comparison gcc/cfganal.c @ 0:a06113de4d67

first commit
author kent <kent@cr.ie.u-ryukyu.ac.jp>
date Fri, 17 Jul 2009 14:47:48 +0900
parents
children 77e2b8dfacca
comparison
equal deleted inserted replaced
-1:000000000000 0:a06113de4d67
1 /* Control flow graph analysis code for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2003, 2004, 2005, 2006, 2007, 2008
4 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 /* This file contains various simple utilities to analyze the CFG. */
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "rtl.h"
28 #include "obstack.h"
29 #include "hard-reg-set.h"
30 #include "basic-block.h"
31 #include "insn-config.h"
32 #include "recog.h"
33 #include "toplev.h"
34 #include "tm_p.h"
35 #include "vec.h"
36 #include "vecprim.h"
37 #include "timevar.h"
38
39 /* Store the data structures necessary for depth-first search. */
40 struct depth_first_search_dsS {
41 /* stack for backtracking during the algorithm */
42 basic_block *stack;
43
44 /* number of edges in the stack. That is, positions 0, ..., sp-1
45 have edges. */
46 unsigned int sp;
47
48 /* record of basic blocks already seen by depth-first search */
49 sbitmap visited_blocks;
50 };
51 typedef struct depth_first_search_dsS *depth_first_search_ds;
52
53 static void flow_dfs_compute_reverse_init (depth_first_search_ds);
54 static void flow_dfs_compute_reverse_add_bb (depth_first_search_ds,
55 basic_block);
56 static basic_block flow_dfs_compute_reverse_execute (depth_first_search_ds,
57 basic_block);
58 static void flow_dfs_compute_reverse_finish (depth_first_search_ds);
59 static bool flow_active_insn_p (const_rtx);
60
61 /* Like active_insn_p, except keep the return value clobber around
62 even after reload. */
63
64 static bool
65 flow_active_insn_p (const_rtx insn)
66 {
67 if (active_insn_p (insn))
68 return true;
69
70 /* A clobber of the function return value exists for buggy
71 programs that fail to return a value. Its effect is to
72 keep the return value from being live across the entire
73 function. If we allow it to be skipped, we introduce the
74 possibility for register lifetime confusion. */
75 if (GET_CODE (PATTERN (insn)) == CLOBBER
76 && REG_P (XEXP (PATTERN (insn), 0))
77 && REG_FUNCTION_VALUE_P (XEXP (PATTERN (insn), 0)))
78 return true;
79
80 return false;
81 }
82
83 /* Return true if the block has no effect and only forwards control flow to
84 its single destination. */
85
86 bool
87 forwarder_block_p (const_basic_block bb)
88 {
89 rtx insn;
90
91 if (bb == EXIT_BLOCK_PTR || bb == ENTRY_BLOCK_PTR
92 || !single_succ_p (bb))
93 return false;
94
95 for (insn = BB_HEAD (bb); insn != BB_END (bb); insn = NEXT_INSN (insn))
96 if (INSN_P (insn) && flow_active_insn_p (insn))
97 return false;
98
99 return (!INSN_P (insn)
100 || (JUMP_P (insn) && simplejump_p (insn))
101 || !flow_active_insn_p (insn));
102 }
103
104 /* Return nonzero if we can reach target from src by falling through. */
105
106 bool
107 can_fallthru (basic_block src, basic_block target)
108 {
109 rtx insn = BB_END (src);
110 rtx insn2;
111 edge e;
112 edge_iterator ei;
113
114 if (target == EXIT_BLOCK_PTR)
115 return true;
116 if (src->next_bb != target)
117 return 0;
118 FOR_EACH_EDGE (e, ei, src->succs)
119 if (e->dest == EXIT_BLOCK_PTR
120 && e->flags & EDGE_FALLTHRU)
121 return 0;
122
123 insn2 = BB_HEAD (target);
124 if (insn2 && !active_insn_p (insn2))
125 insn2 = next_active_insn (insn2);
126
127 /* ??? Later we may add code to move jump tables offline. */
128 return next_active_insn (insn) == insn2;
129 }
130
131 /* Return nonzero if we could reach target from src by falling through,
132 if the target was made adjacent. If we already have a fall-through
133 edge to the exit block, we can't do that. */
134 bool
135 could_fall_through (basic_block src, basic_block target)
136 {
137 edge e;
138 edge_iterator ei;
139
140 if (target == EXIT_BLOCK_PTR)
141 return true;
142 FOR_EACH_EDGE (e, ei, src->succs)
143 if (e->dest == EXIT_BLOCK_PTR
144 && e->flags & EDGE_FALLTHRU)
145 return 0;
146 return true;
147 }
148
149 /* Mark the back edges in DFS traversal.
