comparison gcc/combine.c @ 0:a06113de4d67

first commit
author kent <kent@cr.ie.u-ryukyu.ac.jp>
date Fri, 17 Jul 2009 14:47:48 +0900
parents
children 3bfb6c00c1e0
comparison
equal deleted inserted replaced
-1:000000000000 0:a06113de4d67
1 /* Optimize by combining instructions for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
4 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 /* This module is essentially the "combiner" phase of the U. of Arizona
23 Portable Optimizer, but redone to work on our list-structured
24 representation for RTL instead of their string representation.
25
26 The LOG_LINKS of each insn identify the most recent assignment
27 to each REG used in the insn. It is a list of previous insns,
28 each of which contains a SET for a REG that is used in this insn
29 and not used or set in between. LOG_LINKs never cross basic blocks.
30 They were set up by the preceding pass (lifetime analysis).
31
32 We try to combine each pair of insns joined by a logical link.
33 We also try to combine triples of insns A, B and C when
34 C has a link back to B and B has a link back to A.
35
36 LOG_LINKS does not have links for use of the CC0. They don't
37 need to, because the insn that sets the CC0 is always immediately
38 before the insn that tests it. So we always regard a branch
39 insn as having a logical link to the preceding insn. The same is true
40 for an insn explicitly using CC0.
41
42 We check (with use_crosses_set_p) to avoid combining in such a way
43 as to move a computation to a place where its value would be different.
44
45 Combination is done by mathematically substituting the previous
46 insn(s) values for the regs they set into the expressions in
47 the later insns that refer to these regs. If the result is a valid insn
48 for our target machine, according to the machine description,
49 we install it, delete the earlier insns, and update the data flow
50 information (LOG_LINKS and REG_NOTES) for what we did.
51
52 There are a few exceptions where the dataflow information isn't
53 completely updated (however this is only a local issue since it is
54 regenerated before the next pass that uses it):
55
56 - reg_live_length is not updated
57 - reg_n_refs is not adjusted in the rare case when a register is
58 no longer required in a computation
59 - there are extremely rare cases (see distribute_notes) when a
60 REG_DEAD note is lost
61 - a LOG_LINKS entry that refers to an insn with multiple SETs may be
62 removed because there is no way to know which register it was
63 linking
64
65 To simplify substitution, we combine only when the earlier insn(s)
66 consist of only a single assignment. To simplify updating afterward,
67 we never combine when a subroutine call appears in the middle.
68
69 Since we do not represent assignments to CC0 explicitly except when that
70 is all an insn does, there is no LOG_LINKS entry in an insn that uses
71 the condition code for the insn that set the condition code.
72 Fortunately, these two insns must be consecutive.
73 Therefore, every JUMP_INSN is taken to have an implicit logical link
74 to the preceding insn. This is not quite right, since non-jumps can
75 also use the condition code; but in practice such insns would not
76 combine anyway. */
77
78 #include "config.h"
79 #include "system.h"
80 #include "coretypes.h"
81 #include "tm.h"
82 #include "rtl.h"
83 #include "tree.h"
84 #include "tm_p.h"
85 #include "flags.h"
86 #include "regs.h"
87 #include "hard-reg-set.h"
88 #include "basic-block.h"
89 #include "insn-config.h"
90 #include "function.h"
91 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
92 #include "expr.h"
93 #include "insn-attr.h"
94 #include "recog.h"
95 #include "real.h"
96 #include "toplev.h"
97 #include "target.h"
98 #include "optabs.h"
99 #include "insn-codes.h"
100 #include "rtlhooks-def.h"
101 /* Include output.h for dump_file. */
102 #include "output.h"
103 #include "params.h"
104 #include "timevar.h"
105 #include "tree-pass.h"
106 #include "df.h"
107 #include "cgraph.h"
108
109 /* Number of attempts to combine instructions in this function. */
110
111 static int combine_attempts;
112
113 /* Number of attempts that got as far as substitution in this function. */
114
115 static int combine_merges;
116
117 /* Number of instructions combined with added SETs in this function. */
118
119 static int combine_extras;
120
121 /* Number of instructions combined in this function. */
122
123 static int combine_successes;
124
125 /* Totals over entire compilation. */
126
127 static int total_attempts, total_merges, total_extras, total_successes;
128
129 /* combine_instructions may try to replace the right hand side of the
130 second instruction with the value of an associated REG_EQUAL note
131 before throwing it at try_combine. That is problematic when there
132 is a REG_DEAD note for a register used in the old right hand side
133 and can cause distribute_notes to do wrong things. This is the
134 second instruction if it has been so modified, null otherwise. */
135
136 static rtx i2mod;
137
138 /* When I2MOD is nonnull, this is a copy of the old right hand side. */
139
140 static rtx i2mod_old_rhs;
141
142 /* When I2MOD is nonnull, this is a copy of the new right hand side. */
143
144 static rtx i2mod_new_rhs;
145
146 typedef struct reg_stat_struct {
147 /* Record last point of death of (hard or pseudo) register n. */
148 rtx last_death;
149
150 /* Record last point of modification of (hard or pseudo) register n. */
151 rtx last_set;
152
153 /* The next group of fields allows the recording of the last value assigned
154 to (hard or pseudo) register n. We use this information to see if an
155 operation being processed is redundant given a prior operation performed
156 on the register. For example, an `and' with a constant is redundant if
157 all the zero bits are already known to be turned off.
