comparison gcc/cgraph.c @ 0:a06113de4d67

first commit
author kent <kent@cr.ie.u-ryukyu.ac.jp>
date Fri, 17 Jul 2009 14:47:48 +0900
parents
children 77e2b8dfacca
comparison
equal deleted inserted replaced
-1:000000000000 0:a06113de4d67
1 /* Callgraph handling code.
2 Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008
3 Free Software Foundation, Inc.
4 Contributed by Jan Hubicka
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 /* This file contains basic routines manipulating call graph
23
24 The callgraph:
25
26 The call-graph is data structure designed for intra-procedural optimization
27 but it is also used in non-unit-at-a-time compilation to allow easier code
28 sharing.
29
30 The call-graph consist of nodes and edges represented via linked lists.
31 Each function (external or not) corresponds to the unique node.
32
33 The mapping from declarations to call-graph nodes is done using hash table
34 based on DECL_UID. The call-graph nodes are created lazily using
35 cgraph_node function when called for unknown declaration.
36
37 The callgraph at the moment does not represent indirect calls or calls
38 from other compilation unit. Flag NEEDED is set for each node that may
39 be accessed in such an invisible way and it shall be considered an
40 entry point to the callgraph.
41
42 Interprocedural information:
43
44 Callgraph is place to store data needed for interprocedural optimization.
45 All data structures are divided into three components: local_info that
46 is produced while analyzing the function, global_info that is result
47 of global walking of the callgraph on the end of compilation and
48 rtl_info used by RTL backend to propagate data from already compiled
49 functions to their callers.
50
51 Inlining plans:
52
53 The function inlining information is decided in advance and maintained
54 in the callgraph as so called inline plan.
55 For each inlined call, the callee's node is cloned to represent the
56 new function copy produced by inliner.
57 Each inlined call gets a unique corresponding clone node of the callee
58 and the data structure is updated while inlining is performed, so
59 the clones are eliminated and their callee edges redirected to the
60 caller.
61
62 Each edge has "inline_failed" field. When the field is set to NULL,
63 the call will be inlined. When it is non-NULL it contains a reason
64 why inlining wasn't performed. */
65
66 #include "config.h"
67 #include "system.h"
68 #include "coretypes.h"
69 #include "tm.h"
70 #include "tree.h"
71 #include "tree-inline.h"
72 #include "langhooks.h"
73 #include "hashtab.h"
74 #include "toplev.h"
75 #include "flags.h"
76 #include "ggc.h"
77 #include "debug.h"
78 #include "target.h"
79 #include "basic-block.h"
80 #include "cgraph.h"
81 #include "varray.h"
82 #include "output.h"
83 #include "intl.h"
84 #include "gimple.h"
85 #include "tree-dump.h"
86 #include "tree-flow.h"
87 #include "value-prof.h"
88
89 static void cgraph_node_remove_callers (struct cgraph_node *node);
90 static inline void cgraph_edge_remove_caller (struct cgraph_edge *e);
91 static inline void cgraph_edge_remove_callee (struct cgraph_edge *e);
92
93 /* Hash table used to convert declarations into nodes. */
94 static GTY((param_is (struct cgraph_node))) htab_t cgraph_hash;
95 /* Hash table used to convert assembler names into nodes. */
96 static GTY((param_is (struct cgraph_node))) htab_t assembler_name_hash;
97
98 /* The linked list of cgraph nodes. */
99 struct cgraph_node *cgraph_nodes;
100
101 /* Queue of cgraph nodes scheduled to be lowered. */
102 struct cgraph_node *cgraph_nodes_queue;
103
104 /* Queue of cgraph nodes scheduled to be added into cgraph. This is a
105 secondary queue used during optimization to accommodate passes that
106 may generate new functions that need to be optimized and expanded. */
107 struct cgraph_node *cgraph_new_nodes;
108
109 /* Number of nodes in existence. */
110 int cgraph_n_nodes;
111
112 /* Maximal uid used in cgraph nodes. */
113 int cgraph_max_uid;
114
115 /* Maximal uid used in cgraph edges. */
116 int cgraph_edge_max_uid;
117
118 /* Maximal pid used for profiling */
119 int cgraph_max_pid;
120
121 /* Set when whole unit has been analyzed so we can access global info. */
122 bool cgraph_global_info_ready = false;
123
124 /* What state callgraph is in right now. */
125 enum cgraph_state cgraph_state = CGRAPH_STATE_CONSTRUCTION;
126
127 /* Set when the cgraph is fully build and the basic flags are computed. */
128 bool cgraph_function_flags_ready = false;
129
130 /* Linked list of cgraph asm nodes. */
131 struct cgraph_asm_node *cgraph_asm_nodes;
132
133 /* Last node in cgraph_asm_nodes. */
134 static GTY(()) struct cgraph_asm_node *cgraph_asm_last_node;
135
136 /* The order index of the next cgraph node to be created. This is
137 used so that we can sort the cgraph nodes in order by when we saw
138 them, to support -fno-toplevel-reorder. */
139 int cgraph_order;
140
141 /* List of hooks trigerred on cgraph_edge events. */
142 struct cgraph_edge_hook_list {
143 cgraph_edge_hook hook;
144 void *data;
145 struct cgraph_edge_hook_list *next;
146 };
147
148 /* List of hooks trigerred on cgraph_node events. */
149 struct cgraph_node_hook_list {
150 cgraph_node_hook hook;
151 void *data;
152 struct cgraph_node_hook_list *next;
153 };
154
155 /* List of hooks trigerred on events involving two cgraph_edges. */
156 struct cgraph_2edge_hook_list {
157 cgraph_2edge_hook hook;
158 void *data;
159 struct cgraph_2edge_hook_list *next;
160 };
161
162 /* List of hooks trigerred on events involving two cgraph_nodes. */
163 struct cgraph_2node_hook_list {
164 cgraph_2node_hook hook;
165 void *data;
166 struct cgraph_2node_hook_list *next;
167 };
168
169 /* List of hooks triggered when an edge is removed. */
170 struct cgraph_edge_hook_list *first_cgraph_edge_removal_hook;
171 /* List of hooks triggered when a node is removed. */
172 struct cgraph_node_hook_list *first_cgraph_node_removal_hook;
173 /* List of hooks triggered when an edge is duplicated. */
174 struct cgraph_2edge_hook_list *first_cgraph_edge_duplicated_hook;
175 /* List of hooks triggered when a node is duplicated. */
176 struct cgraph_2node_hook_list *first_cgraph_node_duplicated_hook;
177 /* List of hooks triggered when an function is inserted. */
178 struct cgraph_node_hook_list *first_cgraph_function_insertion_hook;
179
180 /* Head of a linked list of unused (freed) call graph nodes.
181 Do not GTY((delete)) this list so UIDs gets reliably recycled. */
182 static GTY(()) struct cgraph_node *free_nodes;
183 /* Head of a linked list of unused (freed) call graph edges.