150 Return nonzero if a loop (natural or otherwise) is present.
151 Inspired by Depth_First_Search_PP described in:
152
153 Advanced Compiler Design and Implementation
154 Steven Muchnick
155 Morgan Kaufmann, 1997
156
157 and heavily borrowed from pre_and_rev_post_order_compute. */
158
159 bool
160 mark_dfs_back_edges (void)
161 {
162 edge_iterator *stack;
163 int *pre;
164 int *post;
165 int sp;
166 int prenum = 1;
167 int postnum = 1;
168 sbitmap visited;
169 bool found = false;
170
171 /* Allocate the preorder and postorder number arrays. */
172 pre = XCNEWVEC (int, last_basic_block);
173 post = XCNEWVEC (int, last_basic_block);
174
175 /* Allocate stack for back-tracking up CFG. */
176 stack = XNEWVEC (edge_iterator, n_basic_blocks + 1);
177 sp = 0;
178
179 /* Allocate bitmap to track nodes that have been visited. */
180 visited = sbitmap_alloc (last_basic_block);
181
182 /* None of the nodes in the CFG have been visited yet. */
183 sbitmap_zero (visited);
184
185 /* Push the first edge on to the stack. */
186 stack[sp++] = ei_start (ENTRY_BLOCK_PTR->succs);
187
188 while (sp)
189 {
190 edge_iterator ei;
191 basic_block src;
192 basic_block dest;
193
194 /* Look at the edge on the top of the stack. */
195 ei = stack[sp - 1];
196 src = ei_edge (ei)->src;
197 dest = ei_edge (ei)->dest;
198 ei_edge (ei)->flags &= ~EDGE_DFS_BACK;
199
200 /* Check if the edge destination has been visited yet. */
201 if (dest != EXIT_BLOCK_PTR && ! TEST_BIT (visited, dest->index))
202 {
203 /* Mark that we have visited the destination. */
204 SET_BIT (visited, dest->index);
205
206 pre[dest->index] = prenum++;
207 if (EDGE_COUNT (dest->succs) > 0)
208 {
209 /* Since the DEST node has been visited for the first
210 time, check its successors. */
211 stack[sp++] = ei_start (dest->succs);
212 }
213 else
214 post[dest->index] = postnum++;
215 }
216 else
217 {
218 if (dest != EXIT_BLOCK_PTR && src != ENTRY_BLOCK_PTR
219 && pre[src->index] >= pre[dest->index]
220 && post[dest->index] == 0)
221 ei_edge (ei)->flags |= EDGE_DFS_BACK, found = true;
222
223 if (ei_one_before_end_p (ei) && src != ENTRY_BLOCK_PTR)
224 post[src->index] = postnum++;
225
226 if (!ei_one_before_end_p (ei))
227 ei_next (&stack[sp - 1]);
228 else
229 sp--;
230 }
231 }
232
233 free (pre);
234 free (post);
235 free (stack);
236 sbitmap_free (visited);
237
238 return found;
239 }
240
241 /* Set the flag EDGE_CAN_FALLTHRU for edges that can be fallthru. */
242
243 void
244 set_edge_can_fallthru_flag (void)
245 {
246 basic_block bb;
247
248 FOR_EACH_BB (bb)
249 {
250 edge e;
251 edge_iterator ei;
252
253 FOR_EACH_EDGE (e, ei, bb->succs)
254 {
255 e->flags &= ~EDGE_CAN_FALLTHRU;
256
257 /* The FALLTHRU edge is also CAN_FALLTHRU edge. */
258 if (e->flags & EDGE_FALLTHRU)
259 e->flags |= EDGE_CAN_FALLTHRU;
260 }
261
262 /* If the BB ends with an invertible condjump all (2) edges are
263 CAN_FALLTHRU edges. */
264 if (EDGE_COUNT (bb->succs) != 2)
265 continue;
266 if (!any_condjump_p (BB_END (bb)))
267 continue;
268 if (!invert_jump (BB_END (bb), JUMP_LABEL (BB_END (bb)), 0))
269 continue;
270 invert_jump (BB_END (bb), JUMP_LABEL (BB_END (bb)), 0);
271 EDGE_SUCC (bb, 0)->flags |= EDGE_CAN_FALLTHRU;
272 EDGE_SUCC (bb, 1)->flags |= EDGE_CAN_FALLTHRU;
273 }
274 }
275
276 /* Find unreachable blocks. An unreachable block will have 0 in
277 the reachable bit in block->flags. A nonzero value indicates the
278 block is reachable. */
279
280 void
281 find_unreachable_blocks (void)
282 {
283 edge e;
284 edge_iterator ei;
285 basic_block *tos, *worklist, bb;
286
287 tos = worklist = XNEWVEC (basic_block, n_basic_blocks);
288
289 /* Clear all the reachability flags. */
290
291 FOR_EACH_BB (bb)
292 bb->flags &= ~BB_REACHABLE;
293
294 /* Add our starting points to the worklist. Almost always there will
295 be only one. It isn't inconceivable that we might one day directly
296 support Fortran alternate entry points. */
297
298 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
299 {
300 *tos++ = e->dest;
301
302 /* Mark the block reachable. */
303 e->dest->flags |= BB_REACHABLE;
304 }
305
306 /* Iterate: find everything reachable from what we've already seen. */
307
308 while (tos != worklist)
309 {
310 basic_block b = *--tos;
311
312 FOR_EACH_EDGE (e, ei, b->succs)
313 {
314 basic_block dest = e->dest;
315
316 if (!(dest->flags & BB_REACHABLE))
317 {
318 *tos++ = dest;
319 dest->flags |= BB_REACHABLE;
320 }
321 }
322 }
323
324 free (worklist);
325 }
326
327 /* Functions to access an edge list with a vector representation.
328 Enough data is kept such that given an index number, the
329 pred and succ that edge represents can be determined, or
330 given a pred and a succ, its index number can be returned.
