comparison gcc/emit-rtl.c @ 131:84e7813d76e9

gcc-8.2
author mir3636
date Thu, 25 Oct 2018 07:37:49 +0900
parents 04ced10e8804
children 1830386684a0
comparison
equal deleted inserted replaced
111:04ced10e8804 131:84e7813d76e9
1 /* Emit RTL for the GCC expander. 1 /* Emit RTL for the GCC expander.
2 Copyright (C) 1987-2017 Free Software Foundation, Inc. 2 Copyright (C) 1987-2018 Free Software Foundation, Inc.
3 3
4 This file is part of GCC. 4 This file is part of GCC.
5 5
6 GCC is free software; you can redistribute it and/or modify it under 6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free 7 the terms of the GNU General Public License as published by the Free
58 #include "builtins.h" 58 #include "builtins.h"
59 #include "rtl-iter.h" 59 #include "rtl-iter.h"
60 #include "stor-layout.h" 60 #include "stor-layout.h"
61 #include "opts.h" 61 #include "opts.h"
62 #include "predict.h" 62 #include "predict.h"
63 #include "rtx-vector-builder.h"
63 64
64 struct target_rtl default_target_rtl; 65 struct target_rtl default_target_rtl;
65 #if SWITCHABLE_TARGET 66 #if SWITCHABLE_TARGET
66 struct target_rtl *this_target_rtl = &default_target_rtl; 67 struct target_rtl *this_target_rtl = &default_target_rtl;
67 #endif 68 #endif
145 static hashval_t hash (rtx x); 146 static hashval_t hash (rtx x);
146 static bool equal (rtx x, rtx y); 147 static bool equal (rtx x, rtx y);
147 }; 148 };
148 149
149 static GTY ((cache)) hash_table<const_wide_int_hasher> *const_wide_int_htab; 150 static GTY ((cache)) hash_table<const_wide_int_hasher> *const_wide_int_htab;
151
152 struct const_poly_int_hasher : ggc_cache_ptr_hash<rtx_def>
153 {
154 typedef std::pair<machine_mode, poly_wide_int_ref> compare_type;
155
156 static hashval_t hash (rtx x);
157 static bool equal (rtx x, const compare_type &y);
158 };
159
160 static GTY ((cache)) hash_table<const_poly_int_hasher> *const_poly_int_htab;
150 161
151 /* A hash table storing register attribute structures. */ 162 /* A hash table storing register attribute structures. */
152 struct reg_attr_hasher : ggc_cache_ptr_hash<reg_attrs> 163 struct reg_attr_hasher : ggc_cache_ptr_hash<reg_attrs>
153 { 164 {
154 static hashval_t hash (reg_attrs *x); 165 static hashval_t hash (reg_attrs *x);
184 #if TARGET_SUPPORTS_WIDE_INT 195 #if TARGET_SUPPORTS_WIDE_INT
185 static rtx lookup_const_wide_int (rtx); 196 static rtx lookup_const_wide_int (rtx);
186 #endif 197 #endif
187 static rtx lookup_const_double (rtx); 198 static rtx lookup_const_double (rtx);
188 static rtx lookup_const_fixed (rtx); 199 static rtx lookup_const_fixed (rtx);
189 static reg_attrs *get_reg_attrs (tree, int);
190 static rtx gen_const_vector (machine_mode, int); 200 static rtx gen_const_vector (machine_mode, int);
191 static void copy_rtx_if_shared_1 (rtx *orig); 201 static void copy_rtx_if_shared_1 (rtx *orig);
192 202
193 /* Probability of the conditional branch currently proceeded by try_split. */ 203 /* Probability of the conditional branch currently proceeded by try_split. */
194 profile_probability split_branch_probability; 204 profile_probability split_branch_probability;
245 return false; 255 return false;
246 256
247 return true; 257 return true;
248 } 258 }
249 #endif 259 #endif
260
261 /* Returns a hash code for CONST_POLY_INT X. */
262
263 hashval_t
264 const_poly_int_hasher::hash (rtx x)
265 {
266 inchash::hash h;
267 h.add_int (GET_MODE (x));
268 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
269 h.add_wide_int (CONST_POLY_INT_COEFFS (x)[i]);
270 return h.end ();
271 }
272
273 /* Returns nonzero if CONST_POLY_INT X is an rtx representation of Y. */
274
275 bool
276 const_poly_int_hasher::equal (rtx x, const compare_type &y)
277 {
278 if (GET_MODE (x) != y.first)
279 return false;
280 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
281 if (CONST_POLY_INT_COEFFS (x)[i] != y.second.coeffs[i])
282 return false;
283 return true;
284 }
250 285
251 /* Returns a hash code for X (which is really a CONST_DOUBLE). */ 286 /* Returns a hash code for X (which is really a CONST_DOUBLE). */
252 hashval_t 287 hashval_t
253 const_double_hasher::hash (rtx x) 288 const_double_hasher::hash (rtx x)
254 { 289 {
319 return true; 354 return true;
320 if (!p || !q) 355 if (!p || !q)
321 return false; 356 return false;
322 return (p->alias == q->alias 357 return (p->alias == q->alias
323 && p->offset_known_p == q->offset_known_p 358 && p->offset_known_p == q->offset_known_p
324 && (!p->offset_known_p || p->offset == q->offset) 359 && (!p->offset_known_p || known_eq (p->offset, q->offset))
325 && p->size_known_p == q->size_known_p 360 && p->size_known_p == q->size_known_p
326 && (!p->size_known_p || p->size == q->size) 361 && (!p->size_known_p || known_eq (p->size, q->size))
327 && p->align == q->align 362 && p->align == q->align
328 && p->addrspace == q->addrspace 363 && p->addrspace == q->addrspace
329 && (p->expr == q->expr 364 && (p->expr == q->expr
330 || (p->expr != NULL_TREE && q->expr != NULL_TREE 365 || (p->expr != NULL_TREE && q->expr != NULL_TREE
331 && operand_equal_p (p->expr, q->expr, 0)))); 366 && operand_equal_p (p->expr, q->expr, 0))));
356 hashval_t 391 hashval_t
357 reg_attr_hasher::hash (reg_attrs *x) 392 reg_attr_hasher::hash (reg_attrs *x)
358 { 393 {
359 const reg_attrs *const p = x; 394 const reg_attrs *const p = x;
360 395
361 return ((p->offset * 1000) ^ (intptr_t) p->decl); 396 inchash::hash h;
397 h.add_ptr (p->decl);
398 h.add_poly_hwi (p->offset);
399 return h.end ();
362 } 400 }
363 401
364 /* Returns nonzero if the value represented by X is the same as that given by 402 /* Returns nonzero if the value represented by X is the same as that given by
365 Y. */ 403 Y. */
366 404
368 reg_attr_hasher::equal (reg_attrs *x, reg_attrs *y) 406 reg_attr_hasher::equal (reg_attrs *x, reg_attrs *y)
369 { 407 {
370 const reg_attrs *const p = x; 408 const reg_attrs *const p = x;
371 const reg_attrs *const q = y; 409 const reg_attrs *const q = y;
372 410
373 return (p->decl == q->decl && p->offset == q->offset); 411 return (p->decl == q->decl && known_eq (p->offset, q->offset));
374 } 412 }
375 /* Allocate a new reg_attrs structure and insert it into the hash table if 413 /* Allocate a new reg_attrs structure and insert it into the hash table if
376 one identical to it is not already in the table. We are doing this for 414 one identical to it is not already in the table. We are doing this for
377 MEM of mode MODE. */ 415 MEM of mode MODE. */
378 416
379 static reg_attrs * 417 static reg_attrs *
380 get_reg_attrs (tree decl, int offset) 418 get_reg_attrs (tree decl, poly_int64 offset)
381 { 419 {
382 reg_attrs attrs; 420 reg_attrs attrs;
383 421
384 /* If everything is the default, we can just return zero. */ 422 /* If everything is the default, we can just return zero. */
385 if (decl == 0 && offset == 0) 423 if (decl == 0 && known_eq (offset, 0))
386 return 0; 424 return 0;
387 425
388 attrs.decl = decl; 426 attrs.decl = decl;
389 attrs.offset = offset; 427 attrs.offset = offset;
390 428
487 525
488 return *slot; 526 return *slot;
489 } 527 }
490 528
491 rtx 529 rtx
492 gen_int_mode (HOST_WIDE_INT c, machine_mode mode) 530 gen_int_mode (poly_int64 c, machine_mode mode)
493 { 531 {
494 return GEN_INT (trunc_int_for_mode (c, mode)); 532 c = trunc_int_for_mode (c, mode);
533 if (c.is_constant ())
534 return GEN_INT (c.coeffs[0]);
535 unsigned int prec = GET_MODE_PRECISION (as_a <scalar_mode> (mode));
536 return immed_wide_int_const (poly_wide_int::from (c, prec, SIGNED), mode);
495 } 537 }
496 538
497 /* CONST_DOUBLEs might be created from pairs of integers, or from 539 /* CONST_DOUBLEs might be created from pairs of integers, or from
498 REAL_VALUE_TYPEs. Also, their length is known only at run time, 540 REAL_VALUE_TYPEs. Also, their length is known only at run time,
499 so we cannot use gen_rtx_raw_CONST_DOUBLE. */ 541 so we cannot use gen_rtx_raw_CONST_DOUBLE. */
593 /* Return an rtx constant for V, given that the constant has mode MODE. 635 /* Return an rtx constant for V, given that the constant has mode MODE.
594 The returned rtx will be a CONST_INT if V fits, otherwise it will be 636 The returned rtx will be a CONST_INT if V fits, otherwise it will be
595 a CONST_DOUBLE (if !TARGET_SUPPORTS_WIDE_INT) or a CONST_WIDE_INT 637 a CONST_DOUBLE (if !TARGET_SUPPORTS_WIDE_INT) or a CONST_WIDE_INT
596 (if TARGET_SUPPORTS_WIDE_INT). */ 638 (if TARGET_SUPPORTS_WIDE_INT). */
597 639
598 rtx 640 static rtx
599 immed_wide_int_const (const wide_int_ref &v, machine_mode mode) 641 immed_wide_int_const_1 (const wide_int_ref &v, machine_mode mode)
600 { 642 {
601 unsigned int len = v.get_len (); 643 unsigned int len = v.get_len ();
602 /* Not scalar_int_mode because we also allow pointer bound modes. */ 644 /* Not scalar_int_mode because we also allow pointer bound modes. */
603 unsigned int prec = GET_MODE_PRECISION (as_a <scalar_mode> (mode)); 645 unsigned int prec = GET_MODE_PRECISION (as_a <scalar_mode> (mode));
604 646
680 XWINT (value, i) = 0; 722 XWINT (value, i) = 0;
681 723
682 return lookup_const_double (value); 724 return lookup_const_double (value);
683 } 725 }
684 #endif 726 #endif
727
728 /* Return an rtx representation of C in mode MODE. */
729
730 rtx
731 immed_wide_int_const (const poly_wide_int_ref &c, machine_mode mode)
732 {
733 if (c.is_constant ())
734 return immed_wide_int_const_1 (c.coeffs[0], mode);
735
736 /* Not scalar_int_mode because we also allow pointer bound modes. */
737 unsigned int prec = GET_MODE_PRECISION (as_a <scalar_mode> (mode));
738
739 /* Allow truncation but not extension since we do not know if the
740 number is signed or unsigned. */
741 gcc_assert (prec <= c.coeffs[0].get_precision ());
742 poly_wide_int newc = poly_wide_int::from (c, prec, SIGNED);
743
744 /* See whether we already have an rtx for this constant. */
745 inchash::hash h;
746 h.add_int (mode);
747 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
748 h.add_wide_int (newc.coeffs[i]);
749 const_poly_int_hasher::compare_type typed_value (mode, newc);
750 rtx *slot = const_poly_int_htab->find_slot_with_hash (typed_value,
751 h.end (), INSERT);
752 rtx x = *slot;
753 if (x)
754 return x;
755
756 /* Create a new rtx. There's a choice to be made here between installing
757 the actual mode of the rtx or leaving it as VOIDmode (for consistency
758 with CONST_INT). In practice the handling of the codes is different
759 enough that we get no benefit from using VOIDmode, and various places
760 assume that VOIDmode implies CONST_INT. Using the real mode seems like
761 the right long-term direction anyway. */
762 typedef trailing_wide_ints<NUM_POLY_INT_COEFFS> twi;
763 size_t extra_size = twi::extra_size (prec);
764 x = rtx_alloc_v (CONST_POLY_INT,
765 sizeof (struct const_poly_int_def) + extra_size);
766 PUT_MODE (x, mode);
767 CONST_POLY_INT_COEFFS (x).set_precision (prec);
768 for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
769 CONST_POLY_INT_COEFFS (x)[i] = newc.coeffs[i];
770
771 *slot = x;
772 return x;
773 }
685 774
686 rtx 775 rtx
687 gen_rtx_REG (machine_mode mode, unsigned int regno) 776 gen_rtx_REG (machine_mode mode, unsigned int regno)
688 { 777 {
689 /* In case the MD file explicitly references the frame pointer, have 778 /* In case the MD file explicitly references the frame pointer, have
801 /* We want to create (subreg:OMODE (obj:IMODE) OFFSET). Return true if 890 /* We want to create (subreg:OMODE (obj:IMODE) OFFSET). Return true if
802 this construct would be valid, and false otherwise. */ 891 this construct would be valid, and false otherwise. */
803 892
804 bool 893 bool
805 validate_subreg (machine_mode omode, machine_mode imode, 894 validate_subreg (machine_mode omode, machine_mode imode,
806 const_rtx reg, unsigned int offset) 895 const_rtx reg, poly_uint64 offset)
807 { 896 {
808 unsigned int isize = GET_MODE_SIZE (imode); 897 poly_uint64 isize = GET_MODE_SIZE (imode);
809 unsigned int osize = GET_MODE_SIZE (omode); 898 poly_uint64 osize = GET_MODE_SIZE (omode);
899
900 /* The sizes must be ordered, so that we know whether the subreg
901 is partial, paradoxical or complete. */
902 if (!ordered_p (isize, osize))
903 return false;
810 904
811 /* All subregs must be aligned. */ 905 /* All subregs must be aligned. */
812 if (offset % osize != 0) 906 if (!multiple_p (offset, osize))
813 return false; 907 return false;
814 908
815 /* The subreg offset cannot be outside the inner object. */ 909 /* The subreg offset cannot be outside the inner object. */
816 if (offset >= isize) 910 if (maybe_ge (offset, isize))
817 return false; 911 return false;
912
913 poly_uint64 regsize = REGMODE_NATURAL_SIZE (imode);
818 914
819 /* ??? This should not be here. Temporarily continue to allow word_mode 915 /* ??? This should not be here. Temporarily continue to allow word_mode
820 subregs of anything. The most common offender is (subreg:SI (reg:DF)). 916 subregs of anything. The most common offender is (subreg:SI (reg:DF)).
821 Generally, backends are doing something sketchy but it'll take time to 917 Generally, backends are doing something sketchy but it'll take time to
822 fix them all. */ 918 fix them all. */
823 if (omode == word_mode) 919 if (omode == word_mode)
824 ; 920 ;
825 /* ??? Similarly, e.g. with (subreg:DF (reg:TI)). Though store_bit_field 921 /* ??? Similarly, e.g. with (subreg:DF (reg:TI)). Though store_bit_field
826 is the culprit here, and not the backends. */ 922 is the culprit here, and not the backends. */
827 else if (osize >= UNITS_PER_WORD && isize >= osize) 923 else if (known_ge (osize, regsize) && known_ge (isize, osize))
828 ; 924 ;
829 /* Allow component subregs of complex and vector. Though given the below 925 /* Allow component subregs of complex and vector. Though given the below
830 extraction rules, it's not always clear what that means. */ 926 extraction rules, it's not always clear what that means. */
831 else if ((COMPLEX_MODE_P (imode) || VECTOR_MODE_P (imode)) 927 else if ((COMPLEX_MODE_P (imode) || VECTOR_MODE_P (imode))
832 && GET_MODE_INNER (imode) == omode) 928 && GET_MODE_INNER (imode) == omode)
841 /* Subregs involving floating point modes are not allowed to 937 /* Subregs involving floating point modes are not allowed to
842 change size. Therefore (subreg:DI (reg:DF) 0) is fine, but 938 change size. Therefore (subreg:DI (reg:DF) 0) is fine, but
843 (subreg:SI (reg:DF) 0) isn't. */ 939 (subreg:SI (reg:DF) 0) isn't. */
844 else if (FLOAT_MODE_P (imode) || FLOAT_MODE_P (omode)) 940 else if (FLOAT_MODE_P (imode) || FLOAT_MODE_P (omode))
845 { 941 {
846 if (! (isize == osize 942 if (! (known_eq (isize, osize)
847 /* LRA can use subreg to store a floating point value in 943 /* LRA can use subreg to store a floating point value in
848 an integer mode. Although the floating point and the 944 an integer mode. Although the floating point and the
849 integer modes need the same number of hard registers, 945 integer modes need the same number of hard registers,
850 the size of floating point mode can be less than the 946 the size of floating point mode can be less than the
851 integer mode. LRA also uses subregs for a register 947 integer mode. LRA also uses subregs for a register
853 || lra_in_progress)) 949 || lra_in_progress))
854 return false; 950 return false;
855 } 951 }
856 952
857 /* Paradoxical subregs must have offset zero. */ 953 /* Paradoxical subregs must have offset zero. */
858 if (osize > isize) 954 if (maybe_gt (osize, isize))
859 return offset == 0; 955 return known_eq (offset, 0U);
860 956
861 /* This is a normal subreg. Verify that the offset is representable. */ 957 /* This is a normal subreg. Verify that the offset is representable. */
862 958
863 /* For hard registers, we already have most of these rules collected in 959 /* For hard registers, we already have most of these rules collected in
864 subreg_offset_representable_p. */ 960 subreg_offset_representable_p. */
873 return false; 969 return false;
874 970
875 return subreg_offset_representable_p (regno, imode, offset, omode); 971 return subreg_offset_representable_p (regno, imode, offset, omode);
876 } 972 }
877 973
974 /* The outer size must be ordered wrt the register size, otherwise
975 we wouldn't know at compile time how many registers the outer
976 mode occupies. */
977 if (!ordered_p (osize, regsize))
978 return false;
979
878 /* For pseudo registers, we want most of the same checks. Namely: 980 /* For pseudo registers, we want most of the same checks. Namely:
879 If the register no larger than a word, the subreg must be lowpart. 981
880 If the register is larger than a word, the subreg must be the lowpart 982 Assume that the pseudo register will be allocated to hard registers
881 of a subword. A subreg does *not* perform arbitrary bit extraction. 983 that can hold REGSIZE bytes each. If OSIZE is not a multiple of REGSIZE,
882 Given that we've already checked mode/offset alignment, we only have 984 the remainder must correspond to the lowpart of the containing hard
883 to check subword subregs here. */ 985 register. If BYTES_BIG_ENDIAN, the lowpart is at the highest offset,
884 if (osize < UNITS_PER_WORD 986 otherwise it is at the lowest offset.
