comparison gcc/bt-load.c @ 0:a06113de4d67

first commit
author kent <kent@cr.ie.u-ryukyu.ac.jp>
date Fri, 17 Jul 2009 14:47:48 +0900
parents
children 77e2b8dfacca
comparison
equal deleted inserted replaced
-1:000000000000 0:a06113de4d67
1 /* Perform branch target register load optimizations.
2 Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
3 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "rtl.h"
26 #include "hard-reg-set.h"
27 #include "regs.h"
28 #include "fibheap.h"
29 #include "output.h"
30 #include "target.h"
31 #include "expr.h"
32 #include "flags.h"
33 #include "insn-attr.h"
34 #include "function.h"
35 #include "except.h"
36 #include "tm_p.h"
37 #include "toplev.h"
38 #include "tree-pass.h"
39 #include "recog.h"
40 #include "df.h"
41
42 /* Target register optimizations - these are performed after reload. */
43
44 typedef struct btr_def_group_s
45 {
46 struct btr_def_group_s *next;
47 rtx src;
48 struct btr_def_s *members;
49 } *btr_def_group;
50
51 typedef struct btr_user_s
52 {
53 struct btr_user_s *next;
54 basic_block bb;
55 int luid;
56 rtx insn;
57 /* If INSN has a single use of a single branch register, then
58 USE points to it within INSN. If there is more than
59 one branch register use, or the use is in some way ambiguous,
60 then USE is NULL. */
61 rtx use;
62 int n_reaching_defs;
63 int first_reaching_def;
64 char other_use_this_block;
65 } *btr_user;
66
67 /* btr_def structs appear on three lists:
68 1. A list of all btr_def structures (head is
69 ALL_BTR_DEFS, linked by the NEXT field).
70 2. A list of branch reg definitions per basic block (head is
71 BB_BTR_DEFS[i], linked by the NEXT_THIS_BB field).
72 3. A list of all branch reg definitions belonging to the same
73 group (head is in a BTR_DEF_GROUP struct, linked by
74 NEXT_THIS_GROUP field). */
75
76 typedef struct btr_def_s
77 {
78 struct btr_def_s *next_this_bb;
79 struct btr_def_s *next_this_group;
80 basic_block bb;
81 int luid;
82 rtx insn;
83 int btr;
84 int cost;
85 /* For a branch register setting insn that has a constant
86 source (i.e. a label), group links together all the
87 insns with the same source. For other branch register
88 setting insns, group is NULL. */
89 btr_def_group group;
90 btr_user uses;
91 /* If this def has a reaching use which is not a simple use
92 in a branch instruction, then has_ambiguous_use will be true,
93 and we will not attempt to migrate this definition. */
94 char has_ambiguous_use;
95 /* live_range is an approximation to the true live range for this
96 def/use web, because it records the set of blocks that contain
97 the live range. There could be other live ranges for the same
98 branch register in that set of blocks, either in the block
99 containing the def (before the def), or in a block containing
100 a use (after the use). If there are such other live ranges, then
101 other_btr_uses_before_def or other_btr_uses_after_use must be set true
102 as appropriate. */
103 char other_btr_uses_before_def;
104 char other_btr_uses_after_use;
105 /* We set own_end when we have moved a definition into a dominator.
106 Thus, when a later combination removes this definition again, we know
107 to clear out trs_live_at_end again. */
108 char own_end;
109 bitmap live_range;
110 } *btr_def;
111
112 static int issue_rate;
113
114 static int basic_block_freq (const_basic_block);
115 static int insn_sets_btr_p (const_rtx, int, int *);
116 static rtx *find_btr_use (rtx);
117 static int btr_referenced_p (rtx, rtx *);
118 static int find_btr_reference (rtx *, void *);
119 static void find_btr_def_group (btr_def_group *, btr_def);
120 static btr_def add_btr_def (fibheap_t, basic_block, int, rtx,
121 unsigned int, int, btr_def_group *);
122 static btr_user new_btr_user (basic_block, int, rtx);
123 static void dump_hard_reg_set (HARD_REG_SET);
124 static void dump_btrs_live (int);
125 static void note_other_use_this_block (unsigned int, btr_user);
126 static void compute_defs_uses_and_gen (fibheap_t, btr_def *,btr_user *,
127 sbitmap *, sbitmap *, HARD_REG_SET *);
128 static void compute_kill (sbitmap *, sbitmap *, HARD_REG_SET *);
129 static void compute_out (sbitmap *bb_out, sbitmap *, sbitmap *, int);
130 static void link_btr_uses (btr_def *, btr_user *, sbitmap *, sbitmap *, int);
131 static void build_btr_def_use_webs (fibheap_t);
132 static int block_at_edge_of_live_range_p (int, btr_def);
133 static void clear_btr_from_live_range (btr_def def);
134 static void add_btr_to_live_range (btr_def, int);
135 static void augment_live_range (bitmap, HARD_REG_SET *, basic_block,
136 basic_block, int);
137 static int choose_btr (HARD_REG_SET);
138 static void combine_btr_defs (btr_def, HARD_REG_SET *);
139 static void btr_def_live_range (btr_def, HARD_REG_SET *);
140 static void move_btr_def (basic_block, int, btr_def, bitmap, HARD_REG_SET *);
141 static int migrate_btr_def (btr_def, int);
142 static void migrate_btr_defs (enum reg_class, int);
143 static int can_move_up (const_basic_block, const_rtx, int);
144 static void note_btr_set (rtx, const_rtx, void *);
145
146 /* The following code performs code motion of target load instructions
147 (instructions that set branch target registers), to move them
148 forward away from the branch instructions and out of loops (or,
149 more generally, from a more frequently executed place to a less
150 frequently executed place).
151 Moving target load instructions further in front of the branch
152 instruction that uses the target register value means that the hardware
153 has a better chance of preloading the instructions at the branch
154 target by the time the branch is reached. This avoids bubbles
155 when a taken branch needs to flush out the pipeline.
156 Moving target load instructions out of loops means they are executed
157 less frequently. */
158
159 /* An obstack to hold the def-use web data structures built up for
160 migrating branch target load instructions. */
161 static struct obstack migrate_btrl_obstack;
162
163 /* Array indexed by basic block number, giving the set of registers
164 live in that block. */
165 static HARD_REG_SET *btrs_live;
166
167 /* Array indexed by basic block number, giving the set of registers live at
168 the end of that block, including any uses by a final jump insn, if any. */
169 static HARD_REG_SET *btrs_live_at_end;
170
171 /* Set of all target registers that we are willing to allocate. */
172 static HARD_REG_SET all_btrs;
173
174 /* Provide lower and upper bounds for target register numbers, so that
175 we don't need to search through all the hard registers all the time. */
176 static int first_btr, last_btr;
177
178
179
180 /* Return an estimate of the frequency of execution of block bb. */
181 static int
182 basic_block_freq (const_basic_block bb)
183 {
184 return bb->frequency;
185 }
186
187 static rtx *btr_reference_found;
188
189 /* A subroutine of btr_referenced_p, called through for_each_rtx.
190 PREG is a pointer to an rtx that is to be excluded from the
191 traversal. If we find a reference to a target register anywhere
192 else, return 1, and put a pointer to it into btr_reference_found. */
193 static int
194 find_btr_reference (rtx *px, void *preg)
195 {
196 rtx x;
197
198 if (px == preg)
199 return -1;
200 x = *px;
201 if (!REG_P (x))
202 return 0;
203 if (overlaps_hard_reg_set_p (all_btrs, GET_MODE (x), REGNO (x)))
204 {
205 btr_reference_found = px;
206 return 1;
207 }
208 return -1;
209 }
210
211 /* Return nonzero if X references (sets or reads) any branch target register.