331 This allows algorithms which consume a lot of memory to
332 represent the normally full matrix of edge (pred,succ) with a
333 single indexed vector, edge (EDGE_INDEX (pred, succ)), with no
334 wasted space in the client code due to sparse flow graphs. */
335
336 /* This functions initializes the edge list. Basically the entire
337 flowgraph is processed, and all edges are assigned a number,
338 and the data structure is filled in. */
339
340 struct edge_list *
341 create_edge_list (void)
342 {
343 struct edge_list *elist;
344 edge e;
345 int num_edges;
346 int block_count;
347 basic_block bb;
348 edge_iterator ei;
349
350 block_count = n_basic_blocks; /* Include the entry and exit blocks. */
351
352 num_edges = 0;
353
354 /* Determine the number of edges in the flow graph by counting successor
355 edges on each basic block. */
356 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
357 {
358 num_edges += EDGE_COUNT (bb->succs);
359 }
360
361 elist = XNEW (struct edge_list);
362 elist->num_blocks = block_count;
363 elist->num_edges = num_edges;
364 elist->index_to_edge = XNEWVEC (edge, num_edges);
365
366 num_edges = 0;
367
368 /* Follow successors of blocks, and register these edges. */
369 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
370 FOR_EACH_EDGE (e, ei, bb->succs)
371 elist->index_to_edge[num_edges++] = e;
372
373 return elist;
374 }
375
376 /* This function free's memory associated with an edge list. */
377
378 void
379 free_edge_list (struct edge_list *elist)
380 {
381 if (elist)
382 {
383 free (elist->index_to_edge);
384 free (elist);
385 }
386 }
387
388 /* This function provides debug output showing an edge list. */
389
390 void
391 print_edge_list (FILE *f, struct edge_list *elist)
392 {
393 int x;
394
395 fprintf (f, "Compressed edge list, %d BBs + entry & exit, and %d edges\n",
396 elist->num_blocks, elist->num_edges);
397
398 for (x = 0; x < elist->num_edges; x++)
399 {
400 fprintf (f, " %-4d - edge(", x);
401 if (INDEX_EDGE_PRED_BB (elist, x) == ENTRY_BLOCK_PTR)
402 fprintf (f, "entry,");
403 else
404 fprintf (f, "%d,", INDEX_EDGE_PRED_BB (elist, x)->index);
405
406 if (INDEX_EDGE_SUCC_BB (elist, x) == EXIT_BLOCK_PTR)
407 fprintf (f, "exit)\n");
408 else
409 fprintf (f, "%d)\n", INDEX_EDGE_SUCC_BB (elist, x)->index);
410 }
411 }
412
413 /* This function provides an internal consistency check of an edge list,
414 verifying that all edges are present, and that there are no
415 extra edges. */
416
417 void
418 verify_edge_list (FILE *f, struct edge_list *elist)
419 {
420 int pred, succ, index;
421 edge e;
422 basic_block bb, p, s;
423 edge_iterator ei;
424
425 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
426 {
427 FOR_EACH_EDGE (e, ei, bb->succs)
428 {
429 pred = e->src->index;
430 succ = e->dest->index;
431 index = EDGE_INDEX (elist, e->src, e->dest);
432 if (index == EDGE_INDEX_NO_EDGE)
433 {
434 fprintf (f, "*p* No index for edge from %d to %d\n", pred, succ);
435 continue;
436 }
437
438 if (INDEX_EDGE_PRED_BB (elist, index)->index != pred)
439 fprintf (f, "*p* Pred for index %d should be %d not %d\n",
440 index, pred, INDEX_EDGE_PRED_BB (elist, index)->index);
441 if (INDEX_EDGE_SUCC_BB (elist, index)->index != succ)
442 fprintf (f, "*p* Succ for index %d should be %d not %d\n",
443 index, succ, INDEX_EDGE_SUCC_BB (elist, index)->index);
444 }
445 }
446
447 /* We've verified that all the edges are in the list, now lets make sure
448 there are no spurious edges in the list. */
449
450 FOR_BB_BETWEEN (p, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
451 FOR_BB_BETWEEN (s, ENTRY_BLOCK_PTR->next_bb, NULL, next_bb)
452 {
453 int found_edge = 0;
454
455 FOR_EACH_EDGE (e, ei, p->succs)
456 if (e->dest == s)
457 {
458 found_edge = 1;
459 break;
460 }
461
462 FOR_EACH_EDGE (e, ei, s->preds)
463 if (e->src == p)
464 {
465 found_edge = 1;
466 break;
467 }
468
469 if (EDGE_INDEX (elist, p, s)
470 == EDGE_INDEX_NO_EDGE && found_edge != 0)
471 fprintf (f, "*** Edge (%d, %d) appears to not have an index\n",
472 p->index, s->index);
473 if (EDGE_INDEX (elist, p, s)
474 != EDGE_INDEX_NO_EDGE && found_edge == 0)
475 fprintf (f, "*** Edge (%d, %d) has index %d, but there is no edge\n",
476 p->index, s->index, EDGE_INDEX (elist, p, s));
477 }
478 }
479
480 /* Given PRED and SUCC blocks, return the edge which connects the blocks.
481 If no such edge exists, return NULL. */
482
483 edge
484 find_edge (basic_block pred, basic_block succ)
485 {
486 edge e;
487 edge_iterator ei;
488
489 if (EDGE_COUNT (pred->succs) <= EDGE_COUNT (succ->preds))
490 {
491 FOR_EACH_EDGE (e, ei, pred->succs)
492 if (e->dest == succ)
493 return e;
494 }
495 else
496 {
497 FOR_EACH_EDGE (e, ei, succ->preds)
498 if (e->src == pred)
499 return e;
500 }
501
502 return NULL;
503 }
504
505 /* This routine will determine what, if any, edge there is between
506 a specified predecessor and successor. */
507
508 int
509 find_edge_index (struct edge_list *edge_list, basic_block pred, basic_block succ)
510 {
511 int x;
512
513 for (x = 0; x < NUM_EDGES (edge_list); x++)
514 if (INDEX_EDGE_PRED_BB (edge_list, x) == pred
515 && INDEX_EDGE_SUCC_BB (edge_list, x) == succ)
516 return x;
517
518 return (EDGE_INDEX_NO_EDGE);
519 }
520
521 /* Dump the list of basic blocks in the bitmap NODES. */
522
523 void
524 flow_nodes_print (const char *str, const_sbitmap nodes, FILE *file)
525 {
526 unsigned int node = 0;
527 sbitmap_iterator sbi;
528
529 if (! nodes)
530 return;
531
532 fprintf (file, "%s { ", str);
533 EXECUTE_IF_SET_IN_SBITMAP (nodes, 0, node, sbi)
534 fprintf (file, "%d ", node);
535 fputs ("}\n", file);
536 }
537
538 /* Dump the list of edges in the array EDGE_LIST. */
539
540 void
541 flow_edge_list_print (const char *str, const edge *edge_list, int num_edges, FILE *file)
542 {
543 int i;
544
545 if (! edge_list)
546 return;
547
548 fprintf (file, "%s { ", str);
549 for (i = 0; i < num_edges; i++)
550 fprintf (file, "%d->%d ", edge_list[i]->src->index,
551 edge_list[i]->dest->index);
552
553 fputs ("}\n", file);
554 }
555
556
557 /* This routine will remove any fake predecessor edges for a basic block.