987
988 Given that we've already checked the mode and offset alignment,
989 we only have to check subblock subregs here. */
990 if (maybe_lt (osize, regsize)
885 && ! (lra_in_progress && (FLOAT_MODE_P (imode) || FLOAT_MODE_P (omode)))) 991 && ! (lra_in_progress && (FLOAT_MODE_P (imode) || FLOAT_MODE_P (omode))))
886 { 992 {
887 machine_mode wmode = isize > UNITS_PER_WORD ? word_mode : imode; 993 /* It is invalid for the target to pick a register size for a mode
888 unsigned int low_off = subreg_lowpart_offset (omode, wmode); 994 that isn't ordered wrt to the size of that mode. */
889 if (offset % UNITS_PER_WORD != low_off) 995 poly_uint64 block_size = ordered_min (isize, regsize);
996 unsigned int start_reg;
997 poly_uint64 offset_within_reg;
998 if (!can_div_trunc_p (offset, block_size, &start_reg, &offset_within_reg)
999 || (BYTES_BIG_ENDIAN
1000 ? maybe_ne (offset_within_reg, block_size - osize)
1001 : maybe_ne (offset_within_reg, 0U)))
890 return false; 1002 return false;
891 } 1003 }
892 return true; 1004 return true;
893 } 1005 }
894 1006
895 rtx 1007 rtx
896 gen_rtx_SUBREG (machine_mode mode, rtx reg, int offset) 1008 gen_rtx_SUBREG (machine_mode mode, rtx reg, poly_uint64 offset)
897 { 1009 {
898 gcc_assert (validate_subreg (mode, GET_MODE (reg), reg, offset)); 1010 gcc_assert (validate_subreg (mode, GET_MODE (reg), reg, offset));
899 return gen_rtx_raw_SUBREG (mode, reg, offset); 1011 return gen_rtx_raw_SUBREG (mode, reg, offset);
900 } 1012 }
901 1013
992 in-memory value and the start of an INNER_MODE in-memory value, 1104 in-memory value and the start of an INNER_MODE in-memory value,
993 given that the former is a lowpart of the latter. It may be a 1105 given that the former is a lowpart of the latter. It may be a
994 paradoxical lowpart, in which case the offset will be negative 1106 paradoxical lowpart, in which case the offset will be negative
995 on big-endian targets. */ 1107 on big-endian targets. */
996 1108
997 int 1109 poly_int64
998 byte_lowpart_offset (machine_mode outer_mode, 1110 byte_lowpart_offset (machine_mode outer_mode,
999 machine_mode inner_mode) 1111 machine_mode inner_mode)
1000 { 1112 {
1001 if (paradoxical_subreg_p (outer_mode, inner_mode)) 1113 if (paradoxical_subreg_p (outer_mode, inner_mode))
1002 return -subreg_lowpart_offset (inner_mode, outer_mode); 1114 return -subreg_lowpart_offset (inner_mode, outer_mode);
1006 1118
1007 /* Return the offset of (subreg:OUTER_MODE (mem:INNER_MODE X) OFFSET) 1119 /* Return the offset of (subreg:OUTER_MODE (mem:INNER_MODE X) OFFSET)
1008 from address X. For paradoxical big-endian subregs this is a 1120 from address X. For paradoxical big-endian subregs this is a
1009 negative value, otherwise it's the same as OFFSET. */ 1121 negative value, otherwise it's the same as OFFSET. */
1010 1122
1011 int 1123 poly_int64
1012 subreg_memory_offset (machine_mode outer_mode, machine_mode inner_mode, 1124 subreg_memory_offset (machine_mode outer_mode, machine_mode inner_mode,
1013 unsigned int offset) 1125 poly_uint64 offset)
1014 { 1126 {
1015 if (paradoxical_subreg_p (outer_mode, inner_mode)) 1127 if (paradoxical_subreg_p (outer_mode, inner_mode))
1016 { 1128 {
1017 gcc_assert (offset == 0); 1129 gcc_assert (known_eq (offset, 0U));
1018 return -subreg_lowpart_offset (inner_mode, outer_mode); 1130 return -subreg_lowpart_offset (inner_mode, outer_mode);
1019 } 1131 }
1020 return offset; 1132 return offset;
1021 } 1133 }
1022 1134
1023 /* As above, but return the offset that existing subreg X would have 1135 /* As above, but return the offset that existing subreg X would have
1024 if SUBREG_REG (X) were stored in memory. The only significant thing 1136 if SUBREG_REG (X) were stored in memory. The only significant thing
1025 about the current SUBREG_REG is its mode. */ 1137 about the current SUBREG_REG is its mode. */
1026 1138
1027 int 1139 poly_int64
1028 subreg_memory_offset (const_rtx x) 1140 subreg_memory_offset (const_rtx x)
1029 { 1141 {
1030 return subreg_memory_offset (GET_MODE (x), GET_MODE (SUBREG_REG (x)), 1142 return subreg_memory_offset (GET_MODE (x), GET_MODE (SUBREG_REG (x)),
1031 SUBREG_BYTE (x)); 1143 SUBREG_BYTE (x));
1032 } 1144 }
1122 1234
1123 /* Update NEW with the same attributes as REG, but with OFFSET added 1235 /* Update NEW with the same attributes as REG, but with OFFSET added
1124 to the REG_OFFSET. */ 1236 to the REG_OFFSET. */
1125 1237
1126 static void 1238 static void
1127 update_reg_offset (rtx new_rtx, rtx reg, int offset) 1239 update_reg_offset (rtx new_rtx, rtx reg, poly_int64 offset)
1128 { 1240 {
1129 REG_ATTRS (new_rtx) = get_reg_attrs (REG_EXPR (reg), 1241 REG_ATTRS (new_rtx) = get_reg_attrs (REG_EXPR (reg),
1130 REG_OFFSET (reg) + offset); 1242 REG_OFFSET (reg) + offset);
1131 } 1243 }
1132 1244
1133 /* Generate a register with same attributes as REG, but with OFFSET 1245 /* Generate a register with same attributes as REG, but with OFFSET
1134 added to the REG_OFFSET. */ 1246 added to the REG_OFFSET. */
1135 1247
1136 rtx 1248 rtx
1137 gen_rtx_REG_offset (rtx reg, machine_mode mode, unsigned int regno, 1249 gen_rtx_REG_offset (rtx reg, machine_mode mode, unsigned int regno,
1138 int offset) 1250 poly_int64 offset)
1139 { 1251 {
1140 rtx new_rtx = gen_rtx_REG (mode, regno); 1252 rtx new_rtx = gen_rtx_REG (mode, regno);
1141 1253
1142 update_reg_offset (new_rtx, reg, offset); 1254 update_reg_offset (new_rtx, reg, offset);
1143 return new_rtx; 1255 return new_rtx;
1169 have different modes, REG is a (possibly paradoxical) lowpart of X. */ 1281 have different modes, REG is a (possibly paradoxical) lowpart of X. */
1170 1282
1171 void 1283 void
1172 set_reg_attrs_from_value (rtx reg, rtx x) 1284 set_reg_attrs_from_value (rtx reg, rtx x)
1173 { 1285 {
1174 int offset; 1286 poly_int64 offset;
1175 bool can_be_reg_pointer = true; 1287 bool can_be_reg_pointer = true;
1176 1288
1177 /* Don't call mark_reg_pointer for incompatible pointer sign 1289 /* Don't call mark_reg_pointer for incompatible pointer sign
1178 extension. */ 1290 extension. */
1179 while (GET_CODE (x) == SIGN_EXTEND 1291 while (GET_CODE (x) == SIGN_EXTEND
1417 If this is not a case we can handle, return 0. */ 1529 If this is not a case we can handle, return 0. */
1418 1530
1419 rtx 1531 rtx
1420 gen_lowpart_common (machine_mode mode, rtx x) 1532 gen_lowpart_common (machine_mode mode, rtx x)
1421 { 1533 {
1422 int msize = GET_MODE_SIZE (mode); 1534 poly_uint64 msize = GET_MODE_SIZE (mode);
1423 int xsize;
1424 machine_mode innermode; 1535 machine_mode innermode;
1425 1536
1426 /* Unfortunately, this routine doesn't take a parameter for the mode of X, 1537 /* Unfortunately, this routine doesn't take a parameter for the mode of X,
1427 so we have to make one up. Yuk. */ 1538 so we have to make one up. Yuk. */
1428 innermode = GET_MODE (x); 1539 innermode = GET_MODE (x);
1429 if (CONST_INT_P (x) 1540 if (CONST_INT_P (x)
1430 && msize * BITS_PER_UNIT <= HOST_BITS_PER_WIDE_INT) 1541 && known_le (msize * BITS_PER_UNIT,
1542 (unsigned HOST_WIDE_INT) HOST_BITS_PER_WIDE_INT))
1431 innermode = int_mode_for_size (HOST_BITS_PER_WIDE_INT, 0).require (); 1543 innermode = int_mode_for_size (HOST_BITS_PER_WIDE_INT, 0).require ();
1432 else if (innermode == VOIDmode) 1544 else if (innermode == VOIDmode)
1433 innermode = int_mode_for_size (HOST_BITS_PER_DOUBLE_INT, 0).require (); 1545 innermode = int_mode_for_size (HOST_BITS_PER_DOUBLE_INT, 0).require ();
1434 1546
1435 xsize = GET_MODE_SIZE (innermode);
1436
1437 gcc_assert (innermode != VOIDmode && innermode != BLKmode); 1547 gcc_assert (innermode != VOIDmode && innermode != BLKmode);
1438 1548
1439 if (innermode == mode) 1549 if (innermode == mode)
1440 return x; 1550 return x;
1441 1551
1442 /* MODE must occupy no more words than the mode of X. */ 1552 /* The size of the outer and inner modes must be ordered. */
1443 if ((msize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD 1553 poly_uint64 xsize = GET_MODE_SIZE (innermode);
1444 > ((xsize + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)) 1554 if (!ordered_p (msize, xsize))
1445 return 0; 1555 return 0;
1446 1556
1447 /* Don't allow generating paradoxical FLOAT_MODE subregs. */ 1557 if (SCALAR_FLOAT_MODE_P (mode))
1448 if (SCALAR_FLOAT_MODE_P (mode) && msize > xsize) 1558 {
1449 return 0; 1559 /* Don't allow paradoxical FLOAT_MODE subregs. */
1560 if (maybe_gt (msize, xsize))
1561 return 0;
1562 }
1563 else
1564 {
1565 /* MODE must occupy no more of the underlying registers than X. */
1566 poly_uint64 regsize = REGMODE_NATURAL_SIZE (innermode);
1567 unsigned int mregs, xregs;
1568 if (!can_div_away_from_zero_p (msize, regsize, &mregs)
1569 || !can_div_away_from_zero_p (xsize, regsize, &xregs)
1570 || mregs > xregs)
1571 return 0;
1572 }
1450 1573
1451 scalar_int_mode int_mode, int_innermode, from_mode; 1574 scalar_int_mode int_mode, int_innermode, from_mode;
1452 if ((GET_CODE (x) == ZERO_EXTEND || GET_CODE (x) == SIGN_EXTEND) 1575 if ((GET_CODE (x) == ZERO_EXTEND || GET_CODE (x) == SIGN_EXTEND)
1453 && is_a <scalar_int_mode> (mode, &int_mode) 1576 && is_a <scalar_int_mode> (mode, &int_mode)
1454 && is_a <scalar_int_mode> (innermode, &int_innermode) 1577 && is_a <scalar_int_mode> (innermode, &int_innermode)
1469 else if (GET_MODE_SIZE (int_mode) < GET_MODE_SIZE (int_innermode)) 1592 else if (GET_MODE_SIZE (int_mode) < GET_MODE_SIZE (int_innermode))
1470 return gen_rtx_fmt_e (GET_CODE (x), int_mode, XEXP (x, 0)); 1593 return gen_rtx_fmt_e (GET_CODE (x), int_mode, XEXP (x, 0));
1471 } 1594 }
1472 else if (GET_CODE (x) == SUBREG || REG_P (x) 1595 else if (GET_CODE (x) == SUBREG || REG_P (x)
1473 || GET_CODE (x) == CONCAT || GET_CODE (x) == CONST_VECTOR 1596 || GET_CODE (x) == CONCAT || GET_CODE (x) == CONST_VECTOR
1474 || CONST_DOUBLE_AS_FLOAT_P (x) || CONST_SCALAR_INT_P (x)) 1597 || CONST_DOUBLE_AS_FLOAT_P (x) || CONST_SCALAR_INT_P (x)
1598 || CONST_POLY_INT_P (x))
1475 return lowpart_subreg (mode, x, innermode); 1599 return lowpart_subreg (mode, x, innermode);
1476 1600
1477 /* Otherwise, we can't do this. */ 1601 /* Otherwise, we can't do this. */
1478 return 0; 1602 return 0;
1479 } 1603 }
1480 1604
1481 rtx 1605 rtx
1482 gen_highpart (machine_mode mode, rtx x) 1606 gen_highpart (machine_mode mode, rtx x)
1483 { 1607 {
1484 unsigned int msize = GET_MODE_SIZE (mode); 1608 poly_uint64 msize = GET_MODE_SIZE (mode);
1485 rtx result; 1609 rtx result;
1486 1610
1487 /* This case loses if X is a subreg. To catch bugs early, 1611 /* This case loses if X is a subreg. To catch bugs early,
1488 complain if an invalid MODE is used even in other cases. */ 1612 complain if an invalid MODE is used even in other cases. */
1489 gcc_assert (msize <= UNITS_PER_WORD 1613 gcc_assert (known_le (msize, (unsigned int) UNITS_PER_WORD)
1490 || msize == (unsigned int) GET_MODE_UNIT_SIZE (GET_MODE (x))); 1614 || known_eq (msize, GET_MODE_UNIT_SIZE (GET_MODE (x))));
1491 1615
1492 result = simplify_gen_subreg (mode, x, GET_MODE (x), 1616 result = simplify_gen_subreg (mode, x, GET_MODE (x),
1493 subreg_highpart_offset (mode, GET_MODE (x))); 1617 subreg_highpart_offset (mode, GET_MODE (x)));
1494 gcc_assert (result); 1618 gcc_assert (result);
1495 1619
1520 } 1644 }
1521 1645
1522 /* Return the SUBREG_BYTE for a lowpart subreg whose outer mode has 1646 /* Return the SUBREG_BYTE for a lowpart subreg whose outer mode has
1523 OUTER_BYTES bytes and whose inner mode has INNER_BYTES bytes. */ 1647 OUTER_BYTES bytes and whose inner mode has INNER_BYTES bytes. */
1524 1648
1525 unsigned int 1649 poly_uint64
1526 subreg_size_lowpart_offset (unsigned int outer_bytes, unsigned int inner_bytes) 1650 subreg_size_lowpart_offset (poly_uint64 outer_bytes, poly_uint64 inner_bytes)
1527 { 1651 {
1528 if (outer_bytes > inner_bytes) 1652 gcc_checking_assert (ordered_p (outer_bytes, inner_bytes));
1653 if (maybe_gt (outer_bytes, inner_bytes))
1529 /* Paradoxical subregs always have a SUBREG_BYTE of 0. */ 1654 /* Paradoxical subregs always have a SUBREG_BYTE of 0. */
1530 return 0; 1655 return 0;
1531 1656
1532 if (BYTES_BIG_ENDIAN && WORDS_BIG_ENDIAN) 1657 if (BYTES_BIG_ENDIAN && WORDS_BIG_ENDIAN)
1533 return inner_bytes - outer_bytes; 1658 return inner_bytes - outer_bytes;
1538 } 1663 }
1539 1664
1540 /* Return the SUBREG_BYTE for a highpart subreg whose outer mode has 1665 /* Return the SUBREG_BYTE for a highpart subreg whose outer mode has
1541 OUTER_BYTES bytes and whose inner mode has INNER_BYTES bytes. */ 1666 OUTER_BYTES bytes and whose inner mode has INNER_BYTES bytes. */
1542 1667
1543 unsigned int 1668 poly_uint64
1544 subreg_size_highpart_offset (unsigned int outer_bytes, 1669 subreg_size_highpart_offset (poly_uint64 outer_bytes, poly_uint64 inner_bytes)
1545 unsigned int inner_bytes) 1670 {
1546 { 1671 gcc_assert (known_ge (inner_bytes, outer_bytes));
1547 gcc_assert (inner_bytes >= outer_bytes);
1548 1672
1549 if (BYTES_BIG_ENDIAN && WORDS_BIG_ENDIAN) 1673 if (BYTES_BIG_ENDIAN && WORDS_BIG_ENDIAN)
1550 return 0; 1674 return 0;
1551 else if (!BYTES_BIG_ENDIAN && !WORDS_BIG_ENDIAN) 1675 else if (!BYTES_BIG_ENDIAN && !WORDS_BIG_ENDIAN)
1552 return inner_bytes - outer_bytes; 1676 return inner_bytes - outer_bytes;
1566 if (GET_CODE (x) != SUBREG) 1690 if (GET_CODE (x) != SUBREG)
1567 return 1; 1691 return 1;
1568 else if (GET_MODE (SUBREG_REG (x)) == VOIDmode) 1692 else if (GET_MODE (SUBREG_REG (x)) == VOIDmode)
1569 return 0; 1693 return 0;
1570 1694
1571 return (subreg_lowpart_offset (GET_MODE (x), GET_MODE (SUBREG_REG (x))) 1695 return known_eq (subreg_lowpart_offset (GET_MODE (x),
1572 == SUBREG_BYTE (x)); 1696 GET_MODE (SUBREG_REG (x))),
1697 SUBREG_BYTE (x));
1573 } 1698 }
1574 1699
1575 /* Return subword OFFSET of operand OP. 1700 /* Return subword OFFSET of operand OP.
1576 The word number, OFFSET, is interpreted as the word number starting 1701 The word number, OFFSET, is interpreted as the word number starting
1577 at the low-order address. OFFSET 0 is the low-order word if not 1702 at the low-order address. OFFSET 0 is the low-order word if not
1596 Now use of this function can be deprecated by simplify_subreg in most 1721 Now use of this function can be deprecated by simplify_subreg in most
1597 cases. 1722 cases.
