one incoming edge: the exit-edge of the loop. */
574 add_phi_arg (new_phi, loop_arg, single_exit (loop), UNKNOWN_LOCATION);
575
576 /* 2.3. Update phi in successor of NEW_EXIT_BB: */
577 gcc_assert (PHI_ARG_DEF_FROM_EDGE (update_phi2, new_exit_e) == loop_arg);
578 SET_PHI_ARG_DEF (update_phi2, new_exit_e->dest_idx, PHI_RESULT (new_phi));
579
580
581 /** 3. Handle loop-closed-ssa-form phis for first loop **/
582
583 /* 3.1. Find the relevant names that need an exit-phi in
584 GUARD_BB, i.e. names for which
585 slpeel_update_phi_nodes_for_guard1 had not already created a
586 phi node. This is the case for names that are used outside
587 the loop (and therefore need an exit phi) but are not updated
588 across loop iterations (and therefore don't have a
589 loop-header-phi).
590
591 slpeel_update_phi_nodes_for_guard1 is responsible for
592 creating loop-exit phis in GUARD_BB for names that have a
593 loop-header-phi. When such a phi is created we also record
594 the new name in its current definition. If this new name
595 exists, then guard_arg was set to this new name (see 1.2
596 above). Therefore, if guard_arg is not this new name, this
597 is an indication that an exit-phi in GUARD_BB was not yet
598 created, so we take care of it here. */
599 if (guard_arg == new_name2)
600 continue;
601 arg = guard_arg;
602
603 /* 3.2. Generate new phi node in GUARD_BB: */
604 new_phi = create_phi_node (SSA_NAME_VAR (PHI_RESULT (orig_phi)),
605 guard_edge->src);
606
607 /* 3.3. GUARD_BB has one incoming edge: */
608 gcc_assert (EDGE_COUNT (guard_edge->src->preds) == 1);
609 add_phi_arg (new_phi, arg, EDGE_PRED (guard_edge->src, 0),
610 UNKNOWN_LOCATION);
611
612 /* 3.4. Update phi in successor of GUARD_BB: */
613 gcc_assert (PHI_ARG_DEF_FROM_EDGE (update_phi2, guard_edge)
614 == guard_arg);
615 SET_PHI_ARG_DEF (update_phi2, guard_edge->dest_idx, PHI_RESULT (new_phi));
616 }
617 }
618
619
620 /* Make the LOOP iterate NITERS times. This is done by adding a new IV
621 that starts at zero, increases by one and its limit is NITERS.
622
623 Assumption: the exit-condition of LOOP is the last stmt in the loop. */
624
625 void
626 slpeel_make_loop_iterate_ntimes (struct loop *loop, tree niters)
627 {
628 tree indx_before_incr, indx_after_incr;
629 gimple cond_stmt;
630 gimple orig_cond;
631 edge exit_edge = single_exit (loop);
632 gimple_stmt_iterator loop_cond_gsi;
633 gimple_stmt_iterator incr_gsi;
634 bool insert_after;
635 tree init = build_int_cst (TREE_TYPE (niters), 0);
636 tree step = build_int_cst (TREE_TYPE (niters), 1);
637 LOC loop_loc;
638 enum tree_code code;
639
640 orig_cond = get_loop_exit_condition (loop);
641 gcc_assert (orig_cond);
642 loop_cond_gsi = gsi_for_stmt (orig_cond);
643
644 standard_iv_increment_position (loop, &incr_gsi, &insert_after);
645 create_iv (init, step, NULL_TREE, loop,
646 &incr_gsi, insert_after, &indx_before_incr, &indx_after_incr);
647
648 indx_after_incr = force_gimple_operand_gsi (&loop_cond_gsi, indx_after_incr,
649 true, NULL_TREE, true,
650 GSI_SAME_STMT);
651 niters = force_gimple_operand_gsi (&loop_cond_gsi, niters, true, NULL_TREE,
652 true, GSI_SAME_STMT);
653
654 code = (exit_edge->flags & EDGE_TRUE_VALUE) ? GE_EXPR : LT_EXPR;
655 cond_stmt = gimple_build_cond (code, indx_after_incr, niters, NULL_TREE,
656 NULL_TREE);
657
658 gsi_insert_before (&loop_cond_gsi, cond_stmt, GSI_SAME_STMT);
659
660 /* Remove old loop exit test: */
661 gsi_remove (&loop_cond_gsi, true);
662
663 loop_loc = find_loop_location (loop);
664 if (dump_file && (dump_flags & TDF_DETAILS))
665 {
666 if (loop_loc != UNKNOWN_LOC)
667 fprintf (dump_file, "\nloop at %s:%d: ",
668 LOC_FILE (loop_loc), LOC_LINE (loop_loc));
669 print_gimple_stmt (dump_file, cond_stmt, 0, TDF_SLIM);
670 }
671
672 loop->nb_iterations = niters;
673 }
674
675
676 /* Given LOOP this function generates a new copy of it and puts it
677 on E which is either the entry or exit of LOOP. */
678
679 struct loop *
680 slpeel_tree_duplicate_loop_to_edge_cfg (struct loop *loop, edge e)
681 {
682 struct loop *new_loop;
683 basic_block *new_bbs, *bbs;
684 bool at_exit;
685 bool was_imm_dom;
686 basic_block exit_dest;
687 gimple phi;
688 tree phi_arg;
689 edge exit, new_exit;
690 gimple_stmt_iterator gsi;
691
692 at_exit = (e == single_exit (loop));
693 if (!at_exit && e != loop_preheader_edge (loop))
694 return NULL;
695
696 bbs = get_loop_body (loop);
697
698 /* Check whether duplication is possible. */
699 if (!can_copy_bbs_p (bbs, loop->num_nodes))
700 {
701 free (bbs);
702 return NULL;
703 }
704
705 /* Generate new loop structure. */
706 new_loop = duplicate_loop (loop, loop_outer (loop));
707 if (!new_loop)
708 {
709 free (bbs);
710 return NULL;
711 }
712
713 exit_dest = single_exit (loop)->dest;
714 was_imm_dom = (get_immediate_dominator (CDI_DOMINATORS,
715 exit_dest) == loop->header ?
716 true : false);
717
718 new_bbs = XNEWVEC (basic_block, loop->num_nodes);
719
720 exit = single_exit (loop);
721 copy_bbs (bbs, loop->num_nodes, new_bbs,
722 &exit, 1, &new_exit, NULL,
723 e->src);
724
725 /* Duplicating phi args at exit bbs as coming
726 also from exit of duplicated loop. */
727 for (gsi = gsi_start_phis (exit_dest); !gsi_end_p (gsi); gsi_next (&gsi))
728 {
729 phi = gsi_stmt (gsi);
730 phi_arg = PHI_ARG_DEF_FROM_EDGE (phi, single_exit (loop));
731 if (phi_arg)
732 {
733 edge new_loop_exit_edge;
734 source_location locus;
735
736 locus = gimple_phi_arg_location_from_edge (phi, single_exit (loop));
737 if (EDGE_SUCC (new_loop->header, 0)->dest == new_loop->latch)
738 new_loop_exit_edge = EDGE_SUCC (new_loop->header, 1);
739 else
740 new_loop_exit_edge = EDGE_SUCC (new_loop->header, 0);
741
742 add_phi_arg (phi, phi_arg, new_loop_exit_edge, locus);
743 }
744 }
745
746 if (at_exit) /* Add the loop copy at exit. */
747 {
748 redirect_edge_and_branch_force (e, new_loop->header);
749 PENDING_STMT (e) = NULL;
750 set_immediate_dominator (CDI_DOMINATORS, new_loop->header, e->src);
751 if (was_imm_dom)
752 set_immediate_dominator (CDI_DOMINATORS, exit_dest, new_loop->header);
753 }
754 else /* Add the copy at entry. */
755 {
756 edge new_exit_e;
757 edge entry_e = loop_preheader_edge (loop);
758 basic_block preheader = entry_e->src;
759
760 if (!flow_bb_inside_loop_p (new_loop,
761 EDGE_SUCC (new_loop->header, 0)->dest))
762 new_exit_e = EDGE_SUCC (new_loop->header, 0);
763 else
764 new_exit_e = EDGE_SUCC (new_loop->header, 1);
765
766 redirect_edge_and_branch_force (new_exit_e, loop->header);
767 PENDING_STMT (new_exit_e) = NULL;
768 set_immediate_dominator (CDI_DOMINATORS, loop->header,
769 new_exit_e->src);
770
771 /* We have to add phi args to the loop->header here as coming
772 from new_exit_e edge. */
773 for (gsi = gsi_start_phis (loop->header);
774 !gsi_end_p (gsi);
775 gsi_next (&gsi))
776 {
777 phi = gsi_stmt (gsi);
778 phi_arg = PHI_ARG_DEF_FROM_EDGE (phi, entry_e);
779 if (phi_arg)
780 add_phi_arg (phi, phi_arg, new_exit_e,
781 gimple_phi_arg_location_from_edge (phi, entry_e));
782 }
783
784 redirect_edge_and_branch_force (entry_e, new_loop->header);
785 PENDING_STMT (entry_e) = NULL;
786 set_immediate_dominator (CDI_DOMINATORS, new_loop->header, preheader);
787 }
788
789 free (new_bbs);
790 free (bbs);
791
792 return new_loop;
793 }
794
795
796 /* Given the condition statement COND, put it as the last statement
797 of GUARD_BB; EXIT_BB is the basic block to skip the loop;