558 When the edge is removed, it is also removed from whatever successor
559 list it is in. */
560
561 static void
562 remove_fake_predecessors (basic_block bb)
563 {
564 edge e;
565 edge_iterator ei;
566
567 for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei)); )
568 {
569 if ((e->flags & EDGE_FAKE) == EDGE_FAKE)
570 remove_edge (e);
571 else
572 ei_next (&ei);
573 }
574 }
575
576 /* This routine will remove all fake edges from the flow graph. If
577 we remove all fake successors, it will automatically remove all
578 fake predecessors. */
579
580 void
581 remove_fake_edges (void)
582 {
583 basic_block bb;
584
585 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR->next_bb, NULL, next_bb)
586 remove_fake_predecessors (bb);
587 }
588
589 /* This routine will remove all fake edges to the EXIT_BLOCK. */
590
591 void
592 remove_fake_exit_edges (void)
593 {
594 remove_fake_predecessors (EXIT_BLOCK_PTR);
595 }
596
597
598 /* This function will add a fake edge between any block which has no
599 successors, and the exit block. Some data flow equations require these
600 edges to exist. */
601
602 void
603 add_noreturn_fake_exit_edges (void)
604 {
605 basic_block bb;
606
607 FOR_EACH_BB (bb)
608 if (EDGE_COUNT (bb->succs) == 0)
609 make_single_succ_edge (bb, EXIT_BLOCK_PTR, EDGE_FAKE);
610 }
611
612 /* This function adds a fake edge between any infinite loops to the
613 exit block. Some optimizations require a path from each node to
614 the exit node.
615
616 See also Morgan, Figure 3.10, pp. 82-83.
617
618 The current implementation is ugly, not attempting to minimize the
619 number of inserted fake edges. To reduce the number of fake edges
620 to insert, add fake edges from _innermost_ loops containing only
621 nodes not reachable from the exit block. */
622
623 void
624 connect_infinite_loops_to_exit (void)
625 {
626 basic_block unvisited_block = EXIT_BLOCK_PTR;
627 struct depth_first_search_dsS dfs_ds;
628
629 /* Perform depth-first search in the reverse graph to find nodes
630 reachable from the exit block. */
631 flow_dfs_compute_reverse_init (&dfs_ds);
632 flow_dfs_compute_reverse_add_bb (&dfs_ds, EXIT_BLOCK_PTR);
633
634 /* Repeatedly add fake edges, updating the unreachable nodes. */
635 while (1)
636 {
637 unvisited_block = flow_dfs_compute_reverse_execute (&dfs_ds,
638 unvisited_block);
639 if (!unvisited_block)
640 break;
641
642 make_edge (unvisited_block, EXIT_BLOCK_PTR, EDGE_FAKE);
643 flow_dfs_compute_reverse_add_bb (&dfs_ds, unvisited_block);
644 }
645
646 flow_dfs_compute_reverse_finish (&dfs_ds);
647 return;
648 }
649
650 /* Compute reverse top sort order. This is computing a post order
651 numbering of the graph. If INCLUDE_ENTRY_EXIT is true, then then
652 ENTRY_BLOCK and EXIT_BLOCK are included. If DELETE_UNREACHABLE is
653 true, unreachable blocks are deleted. */
654
655 int
656 post_order_compute (int *post_order, bool include_entry_exit,
657 bool delete_unreachable)
658 {
659 edge_iterator *stack;
660 int sp;
661 int post_order_num = 0;
662 sbitmap visited;
663 int count;
664
665 if (include_entry_exit)
666 post_order[post_order_num++] = EXIT_BLOCK;
667
668 /* Allocate stack for back-tracking up CFG. */
669 stack = XNEWVEC (edge_iterator, n_basic_blocks + 1);
670 sp = 0;
671
672 /* Allocate bitmap to track nodes that have been visited. */
673 visited = sbitmap_alloc (last_basic_block);
674
675 /* None of the nodes in the CFG have been visited yet. */
676 sbitmap_zero (visited);
677
678 /* Push the first edge on to the stack. */
679 stack[sp++] = ei_start (ENTRY_BLOCK_PTR->succs);
680
681 while (sp)
682 {
683 edge_iterator ei;
684 basic_block src;
685 basic_block dest;
686
687 /* Look at the edge on the top of the stack. */
688 ei = stack[sp - 1];
689 src = ei_edge (ei)->src;
690 dest = ei_edge (ei)->dest;
691
692 /* Check if the edge destination has been visited yet. */
693 if (dest != EXIT_BLOCK_PTR && ! TEST_BIT (visited, dest->index))
694 {
695 /* Mark that we have visited the destination. */
696 SET_BIT (visited, dest->index);
697
698 if (EDGE_COUNT (dest->succs) > 0)
699 /* Since the DEST node has been visited for the first
700 time, check its successors. */
701 stack[sp++] = ei_start (dest->succs);
702 else
703 post_order[post_order_num++] = dest->index;
704 }
705 else
706 {
707 if (ei_one_before_end_p (ei) && src != ENTRY_BLOCK_PTR)
708 post_order[post_order_num++] = src->index;
709
710 if (!ei_one_before_end_p (ei))
711 ei_next (&stack[sp - 1]);
712 else
713 sp--;
714 }
715 }
716
717 if (include_entry_exit)
718 {
719 post_order[post_order_num++] = ENTRY_BLOCK;
720 count = post_order_num;
721 }
722 else
723 count = post_order_num + 2;
724
725 /* Delete the unreachable blocks if some were found and we are
726 supposed to do it. */
727 if (delete_unreachable && (count != n_basic_blocks))
728 {
729 basic_block b;
730 basic_block next_bb;
731 for (b = ENTRY_BLOCK_PTR->next_bb; b != EXIT_BLOCK_PTR; b = next_bb)
732 {
733 next_bb = b->next_bb;
734
735 if (!(TEST_BIT (visited, b->index)))
736 delete_basic_block (b);
737 }
738
739 tidy_fallthru_edges ();
740 }
741
742 free (stack);
743 sbitmap_free (visited);
744 return post_order_num;
745 }
746
747
748 /* Helper routine for inverted_post_order_compute.