1598 */ 1723 */
1599 1724
1600 rtx 1725 rtx
1601 operand_subword (rtx op, unsigned int offset, int validate_address, machine_mode mode) 1726 operand_subword (rtx op, poly_uint64 offset, int validate_address,
1727 machine_mode mode)
1602 { 1728 {
1603 if (mode == VOIDmode) 1729 if (mode == VOIDmode)
1604 mode = GET_MODE (op); 1730 mode = GET_MODE (op);
1605 1731
1606 gcc_assert (mode != VOIDmode); 1732 gcc_assert (mode != VOIDmode);
1607 1733
1608 /* If OP is narrower than a word, fail. */ 1734 /* If OP is narrower than a word, fail. */
1609 if (mode != BLKmode 1735 if (mode != BLKmode
1610 && (GET_MODE_SIZE (mode) < UNITS_PER_WORD)) 1736 && maybe_lt (GET_MODE_SIZE (mode), UNITS_PER_WORD))
1611 return 0; 1737 return 0;
1612 1738
1613 /* If we want a word outside OP, return zero. */ 1739 /* If we want a word outside OP, return zero. */
1614 if (mode != BLKmode 1740 if (mode != BLKmode
1615 && (offset + 1) * UNITS_PER_WORD > GET_MODE_SIZE (mode)) 1741 && maybe_gt ((offset + 1) * UNITS_PER_WORD, GET_MODE_SIZE (mode)))
1616 return const0_rtx; 1742 return const0_rtx;
1617 1743
1618 /* Form a new MEM at the requested address. */ 1744 /* Form a new MEM at the requested address. */
1619 if (MEM_P (op)) 1745 if (MEM_P (op))
1620 { 1746 {
1644 this case. 1770 this case.
1645 1771
1646 MODE is the mode of OP, in case it is CONST_INT. */ 1772 MODE is the mode of OP, in case it is CONST_INT. */
1647 1773
1648 rtx 1774 rtx
1649 operand_subword_force (rtx op, unsigned int offset, machine_mode mode) 1775 operand_subword_force (rtx op, poly_uint64 offset, machine_mode mode)
1650 { 1776 {
1651 rtx result = operand_subword (op, offset, 1, mode); 1777 rtx result = operand_subword (op, offset, 1, mode);
1652 1778
1653 if (result) 1779 if (result)
1654 return result; 1780 return result;
1667 gcc_assert (result); 1793 gcc_assert (result);
1668 1794
1669 return result; 1795 return result;
1670 } 1796 }
1671 1797
1798 mem_attrs::mem_attrs ()
1799 : expr (NULL_TREE),
1800 offset (0),
1801 size (0),
1802 alias (0),
1803 align (0),
1804 addrspace (ADDR_SPACE_GENERIC),
1805 offset_known_p (false),
1806 size_known_p (false)
1807 {}
1808
1672 /* Returns 1 if both MEM_EXPR can be considered equal 1809 /* Returns 1 if both MEM_EXPR can be considered equal
1673 and 0 otherwise. */ 1810 and 0 otherwise. */
1674 1811
1675 int 1812 int
1676 mem_expr_equal_p (const_tree expr1, const_tree expr2) 1813 mem_expr_equal_p (const_tree expr1, const_tree expr2)
1693 1830
1694 int 1831 int
1695 get_mem_align_offset (rtx mem, unsigned int align) 1832 get_mem_align_offset (rtx mem, unsigned int align)
1696 { 1833 {
1697 tree expr; 1834 tree expr;
1698 unsigned HOST_WIDE_INT offset; 1835 poly_uint64 offset;
1699 1836
1700 /* This function can't use 1837 /* This function can't use
1701 if (!MEM_EXPR (mem) || !MEM_OFFSET_KNOWN_P (mem) 1838 if (!MEM_EXPR (mem) || !MEM_OFFSET_KNOWN_P (mem)
1702 || (MAX (MEM_ALIGN (mem), 1839 || (MAX (MEM_ALIGN (mem),
1703 MAX (align, get_object_alignment (MEM_EXPR (mem)))) 1840 MAX (align, get_object_alignment (MEM_EXPR (mem))))
1735 tree inner = TREE_OPERAND (expr, 0); 1872 tree inner = TREE_OPERAND (expr, 0);
1736 tree field = TREE_OPERAND (expr, 1); 1873 tree field = TREE_OPERAND (expr, 1);
1737 tree byte_offset = component_ref_field_offset (expr); 1874 tree byte_offset = component_ref_field_offset (expr);
1738 tree bit_offset = DECL_FIELD_BIT_OFFSET (field); 1875 tree bit_offset = DECL_FIELD_BIT_OFFSET (field);
1739 1876
1877 poly_uint64 suboffset;
1740 if (!byte_offset 1878 if (!byte_offset
1741 || !tree_fits_uhwi_p (byte_offset) 1879 || !poly_int_tree_p (byte_offset, &suboffset)
1742 || !tree_fits_uhwi_p (bit_offset)) 1880 || !tree_fits_uhwi_p (bit_offset))
1743 return -1; 1881 return -1;
1744 1882
1745 offset += tree_to_uhwi (byte_offset); 1883 offset += suboffset;
1746 offset += tree_to_uhwi (bit_offset) / BITS_PER_UNIT; 1884 offset += tree_to_uhwi (bit_offset) / BITS_PER_UNIT;
1747 1885
1748 if (inner == NULL_TREE) 1886 if (inner == NULL_TREE)
1749 { 1887 {
1750 if (TYPE_ALIGN (DECL_FIELD_CONTEXT (field)) 1888 if (TYPE_ALIGN (DECL_FIELD_CONTEXT (field))
1764 } 1902 }
1765 } 1903 }
1766 else 1904 else
1767 return -1; 1905 return -1;
1768 1906
1769 return offset & ((align / BITS_PER_UNIT) - 1); 1907 HOST_WIDE_INT misalign;
1908 if (!known_misalignment (offset, align / BITS_PER_UNIT, &misalign))
1909 return -1;
1910 return misalign;
1770 } 1911 }
1771 1912
1772 /* Given REF (a MEM) and T, either the type of X or the expression 1913 /* Given REF (a MEM) and T, either the type of X or the expression
1773 corresponding to REF, set the memory attributes. OBJECTP is nonzero 1914 corresponding to REF, set the memory attributes. OBJECTP is nonzero
1774 if we are making a new object of this type. BITPOS is nonzero if 1915 if we are making a new object of this type. BITPOS is nonzero if
1775 there is an offset outstanding on T that will be applied later. */ 1916 there is an offset outstanding on T that will be applied later. */
1776 1917
1777 void 1918 void
1778 set_mem_attributes_minus_bitpos (rtx ref, tree t, int objectp, 1919 set_mem_attributes_minus_bitpos (rtx ref, tree t, int objectp,
1779 HOST_WIDE_INT bitpos) 1920 poly_int64 bitpos)
1780 { 1921 {
1781 HOST_WIDE_INT apply_bitpos = 0; 1922 poly_int64 apply_bitpos = 0;
1782 tree type; 1923 tree type;
1783 struct mem_attrs attrs, *defattrs, *refattrs; 1924 struct mem_attrs attrs, *defattrs, *refattrs;
1784 addr_space_t as; 1925 addr_space_t as;
1785 1926
1786 /* It can happen that type_for_mode was given a mode for which there 1927 /* It can happen that type_for_mode was given a mode for which there
1796 /* If we have already set DECL_RTL = ref, get_alias_set will get the 1937 /* If we have already set DECL_RTL = ref, get_alias_set will get the
1797 wrong answer, as it assumes that DECL_RTL already has the right alias 1938 wrong answer, as it assumes that DECL_RTL already has the right alias
1798 info. Callers should not set DECL_RTL until after the call to 1939 info. Callers should not set DECL_RTL until after the call to
1799 set_mem_attributes. */ 1940 set_mem_attributes. */
1800 gcc_assert (!DECL_P (t) || ref != DECL_RTL_IF_SET (t)); 1941 gcc_assert (!DECL_P (t) || ref != DECL_RTL_IF_SET (t));
1801
1802 memset (&attrs, 0, sizeof (attrs));
1803 1942
1804 /* Get the alias set from the expression or type (perhaps using a 1943 /* Get the alias set from the expression or type (perhaps using a
1805 front-end routine) and use it. */ 1944 front-end routine) and use it. */
1806 attrs.alias = get_alias_set (t); 1945 attrs.alias = get_alias_set (t);
1807 1946
1968 covers all valid accesses. */ 2107 covers all valid accesses. */
1969 && ! array_at_struct_end_p (t))) 2108 && ! array_at_struct_end_p (t)))
1970 { 2109 {
1971 attrs.expr = t2; 2110 attrs.expr = t2;
1972 attrs.offset_known_p = false; 2111 attrs.offset_known_p = false;
1973 if (tree_fits_uhwi_p (off_tree)) 2112 if (poly_int_tree_p (off_tree, &attrs.offset))
1974 { 2113 {
1975 attrs.offset_known_p = true; 2114 attrs.offset_known_p = true;
1976 attrs.offset = tree_to_uhwi (off_tree);
1977 apply_bitpos = bitpos; 2115 apply_bitpos = bitpos;
1978 } 2116 }
1979 } 2117 }
1980 /* Else do not record a MEM_EXPR. */ 2118 /* Else do not record a MEM_EXPR. */
1981 } 2119 }
1992 2130
1993 /* Compute the alignment. */ 2131 /* Compute the alignment. */
1994 unsigned int obj_align; 2132 unsigned int obj_align;
1995 unsigned HOST_WIDE_INT obj_bitpos; 2133 unsigned HOST_WIDE_INT obj_bitpos;
1996 get_object_alignment_1 (t, &obj_align, &obj_bitpos); 2134 get_object_alignment_1 (t, &obj_align, &obj_bitpos);
1997 obj_bitpos = (obj_bitpos - bitpos) & (obj_align - 1); 2135 unsigned int diff_align = known_alignment (obj_bitpos - bitpos);
1998 if (obj_bitpos != 0) 2136 if (diff_align != 0)
1999 obj_align = least_bit_hwi (obj_bitpos); 2137 obj_align = MIN (obj_align, diff_align);
2000 attrs.align = MAX (attrs.align, obj_align); 2138 attrs.align = MAX (attrs.align, obj_align);
2001 } 2139 }
2002 2140
2003 if (tree_fits_uhwi_p (new_size)) 2141 poly_uint64 const_size;
2142 if (poly_int_tree_p (new_size, &const_size))
2004 { 2143 {
2005 attrs.size_known_p = true; 2144 attrs.size_known_p = true;
2006 attrs.size = tree_to_uhwi (new_size); 2145 attrs.size = const_size;
2007 } 2146 }
2008 2147
2009 /* If we modified OFFSET based on T, then subtract the outstanding 2148 /* If we modified OFFSET based on T, then subtract the outstanding
2010 bit position offset. Similarly, increase the size of the accessed 2149 bit position offset. Similarly, increase the size of the accessed
2011 object to contain the negative offset. */ 2150 object to contain the negative offset. */
2012 if (apply_bitpos) 2151 if (maybe_ne (apply_bitpos, 0))
2013 { 2152 {
2014 gcc_assert (attrs.offset_known_p); 2153 gcc_assert (attrs.offset_known_p);
2015 attrs.offset -= apply_bitpos / BITS_PER_UNIT; 2154 poly_int64 bytepos = bits_to_bytes_round_down (apply_bitpos);
2155 attrs.offset -= bytepos;
2016 if (attrs.size_known_p) 2156 if (attrs.size_known_p)
2017 attrs.size += apply_bitpos / BITS_PER_UNIT; 2157 attrs.size += bytepos;
2018 } 2158 }
2019 2159
2020 /* Now set the attributes we computed above. */ 2160 /* Now set the attributes we computed above. */
2021 attrs.addrspace = as; 2161 attrs.addrspace = as;
2022 set_mem_attrs (ref, &attrs); 2162 set_mem_attrs (ref, &attrs);
2031 /* Set the alias set of MEM to SET. */ 2171 /* Set the alias set of MEM to SET. */
2032 2172
2033 void 2173 void
2034 set_mem_alias_set (rtx mem, alias_set_type set) 2174 set_mem_alias_set (rtx mem, alias_set_type set)
2035 { 2175 {
2036 struct mem_attrs attrs;
2037
2038 /* If the new and old alias sets don't conflict, something is wrong. */ 2176 /* If the new and old alias sets don't conflict, something is wrong. */
2039 gcc_checking_assert (alias_sets_conflict_p (set, MEM_ALIAS_SET (mem))); 2177 gcc_checking_assert (alias_sets_conflict_p (set, MEM_ALIAS_SET (mem)));
2040 attrs = *get_mem_attrs (mem); 2178 mem_attrs attrs (*get_mem_attrs (mem));
2041 attrs.alias = set; 2179 attrs.alias = set;
2042 set_mem_attrs (mem, &attrs); 2180 set_mem_attrs (mem, &attrs);
2043 } 2181 }
2044 2182
2045 /* Set the address space of MEM to ADDRSPACE (target-defined). */ 2183 /* Set the address space of MEM to ADDRSPACE (target-defined). */
2046 2184
2047 void 2185 void
2048 set_mem_addr_space (rtx mem, addr_space_t addrspace) 2186 set_mem_addr_space (rtx mem, addr_space_t addrspace)
2049 { 2187 {
2050 struct mem_attrs attrs; 2188 mem_attrs attrs (*get_mem_attrs (mem));
2051
2052 attrs = *get_mem_attrs (mem);
2053 attrs.addrspace = addrspace; 2189 attrs.addrspace = addrspace;
2054 set_mem_attrs (mem, &attrs); 2190 set_mem_attrs (mem, &attrs);
2055 } 2191 }
2056 2192
2057 /* Set the alignment of MEM to ALIGN bits. */ 2193 /* Set the alignment of MEM to ALIGN bits. */
2058 2194
2059 void 2195 void
2060 set_mem_align (rtx mem, unsigned int align) 2196 set_mem_align (rtx mem, unsigned int align)
2061 { 2197 {
2062 struct mem_attrs attrs; 2198 mem_attrs attrs (*get_mem_attrs (mem));
2063
2064 attrs = *get_mem_attrs (mem);
2065 attrs.align = align; 2199 attrs.align = align;
2066 set_mem_attrs (mem, &attrs); 2200 set_mem_attrs (mem, &attrs);
2067 } 2201 }
2068 2202
2069 /* Set the expr for MEM to EXPR. */ 2203 /* Set the expr for MEM to EXPR. */
2070 2204
2071 void 2205 void
2072 set_mem_expr (rtx mem, tree expr) 2206 set_mem_expr (rtx mem, tree expr)
2073 { 2207 {
2074 struct mem_attrs attrs; 2208 mem_attrs attrs (*get_mem_attrs (mem));
2075
2076 attrs = *get_mem_attrs (mem);
2077 attrs.expr = expr; 2209 attrs.expr = expr;
2078 set_mem_attrs (mem, &attrs); 2210 set_mem_attrs (mem, &attrs);
2079 } 2211 }
2080 2212
2081 /* Set the offset of MEM to OFFSET. */ 2213 /* Set the offset of MEM to OFFSET. */
2082 2214
2083 void 2215 void
2084 set_mem_offset (rtx mem, HOST_WIDE_INT offset) 2216 set_mem_offset (rtx mem, poly_int64 offset)
2085 { 2217 {
2086 struct mem_attrs attrs; 2218 mem_attrs attrs (*get_mem_attrs (mem));
2087
2088 attrs = *get_mem_attrs (mem);
2089 attrs.offset_known_p = true; 2219 attrs.offset_known_p = true;
2090 attrs.offset = offset; 2220 attrs.offset = offset;
2091 set_mem_attrs (mem, &attrs); 2221 set_mem_attrs (mem, &attrs);
2092 } 2222 }
2093 2223
2094 /* Clear the offset of MEM. */ 2224 /* Clear the offset of MEM. */
2095 2225
2096 void 2226 void
2097 clear_mem_offset (rtx mem) 2227 clear_mem_offset (rtx mem)
2098 { 2228 {
2099 struct mem_attrs attrs; 2229 mem_attrs attrs (*get_mem_attrs (mem));
2100
2101 attrs = *get_mem_attrs (mem);
2102 attrs.offset_known_p = false; 2230 attrs.offset_known_p = false;
2103 set_mem_attrs (mem, &attrs); 2231 set_mem_attrs (mem, &attrs);
2104 } 2232 }
2105 2233
2106 /* Set the size of MEM to SIZE. */ 2234 /* Set the size of MEM to SIZE. */
2107 2235
2108 void 2236 void
2109 set_mem_size (rtx mem, HOST_WIDE_INT size) 2237 set_mem_size (rtx mem, poly_int64 size)
2110 { 2238 {
2111 struct mem_attrs attrs; 2239 mem_attrs attrs (*get_mem_attrs (mem));
2112
2113 attrs = *get_mem_attrs (mem);
2114 attrs.size_known_p = true; 2240 attrs.size_known_p = true;
2115 attrs.size = size; 2241 attrs.size = size;
2116 set_mem_attrs (mem, &attrs); 2242 set_mem_attrs (mem, &attrs);
2117 } 2243 }
2118 2244
2119 /* Clear the size of MEM. */ 2245 /* Clear the size of MEM. */
2120 2246
2121 void 2247 void
2122 clear_mem_size (rtx mem) 2248 clear_mem_size (rtx mem)
2123 { 2249 {
2124 struct mem_attrs attrs; 2250 mem_attrs attrs (*get_mem_attrs (mem));
2125
2126 attrs = *get_mem_attrs (mem);
2127 attrs.size_known_p = false; 2251 attrs.size_known_p = false;
2128 set_mem_attrs (mem, &attrs); 2252 set_mem_attrs (mem, &attrs);
2129 } 2253 }
2130 2254
2131 /* Return a memory reference like MEMREF, but with its mode changed to MODE 2255 /* Return a memory reference like MEMREF, but with its mode changed to MODE
2184 rtx 2308 rtx
2185 change_address (rtx memref, machine_mode mode, rtx addr) 2309 change_address (rtx memref, machine_mode mode, rtx addr)
2186 { 2310 {
2187 rtx new_rtx = change_address_1 (memref, mode, addr, 1, false); 2311 rtx new_rtx = change_address_1 (memref, mode, addr, 1, false);
2188 machine_mode mmode = GET_MODE (new_rtx); 2312 machine_mode mmode = GET_MODE (new_rtx);
2189 struct mem_attrs attrs, *defattrs; 2313 struct mem_attrs *defattrs;
2190 2314
2191 attrs = *get_mem_attrs (memref); 2315 mem_attrs attrs (*get_mem_attrs (memref));
2192 defattrs = mode_mem_attrs[(int) mmode]; 2316 defattrs = mode_mem_attrs[(int) mmode];
2193 attrs.expr = NULL_TREE; 2317 attrs.expr = NULL_TREE;
2194 attrs.offset_known_p = false; 2318 attrs.offset_known_p = false;
2195 attrs.size_known_p = defattrs->size_known_p; 2319 attrs.size_known_p = defattrs->size_known_p;
2196 attrs.size = defattrs->size; 2320 attrs.size = defattrs->size;
2221 the underlying object, even partially, then the object is dropped. 2345 the underlying object, even partially, then the object is dropped.