184 Do not GTY((delete)) this list so UIDs gets reliably recycled. */
185 static GTY(()) struct cgraph_edge *free_edges;
186
187 /* Macros to access the next item in the list of free cgraph nodes and
188 edges. */
189 #define NEXT_FREE_NODE(NODE) (NODE)->next
190 #define NEXT_FREE_EDGE(EDGE) (EDGE)->prev_caller
191
192 /* Register HOOK to be called with DATA on each removed edge. */
193 struct cgraph_edge_hook_list *
194 cgraph_add_edge_removal_hook (cgraph_edge_hook hook, void *data)
195 {
196 struct cgraph_edge_hook_list *entry;
197 struct cgraph_edge_hook_list **ptr = &first_cgraph_edge_removal_hook;
198
199 entry = (struct cgraph_edge_hook_list *) xmalloc (sizeof (*entry));
200 entry->hook = hook;
201 entry->data = data;
202 entry->next = NULL;
203 while (*ptr)
204 ptr = &(*ptr)->next;
205 *ptr = entry;
206 return entry;
207 }
208
209 /* Remove ENTRY from the list of hooks called on removing edges. */
210 void
211 cgraph_remove_edge_removal_hook (struct cgraph_edge_hook_list *entry)
212 {
213 struct cgraph_edge_hook_list **ptr = &first_cgraph_edge_removal_hook;
214
215 while (*ptr != entry)
216 ptr = &(*ptr)->next;
217 *ptr = entry->next;
218 free (entry);
219 }
220
221 /* Call all edge removal hooks. */
222 static void
223 cgraph_call_edge_removal_hooks (struct cgraph_edge *e)
224 {
225 struct cgraph_edge_hook_list *entry = first_cgraph_edge_removal_hook;
226 while (entry)
227 {
228 entry->hook (e, entry->data);
229 entry = entry->next;
230 }
231 }
232
233 /* Register HOOK to be called with DATA on each removed node. */
234 struct cgraph_node_hook_list *
235 cgraph_add_node_removal_hook (cgraph_node_hook hook, void *data)
236 {
237 struct cgraph_node_hook_list *entry;
238 struct cgraph_node_hook_list **ptr = &first_cgraph_node_removal_hook;
239
240 entry = (struct cgraph_node_hook_list *) xmalloc (sizeof (*entry));
241 entry->hook = hook;
242 entry->data = data;
243 entry->next = NULL;
244 while (*ptr)
245 ptr = &(*ptr)->next;
246 *ptr = entry;
247 return entry;
248 }
249
250 /* Remove ENTRY from the list of hooks called on removing nodes. */
251 void
252 cgraph_remove_node_removal_hook (struct cgraph_node_hook_list *entry)
253 {
254 struct cgraph_node_hook_list **ptr = &first_cgraph_node_removal_hook;
255
256 while (*ptr != entry)
257 ptr = &(*ptr)->next;
258 *ptr = entry->next;
259 free (entry);
260 }
261
262 /* Call all node removal hooks. */
263 static void
264 cgraph_call_node_removal_hooks (struct cgraph_node *node)
265 {
266 struct cgraph_node_hook_list *entry = first_cgraph_node_removal_hook;
267 while (entry)
268 {
269 entry->hook (node, entry->data);
270 entry = entry->next;
271 }
272 }
273
274 /* Register HOOK to be called with DATA on each removed node. */
275 struct cgraph_node_hook_list *
276 cgraph_add_function_insertion_hook (cgraph_node_hook hook, void *data)
277 {
278 struct cgraph_node_hook_list *entry;
279 struct cgraph_node_hook_list **ptr = &first_cgraph_function_insertion_hook;
280
281 entry = (struct cgraph_node_hook_list *) xmalloc (sizeof (*entry));
282 entry->hook = hook;
283 entry->data = data;
284 entry->next = NULL;
285 while (*ptr)
286 ptr = &(*ptr)->next;
287 *ptr = entry;
288 return entry;
289 }
290
291 /* Remove ENTRY from the list of hooks called on removing nodes. */
292 void
293 cgraph_remove_function_insertion_hook (struct cgraph_node_hook_list *entry)
294 {
295 struct cgraph_node_hook_list **ptr = &first_cgraph_function_insertion_hook;
296
297 while (*ptr != entry)
298 ptr = &(*ptr)->next;
299 *ptr = entry->next;
300 free (entry);
301 }
302
303 /* Call all node removal hooks. */
304 void
305 cgraph_call_function_insertion_hooks (struct cgraph_node *node)
306 {
307 struct cgraph_node_hook_list *entry = first_cgraph_function_insertion_hook;
308 while (entry)
309 {
310 entry->hook (node, entry->data);
311 entry = entry->next;
312 }
313 }
314
315 /* Register HOOK to be called with DATA on each duplicated edge. */
316 struct cgraph_2edge_hook_list *
317 cgraph_add_edge_duplication_hook (cgraph_2edge_hook hook, void *data)
318 {
319 struct cgraph_2edge_hook_list *entry;
320 struct cgraph_2edge_hook_list **ptr = &first_cgraph_edge_duplicated_hook;
321
322 entry = (struct cgraph_2edge_hook_list *) xmalloc (sizeof (*entry));
323 entry->hook = hook;
324 entry->data = data;
325 entry->next = NULL;
326 while (*ptr)
327 ptr = &(*ptr)->next;
328 *ptr = entry;
329 return entry;
330 }
331
332 /* Remove ENTRY from the list of hooks called on duplicating edges. */
333 void
334 cgraph_remove_edge_duplication_hook (struct cgraph_2edge_hook_list *entry)
335 {
336 struct cgraph_2edge_hook_list **ptr = &first_cgraph_edge_duplicated_hook;
337
338 while (*ptr != entry)
339 ptr = &(*ptr)->next;
340 *ptr = entry->next;
341 free (entry);
342 }
343
344 /* Call all edge duplication hooks. */
345 static void
346 cgraph_call_edge_duplication_hooks (struct cgraph_edge *cs1,
347 struct cgraph_edge *cs2)
348 {
349 struct cgraph_2edge_hook_list *entry = first_cgraph_edge_duplicated_hook;