798 Assumes that this is the single exit of the guarded loop.
799 Returns the skip edge, inserts new stmts on the COND_EXPR_STMT_LIST. */
800
801 static edge
802 slpeel_add_loop_guard (basic_block guard_bb, tree cond,
803 gimple_seq cond_expr_stmt_list,
804 basic_block exit_bb, basic_block dom_bb)
805 {
806 gimple_stmt_iterator gsi;
807 edge new_e, enter_e;
808 gimple cond_stmt;
809 gimple_seq gimplify_stmt_list = NULL;
810
811 enter_e = EDGE_SUCC (guard_bb, 0);
812 enter_e->flags &= ~EDGE_FALLTHRU;
813 enter_e->flags |= EDGE_FALSE_VALUE;
814 gsi = gsi_last_bb (guard_bb);
815
816 cond = force_gimple_operand (cond, &gimplify_stmt_list, true, NULL_TREE);
817 if (gimplify_stmt_list)
818 gimple_seq_add_seq (&cond_expr_stmt_list, gimplify_stmt_list);
819 cond_stmt = gimple_build_cond (NE_EXPR,
820 cond, build_int_cst (TREE_TYPE (cond), 0),
821 NULL_TREE, NULL_TREE);
822 if (cond_expr_stmt_list)
823 gsi_insert_seq_after (&gsi, cond_expr_stmt_list, GSI_NEW_STMT);
824
825 gsi = gsi_last_bb (guard_bb);
826 gsi_insert_after (&gsi, cond_stmt, GSI_NEW_STMT);
827
828 /* Add new edge to connect guard block to the merge/loop-exit block. */
829 new_e = make_edge (guard_bb, exit_bb, EDGE_TRUE_VALUE);
830 set_immediate_dominator (CDI_DOMINATORS, exit_bb, dom_bb);
831 return new_e;
832 }
833
834
835 /* This function verifies that the following restrictions apply to LOOP:
836 (1) it is innermost
837 (2) it consists of exactly 2 basic blocks - header, and an empty latch.
838 (3) it is single entry, single exit
839 (4) its exit condition is the last stmt in the header
840 (5) E is the entry/exit edge of LOOP.
841 */
842
843 bool
844 slpeel_can_duplicate_loop_p (const struct loop *loop, const_edge e)
845 {
846 edge exit_e = single_exit (loop);
847 edge entry_e = loop_preheader_edge (loop);
848 gimple orig_cond = get_loop_exit_condition (loop);
849 gimple_stmt_iterator loop_exit_gsi = gsi_last_bb (exit_e->src);
850
851 if (need_ssa_update_p (cfun))
852 return false;
853
854 if (loop->inner
855 /* All loops have an outer scope; the only case loop->outer is NULL is for
856 the function itself. */
857 || !loop_outer (loop)
858 || loop->num_nodes != 2
859 || !empty_block_p (loop->latch)
860 || !single_exit (loop)
861 /* Verify that new loop exit condition can be trivially modified. */
862 || (!orig_cond || orig_cond != gsi_stmt (loop_exit_gsi))
863 || (e != exit_e && e != entry_e))
864 return false;
865
866 return true;
867 }
868
869 #ifdef ENABLE_CHECKING
870 static void
871 slpeel_verify_cfg_after_peeling (struct loop *first_loop,
872 struct loop *second_loop)
873 {
874 basic_block loop1_exit_bb = single_exit (first_loop)->dest;
875 basic_block loop2_entry_bb = loop_preheader_edge (second_loop)->src;
876 basic_block loop1_entry_bb = loop_preheader_edge (first_loop)->src;
877
878 /* A guard that controls whether the second_loop is to be executed or skipped
879 is placed in first_loop->exit. first_loop->exit therefore has two
880 successors - one is the preheader of second_loop, and the other is a bb
881 after second_loop.
882 */
883 gcc_assert (EDGE_COUNT (loop1_exit_bb->succs) == 2);
884
885 /* 1. Verify that one of the successors of first_loop->exit is the preheader
886 of second_loop. */
887
888 /* The preheader of new_loop is expected to have two predecessors:
889 first_loop->exit and the block that precedes first_loop. */
890
891 gcc_assert (EDGE_COUNT (loop2_entry_bb->preds) == 2
892 && ((EDGE_PRED (loop2_entry_bb, 0)->src == loop1_exit_bb
893 && EDGE_PRED (loop2_entry_bb, 1)->src == loop1_entry_bb)
894 || (EDGE_PRED (loop2_entry_bb, 1)->src == loop1_exit_bb
895 && EDGE_PRED (loop2_entry_bb, 0)->src == loop1_entry_bb)));
896
897 /* Verify that the other successor of first_loop->exit is after the
898 second_loop. */
899 /* TODO */
900 }
901 #endif
902
903 /* If the run time cost model check determines that vectorization is
904 not profitable and hence scalar loop should be generated then set
905 FIRST_NITERS to prologue peeled iterations. This will allow all the
906 iterations to be executed in the prologue peeled scalar loop. */
907
908 static void
909 set_prologue_iterations (basic_block bb_before_first_loop,
910 tree first_niters,
911 struct loop *loop,
912 unsigned int th)
913 {
914 edge e;
915 basic_block cond_bb, then_bb;
916 tree var, prologue_after_cost_adjust_name;
917 gimple_stmt_iterator gsi;
918 gimple newphi;
919 edge e_true, e_false, e_fallthru;
920 gimple cond_stmt;
921 gimple_seq gimplify_stmt_list = NULL, stmts = NULL;
922 tree cost_pre_condition = NULL_TREE;
923 tree scalar_loop_iters =
924 unshare_expr (LOOP_VINFO_NITERS_UNCHANGED (loop_vec_info_for_loop (loop)));
925
926 e = single_pred_edge (bb_before_first_loop);
927 cond_bb = split_edge(e);
928
929 e = single_pred_edge (bb_before_first_loop);
930 then_bb = split_edge(e);
931 set_immediate_dominator (CDI_DOMINATORS, then_bb, cond_bb);
932
933 e_false = make_single_succ_edge (cond_bb, bb_before_first_loop,
934 EDGE_FALSE_VALUE);
935 set_immediate_dominator (CDI_DOMINATORS, bb_before_first_loop, cond_bb);
936
937 e_true = EDGE_PRED (then_bb, 0);
938 e_true->flags &= ~EDGE_FALLTHRU;
939 e_true->flags |= EDGE_TRUE_VALUE;
940
941 e_fallthru = EDGE_SUCC (then_bb, 0);
942
943 cost_pre_condition =
944 fold_build2 (LE_EXPR, boolean_type_node, scalar_loop_iters,
945 build_int_cst (TREE_TYPE (scalar_loop_iters), th));
946 cost_pre_condition =
947 force_gimple_operand (cost_pre_condition, &gimplify_stmt_list,
948 true, NULL_TREE);
949 cond_stmt = gimple_build_cond (NE_EXPR, cost_pre_condition,
950 build_int_cst (TREE_TYPE (cost_pre_condition),
951 0), NULL_TREE, NULL_TREE);
952
953 gsi = gsi_last_bb (cond_bb);
954 if (gimplify_stmt_list)
955 gsi_insert_seq_after (&gsi, gimplify_stmt_list, GSI_NEW_STMT);
956
957 gsi = gsi_last_bb (cond_bb);
958 gsi_insert_after (&gsi, cond_stmt, GSI_NEW_STMT);
959
960 var = create_tmp_var (TREE_TYPE (scalar_loop_iters),
961 "prologue_after_cost_adjust");
962 add_referenced_var (var);
963 prologue_after_cost_adjust_name =
964 force_gimple_operand (scalar_loop_iters, &stmts, false, var);
965
966 gsi = gsi_last_bb (then_bb);
967 if (stmts)
968 gsi_insert_seq_after (&gsi, stmts, GSI_NEW_STMT);
969
970 newphi = create_phi_node (var, bb_before_first_loop);
971 add_phi_arg (newphi, prologue_after_cost_adjust_name, e_fallthru,
972 UNKNOWN_LOCATION);
973 add_phi_arg (newphi, first_niters, e_false, UNKNOWN_LOCATION);
974
975 first_niters = PHI_RESULT (newphi);
976 }
977
978
979 /* Function slpeel_tree_peel_loop_to_edge.
980
981 Peel the first (last) iterations of LOOP into a new prolog (epilog) loop
982 that is placed on the entry (exit) edge E of LOOP. After this transformation
983 we have two loops one after the other - first-loop iterates FIRST_NITERS
984 times, and second-loop iterates the remainder NITERS - FIRST_NITERS times.
985 If the cost model indicates that it is profitable to emit a scalar
986 loop instead of the vector one, then the prolog (epilog) loop will iterate
987 for the entire unchanged scalar iterations of the loop.
988
989 Input:
990 - LOOP: the loop to be peeled.
991 - E: the exit or entry edge of LOOP.
992 If it is the entry edge, we peel the first iterations of LOOP. In this
993 case first-loop is LOOP, and second-loop is the newly created loop.
994 If it is the exit edge, we peel the last iterations of LOOP. In this
995 case, first-loop is the newly created loop, and second-loop is LOOP.
996 - NITERS: the number of iterations that LOOP iterates.
997 - FIRST_NITERS: the number of iterations that the first-loop should iterate.
998 - UPDATE_FIRST_LOOP_COUNT: specified whether this function is responsible
999 for updating the loop bound of the first-loop to FIRST_NITERS. If it
1000 is false, the caller of this function may want to take care of this
1001 (this can be useful if we don't want new stmts added to first-loop).
1002 - TH: cost model profitability threshold of iterations for vectorization.
1003 - CHECK_PROFITABILITY: specify whether cost model check has not occurred
1004 during versioning and hence needs to occur during
1005 prologue generation or whether cost model check
1006 has not occurred during prologue generation and hence
1007 needs to occur during epilogue generation.
1008
1009
1010 Output:
1011 The function returns a pointer to the new loop-copy, or NULL if it failed
1012 to perform the transformation.