2222 SIZE, if nonzero, is the size of an access in cases where MODE 2346 SIZE, if nonzero, is the size of an access in cases where MODE
2223 has no inherent size. */ 2347 has no inherent size. */
2224 2348
2225 rtx 2349 rtx
2226 adjust_address_1 (rtx memref, machine_mode mode, HOST_WIDE_INT offset, 2350 adjust_address_1 (rtx memref, machine_mode mode, poly_int64 offset,
2227 int validate, int adjust_address, int adjust_object, 2351 int validate, int adjust_address, int adjust_object,
2228 HOST_WIDE_INT size) 2352 poly_int64 size)
2229 { 2353 {
2230 rtx addr = XEXP (memref, 0); 2354 rtx addr = XEXP (memref, 0);
2231 rtx new_rtx; 2355 rtx new_rtx;
2232 scalar_int_mode address_mode; 2356 scalar_int_mode address_mode;
2233 int pbits; 2357 struct mem_attrs attrs (*get_mem_attrs (memref)), *defattrs;
2234 struct mem_attrs attrs = *get_mem_attrs (memref), *defattrs;
2235 unsigned HOST_WIDE_INT max_align; 2358 unsigned HOST_WIDE_INT max_align;
2236 #ifdef POINTERS_EXTEND_UNSIGNED 2359 #ifdef POINTERS_EXTEND_UNSIGNED
2237 scalar_int_mode pointer_mode 2360 scalar_int_mode pointer_mode
2238 = targetm.addr_space.pointer_mode (attrs.addrspace); 2361 = targetm.addr_space.pointer_mode (attrs.addrspace);
2239 #endif 2362 #endif
2246 defattrs = mode_mem_attrs[(int) mode]; 2369 defattrs = mode_mem_attrs[(int) mode];
2247 if (defattrs->size_known_p) 2370 if (defattrs->size_known_p)
2248 size = defattrs->size; 2371 size = defattrs->size;
2249 2372
2250 /* If there are no changes, just return the original memory reference. */ 2373 /* If there are no changes, just return the original memory reference. */
2251 if (mode == GET_MODE (memref) && !offset 2374 if (mode == GET_MODE (memref)
2252 && (size == 0 || (attrs.size_known_p && attrs.size == size)) 2375 && known_eq (offset, 0)
2376 && (known_eq (size, 0)
2377 || (attrs.size_known_p && known_eq (attrs.size, size)))
2253 && (!validate || memory_address_addr_space_p (mode, addr, 2378 && (!validate || memory_address_addr_space_p (mode, addr,
2254 attrs.addrspace))) 2379 attrs.addrspace)))
2255 return memref; 2380 return memref;
2256 2381
2257 /* ??? Prefer to create garbage instead of creating shared rtl. 2382 /* ??? Prefer to create garbage instead of creating shared rtl.
2260 addr = copy_rtx (addr); 2385 addr = copy_rtx (addr);
2261 2386
2262 /* Convert a possibly large offset to a signed value within the 2387 /* Convert a possibly large offset to a signed value within the
2263 range of the target address space. */ 2388 range of the target address space. */
2264 address_mode = get_address_mode (memref); 2389 address_mode = get_address_mode (memref);
2265 pbits = GET_MODE_BITSIZE (address_mode); 2390 offset = trunc_int_for_mode (offset, address_mode);
2266 if (HOST_BITS_PER_WIDE_INT > pbits)
2267 {
2268 int shift = HOST_BITS_PER_WIDE_INT - pbits;
2269 offset = (((HOST_WIDE_INT) ((unsigned HOST_WIDE_INT) offset << shift))
2270 >> shift);
2271 }
2272 2391
2273 if (adjust_address) 2392 if (adjust_address)
2274 { 2393 {
2275 /* If MEMREF is a LO_SUM and the offset is within the alignment of the 2394 /* If MEMREF is a LO_SUM and the offset is within the alignment of the
2276 object, we can merge it into the LO_SUM. */ 2395 object, we can merge it into the LO_SUM. */
2277 if (GET_MODE (memref) != BLKmode && GET_CODE (addr) == LO_SUM 2396 if (GET_MODE (memref) != BLKmode
2278 && offset >= 0 2397 && GET_CODE (addr) == LO_SUM
2279 && (unsigned HOST_WIDE_INT) offset 2398 && known_in_range_p (offset,
2280 < GET_MODE_ALIGNMENT (GET_MODE (memref)) / BITS_PER_UNIT) 2399 0, (GET_MODE_ALIGNMENT (GET_MODE (memref))
2400 / BITS_PER_UNIT)))
2281 addr = gen_rtx_LO_SUM (address_mode, XEXP (addr, 0), 2401 addr = gen_rtx_LO_SUM (address_mode, XEXP (addr, 0),
2282 plus_constant (address_mode, 2402 plus_constant (address_mode,
2283 XEXP (addr, 1), offset)); 2403 XEXP (addr, 1), offset));
2284 #ifdef POINTERS_EXTEND_UNSIGNED 2404 #ifdef POINTERS_EXTEND_UNSIGNED
2285 /* If MEMREF is a ZERO_EXTEND from pointer_mode and the offset is valid 2405 /* If MEMREF is a ZERO_EXTEND from pointer_mode and the offset is valid
2286 in that mode, we merge it into the ZERO_EXTEND. We take advantage of 2406 in that mode, we merge it into the ZERO_EXTEND. We take advantage of
2287 the fact that pointers are not allowed to overflow. */ 2407 the fact that pointers are not allowed to overflow. */
2288 else if (POINTERS_EXTEND_UNSIGNED > 0 2408 else if (POINTERS_EXTEND_UNSIGNED > 0
2289 && GET_CODE (addr) == ZERO_EXTEND 2409 && GET_CODE (addr) == ZERO_EXTEND
2290 && GET_MODE (XEXP (addr, 0)) == pointer_mode 2410 && GET_MODE (XEXP (addr, 0)) == pointer_mode
2291 && trunc_int_for_mode (offset, pointer_mode) == offset) 2411 && known_eq (trunc_int_for_mode (offset, pointer_mode), offset))
2292 addr = gen_rtx_ZERO_EXTEND (address_mode, 2412 addr = gen_rtx_ZERO_EXTEND (address_mode,
2293 plus_constant (pointer_mode, 2413 plus_constant (pointer_mode,
2294 XEXP (addr, 0), offset)); 2414 XEXP (addr, 0), offset));
2295 #endif 2415 #endif
2296 else 2416 else
2299 2419
2300 new_rtx = change_address_1 (memref, mode, addr, validate, false); 2420 new_rtx = change_address_1 (memref, mode, addr, validate, false);
2301 2421
2302 /* If the address is a REG, change_address_1 rightfully returns memref, 2422 /* If the address is a REG, change_address_1 rightfully returns memref,
2303 but this would destroy memref's MEM_ATTRS. */ 2423 but this would destroy memref's MEM_ATTRS. */
2304 if (new_rtx == memref && offset != 0) 2424 if (new_rtx == memref && maybe_ne (offset, 0))
2305 new_rtx = copy_rtx (new_rtx); 2425 new_rtx = copy_rtx (new_rtx);
2306 2426
2307 /* Conservatively drop the object if we don't know where we start from. */ 2427 /* Conservatively drop the object if we don't know where we start from. */
2308 if (adjust_object && (!attrs.offset_known_p || !attrs.size_known_p)) 2428 if (adjust_object && (!attrs.offset_known_p || !attrs.size_known_p))
2309 { 2429 {
2316 if (attrs.offset_known_p) 2436 if (attrs.offset_known_p)
2317 { 2437 {
2318 attrs.offset += offset; 2438 attrs.offset += offset;
2319 2439
2320 /* Drop the object if the new left end is not within its bounds. */ 2440 /* Drop the object if the new left end is not within its bounds. */
2321 if (adjust_object && attrs.offset < 0) 2441 if (adjust_object && maybe_lt (attrs.offset, 0))
2322 { 2442 {
2323 attrs.expr = NULL_TREE; 2443 attrs.expr = NULL_TREE;
2324 attrs.alias = 0; 2444 attrs.alias = 0;
2325 } 2445 }
2326 } 2446 }
2327 2447
2328 /* Compute the new alignment by taking the MIN of the alignment and the 2448 /* Compute the new alignment by taking the MIN of the alignment and the
2329 lowest-order set bit in OFFSET, but don't change the alignment if OFFSET 2449 lowest-order set bit in OFFSET, but don't change the alignment if OFFSET
2330 if zero. */ 2450 if zero. */
2331 if (offset != 0) 2451 if (maybe_ne (offset, 0))
2332 { 2452 {
2333 max_align = least_bit_hwi (offset) * BITS_PER_UNIT; 2453 max_align = known_alignment (offset) * BITS_PER_UNIT;
2334 attrs.align = MIN (attrs.align, max_align); 2454 attrs.align = MIN (attrs.align, max_align);
2335 } 2455 }
2336 2456
2337 if (size) 2457 if (maybe_ne (size, 0))
2338 { 2458 {
2339 /* Drop the object if the new right end is not within its bounds. */ 2459 /* Drop the object if the new right end is not within its bounds. */
2340 if (adjust_object && (offset + size) > attrs.size) 2460 if (adjust_object && maybe_gt (offset + size, attrs.size))
2341 { 2461 {
2342 attrs.expr = NULL_TREE; 2462 attrs.expr = NULL_TREE;
2343 attrs.alias = 0; 2463 attrs.alias = 0;
2344 } 2464 }
2345 attrs.size_known_p = true; 2465 attrs.size_known_p = true;
2363 MEMREF offset by OFFSET bytes. If VALIDATE is 2483 MEMREF offset by OFFSET bytes. If VALIDATE is
2364 nonzero, the memory address is forced to be valid. */ 2484 nonzero, the memory address is forced to be valid. */
2365 2485
2366 rtx 2486 rtx
2367 adjust_automodify_address_1 (rtx memref, machine_mode mode, rtx addr, 2487 adjust_automodify_address_1 (rtx memref, machine_mode mode, rtx addr,
2368 HOST_WIDE_INT offset, int validate) 2488 poly_int64 offset, int validate)
2369 { 2489 {
2370 memref = change_address_1 (memref, VOIDmode, addr, validate, false); 2490 memref = change_address_1 (memref, VOIDmode, addr, validate, false);
2371 return adjust_address_1 (memref, mode, offset, validate, 0, 0, 0); 2491 return adjust_address_1 (memref, mode, offset, validate, 0, 0, 0);
2372 } 2492 }
2373 2493
2378 rtx 2498 rtx
2379 offset_address (rtx memref, rtx offset, unsigned HOST_WIDE_INT pow2) 2499 offset_address (rtx memref, rtx offset, unsigned HOST_WIDE_INT pow2)
2380 { 2500 {
2381 rtx new_rtx, addr = XEXP (memref, 0); 2501 rtx new_rtx, addr = XEXP (memref, 0);
2382 machine_mode address_mode; 2502 machine_mode address_mode;
2383 struct mem_attrs attrs, *defattrs; 2503 struct mem_attrs *defattrs;
2384 2504
2385 attrs = *get_mem_attrs (memref); 2505 mem_attrs attrs (*get_mem_attrs (memref));
2386 address_mode = get_address_mode (memref); 2506 address_mode = get_address_mode (memref);
2387 new_rtx = simplify_gen_binary (PLUS, address_mode, addr, offset); 2507 new_rtx = simplify_gen_binary (PLUS, address_mode, addr, offset);
2388 2508
2389 /* At this point we don't know _why_ the address is invalid. It 2509 /* At this point we don't know _why_ the address is invalid. It
2390 could have secondary memory references, multiplies or anything. 2510 could have secondary memory references, multiplies or anything.
2448 MODE and offset by OFFSET. This would be used by targets that e.g. 2568 MODE and offset by OFFSET. This would be used by targets that e.g.
2449 cannot issue QImode memory operations and have to use SImode memory 2569 cannot issue QImode memory operations and have to use SImode memory
2450 operations plus masking logic. */ 2570 operations plus masking logic. */
2451 2571
2452 rtx 2572 rtx
2453 widen_memory_access (rtx memref, machine_mode mode, HOST_WIDE_INT offset) 2573 widen_memory_access (rtx memref, machine_mode mode, poly_int64 offset)
2454 { 2574 {
2455 rtx new_rtx = adjust_address_1 (memref, mode, offset, 1, 1, 0, 0); 2575 rtx new_rtx = adjust_address_1 (memref, mode, offset, 1, 1, 0, 0);
2456 struct mem_attrs attrs; 2576 poly_uint64 size = GET_MODE_SIZE (mode);
2457 unsigned int size = GET_MODE_SIZE (mode);
2458 2577
2459 /* If there are no changes, just return the original memory reference. */ 2578 /* If there are no changes, just return the original memory reference. */
2460 if (new_rtx == memref) 2579 if (new_rtx == memref)
2461 return new_rtx; 2580 return new_rtx;
2462 2581
2463 attrs = *get_mem_attrs (new_rtx); 2582 mem_attrs attrs (*get_mem_attrs (new_rtx));
2464 2583
2465 /* If we don't know what offset we were at within the expression, then 2584 /* If we don't know what offset we were at within the expression, then
2466 we can't know if we've overstepped the bounds. */ 2585 we can't know if we've overstepped the bounds. */
2467 if (! attrs.offset_known_p) 2586 if (! attrs.offset_known_p)
2468 attrs.expr = NULL_TREE; 2587 attrs.expr = NULL_TREE;
2480 break; 2599 break;
2481 } 2600 }
2482 2601
2483 /* Is the field at least as large as the access? If so, ok, 2602 /* Is the field at least as large as the access? If so, ok,
2484 otherwise strip back to the containing structure. */ 2603 otherwise strip back to the containing structure. */
2485 if (TREE_CODE (DECL_SIZE_UNIT (field)) == INTEGER_CST 2604 if (poly_int_tree_p (DECL_SIZE_UNIT (field))
2486 && compare_tree_int (DECL_SIZE_UNIT (field), size) >= 0 2605 && known_ge (wi::to_poly_offset (DECL_SIZE_UNIT (field)), size)
2487 && attrs.offset >= 0) 2606 && known_ge (attrs.offset, 0))
2488 break; 2607 break;
2489 2608
2490 if (! tree_fits_uhwi_p (offset)) 2609 poly_uint64 suboffset;
2610 if (!poly_int_tree_p (offset, &suboffset))
2491 { 2611 {
2492 attrs.expr = NULL_TREE; 2612 attrs.expr = NULL_TREE;
2493 break; 2613 break;
2494 } 2614 }
2495 2615
2496 attrs.expr = TREE_OPERAND (attrs.expr, 0); 2616 attrs.expr = TREE_OPERAND (attrs.expr, 0);
2497 attrs.offset += tree_to_uhwi (offset); 2617 attrs.offset += suboffset;
2498 attrs.offset += (tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field)) 2618 attrs.offset += (tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field))
2499 / BITS_PER_UNIT); 2619 / BITS_PER_UNIT);
2500 } 2620 }
2501 /* Similarly for the decl. */ 2621 /* Similarly for the decl. */
2502 else if (DECL_P (attrs.expr) 2622 else if (DECL_P (attrs.expr)
2503 && DECL_SIZE_UNIT (attrs.expr) 2623 && DECL_SIZE_UNIT (attrs.expr)
2504 && TREE_CODE (DECL_SIZE_UNIT (attrs.expr)) == INTEGER_CST 2624 && poly_int_tree_p (DECL_SIZE_UNIT (attrs.expr))
2505 && compare_tree_int (DECL_SIZE_UNIT (attrs.expr), size) >= 0 2625 && known_ge (wi::to_poly_offset (DECL_SIZE_UNIT (attrs.expr)),
2506 && (! attrs.offset_known_p || attrs.offset >= 0)) 2626 size)
2627 && known_ge (attrs.offset, 0))
2507 break; 2628 break;
2508 else 2629 else
2509 { 2630 {
2510 /* The widened memory access overflows the expression, which means 2631 /* The widened memory access overflows the expression, which means
2511 that it could alias another expression. Zap it. */ 2632 that it could alias another expression. Zap it. */
2532 tree 2653 tree
2533 get_spill_slot_decl (bool force_build_p) 2654 get_spill_slot_decl (bool force_build_p)
2534 { 2655 {
2535 tree d = spill_slot_decl; 2656 tree d = spill_slot_decl;
2536 rtx rd; 2657 rtx rd;
2537 struct mem_attrs attrs;
2538 2658
2539 if (d || !force_build_p) 2659 if (d || !force_build_p)
2540 return d; 2660 return d;
2541 2661
2542 d = build_decl (DECL_SOURCE_LOCATION (current_function_decl), 2662 d = build_decl (DECL_SOURCE_LOCATION (current_function_decl),
2546 TREE_USED (d) = 1; 2666 TREE_USED (d) = 1;
2547 spill_slot_decl = d; 2667 spill_slot_decl = d;
2548 2668
2549 rd = gen_rtx_MEM (BLKmode, frame_pointer_rtx); 2669 rd = gen_rtx_MEM (BLKmode, frame_pointer_rtx);
2550 MEM_NOTRAP_P (rd) = 1; 2670 MEM_NOTRAP_P (rd) = 1;
2551 attrs = *mode_mem_attrs[(int) BLKmode]; 2671 mem_attrs attrs (*mode_mem_attrs[(int) BLKmode]);
2552 attrs.alias = new_alias_set (); 2672 attrs.alias = new_alias_set ();
2553 attrs.expr = d; 2673 attrs.expr = d;
2554 set_mem_attrs (rd, &attrs); 2674 set_mem_attrs (rd, &attrs);
2555 SET_DECL_RTL (d, rd); 2675 SET_DECL_RTL (d, rd);
2556 2676
2564 work properly in the case of shared spill slots. */ 2684 work properly in the case of shared spill slots. */
2565 2685
2566 void 2686 void
2567 set_mem_attrs_for_spill (rtx mem) 2687 set_mem_attrs_for_spill (rtx mem)
2568 { 2688 {
2569 struct mem_attrs attrs;
2570 rtx addr; 2689 rtx addr;
2571 2690
2572 attrs = *get_mem_attrs (mem); 2691 mem_attrs attrs (*get_mem_attrs (mem));
2573 attrs.expr = get_spill_slot_decl (true); 2692 attrs.expr = get_spill_slot_decl (true);
2574 attrs.alias = MEM_ALIAS_SET (DECL_RTL (attrs.expr)); 2693 attrs.alias = MEM_ALIAS_SET (DECL_RTL (attrs.expr));
2575 attrs.addrspace = ADDR_SPACE_GENERIC; 2694 attrs.addrspace = ADDR_SPACE_GENERIC;
2576 2695
2577 /* We expect the incoming memory to be of the form: 2696 /* We expect the incoming memory to be of the form:
2578 (mem:MODE (plus (reg sfp) (const_int offset))) 2697 (mem:MODE (plus (reg sfp) (const_int offset)))
2579 with perhaps the plus missing for offset = 0. */ 2698 with perhaps the plus missing for offset = 0. */
2580 addr = XEXP (mem, 0); 2699 addr = XEXP (mem, 0);
2581 attrs.offset_known_p = true; 2700 attrs.offset_known_p = true;
2582 attrs.offset = 0; 2701 strip_offset (addr, &attrs.offset);
2583 if (GET_CODE (addr) == PLUS
2584 && CONST_INT_P (XEXP (addr, 1)))
2585 attrs.offset = INTVAL (XEXP (addr, 1));
2586 2702
2587 set_mem_attrs (mem, &attrs); 2703 set_mem_attrs (mem, &attrs);
2588 MEM_NOTRAP_P (mem) = 1; 2704 MEM_NOTRAP_P (mem) = 1;
2589 } 2705 }
2590 2706
2747 case SIMPLE_RETURN: 2863 case SIMPLE_RETURN:
2748 case SCRATCH: 2864 case SCRATCH:
2749 /* SCRATCH must be shared because they represent distinct values. */ 2865 /* SCRATCH must be shared because they represent distinct values. */
2750 return; 2866 return;
2751 case CLOBBER: 2867 case CLOBBER:
2868 case CLOBBER_HIGH:
2752 /* Share clobbers of hard registers (like cc0), but do not share pseudo reg 2869 /* Share clobbers of hard registers (like cc0), but do not share pseudo reg
2753 clobbers or clobbers of hard registers that originated as pseudos. 2870 clobbers or clobbers of hard registers that originated as pseudos.