212 If EXCLUDEP is set, disregard any references within the rtx pointed to
213 by it. If returning nonzero, also set btr_reference_found as above. */
214 static int
215 btr_referenced_p (rtx x, rtx *excludep)
216 {
217 return for_each_rtx (&x, find_btr_reference, excludep);
218 }
219
220 /* Return true if insn is an instruction that sets a target register.
221 if CHECK_CONST is true, only return true if the source is constant.
222 If such a set is found and REGNO is nonzero, assign the register number
223 of the destination register to *REGNO. */
224 static int
225 insn_sets_btr_p (const_rtx insn, int check_const, int *regno)
226 {
227 rtx set;
228
229 if (NONJUMP_INSN_P (insn)
230 && (set = single_set (insn)))
231 {
232 rtx dest = SET_DEST (set);
233 rtx src = SET_SRC (set);
234
235 if (GET_CODE (dest) == SUBREG)
236 dest = XEXP (dest, 0);
237
238 if (REG_P (dest)
239 && TEST_HARD_REG_BIT (all_btrs, REGNO (dest)))
240 {
241 gcc_assert (!btr_referenced_p (src, NULL));
242
243 if (!check_const || CONSTANT_P (src))
244 {
245 if (regno)
246 *regno = REGNO (dest);
247 return 1;
248 }
249 }
250 }
251 return 0;
252 }
253
254 /* Find and return a use of a target register within an instruction INSN. */
255 static rtx *
256 find_btr_use (rtx insn)
257 {
258 return btr_referenced_p (insn, NULL) ? btr_reference_found : NULL;
259 }
260
261 /* Find the group that the target register definition DEF belongs
262 to in the list starting with *ALL_BTR_DEF_GROUPS. If no such
263 group exists, create one. Add def to the group. */
264 static void
265 find_btr_def_group (btr_def_group *all_btr_def_groups, btr_def def)
266 {
267 if (insn_sets_btr_p (def->insn, 1, NULL))
268 {
269 btr_def_group this_group;
270 rtx def_src = SET_SRC (single_set (def->insn));
271
272 /* ?? This linear search is an efficiency concern, particularly
273 as the search will almost always fail to find a match. */
274 for (this_group = *all_btr_def_groups;
275 this_group != NULL;
276 this_group = this_group->next)
277 if (rtx_equal_p (def_src, this_group->src))
278 break;
279
280 if (!this_group)
281 {
282 this_group = XOBNEW (&migrate_btrl_obstack, struct btr_def_group_s);
283 this_group->src = def_src;
284 this_group->members = NULL;
285 this_group->next = *all_btr_def_groups;
286 *all_btr_def_groups = this_group;
287 }
288 def->group = this_group;
289 def->next_this_group = this_group->members;
290 this_group->members = def;
291 }
292 else
293 def->group = NULL;
294 }
295
296 /* Create a new target register definition structure, for a definition in
297 block BB, instruction INSN, and insert it into ALL_BTR_DEFS. Return
298 the new definition. */
299 static btr_def
300 add_btr_def (fibheap_t all_btr_defs, basic_block bb, int insn_luid, rtx insn,
301 unsigned int dest_reg, int other_btr_uses_before_def,
302 btr_def_group *all_btr_def_groups)
303 {
304 btr_def this_def = XOBNEW (&migrate_btrl_obstack, struct btr_def_s);
305 this_def->bb = bb;
306 this_def->luid = insn_luid;
307 this_def->insn = insn;
308 this_def->btr = dest_reg;
309 this_def->cost = basic_block_freq (bb);
310 this_def->has_ambiguous_use = 0;
311 this_def->other_btr_uses_before_def = other_btr_uses_before_def;
312 this_def->other_btr_uses_after_use = 0;
313 this_def->next_this_bb = NULL;
314 this_def->next_this_group = NULL;
315 this_def->uses = NULL;
316 this_def->live_range = NULL;
317 find_btr_def_group (all_btr_def_groups, this_def);
318
319 fibheap_insert (all_btr_defs, -this_def->cost, this_def);
320
321 if (dump_file)
322 fprintf (dump_file,
323 "Found target reg definition: sets %u { bb %d, insn %d }%s priority %d\n",
324 dest_reg, bb->index, INSN_UID (insn),
325 (this_def->group ? "" : ":not const"), this_def->cost);
326
327 return this_def;
328 }
329
330 /* Create a new target register user structure, for a use in block BB,
331 instruction INSN. Return the new user. */
332 static btr_user
333 new_btr_user (basic_block bb, int insn_luid, rtx insn)
334 {
335 /* This instruction reads target registers. We need
336 to decide whether we can replace all target register
337 uses easily.
338 */
339 rtx *usep = find_btr_use (PATTERN (insn));
340 rtx use;
341 btr_user user = NULL;
342
343 if (usep)
344 {
345 int unambiguous_single_use;
346
347 /* We want to ensure that USE is the only use of a target
348 register in INSN, so that we know that to rewrite INSN to use
349 a different target register, all we have to do is replace USE. */
350 unambiguous_single_use = !btr_referenced_p (PATTERN (insn), usep);
351 if (!unambiguous_single_use)
352 usep = NULL;
353 }
354 use = usep ? *usep : NULL_RTX;
355 user = XOBNEW (&migrate_btrl_obstack, struct btr_user_s);
356 user->bb = bb;
357 user->luid = insn_luid;
358 user->insn = insn;
359 user->use = use;
360 user->other_use_this_block = 0;
361 user->next = NULL;
362 user->n_reaching_defs = 0;
363 user->first_reaching_def = -1;
364
365 if (dump_file)
366 {
367 fprintf (dump_file, "Uses target reg: { bb %d, insn %d }",
368 bb->index, INSN_UID (insn));
369
370 if (user->use)
371 fprintf (dump_file, ": unambiguous use of reg %d\n",
372 REGNO (user->use));
373 }
374
375 return user;
376 }
377
378 /* Write the contents of S to the dump file. */
379 static void
380 dump_hard_reg_set (HARD_REG_SET s)
381 {
382 int reg;
383 for (reg = 0; reg < FIRST_PSEUDO_REGISTER; reg++)
384 if (TEST_HARD_REG_BIT (s, reg))
385 fprintf (dump_file, " %d", reg);
386 }
387
388 /* Write the set of target regs live in block BB to the dump file. */
389 static void
390 dump_btrs_live (int bb)
391 {
392 fprintf (dump_file, "BB%d live:", bb);
393 dump_hard_reg_set (btrs_live[bb]);
394 fprintf (dump_file, "\n");
395 }
396
397 /* REGNO is the number of a branch target register that is being used or
398 set. USERS_THIS_BB is a list of preceding branch target register users;
399 If any of them use the same register, set their other_use_this_block
400 flag. */
401 static void
402 note_other_use_this_block (unsigned int regno, btr_user users_this_bb)
403 {
404 btr_user user;
405
406 for (user = users_this_bb; user != NULL; user = user->next)
407 if (user->use && REGNO (user->use) == regno)
408 user->other_use_this_block = 1;
409 }
410
411 typedef struct {
412 btr_user users_this_bb;
413 HARD_REG_SET btrs_written_in_block;
414 HARD_REG_SET btrs_live_in_block;
415 sbitmap bb_gen;
416 sbitmap *btr_defset;
417 } defs_uses_info;
418
419 /* Called via note_stores or directly to register stores into /
420 clobbers of a branch target register DEST that are not recognized as
421 straightforward definitions. DATA points to information about the
422 current basic block that needs updating. */
423 static void
424 note_btr_set (rtx dest, const_rtx set ATTRIBUTE_UNUSED, void *data)
425 {
426 defs_uses_info *info = (defs_uses_info *) data;
427 int regno, end_regno;
428
429 if (!REG_P (dest))
430 return;
431 regno = REGNO (dest);
432 end_regno = END_HARD_REGNO (dest);
433 for (; regno < end_regno; regno++)
434 if (TEST_HARD_REG_BIT (all_btrs, regno))
435 {
436 note_other_use_this_block (regno, info->users_this_bb);
437 SET_HARD_REG_BIT (info->btrs_written_in_block, regno);
438 SET_HARD_REG_BIT (info->btrs_live_in_block, regno);
439 sbitmap_difference (info->bb_gen, info->bb_gen,
440 info->btr_defset[regno - first_btr]);
441 }
442 }
443
444 static void
445 compute_defs_uses_and_gen (fibheap_t all_btr_defs, btr_def *def_array,
446 btr_user *use_array, sbitmap *btr_defset,
447 sbitmap *bb_gen, HARD_REG_SET *btrs_written)
448 {
449 /* Scan the code building up the set of all defs and all uses.