158
159 We use an approach similar to that used by cse, but change it in the
160 following ways:
161
162 (1) We do not want to reinitialize at each label.
163 (2) It is useful, but not critical, to know the actual value assigned
164 to a register. Often just its form is helpful.
165
166 Therefore, we maintain the following fields:
167
168 last_set_value the last value assigned
169 last_set_label records the value of label_tick when the
170 register was assigned
171 last_set_table_tick records the value of label_tick when a
172 value using the register is assigned
173 last_set_invalid set to nonzero when it is not valid
174 to use the value of this register in some
175 register's value
176
177 To understand the usage of these tables, it is important to understand
178 the distinction between the value in last_set_value being valid and
179 the register being validly contained in some other expression in the
180 table.
181
182 (The next two parameters are out of date).
183
184 reg_stat[i].last_set_value is valid if it is nonzero, and either
185 reg_n_sets[i] is 1 or reg_stat[i].last_set_label == label_tick.
186
187 Register I may validly appear in any expression returned for the value
188 of another register if reg_n_sets[i] is 1. It may also appear in the
189 value for register J if reg_stat[j].last_set_invalid is zero, or
190 reg_stat[i].last_set_label < reg_stat[j].last_set_label.
191
192 If an expression is found in the table containing a register which may
193 not validly appear in an expression, the register is replaced by
194 something that won't match, (clobber (const_int 0)). */
195
196 /* Record last value assigned to (hard or pseudo) register n. */
197
198 rtx last_set_value;
199
200 /* Record the value of label_tick when an expression involving register n
201 is placed in last_set_value. */
202
203 int last_set_table_tick;
204
205 /* Record the value of label_tick when the value for register n is placed in
206 last_set_value. */
207
208 int last_set_label;
209
210 /* These fields are maintained in parallel with last_set_value and are
211 used to store the mode in which the register was last set, the bits
212 that were known to be zero when it was last set, and the number of
213 sign bits copies it was known to have when it was last set. */
214
215 unsigned HOST_WIDE_INT last_set_nonzero_bits;
216 char last_set_sign_bit_copies;
217 ENUM_BITFIELD(machine_mode) last_set_mode : 8;
218
219 /* Set nonzero if references to register n in expressions should not be
220 used. last_set_invalid is set nonzero when this register is being
221 assigned to and last_set_table_tick == label_tick. */
222
223 char last_set_invalid;
224
225 /* Some registers that are set more than once and used in more than one
226 basic block are nevertheless always set in similar ways. For example,
227 a QImode register may be loaded from memory in two places on a machine
228 where byte loads zero extend.
229
230 We record in the following fields if a register has some leading bits
231 that are always equal to the sign bit, and what we know about the
232 nonzero bits of a register, specifically which bits are known to be
233 zero.