749 BB has to belong to a region of CFG
750 unreachable by inverted traversal from the exit.
751 i.e. there's no control flow path from ENTRY to EXIT
752 that contains this BB.
753 This can happen in two cases - if there's an infinite loop
754 or if there's a block that has no successor
755 (call to a function with no return).
756 Some RTL passes deal with this condition by
757 calling connect_infinite_loops_to_exit () and/or
758 add_noreturn_fake_exit_edges ().
759 However, those methods involve modifying the CFG itself
760 which may not be desirable.
761 Hence, we deal with the infinite loop/no return cases
762 by identifying a unique basic block that can reach all blocks
763 in such a region by inverted traversal.
764 This function returns a basic block that guarantees
765 that all blocks in the region are reachable
766 by starting an inverted traversal from the returned block. */
767
768 static basic_block
769 dfs_find_deadend (basic_block bb)
770 {
771 sbitmap visited = sbitmap_alloc (last_basic_block);
772 sbitmap_zero (visited);
773
774 for (;;)
775 {
776 SET_BIT (visited, bb->index);
777 if (EDGE_COUNT (bb->succs) == 0
778 || TEST_BIT (visited, EDGE_SUCC (bb, 0)->dest->index))
779 {
780 sbitmap_free (visited);
781 return bb;
782 }
783
784 bb = EDGE_SUCC (bb, 0)->dest;
785 }
786
787 gcc_unreachable ();
788 }
789
790
791 /* Compute the reverse top sort order of the inverted CFG
792 i.e. starting from the exit block and following the edges backward
793 (from successors to predecessors).
794 This ordering can be used for forward dataflow problems among others.
795
796 This function assumes that all blocks in the CFG are reachable
797 from the ENTRY (but not necessarily from EXIT).
798
799 If there's an infinite loop,
800 a simple inverted traversal starting from the blocks
801 with no successors can't visit all blocks.
802 To solve this problem, we first do inverted traversal
803 starting from the blocks with no successor.
804 And if there's any block left that's not visited by the regular
805 inverted traversal from EXIT,
806 those blocks are in such problematic region.
807 Among those, we find one block that has
808 any visited predecessor (which is an entry into such a region),
809 and start looking for a "dead end" from that block
810 and do another inverted traversal from that block. */
811
812 int
813 inverted_post_order_compute (int *post_order)
814 {
815 basic_block bb;
816 edge_iterator *stack;
817 int sp;
818 int post_order_num = 0;
819 sbitmap visited;
820
821 /* Allocate stack for back-tracking up CFG. */
822 stack = XNEWVEC (edge_iterator, n_basic_blocks + 1);
823 sp = 0;
824
825 /* Allocate bitmap to track nodes that have been visited. */
826 visited = sbitmap_alloc (last_basic_block);
827
828 /* None of the nodes in the CFG have been visited yet. */
829 sbitmap_zero (visited);
830
831 /* Put all blocks that have no successor into the initial work list. */
832 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
833 if (EDGE_COUNT (bb->succs) == 0)
834 {
835 /* Push the initial edge on to the stack. */
836 if (EDGE_COUNT (bb->preds) > 0)
837 {
838 stack[sp++] = ei_start (bb->preds);
839 SET_BIT (visited, bb->index);
840 }
841 }
842
843 do
844 {
845 bool has_unvisited_bb = false;
846
847 /* The inverted traversal loop. */
848 while (sp)
849 {
850 edge_iterator ei;
851 basic_block pred;
852
853 /* Look at the edge on the top of the stack. */
854 ei = stack[sp - 1];
855 bb = ei_edge (ei)->dest;
856 pred = ei_edge (ei)->src;
857
858 /* Check if the predecessor has been visited yet. */
859 if (! TEST_BIT (visited, pred->index))
860 {
861 /* Mark that we have visited the destination. */
862 SET_BIT (visited, pred->index);
863
864 if (EDGE_COUNT (pred->preds) > 0)
865 /* Since the predecessor node has been visited for the first
866 time, check its predecessors. */
867 stack[sp++] = ei_start (pred->preds);
868 else
869 post_order[post_order_num++] = pred->index;
870 }
871 else
872 {
873 if (bb != EXIT_BLOCK_PTR && ei_one_before_end_p (ei))
874 post_order[post_order_num++] = bb->index;
875
876 if (!ei_one_before_end_p (ei))
877 ei_next (&stack[sp - 1]);
878 else
879 sp--;
880 }
881 }
882
883 /* Detect any infinite loop and activate the kludge.