450 For each target register, build the set of defs of that register.
451 For each block, calculate the set of target registers
452 written in that block.
453 Also calculate the set of btrs ever live in that block.
454 */
455 int i;
456 int insn_luid = 0;
457 btr_def_group all_btr_def_groups = NULL;
458 defs_uses_info info;
459
460 sbitmap_vector_zero (bb_gen, n_basic_blocks);
461 for (i = NUM_FIXED_BLOCKS; i < n_basic_blocks; i++)
462 {
463 basic_block bb = BASIC_BLOCK (i);
464 int reg;
465 btr_def defs_this_bb = NULL;
466 rtx insn;
467 rtx last;
468 int can_throw = 0;
469
470 info.users_this_bb = NULL;
471 info.bb_gen = bb_gen[i];
472 info.btr_defset = btr_defset;
473
474 CLEAR_HARD_REG_SET (info.btrs_live_in_block);
475 CLEAR_HARD_REG_SET (info.btrs_written_in_block);
476 for (reg = first_btr; reg <= last_btr; reg++)
477 if (TEST_HARD_REG_BIT (all_btrs, reg)
478 && REGNO_REG_SET_P (df_get_live_in (bb), reg))
479 SET_HARD_REG_BIT (info.btrs_live_in_block, reg);
480
481 for (insn = BB_HEAD (bb), last = NEXT_INSN (BB_END (bb));
482 insn != last;
483 insn = NEXT_INSN (insn), insn_luid++)
484 {
485 if (INSN_P (insn))
486 {
487 int regno;
488 int insn_uid = INSN_UID (insn);
489
490 if (insn_sets_btr_p (insn, 0, &regno))
491 {
492 btr_def def = add_btr_def (
493 all_btr_defs, bb, insn_luid, insn, regno,
494 TEST_HARD_REG_BIT (info.btrs_live_in_block, regno),
495 &all_btr_def_groups);
496
497 def_array[insn_uid] = def;
498 SET_HARD_REG_BIT (info.btrs_written_in_block, regno);
499 SET_HARD_REG_BIT (info.btrs_live_in_block, regno);
500 sbitmap_difference (bb_gen[i], bb_gen[i],
501 btr_defset[regno - first_btr]);
502 SET_BIT (bb_gen[i], insn_uid);
503 def->next_this_bb = defs_this_bb;
504 defs_this_bb = def;
505 SET_BIT (btr_defset[regno - first_btr], insn_uid);
506 note_other_use_this_block (regno, info.users_this_bb);
507 }
508 /* Check for the blockage emitted by expand_nl_goto_receiver. */
509 else if (cfun->has_nonlocal_label
510 && GET_CODE (PATTERN (insn)) == UNSPEC_VOLATILE)
511 {
512 btr_user user;
513
514 /* Do the equivalent of calling note_other_use_this_block
515 for every target register. */
516 for (user = info.users_this_bb; user != NULL;
517 user = user->next)
518 if (user->use)
519 user->other_use_this_block = 1;
520 IOR_HARD_REG_SET (info.btrs_written_in_block, all_btrs);
521 IOR_HARD_REG_SET (info.btrs_live_in_block, all_btrs);
522 sbitmap_zero (info.bb_gen);
523 }
524 else
525 {
526 if (btr_referenced_p (PATTERN (insn), NULL))
527 {
528 btr_user user = new_btr_user (bb, insn_luid, insn);
529
530 use_array[insn_uid] = user;
531 if (user->use)
532 SET_HARD_REG_BIT (info.btrs_live_in_block,
533 REGNO (user->use));
534 else
535 {
536 int reg;
537 for (reg = first_btr; reg <= last_btr; reg++)
538 if (TEST_HARD_REG_BIT (all_btrs, reg)
539 && refers_to_regno_p (reg, reg + 1, user->insn,
540 NULL))
541 {
542 note_other_use_this_block (reg,
543 info.users_this_bb);
544 SET_HARD_REG_BIT (info.btrs_live_in_block, reg);
545 }
546 note_stores (PATTERN (insn), note_btr_set, &info);
547 }
548 user->next = info.users_this_bb;
549 info.users_this_bb = user;
550 }
551 if (CALL_P (insn))
552 {
553 HARD_REG_SET *clobbered = &call_used_reg_set;
554 HARD_REG_SET call_saved;
555 rtx pat = PATTERN (insn);
556 int i;
557
558 /* Check for sibcall. */
559 if (GET_CODE (pat) == PARALLEL)
560 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
561 if (GET_CODE (XVECEXP (pat, 0, i)) == RETURN)
562 {
563 COMPL_HARD_REG_SET (call_saved,
564 call_used_reg_set);
565 clobbered = &call_saved;
566 }
567
568 for (regno = first_btr; regno <= last_btr; regno++)
569 if (TEST_HARD_REG_BIT (*clobbered, regno))
570 note_btr_set (regno_reg_rtx[regno], NULL_RTX, &info);
571 }
572 }
573 }
574 }
575
576 COPY_HARD_REG_SET (btrs_live[i], info.btrs_live_in_block);
577 COPY_HARD_REG_SET (btrs_written[i], info.btrs_written_in_block);
578
579 REG_SET_TO_HARD_REG_SET (btrs_live_at_end[i], df_get_live_out (bb));
580 /* If this block ends in a jump insn, add any uses or even clobbers
581 of branch target registers that it might have. */
582 for (insn = BB_END (bb); insn != BB_HEAD (bb) && ! INSN_P (insn); )
583 insn = PREV_INSN (insn);
584 /* ??? for the fall-through edge, it would make sense to insert the
585 btr set on the edge, but that would require to split the block
586 early on so that we can distinguish between dominance from the fall
587 through edge - which can use the call-clobbered registers - from
588 dominance by the throw edge. */
589 if (can_throw_internal (insn))
590 {
591 HARD_REG_SET tmp;
592
593 COPY_HARD_REG_SET (tmp, call_used_reg_set);
594 AND_HARD_REG_SET (tmp, all_btrs);
595 IOR_HARD_REG_SET (btrs_live_at_end[i], tmp);
596 can_throw = 1;
597 }
598 if (can_throw || JUMP_P (insn))
599 {
600 int regno;
601
602 for (regno = first_btr; regno <= last_btr; regno++)
603 if (refers_to_regno_p (regno, regno+1, insn, NULL))
604 SET_HARD_REG_BIT (btrs_live_at_end[i], regno);
605 }
606
607 if (dump_file)
608 dump_btrs_live(i);
609 }
610 }
611
612 static void
613 compute_kill (sbitmap *bb_kill, sbitmap *btr_defset,
614 HARD_REG_SET *btrs_written)
615 {
616 int i;
617 int regno;
618
619 /* For each basic block, form the set BB_KILL - the set
620 of definitions that the block kills. */
621 sbitmap_vector_zero (bb_kill, n_basic_blocks);
622 for (i = NUM_FIXED_BLOCKS; i < n_basic_blocks; i++)
623 {
624 for (regno = first_btr; regno <= last_btr; regno++)
625 if (TEST_HARD_REG_BIT (all_btrs, regno)
626 && TEST_HARD_REG_BIT (btrs_written[i], regno))
627 sbitmap_a_or_b (bb_kill[i], bb_kill[i],
628 btr_defset[regno - first_btr]);
629 }
630 }
631
632 static void
633 compute_out (sbitmap *bb_out, sbitmap *bb_gen, sbitmap *bb_kill, int max_uid)
634 {
635 /* Perform iterative dataflow:
636 Initially, for all blocks, BB_OUT = BB_GEN.
637 For each block,
638 BB_IN = union over predecessors of BB_OUT(pred)
639 BB_OUT = (BB_IN - BB_KILL) + BB_GEN
640 Iterate until the bb_out sets stop growing. */
641 int i;
642 int changed;
643 sbitmap bb_in = sbitmap_alloc (max_uid);
644
645 for (i = NUM_FIXED_BLOCKS; i < n_basic_blocks; i++)
646 sbitmap_copy (bb_out[i], bb_gen[i]);
647
648 changed = 1;
649 while (changed)
650 {
651 changed = 0;
652 for (i = NUM_FIXED_BLOCKS; i < n_basic_blocks; i++)
653 {
654 sbitmap_union_of_preds (bb_in, bb_out, i);
655 changed |= sbitmap_union_of_diff_cg (bb_out[i], bb_gen[i],
656 bb_in, bb_kill[i]);
657 }
658 }
659 sbitmap_free (bb_in);
660 }
661
662 static void
663 link_btr_uses (btr_def *def_array, btr_user *use_array, sbitmap *bb_out,
664 sbitmap *btr_defset, int max_uid)
665 {
666 int i;
667 sbitmap reaching_defs = sbitmap_alloc (max_uid);
668
669 /* Link uses to the uses lists of all of their reaching defs.
670 Count up the number of reaching defs of each use. */
671 for (i = NUM_FIXED_BLOCKS; i < n_basic_blocks; i++)
672 {
673 basic_block bb = BASIC_BLOCK (i);
674 rtx insn;
675 rtx last;
676
677 sbitmap_union_of_preds (reaching_defs, bb_out, i);
678 for (insn = BB_HEAD (bb), last = NEXT_INSN (BB_END (bb));
679 insn != last;
680 insn = NEXT_INSN (insn))
681 {
682 if (INSN_P (insn))
683 {
684 int insn_uid = INSN_UID (insn);
685
686 btr_def def = def_array[insn_uid];
687 btr_user user = use_array[insn_uid];
688 if (def != NULL)
689 {
690 /* Remove all reaching defs of regno except
691 for this one. */
692 sbitmap_difference (reaching_defs, reaching_defs,
693 btr_defset[def->btr - first_btr]);
694 SET_BIT(reaching_defs, insn_uid);
695 }
696
697 if (user != NULL)
698 {
699 /* Find all the reaching defs for this use. */
700 sbitmap reaching_defs_of_reg = sbitmap_alloc(max_uid);
701 unsigned int uid = 0;
702 sbitmap_iterator sbi;
703
704 if (user->use)
705 sbitmap_a_and_b (
706 reaching_defs_of_reg,
707 reaching_defs,
708 btr_defset[REGNO (user->use) - first_btr]);
709 else
710 {
711 int reg;
712
713 sbitmap_zero (reaching_defs_of_reg);
714 for (reg = first_btr; reg <= last_btr; reg++)
715 if (TEST_HARD_REG_BIT (all_btrs, reg)
716 && refers_to_regno_p (reg, reg + 1, user->insn,
717 NULL))
718 sbitmap_a_or_b_and_c (reaching_defs_of_reg,
719 reaching_defs_of_reg,
720 reaching_defs,
721 btr_defset[reg - first_btr]);
722 }
723 EXECUTE_IF_SET_IN_SBITMAP (reaching_defs_of_reg, 0, uid, sbi)
724 {
725 btr_def def = def_array[uid];
726
727 /* We now know that def reaches user. */
728
729 if (dump_file)
730 fprintf (dump_file,
731 "Def in insn %d reaches use in insn %d\n",
732 uid, insn_uid);
733
734 user->n_reaching_defs++;
735 if (!user->use)
736 def->has_ambiguous_use = 1;
737 if (user->first_reaching_def != -1)
738 { /* There is more than one reaching def. This is
739 a rare case, so just give up on this def/use
740 web when it occurs. */
741 def->has_ambiguous_use = 1;
742 def_array[user->first_reaching_def]
743 ->has_ambiguous_use = 1;
744 if (dump_file)
745 fprintf (dump_file,
746 "(use %d has multiple reaching defs)\n",
747 insn_uid);
748 }
749 else
750 user->first_reaching_def = uid;
751 if (user->other_use_this_block)
752 def->other_btr_uses_after_use = 1;
753 user->next = def->uses;
754 def->uses = user;
755 }
756 sbitmap_free (reaching_defs_of_reg);
757 }
758
759 if (CALL_P (insn))
760 {
761 int regno;
762
763 for (regno = first_btr; regno <= last_btr; regno++)
764 if (TEST_HARD_REG_BIT (all_btrs, regno)
765 && TEST_HARD_REG_BIT (call_used_reg_set, regno))
766 sbitmap_difference (reaching_defs, reaching_defs,
767 btr_defset[regno - first_btr]);
768 }
769 }
770 }
771 }
772 sbitmap_free (reaching_defs);
773 }
774
775 static void
776 build_btr_def_use_webs (fibheap_t all_btr_defs)
777 {
778 const int max_uid = get_max_uid ();
779 btr_def *def_array = XCNEWVEC (btr_def, max_uid);
780 btr_user *use_array = XCNEWVEC (btr_user, max_uid);
781 sbitmap *btr_defset = sbitmap_vector_alloc (
782 (last_btr - first_btr) + 1, max_uid);
783 sbitmap *bb_gen = sbitmap_vector_alloc (n_basic_blocks, max_uid);
784 HARD_REG_SET *btrs_written = XCNEWVEC (HARD_REG_SET, n_basic_blocks);
785 sbitmap *bb_kill;
786 sbitmap *bb_out;
787
788 sbitmap_vector_zero (btr_defset, (last_btr - first_btr) + 1);
789
790 compute_defs_uses_and_gen (all_btr_defs, def_array, use_array, btr_defset,
791 bb_gen, btrs_written);
792
793 bb_kill = sbitmap_vector_alloc (n_basic_blocks, max_uid);
794 compute_kill (bb_kill, btr_defset, btrs_written);
795 free (btrs_written);
796
797 bb_out = sbitmap_vector_alloc (n_basic_blocks, max_uid);
798 compute_out (bb_out, bb_gen, bb_kill, max_uid);
799
800 sbitmap_vector_free (bb_gen);
801 sbitmap_vector_free (bb_kill);
802
803 link_btr_uses (def_array, use_array, bb_out, btr_defset, max_uid);
804
805 sbitmap_vector_free (bb_out);
806 sbitmap_vector_free (btr_defset);
807 free (use_array);
808 free (def_array);
809 }
810
811 /* Return true if basic block BB contains the start or end of the
812 live range of the definition DEF, AND there are other live
813 ranges of the same target register that include BB. */
814 static int
815 block_at_edge_of_live_range_p (int bb, btr_def def)
816 {
817 if (def->other_btr_uses_before_def && BASIC_BLOCK (bb) == def->bb)
818 return 1;
819 else if (def->other_btr_uses_after_use)
820 {
821 btr_user user;
822 for (user = def->uses; user != NULL; user = user->next)
823 if (BASIC_BLOCK (bb) == user->bb)
824 return 1;
825 }
826 return 0;
827 }
828
829 /* We are removing the def/use web DEF. The target register
830 used in this web is therefore no longer live in the live range
831 of this web, so remove it from the live set of all basic blocks
832 in the live range of the web.