234
235 If an entry is zero, it means that we don't know anything special. */
236
237 unsigned char sign_bit_copies;
238
239 unsigned HOST_WIDE_INT nonzero_bits;
240
241 /* Record the value of the label_tick when the last truncation
242 happened. The field truncated_to_mode is only valid if
243 truncation_label == label_tick. */
244
245 int truncation_label;
246
247 /* Record the last truncation seen for this register. If truncation
248 is not a nop to this mode we might be able to save an explicit
249 truncation if we know that value already contains a truncated
250 value. */
251
252 ENUM_BITFIELD(machine_mode) truncated_to_mode : 8;
253 } reg_stat_type;
254
255 DEF_VEC_O(reg_stat_type);
256 DEF_VEC_ALLOC_O(reg_stat_type,heap);
257
258 static VEC(reg_stat_type,heap) *reg_stat;
259
260 /* Record the luid of the last insn that invalidated memory
261 (anything that writes memory, and subroutine calls, but not pushes). */
262
263 static int mem_last_set;
264
265 /* Record the luid of the last CALL_INSN
266 so we can tell whether a potential combination crosses any calls. */
267
268 static int last_call_luid;
269
270 /* When `subst' is called, this is the insn that is being modified
271 (by combining in a previous insn). The PATTERN of this insn
272 is still the old pattern partially modified and it should not be
273 looked at, but this may be used to examine the successors of the insn
274 to judge whether a simplification is valid. */
275
276 static rtx subst_insn;
277
278 /* This is the lowest LUID that `subst' is currently dealing with.
279 get_last_value will not return a value if the register was set at or
280 after this LUID. If not for this mechanism, we could get confused if
281 I2 or I1 in try_combine were an insn that used the old value of a register
282 to obtain a new value. In that case, we might erroneously get the
283 new value of the register when we wanted the old one. */
284
285 static int subst_low_luid;
286
287 /* This contains any hard registers that are used in newpat; reg_dead_at_p
288 must consider all these registers to be always live. */
289
290 static HARD_REG_SET newpat_used_regs;
291
292 /* This is an insn to which a LOG_LINKS entry has been added. If this
293 insn is the earlier than I2 or I3, combine should rescan starting at
294 that location. */
295
296 static rtx added_links_insn;
297
298 /* Basic block in which we are performing combines. */
299 static basic_block this_basic_block;
300 static bool optimize_this_for_speed_p;
301
302
303 /* Length of the currently allocated uid_insn_cost array. */
304
305 static int max_uid_known;
306
307 /* The following array records the insn_rtx_cost for every insn
308 in the instruction stream. */
309
310 static int *uid_insn_cost;
311
312 /* The following array records the LOG_LINKS for every insn in the
313 instruction stream as an INSN_LIST rtx. */
314
315 static rtx *uid_log_links;
316
317 #define INSN_COST(INSN) (uid_insn_cost[INSN_UID (INSN)])
318 #define LOG_LINKS(INSN) (uid_log_links[INSN_UID (INSN)])
319
320 /* Incremented for each basic block. */
321
322 static int label_tick;
323
324 /* Reset to label_tick for each label. */
325
326 static int label_tick_ebb_start;
327
328 /* Mode used to compute significance in reg_stat[].nonzero_bits. It is the
329 largest integer mode that can fit in HOST_BITS_PER_WIDE_INT. */
330
331 static enum machine_mode nonzero_bits_mode;
332
333 /* Nonzero when reg_stat[].nonzero_bits and reg_stat[].sign_bit_copies can
334 be safely used. It is zero while computing them and after combine has
335 completed. This former test prevents propagating values based on
336 previously set values, which can be incorrect if a variable is modified
337 in a loop. */
338
339 static int nonzero_sign_valid;
340
341
342 /* Record one modification to rtl structure
343 to be undone by storing old_contents into *where. */
344
345 struct undo
346 {
347 struct undo *next;
348 enum { UNDO_RTX, UNDO_INT, UNDO_MODE } kind;
349 union { rtx r; int i; enum machine_mode m; } old_contents;
350 union { rtx *r; int *i; } where;
351 };
352
353 /* Record a bunch of changes to be undone, up to MAX_UNDO of them.
354 num_undo says how many are currently recorded.
