comparison gcc/cfgloopmanip.c @ 0:a06113de4d67

first commit
author kent <kent@cr.ie.u-ryukyu.ac.jp>
date Fri, 17 Jul 2009 14:47:48 +0900
parents
children 77e2b8dfacca
comparison
equal deleted inserted replaced
-1:000000000000 0:a06113de4d67
1 /* Loop manipulation code for GNU compiler.
2 Copyright (C) 2002, 2003, 2004, 2005, 2007, 2008, 2009 Free Software
3 Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "rtl.h"
26 #include "hard-reg-set.h"
27 #include "obstack.h"
28 #include "basic-block.h"
29 #include "cfgloop.h"
30 #include "cfglayout.h"
31 #include "cfghooks.h"
32 #include "output.h"
33 #include "tree-flow.h"
34
35 static void duplicate_subloops (struct loop *, struct loop *);
36 static void copy_loops_to (struct loop **, int,
37 struct loop *);
38 static void loop_redirect_edge (edge, basic_block);
39 static void remove_bbs (basic_block *, int);
40 static bool rpe_enum_p (const_basic_block, const void *);
41 static int find_path (edge, basic_block **);
42 static void fix_loop_placements (struct loop *, bool *);
43 static bool fix_bb_placement (basic_block);
44 static void fix_bb_placements (basic_block, bool *);
45 static void unloop (struct loop *, bool *);
46
47 #define RDIV(X,Y) (((X) + (Y) / 2) / (Y))
48
49 /* Checks whether basic block BB is dominated by DATA. */
50 static bool
51 rpe_enum_p (const_basic_block bb, const void *data)
52 {
53 return dominated_by_p (CDI_DOMINATORS, bb, (const_basic_block) data);
54 }
55
56 /* Remove basic blocks BBS. NBBS is the number of the basic blocks. */
57
58 static void
59 remove_bbs (basic_block *bbs, int nbbs)
60 {
61 int i;
62
63 for (i = 0; i < nbbs; i++)
64 delete_basic_block (bbs[i]);
65 }
66
67 /* Find path -- i.e. the basic blocks dominated by edge E and put them
68 into array BBS, that will be allocated large enough to contain them.
69 E->dest must have exactly one predecessor for this to work (it is
70 easy to achieve and we do not put it here because we do not want to
71 alter anything by this function). The number of basic blocks in the
72 path is returned. */
73 static int
74 find_path (edge e, basic_block **bbs)
75 {
76 gcc_assert (EDGE_COUNT (e->dest->preds) <= 1);
77
78 /* Find bbs in the path. */
79 *bbs = XCNEWVEC (basic_block, n_basic_blocks);
80 return dfs_enumerate_from (e->dest, 0, rpe_enum_p, *bbs,
81 n_basic_blocks, e->dest);
82 }
83
84 /* Fix placement of basic block BB inside loop hierarchy --
85 Let L be a loop to that BB belongs. Then every successor of BB must either
86 1) belong to some superloop of loop L, or
87 2) be a header of loop K such that K->outer is superloop of L
88 Returns true if we had to move BB into other loop to enforce this condition,
89 false if the placement of BB was already correct (provided that placements
90 of its successors are correct). */
91 static bool
92 fix_bb_placement (basic_block bb)
93 {
94 edge e;
95 edge_iterator ei;
96 struct loop *loop = current_loops->tree_root, *act;
97
98 FOR_EACH_EDGE (e, ei, bb->succs)
99 {
100 if (e->dest == EXIT_BLOCK_PTR)
101 continue;
102
103 act = e->dest->loop_father;
104 if (act->header == e->dest)
105 act = loop_outer (act);
106
107 if (flow_loop_nested_p (loop, act))
108 loop = act;
109 }
110
111 if (loop == bb->loop_father)
112 return false;
113
114 remove_bb_from_loops (bb);
115 add_bb_to_loop (bb, loop);
116
117 return true;
118 }
119
120 /* Fix placement of LOOP inside loop tree, i.e. find the innermost superloop
121 of LOOP to that leads at least one exit edge of LOOP, and set it
122 as the immediate superloop of LOOP. Return true if the immediate superloop
123 of LOOP changed. */
124
125 static bool
126 fix_loop_placement (struct loop *loop)
127 {
128 unsigned i;
129 edge e;
130 VEC (edge, heap) *exits = get_loop_exit_edges (loop);
131 struct loop *father = current_loops->tree_root, *act;
132 bool ret = false;
133
134 for (i = 0; VEC_iterate (edge, exits, i, e); i++)
135 {
136 act = find_common_loop (loop, e->dest->loop_father);
137 if (flow_loop_nested_p (father, act))
138 father = act;
139 }
140
141 if (father != loop_outer (loop))
142 {
143 for (act = loop_outer (loop); act != father; act = loop_outer (act))
144 act->num_nodes -= loop->num_nodes;
145 flow_loop_tree_node_remove (loop);
146 flow_loop_tree_node_add (father, loop);
147
148 /* The exit edges of LOOP no longer exits its original immediate
149 superloops; remove them from the appropriate exit lists. */
150 for (i = 0; VEC_iterate (edge, exits, i, e); i++)
151 rescan_loop_exit (e, false, false);
152
153 ret = true;
154 }
155
156 VEC_free (edge, heap, exits);
157 return ret;
158 }
159
160 /* Fix placements of basic blocks inside loop hierarchy stored in loops; i.e.
161 enforce condition condition stated in description of fix_bb_placement. We
162 start from basic block FROM that had some of its successors removed, so that
163 his placement no longer has to be correct, and iteratively fix placement of
164 its predecessors that may change if placement of FROM changed. Also fix
165 placement of subloops of FROM->loop_father, that might also be altered due
166 to this change; the condition for them is similar, except that instead of
167 successors we consider edges coming out of the loops.