350 while (entry)
351 {
352 entry->hook (cs1, cs2, entry->data);
353 entry = entry->next;
354 }
355 }
356
357 /* Register HOOK to be called with DATA on each duplicated node. */
358 struct cgraph_2node_hook_list *
359 cgraph_add_node_duplication_hook (cgraph_2node_hook hook, void *data)
360 {
361 struct cgraph_2node_hook_list *entry;
362 struct cgraph_2node_hook_list **ptr = &first_cgraph_node_duplicated_hook;
363
364 entry = (struct cgraph_2node_hook_list *) xmalloc (sizeof (*entry));
365 entry->hook = hook;
366 entry->data = data;
367 entry->next = NULL;
368 while (*ptr)
369 ptr = &(*ptr)->next;
370 *ptr = entry;
371 return entry;
372 }
373
374 /* Remove ENTRY from the list of hooks called on duplicating nodes. */
375 void
376 cgraph_remove_node_duplication_hook (struct cgraph_2node_hook_list *entry)
377 {
378 struct cgraph_2node_hook_list **ptr = &first_cgraph_node_duplicated_hook;
379
380 while (*ptr != entry)
381 ptr = &(*ptr)->next;
382 *ptr = entry->next;
383 free (entry);
384 }
385
386 /* Call all node duplication hooks. */
387 static void
388 cgraph_call_node_duplication_hooks (struct cgraph_node *node1,
389 struct cgraph_node *node2)
390 {
391 struct cgraph_2node_hook_list *entry = first_cgraph_node_duplicated_hook;
392 while (entry)
393 {
394 entry->hook (node1, node2, entry->data);
395 entry = entry->next;
396 }
397 }
398
399 /* Returns a hash code for P. */
400
401 static hashval_t
402 hash_node (const void *p)
403 {
404 const struct cgraph_node *n = (const struct cgraph_node *) p;
405 return (hashval_t) DECL_UID (n->decl);
406 }
407
408 /* Returns nonzero if P1 and P2 are equal. */
409
410 static int
411 eq_node (const void *p1, const void *p2)
412 {
413 const struct cgraph_node *n1 = (const struct cgraph_node *) p1;
414 const struct cgraph_node *n2 = (const struct cgraph_node *) p2;
415 return DECL_UID (n1->decl) == DECL_UID (n2->decl);
416 }
417
418 /* Allocate new callgraph node and insert it into basic data structures. */
419
420 static struct cgraph_node *
421 cgraph_create_node (void)
422 {
423 struct cgraph_node *node;
424
425 if (free_nodes)
426 {
427 node = free_nodes;
428 free_nodes = NEXT_FREE_NODE (node);
429 }
430 else
431 {
432 node = GGC_CNEW (struct cgraph_node);
433 node->uid = cgraph_max_uid++;
434 }
435
436 node->next = cgraph_nodes;
437 node->pid = -1;
438 node->order = cgraph_order++;
439 if (cgraph_nodes)
440 cgraph_nodes->previous = node;
441 node->previous = NULL;
442 node->global.estimated_growth = INT_MIN;
443 cgraph_nodes = node;
444 cgraph_n_nodes++;
445 return node;
446 }
447
448 /* Return cgraph node assigned to DECL. Create new one when needed. */
449
450 struct cgraph_node *
451 cgraph_node (tree decl)
452 {
453 struct cgraph_node key, *node, **slot;
454
455 gcc_assert (TREE_CODE (decl) == FUNCTION_DECL);
456
457 if (!cgraph_hash)
458 cgraph_hash = htab_create_ggc (10, hash_node, eq_node, NULL);
459
460 key.decl = decl;
461
462 slot = (struct cgraph_node **) htab_find_slot (cgraph_hash, &key, INSERT);
463
464 if (*slot)
465 {
466 node = *slot;
467 if (!node->master_clone)
468 node->master_clone = node;
469 return node;
470 }
471
472 node = cgraph_create_node ();
473 node->decl = decl;
474 *slot = node;
475 if (DECL_CONTEXT (decl) && TREE_CODE (DECL_CONTEXT (decl)) == FUNCTION_DECL)
476 {
477 node->origin = cgraph_node (DECL_CONTEXT (decl));
478 node->next_nested = node->origin->nested;
479 node->origin->nested = node;
480 node->master_clone = node;
481 }
482 if (assembler_name_hash)
483 {
484 void **aslot;
485 tree name = DECL_ASSEMBLER_NAME (decl);
486
487 aslot = htab_find_slot_with_hash (assembler_name_hash, name,
488 decl_assembler_name_hash (name),
489 INSERT);
490 /* We can have multiple declarations with same assembler name. For C++
491 it is __builtin_strlen and strlen, for instance. Do we need to
492 record them all? Original implementation marked just first one
493 so lets hope for the best. */
494 if (*aslot == NULL)
495 *aslot = node;
496 }
497 return node;
498 }
499
500 /* Insert already constructed node into hashtable. */
501
502 void
503 cgraph_insert_node_to_hashtable (struct cgraph_node *node)
504 {
505 struct cgraph_node **slot;
506
507 slot = (struct cgraph_node **) htab_find_slot (cgraph_hash, node, INSERT);
508
509 gcc_assert (!*slot);
510 *slot = node;
511 }
512
513 /* Returns a hash code for P. */
514
515 static hashval_t
516 hash_node_by_assembler_name (const void *p)
517 {
518 const struct cgraph_node *n = (const struct cgraph_node *) p;
519 return (hashval_t) decl_assembler_name_hash (DECL_ASSEMBLER_NAME (n->decl));
520 }
521
522 /* Returns nonzero if P1 and P2 are equal. */
523
524 static int
525 eq_assembler_name (const void *p1, const void *p2)
526 {
527 const struct cgraph_node *n1 = (const struct cgraph_node *) p1;
528 const_tree name = (const_tree)p2;
529 return (decl_assembler_name_equal (n1->decl, name));
530 }
531
532 /* Return the cgraph node that has ASMNAME for its DECL_ASSEMBLER_NAME.