355
356 other_insn is nonzero if we have modified some other insn in the process
357 of working on subst_insn. It must be verified too. */
358
359 struct undobuf
360 {
361 struct undo *undos;
362 struct undo *frees;
363 rtx other_insn;
364 };
365
366 static struct undobuf undobuf;
367
368 /* Number of times the pseudo being substituted for
369 was found and replaced. */
370
371 static int n_occurrences;
372
373 static rtx reg_nonzero_bits_for_combine (const_rtx, enum machine_mode, const_rtx,
374 enum machine_mode,
375 unsigned HOST_WIDE_INT,
376 unsigned HOST_WIDE_INT *);
377 static rtx reg_num_sign_bit_copies_for_combine (const_rtx, enum machine_mode, const_rtx,
378 enum machine_mode,
379 unsigned int, unsigned int *);
380 static void do_SUBST (rtx *, rtx);
381 static void do_SUBST_INT (int *, int);
382 static void init_reg_last (void);
383 static void setup_incoming_promotions (rtx);
384 static void set_nonzero_bits_and_sign_copies (rtx, const_rtx, void *);
385 static int cant_combine_insn_p (rtx);
386 static int can_combine_p (rtx, rtx, rtx, rtx, rtx *, rtx *);
387 static int combinable_i3pat (rtx, rtx *, rtx, rtx, int, rtx *);
388 static int contains_muldiv (rtx);
389 static rtx try_combine (rtx, rtx, rtx, int *);
390 static void undo_all (void);
391 static void undo_commit (void);
392 static rtx *find_split_point (rtx *, rtx);
393 static rtx subst (rtx, rtx, rtx, int, int);
394 static rtx combine_simplify_rtx (rtx, enum machine_mode, int);
395 static rtx simplify_if_then_else (rtx);
396 static rtx simplify_set (rtx);
397 static rtx simplify_logical (rtx);
398 static rtx expand_compound_operation (rtx);
399 static const_rtx expand_field_assignment (const_rtx);
400 static rtx make_extraction (enum machine_mode, rtx, HOST_WIDE_INT,
401 rtx, unsigned HOST_WIDE_INT, int, int, int);
402 static rtx extract_left_shift (rtx, int);
403 static rtx make_compound_operation (rtx, enum rtx_code);
404 static int get_pos_from_mask (unsigned HOST_WIDE_INT,
405 unsigned HOST_WIDE_INT *);
406 static rtx canon_reg_for_combine (rtx, rtx);
407 static rtx force_to_mode (rtx, enum machine_mode,
408 unsigned HOST_WIDE_INT, int);
409 static rtx if_then_else_cond (rtx, rtx *, rtx *);
410 static rtx known_cond (rtx, enum rtx_code, rtx, rtx);
411 static int rtx_equal_for_field_assignment_p (rtx, rtx);
412 static rtx make_field_assignment (rtx);
413 static rtx apply_distributive_law (rtx);
414 static rtx distribute_and_simplify_rtx (rtx, int);
415 static rtx simplify_and_const_int_1 (enum machine_mode, rtx,
416 unsigned HOST_WIDE_INT);
417 static rtx simplify_and_const_int (rtx, enum machine_mode, rtx,
418 unsigned HOST_WIDE_INT);
419 static int merge_outer_ops (enum rtx_code *, HOST_WIDE_INT *, enum rtx_code,
420 HOST_WIDE_INT, enum machine_mode, int *);
421 static rtx simplify_shift_const_1 (enum rtx_code, enum machine_mode, rtx, int);
422 static rtx simplify_shift_const (rtx, enum rtx_code, enum machine_mode, rtx,
423 int);
424 static int recog_for_combine (rtx *, rtx, rtx *);
425 static rtx gen_lowpart_for_combine (enum machine_mode, rtx);
426 static enum rtx_code simplify_comparison (enum rtx_code, rtx *, rtx *);
427 static void update_table_tick (rtx);
428 static void record_value_for_reg (rtx, rtx, rtx);
429 static void check_promoted_subreg (rtx, rtx);
430 static void record_dead_and_set_regs_1 (rtx, const_rtx, void *);
431 static void record_dead_and_set_regs (rtx);
432 static int get_last_value_validate (rtx *, rtx, int, int);
433 static rtx get_last_value (const_rtx);
434 static int use_crosses_set_p (const_rtx, int);
435 static void reg_dead_at_p_1 (rtx, const_rtx, void *);
436 static int reg_dead_at_p (rtx, rtx);
437 static void move_deaths (rtx, rtx, int, rtx, rtx *);
438 static int reg_bitfield_target_p (rtx, rtx);
439 static void distribute_notes (rtx, rtx, rtx, rtx, rtx, rtx);
440 static void distribute_links (rtx);
441 static void mark_used_regs_combine (rtx);
442 static void record_promoted_value (rtx, rtx);
443 static int unmentioned_reg_p_1 (rtx *, void *);
444 static bool unmentioned_reg_p (rtx, rtx);
445 static int record_truncated_value (rtx *, void *);
446 static void record_truncated_values (rtx *, void *);
447 static bool reg_truncated_to_mode (enum machine_mode, const_rtx);
448 static rtx gen_lowpart_or_truncate (enum machine_mode, rtx);
449
450
451 /* It is not safe to use ordinary gen_lowpart in combine.