833 Blocks at the boundary of the live range may contain other live
834 ranges for the same target register, so we have to be careful
835 to remove the target register from the live set of these blocks
836 only if they do not contain other live ranges for the same register. */
837 static void
838 clear_btr_from_live_range (btr_def def)
839 {
840 unsigned bb;
841 bitmap_iterator bi;
842
843 EXECUTE_IF_SET_IN_BITMAP (def->live_range, 0, bb, bi)
844 {
845 if ((!def->other_btr_uses_before_def
846 && !def->other_btr_uses_after_use)
847 || !block_at_edge_of_live_range_p (bb, def))
848 {
849 CLEAR_HARD_REG_BIT (btrs_live[bb], def->btr);
850 CLEAR_HARD_REG_BIT (btrs_live_at_end[bb], def->btr);
851 if (dump_file)
852 dump_btrs_live (bb);
853 }
854 }
855 if (def->own_end)
856 CLEAR_HARD_REG_BIT (btrs_live_at_end[def->bb->index], def->btr);
857 }
858
859
860 /* We are adding the def/use web DEF. Add the target register used
861 in this web to the live set of all of the basic blocks that contain
862 the live range of the web.
863 If OWN_END is set, also show that the register is live from our
864 definitions at the end of the basic block where it is defined. */
865 static void
866 add_btr_to_live_range (btr_def def, int own_end)
867 {
868 unsigned bb;
869 bitmap_iterator bi;
870
871 EXECUTE_IF_SET_IN_BITMAP (def->live_range, 0, bb, bi)
872 {
873 SET_HARD_REG_BIT (btrs_live[bb], def->btr);
874 SET_HARD_REG_BIT (btrs_live_at_end[bb], def->btr);
875 if (dump_file)
876 dump_btrs_live (bb);
877 }
878 if (own_end)
879 {
880 SET_HARD_REG_BIT (btrs_live_at_end[def->bb->index], def->btr);
881 def->own_end = 1;
882 }
883 }
884
885 /* Update a live range to contain the basic block NEW_BLOCK, and all
886 blocks on paths between the existing live range and NEW_BLOCK.
887 HEAD is a block contained in the existing live range that dominates
888 all other blocks in the existing live range.
889 Also add to the set BTRS_LIVE_IN_RANGE all target registers that
890 are live in the blocks that we add to the live range.
891 If FULL_RANGE is set, include the full live range of NEW_BB;
892 otherwise, if NEW_BB dominates HEAD_BB, only add registers that
893 are life at the end of NEW_BB for NEW_BB itself.
894 It is a precondition that either NEW_BLOCK dominates HEAD,or
895 HEAD dom NEW_BLOCK. This is used to speed up the
896 implementation of this function. */
897 static void
898 augment_live_range (bitmap live_range, HARD_REG_SET *btrs_live_in_range,
899 basic_block head_bb, basic_block new_bb, int full_range)
900 {
901 basic_block *worklist, *tos;
902
903 tos = worklist = XNEWVEC (basic_block, n_basic_blocks + 1);
904
905 if (dominated_by_p (CDI_DOMINATORS, new_bb, head_bb))
906 {
907 if (new_bb == head_bb)
908 {
909 if (full_range)
910 IOR_HARD_REG_SET (*btrs_live_in_range, btrs_live[new_bb->index]);
911 free (tos);
912 return;
913 }
914 *tos++ = new_bb;
915 }
916 else
917 {
918 edge e;
919 edge_iterator ei;
920 int new_block = new_bb->index;
921
922 gcc_assert (dominated_by_p (CDI_DOMINATORS, head_bb, new_bb));
923
924 IOR_HARD_REG_SET (*btrs_live_in_range, btrs_live[head_bb->index]);
925 bitmap_set_bit (live_range, new_block);
926 /* A previous btr migration could have caused a register to be
927 live just at the end of new_block which we need in full, so
928 use trs_live_at_end even if full_range is set. */
929 IOR_HARD_REG_SET (*btrs_live_in_range, btrs_live_at_end[new_block]);
930 if (full_range)
931 IOR_HARD_REG_SET (*btrs_live_in_range, btrs_live[new_block]);
932 if (dump_file)
933 {
934 fprintf (dump_file,
935 "Adding end of block %d and rest of %d to live range\n",
936 new_block, head_bb->index);
937 fprintf (dump_file,"Now live btrs are ");
938 dump_hard_reg_set (*btrs_live_in_range);
939 fprintf (dump_file, "\n");
940 }
941 FOR_EACH_EDGE (e, ei, head_bb->preds)
942 *tos++ = e->src;
943 }
944
945 while (tos != worklist)
946 {
947 basic_block bb = *--tos;
948 if (!bitmap_bit_p (live_range, bb->index))
949 {
950 edge e;
951 edge_iterator ei;
952
953 bitmap_set_bit (live_range, bb->index);
954 IOR_HARD_REG_SET (*btrs_live_in_range,
955 btrs_live[bb->index]);
956 /* A previous btr migration could have caused a register to be
957 live just at the end of a block which we need in full. */
958 IOR_HARD_REG_SET (*btrs_live_in_range,
959 btrs_live_at_end[bb->index]);
960 if (dump_file)
961 {
962 fprintf (dump_file,
963 "Adding block %d to live range\n", bb->index);
964 fprintf (dump_file,"Now live btrs are ");
965 dump_hard_reg_set (*btrs_live_in_range);
966 fprintf (dump_file, "\n");
967 }
968
969 FOR_EACH_EDGE (e, ei, bb->preds)
970 {
971 basic_block pred = e->src;
972 if (!bitmap_bit_p (live_range, pred->index))
973 *tos++ = pred;
974 }
975 }
976 }
977
978 free (worklist);
979 }
980
981 /* Return the most desirable target register that is not in
982 the set USED_BTRS. */
983 static int
984 choose_btr (HARD_REG_SET used_btrs)
985 {
986 int i;
987
988 if (!hard_reg_set_subset_p (all_btrs, used_btrs))
989 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
990 {
991 #ifdef REG_ALLOC_ORDER
992 int regno = reg_alloc_order[i];
993 #else
994 int regno = i;
995 #endif
996 if (TEST_HARD_REG_BIT (all_btrs, regno)
997 && !TEST_HARD_REG_BIT (used_btrs, regno))
998 return regno;
999 }
1000 return -1;
1001 }
1002
1003 /* Calculate the set of basic blocks that contain the live range of
1004 the def/use web DEF.