168
169 If the changes may invalidate the information about irreducible regions,
170 IRRED_INVALIDATED is set to true. */
171
172 static void
173 fix_bb_placements (basic_block from,
174 bool *irred_invalidated)
175 {
176 sbitmap in_queue;
177 basic_block *queue, *qtop, *qbeg, *qend;
178 struct loop *base_loop;
179 edge e;
180
181 /* We pass through blocks back-reachable from FROM, testing whether some
182 of their successors moved to outer loop. It may be necessary to
183 iterate several times, but it is finite, as we stop unless we move
184 the basic block up the loop structure. The whole story is a bit
185 more complicated due to presence of subloops, those are moved using
186 fix_loop_placement. */
187
188 base_loop = from->loop_father;
189 if (base_loop == current_loops->tree_root)
190 return;
191
192 in_queue = sbitmap_alloc (last_basic_block);
193 sbitmap_zero (in_queue);
194 SET_BIT (in_queue, from->index);
195 /* Prevent us from going out of the base_loop. */
196 SET_BIT (in_queue, base_loop->header->index);
197
198 queue = XNEWVEC (basic_block, base_loop->num_nodes + 1);
199 qtop = queue + base_loop->num_nodes + 1;
200 qbeg = queue;
201 qend = queue + 1;
202 *qbeg = from;
203
204 while (qbeg != qend)
205 {
206 edge_iterator ei;
207 from = *qbeg;
208 qbeg++;
209 if (qbeg == qtop)
210 qbeg = queue;
211 RESET_BIT (in_queue, from->index);
212
213 if (from->loop_father->header == from)
214 {
215 /* Subloop header, maybe move the loop upward. */
216 if (!fix_loop_placement (from->loop_father))
217 continue;
218 }
219 else
220 {
221 /* Ordinary basic block. */
222 if (!fix_bb_placement (from))
223 continue;
224 }
225
226 FOR_EACH_EDGE (e, ei, from->succs)
227 {
228 if (e->flags & EDGE_IRREDUCIBLE_LOOP)
229 *irred_invalidated = true;
230 }
231
232 /* Something has changed, insert predecessors into queue. */
233 FOR_EACH_EDGE (e, ei, from->preds)
234 {
235 basic_block pred = e->src;
236 struct loop *nca;
237
238 if (e->flags & EDGE_IRREDUCIBLE_LOOP)
239 *irred_invalidated = true;
240
241 if (TEST_BIT (in_queue, pred->index))
242 continue;
243
244 /* If it is subloop, then it either was not moved, or
245 the path up the loop tree from base_loop do not contain
246 it. */
247 nca = find_common_loop (pred->loop_father, base_loop);
248 if (pred->loop_father != base_loop
249 && (nca == base_loop
250 || nca != pred->loop_father))
251 pred = pred->loop_father->header;
252 else if (!flow_loop_nested_p (from->loop_father, pred->loop_father))
253 {
254 /* No point in processing it. */
255 continue;
256 }
257
258 if (TEST_BIT (in_queue, pred->index))
259 continue;
260
261 /* Schedule the basic block. */
262 *qend = pred;
263 qend++;
264 if (qend == qtop)
265 qend = queue;
266 SET_BIT (in_queue, pred->index);
267 }
268 }
269 free (in_queue);
270 free (queue);
271 }
272
273 /* Removes path beginning at edge E, i.e. remove basic blocks dominated by E
274 and update loop structures and dominators. Return true if we were able
275 to remove the path, false otherwise (and nothing is affected then). */
276 bool
277 remove_path (edge e)
278 {
279 edge ae;
280 basic_block *rem_bbs, *bord_bbs, from, bb;
281 VEC (basic_block, heap) *dom_bbs;
282 int i, nrem, n_bord_bbs, nreml;
283 sbitmap seen;
284 bool irred_invalidated = false;
285 struct loop **deleted_loop;
286
287 if (!can_remove_branch_p (e))
288 return false;
289
290 /* Keep track of whether we need to update information about irreducible
291 regions. This is the case if the removed area is a part of the
292 irreducible region, or if the set of basic blocks that belong to a loop
293 that is inside an irreducible region is changed, or if such a loop is
294 removed. */
295 if (e->flags & EDGE_IRREDUCIBLE_LOOP)
296 irred_invalidated = true;
297
298 /* We need to check whether basic blocks are dominated by the edge
299 e, but we only have basic block dominators. This is easy to
300 fix -- when e->dest has exactly one predecessor, this corresponds
301 to blocks dominated by e->dest, if not, split the edge. */
302 if (!single_pred_p (e->dest))
303 e = single_pred_edge (split_edge (e));
304
305 /* It may happen that by removing path we remove one or more loops
306 we belong to. In this case first unloop the loops, then proceed
307 normally. We may assume that e->dest is not a header of any loop,
308 as it now has exactly one predecessor. */
309 while (loop_outer (e->src->loop_father)
310 && dominated_by_p (CDI_DOMINATORS,
311 e->src->loop_father->latch, e->dest))
312 unloop (e->src->loop_father, &irred_invalidated);
313
314 /* Identify the path. */
315 nrem = find_path (e, &rem_bbs);
316
317 n_bord_bbs = 0;
318 bord_bbs = XCNEWVEC (basic_block, n_basic_blocks);
319 seen = sbitmap_alloc (last_basic_block);
320 sbitmap_zero (seen);
321
322 /* Find "border" hexes -- i.e. those with predecessor in removed path. */
323 for (i = 0; i < nrem; i++)
324 SET_BIT (seen, rem_bbs[i]->index);
325 for (i = 0; i < nrem; i++)
326 {
327 edge_iterator ei;
328 bb = rem_bbs[i];
329 FOR_EACH_EDGE (ae, ei, rem_bbs[i]->succs)
330 if (ae->dest != EXIT_BLOCK_PTR && !TEST_BIT (seen, ae->dest->index))
331 {
332 SET_BIT (seen, ae->dest->index);
333 bord_bbs[n_bord_bbs++] = ae->dest;
334
335 if (ae->flags & EDGE_IRREDUCIBLE_LOOP)
336 irred_invalidated = true;
337 }
338 }
339
340 /* Remove the path. */
341 from = e->src;
342 remove_branch (e);
343 dom_bbs = NULL;
344
345 /* Cancel loops contained in the path. */
346 deleted_loop = XNEWVEC (struct loop *, nrem);
347 nreml = 0;
348 for (i = 0; i < nrem; i++)
349 if (rem_bbs[i]->loop_father->header == rem_bbs[i])
350 deleted_loop[nreml++] = rem_bbs[i]->loop_father;
351
352 for (i = 0; i < nreml; i++)
353 cancel_loop_tree (deleted_loop[i]);
354 free (deleted_loop);
355
356 remove_bbs (rem_bbs, nrem);
357 free (rem_bbs);
358
359 /* Find blocks whose dominators may be affected. */
360 sbitmap_zero (seen);
361 for (i = 0; i < n_bord_bbs; i++)
362 {
363 basic_block ldom;
364
365 bb = get_immediate_dominator (CDI_DOMINATORS, bord_bbs[i]);
366 if (TEST_BIT (seen, bb->index))
367 continue;
368 SET_BIT (seen, bb->index);
369
370 for (ldom = first_dom_son (CDI_DOMINATORS, bb);
371 ldom;
372 ldom = next_dom_son (CDI_DOMINATORS, ldom))
373 if (!dominated_by_p (CDI_DOMINATORS, from, ldom))
374 VEC_safe_push (basic_block, heap, dom_bbs, ldom);
375 }
376
377 free (seen);
378
379 /* Recount dominators. */
380 iterate_fix_dominators (CDI_DOMINATORS, dom_bbs, true);
381 VEC_free (basic_block, heap, dom_bbs);
382 free (bord_bbs);
383
384 /* Fix placements of basic blocks inside loops and the placement of
385 loops in the loop tree. */
386 fix_bb_placements (from, &irred_invalidated);
387 fix_loop_placements (from->loop_father, &irred_invalidated);
388
389 if (irred_invalidated
390 && loops_state_satisfies_p (LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS))
391 mark_irreducible_loops ();
392
393 return true;
394 }
395
396 /* Creates place for a new LOOP in loops structure. */
397
398 static void
399 place_new_loop (struct loop *loop)
400 {
401 loop->num = number_of_loops ();
402 VEC_safe_push (loop_p, gc, current_loops->larray, loop);
403 }
404
405 /* Given LOOP structure with filled header and latch, find the body of the
406 corresponding loop and add it to loops tree. Insert the LOOP as a son of
407 outer. */
408
409 void
410 add_loop (struct loop *loop, struct loop *outer)
411 {
412 basic_block *bbs;
413 int i, n;
414 struct loop *subloop;
415 edge e;
416 edge_iterator ei;
417
418 /* Add it to loop structure. */
419 place_new_loop (loop);
420 flow_loop_tree_node_add (outer, loop);
421
422 /* Find its nodes. */
423 bbs = XNEWVEC (basic_block, n_basic_blocks);
424 n = get_loop_body_with_size (loop, bbs, n_basic_blocks);
425
426 for (i = 0; i < n; i++)
427 {
428 if (bbs[i]->loop_father == outer)
429 {
430 remove_bb_from_loops (bbs[i]);
431 add_bb_to_loop (bbs[i], loop);
432 continue;
433 }
434
435 loop->num_nodes++;
436
437 /* If we find a direct subloop of OUTER, move it to LOOP. */
438 subloop = bbs[i]->loop_father;
439 if (loop_outer (subloop) == outer
440 && subloop->header == bbs[i])
441 {
442 flow_loop_tree_node_remove (subloop);
443 flow_loop_tree_node_add (loop, subloop);
444 }
445 }
446
447 /* Update the information about loop exit edges. */
448 for (i = 0; i < n; i++)
449 {
450 FOR_EACH_EDGE (e, ei, bbs[i]->succs)
451 {
452 rescan_loop_exit (e, false, false);
453 }
454 }
455
456 free (bbs);
457 }
458
459 /* Multiply all frequencies in LOOP by NUM/DEN. */
460 void
461 scale_loop_frequencies (struct loop *loop, int num, int den)
462 {
463 basic_block *bbs;
464
465 bbs = get_loop_body (loop);
466 scale_bbs_frequencies_int (bbs, loop->num_nodes, num, den);
467 free (bbs);
468 }
469
470 /* Recompute dominance information for basic blocks outside LOOP. */
471
472 static void
473 update_dominators_in_loop (struct loop *loop)
474 {
475 VEC (basic_block, heap) *dom_bbs = NULL;
476 sbitmap seen;
477 basic_block *body;
478 unsigned i;
479
480 seen = sbitmap_alloc (last_basic_block);
481 sbitmap_zero (seen);
482 body = get_loop_body (loop);
483
484 for (i = 0; i < loop->num_nodes; i++)
485 SET_BIT (seen, body[i]->index);
486
487 for (i = 0; i < loop->num_nodes; i++)
488 {
489 basic_block ldom;
490
491 for (ldom = first_dom_son (CDI_DOMINATORS, body[i]);
492 ldom;
493 ldom = next_dom_son (CDI_DOMINATORS, ldom))
494 if (!TEST_BIT (seen, ldom->index))
495 {
496 SET_BIT (seen, ldom->index);
497 VEC_safe_push (basic_block, heap, dom_bbs, ldom);
498 }
499 }
500
501 iterate_fix_dominators (CDI_DOMINATORS, dom_bbs, false);
502 free (body);
503 free (seen);
504 VEC_free (basic_block, heap, dom_bbs);
505 }
506
507 /* Creates an if region as shown above. CONDITION is used to create
508 the test for the if.