533 Return NULL if there's no such node. */
534
535 struct cgraph_node *
536 cgraph_node_for_asm (tree asmname)
537 {
538 struct cgraph_node *node;
539 void **slot;
540
541 if (!assembler_name_hash)
542 {
543 assembler_name_hash =
544 htab_create_ggc (10, hash_node_by_assembler_name, eq_assembler_name,
545 NULL);
546 for (node = cgraph_nodes; node; node = node->next)
547 if (!node->global.inlined_to)
548 {
549 tree name = DECL_ASSEMBLER_NAME (node->decl);
550 slot = htab_find_slot_with_hash (assembler_name_hash, name,
551 decl_assembler_name_hash (name),
552 INSERT);
553 /* We can have multiple declarations with same assembler name. For C++
554 it is __builtin_strlen and strlen, for instance. Do we need to
555 record them all? Original implementation marked just first one
556 so lets hope for the best. */
557 if (*slot)
558 continue;
559 *slot = node;
560 }
561 }
562
563 slot = htab_find_slot_with_hash (assembler_name_hash, asmname,
564 decl_assembler_name_hash (asmname),
565 NO_INSERT);
566
567 if (slot)
568 return (struct cgraph_node *) *slot;
569 return NULL;
570 }
571
572 /* Returns a hash value for X (which really is a die_struct). */
573
574 static hashval_t
575 edge_hash (const void *x)
576 {
577 return htab_hash_pointer (((const struct cgraph_edge *) x)->call_stmt);
578 }
579
580 /* Return nonzero if decl_id of die_struct X is the same as UID of decl *Y. */
581
582 static int
583 edge_eq (const void *x, const void *y)
584 {
585 return ((const struct cgraph_edge *) x)->call_stmt == y;
586 }
587
588
589 /* Return the callgraph edge representing the GIMPLE_CALL statement
590 CALL_STMT. */
591
592 struct cgraph_edge *
593 cgraph_edge (struct cgraph_node *node, gimple call_stmt)
594 {
595 struct cgraph_edge *e, *e2;
596 int n = 0;
597
598 if (node->call_site_hash)
599 return (struct cgraph_edge *)
600 htab_find_with_hash (node->call_site_hash, call_stmt,
601 htab_hash_pointer (call_stmt));
602
603 /* This loop may turn out to be performance problem. In such case adding
604 hashtables into call nodes with very many edges is probably best
605 solution. It is not good idea to add pointer into CALL_EXPR itself
606 because we want to make possible having multiple cgraph nodes representing
607 different clones of the same body before the body is actually cloned. */
608 for (e = node->callees; e; e= e->next_callee)
609 {
610 if (e->call_stmt == call_stmt)
611 break;
612 n++;
613 }
614
615 if (n > 100)
616 {
617 node->call_site_hash = htab_create_ggc (120, edge_hash, edge_eq, NULL);
618 for (e2 = node->callees; e2; e2 = e2->next_callee)
619 {
620 void **slot;
621 slot = htab_find_slot_with_hash (node->call_site_hash,
622 e2->call_stmt,
623 htab_hash_pointer (e2->call_stmt),
624 INSERT);
625 gcc_assert (!*slot);
626 *slot = e2;
627 }
628 }
629
630 return e;
631 }
632
633
634 /* Change field call_smt of edge E to NEW_STMT. */
635
636 void
637 cgraph_set_call_stmt (struct cgraph_edge *e, gimple new_stmt)
638 {
639 if (e->caller->call_site_hash)
640 {
641 htab_remove_elt_with_hash (e->caller->call_site_hash,
642 e->call_stmt,
643 htab_hash_pointer (e->call_stmt));
644 }
645 e->call_stmt = new_stmt;
646 if (e->caller->call_site_hash)
647 {
648 void **slot;
649 slot = htab_find_slot_with_hash (e->caller->call_site_hash,
650 e->call_stmt,
651 htab_hash_pointer
652 (e->call_stmt), INSERT);
653 gcc_assert (!*slot);
654 *slot = e;
655 }
656 }
657
658 /* Create edge from CALLER to CALLEE in the cgraph. */
659
660 struct cgraph_edge *
661 cgraph_create_edge (struct cgraph_node *caller, struct cgraph_node *callee,
662 gimple call_stmt, gcov_type count, int freq, int nest)
663 {
664 struct cgraph_edge *edge;
665
666 #ifdef ENABLE_CHECKING
667 /* This is rather pricely check possibly trigerring construction of call stmt
668 hashtable. */
669 gcc_assert (!cgraph_edge (caller, call_stmt));
670 #endif
671
672 gcc_assert (is_gimple_call (call_stmt));
673
674 if (free_edges)
675 {
676 edge = free_edges;
677 free_edges = NEXT_FREE_EDGE (edge);
678 }
679 else
680 {
681 edge = GGC_NEW (struct cgraph_edge);
682 edge->uid = cgraph_edge_max_uid++;
683 }
684
685 if (!callee->analyzed)
686 edge->inline_failed = N_("function body not available");
687 else if (callee->local.redefined_extern_inline)
688 edge->inline_failed = N_("redefined extern inline functions are not "
689 "considered for inlining");
690 else if (callee->local.inlinable)
691 edge->inline_failed = N_("function not considered for inlining");
692 else
693 edge->inline_failed = N_("function not inlinable");
694
695 edge->aux = NULL;
696
697 edge->caller = caller;
698 edge->callee = callee;
699 edge->call_stmt = call_stmt;
700 edge->prev_caller = NULL;
701 edge->next_caller = callee->callers;
702 if (callee->callers)
703 callee->callers->prev_caller = edge;
704 edge->prev_callee = NULL;
705 edge->next_callee = caller->callees;
706 if (caller->callees)
707 caller->callees->prev_callee = edge;
708 caller->callees = edge;
709 callee->callers = edge;
710 edge->count = count;
711 gcc_assert (count >= 0);
712 edge->frequency = freq;
713 gcc_assert (freq >= 0);
714 gcc_assert (freq <= CGRAPH_FREQ_MAX);
715 edge->loop_nest = nest;
716 edge->indirect_call = 0;
717 if (caller->call_site_hash)
718 {
719 void **slot;
720 slot = htab_find_slot_with_hash (caller->call_site_hash,
721 edge->call_stmt,
722 htab_hash_pointer
723 (edge->call_stmt),
724 INSERT);
725 gcc_assert (!*slot);
726 *slot = edge;
727 }
728 return edge;
729 }
730
731 /* Remove the edge E from the list of the callers of the callee. */
732
733 static inline void
734 cgraph_edge_remove_callee (struct cgraph_edge *e)
735 {
736 if (e->prev_caller)
737 e->prev_caller->next_caller = e->next_caller;
738 if (e->next_caller)
739 e->next_caller->prev_caller = e->prev_caller;
740 if (!e->prev_caller)
741 e->callee->callers = e->next_caller;
742 }
743
744 /* Remove the edge E from the list of the callees of the caller. */
745
746 static inline void
747 cgraph_edge_remove_caller (struct cgraph_edge *e)
748 {
749 if (e->prev_callee)
750 e->prev_callee->next_callee = e->next_callee;
751 if (e->next_callee)
752 e->next_callee->prev_callee = e->prev_callee;
753 if (!e->prev_callee)
754 e->caller->callees = e->next_callee;
755 if (e->caller->call_site_hash)
756 htab_remove_elt_with_hash (e->caller->call_site_hash,
757 e->call_stmt,
758 htab_hash_pointer (e->call_stmt));
759 }
760
761 /* Put the edge onto the free list. */
762
763 static void
764 cgraph_free_edge (struct cgraph_edge *e)
765 {
766 int uid = e->uid;
767
768 /* Clear out the edge so we do not dangle pointers. */
769 memset (e, 0, sizeof (*e));
770 e->uid = uid;