452 See comments in gen_lowpart_for_combine. */
453 #undef RTL_HOOKS_GEN_LOWPART
454 #define RTL_HOOKS_GEN_LOWPART gen_lowpart_for_combine
455
456 /* Our implementation of gen_lowpart never emits a new pseudo. */
457 #undef RTL_HOOKS_GEN_LOWPART_NO_EMIT
458 #define RTL_HOOKS_GEN_LOWPART_NO_EMIT gen_lowpart_for_combine
459
460 #undef RTL_HOOKS_REG_NONZERO_REG_BITS
461 #define RTL_HOOKS_REG_NONZERO_REG_BITS reg_nonzero_bits_for_combine
462
463 #undef RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES
464 #define RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES reg_num_sign_bit_copies_for_combine
465
466 #undef RTL_HOOKS_REG_TRUNCATED_TO_MODE
467 #define RTL_HOOKS_REG_TRUNCATED_TO_MODE reg_truncated_to_mode
468
469 static const struct rtl_hooks combine_rtl_hooks = RTL_HOOKS_INITIALIZER;
470
471
472 /* Try to split PATTERN found in INSN. This returns NULL_RTX if
473 PATTERN can not be split. Otherwise, it returns an insn sequence.
474 This is a wrapper around split_insns which ensures that the
475 reg_stat vector is made larger if the splitter creates a new
476 register. */
477
478 static rtx
479 combine_split_insns (rtx pattern, rtx insn)
480 {
481 rtx ret;
482 unsigned int nregs;
483
484 ret = split_insns (pattern, insn);
485 nregs = max_reg_num ();
486 if (nregs > VEC_length (reg_stat_type, reg_stat))
487 VEC_safe_grow_cleared (reg_stat_type, heap, reg_stat, nregs);
488 return ret;
489 }
490
491 /* This is used by find_single_use to locate an rtx in LOC that
492 contains exactly one use of DEST, which is typically either a REG
493 or CC0. It returns a pointer to the innermost rtx expression
494 containing DEST. Appearances of DEST that are being used to
495 totally replace it are not counted. */
496
497 static rtx *
498 find_single_use_1 (rtx dest, rtx *loc)
499 {
500 rtx x = *loc;
501 enum rtx_code code = GET_CODE (x);
502 rtx *result = NULL;
503 rtx *this_result;
504 int i;
505 const char *fmt;
506
507 switch (code)
508 {
509 case CONST_INT:
510 case CONST:
511 case LABEL_REF:
512 case SYMBOL_REF:
513 case CONST_DOUBLE:
514 case CONST_VECTOR:
515 case CLOBBER:
516 return 0;
517
518 case SET:
519 /* If the destination is anything other than CC0, PC, a REG or a SUBREG
520 of a REG that occupies all of the REG, the insn uses DEST if
521 it is mentioned in the destination or the source. Otherwise, we
522 need just check the source. */
523 if (GET_CODE (SET_DEST (x)) != CC0
524 && GET_CODE (SET_DEST (x)) != PC
525 && !REG_P (SET_DEST (x))
526 && ! (GET_CODE (SET_DEST (x)) == SUBREG
527 && REG_P (SUBREG_REG (SET_DEST (x)))
528 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
529 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
530 == ((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
531 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))))
532 break;
533
534 return find_single_use_1 (dest, &SET_SRC (x));
535
536 case MEM:
537 case SUBREG:
538 return find_single_use_1 (dest, &XEXP (x, 0));
539
540 default:
541 break;
542 }
543
544 /* If it wasn't one of the common cases above, check each expression and
545 vector of this code. Look for a unique usage of DEST. */
546
547 fmt = GET_RTX_FORMAT (code);
548 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
549 {
550 if (fmt[i] == 'e')
551 {
552 if (dest == XEXP (x, i)
553 || (REG_P (dest) && REG_P (XEXP (x, i))
554 && REGNO (dest) == REGNO (XEXP (x, i))))
555 this_result = loc;
556 else
557 this_result = find_single_use_1 (dest, &XEXP (x, i));
558
559 if (result == NULL)
560 result = this_result;
561 else if (this_result)
562 /* Duplicate usage. */
563 return NULL;
564 }
565 else if (fmt[i] == 'E')
566 {
567 int j;
568
569 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
570 {
571 if (XVECEXP (x, i, j) == dest
572 || (REG_P (dest)
573 && REG_P (XVECEXP (x, i, j))
574 && REGNO (XVECEXP (x, i, j)) == REGNO (dest)))
575 this_result = loc;
576 else
577 this_result = find_single_use_1 (dest, &XVECEXP (x, i, j));
578
579 if (result == NULL)
580 result = this_result;
581 else if (this_result)
582 return NULL;
583 }
584 }
585 }
586
587 return result;
588 }
589
590
591 /* See if DEST, produced in INSN, is used only a single time in the
592 sequel. If so, return a pointer to the innermost rtx expression in which
593 it is used.