509
510 |
511 | ------------- -------------
512 | | pred_bb | | pred_bb |
513 | ------------- -------------
514 | | |
515 | | | ENTRY_EDGE
516 | | ENTRY_EDGE V
517 | | ====> -------------
518 | | | cond_bb |
519 | | | CONDITION |
520 | | -------------
521 | V / \
522 | ------------- e_false / \ e_true
523 | | succ_bb | V V
524 | ------------- ----------- -----------
525 | | false_bb | | true_bb |
526 | ----------- -----------
527 | \ /
528 | \ /
529 | V V
530 | -------------
531 | | join_bb |
532 | -------------
533 | | exit_edge (result)
534 | V
535 | -----------
536 | | succ_bb |
537 | -----------
538 |
539 */
540
541 edge
542 create_empty_if_region_on_edge (edge entry_edge, tree condition)
543 {
544
545 basic_block succ_bb, cond_bb, true_bb, false_bb, join_bb;
546 edge e_true, e_false, exit_edge;
547 gimple cond_stmt;
548 tree simple_cond;
549 gimple_stmt_iterator gsi;
550
551 succ_bb = entry_edge->dest;
552 cond_bb = split_edge (entry_edge);
553
554 /* Insert condition in cond_bb. */
555 gsi = gsi_last_bb (cond_bb);
556 simple_cond =
557 force_gimple_operand_gsi (&gsi, condition, true, NULL,
558 false, GSI_NEW_STMT);
559 cond_stmt = gimple_build_cond_from_tree (simple_cond, NULL_TREE, NULL_TREE);
560 gsi = gsi_last_bb (cond_bb);
561 gsi_insert_after (&gsi, cond_stmt, GSI_NEW_STMT);
562
563 join_bb = split_edge (single_succ_edge (cond_bb));
564
565 e_true = single_succ_edge (cond_bb);
566 true_bb = split_edge (e_true);
567
568 e_false = make_edge (cond_bb, join_bb, 0);
569 false_bb = split_edge (e_false);
570
571 e_true->flags &= ~EDGE_FALLTHRU;
572 e_true->flags |= EDGE_TRUE_VALUE;
573 e_false->flags &= ~EDGE_FALLTHRU;
574 e_false->flags |= EDGE_FALSE_VALUE;
575
576 set_immediate_dominator (CDI_DOMINATORS, cond_bb, entry_edge->src);
577 set_immediate_dominator (CDI_DOMINATORS, true_bb, cond_bb);
578 set_immediate_dominator (CDI_DOMINATORS, false_bb, cond_bb);
579 set_immediate_dominator (CDI_DOMINATORS, join_bb, cond_bb);
580
581 exit_edge = single_succ_edge (join_bb);
582
583 if (single_pred_p (exit_edge->dest))
584 set_immediate_dominator (CDI_DOMINATORS, exit_edge->dest, join_bb);
585
586 return exit_edge;
587 }
588
589 /* create_empty_loop_on_edge
590 |
591 | ------------- ------------------------
592 | | pred_bb | | pred_bb |
593 | ------------- | IV_0 = INITIAL_VALUE |
594 | | ------------------------
595 | | ______ | ENTRY_EDGE
596 | | ENTRY_EDGE / V V
597 | | ====> | -----------------------------
598 | | | | IV_BEFORE = phi (IV_0, IV) |
599 | | | | loop_header |
600 | V | | IV_BEFORE <= UPPER_BOUND |
601 | ------------- | -----------------------\-----
602 | | succ_bb | | | \
603 | ------------- | | \ exit_e
604 | | V V---------
605 | | -------------- | succ_bb |
606 | | | loop_latch | ----------
607 | | |IV = IV_BEFORE + STRIDE
608 | | --------------
609 | \ /
610 | \ ___ /
611
612 Creates an empty loop as shown above, the IV_BEFORE is the SSA_NAME
613 that is used before the increment of IV. IV_BEFORE should be used for
614 adding code to the body that uses the IV. OUTER is the outer loop in
615 which the new loop should be inserted. */
616
617 struct loop *
618 create_empty_loop_on_edge (edge entry_edge,
619 tree initial_value,
620 tree stride, tree upper_bound,
621 tree iv,
622 tree *iv_before,
623 struct loop *outer)
624 {
625 basic_block loop_header, loop_latch, succ_bb, pred_bb;
626 struct loop *loop;
627 int freq;
628 gcov_type cnt;
629 gimple_stmt_iterator gsi;
630 bool insert_after;
631 gimple_seq stmts;
632 gimple cond_expr;
633 tree exit_test;
634 edge exit_e;
635 int prob;
636 tree upper_bound_gimplified;
637
638 gcc_assert (entry_edge && initial_value && stride && upper_bound && iv);
639
640 /* Create header, latch and wire up the loop. */
641 pred_bb = entry_edge->src;
642 loop_header = split_edge (entry_edge);
643 loop_latch = split_edge (single_succ_edge (loop_header));
644 succ_bb = single_succ (loop_latch);
645 make_edge (loop_header, succ_bb, 0);
646 redirect_edge_succ_nodup (single_succ_edge (loop_latch), loop_header);
647
648 /* Set immediate dominator information. */
649 set_immediate_dominator (CDI_DOMINATORS, loop_header, pred_bb);
650 set_immediate_dominator (CDI_DOMINATORS, loop_latch, loop_header);
651 set_immediate_dominator (CDI_DOMINATORS, succ_bb, loop_header);
652
653 /* Initialize a loop structure and put it in a loop hierarchy. */
654 loop = alloc_loop ();
655 loop->header = loop_header;
656 loop->latch = loop_latch;
657 add_loop (loop, outer);
658
659 /* TODO: Fix frequencies and counts. */
660 freq = EDGE_FREQUENCY (entry_edge);
661 cnt = entry_edge->count;
662
663 prob = REG_BR_PROB_BASE / 2;
664
665 scale_loop_frequencies (loop, REG_BR_PROB_BASE - prob, REG_BR_PROB_BASE);
666
667 /* Update dominators. */
668 update_dominators_in_loop (loop);
669
670 /* Construct IV code in loop. */
671 initial_value = force_gimple_operand (initial_value, &stmts, true, iv);
672 if (stmts)
673 {
674 gsi_insert_seq_on_edge (loop_preheader_edge (loop), stmts);
675 gsi_commit_edge_inserts ();
676 }
677
678 standard_iv_increment_position (loop, &gsi, &insert_after);
679 create_iv (initial_value, stride, iv, loop, &gsi, insert_after,
680 iv_before, NULL);
681
682 /* Modify edge flags. */
683 exit_e = single_exit (loop);
684 exit_e->flags = EDGE_LOOP_EXIT | EDGE_FALSE_VALUE;
685 single_pred_edge (loop_latch)->flags = EDGE_TRUE_VALUE;
686
687 gsi = gsi_last_bb (exit_e->src);
688
689 upper_bound_gimplified =
690 force_gimple_operand_gsi (&gsi, upper_bound, true, NULL,
691 false, GSI_NEW_STMT);
692 gsi = gsi_last_bb (exit_e->src);
693
694 cond_expr = gimple_build_cond
695 (LE_EXPR, *iv_before, upper_bound_gimplified, NULL_TREE, NULL_TREE);
696
697 exit_test = gimple_cond_lhs (cond_expr);
698 exit_test = force_gimple_operand_gsi (&gsi, exit_test, true, NULL,
699 false, GSI_NEW_STMT);
700 gimple_cond_set_lhs (cond_expr, exit_test);
701 gsi = gsi_last_bb (exit_e->src);
702 gsi_insert_after (&gsi, cond_expr, GSI_NEW_STMT);
703
704 return loop;