2754 This is needed to allow safe register renaming. */ 2871 This is needed to allow safe register renaming. */
2755 if (REG_P (XEXP (x, 0)) 2872 if (REG_P (XEXP (x, 0))
2756 && HARD_REGISTER_NUM_P (REGNO (XEXP (x, 0))) 2873 && HARD_REGISTER_NUM_P (REGNO (XEXP (x, 0)))
3000 case SIMPLE_RETURN: 3117 case SIMPLE_RETURN:
3001 case SCRATCH: 3118 case SCRATCH:
3002 /* SCRATCH must be shared because they represent distinct values. */ 3119 /* SCRATCH must be shared because they represent distinct values. */
3003 return; 3120 return;
3004 case CLOBBER: 3121 case CLOBBER:
3122 case CLOBBER_HIGH:
3005 /* Share clobbers of hard registers (like cc0), but do not share pseudo reg 3123 /* Share clobbers of hard registers (like cc0), but do not share pseudo reg
3006 clobbers or clobbers of hard registers that originated as pseudos. 3124 clobbers or clobbers of hard registers that originated as pseudos.
3007 This is needed to allow safe register renaming. */ 3125 This is needed to allow safe register renaming. */
3008 if (REG_P (XEXP (x, 0)) 3126 if (REG_P (XEXP (x, 0))
3009 && HARD_REGISTER_NUM_P (REGNO (XEXP (x, 0))) 3127 && HARD_REGISTER_NUM_P (REGNO (XEXP (x, 0)))
3353 } 3471 }
3354 3472
3355 return insn; 3473 return insn;
3356 } 3474 }
3357 3475
3358 /* Return the next insn after INSN that is not a NOTE, but stop the 3476 /* Return the next insn after INSN that is not a DEBUG_INSN. This
3359 search before we enter another basic block. This routine does not 3477 routine does not look inside SEQUENCEs. */
3360 look inside SEQUENCEs. */
3361 3478
3362 rtx_insn * 3479 rtx_insn *
3363 next_nonnote_insn_bb (rtx_insn *insn) 3480 next_nondebug_insn (rtx_insn *insn)
3364 { 3481 {
3365 while (insn) 3482 while (insn)
3366 { 3483 {
3367 insn = NEXT_INSN (insn); 3484 insn = NEXT_INSN (insn);
3485 if (insn == 0 || !DEBUG_INSN_P (insn))
3486 break;
3487 }
3488
3489 return insn;
3490 }
3491
3492 /* Return the previous insn before INSN that is not a NOTE. This routine does
3493 not look inside SEQUENCEs. */
3494
3495 rtx_insn *
3496 prev_nonnote_insn (rtx_insn *insn)
3497 {
3498 while (insn)
3499 {
3500 insn = PREV_INSN (insn);
3368 if (insn == 0 || !NOTE_P (insn)) 3501 if (insn == 0 || !NOTE_P (insn))
3502 break;
3503 }
3504
3505 return insn;
3506 }
3507
3508 /* Return the previous insn before INSN that is not a DEBUG_INSN.
3509 This routine does not look inside SEQUENCEs. */
3510
3511 rtx_insn *
3512 prev_nondebug_insn (rtx_insn *insn)
3513 {
3514 while (insn)
3515 {
3516 insn = PREV_INSN (insn);
3517 if (insn == 0 || !DEBUG_INSN_P (insn))
3518 break;
3519 }
3520
3521 return insn;
3522 }
3523
3524 /* Return the next insn after INSN that is not a NOTE nor DEBUG_INSN.
3525 This routine does not look inside SEQUENCEs. */
3526
3527 rtx_insn *
3528 next_nonnote_nondebug_insn (rtx_insn *insn)
3529 {
3530 while (insn)
3531 {
3532 insn = NEXT_INSN (insn);
3533 if (insn == 0 || (!NOTE_P (insn) && !DEBUG_INSN_P (insn)))
3534 break;
3535 }
3536
3537 return insn;
3538 }
3539
3540 /* Return the next insn after INSN that is not a NOTE nor DEBUG_INSN,
3541 but stop the search before we enter another basic block. This
3542 routine does not look inside SEQUENCEs. */
3543
3544 rtx_insn *
3545 next_nonnote_nondebug_insn_bb (rtx_insn *insn)
3546 {
3547 while (insn)
3548 {
3549 insn = NEXT_INSN (insn);
3550 if (insn == 0)
3551 break;
3552 if (DEBUG_INSN_P (insn))
3553 continue;
3554 if (!NOTE_P (insn))
3369 break; 3555 break;
3370 if (NOTE_INSN_BASIC_BLOCK_P (insn)) 3556 if (NOTE_INSN_BASIC_BLOCK_P (insn))
3371 return NULL; 3557 return NULL;
3372 } 3558 }
3373 3559
3374 return insn; 3560 return insn;
3375 } 3561 }
3376 3562
3377 /* Return the previous insn before INSN that is not a NOTE. This routine does 3563 /* Return the previous insn before INSN that is not a NOTE nor DEBUG_INSN.
3378 not look inside SEQUENCEs. */ 3564 This routine does not look inside SEQUENCEs. */
3379 3565
3380 rtx_insn * 3566 rtx_insn *
3381 prev_nonnote_insn (rtx_insn *insn) 3567 prev_nonnote_nondebug_insn (rtx_insn *insn)
3382 { 3568 {
3383 while (insn) 3569 while (insn)
3384 { 3570 {
3385 insn = PREV_INSN (insn); 3571 insn = PREV_INSN (insn);
3386 if (insn == 0 || !NOTE_P (insn)) 3572 if (insn == 0 || (!NOTE_P (insn) && !DEBUG_INSN_P (insn)))
3387 break; 3573 break;
3388 } 3574 }
3389 3575
3390 return insn; 3576 return insn;
3391 } 3577 }
3392 3578
3393 /* Return the previous insn before INSN that is not a NOTE, but stop 3579 /* Return the previous insn before INSN that is not a NOTE nor
3394 the search before we enter another basic block. This routine does 3580 DEBUG_INSN, but stop the search before we enter another basic
3395 not look inside SEQUENCEs. */ 3581 block. This routine does not look inside SEQUENCEs. */
3396 3582
3397 rtx_insn * 3583 rtx_insn *
3398 prev_nonnote_insn_bb (rtx_insn *insn) 3584 prev_nonnote_nondebug_insn_bb (rtx_insn *insn)
3399 { 3585 {
3400
3401 while (insn) 3586 while (insn)
3402 { 3587 {
3403 insn = PREV_INSN (insn); 3588 insn = PREV_INSN (insn);
3404 if (insn == 0 || !NOTE_P (insn)) 3589 if (insn == 0)
3590 break;
3591 if (DEBUG_INSN_P (insn))
3592 continue;
3593 if (!NOTE_P (insn))
3405 break; 3594 break;
3406 if (NOTE_INSN_BASIC_BLOCK_P (insn)) 3595 if (NOTE_INSN_BASIC_BLOCK_P (insn))
3407 return NULL; 3596 return NULL;
3408 } 3597 }
3409 3598
3410 return insn; 3599 return insn;
3411 } 3600 }
3412 3601
3413 /* Return the next insn after INSN that is not a DEBUG_INSN. This 3602 /* Return the next INSN, CALL_INSN, JUMP_INSN or DEBUG_INSN after INSN;
3414 routine does not look inside SEQUENCEs. */ 3603 or 0, if there is none. This routine does not look inside
3604 SEQUENCEs. */
3415 3605
3416 rtx_insn * 3606 rtx_insn *
3417 next_nondebug_insn (rtx_insn *insn) 3607 next_real_insn (rtx_insn *insn)
3418 { 3608 {
3419 while (insn) 3609 while (insn)
3420 { 3610 {
3421 insn = NEXT_INSN (insn); 3611 insn = NEXT_INSN (insn);
3422 if (insn == 0 || !DEBUG_INSN_P (insn)) 3612 if (insn == 0 || INSN_P (insn))
3423 break; 3613 break;
3424 } 3614 }
3425 3615
3426 return insn; 3616 return insn;
3427 } 3617 }
3428 3618
3429 /* Return the previous insn before INSN that is not a DEBUG_INSN. 3619 /* Return the last INSN, CALL_INSN, JUMP_INSN or DEBUG_INSN before INSN;
3430 This routine does not look inside SEQUENCEs. */ 3620 or 0, if there is none. This routine does not look inside
3621 SEQUENCEs. */
3431 3622
3432 rtx_insn * 3623 rtx_insn *
3433 prev_nondebug_insn (rtx_insn *insn) 3624 prev_real_insn (rtx_insn *insn)
3434 { 3625 {
3435 while (insn) 3626 while (insn)
3436 { 3627 {
3437 insn = PREV_INSN (insn); 3628 insn = PREV_INSN (insn);
3438 if (insn == 0 || !DEBUG_INSN_P (insn)) 3629 if (insn == 0 || INSN_P (insn))
3439 break;
3440 }
3441
3442 return insn;
3443 }
3444
3445 /* Return the next insn after INSN that is not a NOTE nor DEBUG_INSN.
3446 This routine does not look inside SEQUENCEs. */
3447
3448 rtx_insn *
3449 next_nonnote_nondebug_insn (rtx_insn *insn)
3450 {
3451 while (insn)
3452 {
3453 insn = NEXT_INSN (insn);
3454 if (insn == 0 || (!NOTE_P (insn) && !DEBUG_INSN_P (insn)))
3455 break;
3456 }
3457
3458 return insn;
3459 }
3460
3461 /* Return the previous insn before INSN that is not a NOTE nor DEBUG_INSN.
3462 This routine does not look inside SEQUENCEs. */
3463
3464 rtx_insn *
3465 prev_nonnote_nondebug_insn (rtx_insn *insn)
3466 {
3467 while (insn)
3468 {
3469 insn = PREV_INSN (insn);
3470 if (insn == 0 || (!NOTE_P (insn) && !DEBUG_INSN_P (insn)))
3471 break; 3630 break;
3472 } 3631 }
3473 3632
3474 return insn; 3633 return insn;
3475 } 3634 }
3477 /* Return the next INSN, CALL_INSN or JUMP_INSN after INSN; 3636 /* Return the next INSN, CALL_INSN or JUMP_INSN after INSN;
3478 or 0, if there is none. This routine does not look inside 3637 or 0, if there is none. This routine does not look inside
3479 SEQUENCEs. */ 3638 SEQUENCEs. */
3480 3639
3481 rtx_insn * 3640 rtx_insn *
3482 next_real_insn (rtx uncast_insn) 3641 next_real_nondebug_insn (rtx uncast_insn)
3483 { 3642 {
3484 rtx_insn *insn = safe_as_a <rtx_insn *> (uncast_insn); 3643 rtx_insn *insn = safe_as_a <rtx_insn *> (uncast_insn);
3485 3644
3486 while (insn) 3645 while (insn)
3487 { 3646 {
3488 insn = NEXT_INSN (insn); 3647 insn = NEXT_INSN (insn);
3489 if (insn == 0 || INSN_P (insn)) 3648 if (insn == 0 || NONDEBUG_INSN_P (insn))
3490 break; 3649 break;
3491 } 3650 }
3492 3651
3493 return insn; 3652 return insn;
3494 } 3653 }
3496 /* Return the last INSN, CALL_INSN or JUMP_INSN before INSN; 3655 /* Return the last INSN, CALL_INSN or JUMP_INSN before INSN;
3497 or 0, if there is none. This routine does not look inside 3656 or 0, if there is none. This routine does not look inside
3498 SEQUENCEs. */ 3657 SEQUENCEs. */
3499 3658
3500 rtx_insn * 3659 rtx_insn *
3501 prev_real_insn (rtx_insn *insn) 3660 prev_real_nondebug_insn (rtx_insn *insn)
3502 { 3661 {
3503 while (insn) 3662 while (insn)
3504 { 3663 {
3505 insn = PREV_INSN (insn); 3664 insn = PREV_INSN (insn);
3506 if (insn == 0 || INSN_P (insn)) 3665 if (insn == 0 || NONDEBUG_INSN_P (insn))
3507 break; 3666 break;
3508 } 3667 }
3509 3668
3510 return insn; 3669 return insn;
3511 } 3670 }
3741 if (CALL_P (trial)) 3900 if (CALL_P (trial))
3742 { 3901 {
3743 for (insn = insn_last; insn ; insn = PREV_INSN (insn)) 3902 for (insn = insn_last; insn ; insn = PREV_INSN (insn))
3744 if (CALL_P (insn)) 3903 if (CALL_P (insn))
3745 { 3904 {
3746 rtx_insn *next;
3747 rtx *p;
3748
3749 gcc_assert (call_insn == NULL_RTX); 3905 gcc_assert (call_insn == NULL_RTX);
3750 call_insn = insn; 3906 call_insn = insn;
3751 3907
3752 /* Add the old CALL_INSN_FUNCTION_USAGE to whatever the 3908 /* Add the old CALL_INSN_FUNCTION_USAGE to whatever the
3753 target may have explicitly specified. */ 3909 target may have explicitly specified. */
3754 p = &CALL_INSN_FUNCTION_USAGE (insn); 3910 rtx *p = &CALL_INSN_FUNCTION_USAGE (insn);
3755 while (*p) 3911 while (*p)
3756 p = &XEXP (*p, 1); 3912 p = &XEXP (*p, 1);
3757 *p = CALL_INSN_FUNCTION_USAGE (trial); 3913 *p = CALL_INSN_FUNCTION_USAGE (trial);
3758 3914
3759 /* If the old call was a sibling call, the new one must 3915 /* If the old call was a sibling call, the new one must
3760 be too. */ 3916 be too. */
3761 SIBLING_CALL_P (insn) = SIBLING_CALL_P (trial); 3917 SIBLING_CALL_P (insn) = SIBLING_CALL_P (trial);
3762
3763 /* If the new call is the last instruction in the sequence,
3764 it will effectively replace the old call in-situ. Otherwise
3765 we must move any following NOTE_INSN_CALL_ARG_LOCATION note
3766 so that it comes immediately after the new call. */
3767 if (NEXT_INSN (insn))
3768 for (next = NEXT_INSN (trial);
3769 next && NOTE_P (next);
3770 next = NEXT_INSN (next))
3771 if (NOTE_KIND (next) == NOTE_INSN_CALL_ARG_LOCATION)
3772 {
3773 remove_insn (next);
3774 add_insn_after (next, insn, NULL);
3775 break;
3776 }
3777 } 3918 }
3778 } 3919 }
3779 3920
3780 /* Copy notes, particularly those related to the CFG. */ 3921 /* Copy notes, particularly those related to the CFG. */
3781 for (note = REG_NOTES (trial); note; note = XEXP (note, 1)) 3922 for (note = REG_NOTES (trial); note; note = XEXP (note, 1))
3788 3929
3789 case REG_NORETURN: 3930 case REG_NORETURN:
3790 case REG_SETJMP: 3931 case REG_SETJMP:
3791 case REG_TM: 3932 case REG_TM:
3792 case REG_CALL_NOCF_CHECK: 3933 case REG_CALL_NOCF_CHECK:
3934 case REG_CALL_ARG_LOCATION:
3793 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn)) 3935 for (insn = insn_last; insn != NULL_RTX; insn = PREV_INSN (insn))
3794 { 3936 {
3795 if (CALL_P (insn)) 3937 if (CALL_P (insn))
3796 add_reg_note (insn, REG_NOTE_KIND (note), XEXP (note, 0)); 3938 add_reg_note (insn, REG_NOTE_KIND (note), XEXP (note, 0));
3797 } 3939 }
3817 add_reg_note (insn, REG_INC, reg); 3959 add_reg_note (insn, REG_INC, reg);
3818 } 3960 }
3819 break; 3961 break;
3820 3962
3821 case REG_ARGS_SIZE: 3963 case REG_ARGS_SIZE:
3822 fixup_args_size_notes (NULL, insn_last, INTVAL (XEXP (note, 0))); 3964 fixup_args_size_notes (NULL, insn_last, get_args_size (note));
3823 break; 3965 break;
3824 3966
3825 case REG_CALL_DECL: 3967 case REG_CALL_DECL:
3826 gcc_assert (call_insn != NULL_RTX); 3968 gcc_assert (call_insn != NULL_RTX);
3827 add_reg_note (call_insn, REG_NOTE_KIND (note), XEXP (note, 0)); 3969 add_reg_note (call_insn, REG_NOTE_KIND (note), XEXP (note, 0));
4023 void 4165 void
4024 add_insn (rtx_insn *insn) 4166 add_insn (rtx_insn *insn)
4025 { 4167 {
4026 rtx_insn *prev = get_last_insn (); 4168 rtx_insn *prev = get_last_insn ();
4027 link_insn_into_chain (insn, prev, NULL); 4169 link_insn_into_chain (insn, prev, NULL);
4028 if (NULL == get_insns ()) 4170 if (get_insns () == NULL)
4029 set_first_insn (insn); 4171 set_first_insn (insn);
4030 set_last_insn (insn); 4172 set_last_insn (insn);
4031 } 4173 }
4032 4174
4033 /* Add INSN into the doubly-linked list after insn AFTER. */ 4175 /* Add INSN into the doubly-linked list after insn AFTER. */
4086 This and the next function should be the only functions called 4228 This and the next function should be the only functions called
4087 to insert an insn once delay slots have been filled since only 4229 to insert an insn once delay slots have been filled since only
4088 they know how to update a SEQUENCE. */ 4230 they know how to update a SEQUENCE. */
4089 4231
4090 void 4232 void
4091 add_insn_after (rtx uncast_insn, rtx uncast_after, basic_block bb) 4233 add_insn_after (rtx_insn *insn, rtx_insn *after, basic_block bb)
4092 { 4234 {
4093 rtx_insn *insn = as_a <rtx_insn *> (uncast_insn);
4094 rtx_insn *after = as_a <rtx_insn *> (uncast_after);
4095 add_insn_after_nobb (insn, after); 4235 add_insn_after_nobb (insn, after);
4096 if (!BARRIER_P (after) 4236 if (!BARRIER_P (after)
4097 && !BARRIER_P (insn) 4237 && !BARRIER_P (insn)
4098 && (bb = BLOCK_FOR_INSN (after))) 4238 && (bb = BLOCK_FOR_INSN (after)))
4099 { 4239 {
4116 This and the previous function should be the only functions called 4256 This and the previous function should be the only functions called
4117 to insert an insn once delay slots have been filled since only 4257 to insert an insn once delay slots have been filled since only
4118 they know how to update a SEQUENCE. */ 4258 they know how to update a SEQUENCE. */
4119 4259
4120 void 4260 void
4121 add_insn_before (rtx uncast_insn, rtx uncast_before, basic_block bb) 4261 add_insn_before (rtx_insn *insn, rtx_insn *before, basic_block bb)
4122 { 4262 {
4123 rtx_insn *insn = as_a <rtx_insn *> (uncast_insn);
4124 rtx_insn *before = as_a <rtx_insn *> (uncast_before);
4125 add_insn_before_nobb (insn, before); 4263 add_insn_before_nobb (insn, before);
4126 4264
4127 if (!bb 4265 if (!bb
4128 && !BARRIER_P (before) 4266 && !BARRIER_P (before)
4129 && !BARRIER_P (insn)) 4267 && !BARRIER_P (insn))
4144 } 4282 }
4145 4283
4146 /* Replace insn with an deleted instruction note. */ 4284 /* Replace insn with an deleted instruction note. */
4147 4285
4148 void 4286 void
4149 set_insn_deleted (rtx insn) 4287 set_insn_deleted (rtx_insn *insn)
4150 { 4288 {
4151 if (INSN_P (insn)) 4289 if (INSN_P (insn))
4152 df_insn_delete (as_a <rtx_insn *> (insn)); 4290 df_insn_delete (insn);
4153 PUT_CODE (insn, NOTE); 4291 PUT_CODE (insn, NOTE);
4154 NOTE_KIND (insn) = NOTE_INSN_DELETED; 4292 NOTE_KIND (insn) = NOTE_INSN_DELETED;
4155 } 4293 }
4156 4294
4157 4295
4169 the caller. Nullifying them here breaks many insn chain walks. 4307 the caller. Nullifying them here breaks many insn chain walks.