594
595 If PLOC is nonzero, *PLOC is set to the insn containing the single use.
596
597 If DEST is cc0_rtx, we look only at the next insn. In that case, we don't
598 care about REG_DEAD notes or LOG_LINKS.
599
600 Otherwise, we find the single use by finding an insn that has a
601 LOG_LINKS pointing at INSN and has a REG_DEAD note for DEST. If DEST is
602 only referenced once in that insn, we know that it must be the first
603 and last insn referencing DEST. */
604
605 static rtx *
606 find_single_use (rtx dest, rtx insn, rtx *ploc)
607 {
608 rtx next;
609 rtx *result;
610 rtx link;
611
612 #ifdef HAVE_cc0
613 if (dest == cc0_rtx)
614 {
615 next = NEXT_INSN (insn);
616 if (next == 0
617 || (!NONJUMP_INSN_P (next) && !JUMP_P (next)))
618 return 0;
619
620 result = find_single_use_1 (dest, &PATTERN (next));
621 if (result && ploc)
622 *ploc = next;
623 return result;
624 }
625 #endif
626
627 if (!REG_P (dest))
628 return 0;
629
630 for (next = next_nonnote_insn (insn);
631 next != 0 && !LABEL_P (next);
632 next = next_nonnote_insn (next))
633 if (INSN_P (next) && dead_or_set_p (next, dest))
634 {
635 for (link = LOG_LINKS (next); link; link = XEXP (link, 1))
636 if (XEXP (link, 0) == insn)
637 break;
638
639 if (link)
640 {
641 result = find_single_use_1 (dest, &PATTERN (next));
642 if (ploc)
643 *ploc = next;
644 return result;
645 }
646 }
647
648 return 0;
649 }
650
651 /* Substitute NEWVAL, an rtx expression, into INTO, a place in some
652 insn. The substitution can be undone by undo_all. If INTO is already
653 set to NEWVAL, do not record this change. Because computing NEWVAL might
654 also call SUBST, we have to compute it before we put anything into
655 the undo table. */
656
657 static void
658 do_SUBST (rtx *into, rtx newval)
659 {
660 struct undo *buf;
661 rtx oldval = *into;
662
663 if (oldval == newval)
664 return;
665
666 /* We'd like to catch as many invalid transformations here as
667 possible. Unfortunately, there are way too many mode changes
668 that are perfectly valid, so we'd waste too much effort for
669 little gain doing the checks here. Focus on catching invalid
670 transformations involving integer constants. */
671 if (GET_MODE_CLASS (GET_MODE (oldval)) == MODE_INT
672 && GET_CODE (newval) == CONST_INT)
673 {
674 /* Sanity check that we're replacing oldval with a CONST_INT
675 that is a valid sign-extension for the original mode. */
676 gcc_assert (INTVAL (newval)
677 == trunc_int_for_mode (INTVAL (newval), GET_MODE (oldval)));
678
679 /* Replacing the operand of a SUBREG or a ZERO_EXTEND with a
680 CONST_INT is not valid, because after the replacement, the
681 original mode would be gone. Unfortunately, we can't tell
682 when do_SUBST is called to replace the operand thereof, so we
683 perform this test on oldval instead, checking whether an
684 invalid replacement took place before we got here. */
685 gcc_assert (!(GET_CODE (oldval) == SUBREG
686 && GET_CODE (SUBREG_REG (oldval)) == CONST_INT));
687 gcc_assert (!(GET_CODE (oldval) == ZERO_EXTEND