1013
1014 The function generates two if-then-else guards: one before the first loop,
1015 and the other before the second loop:
1016 The first guard is:
1017 if (FIRST_NITERS == 0) then skip the first loop,
1018 and go directly to the second loop.
1019 The second guard is:
1020 if (FIRST_NITERS == NITERS) then skip the second loop.
1021
1022 If the optional COND_EXPR and COND_EXPR_STMT_LIST arguments are given
1023 then the generated condition is combined with COND_EXPR and the
1024 statements in COND_EXPR_STMT_LIST are emitted together with it.
1025
1026 FORNOW only simple loops are supported (see slpeel_can_duplicate_loop_p).
1027 FORNOW the resulting code will not be in loop-closed-ssa form.
1028 */
1029
1030 static struct loop*
1031 slpeel_tree_peel_loop_to_edge (struct loop *loop,
1032 edge e, tree first_niters,
1033 tree niters, bool update_first_loop_count,
1034 unsigned int th, bool check_profitability,
1035 tree cond_expr, gimple_seq cond_expr_stmt_list)
1036 {
1037 struct loop *new_loop = NULL, *first_loop, *second_loop;
1038 edge skip_e;
1039 tree pre_condition = NULL_TREE;
1040 bitmap definitions;
1041 basic_block bb_before_second_loop, bb_after_second_loop;
1042 basic_block bb_before_first_loop;
1043 basic_block bb_between_loops;
1044 basic_block new_exit_bb;
1045 edge exit_e = single_exit (loop);
1046 LOC loop_loc;
1047 tree cost_pre_condition = NULL_TREE;
1048
1049 if (!slpeel_can_duplicate_loop_p (loop, e))
1050 return NULL;
1051
1052 /* We have to initialize cfg_hooks. Then, when calling
1053 cfg_hooks->split_edge, the function tree_split_edge
1054 is actually called and, when calling cfg_hooks->duplicate_block,
1055 the function tree_duplicate_bb is called. */
1056 gimple_register_cfg_hooks ();
1057
1058
1059 /* 1. Generate a copy of LOOP and put it on E (E is the entry/exit of LOOP).
1060 Resulting CFG would be:
1061
1062 first_loop:
1063 do {
1064 } while ...
1065
1066 second_loop:
1067 do {
1068 } while ...
1069
1070 orig_exit_bb:
1071 */
1072
1073 if (!(new_loop = slpeel_tree_duplicate_loop_to_edge_cfg (loop, e)))
1074 {
1075 loop_loc = find_loop_location (loop);
1076 if (dump_file && (dump_flags & TDF_DETAILS))
1077 {
1078 if (loop_loc != UNKNOWN_LOC)
1079 fprintf (dump_file, "\n%s:%d: note: ",
1080 LOC_FILE (loop_loc), LOC_LINE (loop_loc));
1081 fprintf (dump_file, "tree_duplicate_loop_to_edge_cfg failed.\n");
1082 }
1083 return NULL;
1084 }
1085
1086 if (e == exit_e)
1087 {
1088 /* NEW_LOOP was placed after LOOP. */
1089 first_loop = loop;
1090 second_loop = new_loop;
1091 }
1092 else
1093 {
1094 /* NEW_LOOP was placed before LOOP. */
1095 first_loop = new_loop;
1096 second_loop = loop;
1097 }
1098
1099 definitions = ssa_names_to_replace ();
1100 slpeel_update_phis_for_duplicate_loop (loop, new_loop, e == exit_e);
1101 rename_variables_in_loop (new_loop);
1102
1103
1104 /* 2. Add the guard code in one of the following ways:
1105
1106 2.a Add the guard that controls whether the first loop is executed.
1107 This occurs when this function is invoked for prologue or epilogue
1108 generation and when the cost model check can be done at compile time.
1109
1110 Resulting CFG would be:
1111
1112 bb_before_first_loop:
1113 if (FIRST_NITERS == 0) GOTO bb_before_second_loop
1114 GOTO first-loop
1115
1116 first_loop:
1117 do {
1118 } while ...
1119
1120 bb_before_second_loop:
1121
1122 second_loop:
1123 do {
1124 } while ...
1125
1126 orig_exit_bb:
1127
1128 2.b Add the cost model check that allows the prologue
1129 to iterate for the entire unchanged scalar
1130 iterations of the loop in the event that the cost
1131 model indicates that the scalar loop is more
1132 profitable than the vector one. This occurs when
1133 this function is invoked for prologue generation
1134 and the cost model check needs to be done at run
1135 time.
1136
1137 Resulting CFG after prologue peeling would be:
1138
1139 if (scalar_loop_iterations <= th)
1140 FIRST_NITERS = scalar_loop_iterations
1141
1142 bb_before_first_loop:
1143 if (FIRST_NITERS == 0) GOTO bb_before_second_loop
1144 GOTO first-loop
1145
1146 first_loop:
1147 do {
1148 } while ...
1149
1150 bb_before_second_loop:
1151
1152 second_loop:
1153 do {
1154 } while ...
1155
1156 orig_exit_bb:
1157
1158 2.c Add the cost model check that allows the epilogue
1159 to iterate for the entire unchanged scalar
1160 iterations of the loop in the event that the cost
1161 model indicates that the scalar loop is more
1162 profitable than the vector one. This occurs when
1163 this function is invoked for epilogue generation
1164 and the cost model check needs to be done at run
1165 time. This check is combined with any pre-existing
1166 check in COND_EXPR to avoid versioning.
1167
1168 Resulting CFG after prologue peeling would be:
1169
1170 bb_before_first_loop:
1171 if ((scalar_loop_iterations <= th)
1172 ||
1173 FIRST_NITERS == 0) GOTO bb_before_second_loop
1174 GOTO first-loop
1175
1176 first_loop:
1177 do {
1178 } while ...
1179
1180 bb_before_second_loop:
1181
1182 second_loop:
1183 do {
1184 } while ...
1185
1186 orig_exit_bb:
1187 */
1188
1189 bb_before_first_loop = split_edge (loop_preheader_edge (first_loop));
1190 bb_before_second_loop = split_edge (single_exit (first_loop));
1191
1192 /* Epilogue peeling. */
1193 if (!update_first_loop_count)
1194 {
1195 pre_condition =
1196 fold_build2 (LE_EXPR, boolean_type_node, first_niters,
1197 build_int_cst (TREE_TYPE (first_niters), 0));
1198 if (check_profitability)
1199 {
1200 tree scalar_loop_iters
1201 = unshare_expr (LOOP_VINFO_NITERS_UNCHANGED
1202 (loop_vec_info_for_loop (loop)));
1203 cost_pre_condition =
1204 fold_build2 (LE_EXPR, boolean_type_node, scalar_loop_iters,
1205 build_int_cst (TREE_TYPE (scalar_loop_iters), th));
1206
1207 pre_condition = fold_build2 (TRUTH_OR_EXPR, boolean_type_node,
1208 cost_pre_condition, pre_condition);
1209 }
1210 if (cond_expr)
1211 {
1212 pre_condition =
1213 fold_build2 (TRUTH_OR_EXPR, boolean_type_node,
1214 pre_condition,
1215 fold_build1 (TRUTH_NOT_EXPR, boolean_type_node,
1216 cond_expr));
1217 }
1218 }
1219
1220 /* Prologue peeling. */
1221 else
1222 {
1223 if (check_profitability)
1224 set_prologue_iterations (bb_before_first_loop, first_niters,
1225 loop, th);
1226
1227 pre_condition =
1228 fold_build2 (LE_EXPR, boolean_type_node, first_niters,
1229 build_int_cst (TREE_TYPE (first_niters), 0));
1230 }
1231
1232 skip_e = slpeel_add_loop_guard (bb_before_first_loop, pre_condition,
1233 cond_expr_stmt_list,
1234 bb_before_second_loop, bb_before_first_loop);
1235 slpeel_update_phi_nodes_for_guard1 (skip_e, first_loop,
1236 first_loop == new_loop,
1237 &new_exit_bb, &definitions);
1238
1239
1240 /* 3. Add the guard that controls whether the second loop is executed.
1241 Resulting CFG would be:
1242
1243 bb_before_first_loop:
1244 if (FIRST_NITERS == 0) GOTO bb_before_second_loop (skip first loop)
1245 GOTO first-loop
1246
1247 first_loop:
1248 do {
1249 } while ...
1250
1251 bb_between_loops:
1252 if (FIRST_NITERS == NITERS) GOTO bb_after_second_loop (skip second loop)
1253 GOTO bb_before_second_loop
1254
1255 bb_before_second_loop:
1256
1257 second_loop:
1258 do {
1259 } while ...
1260
1261 bb_after_second_loop:
1262
1263 orig_exit_bb:
1264 */
1265
1266 bb_between_loops = new_exit_bb;
1267 bb_after_second_loop = split_edge (single_exit (second_loop));
1268
1269 pre_condition =
1270 fold_build2 (EQ_EXPR, boolean_type_node, first_niters, niters);
1271 skip_e = slpeel_add_loop_guard (bb_between_loops, pre_condition, NULL,
1272 bb_after_second_loop, bb_before_first_loop);
1273 slpeel_update_phi_nodes_for_guard2 (skip_e, second_loop,
1274 second_loop == new_loop, &new_exit_bb);
1275
1276 /* 4. Make first-loop iterate FIRST_NITERS times, if requested.
1277 */
1278 if (update_first_loop_count)
1279 slpeel_make_loop_iterate_ntimes (first_loop, first_niters);
1280
1281 BITMAP_FREE (definitions);
1282 delete_update_ssa ();
1283
1284 return new_loop;
1285 }
1286
1287 /* Function vect_get_loop_location.
1288
1289 Extract the location of the loop in the source code.
1290 If the loop is not well formed for vectorization, an estimated
1291 location is calculated.