705 }
706
707 /* Make area between HEADER_EDGE and LATCH_EDGE a loop by connecting
708 latch to header and update loop tree and dominators
709 accordingly. Everything between them plus LATCH_EDGE destination must
710 be dominated by HEADER_EDGE destination, and back-reachable from
711 LATCH_EDGE source. HEADER_EDGE is redirected to basic block SWITCH_BB,
712 FALSE_EDGE of SWITCH_BB to original destination of HEADER_EDGE and
713 TRUE_EDGE of SWITCH_BB to original destination of LATCH_EDGE.
714 Returns the newly created loop. Frequencies and counts in the new loop
715 are scaled by FALSE_SCALE and in the old one by TRUE_SCALE. */
716
717 struct loop *
718 loopify (edge latch_edge, edge header_edge,
719 basic_block switch_bb, edge true_edge, edge false_edge,
720 bool redirect_all_edges, unsigned true_scale, unsigned false_scale)
721 {
722 basic_block succ_bb = latch_edge->dest;
723 basic_block pred_bb = header_edge->src;
724 struct loop *loop = alloc_loop ();
725 struct loop *outer = loop_outer (succ_bb->loop_father);
726 int freq;
727 gcov_type cnt;
728 edge e;
729 edge_iterator ei;
730
731 loop->header = header_edge->dest;
732 loop->latch = latch_edge->src;
733
734 freq = EDGE_FREQUENCY (header_edge);
735 cnt = header_edge->count;
736
737 /* Redirect edges. */
738 loop_redirect_edge (latch_edge, loop->header);
739 loop_redirect_edge (true_edge, succ_bb);
740
741 /* During loop versioning, one of the switch_bb edge is already properly
742 set. Do not redirect it again unless redirect_all_edges is true. */
743 if (redirect_all_edges)
744 {
745 loop_redirect_edge (header_edge, switch_bb);
746 loop_redirect_edge (false_edge, loop->header);
747
748 /* Update dominators. */
749 set_immediate_dominator (CDI_DOMINATORS, switch_bb, pred_bb);
750 set_immediate_dominator (CDI_DOMINATORS, loop->header, switch_bb);
751 }
752
753 set_immediate_dominator (CDI_DOMINATORS, succ_bb, switch_bb);
754
755 /* Compute new loop. */
756 add_loop (loop, outer);
757
758 /* Add switch_bb to appropriate loop. */
759 if (switch_bb->loop_father)
760 remove_bb_from_loops (switch_bb);
761 add_bb_to_loop (switch_bb, outer);
762
763 /* Fix frequencies. */
764 if (redirect_all_edges)
765 {
766 switch_bb->frequency = freq;
767 switch_bb->count = cnt;
768 FOR_EACH_EDGE (e, ei, switch_bb->succs)
769 {
770 e->count = (switch_bb->count * e->probability) / REG_BR_PROB_BASE;
771 }
772 }
773 scale_loop_frequencies (loop, false_scale, REG_BR_PROB_BASE);
774 scale_loop_frequencies (succ_bb->loop_father, true_scale, REG_BR_PROB_BASE);
775 update_dominators_in_loop (loop);
776
777 return loop;
778 }
779
780 /* Remove the latch edge of a LOOP and update loops to indicate that
781 the LOOP was removed. After this function, original loop latch will
782 have no successor, which caller is expected to fix somehow.
783
784 If this may cause the information about irreducible regions to become
785 invalid, IRRED_INVALIDATED is set to true. */
786
787 static void
788 unloop (struct loop *loop, bool *irred_invalidated)
789 {
790 basic_block *body;
791 struct loop *ploop;
792 unsigned i, n;
793 basic_block latch = loop->latch;
794 bool dummy = false;
795
796 if (loop_preheader_edge (loop)->flags & EDGE_IRREDUCIBLE_LOOP)
797 *irred_invalidated = true;
798
799 /* This is relatively straightforward. The dominators are unchanged, as
800 loop header dominates loop latch, so the only thing we have to care of
801 is the placement of loops and basic blocks inside the loop tree. We
802 move them all to the loop->outer, and then let fix_bb_placements do
803 its work. */
804
805 body = get_loop_body (loop);
806 n = loop->num_nodes;
807 for (i = 0; i < n; i++)
808 if (body[i]->loop_father == loop)
809 {
810 remove_bb_from_loops (body[i]);
811 add_bb_to_loop (body[i], loop_outer (loop));
812 }
813 free(body);
814
815 while (loop->inner)
816 {
817 ploop = loop->inner;
818 flow_loop_tree_node_remove (ploop);
819 flow_loop_tree_node_add (loop_outer (loop), ploop);
820 }
821
822 /* Remove the loop and free its data. */
823 delete_loop (loop);
824
825 remove_edge (single_succ_edge (latch));
826
827 /* We do not pass IRRED_INVALIDATED to fix_bb_placements here, as even if
828 there is an irreducible region inside the cancelled loop, the flags will
829 be still correct. */
830 fix_bb_placements (latch, &dummy);
831 }
832
833 /* Fix placement of superloops of LOOP inside loop tree, i.e. ensure that
834 condition stated in description of fix_loop_placement holds for them.
835 It is used in case when we removed some edges coming out of LOOP, which
836 may cause the right placement of LOOP inside loop tree to change.