4170 4308
4171 To really delete an insn and related DF information, use delete_insn. */ 4309 To really delete an insn and related DF information, use delete_insn. */
4172 4310
4173 void 4311 void
4174 remove_insn (rtx uncast_insn) 4312 remove_insn (rtx_insn *insn)
4175 { 4313 {
4176 rtx_insn *insn = as_a <rtx_insn *> (uncast_insn);
4177 rtx_insn *next = NEXT_INSN (insn); 4314 rtx_insn *next = NEXT_INSN (insn);
4178 rtx_insn *prev = PREV_INSN (insn); 4315 rtx_insn *prev = PREV_INSN (insn);
4179 basic_block bb; 4316 basic_block bb;
4180 4317
4181 if (prev) 4318 if (prev)
4374 is a relic of the past which no longer occurs. The reason is that 4511 is a relic of the past which no longer occurs. The reason is that
4375 SEQUENCE rtl results in much fragmented RTL memory since the SEQUENCE 4512 SEQUENCE rtl results in much fragmented RTL memory since the SEQUENCE
4376 generated would almost certainly die right after it was created. */ 4513 generated would almost certainly die right after it was created. */
4377 4514
4378 static rtx_insn * 4515 static rtx_insn *
4379 emit_pattern_before_noloc (rtx x, rtx before, rtx last, basic_block bb, 4516 emit_pattern_before_noloc (rtx x, rtx_insn *before, rtx_insn *last,
4517 basic_block bb,
4380 rtx_insn *(*make_raw) (rtx)) 4518 rtx_insn *(*make_raw) (rtx))
4381 { 4519 {
4382 rtx_insn *insn; 4520 rtx_insn *insn;
4383 4521
4384 gcc_assert (before); 4522 gcc_assert (before);
4385 4523
4386 if (x == NULL_RTX) 4524 if (x == NULL_RTX)
4387 return safe_as_a <rtx_insn *> (last); 4525 return last;
4388 4526
4389 switch (GET_CODE (x)) 4527 switch (GET_CODE (x))
4390 { 4528 {
4391 case DEBUG_INSN: 4529 case DEBUG_INSN:
4392 case INSN: 4530 case INSN:
4415 last = (*make_raw) (x); 4553 last = (*make_raw) (x);
4416 add_insn_before (last, before, bb); 4554 add_insn_before (last, before, bb);
4417 break; 4555 break;
4418 } 4556 }
4419 4557
4420 return safe_as_a <rtx_insn *> (last); 4558 return last;
4421 } 4559 }
4422 4560
4423 /* Make X be output before the instruction BEFORE. */ 4561 /* Make X be output before the instruction BEFORE. */
4424 4562
4425 rtx_insn * 4563 rtx_insn *
4433 4571
4434 rtx_jump_insn * 4572 rtx_jump_insn *
4435 emit_jump_insn_before_noloc (rtx x, rtx_insn *before) 4573 emit_jump_insn_before_noloc (rtx x, rtx_insn *before)
4436 { 4574 {
4437 return as_a <rtx_jump_insn *> ( 4575 return as_a <rtx_jump_insn *> (
4438 emit_pattern_before_noloc (x, before, NULL_RTX, NULL, 4576 emit_pattern_before_noloc (x, before, NULL, NULL,
4439 make_jump_insn_raw)); 4577 make_jump_insn_raw));
4440 } 4578 }
4441 4579
4442 /* Make an instruction with body X and code CALL_INSN 4580 /* Make an instruction with body X and code CALL_INSN
4443 and output it before the instruction BEFORE. */ 4581 and output it before the instruction BEFORE. */
4444 4582
4445 rtx_insn * 4583 rtx_insn *
4446 emit_call_insn_before_noloc (rtx x, rtx_insn *before) 4584 emit_call_insn_before_noloc (rtx x, rtx_insn *before)
4447 { 4585 {
4448 return emit_pattern_before_noloc (x, before, NULL_RTX, NULL, 4586 return emit_pattern_before_noloc (x, before, NULL, NULL,
4449 make_call_insn_raw); 4587 make_call_insn_raw);
4450 } 4588 }
4451 4589
4452 /* Make an instruction with body X and code DEBUG_INSN 4590 /* Make an instruction with body X and code DEBUG_INSN
4453 and output it before the instruction BEFORE. */ 4591 and output it before the instruction BEFORE. */
4454 4592
4455 rtx_insn * 4593 rtx_insn *
4456 emit_debug_insn_before_noloc (rtx x, rtx before) 4594 emit_debug_insn_before_noloc (rtx x, rtx_insn *before)
4457 { 4595 {
4458 return emit_pattern_before_noloc (x, before, NULL_RTX, NULL, 4596 return emit_pattern_before_noloc (x, before, NULL, NULL,
4459 make_debug_insn_raw); 4597 make_debug_insn_raw);
4460 } 4598 }
4461 4599
4462 /* Make an insn of code BARRIER 4600 /* Make an insn of code BARRIER
4463 and output it before the insn BEFORE. */ 4601 and output it before the insn BEFORE. */
4464 4602
4465 rtx_barrier * 4603 rtx_barrier *
4466 emit_barrier_before (rtx before) 4604 emit_barrier_before (rtx_insn *before)
4467 { 4605 {
4468 rtx_barrier *insn = as_a <rtx_barrier *> (rtx_alloc (BARRIER)); 4606 rtx_barrier *insn = as_a <rtx_barrier *> (rtx_alloc (BARRIER));
4469 4607
4470 INSN_UID (insn) = cur_insn_uid++; 4608 INSN_UID (insn) = cur_insn_uid++;
4471 4609
4474 } 4612 }
4475 4613
4476 /* Emit the label LABEL before the insn BEFORE. */ 4614 /* Emit the label LABEL before the insn BEFORE. */
4477 4615
4478 rtx_code_label * 4616 rtx_code_label *
4479 emit_label_before (rtx label, rtx_insn *before) 4617 emit_label_before (rtx_code_label *label, rtx_insn *before)
4480 { 4618 {
4481 gcc_checking_assert (INSN_UID (label) == 0); 4619 gcc_checking_assert (INSN_UID (label) == 0);
4482 INSN_UID (label) = cur_insn_uid++; 4620 INSN_UID (label) = cur_insn_uid++;
4483 add_insn_before (label, before, NULL); 4621 add_insn_before (label, before, NULL);
4484 return as_a <rtx_code_label *> (label); 4622 return label;
4485 } 4623 }
4486 4624
4487 /* Helper for emit_insn_after, handles lists of instructions 4625 /* Helper for emit_insn_after, handles lists of instructions
4488 efficiently. */ 4626 efficiently. */
4489 4627
4490 static rtx_insn * 4628 static rtx_insn *
4491 emit_insn_after_1 (rtx_insn *first, rtx uncast_after, basic_block bb) 4629 emit_insn_after_1 (rtx_insn *first, rtx_insn *after, basic_block bb)
4492 { 4630 {
4493 rtx_insn *after = safe_as_a <rtx_insn *> (uncast_after);
4494 rtx_insn *last; 4631 rtx_insn *last;
4495 rtx_insn *after_after; 4632 rtx_insn *after_after;
4496 if (!bb && !BARRIER_P (after)) 4633 if (!bb && !BARRIER_P (after))
4497 bb = BLOCK_FOR_INSN (after); 4634 bb = BLOCK_FOR_INSN (after);
4498 4635
4530 4667
4531 return last; 4668 return last;
4532 } 4669 }
4533 4670
4534 static rtx_insn * 4671 static rtx_insn *
4535 emit_pattern_after_noloc (rtx x, rtx uncast_after, basic_block bb, 4672 emit_pattern_after_noloc (rtx x, rtx_insn *after, basic_block bb,
4536 rtx_insn *(*make_raw)(rtx)) 4673 rtx_insn *(*make_raw)(rtx))
4537 { 4674 {
4538 rtx_insn *after = safe_as_a <rtx_insn *> (uncast_after);
4539 rtx_insn *last = after; 4675 rtx_insn *last = after;
4540 4676
4541 gcc_assert (after); 4677 gcc_assert (after);
4542 4678
4543 if (x == NULL_RTX) 4679 if (x == NULL_RTX)
4572 4708
4573 /* Make X be output after the insn AFTER and set the BB of insn. If 4709 /* Make X be output after the insn AFTER and set the BB of insn. If
4574 BB is NULL, an attempt is made to infer the BB from AFTER. */ 4710 BB is NULL, an attempt is made to infer the BB from AFTER. */
4575 4711
4576 rtx_insn * 4712 rtx_insn *
4577 emit_insn_after_noloc (rtx x, rtx after, basic_block bb) 4713 emit_insn_after_noloc (rtx x, rtx_insn *after, basic_block bb)
4578 { 4714 {
4579 return emit_pattern_after_noloc (x, after, bb, make_insn_raw); 4715 return emit_pattern_after_noloc (x, after, bb, make_insn_raw);
4580 } 4716 }
4581 4717
4582 4718
4583 /* Make an insn of code JUMP_INSN with body X 4719 /* Make an insn of code JUMP_INSN with body X
4584 and output it after the insn AFTER. */ 4720 and output it after the insn AFTER. */
4585 4721
4586 rtx_jump_insn * 4722 rtx_jump_insn *
4587 emit_jump_insn_after_noloc (rtx x, rtx after) 4723 emit_jump_insn_after_noloc (rtx x, rtx_insn *after)
4588 { 4724 {
4589 return as_a <rtx_jump_insn *> ( 4725 return as_a <rtx_jump_insn *> (
4590 emit_pattern_after_noloc (x, after, NULL, make_jump_insn_raw)); 4726 emit_pattern_after_noloc (x, after, NULL, make_jump_insn_raw));
4591 } 4727 }
4592 4728
4593 /* Make an instruction with body X and code CALL_INSN 4729 /* Make an instruction with body X and code CALL_INSN
4594 and output it after the instruction AFTER. */ 4730 and output it after the instruction AFTER. */
4595 4731
4596 rtx_insn * 4732 rtx_insn *
4597 emit_call_insn_after_noloc (rtx x, rtx after) 4733 emit_call_insn_after_noloc (rtx x, rtx_insn *after)
4598 { 4734 {
4599 return emit_pattern_after_noloc (x, after, NULL, make_call_insn_raw); 4735 return emit_pattern_after_noloc (x, after, NULL, make_call_insn_raw);
4600 } 4736 }
4601 4737
4602 /* Make an instruction with body X and code CALL_INSN 4738 /* Make an instruction with body X and code CALL_INSN
4603 and output it after the instruction AFTER. */ 4739 and output it after the instruction AFTER. */
4604 4740
4605 rtx_insn * 4741 rtx_insn *
4606 emit_debug_insn_after_noloc (rtx x, rtx after) 4742 emit_debug_insn_after_noloc (rtx x, rtx_insn *after)
4607 { 4743 {
4608 return emit_pattern_after_noloc (x, after, NULL, make_debug_insn_raw); 4744 return emit_pattern_after_noloc (x, after, NULL, make_debug_insn_raw);
4609 } 4745 }
4610 4746
4611 /* Make an insn of code BARRIER 4747 /* Make an insn of code BARRIER
4612 and output it after the insn AFTER. */ 4748 and output it after the insn AFTER. */
4613 4749
4614 rtx_barrier * 4750 rtx_barrier *
4615 emit_barrier_after (rtx after) 4751 emit_barrier_after (rtx_insn *after)
4616 { 4752 {
4617 rtx_barrier *insn = as_a <rtx_barrier *> (rtx_alloc (BARRIER)); 4753 rtx_barrier *insn = as_a <rtx_barrier *> (rtx_alloc (BARRIER));
4618 4754
4619 INSN_UID (insn) = cur_insn_uid++; 4755 INSN_UID (insn) = cur_insn_uid++;
4620 4756
4623 } 4759 }
4624 4760
4625 /* Emit the label LABEL after the insn AFTER. */ 4761 /* Emit the label LABEL after the insn AFTER. */
4626 4762
4627 rtx_insn * 4763 rtx_insn *
4628 emit_label_after (rtx label, rtx_insn *after) 4764 emit_label_after (rtx_insn *label, rtx_insn *after)
4629 { 4765 {
4630 gcc_checking_assert (INSN_UID (label) == 0); 4766 gcc_checking_assert (INSN_UID (label) == 0);
4631 INSN_UID (label) = cur_insn_uid++; 4767 INSN_UID (label) = cur_insn_uid++;
4632 add_insn_after (label, after, NULL); 4768 add_insn_after (label, after, NULL);
4633 return as_a <rtx_insn *> (label); 4769 return label;
4634 } 4770 }
4635 4771
4636 /* Notes require a bit of special handling: Some notes need to have their 4772 /* Notes require a bit of special handling: Some notes need to have their
4637 BLOCK_FOR_INSN set, others should never have it set, and some should 4773 BLOCK_FOR_INSN set, others should never have it set, and some should
4638 have it set or clear depending on the context. */ 4774 have it set or clear depending on the context. */
4652 4788
4653 /* Notes for var tracking and EH region markers can appear between or 4789 /* Notes for var tracking and EH region markers can appear between or
4654 inside basic blocks. If the caller is emitting on the basic block 4790 inside basic blocks. If the caller is emitting on the basic block
4655 boundary, do not set BLOCK_FOR_INSN on the new note. */ 4791 boundary, do not set BLOCK_FOR_INSN on the new note. */
4656 case NOTE_INSN_VAR_LOCATION: 4792 case NOTE_INSN_VAR_LOCATION:
4657 case NOTE_INSN_CALL_ARG_LOCATION:
4658 case NOTE_INSN_EH_REGION_BEG: 4793 case NOTE_INSN_EH_REGION_BEG:
4659 case NOTE_INSN_EH_REGION_END: 4794 case NOTE_INSN_EH_REGION_END:
4660 return on_bb_boundary_p; 4795 return on_bb_boundary_p;
4661 4796
4662 /* Otherwise, BLOCK_FOR_INSN must be set. */ 4797 /* Otherwise, BLOCK_FOR_INSN must be set. */
4699 4834
4700 /* Insert PATTERN after AFTER, setting its INSN_LOCATION to LOC. 4835 /* Insert PATTERN after AFTER, setting its INSN_LOCATION to LOC.