1005 Also calculate the set of target registers that are live at time
1006 in this live range, but ignore the live range represented by DEF
1007 when calculating this set. */
1008 static void
1009 btr_def_live_range (btr_def def, HARD_REG_SET *btrs_live_in_range)
1010 {
1011 if (!def->live_range)
1012 {
1013 btr_user user;
1014
1015 def->live_range = BITMAP_ALLOC (NULL);
1016
1017 bitmap_set_bit (def->live_range, def->bb->index);
1018 COPY_HARD_REG_SET (*btrs_live_in_range,
1019 (flag_btr_bb_exclusive
1020 ? btrs_live : btrs_live_at_end)[def->bb->index]);
1021
1022 for (user = def->uses; user != NULL; user = user->next)
1023 augment_live_range (def->live_range, btrs_live_in_range,
1024 def->bb, user->bb,
1025 (flag_btr_bb_exclusive
1026 || user->insn != BB_END (def->bb)
1027 || !JUMP_P (user->insn)));
1028 }
1029 else
1030 {
1031 /* def->live_range is accurate, but we need to recompute
1032 the set of target registers live over it, because migration
1033 of other PT instructions may have affected it.
1034 */
1035 unsigned bb;
1036 unsigned def_bb = flag_btr_bb_exclusive ? -1 : def->bb->index;
1037 bitmap_iterator bi;
1038
1039 CLEAR_HARD_REG_SET (*btrs_live_in_range);
1040 EXECUTE_IF_SET_IN_BITMAP (def->live_range, 0, bb, bi)
1041 {
1042 IOR_HARD_REG_SET (*btrs_live_in_range,
1043 (def_bb == bb
1044 ? btrs_live_at_end : btrs_live) [bb]);
1045 }
1046 }
1047 if (!def->other_btr_uses_before_def &&
1048 !def->other_btr_uses_after_use)
1049 CLEAR_HARD_REG_BIT (*btrs_live_in_range, def->btr);
1050 }
1051
1052 /* Merge into the def/use web DEF any other def/use webs in the same
1053 group that are dominated by DEF, provided that there is a target
1054 register available to allocate to the merged web. */
1055 static void
1056 combine_btr_defs (btr_def def, HARD_REG_SET *btrs_live_in_range)
1057 {
1058 btr_def other_def;
1059
1060 for (other_def = def->group->members;
1061 other_def != NULL;
1062 other_def = other_def->next_this_group)
1063 {
1064 if (other_def != def
1065 && other_def->uses != NULL
1066 && ! other_def->has_ambiguous_use
1067 && dominated_by_p (CDI_DOMINATORS, other_def->bb, def->bb))
1068 {
1069 /* def->bb dominates the other def, so def and other_def could
1070 be combined. */
1071 /* Merge their live ranges, and get the set of
1072 target registers live over the merged range. */
1073 int btr;
1074 HARD_REG_SET combined_btrs_live;
1075 bitmap combined_live_range = BITMAP_ALLOC (NULL);
1076 btr_user user;
1077
1078 if (other_def->live_range == NULL)
1079 {
1080 HARD_REG_SET dummy_btrs_live_in_range;
1081 btr_def_live_range (other_def, &dummy_btrs_live_in_range);
1082 }
1083 COPY_HARD_REG_SET (combined_btrs_live, *btrs_live_in_range);
1084 bitmap_copy (combined_live_range, def->live_range);
1085
1086 for (user = other_def->uses; user != NULL; user = user->next)
1087 augment_live_range (combined_live_range, &combined_btrs_live,
1088 def->bb, user->bb,
1089 (flag_btr_bb_exclusive
1090 || user->insn != BB_END (def->bb)
1091 || !JUMP_P (user->insn)));
1092
1093 btr = choose_btr (combined_btrs_live);
1094 if (btr != -1)
1095 {
1096 /* We can combine them. */
1097 if (dump_file)
1098 fprintf (dump_file,
1099 "Combining def in insn %d with def in insn %d\n",
1100 INSN_UID (other_def->insn), INSN_UID (def->insn));
1101
1102 def->btr = btr;
1103 user = other_def->uses;
1104 while (user != NULL)
1105 {
1106 btr_user next = user->next;
1107
1108 user->next = def->uses;
1109 def->uses = user;
1110 user = next;
1111 }
1112 /* Combining def/use webs can make target registers live
1113 after uses where they previously were not. This means
1114 some REG_DEAD notes may no longer be correct. We could
1115 be more precise about this if we looked at the combined
1116 live range, but here I just delete any REG_DEAD notes
1117 in case they are no longer correct. */
1118 for (user = def->uses; user != NULL; user = user->next)
1119 remove_note (user->insn,
1120 find_regno_note (user->insn, REG_DEAD,
1121 REGNO (user->use)));
1122 clear_btr_from_live_range (other_def);
1123 other_def->uses = NULL;
1124 bitmap_copy (def->live_range, combined_live_range);
1125 if (other_def->btr == btr && other_def->other_btr_uses_after_use)
1126 def->other_btr_uses_after_use = 1;
1127 COPY_HARD_REG_SET (*btrs_live_in_range, combined_btrs_live);
1128
1129 /* Delete the old target register initialization. */
1130 delete_insn (other_def->insn);
1131
1132 }
1133 BITMAP_FREE (combined_live_range);
1134 }
1135 }
1136 }
1137
1138 /* Move the definition DEF from its current position to basic
1139 block NEW_DEF_BB, and modify it to use branch target register BTR.
1140 Delete the old defining insn, and insert a new one in NEW_DEF_BB.
1141 Update all reaching uses of DEF in the RTL to use BTR.
1142 If this new position means that other defs in the
1143 same group can be combined with DEF then combine them. */
1144 static void
1145 move_btr_def (basic_block new_def_bb, int btr, btr_def def, bitmap live_range,
1146 HARD_REG_SET *btrs_live_in_range)
1147 {
1148 /* We can move the instruction.
1149 Set a target register in block NEW_DEF_BB to the value
1150 needed for this target register definition.