771 NEXT_FREE_EDGE (e) = free_edges;
772 free_edges = e;
773 }
774
775 /* Remove the edge E in the cgraph. */
776
777 void
778 cgraph_remove_edge (struct cgraph_edge *e)
779 {
780 /* Call all edge removal hooks. */
781 cgraph_call_edge_removal_hooks (e);
782
783 /* Remove from callers list of the callee. */
784 cgraph_edge_remove_callee (e);
785
786 /* Remove from callees list of the callers. */
787 cgraph_edge_remove_caller (e);
788
789 /* Put the edge onto the free list. */
790 cgraph_free_edge (e);
791 }
792
793 /* Redirect callee of E to N. The function does not update underlying
794 call expression. */
795
796 void
797 cgraph_redirect_edge_callee (struct cgraph_edge *e, struct cgraph_node *n)
798 {
799 /* Remove from callers list of the current callee. */
800 cgraph_edge_remove_callee (e);
801
802 /* Insert to callers list of the new callee. */
803 e->prev_caller = NULL;
804 if (n->callers)
805 n->callers->prev_caller = e;
806 e->next_caller = n->callers;
807 n->callers = e;
808 e->callee = n;
809 }
810
811
812 /* Update or remove the corresponding cgraph edge if a GIMPLE_CALL
813 OLD_STMT changed into NEW_STMT. */
814
815 void
816 cgraph_update_edges_for_call_stmt (gimple old_stmt, gimple new_stmt)
817 {
818 tree new_call = (is_gimple_call (new_stmt)) ? gimple_call_fn (new_stmt) : 0;
819 tree old_call = (is_gimple_call (old_stmt)) ? gimple_call_fn (old_stmt) : 0;
820 struct cgraph_node *node = cgraph_node (cfun->decl);
821
822 if (old_call != new_call)
823 {
824 struct cgraph_edge *e = cgraph_edge (node, old_stmt);
825 struct cgraph_edge *ne = NULL;
826 tree new_decl;
827
828 if (e)
829 {
830 gcov_type count = e->count;
831 int frequency = e->frequency;
832 int loop_nest = e->loop_nest;
833
834 cgraph_remove_edge (e);
835 if (new_call)
836 {
837 new_decl = gimple_call_fndecl (new_stmt);
838 if (new_decl)
839 {
840 ne = cgraph_create_edge (node, cgraph_node (new_decl),
841 new_stmt, count, frequency,
842 loop_nest);
843 gcc_assert (ne->inline_failed);
844 }
845 }
846 }
847 }
848 else if (old_stmt != new_stmt)
849 {
850 struct cgraph_edge *e = cgraph_edge (node, old_stmt);
851
852 if (e)
853 cgraph_set_call_stmt (e, new_stmt);
854 }
855 }
856
857
858 /* Remove all callees from the node. */
859
860 void
861 cgraph_node_remove_callees (struct cgraph_node *node)
862 {
863 struct cgraph_edge *e, *f;
864
865 /* It is sufficient to remove the edges from the lists of callers of
866 the callees. The callee list of the node can be zapped with one
867 assignment. */
868 for (e = node->callees; e; e = f)
869 {
870 f = e->next_callee;
871 cgraph_call_edge_removal_hooks (e);
872 cgraph_edge_remove_callee (e);
873 cgraph_free_edge (e);
874 }
875 node->callees = NULL;
876 if (node->call_site_hash)
877 {
878 htab_delete (node->call_site_hash);
879 node->call_site_hash = NULL;
880 }
881 }
882
883 /* Remove all callers from the node. */
884
885 static void
886 cgraph_node_remove_callers (struct cgraph_node *node)
887 {
888 struct cgraph_edge *e, *f;
889
890 /* It is sufficient to remove the edges from the lists of callees of
891 the callers. The caller list of the node can be zapped with one
892 assignment. */
893 for (e = node->callers; e; e = f)
894 {
895 f = e->next_caller;
896 cgraph_call_edge_removal_hooks (e);
897 cgraph_edge_remove_caller (e);
898 cgraph_free_edge (e);
899 }
900 node->callers = NULL;
901 }
902
903 /* Release memory used to represent body of function NODE. */
904
905 void
906 cgraph_release_function_body (struct cgraph_node *node)
907 {
908 if (DECL_STRUCT_FUNCTION (node->decl))
909 {
910 tree old_decl = current_function_decl;
911 push_cfun (DECL_STRUCT_FUNCTION (node->decl));
912 if (cfun->gimple_df)
913 {
914 current_function_decl = node->decl;
915 delete_tree_ssa ();
916 delete_tree_cfg_annotations ();
917 cfun->eh = NULL;
918 current_function_decl = old_decl;
919 }
920 if (cfun->cfg)
921 {
922 gcc_assert (dom_computed[0] == DOM_NONE);
923 gcc_assert (dom_computed[1] == DOM_NONE);
924 clear_edges ();
925 }
926 if (cfun->value_histograms)
927 free_histograms ();
928 gcc_assert (!current_loops);
929 pop_cfun();
930 gimple_set_body (node->decl, NULL);
931 VEC_free (ipa_opt_pass, heap,
932 DECL_STRUCT_FUNCTION (node->decl)->ipa_transforms_to_apply);
933 /* Struct function hangs a lot of data that would leak if we didn't
934 removed all pointers to it. */
935 ggc_free (DECL_STRUCT_FUNCTION (node->decl));
936 DECL_STRUCT_FUNCTION (node->decl) = NULL;
937 }
938 DECL_SAVED_TREE (node->decl) = NULL;
939 /* If the node is abstract and needed, then do not clear DECL_INITIAL
940 of its associated function function declaration because it's
941 needed to emit debug info later. */
942 if (!node->abstract_and_needed)
943 DECL_INITIAL (node->decl) = error_mark_node;
944 }
945
946 /* Remove the node from cgraph. */
947
948 void
949 cgraph_remove_node (struct cgraph_node *node)
950 {
951 void **slot;
952 bool kill_body = false;
953 struct cgraph_node *n;
954 int uid = node->uid;
955
956 cgraph_call_node_removal_hooks (node);
957 cgraph_node_remove_callers (node);
958 cgraph_node_remove_callees (node);
959
960 /* Incremental inlining access removed nodes stored in the postorder list.
961 */
962 node->needed = node->reachable = false;
963 for (n = node->nested; n; n = n->next_nested)
964 n->origin = NULL;
965 node->nested = NULL;
966 if (node->origin)
967 {
968 struct cgraph_node **node2 = &node->origin->nested;
969
970 while (*node2 != node)
971 node2 = &(*node2)->next_nested;
972 *node2 = node->next_nested;
973 }
974 if (node->previous)
975 node->previous->next = node->next;
976 else
977 cgraph_nodes = node->next;
978 if (node->next)
979 node->next->previous = node->previous;
980 node->next = NULL;
981 node->previous = NULL;
982 slot = htab_find_slot (cgraph_hash, node, NO_INSERT);
983 if (*slot == node)
984 {
985 if (node->next_clone)
986 {
987 struct cgraph_node *new_node = node->next_clone;
988 struct cgraph_node *n;
989
990 /* Make the next clone be the master clone */
991 for (n = new_node; n; n = n->next_clone)
992 n->master_clone = new_node;
993
994 *slot = new_node;
995 node->next_clone->prev_clone = NULL;
996 }
997 else
998 {
999 htab_clear_slot (cgraph_hash, slot);
1000 kill_body = true;
1001 }
1002 }
1003 else
1004 {
1005 node->prev_clone->next_clone = node->next_clone;
1006 if (node->next_clone)
1007 node->next_clone->prev_clone = node->prev_clone;
1008 }
1009
1010 /* While all the clones are removed after being proceeded, the function
1011 itself is kept in the cgraph even after it is compiled. Check whether
1012 we are done with this body and reclaim it proactively if this is the case.