4701 MAKE_RAW indicates how to turn PATTERN into a real insn. */ 4836 MAKE_RAW indicates how to turn PATTERN into a real insn. */
4702 4837
4703 static rtx_insn * 4838 static rtx_insn *
4704 emit_pattern_after_setloc (rtx pattern, rtx uncast_after, int loc, 4839 emit_pattern_after_setloc (rtx pattern, rtx_insn *after, location_t loc,
4705 rtx_insn *(*make_raw) (rtx)) 4840 rtx_insn *(*make_raw) (rtx))
4706 { 4841 {
4707 rtx_insn *after = safe_as_a <rtx_insn *> (uncast_after);
4708 rtx_insn *last = emit_pattern_after_noloc (pattern, after, NULL, make_raw); 4842 rtx_insn *last = emit_pattern_after_noloc (pattern, after, NULL, make_raw);
4709 4843
4710 if (pattern == NULL_RTX || !loc) 4844 if (pattern == NULL_RTX || !loc)
4711 return last; 4845 return last;
4712 4846
4727 /* Insert PATTERN after AFTER. MAKE_RAW indicates how to turn PATTERN 4861 /* Insert PATTERN after AFTER. MAKE_RAW indicates how to turn PATTERN
4728 into a real insn. SKIP_DEBUG_INSNS indicates whether to insert after 4862 into a real insn. SKIP_DEBUG_INSNS indicates whether to insert after
4729 any DEBUG_INSNs. */ 4863 any DEBUG_INSNs. */
4730 4864
4731 static rtx_insn * 4865 static rtx_insn *
4732 emit_pattern_after (rtx pattern, rtx uncast_after, bool skip_debug_insns, 4866 emit_pattern_after (rtx pattern, rtx_insn *after, bool skip_debug_insns,
4733 rtx_insn *(*make_raw) (rtx)) 4867 rtx_insn *(*make_raw) (rtx))
4734 { 4868 {
4735 rtx_insn *after = safe_as_a <rtx_insn *> (uncast_after);
4736 rtx_insn *prev = after; 4869 rtx_insn *prev = after;
4737 4870
4738 if (skip_debug_insns) 4871 if (skip_debug_insns)
4739 while (DEBUG_INSN_P (prev)) 4872 while (DEBUG_INSN_P (prev))
4740 prev = PREV_INSN (prev); 4873 prev = PREV_INSN (prev);
4746 return emit_pattern_after_noloc (pattern, after, NULL, make_raw); 4879 return emit_pattern_after_noloc (pattern, after, NULL, make_raw);
4747 } 4880 }
4748 4881
4749 /* Like emit_insn_after_noloc, but set INSN_LOCATION according to LOC. */ 4882 /* Like emit_insn_after_noloc, but set INSN_LOCATION according to LOC. */
4750 rtx_insn * 4883 rtx_insn *
4751 emit_insn_after_setloc (rtx pattern, rtx after, int loc) 4884 emit_insn_after_setloc (rtx pattern, rtx_insn *after, location_t loc)
4752 { 4885 {
4753 return emit_pattern_after_setloc (pattern, after, loc, make_insn_raw); 4886 return emit_pattern_after_setloc (pattern, after, loc, make_insn_raw);
4754 } 4887 }
4755 4888
4756 /* Like emit_insn_after_noloc, but set INSN_LOCATION according to AFTER. */ 4889 /* Like emit_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
4757 rtx_insn * 4890 rtx_insn *
4758 emit_insn_after (rtx pattern, rtx after) 4891 emit_insn_after (rtx pattern, rtx_insn *after)
4759 { 4892 {
4760 return emit_pattern_after (pattern, after, true, make_insn_raw); 4893 return emit_pattern_after (pattern, after, true, make_insn_raw);
4761 } 4894 }
4762 4895
4763 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATION according to LOC. */ 4896 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATION according to LOC. */
4764 rtx_jump_insn * 4897 rtx_jump_insn *
4765 emit_jump_insn_after_setloc (rtx pattern, rtx after, int loc) 4898 emit_jump_insn_after_setloc (rtx pattern, rtx_insn *after, location_t loc)
4766 { 4899 {
4767 return as_a <rtx_jump_insn *> ( 4900 return as_a <rtx_jump_insn *> (
4768 emit_pattern_after_setloc (pattern, after, loc, make_jump_insn_raw)); 4901 emit_pattern_after_setloc (pattern, after, loc, make_jump_insn_raw));
4769 } 4902 }
4770 4903
4771 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATION according to AFTER. */ 4904 /* Like emit_jump_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
4772 rtx_jump_insn * 4905 rtx_jump_insn *
4773 emit_jump_insn_after (rtx pattern, rtx after) 4906 emit_jump_insn_after (rtx pattern, rtx_insn *after)
4774 { 4907 {
4775 return as_a <rtx_jump_insn *> ( 4908 return as_a <rtx_jump_insn *> (
4776 emit_pattern_after (pattern, after, true, make_jump_insn_raw)); 4909 emit_pattern_after (pattern, after, true, make_jump_insn_raw));
4777 } 4910 }
4778 4911
4779 /* Like emit_call_insn_after_noloc, but set INSN_LOCATION according to LOC. */ 4912 /* Like emit_call_insn_after_noloc, but set INSN_LOCATION according to LOC. */
4780 rtx_insn * 4913 rtx_insn *
4781 emit_call_insn_after_setloc (rtx pattern, rtx after, int loc) 4914 emit_call_insn_after_setloc (rtx pattern, rtx_insn *after, location_t loc)
4782 { 4915 {
4783 return emit_pattern_after_setloc (pattern, after, loc, make_call_insn_raw); 4916 return emit_pattern_after_setloc (pattern, after, loc, make_call_insn_raw);
4784 } 4917 }
4785 4918
4786 /* Like emit_call_insn_after_noloc, but set INSN_LOCATION according to AFTER. */ 4919 /* Like emit_call_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
4787 rtx_insn * 4920 rtx_insn *
4788 emit_call_insn_after (rtx pattern, rtx after) 4921 emit_call_insn_after (rtx pattern, rtx_insn *after)
4789 { 4922 {
4790 return emit_pattern_after (pattern, after, true, make_call_insn_raw); 4923 return emit_pattern_after (pattern, after, true, make_call_insn_raw);
4791 } 4924 }
4792 4925
4793 /* Like emit_debug_insn_after_noloc, but set INSN_LOCATION according to LOC. */ 4926 /* Like emit_debug_insn_after_noloc, but set INSN_LOCATION according to LOC. */
4794 rtx_insn * 4927 rtx_insn *
4795 emit_debug_insn_after_setloc (rtx pattern, rtx after, int loc) 4928 emit_debug_insn_after_setloc (rtx pattern, rtx_insn *after, location_t loc)
4796 { 4929 {
4797 return emit_pattern_after_setloc (pattern, after, loc, make_debug_insn_raw); 4930 return emit_pattern_after_setloc (pattern, after, loc, make_debug_insn_raw);
4798 } 4931 }
4799 4932
4800 /* Like emit_debug_insn_after_noloc, but set INSN_LOCATION according to AFTER. */ 4933 /* Like emit_debug_insn_after_noloc, but set INSN_LOCATION according to AFTER. */
4801 rtx_insn * 4934 rtx_insn *
4802 emit_debug_insn_after (rtx pattern, rtx after) 4935 emit_debug_insn_after (rtx pattern, rtx_insn *after)
4803 { 4936 {
4804 return emit_pattern_after (pattern, after, false, make_debug_insn_raw); 4937 return emit_pattern_after (pattern, after, false, make_debug_insn_raw);
4805 } 4938 }
4806 4939
4807 /* Insert PATTERN before BEFORE, setting its INSN_LOCATION to LOC. 4940 /* Insert PATTERN before BEFORE, setting its INSN_LOCATION to LOC.
4808 MAKE_RAW indicates how to turn PATTERN into a real insn. INSNP 4941 MAKE_RAW indicates how to turn PATTERN into a real insn. INSNP
4809 indicates if PATTERN is meant for an INSN as opposed to a JUMP_INSN, 4942 indicates if PATTERN is meant for an INSN as opposed to a JUMP_INSN,
4810 CALL_INSN, etc. */ 4943 CALL_INSN, etc. */
4811 4944
4812 static rtx_insn * 4945 static rtx_insn *
4813 emit_pattern_before_setloc (rtx pattern, rtx uncast_before, int loc, bool insnp, 4946 emit_pattern_before_setloc (rtx pattern, rtx_insn *before, location_t loc,
4814 rtx_insn *(*make_raw) (rtx)) 4947 bool insnp, rtx_insn *(*make_raw) (rtx))
4815 { 4948 {
4816 rtx_insn *before = as_a <rtx_insn *> (uncast_before);
4817 rtx_insn *first = PREV_INSN (before); 4949 rtx_insn *first = PREV_INSN (before);
4818 rtx_insn *last = emit_pattern_before_noloc (pattern, before, 4950 rtx_insn *last = emit_pattern_before_noloc (pattern, before,
4819 insnp ? before : NULL_RTX, 4951 insnp ? before : NULL,
4820 NULL, make_raw); 4952 NULL, make_raw);
4821 4953
4822 if (pattern == NULL_RTX || !loc) 4954 if (pattern == NULL_RTX || !loc)
4823 return last; 4955 return last;
4824 4956
4843 into a real insn. SKIP_DEBUG_INSNS indicates whether to insert 4975 into a real insn. SKIP_DEBUG_INSNS indicates whether to insert
4844 before any DEBUG_INSNs. INSNP indicates if PATTERN is meant for an 4976 before any DEBUG_INSNs. INSNP indicates if PATTERN is meant for an
4845 INSN as opposed to a JUMP_INSN, CALL_INSN, etc. */ 4977 INSN as opposed to a JUMP_INSN, CALL_INSN, etc. */
4846 4978
4847 static rtx_insn * 4979 static rtx_insn *
4848 emit_pattern_before (rtx pattern, rtx uncast_before, bool skip_debug_insns, 4980 emit_pattern_before (rtx pattern, rtx_insn *before, bool skip_debug_insns,
4849 bool insnp, rtx_insn *(*make_raw) (rtx)) 4981 bool insnp, rtx_insn *(*make_raw) (rtx))
4850 { 4982 {
4851 rtx_insn *before = safe_as_a <rtx_insn *> (uncast_before);
4852 rtx_insn *next = before; 4983 rtx_insn *next = before;
4853 4984
4854 if (skip_debug_insns) 4985 if (skip_debug_insns)
4855 while (DEBUG_INSN_P (next)) 4986 while (DEBUG_INSN_P (next))
4856 next = PREV_INSN (next); 4987 next = PREV_INSN (next);
4858 if (INSN_P (next)) 4989 if (INSN_P (next))
4859 return emit_pattern_before_setloc (pattern, before, INSN_LOCATION (next), 4990 return emit_pattern_before_setloc (pattern, before, INSN_LOCATION (next),
4860 insnp, make_raw); 4991 insnp, make_raw);
4861 else 4992 else
4862 return emit_pattern_before_noloc (pattern, before, 4993 return emit_pattern_before_noloc (pattern, before,
4863 insnp ? before : NULL_RTX, 4994 insnp ? before : NULL,
4864 NULL, make_raw); 4995 NULL, make_raw);
4865 } 4996 }
4866 4997
4867 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */ 4998 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
4868 rtx_insn * 4999 rtx_insn *
4869 emit_insn_before_setloc (rtx pattern, rtx_insn *before, int loc) 5000 emit_insn_before_setloc (rtx pattern, rtx_insn *before, location_t loc)
4870 { 5001 {
4871 return emit_pattern_before_setloc (pattern, before, loc, true, 5002 return emit_pattern_before_setloc (pattern, before, loc, true,
4872 make_insn_raw); 5003 make_insn_raw);
4873 } 5004 }
4874 5005
4875 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to BEFORE. */ 5006 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to BEFORE. */
4876 rtx_insn * 5007 rtx_insn *
4877 emit_insn_before (rtx pattern, rtx before) 5008 emit_insn_before (rtx pattern, rtx_insn *before)
4878 { 5009 {
4879 return emit_pattern_before (pattern, before, true, true, make_insn_raw); 5010 return emit_pattern_before (pattern, before, true, true, make_insn_raw);
4880 } 5011 }
4881 5012
4882 /* like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */ 5013 /* like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
4883 rtx_jump_insn * 5014 rtx_jump_insn *
4884 emit_jump_insn_before_setloc (rtx pattern, rtx_insn *before, int loc) 5015 emit_jump_insn_before_setloc (rtx pattern, rtx_insn *before, location_t loc)
4885 { 5016 {
4886 return as_a <rtx_jump_insn *> ( 5017 return as_a <rtx_jump_insn *> (
4887 emit_pattern_before_setloc (pattern, before, loc, false, 5018 emit_pattern_before_setloc (pattern, before, loc, false,
4888 make_jump_insn_raw)); 5019 make_jump_insn_raw));
4889 } 5020 }
4890 5021
4891 /* Like emit_jump_insn_before_noloc, but set INSN_LOCATION according to BEFORE. */ 5022 /* Like emit_jump_insn_before_noloc, but set INSN_LOCATION according to BEFORE. */
4892 rtx_jump_insn * 5023 rtx_jump_insn *
4893 emit_jump_insn_before (rtx pattern, rtx before) 5024 emit_jump_insn_before (rtx pattern, rtx_insn *before)
4894 { 5025 {
4895 return as_a <rtx_jump_insn *> ( 5026 return as_a <rtx_jump_insn *> (
4896 emit_pattern_before (pattern, before, true, false, 5027 emit_pattern_before (pattern, before, true, false,
4897 make_jump_insn_raw)); 5028 make_jump_insn_raw));
4898 } 5029 }
4899 5030
4900 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */ 5031 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
4901 rtx_insn * 5032 rtx_insn *
4902 emit_call_insn_before_setloc (rtx pattern, rtx_insn *before, int loc) 5033 emit_call_insn_before_setloc (rtx pattern, rtx_insn *before, location_t loc)
4903 { 5034 {
4904 return emit_pattern_before_setloc (pattern, before, loc, false, 5035 return emit_pattern_before_setloc (pattern, before, loc, false,
4905 make_call_insn_raw); 5036 make_call_insn_raw);
4906 } 5037 }
4907 5038
4914 make_call_insn_raw); 5045 make_call_insn_raw);
4915 } 5046 }
4916 5047
4917 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */ 5048 /* Like emit_insn_before_noloc, but set INSN_LOCATION according to LOC. */
4918 rtx_insn * 5049 rtx_insn *
4919 emit_debug_insn_before_setloc (rtx pattern, rtx before, int loc) 5050 emit_debug_insn_before_setloc (rtx pattern, rtx_insn *before, location_t loc)
4920 { 5051 {
4921 return emit_pattern_before_setloc (pattern, before, loc, false, 5052 return emit_pattern_before_setloc (pattern, before, loc, false,
4922 make_debug_insn_raw); 5053 make_debug_insn_raw);
4923 } 5054 }
4924 5055
5559 case CC0: 5690 case CC0:
5560 case RETURN: 5691 case RETURN:
5561 case SIMPLE_RETURN: 5692 case SIMPLE_RETURN:
5562 return orig; 5693 return orig;
5563 case CLOBBER: 5694 case CLOBBER:
5695 case CLOBBER_HIGH:
5564 /* Share clobbers of hard registers (like cc0), but do not share pseudo reg 5696 /* Share clobbers of hard registers (like cc0), but do not share pseudo reg
5565 clobbers or clobbers of hard registers that originated as pseudos. 5697 clobbers or clobbers of hard registers that originated as pseudos.
5566 This is needed to allow safe register renaming. */ 5698 This is needed to allow safe register renaming. */
5567 if (REG_P (XEXP (orig, 0)) 5699 if (REG_P (XEXP (orig, 0))
5568 && HARD_REGISTER_NUM_P (REGNO (XEXP (orig, 0))) 5700 && HARD_REGISTER_NUM_P (REGNO (XEXP (orig, 0)))
5629 break; 5761 break;
5630 5762
5631 case 't': 5763 case 't':
5632 case 'w': 5764 case 'w':
5633 case 'i': 5765 case 'i':
5766 case 'p':
5634 case 's': 5767 case 's':
5635 case 'S': 5768 case 'S':
5636 case 'u': 5769 case 'u':
5637 case '0': 5770 case '0':
5638 /* These are left unchanged. */ 5771 /* These are left unchanged. */
5740 REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM) = STACK_BOUNDARY; 5873 REGNO_POINTER_ALIGN (STACK_POINTER_REGNUM) = STACK_BOUNDARY;
5741 REGNO_POINTER_ALIGN (FRAME_POINTER_REGNUM) = STACK_BOUNDARY; 5874 REGNO_POINTER_ALIGN (FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5742 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = STACK_BOUNDARY; 5875 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = STACK_BOUNDARY;
5743 REGNO_POINTER_ALIGN (ARG_POINTER_REGNUM) = STACK_BOUNDARY; 5876 REGNO_POINTER_ALIGN (ARG_POINTER_REGNUM) = STACK_BOUNDARY;
5744 5877
5745 /* ??? These are problematic (for example, 3 out of 4 are wrong on
5746 32-bit SPARC and cannot be all fixed because of the ABI). */
5747 REGNO_POINTER_ALIGN (VIRTUAL_INCOMING_ARGS_REGNUM) = STACK_BOUNDARY; 5878 REGNO_POINTER_ALIGN (VIRTUAL_INCOMING_ARGS_REGNUM) = STACK_BOUNDARY;
5748 REGNO_POINTER_ALIGN (VIRTUAL_STACK_VARS_REGNUM) = STACK_BOUNDARY; 5879 REGNO_POINTER_ALIGN (VIRTUAL_STACK_VARS_REGNUM) = STACK_BOUNDARY;
5749 REGNO_POINTER_ALIGN (VIRTUAL_STACK_DYNAMIC_REGNUM) = STACK_BOUNDARY; 5880 REGNO_POINTER_ALIGN (VIRTUAL_STACK_DYNAMIC_REGNUM) = STACK_BOUNDARY;
5750 REGNO_POINTER_ALIGN (VIRTUAL_OUTGOING_ARGS_REGNUM) = STACK_BOUNDARY; 5881 REGNO_POINTER_ALIGN (VIRTUAL_OUTGOING_ARGS_REGNUM) = STACK_BOUNDARY;
5751 5882
5755 #ifdef INIT_EXPANDERS 5886 #ifdef INIT_EXPANDERS
5756 INIT_EXPANDERS; 5887 INIT_EXPANDERS;
5757 #endif 5888 #endif
5758 } 5889 }
5759 5890
5760 /* Generate a vector constant for mode MODE and constant value CONSTANT. */ 5891 /* Return the value of element I of CONST_VECTOR X as a wide_int. */
5892
5893 wide_int
5894 const_vector_int_elt (const_rtx x, unsigned int i)
5895 {
5896 /* First handle elements that are directly encoded. */
5897 machine_mode elt_mode = GET_MODE_INNER (GET_MODE (x));
5898 if (i < (unsigned int) XVECLEN (x, 0))
5899 return rtx_mode_t (CONST_VECTOR_ENCODED_ELT (x, i), elt_mode);
5900
5901 /* Identify the pattern that contains element I and work out the index of
5902 the last encoded element for that pattern. */
5903 unsigned int encoded_nelts = const_vector_encoded_nelts (x);
5904 unsigned int npatterns = CONST_VECTOR_NPATTERNS (x);
5905 unsigned int count = i / npatterns;
5906 unsigned int pattern = i % npatterns;
5907 unsigned int final_i = encoded_nelts - npatterns + pattern;
5908
5909 /* If there are no steps, the final encoded value is the right one. */
5910 if (!CONST_VECTOR_STEPPED_P (x))
5911 return rtx_mode_t (CONST_VECTOR_ENCODED_ELT (x, final_i), elt_mode);
5912
5913 /* Otherwise work out the value from the last two encoded elements. */
5914 rtx v1 = CONST_VECTOR_ENCODED_ELT (x, final_i - npatterns);
5915 rtx v2 = CONST_VECTOR_ENCODED_ELT (x, final_i);
5916 wide_int diff = wi::sub (rtx_mode_t (v2, elt_mode),
5917 rtx_mode_t (v1, elt_mode));
5918 return wi::add (rtx_mode_t (v2, elt_mode), (count - 2) * diff);
5919 }
5920
5921 /* Return the value of element I of CONST_VECTOR X. */
5922
5923 rtx
5924 const_vector_elt (const_rtx x, unsigned int i)
5925 {
5926 /* First handle elements that are directly encoded. */
5927 if (i < (unsigned int) XVECLEN (x, 0))
5928 return CONST_VECTOR_ENCODED_ELT (x, i);
5929
5930 /* If there are no steps, the final encoded value is the right one. */
5931 if (!CONST_VECTOR_STEPPED_P (x))
5932 {
5933 /* Identify the pattern that contains element I and work out the index of
5934 the last encoded element for that pattern. */
5935 unsigned int encoded_nelts = const_vector_encoded_nelts (x);
5936 unsigned int npatterns = CONST_VECTOR_NPATTERNS (x);
5937 unsigned int pattern = i % npatterns;
5938 unsigned int final_i = encoded_nelts - npatterns + pattern;
5939 return CONST_VECTOR_ENCODED_ELT (x, final_i);
5940 }
5941
5942 /* Otherwise work out the value from the last two encoded elements. */
5943 return immed_wide_int_const (const_vector_int_elt (x, i),
5944 GET_MODE_INNER (GET_MODE (x)));
5945 }
5946
5947 /* Return true if X is a valid element for a CONST_VECTOR of the given
5948 mode. */
5949
5950 bool
5951 valid_for_const_vector_p (machine_mode, rtx x)
5952 {
5953 return (CONST_SCALAR_INT_P (x)
5954 || CONST_DOUBLE_AS_FLOAT_P (x)
5955 || CONST_FIXED_P (x));
5956 }
5957
5958 /* Generate a vector constant of mode MODE in which every element has
5959 value ELT. */
5960
5961 rtx
5962 gen_const_vec_duplicate (machine_mode mode, rtx elt)
5963 {
5964 rtx_vector_builder builder (mode, 1, 1);
5965 builder.quick_push (elt);
5966 return builder.build ();
5967 }
5968
5969 /* Return a vector rtx of mode MODE in which every element has value X.