1292 Return the loop location if succeed and NULL if not. */
1293
1294 LOC
1295 find_loop_location (struct loop *loop)
1296 {
1297 gimple stmt = NULL;
1298 basic_block bb;
1299 gimple_stmt_iterator si;
1300
1301 if (!loop)
1302 return UNKNOWN_LOC;
1303
1304 stmt = get_loop_exit_condition (loop);
1305
1306 if (stmt && gimple_location (stmt) != UNKNOWN_LOC)
1307 return gimple_location (stmt);
1308
1309 /* If we got here the loop is probably not "well formed",
1310 try to estimate the loop location */
1311
1312 if (!loop->header)
1313 return UNKNOWN_LOC;
1314
1315 bb = loop->header;
1316
1317 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
1318 {
1319 stmt = gsi_stmt (si);
1320 if (gimple_location (stmt) != UNKNOWN_LOC)
1321 return gimple_location (stmt);
1322 }
1323
1324 return UNKNOWN_LOC;
1325 }
1326
1327
1328 /* This function builds ni_name = number of iterations loop executes
1329 on the loop preheader. If SEQ is given the stmt is instead emitted
1330 there. */
1331
1332 static tree
1333 vect_build_loop_niters (loop_vec_info loop_vinfo, gimple_seq seq)
1334 {
1335 tree ni_name, var;
1336 gimple_seq stmts = NULL;
1337 edge pe;
1338 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
1339 tree ni = unshare_expr (LOOP_VINFO_NITERS (loop_vinfo));
1340
1341 var = create_tmp_var (TREE_TYPE (ni), "niters");
1342 add_referenced_var (var);
1343 ni_name = force_gimple_operand (ni, &stmts, false, var);
1344
1345 pe = loop_preheader_edge (loop);
1346 if (stmts)
1347 {
1348 if (seq)
1349 gimple_seq_add_seq (&seq, stmts);
1350 else
1351 {
1352 basic_block new_bb = gsi_insert_seq_on_edge_immediate (pe, stmts);
1353 gcc_assert (!new_bb);
1354 }
1355 }
1356
1357 return ni_name;
1358 }
1359
1360
1361 /* This function generates the following statements:
1362
1363 ni_name = number of iterations loop executes
1364 ratio = ni_name / vf
1365 ratio_mult_vf_name = ratio * vf
1366
1367 and places them at the loop preheader edge or in COND_EXPR_STMT_LIST
1368 if that is non-NULL. */
1369
1370 static void
1371 vect_generate_tmps_on_preheader (loop_vec_info loop_vinfo,
1372 tree *ni_name_ptr,
1373 tree *ratio_mult_vf_name_ptr,
1374 tree *ratio_name_ptr,
1375 gimple_seq cond_expr_stmt_list)
1376 {
1377
1378 edge pe;
1379 basic_block new_bb;
1380 gimple_seq stmts;
1381 tree ni_name;
1382 tree var;
1383 tree ratio_name;
1384 tree ratio_mult_vf_name;
1385 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
1386 tree ni = LOOP_VINFO_NITERS (loop_vinfo);
1387 int vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
1388 tree log_vf;
1389
1390 pe = loop_preheader_edge (loop);
1391
1392 /* Generate temporary variable that contains
1393 number of iterations loop executes. */
1394
1395 ni_name = vect_build_loop_niters (loop_vinfo, cond_expr_stmt_list);
1396 log_vf = build_int_cst (TREE_TYPE (ni), exact_log2 (vf));
1397
1398 /* Create: ratio = ni >> log2(vf) */
1399
1400 ratio_name = fold_build2 (RSHIFT_EXPR, TREE_TYPE (ni_name), ni_name, log_vf);
1401 if (!is_gimple_val (ratio_name))
1402 {
1403 var = create_tmp_var (TREE_TYPE (ni), "bnd");
1404 add_referenced_var (var);
1405
1406 stmts = NULL;
1407 ratio_name = force_gimple_operand (ratio_name, &stmts, true, var);
1408 if (cond_expr_stmt_list)
1409 gimple_seq_add_seq (&cond_expr_stmt_list, stmts);
1410 else
1411 {
1412 pe = loop_preheader_edge (loop);
1413 new_bb = gsi_insert_seq_on_edge_immediate (pe, stmts);
1414 gcc_assert (!new_bb);
1415 }
1416 }
1417
1418 /* Create: ratio_mult_vf = ratio << log2 (vf). */
1419
1420 ratio_mult_vf_name = fold_build2 (LSHIFT_EXPR, TREE_TYPE (ratio_name),
1421 ratio_name, log_vf);
1422 if (!is_gimple_val (ratio_mult_vf_name))
1423 {
1424 var = create_tmp_var (TREE_TYPE (ni), "ratio_mult_vf");
1425 add_referenced_var (var);
1426
1427 stmts = NULL;
1428 ratio_mult_vf_name = force_gimple_operand (ratio_mult_vf_name, &stmts,
1429 true, var);
1430 if (cond_expr_stmt_list)
1431 gimple_seq_add_seq (&cond_expr_stmt_list, stmts);
1432 else
1433 {
1434 pe = loop_preheader_edge (loop);
1435 new_bb = gsi_insert_seq_on_edge_immediate (pe, stmts);
1436 gcc_assert (!new_bb);
1437 }
1438 }
1439
1440 *ni_name_ptr = ni_name;
1441 *ratio_mult_vf_name_ptr = ratio_mult_vf_name;
1442 *ratio_name_ptr = ratio_name;
1443
1444 return;
1445 }
1446
1447 /* Function vect_can_advance_ivs_p
1448
1449 In case the number of iterations that LOOP iterates is unknown at compile
1450 time, an epilog loop will be generated, and the loop induction variables
1451 (IVs) will be "advanced" to the value they are supposed to take just before
1452 the epilog loop. Here we check that the access function of the loop IVs
1453 and the expression that represents the loop bound are simple enough.
1454 These restrictions will be relaxed in the future. */
1455
1456 bool
1457 vect_can_advance_ivs_p (loop_vec_info loop_vinfo)
1458 {
1459 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
1460 basic_block bb = loop->header;
1461 gimple phi;
1462 gimple_stmt_iterator gsi;
1463
1464 /* Analyze phi functions of the loop header. */
1465
1466 if (vect_print_dump_info (REPORT_DETAILS))
1467 fprintf (vect_dump, "vect_can_advance_ivs_p:");
1468
1469 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1470 {
1471 tree access_fn = NULL;
1472 tree evolution_part;
1473
1474 phi = gsi_stmt (gsi);
1475 if (vect_print_dump_info (REPORT_DETAILS))
1476 {
1477 fprintf (vect_dump, "Analyze phi: ");
1478 print_gimple_stmt (vect_dump, phi, 0, TDF_SLIM);
1479 }
1480
1481 /* Skip virtual phi's. The data dependences that are associated with
1482 virtual defs/uses (i.e., memory accesses) are analyzed elsewhere. */
1483
1484 if (!is_gimple_reg (SSA_NAME_VAR (PHI_RESULT (phi))))
1485 {
1486 if (vect_print_dump_info (REPORT_DETAILS))
1487 fprintf (vect_dump, "virtual phi. skip.");
1488 continue;
1489 }
1490
1491 /* Skip reduction phis. */
1492
1493 if (STMT_VINFO_DEF_TYPE (vinfo_for_stmt (phi)) == vect_reduction_def)
1494 {
1495 if (vect_print_dump_info (REPORT_DETAILS))
1496 fprintf (vect_dump, "reduc phi. skip.");
1497 continue;
1498 }
1499
1500 /* Analyze the evolution function. */
1501
1502 access_fn = instantiate_parameters
1503 (loop, analyze_scalar_evolution (loop, PHI_RESULT (phi)));
1504
1505 if (!access_fn)
1506 {
1507 if (vect_print_dump_info (REPORT_DETAILS))
1508 fprintf (vect_dump, "No Access function.");
1509 return false;
1510 }
1511
1512 if (vect_print_dump_info (REPORT_DETAILS))
1513 {
1514 fprintf (vect_dump, "Access function of PHI: ");
1515 print_generic_expr (vect_dump, access_fn, TDF_SLIM);
1516 }
1517
1518 evolution_part = evolution_part_in_loop_num (access_fn, loop->num);
1519
1520 if (evolution_part == NULL_TREE)
1521 {
1522 if (vect_print_dump_info (REPORT_DETAILS))
1523 fprintf (vect_dump, "No evolution.");
1524 return false;
1525 }
1526
1527 /* FORNOW: We do not transform initial conditions of IVs
1528 which evolution functions are a polynomial of degree >= 2. */
1529
1530 if (tree_is_chrec (evolution_part))
1531 return false;
1532 }
1533
1534 return true;
1535 }
1536
1537
1538 /* Function vect_update_ivs_after_vectorizer.
1539
1540 "Advance" the induction variables of LOOP to the value they should take
1541 after the execution of LOOP. This is currently necessary because the
1542 vectorizer does not handle induction variables that are used after the
1543 loop. Such a situation occurs when the last iterations of LOOP are
1544 peeled, because:
1545 1. We introduced new uses after LOOP for IVs that were not originally used
1546 after LOOP: the IVs of LOOP are now used by an epilog loop.
1547 2. LOOP is going to be vectorized; this means that it will iterate N/VF
1548 times, whereas the loop IVs should be bumped N times.
1549
1550 Input:
1551 - LOOP - a loop that is going to be vectorized. The last few iterations
1552 of LOOP were peeled.
1553 - NITERS - the number of iterations that LOOP executes (before it is
1554 vectorized). i.e, the number of times the ivs should be bumped.