837
838 IRRED_INVALIDATED is set to true if a change in the loop structures might
839 invalidate the information about irreducible regions. */
840
841 static void
842 fix_loop_placements (struct loop *loop, bool *irred_invalidated)
843 {
844 struct loop *outer;
845
846 while (loop_outer (loop))
847 {
848 outer = loop_outer (loop);
849 if (!fix_loop_placement (loop))
850 break;
851
852 /* Changing the placement of a loop in the loop tree may alter the
853 validity of condition 2) of the description of fix_bb_placement
854 for its preheader, because the successor is the header and belongs
855 to the loop. So call fix_bb_placements to fix up the placement
856 of the preheader and (possibly) of its predecessors. */
857 fix_bb_placements (loop_preheader_edge (loop)->src,
858 irred_invalidated);
859 loop = outer;
860 }
861 }
862
863 /* Copies copy of LOOP as subloop of TARGET loop, placing newly
864 created loop into loops structure. */
865 struct loop *
866 duplicate_loop (struct loop *loop, struct loop *target)
867 {
868 struct loop *cloop;
869 cloop = alloc_loop ();
870 place_new_loop (cloop);
871
872 /* Mark the new loop as copy of LOOP. */
873 set_loop_copy (loop, cloop);
874
875 /* Add it to target. */
876 flow_loop_tree_node_add (target, cloop);
877
878 return cloop;
879 }
880
881 /* Copies structure of subloops of LOOP into TARGET loop, placing
882 newly created loops into loop tree. */
883 static void
884 duplicate_subloops (struct loop *loop, struct loop *target)
885 {
886 struct loop *aloop, *cloop;
887
888 for (aloop = loop->inner; aloop; aloop = aloop->next)
889 {
890 cloop = duplicate_loop (aloop, target);
891 duplicate_subloops (aloop, cloop);
892 }
893 }
894
895 /* Copies structure of subloops of N loops, stored in array COPIED_LOOPS,
896 into TARGET loop, placing newly created loops into loop tree. */
897 static void
898 copy_loops_to (struct loop **copied_loops, int n, struct loop *target)
899 {
900 struct loop *aloop;
901 int i;
902
903 for (i = 0; i < n; i++)
904 {
905 aloop = duplicate_loop (copied_loops[i], target);
906 duplicate_subloops (copied_loops[i], aloop);
907 }
908 }
909
910 /* Redirects edge E to basic block DEST. */
911 static void
912 loop_redirect_edge (edge e, basic_block dest)
913 {
914 if (e->dest == dest)
915 return;
916
917 redirect_edge_and_branch_force (e, dest);
918 }
919
920 /* Check whether LOOP's body can be duplicated. */
921 bool
922 can_duplicate_loop_p (const struct loop *loop)
923 {
924 int ret;
925 basic_block *bbs = get_loop_body (loop);
926
927 ret = can_copy_bbs_p (bbs, loop->num_nodes);
928 free (bbs);
929
930 return ret;
931 }
932
933 /* Sets probability and count of edge E to zero. The probability and count
934 is redistributed evenly to the remaining edges coming from E->src. */
935
936 static void
937 set_zero_probability (edge e)
938 {
939 basic_block bb = e->src;
940 edge_iterator ei;
941 edge ae, last = NULL;
942 unsigned n = EDGE_COUNT (bb->succs);
943 gcov_type cnt = e->count, cnt1;
944 unsigned prob = e->probability, prob1;
945
946 gcc_assert (n > 1);
947 cnt1 = cnt / (n - 1);
948 prob1 = prob / (n - 1);
949
950 FOR_EACH_EDGE (ae, ei, bb->succs)
951 {
952 if (ae == e)
953 continue;
954
955 ae->probability += prob1;
956 ae->count += cnt1;
957 last = ae;
958 }
959
960 /* Move the rest to one of the edges. */
961 last->probability += prob % (n - 1);
962 last->count += cnt % (n - 1);
963
964 e->probability = 0;
965 e->count = 0;
966 }
967
968 /* Duplicates body of LOOP to given edge E NDUPL times. Takes care of updating
969 loop structure and dominators. E's destination must be LOOP header for
970 this to work, i.e. it must be entry or latch edge of this loop; these are
971 unique, as the loops must have preheaders for this function to work
972 correctly (in case E is latch, the function unrolls the loop, if E is entry
973 edge, it peels the loop). Store edges created by copying ORIG edge from
974 copies corresponding to set bits in WONT_EXIT bitmap (bit 0 corresponds to
975 original LOOP body, the other copies are numbered in order given by control
976 flow through them) into TO_REMOVE array. Returns false if duplication is
977 impossible. */
978
979 bool
980 duplicate_loop_to_header_edge (struct loop *loop, edge e,
981 unsigned int ndupl, sbitmap wont_exit,
982 edge orig, VEC (edge, heap) **to_remove,
983 int flags)
984 {
985 struct loop *target, *aloop;
986 struct loop **orig_loops;
987 unsigned n_orig_loops;
988 basic_block header = loop->header, latch = loop->latch;
989 basic_block *new_bbs, *bbs, *first_active;
990 basic_block new_bb, bb, first_active_latch = NULL;
991 edge ae, latch_edge;
992 edge spec_edges[2], new_spec_edges[2];
993 #define SE_LATCH 0
994 #define SE_ORIG 1
995 unsigned i, j, n;
996 int is_latch = (latch == e->src);
997 int scale_act = 0, *scale_step = NULL, scale_main = 0;
998 int scale_after_exit = 0;
999 int p, freq_in, freq_le, freq_out_orig;
1000 int prob_pass_thru, prob_pass_wont_exit, prob_pass_main;
1001 int add_irreducible_flag;
1002 basic_block place_after;
1003 bitmap bbs_to_scale = NULL;
1004 bitmap_iterator bi;
1005
1006 gcc_assert (e->dest == loop->header);
1007 gcc_assert (ndupl > 0);
1008
1009 if (orig)
1010 {
1011 /* Orig must be edge out of the loop. */
1012 gcc_assert (flow_bb_inside_loop_p (loop, orig->src));
1013 gcc_assert (!flow_bb_inside_loop_p (loop, orig->dest));
1014 }
1015
1016 n = loop->num_nodes;
1017 bbs = get_loop_body_in_dom_order (loop);
1018 gcc_assert (bbs[0] == loop->header);
1019 gcc_assert (bbs[n - 1] == loop->latch);
1020
1021 /* Check whether duplication is possible. */
1022 if (!can_copy_bbs_p (bbs, loop->num_nodes))
1023 {
1024 free (bbs);
1025 return false;
1026 }
1027 new_bbs = XNEWVEC (basic_block, loop->num_nodes);
1028
1029 /* In case we are doing loop peeling and the loop is in the middle of
1030 irreducible region, the peeled copies will be inside it too. */
1031 add_irreducible_flag = e->flags & EDGE_IRREDUCIBLE_LOOP;
1032 gcc_assert (!is_latch || !add_irreducible_flag);
1033
1034 /* Find edge from latch. */
1035 latch_edge = loop_latch_edge (loop);
1036
1037 if (flags & DLTHE_FLAG_UPDATE_FREQ)
1038 {
1039 /* Calculate coefficients by that we have to scale frequencies
1040 of duplicated loop bodies. */
1041 freq_in = header->frequency;
1042 freq_le = EDGE_FREQUENCY (latch_edge);
1043 if (freq_in == 0)
1044 freq_in = 1;
1045 if (freq_in < freq_le)
1046 freq_in = freq_le;
1047 freq_out_orig = orig ? EDGE_FREQUENCY (orig) : freq_in - freq_le;
1048 if (freq_out_orig > freq_in - freq_le)
1049 freq_out_orig = freq_in - freq_le;
1050 prob_pass_thru = RDIV (REG_BR_PROB_BASE * freq_le, freq_in);
1051 prob_pass_wont_exit =
1052 RDIV (REG_BR_PROB_BASE * (freq_le + freq_out_orig), freq_in);
1053
1054 if (orig
1055 && REG_BR_PROB_BASE - orig->probability != 0)
1056 {
1057 /* The blocks that are dominated by a removed exit edge ORIG have
1058 frequencies scaled by this. */
1059 scale_after_exit = RDIV (REG_BR_PROB_BASE * REG_BR_PROB_BASE,
1060 REG_BR_PROB_BASE - orig->probability);
1061 bbs_to_scale = BITMAP_ALLOC (NULL);
1062 for (i = 0; i < n; i++)
1063 {
1064 if (bbs[i] != orig->src
1065 && dominated_by_p (CDI_DOMINATORS, bbs[i], orig->src))
1066 bitmap_set_bit (bbs_to_scale, i);
1067 }
1068 }
1069
1070 scale_step = XNEWVEC (int, ndupl);
1071
1072 for (i = 1; i <= ndupl; i++)
1073 scale_step[i - 1] = TEST_BIT (wont_exit, i)
1074 ? prob_pass_wont_exit
1075 : prob_pass_thru;
1076
1077 /* Complete peeling is special as the probability of exit in last
1078 copy becomes 1. */
1079 if (flags & DLTHE_FLAG_COMPLETTE_PEEL)
1080 {