884 Note that this doesn't check EXIT_BLOCK itself
885 since EXIT_BLOCK is always added after the outer do-while loop. */
886 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, EXIT_BLOCK_PTR, next_bb)
887 if (!TEST_BIT (visited, bb->index))
888 {
889 has_unvisited_bb = true;
890
891 if (EDGE_COUNT (bb->preds) > 0)
892 {
893 edge_iterator ei;
894 edge e;
895 basic_block visited_pred = NULL;
896
897 /* Find an already visited predecessor. */
898 FOR_EACH_EDGE (e, ei, bb->preds)
899 {
900 if (TEST_BIT (visited, e->src->index))
901 visited_pred = e->src;
902 }
903
904 if (visited_pred)
905 {
906 basic_block be = dfs_find_deadend (bb);
907 gcc_assert (be != NULL);
908 SET_BIT (visited, be->index);
909 stack[sp++] = ei_start (be->preds);
910 break;
911 }
912 }
913 }
914
915 if (has_unvisited_bb && sp == 0)
916 {
917 /* No blocks are reachable from EXIT at all.
918 Find a dead-end from the ENTRY, and restart the iteration. */
919 basic_block be = dfs_find_deadend (ENTRY_BLOCK_PTR);
920 gcc_assert (be != NULL);
921 SET_BIT (visited, be->index);
922 stack[sp++] = ei_start (be->preds);
923 }
924
925 /* The only case the below while fires is
926 when there's an infinite loop. */
927 }
928 while (sp);
929
930 /* EXIT_BLOCK is always included. */
931 post_order[post_order_num++] = EXIT_BLOCK;
932
933 free (stack);
934 sbitmap_free (visited);
935 return post_order_num;
936 }
937
938 /* Compute the depth first search order and store in the array
939 PRE_ORDER if nonzero, marking the nodes visited in VISITED. If
940 REV_POST_ORDER is nonzero, return the reverse completion number for each
941 node. Returns the number of nodes visited. A depth first search
942 tries to get as far away from the starting point as quickly as
943 possible.
944
945 pre_order is a really a preorder numbering of the graph.
946 rev_post_order is really a reverse postorder numbering of the graph.
947 */
948
949 int
950 pre_and_rev_post_order_compute (int *pre_order, int *rev_post_order,
951 bool include_entry_exit)
952 {
953 edge_iterator *stack;
954 int sp;
955 int pre_order_num = 0;
956 int rev_post_order_num = n_basic_blocks - 1;
957 sbitmap visited;
958
959 /* Allocate stack for back-tracking up CFG. */
960 stack = XNEWVEC (edge_iterator, n_basic_blocks + 1);
961 sp = 0;
962
963 if (include_entry_exit)
964 {
965 if (pre_order)
966 pre_order[pre_order_num] = ENTRY_BLOCK;
967 pre_order_num++;
968 if (rev_post_order)
969 rev_post_order[rev_post_order_num--] = ENTRY_BLOCK;
970 }
971 else
972 rev_post_order_num -= NUM_FIXED_BLOCKS;
973
974 /* Allocate bitmap to track nodes that have been visited. */
975 visited = sbitmap_alloc (last_basic_block);
976
977 /* None of the nodes in the CFG have been visited yet. */
978 sbitmap_zero (visited);
979
980 /* Push the first edge on to the stack. */
981 stack[sp++] = ei_start (ENTRY_BLOCK_PTR->succs);
982
983 while (sp)
984 {
985 edge_iterator ei;
986 basic_block src;
987 basic_block dest;
988
989 /* Look at the edge on the top of the stack. */
990 ei = stack[sp - 1];
991 src = ei_edge (ei)->src;
992 dest = ei_edge (ei)->dest;
993
994 /* Check if the edge destination has been visited yet. */
995 if (dest != EXIT_BLOCK_PTR && ! TEST_BIT (visited, dest->index))
996 {
997 /* Mark that we have visited the destination. */
998 SET_BIT (visited, dest->index);
999
1000 if (pre_order)
1001 pre_order[pre_order_num] = dest->index;
1002
1003 pre_order_num++;
1004
1005 if (EDGE_COUNT (dest->succs) > 0)
1006 /* Since the DEST node has been visited for the first
1007 time, check its successors. */
1008 stack[sp++] = ei_start (dest->succs);
1009 else if (rev_post_order)
1010 /* There are no successors for the DEST node so assign
1011 its reverse completion number. */
1012 rev_post_order[rev_post_order_num--] = dest->index;
1013 }
1014 else
1015 {
1016 if (ei_one_before_end_p (ei) && src != ENTRY_BLOCK_PTR
1017 && rev_post_order)
1018 /* There are no more successors for the SRC node
1019 so assign its reverse completion number. */
1020 rev_post_order[rev_post_order_num--] = src->index;
1021
1022 if (!ei_one_before_end_p (ei))
1023 ei_next (&stack[sp - 1]);
1024 else
1025 sp--;
1026 }
1027 }
1028
1029 free (stack);
1030 sbitmap_free (visited);
1031
1032 if (include_entry_exit)
1033 {
1034 if (pre_order)
1035 pre_order[pre_order_num] = EXIT_BLOCK;
1036 pre_order_num++;
1037 if (rev_post_order)
1038 rev_post_order[rev_post_order_num--] = EXIT_BLOCK;
1039 /* The number of nodes visited should be the number of blocks. */
1040 gcc_assert (pre_order_num == n_basic_blocks);
1041 }
1042 else
1043 /* The number of nodes visited should be the number of blocks minus
1044 the entry and exit blocks which are not visited here. */
1045 gcc_assert (pre_order_num == n_basic_blocks - NUM_FIXED_BLOCKS);
1046
1047 return pre_order_num;
1048 }
1049
1050 /* Compute the depth first search order on the _reverse_ graph and
1051 store in the array DFS_ORDER, marking the nodes visited in VISITED.
1052 Returns the number of nodes visited.
1053
1054 The computation is split into three pieces:
1055
1056 flow_dfs_compute_reverse_init () creates the necessary data
1057 structures.