1555 - UPDATE_E - a successor edge of LOOP->exit that is on the (only) path
1556 coming out from LOOP on which there are uses of the LOOP ivs
1557 (this is the path from LOOP->exit to epilog_loop->preheader).
1558
1559 The new definitions of the ivs are placed in LOOP->exit.
1560 The phi args associated with the edge UPDATE_E in the bb
1561 UPDATE_E->dest are updated accordingly.
1562
1563 Assumption 1: Like the rest of the vectorizer, this function assumes
1564 a single loop exit that has a single predecessor.
1565
1566 Assumption 2: The phi nodes in the LOOP header and in update_bb are
1567 organized in the same order.
1568
1569 Assumption 3: The access function of the ivs is simple enough (see
1570 vect_can_advance_ivs_p). This assumption will be relaxed in the future.
1571
1572 Assumption 4: Exactly one of the successors of LOOP exit-bb is on a path
1573 coming out of LOOP on which the ivs of LOOP are used (this is the path
1574 that leads to the epilog loop; other paths skip the epilog loop). This
1575 path starts with the edge UPDATE_E, and its destination (denoted update_bb)
1576 needs to have its phis updated.
1577 */
1578
1579 static void
1580 vect_update_ivs_after_vectorizer (loop_vec_info loop_vinfo, tree niters,
1581 edge update_e)
1582 {
1583 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
1584 basic_block exit_bb = single_exit (loop)->dest;
1585 gimple phi, phi1;
1586 gimple_stmt_iterator gsi, gsi1;
1587 basic_block update_bb = update_e->dest;
1588
1589 /* gcc_assert (vect_can_advance_ivs_p (loop_vinfo)); */
1590
1591 /* Make sure there exists a single-predecessor exit bb: */
1592 gcc_assert (single_pred_p (exit_bb));
1593
1594 for (gsi = gsi_start_phis (loop->header), gsi1 = gsi_start_phis (update_bb);
1595 !gsi_end_p (gsi) && !gsi_end_p (gsi1);
1596 gsi_next (&gsi), gsi_next (&gsi1))
1597 {
1598 tree access_fn = NULL;
1599 tree evolution_part;
1600 tree init_expr;
1601 tree step_expr, off;
1602 tree type;
1603 tree var, ni, ni_name;
1604 gimple_stmt_iterator last_gsi;
1605
1606 phi = gsi_stmt (gsi);
1607 phi1 = gsi_stmt (gsi1);
1608 if (vect_print_dump_info (REPORT_DETAILS))
1609 {
1610 fprintf (vect_dump, "vect_update_ivs_after_vectorizer: phi: ");
1611 print_gimple_stmt (vect_dump, phi, 0, TDF_SLIM);
1612 }
1613
1614 /* Skip virtual phi's. */
1615 if (!is_gimple_reg (SSA_NAME_VAR (PHI_RESULT (phi))))
1616 {
1617 if (vect_print_dump_info (REPORT_DETAILS))
1618 fprintf (vect_dump, "virtual phi. skip.");
1619 continue;
1620 }
1621
1622 /* Skip reduction phis. */
1623 if (STMT_VINFO_DEF_TYPE (vinfo_for_stmt (phi)) == vect_reduction_def)
1624 {
1625 if (vect_print_dump_info (REPORT_DETAILS))
1626 fprintf (vect_dump, "reduc phi. skip.");
1627 continue;
1628 }
1629
1630 access_fn = analyze_scalar_evolution (loop, PHI_RESULT (phi));
1631 gcc_assert (access_fn);
1632 /* We can end up with an access_fn like
1633 (short int) {(short unsigned int) i_49, +, 1}_1
1634 for further analysis we need to strip the outer cast but we
1635 need to preserve the original type. */
1636 type = TREE_TYPE (access_fn);
1637 STRIP_NOPS (access_fn);
1638 evolution_part =
1639 unshare_expr (evolution_part_in_loop_num (access_fn, loop->num));
1640 gcc_assert (evolution_part != NULL_TREE);
1641
1642 /* FORNOW: We do not support IVs whose evolution function is a polynomial
1643 of degree >= 2 or exponential. */
1644 gcc_assert (!tree_is_chrec (evolution_part));
1645
1646 step_expr = evolution_part;
1647 init_expr = unshare_expr (initial_condition_in_loop_num (access_fn,
1648 loop->num));
1649 init_expr = fold_convert (type, init_expr);
1650
1651 off = fold_build2 (MULT_EXPR, TREE_TYPE (step_expr),
1652 fold_convert (TREE_TYPE (step_expr), niters),
1653 step_expr);
1654 if (POINTER_TYPE_P (TREE_TYPE (init_expr)))
1655 ni = fold_build2 (POINTER_PLUS_EXPR, TREE_TYPE (init_expr),
1656 init_expr,
1657 fold_convert (sizetype, off));
1658 else
1659 ni = fold_build2 (PLUS_EXPR, TREE_TYPE (init_expr),
1660 init_expr,
1661 fold_convert (TREE_TYPE (init_expr), off));
1662
1663 var = create_tmp_var (TREE_TYPE (init_expr), "tmp");
1664 add_referenced_var (var);
1665
1666 last_gsi = gsi_last_bb (exit_bb);
1667 ni_name = force_gimple_operand_gsi (&last_gsi, ni, false, var,
1668 true, GSI_SAME_STMT);
1669
1670 /* Fix phi expressions in the successor bb. */
1671 SET_PHI_ARG_DEF (phi1, update_e->dest_idx, ni_name);
1672 }
1673 }
1674
1675 /* Return the more conservative threshold between the
1676 min_profitable_iters returned by the cost model and the user
1677 specified threshold, if provided. */
1678
1679 static unsigned int
1680 conservative_cost_threshold (loop_vec_info loop_vinfo,
1681 int min_profitable_iters)
1682 {
1683 unsigned int th;
1684 int min_scalar_loop_bound;
1685
1686 min_scalar_loop_bound = ((PARAM_VALUE (PARAM_MIN_VECT_LOOP_BOUND)
1687 * LOOP_VINFO_VECT_FACTOR (loop_vinfo)) - 1);
1688
1689 /* Use the cost model only if it is more conservative than user specified
1690 threshold. */
1691 th = (unsigned) min_scalar_loop_bound;
1692 if (min_profitable_iters
1693 && (!min_scalar_loop_bound
1694 || min_profitable_iters > min_scalar_loop_bound))
1695 th = (unsigned) min_profitable_iters;
1696
1697 if (th && vect_print_dump_info (REPORT_COST))
1698 fprintf (vect_dump, "Profitability threshold is %u loop iterations.", th);
1699
1700 return th;
1701 }
1702
1703 /* Function vect_do_peeling_for_loop_bound
1704
1705 Peel the last iterations of the loop represented by LOOP_VINFO.
1706 The peeled iterations form a new epilog loop. Given that the loop now
1707 iterates NITERS times, the new epilog loop iterates
1708 NITERS % VECTORIZATION_FACTOR times.
1709
1710 The original loop will later be made to iterate
1711 NITERS / VECTORIZATION_FACTOR times (this value is placed into RATIO).
1712
1713 COND_EXPR and COND_EXPR_STMT_LIST are combined with a new generated
1714 test. */
1715
1716 void
1717 vect_do_peeling_for_loop_bound (loop_vec_info loop_vinfo, tree *ratio,
1718 tree cond_expr, gimple_seq cond_expr_stmt_list)
1719 {
1720 tree ni_name, ratio_mult_vf_name;
1721 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
1722 struct loop *new_loop;
1723 edge update_e;
1724 basic_block preheader;
1725 int loop_num;
1726 bool check_profitability = false;
1727 unsigned int th = 0;
1728 int min_profitable_iters;
1729
1730 if (vect_print_dump_info (REPORT_DETAILS))
1731 fprintf (vect_dump, "=== vect_do_peeling_for_loop_bound ===");
1732
1733 initialize_original_copy_tables ();
1734
1735 /* Generate the following variables on the preheader of original loop:
1736
1737 ni_name = number of iteration the original loop executes
1738 ratio = ni_name / vf
1739 ratio_mult_vf_name = ratio * vf */
1740 vect_generate_tmps_on_preheader (loop_vinfo, &ni_name,
1741 &ratio_mult_vf_name, ratio,
1742 cond_expr_stmt_list);
1743
1744 loop_num = loop->num;
1745
1746 /* If cost model check not done during versioning and
1747 peeling for alignment. */
1748 if (!LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (loop_vinfo)
1749 && !LOOP_REQUIRES_VERSIONING_FOR_ALIAS (loop_vinfo)
1750 && !LOOP_PEELING_FOR_ALIGNMENT (loop_vinfo)
1751 && !cond_expr)
1752 {
1753 check_profitability = true;
1754
1755 /* Get profitability threshold for vectorized loop. */
1756 min_profitable_iters = LOOP_VINFO_COST_MODEL_MIN_ITERS (loop_vinfo);
1757
1758 th = conservative_cost_threshold (loop_vinfo,
1759 min_profitable_iters);
1760 }
1761
1762 new_loop = slpeel_tree_peel_loop_to_edge (loop, single_exit (loop),
1763 ratio_mult_vf_name, ni_name, false,
1764 th, check_profitability,
1765 cond_expr, cond_expr_stmt_list);
1766 gcc_assert (new_loop);
1767 gcc_assert (loop_num == loop->num);
1768 #ifdef ENABLE_CHECKING
1769 slpeel_verify_cfg_after_peeling (loop, new_loop);
1770 #endif
1771
1772 /* A guard that controls whether the new_loop is to be executed or skipped
1773 is placed in LOOP->exit. LOOP->exit therefore has two successors - one
1774 is the preheader of NEW_LOOP, where the IVs from LOOP are used. The other
1775 is a bb after NEW_LOOP, where these IVs are not used. Find the edge that
1776 is on the path where the LOOP IVs are used and need to be updated. */
1777
1778 preheader = loop_preheader_edge (new_loop)->src;
1779 if (EDGE_PRED (preheader, 0)->src == single_exit (loop)->dest)
1780 update_e = EDGE_PRED (preheader, 0);
1781 else
1782 update_e = EDGE_PRED (preheader, 1);
1783
1784 /* Update IVs of original loop as if they were advanced
1785 by ratio_mult_vf_name steps. */
1786 vect_update_ivs_after_vectorizer (loop_vinfo, ratio_mult_vf_name, update_e);
1787
1788 /* After peeling we have to reset scalar evolution analyzer. */
1789 scev_reset ();
1790
1791 free_original_copy_tables ();
1792 }
1793
1794
1795 /* Function vect_gen_niters_for_prolog_loop
1796
1797 Set the number of iterations for the loop represented by LOOP_VINFO
1798 to the minimum between LOOP_NITERS (the original iteration count of the loop)
1799 and the misalignment of DR - the data reference recorded in
1800 LOOP_VINFO_UNALIGNED_DR (LOOP_VINFO). As a result, after the execution of
1801 this loop, the data reference DR will refer to an aligned location.