1081 int wanted_freq = EDGE_FREQUENCY (e);
1082
1083 if (wanted_freq > freq_in)
1084 wanted_freq = freq_in;
1085
1086 gcc_assert (!is_latch);
1087 /* First copy has frequency of incoming edge. Each subsequent
1088 frequency should be reduced by prob_pass_wont_exit. Caller
1089 should've managed the flags so all except for original loop
1090 has won't exist set. */
1091 scale_act = RDIV (wanted_freq * REG_BR_PROB_BASE, freq_in);
1092 /* Now simulate the duplication adjustments and compute header
1093 frequency of the last copy. */
1094 for (i = 0; i < ndupl; i++)
1095 wanted_freq = RDIV (wanted_freq * scale_step[i], REG_BR_PROB_BASE);
1096 scale_main = RDIV (wanted_freq * REG_BR_PROB_BASE, freq_in);
1097 }
1098 else if (is_latch)
1099 {
1100 prob_pass_main = TEST_BIT (wont_exit, 0)
1101 ? prob_pass_wont_exit
1102 : prob_pass_thru;
1103 p = prob_pass_main;
1104 scale_main = REG_BR_PROB_BASE;
1105 for (i = 0; i < ndupl; i++)
1106 {
1107 scale_main += p;
1108 p = RDIV (p * scale_step[i], REG_BR_PROB_BASE);
1109 }
1110 scale_main = RDIV (REG_BR_PROB_BASE * REG_BR_PROB_BASE, scale_main);
1111 scale_act = RDIV (scale_main * prob_pass_main, REG_BR_PROB_BASE);
1112 }
1113 else
1114 {
1115 scale_main = REG_BR_PROB_BASE;
1116 for (i = 0; i < ndupl; i++)
1117 scale_main = RDIV (scale_main * scale_step[i], REG_BR_PROB_BASE);
1118 scale_act = REG_BR_PROB_BASE - prob_pass_thru;
1119 }
1120 for (i = 0; i < ndupl; i++)
1121 gcc_assert (scale_step[i] >= 0 && scale_step[i] <= REG_BR_PROB_BASE);
1122 gcc_assert (scale_main >= 0 && scale_main <= REG_BR_PROB_BASE
1123 && scale_act >= 0 && scale_act <= REG_BR_PROB_BASE);
1124 }
1125
1126 /* Loop the new bbs will belong to. */
1127 target = e->src->loop_father;
1128
1129 /* Original loops. */
1130 n_orig_loops = 0;
1131 for (aloop = loop->inner; aloop; aloop = aloop->next)
1132 n_orig_loops++;
1133 orig_loops = XCNEWVEC (struct loop *, n_orig_loops);
1134 for (aloop = loop->inner, i = 0; aloop; aloop = aloop->next, i++)
1135 orig_loops[i] = aloop;
1136
1137 set_loop_copy (loop, target);
1138
1139 first_active = XNEWVEC (basic_block, n);
1140 if (is_latch)
1141 {
1142 memcpy (first_active, bbs, n * sizeof (basic_block));
1143 first_active_latch = latch;
1144 }
1145
1146 spec_edges[SE_ORIG] = orig;
1147 spec_edges[SE_LATCH] = latch_edge;
1148
1149 place_after = e->src;
1150 for (j = 0; j < ndupl; j++)
1151 {
1152 /* Copy loops. */
1153 copy_loops_to (orig_loops, n_orig_loops, target);
1154
1155 /* Copy bbs. */
1156 copy_bbs (bbs, n, new_bbs, spec_edges, 2, new_spec_edges, loop,
1157 place_after);
1158 place_after = new_spec_edges[SE_LATCH]->src;
1159
1160 if (flags & DLTHE_RECORD_COPY_NUMBER)
1161 for (i = 0; i < n; i++)
1162 {
1163 gcc_assert (!new_bbs[i]->aux);
1164 new_bbs[i]->aux = (void *)(size_t)(j + 1);
1165 }
1166
1167 /* Note whether the blocks and edges belong to an irreducible loop. */
1168 if (add_irreducible_flag)
1169 {
1170 for (i = 0; i < n; i++)
1171 new_bbs[i]->flags |= BB_DUPLICATED;
1172 for (i = 0; i < n; i++)
1173 {
1174 edge_iterator ei;
1175 new_bb = new_bbs[i];
1176 if (new_bb->loop_father == target)
1177 new_bb->flags |= BB_IRREDUCIBLE_LOOP;
1178
1179 FOR_EACH_EDGE (ae, ei, new_bb->succs)
1180 if ((ae->dest->flags & BB_DUPLICATED)
1181 && (ae->src->loop_father == target
1182 || ae->dest->loop_father == target))
1183 ae->flags |= EDGE_IRREDUCIBLE_LOOP;
1184 }
1185 for (i = 0; i < n; i++)
1186 new_bbs[i]->flags &= ~BB_DUPLICATED;
1187 }
1188
1189 /* Redirect the special edges. */
1190 if (is_latch)
1191 {
1192 redirect_edge_and_branch_force (latch_edge, new_bbs[0]);
1193 redirect_edge_and_branch_force (new_spec_edges[SE_LATCH],
1194 loop->header);
1195 set_immediate_dominator (CDI_DOMINATORS, new_bbs[0], latch);
1196 latch = loop->latch = new_bbs[n - 1];
1197 e = latch_edge = new_spec_edges[SE_LATCH];
1198 }
1199 else
1200 {
1201 redirect_edge_and_branch_force (new_spec_edges[SE_LATCH],
1202 loop->header);
1203 redirect_edge_and_branch_force (e, new_bbs[0]);
1204 set_immediate_dominator (CDI_DOMINATORS, new_bbs[0], e->src);
1205 e = new_spec_edges[SE_LATCH];
1206 }
1207
1208 /* Record exit edge in this copy. */
1209 if (orig && TEST_BIT (wont_exit, j + 1))
1210 {
1211 if (to_remove)
1212 VEC_safe_push (edge, heap, *to_remove, new_spec_edges[SE_ORIG]);
1213 set_zero_probability (new_spec_edges[SE_ORIG]);
1214
1215 /* Scale the frequencies of the blocks dominated by the exit. */
1216 if (bbs_to_scale)
1217 {
1218 EXECUTE_IF_SET_IN_BITMAP (bbs_to_scale, 0, i, bi)
1219 {
1220 scale_bbs_frequencies_int (new_bbs + i, 1, scale_after_exit,
1221 REG_BR_PROB_BASE);
1222 }
1223 }
1224 }
1225
1226 /* Record the first copy in the control flow order if it is not
1227 the original loop (i.e. in case of peeling). */
1228 if (!first_active_latch)
1229 {
1230 memcpy (first_active, new_bbs, n * sizeof (basic_block));
1231 first_active_latch = new_bbs[n - 1];
1232 }
1233
1234 /* Set counts and frequencies. */
1235 if (flags & DLTHE_FLAG_UPDATE_FREQ)
1236 {
1237 scale_bbs_frequencies_int (new_bbs, n, scale_act, REG_BR_PROB_BASE);
1238 scale_act = RDIV (scale_act * scale_step[j], REG_BR_PROB_BASE);
1239 }
1240 }
1241 free (new_bbs);
1242 free (orig_loops);
1243
1244 /* Record the exit edge in the original loop body, and update the frequencies. */
1245 if (orig && TEST_BIT (wont_exit, 0))
1246 {
1247 if (to_remove)
1248 VEC_safe_push (edge, heap, *to_remove, orig);
1249 set_zero_probability (orig);
1250
1251 /* Scale the frequencies of the blocks dominated by the exit. */
1252 if (bbs_to_scale)
1253 {
1254 EXECUTE_IF_SET_IN_BITMAP (bbs_to_scale, 0, i, bi)
1255 {
1256 scale_bbs_frequencies_int (bbs + i, 1, scale_after_exit,
1257 REG_BR_PROB_BASE);
1258 }
1259 }
1260 }
1261
1262 /* Update the original loop. */
1263 if (!is_latch)
1264 set_immediate_dominator (CDI_DOMINATORS, e->dest, e->src);
1265 if (flags & DLTHE_FLAG_UPDATE_FREQ)
1266 {
1267 scale_bbs_frequencies_int (bbs, n, scale_main, REG_BR_PROB_BASE);
1268 free (scale_step);
1269 }
1270
1271 /* Update dominators of outer blocks if affected. */
1272 for (i = 0; i < n; i++)
1273 {
1274 basic_block dominated, dom_bb;
1275 VEC (basic_block, heap) *dom_bbs;
1276 unsigned j;
1277
1278 bb = bbs[i];
1279 bb->aux = 0;
1280
1281 dom_bbs = get_dominated_by (CDI_DOMINATORS, bb);
1282 for (j = 0; VEC_iterate (basic_block, dom_bbs, j, dominated); j++)
1283 {
1284 if (flow_bb_inside_loop_p (loop, dominated))
1285 continue;
1286 dom_bb = nearest_common_dominator (
1287 CDI_DOMINATORS, first_active[i], first_active_latch);
1288 set_immediate_dominator (CDI_DOMINATORS, dominated, dom_bb);
1289 }
1290 VEC_free (basic_block, heap, dom_bbs);
1291 }
1292 free (first_active);
1293
1294 free (bbs);
1295 BITMAP_FREE (bbs_to_scale);
1296
1297 return true;
1298 }
1299
1300 /* A callback for make_forwarder block, to redirect all edges except for
1301 MFB_KJ_EDGE to the entry part. E is the edge for that we should decide
1302 whether to redirect it. */
1303
1304 edge mfb_kj_edge;
1305 bool
1306 mfb_keep_just (edge e)
1307 {
1308 return e != mfb_kj_edge;
1309 }
1310
1311 /* True when a candidate preheader BLOCK has predecessors from LOOP. */
1312
1313 static bool
1314 has_preds_from_loop (basic_block block, struct loop *loop)
1315 {
1316 edge e;
1317 edge_iterator ei;
1318
1319 FOR_EACH_EDGE (e, ei, block->preds)
1320 if (e->src->loop_father == loop)
1321 return true;
1322 return false;
1323 }
1324
1325 /* Creates a pre-header for a LOOP. Returns newly created block. Unless
1326 CP_SIMPLE_PREHEADERS is set in FLAGS, we only force LOOP to have single
1327 entry; otherwise we also force preheader block to have only one successor.