5970 The result will be a constant if X is constant. */
5971
5972 rtx
5973 gen_vec_duplicate (machine_mode mode, rtx x)
5974 {
5975 if (valid_for_const_vector_p (mode, x))
5976 return gen_const_vec_duplicate (mode, x);
5977 return gen_rtx_VEC_DUPLICATE (mode, x);
5978 }
5979
5980 /* A subroutine of const_vec_series_p that handles the case in which:
5981
5982 (GET_CODE (X) == CONST_VECTOR
5983 && CONST_VECTOR_NPATTERNS (X) == 1
5984 && !CONST_VECTOR_DUPLICATE_P (X))
5985
5986 is known to hold. */
5987
5988 bool
5989 const_vec_series_p_1 (const_rtx x, rtx *base_out, rtx *step_out)
5990 {
5991 /* Stepped sequences are only defined for integers, to avoid specifying
5992 rounding behavior. */
5993 if (GET_MODE_CLASS (GET_MODE (x)) != MODE_VECTOR_INT)
5994 return false;
5995
5996 /* A non-duplicated vector with two elements can always be seen as a
5997 series with a nonzero step. Longer vectors must have a stepped
5998 encoding. */
5999 if (maybe_ne (CONST_VECTOR_NUNITS (x), 2)
6000 && !CONST_VECTOR_STEPPED_P (x))
6001 return false;
6002
6003 /* Calculate the step between the first and second elements. */
6004 scalar_mode inner = GET_MODE_INNER (GET_MODE (x));
6005 rtx base = CONST_VECTOR_ELT (x, 0);
6006 rtx step = simplify_binary_operation (MINUS, inner,
6007 CONST_VECTOR_ENCODED_ELT (x, 1), base);
6008 if (rtx_equal_p (step, CONST0_RTX (inner)))
6009 return false;
6010
6011 /* If we have a stepped encoding, check that the step between the
6012 second and third elements is the same as STEP. */
6013 if (CONST_VECTOR_STEPPED_P (x))
6014 {
6015 rtx diff = simplify_binary_operation (MINUS, inner,
6016 CONST_VECTOR_ENCODED_ELT (x, 2),
6017 CONST_VECTOR_ENCODED_ELT (x, 1));
6018 if (!rtx_equal_p (step, diff))
6019 return false;
6020 }
6021
6022 *base_out = base;
6023 *step_out = step;
6024 return true;
6025 }
6026
6027 /* Generate a vector constant of mode MODE in which element I has
6028 the value BASE + I * STEP. */
6029
6030 rtx
6031 gen_const_vec_series (machine_mode mode, rtx base, rtx step)
6032 {
6033 gcc_assert (valid_for_const_vector_p (mode, base)
6034 && valid_for_const_vector_p (mode, step));
6035
6036 rtx_vector_builder builder (mode, 1, 3);
6037 builder.quick_push (base);
6038 for (int i = 1; i < 3; ++i)
6039 builder.quick_push (simplify_gen_binary (PLUS, GET_MODE_INNER (mode),
6040 builder[i - 1], step));
6041 return builder.build ();
6042 }
6043
6044 /* Generate a vector of mode MODE in which element I has the value
6045 BASE + I * STEP. The result will be a constant if BASE and STEP
6046 are both constants. */
6047
6048 rtx
6049 gen_vec_series (machine_mode mode, rtx base, rtx step)
6050 {
6051 if (step == const0_rtx)
6052 return gen_vec_duplicate (mode, base);
6053 if (valid_for_const_vector_p (mode, base)
6054 && valid_for_const_vector_p (mode, step))
6055 return gen_const_vec_series (mode, base, step);
6056 return gen_rtx_VEC_SERIES (mode, base, step);
6057 }
6058
6059 /* Generate a new vector constant for mode MODE and constant value
6060 CONSTANT. */
5761 6061
5762 static rtx 6062 static rtx
5763 gen_const_vector (machine_mode mode, int constant) 6063 gen_const_vector (machine_mode mode, int constant)
5764 { 6064 {
5765 rtx tem; 6065 machine_mode inner = GET_MODE_INNER (mode);
5766 rtvec v;
5767 int units, i;
5768 machine_mode inner;
5769
5770 units = GET_MODE_NUNITS (mode);
5771 inner = GET_MODE_INNER (mode);
5772 6066
5773 gcc_assert (!DECIMAL_FLOAT_MODE_P (inner)); 6067 gcc_assert (!DECIMAL_FLOAT_MODE_P (inner));
5774 6068
5775 v = rtvec_alloc (units); 6069 rtx el = const_tiny_rtx[constant][(int) inner];
5776 6070 gcc_assert (el);
5777 /* We need to call this function after we set the scalar const_tiny_rtx 6071
5778 entries. */ 6072 return gen_const_vec_duplicate (mode, el);
5779 gcc_assert (const_tiny_rtx[constant][(int) inner]);
5780
5781 for (i = 0; i < units; ++i)
5782 RTVEC_ELT (v, i) = const_tiny_rtx[constant][(int) inner];
5783
5784 tem = gen_rtx_raw_CONST_VECTOR (mode, v);
5785 return tem;
5786 } 6073 }
5787 6074
5788 /* Generate a vector like gen_rtx_raw_CONST_VEC, but use the zero vector when 6075 /* Generate a vector like gen_rtx_raw_CONST_VEC, but use the zero vector when
5789 all elements are zero, and the one vector when all elements are one. */ 6076 all elements are zero, and the one vector when all elements are one. */
5790 rtx 6077 rtx
5791 gen_rtx_CONST_VECTOR (machine_mode mode, rtvec v) 6078 gen_rtx_CONST_VECTOR (machine_mode mode, rtvec v)
5792 { 6079 {
5793 machine_mode inner = GET_MODE_INNER (mode); 6080 gcc_assert (known_eq (GET_MODE_NUNITS (mode), GET_NUM_ELEM (v)));
5794 int nunits = GET_MODE_NUNITS (mode);
5795 rtx x;
5796 int i;
5797
5798 /* Check to see if all of the elements have the same value. */
5799 x = RTVEC_ELT (v, nunits - 1);
5800 for (i = nunits - 2; i >= 0; i--)
5801 if (RTVEC_ELT (v, i) != x)
5802 break;
5803 6081
5804 /* If the values are all the same, check to see if we can use one of the 6082 /* If the values are all the same, check to see if we can use one of the
5805 standard constant vectors. */ 6083 standard constant vectors. */
5806 if (i == -1) 6084 if (rtvec_all_equal_p (v))
5807 { 6085 return gen_const_vec_duplicate (mode, RTVEC_ELT (v, 0));
5808 if (x == CONST0_RTX (inner)) 6086
5809 return CONST0_RTX (mode); 6087 unsigned int nunits = GET_NUM_ELEM (v);
5810 else if (x == CONST1_RTX (inner)) 6088 rtx_vector_builder builder (mode, nunits, 1);
5811 return CONST1_RTX (mode); 6089 for (unsigned int i = 0; i < nunits; ++i)
5812 else if (x == CONSTM1_RTX (inner)) 6090 builder.quick_push (RTVEC_ELT (v, i));
5813 return CONSTM1_RTX (mode); 6091 return builder.build (v);
5814 }
5815
5816 return gen_rtx_raw_CONST_VECTOR (mode, v);
5817 } 6092 }
5818 6093
5819 /* Initialise global register information required by all functions. */ 6094 /* Initialise global register information required by all functions. */
5820 6095
5821 void 6096 void
5866 { 6141 {
5867 mode = (machine_mode) i; 6142 mode = (machine_mode) i;
5868 attrs = ggc_cleared_alloc<mem_attrs> (); 6143 attrs = ggc_cleared_alloc<mem_attrs> ();
5869 attrs->align = BITS_PER_UNIT; 6144 attrs->align = BITS_PER_UNIT;
5870 attrs->addrspace = ADDR_SPACE_GENERIC; 6145 attrs->addrspace = ADDR_SPACE_GENERIC;
5871 if (mode != BLKmode) 6146 if (mode != BLKmode && mode != VOIDmode)
5872 { 6147 {
5873 attrs->size_known_p = true; 6148 attrs->size_known_p = true;
5874 attrs->size = GET_MODE_SIZE (mode); 6149 attrs->size = GET_MODE_SIZE (mode);
5875 if (STRICT_ALIGNMENT) 6150 if (STRICT_ALIGNMENT)
5876 attrs->align = GET_MODE_ALIGNMENT (mode); 6151 attrs->align = GET_MODE_ALIGNMENT (mode);
5877 } 6152 }
5878 mode_mem_attrs[i] = attrs; 6153 mode_mem_attrs[i] = attrs;
5879 } 6154 }
6155
6156 split_branch_probability = profile_probability::uninitialized ();
5880 } 6157 }
5881 6158
5882 /* Initialize global machine_mode variables. */ 6159 /* Initialize global machine_mode variables. */
5883 6160
5884 void 6161 void
5898 opt_word_mode = mode; 6175 opt_word_mode = mode;
5899 } 6176 }
5900 6177
5901 byte_mode = opt_byte_mode.require (); 6178 byte_mode = opt_byte_mode.require ();
5902 word_mode = opt_word_mode.require (); 6179 word_mode = opt_word_mode.require ();
5903 ptr_mode = int_mode_for_size (POINTER_SIZE, 0).require (); 6180 ptr_mode = as_a <scalar_int_mode>
6181 (mode_for_size (POINTER_SIZE, GET_MODE_CLASS (Pmode), 0).require ());
5904 } 6182 }
5905 6183
5906 /* Create some permanent unique rtl objects shared between all functions. */ 6184 /* Create some permanent unique rtl objects shared between all functions. */
5907 6185
5908 void 6186 void
5919 6197
5920 #if TARGET_SUPPORTS_WIDE_INT 6198 #if TARGET_SUPPORTS_WIDE_INT
5921 const_wide_int_htab = hash_table<const_wide_int_hasher>::create_ggc (37); 6199 const_wide_int_htab = hash_table<const_wide_int_hasher>::create_ggc (37);
5922 #endif 6200 #endif
5923 const_double_htab = hash_table<const_double_hasher>::create_ggc (37); 6201 const_double_htab = hash_table<const_double_hasher>::create_ggc (37);
6202
6203 if (NUM_POLY_INT_COEFFS > 1)
6204 const_poly_int_htab = hash_table<const_poly_int_hasher>::create_ggc (37);
5924 6205
5925 const_fixed_htab = hash_table<const_fixed_hasher>::create_ggc (37); 6206 const_fixed_htab = hash_table<const_fixed_hasher>::create_ggc (37);
5926 6207
5927 reg_attrs_htab = hash_table<reg_attr_hasher>::create_ggc (37); 6208 reg_attrs_htab = hash_table<reg_attr_hasher>::create_ggc (37);
5928 6209
5994 const_tiny_rtx[3][(int) VOIDmode] = constm1_rtx; 6275 const_tiny_rtx[3][(int) VOIDmode] = constm1_rtx;
5995 6276
5996 FOR_EACH_MODE_IN_CLASS (mode, MODE_INT) 6277 FOR_EACH_MODE_IN_CLASS (mode, MODE_INT)
5997 const_tiny_rtx[3][(int) mode] = constm1_rtx; 6278 const_tiny_rtx[3][(int) mode] = constm1_rtx;
5998 6279
6280 /* For BImode, 1 and -1 are unsigned and signed interpretations
6281 of the same value. */
6282 const_tiny_rtx[0][(int) BImode] = const0_rtx;
6283 const_tiny_rtx[1][(int) BImode] = const_true_rtx;
6284 const_tiny_rtx[3][(int) BImode] = const_true_rtx;
6285
5999 for (mode = MIN_MODE_PARTIAL_INT; 6286 for (mode = MIN_MODE_PARTIAL_INT;
6000 mode <= MAX_MODE_PARTIAL_INT; 6287 mode <= MAX_MODE_PARTIAL_INT;
6001 mode = (machine_mode)((int)(mode) + 1)) 6288 mode = (machine_mode)((int)(mode) + 1))
6002 const_tiny_rtx[3][(int) mode] = constm1_rtx; 6289 const_tiny_rtx[3][(int) mode] = constm1_rtx;
6003 6290
6009 6296
6010 FOR_EACH_MODE_IN_CLASS (mode, MODE_COMPLEX_FLOAT) 6297 FOR_EACH_MODE_IN_CLASS (mode, MODE_COMPLEX_FLOAT)
6011 { 6298 {
6012 rtx inner = const_tiny_rtx[0][(int)GET_MODE_INNER (mode)]; 6299 rtx inner = const_tiny_rtx[0][(int)GET_MODE_INNER (mode)];
6013 const_tiny_rtx[0][(int) mode] = gen_rtx_CONCAT (mode, inner, inner); 6300 const_tiny_rtx[0][(int) mode] = gen_rtx_CONCAT (mode, inner, inner);
6301 }
6302
6303 /* As for BImode, "all 1" and "all -1" are unsigned and signed
6304 interpretations of the same value. */
6305 FOR_EACH_MODE_IN_CLASS (mode, MODE_VECTOR_BOOL)
6306 {
6307 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
6308 const_tiny_rtx[3][(int) mode] = gen_const_vector (mode, 3);
6309 const_tiny_rtx[1][(int) mode] = const_tiny_rtx[3][(int) mode];
6014 } 6310 }
6015 6311
6016 FOR_EACH_MODE_IN_CLASS (mode, MODE_VECTOR_INT) 6312 FOR_EACH_MODE_IN_CLASS (mode, MODE_VECTOR_INT)
6017 { 6313 {
6018 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0); 6314 const_tiny_rtx[0][(int) mode] = gen_const_vector (mode, 0);
6111 } 6407 }
6112 6408
6113 for (i = (int) CCmode; i < (int) MAX_MACHINE_MODE; ++i) 6409 for (i = (int) CCmode; i < (int) MAX_MACHINE_MODE; ++i)
6114 if (GET_MODE_CLASS ((machine_mode) i) == MODE_CC) 6410 if (GET_MODE_CLASS ((machine_mode) i) == MODE_CC)
6115 const_tiny_rtx[0][i] = const0_rtx; 6411 const_tiny_rtx[0][i] = const0_rtx;
6116
6117 const_tiny_rtx[0][(int) BImode] = const0_rtx;
6118 if (STORE_FLAG_VALUE == 1)
6119 const_tiny_rtx[1][(int) BImode] = const1_rtx;
6120
6121 FOR_EACH_MODE_IN_CLASS (smode_iter, MODE_POINTER_BOUNDS)
6122 {
6123 scalar_mode smode = smode_iter.require ();
6124 wide_int wi_zero = wi::zero (GET_MODE_PRECISION (smode));
6125 const_tiny_rtx[0][smode] = immed_wide_int_const (wi_zero, smode);
6126 }
6127 6412
6128 pc_rtx = gen_rtx_fmt_ (PC, VOIDmode); 6413 pc_rtx = gen_rtx_fmt_ (PC, VOIDmode);
6129 ret_rtx = gen_rtx_fmt_ (RETURN, VOIDmode); 6414 ret_rtx = gen_rtx_fmt_ (RETURN, VOIDmode);
6130 simple_return_rtx = gen_rtx_fmt_ (SIMPLE_RETURN, VOIDmode); 6415 simple_return_rtx = gen_rtx_fmt_ (SIMPLE_RETURN, VOIDmode);
6131 cc0_rtx = gen_rtx_fmt_ (CC0, VOIDmode); 6416 cc0_rtx = gen_rtx_fmt_ (CC0, VOIDmode);
6217 else 6502 else
6218 return (hard_reg_clobbers[mode][regno] = 6503 return (hard_reg_clobbers[mode][regno] =
6219 gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (mode, regno))); 6504 gen_rtx_CLOBBER (VOIDmode, gen_rtx_REG (mode, regno)));
6220 } 6505 }
6221 6506
6507 static GTY((deletable)) rtx
6508 hard_reg_clobbers_high[NUM_MACHINE_MODES][FIRST_PSEUDO_REGISTER];
6509
6510 /* Return a CLOBBER_HIGH expression for register REGNO that clobbers MODE,
6511 caching into HARD_REG_CLOBBERS_HIGH. */
6512 rtx
6513 gen_hard_reg_clobber_high (machine_mode mode, unsigned int regno)
6514 {
6515 if (hard_reg_clobbers_high[mode][regno])
6516 return hard_reg_clobbers_high[mode][regno];
6517 else
6518 return (hard_reg_clobbers_high[mode][regno]
6519 = gen_rtx_CLOBBER_HIGH (VOIDmode, gen_rtx_REG (mode, regno)));
6520 }
6521
6222 location_t prologue_location; 6522 location_t prologue_location;
6223 location_t epilogue_location; 6523 location_t epilogue_location;
6224 6524
6225 /* Hold current location information and last location information, so the 6525 /* Hold current location information and last location information, so the
6226 datastructures are built lazily only when some instructions in given 6526 datastructures are built lazily only when some instructions in given
6307 default: 6607 default:
6308 gcc_unreachable (); 6608 gcc_unreachable ();
6309 } 6609 }
6310 } 6610 }
6311 6611
6612 /* Return a constant shift amount for shifting a value of mode MODE
6613 by VALUE bits. */
6614
6615 rtx
6616 gen_int_shift_amount (machine_mode, poly_int64 value)
6617 {
6618 /* Use a 64-bit mode, to avoid any truncation.
6619
6620 ??? Perhaps this should be automatically derived from the .md files
6621 instead, or perhaps have a target hook. */
6622 scalar_int_mode shift_mode = (BITS_PER_UNIT == 8
6623 ? DImode
6624 : int_mode_for_size (64, 0).require ());
6625 return gen_int_mode (value, shift_mode);
6626 }
6627
6312 /* Initialize fields of rtl_data related to stack alignment. */ 6628 /* Initialize fields of rtl_data related to stack alignment. */
6313 6629
6314 void 6630 void
6315 rtl_data::init_stack_alignment () 6631 rtl_data::init_stack_alignment ()
6316 { 6632 {