1013 */
1014 if (!kill_body && *slot)
1015 {
1016 struct cgraph_node *n = (struct cgraph_node *) *slot;
1017 if (!n->next_clone && !n->global.inlined_to
1018 && (cgraph_global_info_ready
1019 && (TREE_ASM_WRITTEN (n->decl) || DECL_EXTERNAL (n->decl))))
1020 kill_body = true;
1021 }
1022 if (assembler_name_hash)
1023 {
1024 tree name = DECL_ASSEMBLER_NAME (node->decl);
1025 slot = htab_find_slot_with_hash (assembler_name_hash, name,
1026 decl_assembler_name_hash (name),
1027 NO_INSERT);
1028 /* Inline clones are not hashed. */
1029 if (slot && *slot == node)
1030 htab_clear_slot (assembler_name_hash, slot);
1031 }
1032
1033 if (kill_body)
1034 cgraph_release_function_body (node);
1035 node->decl = NULL;
1036 if (node->call_site_hash)
1037 {
1038 htab_delete (node->call_site_hash);
1039 node->call_site_hash = NULL;
1040 }
1041 cgraph_n_nodes--;
1042
1043 /* Clear out the node to NULL all pointers and add the node to the free
1044 list. */
1045 memset (node, 0, sizeof(*node));
1046 node->uid = uid;
1047 NEXT_FREE_NODE (node) = free_nodes;
1048 free_nodes = node;
1049 }
1050
1051 /* Notify finalize_compilation_unit that given node is reachable. */
1052
1053 void
1054 cgraph_mark_reachable_node (struct cgraph_node *node)
1055 {
1056 if (!node->reachable && node->local.finalized)
1057 {
1058 notice_global_symbol (node->decl);
1059 node->reachable = 1;
1060 gcc_assert (!cgraph_global_info_ready);
1061
1062 node->next_needed = cgraph_nodes_queue;
1063 cgraph_nodes_queue = node;
1064 }
1065 }
1066
1067 /* Likewise indicate that a node is needed, i.e. reachable via some
1068 external means. */
1069
1070 void
1071 cgraph_mark_needed_node (struct cgraph_node *node)
1072 {
1073 node->needed = 1;
1074 cgraph_mark_reachable_node (node);
1075 }
1076
1077 /* Return local info for the compiled function. */
1078
1079 struct cgraph_local_info *
1080 cgraph_local_info (tree decl)
1081 {
1082 struct cgraph_node *node;
1083
1084 gcc_assert (TREE_CODE (decl) == FUNCTION_DECL);
1085 node = cgraph_node (decl);
1086 return &node->local;
1087 }
1088
1089 /* Return local info for the compiled function. */
1090
1091 struct cgraph_global_info *
1092 cgraph_global_info (tree decl)
1093 {
1094 struct cgraph_node *node;
1095
1096 gcc_assert (TREE_CODE (decl) == FUNCTION_DECL && cgraph_global_info_ready);
1097 node = cgraph_node (decl);
1098 return &node->global;
1099 }
1100
1101 /* Return local info for the compiled function. */
1102
1103 struct cgraph_rtl_info *
1104 cgraph_rtl_info (tree decl)
1105 {
1106 struct cgraph_node *node;
1107
1108 gcc_assert (TREE_CODE (decl) == FUNCTION_DECL);
1109 node = cgraph_node (decl);
1110 if (decl != current_function_decl
1111 && !TREE_ASM_WRITTEN (node->decl))
1112 return NULL;
1113 return &node->rtl;
1114 }
1115
1116 /* Return name of the node used in debug output. */
1117 const char *
1118 cgraph_node_name (struct cgraph_node *node)
1119 {
1120 return lang_hooks.decl_printable_name (node->decl, 2);
1121 }
1122
1123 /* Names used to print out the availability enum. */
1124 const char * const cgraph_availability_names[] =
1125 {"unset", "not_available", "overwritable", "available", "local"};
1126
1127
1128 /* Dump call graph node NODE to file F. */
1129
1130 void
1131 dump_cgraph_node (FILE *f, struct cgraph_node *node)
1132 {
1133 struct cgraph_edge *edge;
1134 fprintf (f, "%s/%i(%i):", cgraph_node_name (node), node->uid, node->pid);
1135 if (node->global.inlined_to)
1136 fprintf (f, " (inline copy in %s/%i)",
1137 cgraph_node_name (node->global.inlined_to),
1138 node->global.inlined_to->uid);
1139 if (cgraph_function_flags_ready)
1140 fprintf (f, " availability:%s",
1141 cgraph_availability_names [cgraph_function_body_availability (node)]);
1142 if (node->master_clone && node->master_clone->uid != node->uid)
1143 fprintf (f, "(%i)", node->master_clone->uid);
1144 if (node->count)
1145 fprintf (f, " executed "HOST_WIDEST_INT_PRINT_DEC"x",
1146 (HOST_WIDEST_INT)node->count);
1147 if (node->local.inline_summary.self_insns)
1148 fprintf (f, " %i insns", node->local.inline_summary.self_insns);
1149 if (node->global.insns && node->global.insns
1150 != node->local.inline_summary.self_insns)
1151 fprintf (f, " (%i after inlining)", node->global.insns);
1152 if (node->local.inline_summary.estimated_self_stack_size)
1153 fprintf (f, " %i bytes stack usage", (int)node->local.inline_summary.estimated_self_stack_size);
1154 if (node->global.estimated_stack_size != node->local.inline_summary.estimated_self_stack_size)
1155 fprintf (f, " %i bytes after inlining", (int)node->global.estimated_stack_size);
1156 if (node->origin)
1157 fprintf (f, " nested in: %s", cgraph_node_name (node->origin));
1158 if (node->needed)
1159 fprintf (f, " needed");
1160 else if (node->reachable)
1161 fprintf (f, " reachable");
1162 if (gimple_has_body_p (node->decl))