1328 When CP_FALLTHRU_PREHEADERS is set in FLAGS, we force the preheader block
1329 to be a fallthru predecessor to the loop header and to have only
1330 predecessors from outside of the loop.
1331 The function also updates dominators. */
1332
1333 basic_block
1334 create_preheader (struct loop *loop, int flags)
1335 {
1336 edge e, fallthru;
1337 basic_block dummy;
1338 int nentry = 0;
1339 bool irred = false;
1340 bool latch_edge_was_fallthru;
1341 edge one_succ_pred = NULL, single_entry = NULL;
1342 edge_iterator ei;
1343
1344 FOR_EACH_EDGE (e, ei, loop->header->preds)
1345 {
1346 if (e->src == loop->latch)
1347 continue;
1348 irred |= (e->flags & EDGE_IRREDUCIBLE_LOOP) != 0;
1349 nentry++;
1350 single_entry = e;
1351 if (single_succ_p (e->src))
1352 one_succ_pred = e;
1353 }
1354 gcc_assert (nentry);
1355 if (nentry == 1)
1356 {
1357 bool need_forwarder_block = false;
1358
1359 /* We do not allow entry block to be the loop preheader, since we
1360 cannot emit code there. */
1361 if (single_entry->src == ENTRY_BLOCK_PTR)
1362 need_forwarder_block = true;
1363 else
1364 {
1365 /* If we want simple preheaders, also force the preheader to have
1366 just a single successor. */
1367 if ((flags & CP_SIMPLE_PREHEADERS)
1368 && !single_succ_p (single_entry->src))
1369 need_forwarder_block = true;
1370 /* If we want fallthru preheaders, also create forwarder block when
1371 preheader ends with a jump or has predecessors from loop. */
1372 else if ((flags & CP_FALLTHRU_PREHEADERS)
1373 && (JUMP_P (BB_END (single_entry->src))
1374 || has_preds_from_loop (single_entry->src, loop)))
1375 need_forwarder_block = true;
1376 }
1377 if (! need_forwarder_block)
1378 return NULL;
1379 }
1380
1381 mfb_kj_edge = loop_latch_edge (loop);
1382 latch_edge_was_fallthru = (mfb_kj_edge->flags & EDGE_FALLTHRU) != 0;
1383 fallthru = make_forwarder_block (loop->header, mfb_keep_just, NULL);
1384 dummy = fallthru->src;
1385 loop->header = fallthru->dest;
1386
1387 /* Try to be clever in placing the newly created preheader. The idea is to
1388 avoid breaking any "fallthruness" relationship between blocks.
1389
1390 The preheader was created just before the header and all incoming edges
1391 to the header were redirected to the preheader, except the latch edge.
1392 So the only problematic case is when this latch edge was a fallthru
1393 edge: it is not anymore after the preheader creation so we have broken
1394 the fallthruness. We're therefore going to look for a better place. */
1395 if (latch_edge_was_fallthru)
1396 {
1397 if (one_succ_pred)
1398 e = one_succ_pred;
1399 else
1400 e = EDGE_PRED (dummy, 0);
1401
1402 move_block_after (dummy, e->src);
1403 }
1404
1405 if (irred)
1406 {
1407 dummy->flags |= BB_IRREDUCIBLE_LOOP;
1408 single_succ_edge (dummy)->flags |= EDGE_IRREDUCIBLE_LOOP;
1409 }
1410
1411 if (dump_file)
1412 fprintf (dump_file, "Created preheader block for loop %i\n",
1413 loop->num);
1414
1415 if (flags & CP_FALLTHRU_PREHEADERS)
1416 gcc_assert ((single_succ_edge (dummy)->flags & EDGE_FALLTHRU)
1417 && !JUMP_P (BB_END (dummy)));
1418
1419 return dummy;
1420 }
1421
1422 /* Create preheaders for each loop; for meaning of FLAGS see create_preheader. */
1423
1424 void
1425 create_preheaders (int flags)
1426 {
1427 loop_iterator li;
1428 struct loop *loop;
1429
1430 if (!current_loops)
1431 return;
1432
1433 FOR_EACH_LOOP (li, loop, 0)
1434 create_preheader (loop, flags);
1435 loops_state_set (LOOPS_HAVE_PREHEADERS);
1436 }
1437
1438 /* Forces all loop latches to have only single successor. */
1439
1440 void
1441 force_single_succ_latches (void)
1442 {
1443 loop_iterator li;
1444 struct loop *loop;
1445 edge e;
1446
1447 FOR_EACH_LOOP (li, loop, 0)
1448 {
1449 if (loop->latch != loop->header && single_succ_p (loop->latch))
1450 continue;
1451
1452 e = find_edge (loop->latch, loop->header);
1453
1454 split_edge (e);
1455 }
1456 loops_state_set (LOOPS_HAVE_SIMPLE_LATCHES);
1457 }
1458
1459 /* This function is called from loop_version. It splits the entry edge
1460 of the loop we want to version, adds the versioning condition, and
1461 adjust the edges to the two versions of the loop appropriately.
1462 e is an incoming edge. Returns the basic block containing the
1463 condition.
1464
1465 --- edge e ---- > [second_head]
1466
1467 Split it and insert new conditional expression and adjust edges.
1468
1469 --- edge e ---> [cond expr] ---> [first_head]
1470 |
1471 +---------> [second_head]
1472
1473 THEN_PROB is the probability of then branch of the condition. */
1474
1475 static basic_block
1476 lv_adjust_loop_entry_edge (basic_block first_head, basic_block second_head,
1477 edge e, void *cond_expr, unsigned then_prob)
1478 {
1479 basic_block new_head = NULL;
1480 edge e1;
1481
1482 gcc_assert (e->dest == second_head);
1483
1484 /* Split edge 'e'. This will create a new basic block, where we can
1485 insert conditional expr. */
1486 new_head = split_edge (e);
1487
1488 lv_add_condition_to_bb (first_head, second_head, new_head,
1489 cond_expr);
1490
1491 /* Don't set EDGE_TRUE_VALUE in RTL mode, as it's invalid there. */
1492 e = single_succ_edge (new_head);
1493 e1 = make_edge (new_head, first_head,
1494 current_ir_type () == IR_GIMPLE ? EDGE_TRUE_VALUE : 0);
1495 e1->probability = then_prob;
1496 e->probability = REG_BR_PROB_BASE - then_prob;
1497 e1->count = RDIV (e->count * e1->probability, REG_BR_PROB_BASE);
1498 e->count = RDIV (e->count * e->probability, REG_BR_PROB_BASE);
1499
1500 set_immediate_dominator (CDI_DOMINATORS, first_head, new_head);
1501 set_immediate_dominator (CDI_DOMINATORS, second_head, new_head);
1502
1503 /* Adjust loop header phi nodes. */
1504 lv_adjust_loop_header_phi (first_head, second_head, new_head, e1);
1505
1506 return new_head;
1507 }
1508
1509 /* Main entry point for Loop Versioning transformation.
1510
1511 This transformation given a condition and a loop, creates
1512 -if (condition) { loop_copy1 } else { loop_copy2 },
1513 where loop_copy1 is the loop transformed in one way, and loop_copy2
1514 is the loop transformed in another way (or unchanged). 'condition'
1515 may be a run time test for things that were not resolved by static
1516 analysis (overlapping ranges (anti-aliasing), alignment, etc.).