1802
1803 The following computation is generated:
1804
1805 If the misalignment of DR is known at compile time:
1806 addr_mis = int mis = DR_MISALIGNMENT (dr);
1807 Else, compute address misalignment in bytes:
1808 addr_mis = addr & (vectype_size - 1)
1809
1810 prolog_niters = min (LOOP_NITERS, ((VF - addr_mis/elem_size)&(VF-1))/step)
1811
1812 (elem_size = element type size; an element is the scalar element whose type
1813 is the inner type of the vectype)
1814
1815 When the step of the data-ref in the loop is not 1 (as in interleaved data
1816 and SLP), the number of iterations of the prolog must be divided by the step
1817 (which is equal to the size of interleaved group).
1818
1819 The above formulas assume that VF == number of elements in the vector. This
1820 may not hold when there are multiple-types in the loop.
1821 In this case, for some data-references in the loop the VF does not represent
1822 the number of elements that fit in the vector. Therefore, instead of VF we
1823 use TYPE_VECTOR_SUBPARTS. */
1824
1825 static tree
1826 vect_gen_niters_for_prolog_loop (loop_vec_info loop_vinfo, tree loop_niters)
1827 {
1828 struct data_reference *dr = LOOP_VINFO_UNALIGNED_DR (loop_vinfo);
1829 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
1830 tree var;
1831 gimple_seq stmts;
1832 tree iters, iters_name;
1833 edge pe;
1834 basic_block new_bb;
1835 gimple dr_stmt = DR_STMT (dr);
1836 stmt_vec_info stmt_info = vinfo_for_stmt (dr_stmt);
1837 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
1838 int vectype_align = TYPE_ALIGN (vectype) / BITS_PER_UNIT;
1839 tree niters_type = TREE_TYPE (loop_niters);
1840 int step = 1;
1841 int element_size = GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (DR_REF (dr))));
1842 int nelements = TYPE_VECTOR_SUBPARTS (vectype);
1843
1844 if (STMT_VINFO_STRIDED_ACCESS (stmt_info))
1845 step = DR_GROUP_SIZE (vinfo_for_stmt (DR_GROUP_FIRST_DR (stmt_info)));
1846
1847 pe = loop_preheader_edge (loop);
1848
1849 if (LOOP_PEELING_FOR_ALIGNMENT (loop_vinfo) > 0)
1850 {
1851 int byte_misalign = LOOP_PEELING_FOR_ALIGNMENT (loop_vinfo);
1852 int elem_misalign = byte_misalign / element_size;
1853
1854 if (vect_print_dump_info (REPORT_DETAILS))
1855 fprintf (vect_dump, "known alignment = %d.", byte_misalign);
1856
1857 iters = build_int_cst (niters_type,
1858 (((nelements - elem_misalign) & (nelements - 1)) / step));
1859 }
1860 else
1861 {
1862 gimple_seq new_stmts = NULL;
1863 tree start_addr = vect_create_addr_base_for_vector_ref (dr_stmt,
1864 &new_stmts, NULL_TREE, loop);
1865 tree ptr_type = TREE_TYPE (start_addr);
1866 tree size = TYPE_SIZE (ptr_type);
1867 tree type = lang_hooks.types.type_for_size (tree_low_cst (size, 1), 1);
1868 tree vectype_size_minus_1 = build_int_cst (type, vectype_align - 1);
1869 tree elem_size_log =
1870 build_int_cst (type, exact_log2 (vectype_align/nelements));
1871 tree nelements_minus_1 = build_int_cst (type, nelements - 1);
1872 tree nelements_tree = build_int_cst (type, nelements);
1873 tree byte_misalign;
1874 tree elem_misalign;
1875
1876 new_bb = gsi_insert_seq_on_edge_immediate (pe, new_stmts);
1877 gcc_assert (!new_bb);
1878
1879 /* Create: byte_misalign = addr & (vectype_size - 1) */
1880 byte_misalign =
1881 fold_build2 (BIT_AND_EXPR, type, fold_convert (type, start_addr), vectype_size_minus_1);
1882
1883 /* Create: elem_misalign = byte_misalign / element_size */
1884 elem_misalign =
1885 fold_build2 (RSHIFT_EXPR, type, byte_misalign, elem_size_log);
1886
1887 /* Create: (niters_type) (nelements - elem_misalign)&(nelements - 1) */
1888 iters = fold_build2 (MINUS_EXPR, type, nelements_tree, elem_misalign);
1889 iters = fold_build2 (BIT_AND_EXPR, type, iters, nelements_minus_1);
1890 iters = fold_convert (niters_type, iters);
1891 }
1892
1893 /* Create: prolog_loop_niters = min (iters, loop_niters) */
1894 /* If the loop bound is known at compile time we already verified that it is
1895 greater than vf; since the misalignment ('iters') is at most vf, there's
1896 no need to generate the MIN_EXPR in this case. */
1897 if (TREE_CODE (loop_niters) != INTEGER_CST)
1898 iters = fold_build2 (MIN_EXPR, niters_type, iters, loop_niters);
1899
1900 if (vect_print_dump_info (REPORT_DETAILS))
1901 {
1902 fprintf (vect_dump, "niters for prolog loop: ");
1903 print_generic_expr (vect_dump, iters, TDF_SLIM);
1904 }
1905
1906 var = create_tmp_var (niters_type, "prolog_loop_niters");
1907 add_referenced_var (var);
1908 stmts = NULL;
1909 iters_name = force_gimple_operand (iters, &stmts, false, var);
1910
1911 /* Insert stmt on loop preheader edge. */
1912 if (stmts)
1913 {
1914 basic_block new_bb = gsi_insert_seq_on_edge_immediate (pe, stmts);
1915 gcc_assert (!new_bb);
1916 }
1917
1918 return iters_name;
1919 }
1920
1921
1922 /* Function vect_update_init_of_dr
1923
1924 NITERS iterations were peeled from LOOP. DR represents a data reference
1925 in LOOP. This function updates the information recorded in DR to
1926 account for the fact that the first NITERS iterations had already been
1927 executed. Specifically, it updates the OFFSET field of DR. */
1928
1929 static void
1930 vect_update_init_of_dr (struct data_reference *dr, tree niters)
1931 {
1932 tree offset = DR_OFFSET (dr);
1933
1934 niters = fold_build2 (MULT_EXPR, sizetype,
1935 fold_convert (sizetype, niters),
1936 fold_convert (sizetype, DR_STEP (dr)));
1937 offset = fold_build2 (PLUS_EXPR, sizetype,
1938 fold_convert (sizetype, offset), niters);
1939 DR_OFFSET (dr) = offset;
1940 }
1941
1942
1943 /* Function vect_update_inits_of_drs
1944
1945 NITERS iterations were peeled from the loop represented by LOOP_VINFO.
1946 This function updates the information recorded for the data references in
1947 the loop to account for the fact that the first NITERS iterations had
1948 already been executed. Specifically, it updates the initial_condition of
1949 the access_function of all the data_references in the loop. */
1950
1951 static void
1952 vect_update_inits_of_drs (loop_vec_info loop_vinfo, tree niters)
1953 {
1954 unsigned int i;
1955 VEC (data_reference_p, heap) *datarefs = LOOP_VINFO_DATAREFS (loop_vinfo);
1956 struct data_reference *dr;
1957
1958 if (vect_print_dump_info (REPORT_DETAILS))
1959 fprintf (vect_dump, "=== vect_update_inits_of_dr ===");
1960
1961 for (i = 0; VEC_iterate (data_reference_p, datarefs, i, dr); i++)
1962 vect_update_init_of_dr (dr, niters);