1058
1059 flow_dfs_compute_reverse_add_bb () adds a basic block to the data
1060 structures. The block will start the search.
1061
1062 flow_dfs_compute_reverse_execute () continues (or starts) the
1063 search using the block on the top of the stack, stopping when the
1064 stack is empty.
1065
1066 flow_dfs_compute_reverse_finish () destroys the necessary data
1067 structures.
1068
1069 Thus, the user will probably call ..._init(), call ..._add_bb() to
1070 add a beginning basic block to the stack, call ..._execute(),
1071 possibly add another bb to the stack and again call ..._execute(),
1072 ..., and finally call _finish(). */
1073
1074 /* Initialize the data structures used for depth-first search on the
1075 reverse graph. If INITIALIZE_STACK is nonzero, the exit block is
1076 added to the basic block stack. DATA is the current depth-first
1077 search context. If INITIALIZE_STACK is nonzero, there is an
1078 element on the stack. */
1079
1080 static void
1081 flow_dfs_compute_reverse_init (depth_first_search_ds data)
1082 {
1083 /* Allocate stack for back-tracking up CFG. */
1084 data->stack = XNEWVEC (basic_block, n_basic_blocks);
1085 data->sp = 0;
1086
1087 /* Allocate bitmap to track nodes that have been visited. */
1088 data->visited_blocks = sbitmap_alloc (last_basic_block);
1089
1090 /* None of the nodes in the CFG have been visited yet. */
1091 sbitmap_zero (data->visited_blocks);
1092
1093 return;
1094 }
1095
1096 /* Add the specified basic block to the top of the dfs data
1097 structures. When the search continues, it will start at the
1098 block. */
1099
1100 static void
1101 flow_dfs_compute_reverse_add_bb (depth_first_search_ds data, basic_block bb)
1102 {
1103 data->stack[data->sp++] = bb;
1104 SET_BIT (data->visited_blocks, bb->index);
1105 }
1106
1107 /* Continue the depth-first search through the reverse graph starting with the
1108 block at the stack's top and ending when the stack is empty. Visited nodes
1109 are marked. Returns an unvisited basic block, or NULL if there is none
1110 available. */
1111
1112 static basic_block
1113 flow_dfs_compute_reverse_execute (depth_first_search_ds data,
1114 basic_block last_unvisited)
1115 {
1116 basic_block bb;
1117 edge e;
1118 edge_iterator ei;
1119
1120 while (data->sp > 0)
1121 {
1122 bb = data->stack[--data->sp];
1123
1124 /* Perform depth-first search on adjacent vertices. */
1125 FOR_EACH_EDGE (e, ei, bb->preds)
1126 if (!TEST_BIT (data->visited_blocks, e->src->index))
1127 flow_dfs_compute_reverse_add_bb (data, e->src);
1128 }
1129
1130 /* Determine if there are unvisited basic blocks. */
1131 FOR_BB_BETWEEN (bb, last_unvisited, NULL, prev_bb)
1132 if (!TEST_BIT (data->visited_blocks, bb->index))
1133 return bb;
1134
1135 return NULL;
1136 }
1137
1138 /* Destroy the data structures needed for depth-first search on the
1139 reverse graph. */
1140
1141 static void
1142 flow_dfs_compute_reverse_finish (depth_first_search_ds data)
1143 {
1144 free (data->stack);
1145 sbitmap_free (data->visited_blocks);
1146 }
1147
1148 /* Performs dfs search from BB over vertices satisfying PREDICATE;
1149 if REVERSE, go against direction of edges. Returns number of blocks
1150 found and their list in RSLT. RSLT can contain at most RSLT_MAX items. */
1151 int
1152 dfs_enumerate_from (basic_block bb, int reverse,
1153 bool (*predicate) (const_basic_block, const void *),
1154 basic_block *rslt, int rslt_max, const void *data)
1155 {
1156 basic_block *st, lbb;
1157 int sp = 0, tv = 0;
1158 unsigned size;
1159
1160 /* A bitmap to keep track of visited blocks. Allocating it each time
1161 this function is called is not possible, since dfs_enumerate_from
1162 is often used on small (almost) disjoint parts of cfg (bodies of
1163 loops), and allocating a large sbitmap would lead to quadratic
1164 behavior. */
1165 static sbitmap visited;
1166 static unsigned v_size;
1167
1168 #define MARK_VISITED(BB) (SET_BIT (visited, (BB)->index))
1169 #define UNMARK_VISITED(BB) (RESET_BIT (visited, (BB)->index))
1170 #define VISITED_P(BB) (TEST_BIT (visited, (BB)->index))
1171
1172 /* Resize the VISITED sbitmap if necessary. */
1173 size = last_basic_block;
1174 if (size < 10)
1175 size = 10;
1176
1177 if (!visited)
1178 {
1179
1180 visited = sbitmap_alloc (size);
1181 sbitmap_zero (visited);
1182 v_size = size;
1183 }
1184 else if (v_size < size)
1185 {
1186 /* Ensure that we increase the size of the sbitmap exponentially. */
1187 if (2 * v_size > size)
1188 size = 2 * v_size;
1189
1190 visited = sbitmap_resize (visited, size, 0);
1191 v_size = size;
1192 }
1193
1194 st = XCNEWVEC (basic_block, rslt_max);
1195 rslt[tv++] = st[sp++] = bb;
1196 MARK_VISITED (bb);
1197 while (sp)
1198 {
1199 edge e;
1200 edge_iterator ei;
1201 lbb = st[--sp];
1202 if (reverse)
1203 {
1204 FOR_EACH_EDGE (e, ei, lbb->preds)
1205 if (!VISITED_P (e->src) && predicate (e->src, data))
1206 {
1207 gcc_assert (tv != rslt_max);
1208 rslt[tv++] = st[sp++] = e->src;
1209 MARK_VISITED (e->src);
1210 }
1211 }
1212 else
1213 {
1214 FOR_EACH_EDGE (e, ei, lbb->succs)
1215 if (!VISITED_P (e->dest) && predicate (e->dest, data))
1216 {
1217 gcc_assert (tv != rslt_max);
1218 rslt[tv++] = st[sp++] = e->dest;
1219 MARK_VISITED (e->dest);
1220 }
1221 }
1222 }
1223 free (st);
1224 for (sp = 0; sp < tv; sp++)
1225 UNMARK_VISITED (rslt[sp]);
1226 return tv;
1227 #undef MARK_VISITED
1228 #undef UNMARK_VISITED
1229 #undef VISITED_P
1230 }
1231
1232
1233 /* Compute dominance frontiers, ala Harvey, Ferrante, et al.