1151 Replace all uses of the old target register definition by
1152 uses of the new definition. Delete the old definition. */
1153 basic_block b = new_def_bb;
1154 rtx insp = BB_HEAD (b);
1155 rtx old_insn = def->insn;
1156 rtx src;
1157 rtx btr_rtx;
1158 rtx new_insn;
1159 enum machine_mode btr_mode;
1160 btr_user user;
1161 rtx set;
1162
1163 if (dump_file)
1164 fprintf(dump_file, "migrating to basic block %d, using reg %d\n",
1165 new_def_bb->index, btr);
1166
1167 clear_btr_from_live_range (def);
1168 def->btr = btr;
1169 def->bb = new_def_bb;
1170 def->luid = 0;
1171 def->cost = basic_block_freq (new_def_bb);
1172 bitmap_copy (def->live_range, live_range);
1173 combine_btr_defs (def, btrs_live_in_range);
1174 btr = def->btr;
1175 def->other_btr_uses_before_def
1176 = TEST_HARD_REG_BIT (btrs_live[b->index], btr) ? 1 : 0;
1177 add_btr_to_live_range (def, 1);
1178 if (LABEL_P (insp))
1179 insp = NEXT_INSN (insp);
1180 /* N.B.: insp is expected to be NOTE_INSN_BASIC_BLOCK now. Some
1181 optimizations can result in insp being both first and last insn of
1182 its basic block. */
1183 /* ?? some assertions to check that insp is sensible? */
1184
1185 if (def->other_btr_uses_before_def)
1186 {
1187 insp = BB_END (b);
1188 for (insp = BB_END (b); ! INSN_P (insp); insp = PREV_INSN (insp))
1189 gcc_assert (insp != BB_HEAD (b));
1190
1191 if (JUMP_P (insp) || can_throw_internal (insp))
1192 insp = PREV_INSN (insp);
1193 }
1194
1195 set = single_set (old_insn);
1196 src = SET_SRC (set);
1197 btr_mode = GET_MODE (SET_DEST (set));
1198 btr_rtx = gen_rtx_REG (btr_mode, btr);
1199
1200 new_insn = gen_move_insn (btr_rtx, src);
1201
1202 /* Insert target register initialization at head of basic block. */
1203 def->insn = emit_insn_after (new_insn, insp);
1204
1205 df_set_regs_ever_live (btr, true);
1206
1207 if (dump_file)
1208 fprintf (dump_file, "New pt is insn %d, inserted after insn %d\n",
1209 INSN_UID (def->insn), INSN_UID (insp));
1210
1211 /* Delete the old target register initialization. */
1212 delete_insn (old_insn);
1213
1214 /* Replace each use of the old target register by a use of the new target
1215 register. */
1216 for (user = def->uses; user != NULL; user = user->next)
1217 {
1218 /* Some extra work here to ensure consistent modes, because
1219 it seems that a target register REG rtx can be given a different
1220 mode depending on the context (surely that should not be
1221 the case?). */
1222 rtx replacement_rtx;
1223 if (GET_MODE (user->use) == GET_MODE (btr_rtx)
1224 || GET_MODE (user->use) == VOIDmode)
1225 replacement_rtx = btr_rtx;
1226 else
1227 replacement_rtx = gen_rtx_REG (GET_MODE (user->use), btr);
1228 validate_replace_rtx (user->use, replacement_rtx, user->insn);
1229 user->use = replacement_rtx;
1230 }
1231 }
1232
1233 /* We anticipate intra-block scheduling to be done. See if INSN could move
1234 up within BB by N_INSNS. */
1235 static int
1236 can_move_up (const_basic_block bb, const_rtx insn, int n_insns)
1237 {
1238 while (insn != BB_HEAD (bb) && n_insns > 0)
1239 {
1240 insn = PREV_INSN (insn);
1241 /* ??? What if we have an anti-dependency that actually prevents the
1242 scheduler from doing the move? We'd like to re-allocate the register,
1243 but not necessarily put the load into another basic block. */
1244 if (INSN_P (insn))
1245 n_insns--;
1246 }
1247 return n_insns <= 0;
1248 }
1249
1250 /* Attempt to migrate the target register definition DEF to an
1251 earlier point in the flowgraph.
1252
1253 It is a precondition of this function that DEF is migratable:
1254 i.e. it has a constant source, and all uses are unambiguous.
1255
1256 Only migrations that reduce the cost of DEF will be made.
1257 MIN_COST is the lower bound on the cost of the DEF after migration.
1258 If we migrate DEF so that its cost falls below MIN_COST,
1259 then we do not attempt to migrate further. The idea is that
1260 we migrate definitions in a priority order based on their cost,
1261 when the cost of this definition falls below MIN_COST, then
1262 there is another definition with cost == MIN_COST which now
1263 has a higher priority than this definition.
1264
1265 Return nonzero if there may be benefit from attempting to
1266 migrate this DEF further (i.e. we have reduced the cost below
1267 MIN_COST, but we may be able to reduce it further).
1268 Return zero if no further migration is possible. */
1269 static int
1270 migrate_btr_def (btr_def def, int min_cost)
1271 {
1272 bitmap live_range;
1273 HARD_REG_SET btrs_live_in_range;
1274 int btr_used_near_def = 0;
1275 int def_basic_block_freq;
1276 basic_block attempt;
1277 int give_up = 0;
1278 int def_moved = 0;
1279 btr_user user;
1280 int def_latency;
1281
1282 if (dump_file)
1283 fprintf (dump_file,
1284 "Attempting to migrate pt from insn %d (cost = %d, min_cost = %d) ... ",
1285 INSN_UID (def->insn), def->cost, min_cost);
1286
1287 if (!def->group || def->has_ambiguous_use)
1288 /* These defs are not migratable. */
1289 {
1290 if (dump_file)
1291 fprintf (dump_file, "it's not migratable\n");
1292 return 0;
1293 }
1294
1295 if (!def->uses)
1296 /* We have combined this def with another in the same group, so
1297 no need to consider it further.
1298 */
1299 {
1300 if (dump_file)
1301 fprintf (dump_file, "it's already combined with another pt\n");
1302 return 0;
1303 }
1304
1305 btr_def_live_range (def, &btrs_live_in_range);
1306 live_range = BITMAP_ALLOC (NULL);
1307 bitmap_copy (live_range, def->live_range);
1308
1309 #ifdef INSN_SCHEDULING
1310 def_latency = insn_default_latency (def->insn) * issue_rate;
1311 #else
1312 def_latency = issue_rate;
1313 #endif
1314
1315 for (user = def->uses; user != NULL; user = user->next)
1316 {
1317 if (user->bb == def->bb
1318 && user->luid > def->luid
1319 && (def->luid + def_latency) > user->luid
1320 && ! can_move_up (def->bb, def->insn,
1321 (def->luid + def_latency) - user->luid))
1322 {
1323 btr_used_near_def = 1;
1324 break;
1325 }
1326 }
1327
1328 def_basic_block_freq = basic_block_freq (def->bb);
1329
1330 for (attempt = get_immediate_dominator (CDI_DOMINATORS, def->bb);
1331 !give_up && attempt && attempt != ENTRY_BLOCK_PTR && def->cost >= min_cost;
1332 attempt = get_immediate_dominator (CDI_DOMINATORS, attempt))
1333 {
1334 /* Try to move the instruction that sets the target register into
1335 basic block ATTEMPT. */
1336 int try_freq = basic_block_freq (attempt);
1337 edge_iterator ei;
1338 edge e;
1339
1340 /* If ATTEMPT has abnormal edges, skip it. */