1963 }
1964
1965
1966 /* Function vect_do_peeling_for_alignment
1967
1968 Peel the first 'niters' iterations of the loop represented by LOOP_VINFO.
1969 'niters' is set to the misalignment of one of the data references in the
1970 loop, thereby forcing it to refer to an aligned location at the beginning
1971 of the execution of this loop. The data reference for which we are
1972 peeling is recorded in LOOP_VINFO_UNALIGNED_DR. */
1973
1974 void
1975 vect_do_peeling_for_alignment (loop_vec_info loop_vinfo)
1976 {
1977 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
1978 tree niters_of_prolog_loop, ni_name;
1979 tree n_iters;
1980 struct loop *new_loop;
1981 unsigned int th = 0;
1982 int min_profitable_iters;
1983
1984 if (vect_print_dump_info (REPORT_DETAILS))
1985 fprintf (vect_dump, "=== vect_do_peeling_for_alignment ===");
1986
1987 initialize_original_copy_tables ();
1988
1989 ni_name = vect_build_loop_niters (loop_vinfo, NULL);
1990 niters_of_prolog_loop = vect_gen_niters_for_prolog_loop (loop_vinfo, ni_name);
1991
1992
1993 /* Get profitability threshold for vectorized loop. */
1994 min_profitable_iters = LOOP_VINFO_COST_MODEL_MIN_ITERS (loop_vinfo);
1995 th = conservative_cost_threshold (loop_vinfo,
1996 min_profitable_iters);
1997
1998 /* Peel the prolog loop and iterate it niters_of_prolog_loop. */
1999 new_loop =
2000 slpeel_tree_peel_loop_to_edge (loop, loop_preheader_edge (loop),
2001 niters_of_prolog_loop, ni_name, true,
2002 th, true, NULL_TREE, NULL);
2003
2004 gcc_assert (new_loop);
2005 #ifdef ENABLE_CHECKING
2006 slpeel_verify_cfg_after_peeling (new_loop, loop);
2007 #endif
2008
2009 /* Update number of times loop executes. */
2010 n_iters = LOOP_VINFO_NITERS (loop_vinfo);
2011 LOOP_VINFO_NITERS (loop_vinfo) = fold_build2 (MINUS_EXPR,
2012 TREE_TYPE (n_iters), n_iters, niters_of_prolog_loop);
2013
2014 /* Update the init conditions of the access functions of all data refs. */
2015 vect_update_inits_of_drs (loop_vinfo, niters_of_prolog_loop);
2016
2017 /* After peeling we have to reset scalar evolution analyzer. */
2018 scev_reset ();
2019
2020 free_original_copy_tables ();
2021 }
2022
2023
2024 /* Function vect_create_cond_for_align_checks.
2025
2026 Create a conditional expression that represents the alignment checks for
2027 all of data references (array element references) whose alignment must be
2028 checked at runtime.
2029
2030 Input:
2031 COND_EXPR - input conditional expression. New conditions will be chained
2032 with logical AND operation.
2033 LOOP_VINFO - two fields of the loop information are used.
2034 LOOP_VINFO_PTR_MASK is the mask used to check the alignment.
2035 LOOP_VINFO_MAY_MISALIGN_STMTS contains the refs to be checked.
2036
2037 Output:
2038 COND_EXPR_STMT_LIST - statements needed to construct the conditional
2039 expression.
2040 The returned value is the conditional expression to be used in the if
2041 statement that controls which version of the loop gets executed at runtime.
2042
2043 The algorithm makes two assumptions:
2044 1) The number of bytes "n" in a vector is a power of 2.
2045 2) An address "a" is aligned if a%n is zero and that this
2046 test can be done as a&(n-1) == 0. For example, for 16
2047 byte vectors the test is a&0xf == 0. */
2048
2049 static void
2050 vect_create_cond_for_align_checks (loop_vec_info loop_vinfo,
2051 tree *cond_expr,
2052 gimple_seq *cond_expr_stmt_list)
2053 {
2054 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
2055 VEC(gimple,heap) *may_misalign_stmts
2056 = LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo);
2057 gimple ref_stmt;
2058 int mask = LOOP_VINFO_PTR_MASK (loop_vinfo);
2059 tree mask_cst;
2060 unsigned int i;
2061 tree psize;
2062 tree int_ptrsize_type;
2063 char tmp_name[20];
2064 tree or_tmp_name = NULL_TREE;
2065 tree and_tmp, and_tmp_name;
2066 gimple and_stmt;
2067 tree ptrsize_zero;
2068 tree part_cond_expr;
2069
2070 /* Check that mask is one less than a power of 2, i.e., mask is
2071 all zeros followed by all ones. */
2072 gcc_assert ((mask != 0) && ((mask & (mask+1)) == 0));
2073
2074 /* CHECKME: what is the best integer or unsigned type to use to hold a
2075 cast from a pointer value? */
2076 psize = TYPE_SIZE (ptr_type_node);
2077 int_ptrsize_type
2078 = lang_hooks.types.type_for_size (tree_low_cst (psize, 1), 0);
2079
2080 /* Create expression (mask & (dr_1 || ... || dr_n)) where dr_i is the address
2081 of the first vector of the i'th data reference. */
2082
2083 for (i = 0; VEC_iterate (gimple, may_misalign_stmts, i, ref_stmt); i++)
2084 {
2085 gimple_seq new_stmt_list = NULL;
2086 tree addr_base;
2087 tree addr_tmp, addr_tmp_name;
2088 tree or_tmp, new_or_tmp_name;
2089 gimple addr_stmt, or_stmt;
2090
2091 /* create: addr_tmp = (int)(address_of_first_vector) */
2092 addr_base =
2093 vect_create_addr_base_for_vector_ref (ref_stmt, &new_stmt_list,
2094 NULL_TREE, loop);
2095 if (new_stmt_list != NULL)
2096 gimple_seq_add_seq (cond_expr_stmt_list, new_stmt_list);
2097
2098 sprintf (tmp_name, "%s%d", "addr2int", i);
2099 addr_tmp = create_tmp_var (int_ptrsize_type, tmp_name);
2100 add_referenced_var (addr_tmp);
2101 addr_tmp_name = make_ssa_name (addr_tmp, NULL);
2102 addr_stmt = gimple_build_assign_with_ops (NOP_EXPR, addr_tmp_name,
2103 addr_base, NULL_TREE);
2104 SSA_NAME_DEF_STMT (addr_tmp_name) = addr_stmt;
2105 gimple_seq_add_stmt (cond_expr_stmt_list, addr_stmt);
2106
2107 /* The addresses are OR together. */
2108
2109 if (or_tmp_name != NULL_TREE)
2110 {
2111 /* create: or_tmp = or_tmp | addr_tmp */
2112 sprintf (tmp_name, "%s%d", "orptrs", i);
2113 or_tmp = create_tmp_var (int_ptrsize_type, tmp_name);
2114 add_referenced_var (or_tmp);
2115 new_or_tmp_name = make_ssa_name (or_tmp, NULL);
2116 or_stmt = gimple_build_assign_with_ops (BIT_IOR_EXPR,
2117 new_or_tmp_name,
2118 or_tmp_name, addr_tmp_name);
2119 SSA_NAME_DEF_STMT (new_or_tmp_name) = or_stmt;
2120 gimple_seq_add_stmt (cond_expr_stmt_list, or_stmt);
2121 or_tmp_name = new_or_tmp_name;
2122 }
2123 else
2124 or_tmp_name = addr_tmp_name;
2125
2126 } /* end for i */
2127
2128 mask_cst = build_int_cst (int_ptrsize_type, mask);
2129
2130 /* create: and_tmp = or_tmp & mask */
2131 and_tmp = create_tmp_var (int_ptrsize_type, "andmask" );
2132 add_referenced_var (and_tmp);
2133 and_tmp_name = make_ssa_name (and_tmp, NULL);
2134
2135 and_stmt = gimple_build_assign_with_ops (BIT_AND_EXPR, and_tmp_name,
2136 or_tmp_name, mask_cst);
2137 SSA_NAME_DEF_STMT (and_tmp_name) = and_stmt;
2138 gimple_seq_add_stmt (cond_expr_stmt_list, and_stmt);
2139
2140 /* Make and_tmp the left operand of the conditional test against zero.
2141 if and_tmp has a nonzero bit then some address is unaligned. */
2142 ptrsize_zero = build_int_cst (int_ptrsize_type, 0);
2143 part_cond_expr = fold_build2 (EQ_EXPR, boolean_type_node,
2144 and_tmp_name, ptrsize_zero);
2145 if (*cond_expr)
2146 *cond_expr = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
2147 *cond_expr, part_cond_expr);
2148 else
2149 *cond_expr = part_cond_expr;
2150 }
2151
2152
2153 /* Function vect_vfa_segment_size.
2154
2155 Create an expression that computes the size of segment
2156 that will be accessed for a data reference. The functions takes into
2157 account that realignment loads may access one more vector.
2158
2159 Input:
2160 DR: The data reference.
2161 VECT_FACTOR: vectorization factor.
2162
2163 Return an expression whose value is the size of segment which will be
2164 accessed by DR. */
2165
2166 static tree
2167 vect_vfa_segment_size (struct data_reference *dr, tree vect_factor)
2168 {
2169 tree segment_length = fold_build2 (MULT_EXPR, integer_type_node,
2170 DR_STEP (dr), vect_factor);
2171
2172 if (vect_supportable_dr_alignment (dr) == dr_explicit_realign_optimized)
2173 {
2174 tree vector_size = TYPE_SIZE_UNIT
2175 (STMT_VINFO_VECTYPE (vinfo_for_stmt (DR_STMT (dr))));
2176
2177 segment_length = fold_build2 (PLUS_EXPR, integer_type_node,
2178 segment_length, vector_size);
2179 }
2180 return fold_convert (sizetype, segment_length);
2181 }
2182
2183
2184 /* Function vect_create_cond_for_alias_checks.
2185
2186 Create a conditional expression that represents the run-time checks for
2187 overlapping of address ranges represented by a list of data references
2188 relations passed as input.
2189
2190 Input:
2191 COND_EXPR - input conditional expression. New conditions will be chained
2192 with logical AND operation.
2193 LOOP_VINFO - field LOOP_VINFO_MAY_ALIAS_STMTS contains the list of ddrs
2194 to be checked.
2195
2196 Output:
2197 COND_EXPR - conditional expression.
2198 COND_EXPR_STMT_LIST - statements needed to construct the conditional
2199 expression.
2200
2201
2202 The returned value is the conditional expression to be used in the if
2203 statement that controls which version of the loop gets executed at runtime.