1163 fprintf (f, " body");
1164 if (node->output)
1165 fprintf (f, " output");
1166 if (node->local.local)
1167 fprintf (f, " local");
1168 if (node->local.externally_visible)
1169 fprintf (f, " externally_visible");
1170 if (node->local.finalized)
1171 fprintf (f, " finalized");
1172 if (node->local.disregard_inline_limits)
1173 fprintf (f, " always_inline");
1174 else if (node->local.inlinable)
1175 fprintf (f, " inlinable");
1176 if (node->local.redefined_extern_inline)
1177 fprintf (f, " redefined_extern_inline");
1178 if (TREE_ASM_WRITTEN (node->decl))
1179 fprintf (f, " asm_written");
1180
1181 fprintf (f, "\n called by: ");
1182 for (edge = node->callers; edge; edge = edge->next_caller)
1183 {
1184 fprintf (f, "%s/%i ", cgraph_node_name (edge->caller),
1185 edge->caller->uid);
1186 if (edge->count)
1187 fprintf (f, "("HOST_WIDEST_INT_PRINT_DEC"x) ",
1188 (HOST_WIDEST_INT)edge->count);
1189 if (edge->frequency)
1190 fprintf (f, "(%.2f per call) ",
1191 edge->frequency / (double)CGRAPH_FREQ_BASE);
1192 if (!edge->inline_failed)
1193 fprintf(f, "(inlined) ");
1194 if (edge->indirect_call)
1195 fprintf(f, "(indirect) ");
1196 }
1197
1198 fprintf (f, "\n calls: ");
1199 for (edge = node->callees; edge; edge = edge->next_callee)
1200 {
1201 fprintf (f, "%s/%i ", cgraph_node_name (edge->callee),
1202 edge->callee->uid);
1203 if (!edge->inline_failed)
1204 fprintf(f, "(inlined) ");
1205 if (edge->indirect_call)
1206 fprintf(f, "(indirect) ");
1207 if (edge->count)
1208 fprintf (f, "("HOST_WIDEST_INT_PRINT_DEC"x) ",
1209 (HOST_WIDEST_INT)edge->count);
1210 if (edge->frequency)
1211 fprintf (f, "(%.2f per call) ",
1212 edge->frequency / (double)CGRAPH_FREQ_BASE);
1213 if (edge->loop_nest)
1214 fprintf (f, "(nested in %i loops) ", edge->loop_nest);
1215 }
1216 fprintf (f, "\n");
1217 }
1218
1219
1220 /* Dump call graph node NODE to stderr. */
1221
1222 void
1223 debug_cgraph_node (struct cgraph_node *node)
1224 {
1225 dump_cgraph_node (stderr, node);
1226 }
1227
1228
1229 /* Dump the callgraph to file F. */
1230
1231 void
1232 dump_cgraph (FILE *f)
1233 {
1234 struct cgraph_node *node;
1235
1236 fprintf (f, "callgraph:\n\n");
1237 for (node = cgraph_nodes; node; node = node->next)
1238 dump_cgraph_node (f, node);
1239 }
1240
1241
1242 /* Dump the call graph to stderr. */
1243
1244 void
1245 debug_cgraph (void)
1246 {
1247 dump_cgraph (stderr);
1248 }
1249
1250
1251 /* Set the DECL_ASSEMBLER_NAME and update cgraph hashtables. */
1252
1253 void
1254 change_decl_assembler_name (tree decl, tree name)
1255 {
1256 gcc_assert (!assembler_name_hash);
1257 if (!DECL_ASSEMBLER_NAME_SET_P (decl))
1258 {
1259 SET_DECL_ASSEMBLER_NAME (decl, name);
1260 return;
1261 }
1262 if (name == DECL_ASSEMBLER_NAME (decl))
1263 return;
1264
1265 if (TREE_SYMBOL_REFERENCED (DECL_ASSEMBLER_NAME (decl))
1266 && DECL_RTL_SET_P (decl))
1267 warning (0, "%D renamed after being referenced in assembly", decl);
1268
1269 SET_DECL_ASSEMBLER_NAME (decl, name);
1270 }
1271
1272 /* Add a top-level asm statement to the list. */
1273
1274 struct cgraph_asm_node *
1275 cgraph_add_asm_node (tree asm_str)
1276 {
1277 struct cgraph_asm_node *node;
1278
1279 node = GGC_CNEW (struct cgraph_asm_node);
1280 node->asm_str = asm_str;
1281 node->order = cgraph_order++;
1282 node->next = NULL;
1283 if (cgraph_asm_nodes == NULL)
1284 cgraph_asm_nodes = node;
1285 else
1286 cgraph_asm_last_node->next = node;
1287 cgraph_asm_last_node = node;
1288 return node;
1289 }
1290
1291 /* Return true when the DECL can possibly be inlined. */
1292 bool
1293 cgraph_function_possibly_inlined_p (tree decl)
1294 {
1295 if (!cgraph_global_info_ready)
1296 return !DECL_UNINLINABLE (decl);
1297 return DECL_POSSIBLY_INLINED (decl);
1298 }
1299
1300 /* Create clone of E in the node N represented by CALL_EXPR the callgraph. */
1301 struct cgraph_edge *
1302 cgraph_clone_edge (struct cgraph_edge *e, struct cgraph_node *n,
1303 gimple call_stmt, gcov_type count_scale, int freq_scale,
1304 int loop_nest, bool update_original)
1305 {
1306 struct cgraph_edge *new_edge;
1307 gcov_type count = e->count * count_scale / REG_BR_PROB_BASE;
1308 gcov_type freq = e->frequency * (gcov_type) freq_scale / CGRAPH_FREQ_BASE;
1309
1310 if (freq > CGRAPH_FREQ_MAX)
1311 freq = CGRAPH_FREQ_MAX;
1312 new_edge = cgraph_create_edge (n, e->callee, call_stmt, count, freq,
1313 e->loop_nest + loop_nest);
1314
1315 new_edge->inline_failed = e->inline_failed;
1316 new_edge->indirect_call = e->indirect_call;
1317 if (update_original)
1318 {
1319 e->count -= new_edge->count;
1320 if (e->count < 0)
1321 e->count = 0;
1322 }
1323 cgraph_call_edge_duplication_hooks (e, new_edge);
1324 return new_edge;
1325 }
1326
1327 /* Create node representing clone of N executed COUNT times. Decrease
1328 the execution counts from original node too.