1341 FOR_EACH_EDGE (e, ei, attempt->succs)
1342 if (e->flags & EDGE_COMPLEX)
1343 break;
1344 if (e)
1345 continue;
1346
1347 if (dump_file)
1348 fprintf (dump_file, "trying block %d ...", attempt->index);
1349
1350 if (try_freq < def_basic_block_freq
1351 || (try_freq == def_basic_block_freq && btr_used_near_def))
1352 {
1353 int btr;
1354 augment_live_range (live_range, &btrs_live_in_range, def->bb, attempt,
1355 flag_btr_bb_exclusive);
1356 if (dump_file)
1357 {
1358 fprintf (dump_file, "Now btrs live in range are: ");
1359 dump_hard_reg_set (btrs_live_in_range);
1360 fprintf (dump_file, "\n");
1361 }
1362 btr = choose_btr (btrs_live_in_range);
1363 if (btr != -1)
1364 {
1365 move_btr_def (attempt, btr, def, live_range, &btrs_live_in_range);
1366 bitmap_copy(live_range, def->live_range);
1367 btr_used_near_def = 0;
1368 def_moved = 1;
1369 def_basic_block_freq = basic_block_freq (def->bb);
1370 }
1371 else
1372 {
1373 /* There are no free target registers available to move
1374 this far forward, so give up */
1375 give_up = 1;
1376 if (dump_file)
1377 fprintf (dump_file,
1378 "giving up because there are no free target registers\n");
1379 }
1380
1381 }
1382 }
1383 if (!def_moved)
1384 {
1385 give_up = 1;
1386 if (dump_file)
1387 fprintf (dump_file, "failed to move\n");
1388 }
1389 BITMAP_FREE (live_range);
1390 return !give_up;
1391 }
1392
1393 /* Attempt to move instructions that set target registers earlier
1394 in the flowgraph, away from their corresponding uses. */
1395 static void
1396 migrate_btr_defs (enum reg_class btr_class, int allow_callee_save)
1397 {
1398 fibheap_t all_btr_defs = fibheap_new ();
1399 int reg;
1400
1401 gcc_obstack_init (&migrate_btrl_obstack);
1402 if (dump_file)
1403 {
1404 int i;
1405
1406 for (i = NUM_FIXED_BLOCKS; i < n_basic_blocks; i++)
1407 {
1408 basic_block bb = BASIC_BLOCK (i);
1409 fprintf(dump_file,
1410 "Basic block %d: count = " HOST_WIDEST_INT_PRINT_DEC
1411 " loop-depth = %d idom = %d\n",
1412 i, (HOST_WIDEST_INT) bb->count, bb->loop_depth,
1413 get_immediate_dominator (CDI_DOMINATORS, bb)->index);
1414 }
1415 }
1416
1417 CLEAR_HARD_REG_SET (all_btrs);
1418 for (first_btr = -1, reg = 0; reg < FIRST_PSEUDO_REGISTER; reg++)
1419 if (TEST_HARD_REG_BIT (reg_class_contents[(int) btr_class], reg)
1420 && (allow_callee_save || call_used_regs[reg]
1421 || df_regs_ever_live_p (reg)))
1422 {
1423 SET_HARD_REG_BIT (all_btrs, reg);
1424 last_btr = reg;
1425 if (first_btr < 0)
1426 first_btr = reg;
1427 }
1428
1429 btrs_live = XCNEWVEC (HARD_REG_SET, n_basic_blocks);
1430 btrs_live_at_end = XCNEWVEC (HARD_REG_SET, n_basic_blocks);
1431
1432 build_btr_def_use_webs (all_btr_defs);
1433
1434 while (!fibheap_empty (all_btr_defs))
1435 {
1436 btr_def def = (btr_def) fibheap_extract_min (all_btr_defs);
1437 int min_cost = -fibheap_min_key (all_btr_defs);
1438 if (migrate_btr_def (def, min_cost))
1439 {
1440 fibheap_insert (all_btr_defs, -def->cost, (void *) def);
1441 if (dump_file)
1442 {
1443 fprintf (dump_file,
1444 "Putting insn %d back on queue with priority %d\n",
1445 INSN_UID (def->insn), def->cost);
1446 }
1447 }
1448 else
1449 BITMAP_FREE (def->live_range);
1450 }
1451
1452 free (btrs_live);
1453 free (btrs_live_at_end);
1454 obstack_free (&migrate_btrl_obstack, NULL);
1455 fibheap_delete (all_btr_defs);
1456 }
1457
1458 static void
1459 branch_target_load_optimize (bool after_prologue_epilogue_gen)
1460 {
1461 enum reg_class klass = targetm.branch_target_register_class ();
1462 if (klass != NO_REGS)
1463 {
1464 /* Initialize issue_rate. */
1465 if (targetm.sched.issue_rate)
1466 issue_rate = targetm.sched.issue_rate ();
1467 else
1468 issue_rate = 1;
1469
1470 if (!after_prologue_epilogue_gen)
1471 {
1472 /* Build the CFG for migrate_btr_defs. */
1473 #if 1
1474 /* This may or may not be needed, depending on where we
1475 run this phase. */
1476 cleanup_cfg (optimize ? CLEANUP_EXPENSIVE : 0);
1477 #endif
1478 }
1479 df_analyze ();
1480
1481
1482 /* Dominator info is also needed for migrate_btr_def. */
1483 calculate_dominance_info (CDI_DOMINATORS);
1484 migrate_btr_defs (klass,
1485 (targetm.branch_target_register_callee_saved
1486 (after_prologue_epilogue_gen)));
1487
1488 free_dominance_info (CDI_DOMINATORS);
1489 }
1490 }
1491
1492 static bool
1493 gate_handle_branch_target_load_optimize1 (void)
1494 {
1495 return flag_branch_target_load_optimize;
1496 }
1497
1498
1499 static unsigned int
1500 rest_of_handle_branch_target_load_optimize1 (void)
1501 {
1502 branch_target_load_optimize (epilogue_completed);
1503 return 0;
1504 }
1505
1506 struct rtl_opt_pass pass_branch_target_load_optimize1 =
1507 {
1508 {
1509 RTL_PASS,
1510 "btl1", /* name */
1511 gate_handle_branch_target_load_optimize1, /* gate */
1512 rest_of_handle_branch_target_load_optimize1, /* execute */
1513 NULL, /* sub */
1514 NULL, /* next */
1515 0, /* static_pass_number */
1516 0, /* tv_id */
1517 0, /* properties_required */
1518 0, /* properties_provided */
1519 0, /* properties_destroyed */
1520 0, /* todo_flags_start */
1521 TODO_dump_func |
1522 TODO_verify_rtl_sharing |
1523 TODO_ggc_collect, /* todo_flags_finish */
1524 }
1525 };
1526
1527 static bool
1528 gate_handle_branch_target_load_optimize2 (void)
1529 {
1530 return (optimize > 0 && flag_branch_target_load_optimize2);
1531 }
1532
1533
1534 static unsigned int
1535 rest_of_handle_branch_target_load_optimize2 (void)
1536 {
1537 static int warned = 0;
1538
1539 /* Leave this a warning for now so that it is possible to experiment
1540 with running this pass twice. In 3.6, we should either make this
1541 an error, or use separate dump files. */
1542 if (flag_branch_target_load_optimize
1543 && flag_branch_target_load_optimize2
1544 && !warned)
1545 {
1546 warning (0, "branch target register load optimization is not intended "
1547 "to be run twice");
1548
1549 warned = 1;
1550 }
1551
1552 branch_target_load_optimize (epilogue_completed);
1553 return 0;
1554 }
1555
1556 struct rtl_opt_pass pass_branch_target_load_optimize2 =
1557 {
1558 {
1559 RTL_PASS,
1560 "btl2", /* name */
1561 gate_handle_branch_target_load_optimize2, /* gate */
1562 rest_of_handle_branch_target_load_optimize2, /* execute */
1563 NULL, /* sub */
1564 NULL, /* next */
1565 0, /* static_pass_number */
1566 0, /* tv_id */
1567 0, /* properties_required */
1568 0, /* properties_provided */
1569 0, /* properties_destroyed */
1570 0, /* todo_flags_start */
1571 TODO_dump_func |
1572 TODO_ggc_collect, /* todo_flags_finish */
1573 }
1574 };
1575