2204 */
2205
2206 static void
2207 vect_create_cond_for_alias_checks (loop_vec_info loop_vinfo,
2208 tree * cond_expr,
2209 gimple_seq * cond_expr_stmt_list)
2210 {
2211 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
2212 VEC (ddr_p, heap) * may_alias_ddrs =
2213 LOOP_VINFO_MAY_ALIAS_DDRS (loop_vinfo);
2214 tree vect_factor =
2215 build_int_cst (integer_type_node, LOOP_VINFO_VECT_FACTOR (loop_vinfo));
2216
2217 ddr_p ddr;
2218 unsigned int i;
2219 tree part_cond_expr;
2220
2221 /* Create expression
2222 ((store_ptr_0 + store_segment_length_0) < load_ptr_0)
2223 || (load_ptr_0 + load_segment_length_0) < store_ptr_0))
2224 &&
2225 ...
2226 &&
2227 ((store_ptr_n + store_segment_length_n) < load_ptr_n)
2228 || (load_ptr_n + load_segment_length_n) < store_ptr_n)) */
2229
2230 if (VEC_empty (ddr_p, may_alias_ddrs))
2231 return;
2232
2233 for (i = 0; VEC_iterate (ddr_p, may_alias_ddrs, i, ddr); i++)
2234 {
2235 struct data_reference *dr_a, *dr_b;
2236 gimple dr_group_first_a, dr_group_first_b;
2237 tree addr_base_a, addr_base_b;
2238 tree segment_length_a, segment_length_b;
2239 gimple stmt_a, stmt_b;
2240
2241 dr_a = DDR_A (ddr);
2242 stmt_a = DR_STMT (DDR_A (ddr));
2243 dr_group_first_a = DR_GROUP_FIRST_DR (vinfo_for_stmt (stmt_a));
2244 if (dr_group_first_a)
2245 {
2246 stmt_a = dr_group_first_a;
2247 dr_a = STMT_VINFO_DATA_REF (vinfo_for_stmt (stmt_a));
2248 }
2249
2250 dr_b = DDR_B (ddr);
2251 stmt_b = DR_STMT (DDR_B (ddr));
2252 dr_group_first_b = DR_GROUP_FIRST_DR (vinfo_for_stmt (stmt_b));
2253 if (dr_group_first_b)
2254 {
2255 stmt_b = dr_group_first_b;
2256 dr_b = STMT_VINFO_DATA_REF (vinfo_for_stmt (stmt_b));
2257 }
2258
2259 addr_base_a =
2260 vect_create_addr_base_for_vector_ref (stmt_a, cond_expr_stmt_list,
2261 NULL_TREE, loop);
2262 addr_base_b =
2263 vect_create_addr_base_for_vector_ref (stmt_b, cond_expr_stmt_list,
2264 NULL_TREE, loop);
2265
2266 segment_length_a = vect_vfa_segment_size (dr_a, vect_factor);
2267 segment_length_b = vect_vfa_segment_size (dr_b, vect_factor);
2268
2269 if (vect_print_dump_info (REPORT_DR_DETAILS))
2270 {
2271 fprintf (vect_dump,
2272 "create runtime check for data references ");
2273 print_generic_expr (vect_dump, DR_REF (dr_a), TDF_SLIM);
2274 fprintf (vect_dump, " and ");
2275 print_generic_expr (vect_dump, DR_REF (dr_b), TDF_SLIM);
2276 }
2277
2278
2279 part_cond_expr =
2280 fold_build2 (TRUTH_OR_EXPR, boolean_type_node,
2281 fold_build2 (LT_EXPR, boolean_type_node,
2282 fold_build2 (POINTER_PLUS_EXPR, TREE_TYPE (addr_base_a),
2283 addr_base_a,
2284 segment_length_a),
2285 addr_base_b),
2286 fold_build2 (LT_EXPR, boolean_type_node,
2287 fold_build2 (POINTER_PLUS_EXPR, TREE_TYPE (addr_base_b),
2288 addr_base_b,
2289 segment_length_b),
2290 addr_base_a));
2291
2292 if (*cond_expr)
2293 *cond_expr = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
2294 *cond_expr, part_cond_expr);
2295 else
2296 *cond_expr = part_cond_expr;
2297 }
2298
2299 if (vect_print_dump_info (REPORT_VECTORIZED_LOCATIONS))
2300 fprintf (vect_dump, "created %u versioning for alias checks.\n",
2301 VEC_length (ddr_p, may_alias_ddrs));
2302 }
2303
2304
2305 /* Function vect_loop_versioning.
2306
2307 If the loop has data references that may or may not be aligned or/and
2308 has data reference relations whose independence was not proven then
2309 two versions of the loop need to be generated, one which is vectorized
2310 and one which isn't. A test is then generated to control which of the
2311 loops is executed. The test checks for the alignment of all of the
2312 data references that may or may not be aligned. An additional
2313 sequence of runtime tests is generated for each pairs of DDRs whose
2314 independence was not proven. The vectorized version of loop is
2315 executed only if both alias and alignment tests are passed.
2316
2317 The test generated to check which version of loop is executed
2318 is modified to also check for profitability as indicated by the
2319 cost model initially.
2320
2321 The versioning precondition(s) are placed in *COND_EXPR and
2322 *COND_EXPR_STMT_LIST. If DO_VERSIONING is true versioning is
2323 also performed, otherwise only the conditions are generated. */
2324
2325 void
2326 vect_loop_versioning (loop_vec_info loop_vinfo, bool do_versioning,
2327 tree *cond_expr, gimple_seq *cond_expr_stmt_list)
2328 {
2329 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
2330 basic_block condition_bb;
2331 gimple_stmt_iterator gsi, cond_exp_gsi;
2332 basic_block merge_bb;
2333 basic_block new_exit_bb;
2334 edge new_exit_e, e;
2335 gimple orig_phi, new_phi;
2336 tree arg;
2337 unsigned prob = 4 * REG_BR_PROB_BASE / 5;
2338 gimple_seq gimplify_stmt_list = NULL;
2339 tree scalar_loop_iters = LOOP_VINFO_NITERS (loop_vinfo);
2340 int min_profitable_iters = 0;
2341 unsigned int th;
2342
2343 /* Get profitability threshold for vectorized loop. */
2344 min_profitable_iters = LOOP_VINFO_COST_MODEL_MIN_ITERS (loop_vinfo);
2345
2346 th = conservative_cost_threshold (loop_vinfo,
2347 min_profitable_iters);
2348
2349 *cond_expr =
2350 fold_build2 (GT_EXPR, boolean_type_node, scalar_loop_iters,
2351 build_int_cst (TREE_TYPE (scalar_loop_iters), th));
2352
2353 *cond_expr = force_gimple_operand (*cond_expr, cond_expr_stmt_list,
2354 false, NULL_TREE);
2355
2356 if (LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (loop_vinfo))
2357 vect_create_cond_for_align_checks (loop_vinfo, cond_expr,
2358 cond_expr_stmt_list);
2359
2360 if (LOOP_REQUIRES_VERSIONING_FOR_ALIAS (loop_vinfo))
2361 vect_create_cond_for_alias_checks (loop_vinfo, cond_expr,
2362 cond_expr_stmt_list);
2363
2364 *cond_expr =
2365 fold_build2 (NE_EXPR, boolean_type_node, *cond_expr, integer_zero_node);
2366 *cond_expr =
2367 force_gimple_operand (*cond_expr, &gimplify_stmt_list, true, NULL_TREE);
2368 gimple_seq_add_seq (cond_expr_stmt_list, gimplify_stmt_list);
2369
2370 /* If we only needed the extra conditions and a new loop copy
2371 bail out here. */
2372 if (!do_versioning)
2373 return;
2374
2375 initialize_original_copy_tables ();
2376 loop_version (loop, *cond_expr, &condition_bb,
2377 prob, prob, REG_BR_PROB_BASE - prob, true);
2378 free_original_copy_tables();
2379
2380 /* Loop versioning violates an assumption we try to maintain during
2381 vectorization - that the loop exit block has a single predecessor.
2382 After versioning, the exit block of both loop versions is the same
2383 basic block (i.e. it has two predecessors). Just in order to simplify
2384 following transformations in the vectorizer, we fix this situation
2385 here by adding a new (empty) block on the exit-edge of the loop,
2386 with the proper loop-exit phis to maintain loop-closed-form. */
2387
2388 merge_bb = single_exit (loop)->dest;
2389 gcc_assert (EDGE_COUNT (merge_bb->preds) == 2);
2390 new_exit_bb = split_edge (single_exit (loop));
2391 new_exit_e = single_exit (loop);
2392 e = EDGE_SUCC (new_exit_bb, 0);
2393
2394 for (gsi = gsi_start_phis (merge_bb); !gsi_end_p (gsi); gsi_next (&gsi))
2395 {
2396 orig_phi = gsi_stmt (gsi);
2397 new_phi = create_phi_node (SSA_NAME_VAR (PHI_RESULT (orig_phi)),
2398 new_exit_bb);
2399 arg = PHI_ARG_DEF_FROM_EDGE (orig_phi, e);
2400 add_phi_arg (new_phi, arg, new_exit_e,
2401 gimple_phi_arg_location_from_edge (orig_phi, e));
2402 SET_PHI_ARG_DEF (orig_phi, e->dest_idx, PHI_RESULT (new_phi));
2403 }
2404
2405 /* End loop-exit-fixes after versioning. */
2406
2407 update_ssa (TODO_update_ssa);
2408 if (*cond_expr_stmt_list)
2409 {
2410 cond_exp_gsi = gsi_last_bb (condition_bb);
2411 gsi_insert_seq_before (&cond_exp_gsi, *cond_expr_stmt_list,
2412 GSI_SAME_STMT);
2413 *cond_expr_stmt_list = NULL;
2414 }
2415 *cond_expr = NULL_TREE;
2416 }
2417