1517
1518 THEN_PROB is the probability of the then edge of the if. THEN_SCALE
1519 is the ratio by that the frequencies in the original loop should
1520 be scaled. ELSE_SCALE is the ratio by that the frequencies in the
1521 new loop should be scaled.
1522
1523 If PLACE_AFTER is true, we place the new loop after LOOP in the
1524 instruction stream, otherwise it is placed before LOOP. */
1525
1526 struct loop *
1527 loop_version (struct loop *loop,
1528 void *cond_expr, basic_block *condition_bb,
1529 unsigned then_prob, unsigned then_scale, unsigned else_scale,
1530 bool place_after)
1531 {
1532 basic_block first_head, second_head;
1533 edge entry, latch_edge, true_edge, false_edge;
1534 int irred_flag;
1535 struct loop *nloop;
1536 basic_block cond_bb;
1537
1538 /* Record entry and latch edges for the loop */
1539 entry = loop_preheader_edge (loop);
1540 irred_flag = entry->flags & EDGE_IRREDUCIBLE_LOOP;
1541 entry->flags &= ~EDGE_IRREDUCIBLE_LOOP;
1542
1543 /* Note down head of loop as first_head. */
1544 first_head = entry->dest;
1545
1546 /* Duplicate loop. */
1547 if (!cfg_hook_duplicate_loop_to_header_edge (loop, entry, 1,
1548 NULL, NULL, NULL, 0))
1549 return NULL;
1550
1551 /* After duplication entry edge now points to new loop head block.
1552 Note down new head as second_head. */
1553 second_head = entry->dest;
1554
1555 /* Split loop entry edge and insert new block with cond expr. */
1556 cond_bb = lv_adjust_loop_entry_edge (first_head, second_head,
1557 entry, cond_expr, then_prob);
1558 if (condition_bb)
1559 *condition_bb = cond_bb;
1560
1561 if (!cond_bb)
1562 {
1563 entry->flags |= irred_flag;
1564 return NULL;
1565 }
1566
1567 latch_edge = single_succ_edge (get_bb_copy (loop->latch));
1568
1569 extract_cond_bb_edges (cond_bb, &true_edge, &false_edge);
1570 nloop = loopify (latch_edge,
1571 single_pred_edge (get_bb_copy (loop->header)),
1572 cond_bb, true_edge, false_edge,
1573 false /* Do not redirect all edges. */,
1574 then_scale, else_scale);
1575
1576 /* loopify redirected latch_edge. Update its PENDING_STMTS. */
1577 lv_flush_pending_stmts (latch_edge);
1578
1579 /* loopify redirected condition_bb's succ edge. Update its PENDING_STMTS. */
1580 extract_cond_bb_edges (cond_bb, &true_edge, &false_edge);
1581 lv_flush_pending_stmts (false_edge);
1582 /* Adjust irreducible flag. */
1583 if (irred_flag)
1584 {
1585 cond_bb->flags |= BB_IRREDUCIBLE_LOOP;
1586 loop_preheader_edge (loop)->flags |= EDGE_IRREDUCIBLE_LOOP;
1587 loop_preheader_edge (nloop)->flags |= EDGE_IRREDUCIBLE_LOOP;
1588 single_pred_edge (cond_bb)->flags |= EDGE_IRREDUCIBLE_LOOP;
1589 }
1590
1591 if (place_after)
1592 {
1593 basic_block *bbs = get_loop_body_in_dom_order (nloop), after;
1594 unsigned i;
1595
1596 after = loop->latch;
1597
1598 for (i = 0; i < nloop->num_nodes; i++)
1599 {
1600 move_block_after (bbs[i], after);
1601 after = bbs[i];
1602 }
1603 free (bbs);
1604 }
1605
1606 /* At this point condition_bb is loop preheader with two successors,
1607 first_head and second_head. Make sure that loop preheader has only
1608 one successor. */
1609 split_edge (loop_preheader_edge (loop));
1610 split_edge (loop_preheader_edge (nloop));
1611
1612 return nloop;
1613 }
1614
1615 /* The structure of loops might have changed. Some loops might get removed
1616 (and their headers and latches were set to NULL), loop exists might get
1617 removed (thus the loop nesting may be wrong), and some blocks and edges
1618 were changed (so the information about bb --> loop mapping does not have
1619 to be correct). But still for the remaining loops the header dominates
1620 the latch, and loops did not get new subloops (new loops might possibly
1621 get created, but we are not interested in them). Fix up the mess.
1622
1623 If CHANGED_BBS is not NULL, basic blocks whose loop has changed are
1624 marked in it. */
1625
1626 void
1627 fix_loop_structure (bitmap changed_bbs)
1628 {
1629 basic_block bb;
1630 struct loop *loop, *ploop;
1631 loop_iterator li;
1632 bool record_exits = false;
1633 struct loop **superloop = XNEWVEC (struct loop *, number_of_loops ());
1634
1635 /* Remove the old bb -> loop mapping. Remember the depth of the blocks in
1636 the loop hierarchy, so that we can recognize blocks whose loop nesting
1637 relationship has changed. */
1638 FOR_EACH_BB (bb)
1639 {
1640 if (changed_bbs)
1641 bb->aux = (void *) (size_t) loop_depth (bb->loop_father);
1642 bb->loop_father = current_loops->tree_root;
1643 }
1644
1645 if (loops_state_satisfies_p (LOOPS_HAVE_RECORDED_EXITS))
1646 {
1647 release_recorded_exits ();
1648 record_exits = true;
1649 }
1650
1651 /* Remove the dead loops from structures. We start from the innermost
1652 loops, so that when we remove the loops, we know that the loops inside
1653 are preserved, and do not waste time relinking loops that will be
1654 removed later. */
1655 FOR_EACH_LOOP (li, loop, LI_FROM_INNERMOST)
1656 {
1657 if (loop->header)
1658 continue;
1659
1660 while (loop->inner)
1661 {
1662 ploop = loop->inner;
1663 flow_loop_tree_node_remove (ploop);
1664 flow_loop_tree_node_add (loop_outer (loop), ploop);
1665 }
1666
1667 /* Remove the loop and free its data. */
1668 delete_loop (loop);
1669 }
1670
1671 /* Rescan the bodies of loops, starting from the outermost ones. We assume
1672 that no optimization interchanges the order of the loops, i.e., it cannot
1673 happen that L1 was superloop of L2 before and it is subloop of L2 now
1674 (without explicitly updating loop information). At the same time, we also
1675 determine the new loop structure. */
1676 current_loops->tree_root->num_nodes = n_basic_blocks;
1677 FOR_EACH_LOOP (li, loop, 0)
1678 {
1679 superloop[loop->num] = loop->header->loop_father;
1680 loop->num_nodes = flow_loop_nodes_find (loop->header, loop);
1681 }
1682
1683 /* Now fix the loop nesting. */
1684 FOR_EACH_LOOP (li, loop, 0)
1685 {
1686 ploop = superloop[loop->num];
1687 if (ploop != loop_outer (loop))
1688 {
1689 flow_loop_tree_node_remove (loop);
1690 flow_loop_tree_node_add (ploop, loop);
1691 }
1692 }
1693 free (superloop);
1694
1695 /* Mark the blocks whose loop has changed. */
1696 if (changed_bbs)
1697 {
1698 FOR_EACH_BB (bb)
1699 {
1700 if ((void *) (size_t) loop_depth (bb->loop_father) != bb->aux)
1701 bitmap_set_bit (changed_bbs, bb->index);
1702
1703 bb->aux = NULL;
1704 }
1705 }
1706
1707 if (loops_state_satisfies_p (LOOPS_HAVE_PREHEADERS))
1708 create_preheaders (CP_SIMPLE_PREHEADERS);
1709
1710 if (loops_state_satisfies_p (LOOPS_HAVE_SIMPLE_LATCHES))
1711 force_single_succ_latches ();
1712
1713 if (loops_state_satisfies_p (LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS))
1714 mark_irreducible_loops ();
1715
1716 if (record_exits)
1717 record_loop_exits ();
1718
1719 #ifdef ENABLE_CHECKING
1720 verify_loop_structure ();
1721 #endif
1722 }