1234
1235 This algorithm can be found in Timothy Harvey's PhD thesis, at
1236 http://www.cs.rice.edu/~harv/dissertation.pdf in the section on iterative
1237 dominance algorithms.
1238
1239 First, we identify each join point, j (any node with more than one
1240 incoming edge is a join point).
1241
1242 We then examine each predecessor, p, of j and walk up the dominator tree
1243 starting at p.
1244
1245 We stop the walk when we reach j's immediate dominator - j is in the
1246 dominance frontier of each of the nodes in the walk, except for j's
1247 immediate dominator. Intuitively, all of the rest of j's dominators are
1248 shared by j's predecessors as well.
1249 Since they dominate j, they will not have j in their dominance frontiers.
1250
1251 The number of nodes touched by this algorithm is equal to the size
1252 of the dominance frontiers, no more, no less.
1253 */
1254
1255
1256 static void
1257 compute_dominance_frontiers_1 (bitmap *frontiers)
1258 {
1259 edge p;
1260 edge_iterator ei;
1261 basic_block b;
1262 FOR_EACH_BB (b)
1263 {
1264 if (EDGE_COUNT (b->preds) >= 2)
1265 {
1266 FOR_EACH_EDGE (p, ei, b->preds)
1267 {
1268 basic_block runner = p->src;
1269 basic_block domsb;
1270 if (runner == ENTRY_BLOCK_PTR)
1271 continue;
1272
1273 domsb = get_immediate_dominator (CDI_DOMINATORS, b);
1274 while (runner != domsb)
1275 {
1276 if (bitmap_bit_p (frontiers[runner->index], b->index))
1277 break;
1278 bitmap_set_bit (frontiers[runner->index],
1279 b->index);
1280 runner = get_immediate_dominator (CDI_DOMINATORS,
1281 runner);
1282 }
1283 }
1284 }
1285 }
1286 }
1287
1288
1289 void
1290 compute_dominance_frontiers (bitmap *frontiers)
1291 {
1292 timevar_push (TV_DOM_FRONTIERS);
1293
1294 compute_dominance_frontiers_1 (frontiers);
1295
1296 timevar_pop (TV_DOM_FRONTIERS);
1297 }
1298
1299 /* Given a set of blocks with variable definitions (DEF_BLOCKS),
1300 return a bitmap with all the blocks in the iterated dominance
1301 frontier of the blocks in DEF_BLOCKS. DFS contains dominance
1302 frontier information as returned by compute_dominance_frontiers.
1303
1304 The resulting set of blocks are the potential sites where PHI nodes
1305 are needed. The caller is responsible for freeing the memory
1306 allocated for the return value. */
1307
1308 bitmap
1309 compute_idf (bitmap def_blocks, bitmap *dfs)
1310 {
1311 bitmap_iterator bi;
1312 unsigned bb_index, i;
1313 VEC(int,heap) *work_stack;
1314 bitmap phi_insertion_points;
1315
1316 work_stack = VEC_alloc (int, heap, n_basic_blocks);
1317 phi_insertion_points = BITMAP_ALLOC (NULL);
1318
1319 /* Seed the work list with all the blocks in DEF_BLOCKS. We use
1320 VEC_quick_push here for speed. This is safe because we know that
1321 the number of definition blocks is no greater than the number of
1322 basic blocks, which is the initial capacity of WORK_STACK. */
1323 EXECUTE_IF_SET_IN_BITMAP (def_blocks, 0, bb_index, bi)
1324 VEC_quick_push (int, work_stack, bb_index);
1325
1326 /* Pop a block off the worklist, add every block that appears in
1327 the original block's DF that we have not already processed to
1328 the worklist. Iterate until the worklist is empty. Blocks
1329 which are added to the worklist are potential sites for
1330 PHI nodes. */
1331 while (VEC_length (int, work_stack) > 0)
1332 {
1333 bb_index = VEC_pop (int, work_stack);
1334
1335 /* Since the registration of NEW -> OLD name mappings is done
1336 separately from the call to update_ssa, when updating the SSA
1337 form, the basic blocks where new and/or old names are defined
1338 may have disappeared by CFG cleanup calls. In this case,
1339 we may pull a non-existing block from the work stack. */
1340 gcc_assert (bb_index < (unsigned) last_basic_block);
1341
1342 EXECUTE_IF_AND_COMPL_IN_BITMAP (dfs[bb_index], phi_insertion_points,
1343 0, i, bi)
1344 {
1345 /* Use a safe push because if there is a definition of VAR
1346 in every basic block, then WORK_STACK may eventually have
1347 more than N_BASIC_BLOCK entries. */
1348 VEC_safe_push (int, heap, work_stack, i);
1349 bitmap_set_bit (phi_insertion_points, i);
1350 }
1351 }
1352
1353 VEC_free (int, heap, work_stack);
1354
1355 return phi_insertion_points;
1356 }
1357
1358