1329
1330 When UPDATE_ORIGINAL is true, the counts are subtracted from the original
1331 function's profile to reflect the fact that part of execution is handled
1332 by node. */
1333 struct cgraph_node *
1334 cgraph_clone_node (struct cgraph_node *n, gcov_type count, int freq,
1335 int loop_nest, bool update_original)
1336 {
1337 struct cgraph_node *new_node = cgraph_create_node ();
1338 struct cgraph_edge *e;
1339 gcov_type count_scale;
1340
1341 new_node->decl = n->decl;
1342 new_node->origin = n->origin;
1343 if (new_node->origin)
1344 {
1345 new_node->next_nested = new_node->origin->nested;
1346 new_node->origin->nested = new_node;
1347 }
1348 new_node->analyzed = n->analyzed;
1349 new_node->local = n->local;
1350 new_node->global = n->global;
1351 new_node->rtl = n->rtl;
1352 new_node->master_clone = n->master_clone;
1353 new_node->count = count;
1354 if (n->count)
1355 {
1356 if (new_node->count > n->count)
1357 count_scale = REG_BR_PROB_BASE;
1358 else
1359 count_scale = new_node->count * REG_BR_PROB_BASE / n->count;
1360 }
1361 else
1362 count_scale = 0;
1363 if (update_original)
1364 {
1365 n->count -= count;
1366 if (n->count < 0)
1367 n->count = 0;
1368 }
1369
1370 for (e = n->callees;e; e=e->next_callee)
1371 cgraph_clone_edge (e, new_node, e->call_stmt, count_scale, freq, loop_nest,
1372 update_original);
1373
1374 new_node->next_clone = n->next_clone;
1375 new_node->prev_clone = n;
1376 n->next_clone = new_node;
1377 if (new_node->next_clone)
1378 new_node->next_clone->prev_clone = new_node;
1379
1380 cgraph_call_node_duplication_hooks (n, new_node);
1381 return new_node;
1382 }
1383
1384 /* Return true if N is an master_clone, (see cgraph_master_clone). */
1385
1386 bool
1387 cgraph_is_master_clone (struct cgraph_node *n)
1388 {
1389 return (n == cgraph_master_clone (n));
1390 }
1391
1392 struct cgraph_node *
1393 cgraph_master_clone (struct cgraph_node *n)
1394 {
1395 enum availability avail = cgraph_function_body_availability (n);
1396
1397 if (avail == AVAIL_NOT_AVAILABLE || avail == AVAIL_OVERWRITABLE)
1398 return NULL;
1399
1400 if (!n->master_clone)
1401 n->master_clone = cgraph_node (n->decl);
1402
1403 return n->master_clone;
1404 }
1405
1406 /* NODE is no longer nested function; update cgraph accordingly. */
1407 void
1408 cgraph_unnest_node (struct cgraph_node *node)
1409 {
1410 struct cgraph_node **node2 = &node->origin->nested;
1411 gcc_assert (node->origin);
1412
1413 while (*node2 != node)
1414 node2 = &(*node2)->next_nested;
1415 *node2 = node->next_nested;
1416 node->origin = NULL;
1417 }
1418
1419 /* Return function availability. See cgraph.h for description of individual
1420 return values. */
1421 enum availability
1422 cgraph_function_body_availability (struct cgraph_node *node)
1423 {
1424 enum availability avail;
1425 gcc_assert (cgraph_function_flags_ready);
1426 if (!node->analyzed)
1427 avail = AVAIL_NOT_AVAILABLE;
1428 else if (node->local.local)
1429 avail = AVAIL_LOCAL;
1430 else if (!node->local.externally_visible)
1431 avail = AVAIL_AVAILABLE;
1432
1433 /* If the function can be overwritten, return OVERWRITABLE. Take
1434 care at least of two notable extensions - the COMDAT functions
1435 used to share template instantiations in C++ (this is symmetric
1436 to code cp_cannot_inline_tree_fn and probably shall be shared and
1437 the inlinability hooks completely eliminated).
1438
1439 ??? Does the C++ one definition rule allow us to always return
1440 AVAIL_AVAILABLE here? That would be good reason to preserve this
1441 hook Similarly deal with extern inline functions - this is again
1442 necessary to get C++ shared functions having keyed templates
1443 right and in the C extension documentation we probably should
1444 document the requirement of both versions of function (extern
1445 inline and offline) having same side effect characteristics as
1446 good optimization is what this optimization is about. */
1447
1448 else if (!(*targetm.binds_local_p) (node->decl)
1449 && !DECL_COMDAT (node->decl) && !DECL_EXTERNAL (node->decl))
1450 avail = AVAIL_OVERWRITABLE;
1451 else avail = AVAIL_AVAILABLE;
1452
1453 return avail;
1454 }
1455
1456 /* Add the function FNDECL to the call graph.
1457 Unlike cgraph_finalize_function, this function is intended to be used
1458 by middle end and allows insertion of new function at arbitrary point
1459 of compilation. The function can be either in high, low or SSA form
1460 GIMPLE.
1461
1462 The function is assumed to be reachable and have address taken (so no
1463 API breaking optimizations are performed on it).
1464
1465 Main work done by this function is to enqueue the function for later
1466 processing to avoid need the passes to be re-entrant. */
1467
1468 void
1469 cgraph_add_new_function (tree fndecl, bool lowered)
1470 {
1471 struct cgraph_node *node;
1472 switch (cgraph_state)
1473 {
1474 case CGRAPH_STATE_CONSTRUCTION:
1475 /* Just enqueue function to be processed at nearest occurrence. */
1476 node = cgraph_node (fndecl);
1477 node->next_needed = cgraph_new_nodes;
1478 if (lowered)
1479 node->lowered = true;
1480 cgraph_new_nodes = node;
1481 break;
1482
1483 case CGRAPH_STATE_IPA:
1484 case CGRAPH_STATE_IPA_SSA:
1485 case CGRAPH_STATE_EXPANSION:
1486 /* Bring the function into finalized state and enqueue for later
1487 analyzing and compilation. */
1488 node = cgraph_node (fndecl);
1489 node->local.local = false;
1490 node->local.finalized = true;
1491 node->reachable = node->needed = true;
1492 if (!lowered && cgraph_state == CGRAPH_STATE_EXPANSION)
1493 {
1494 push_cfun (DECL_STRUCT_FUNCTION (fndecl));
1495 current_function_decl = fndecl;
1496 gimple_register_cfg_hooks ();
1497 tree_lowering_passes (fndecl);
1498 bitmap_obstack_initialize (NULL);
1499 if (!gimple_in_ssa_p (DECL_STRUCT_FUNCTION (fndecl)))
1500 execute_pass_list (pass_early_local_passes.pass.sub);
1501 bitmap_obstack_release (NULL);
1502 pop_cfun ();
1503 current_function_decl = NULL;
1504
1505 lowered = true;
1506 }
1507 if (lowered)
1508 node->lowered = true;
1509 node->next_needed = cgraph_new_nodes;
1510 cgraph_new_nodes = node;
1511 break;
1512
1513 case CGRAPH_STATE_FINISHED:
1514 /* At the very end of compilation we have to do all the work up
1515 to expansion. */
1516 push_cfun (DECL_STRUCT_FUNCTION (fndecl));
1517 current_function_decl = fndecl;
1518 gimple_register_cfg_hooks ();
1519 if (!lowered)
1520 tree_lowering_passes (fndecl);
1521 bitmap_obstack_initialize (NULL);
1522 if (!gimple_in_ssa_p (DECL_STRUCT_FUNCTION (fndecl)))
1523 execute_pass_list (pass_early_local_passes.pass.sub);
1524 bitmap_obstack_release (NULL);
1525 tree_rest_of_compilation (fndecl);
1526 pop_cfun ();
1527 current_function_decl = NULL;
1528 break;
1529 }
1530 }
1531
1532 #include "gt-cgraph.h"