688 && GET_CODE (XEXP (oldval, 0)) == CONST_INT));
689 }
690
691 if (undobuf.frees)
692 buf = undobuf.frees, undobuf.frees = buf->next;
693 else
694 buf = XNEW (struct undo);
695
696 buf->kind = UNDO_RTX;
697 buf->where.r = into;
698 buf->old_contents.r = oldval;
699 *into = newval;
700
701 buf->next = undobuf.undos, undobuf.undos = buf;
702 }
703
704 #define SUBST(INTO, NEWVAL) do_SUBST(&(INTO), (NEWVAL))
705
706 /* Similar to SUBST, but NEWVAL is an int expression. Note that substitution
707 for the value of a HOST_WIDE_INT value (including CONST_INT) is
708 not safe. */
709
710 static void
711 do_SUBST_INT (int *into, int newval)
712 {
713 struct undo *buf;
714 int oldval = *into;
715
716 if (oldval == newval)
717 return;
718
719 if (undobuf.frees)
720 buf = undobuf.frees, undobuf.frees = buf->next;
721 else
722 buf = XNEW (struct undo);
723
724 buf->kind = UNDO_INT;
725 buf->where.i = into;
726 buf->old_contents.i = oldval;
727 *into = newval;
728
729 buf->next = undobuf.undos, undobuf.undos = buf;
730 }
731
732 #define SUBST_INT(INTO, NEWVAL) do_SUBST_INT(&(INTO), (NEWVAL))
733
734 /* Similar to SUBST, but just substitute the mode. This is used when
735 changing the mode of a pseudo-register, so that any other
736 references to the entry in the regno_reg_rtx array will change as
737 well. */
738
739 static void
740 do_SUBST_MODE (rtx *into, enum machine_mode newval)
741 {
742 struct undo *buf;
743 enum machine_mode oldval = GET_MODE (*into);
744
745 if (oldval == newval)
746 return;
747
748 if (undobuf.frees)
749 buf = undobuf.frees, undobuf.frees = buf->next;
750 else
751 buf = XNEW (struct undo);
752
753 buf->kind = UNDO_MODE;
754 buf->where.r = into;
755 buf->old_contents.m = oldval;
756 adjust_reg_mode (*into, newval);
757
758 buf->next = undobuf.undos, undobuf.undos = buf;
759 }
760
761 #define SUBST_MODE(INTO, NEWVAL) do_SUBST_MODE(&(INTO), (NEWVAL))
762
763 /* Subroutine of try_combine. Determine whether the combine replacement
764 patterns NEWPAT, NEWI2PAT and NEWOTHERPAT are cheaper according to
765 insn_rtx_cost that the original instruction sequence I1, I2, I3 and
766 undobuf.other_insn. Note that I1 and/or NEWI2PAT may be NULL_RTX.
767 NEWOTHERPAT and undobuf.other_insn may also both be NULL_RTX. This
768 function returns false, if the costs of all instructions can be
769 estimated, and the replacements are more expensive than the original
770 sequence. */
771
772 static bool
773 combine_validate_cost (rtx i1, rtx i2, rtx i3, rtx newpat, rtx newi2pat,
774 rtx newotherpat)
775 {
776 int i1_cost, i2_cost, i3_cost;
777 int new_i2_cost, new_i3_cost;
778 int old_cost, new_cost;
779
780 /* Lookup the original insn_rtx_costs. */
781 i2_cost = INSN_COST (i2);
782 i3_cost = INSN_COST (i3);
783
784 if (i1)
785 {
786 i1_cost = INSN_COST (i1);
787 old_cost = (i1_cost > 0 && i2_cost > 0 && i3_cost > 0)
788 ? i1_cost + i2_cost + i3_cost : 0;
789 }
790 else
791 {
792 old_cost = (i2_cost > 0 && i3_cost > 0) ? i2_cost + i3_cost : 0;
793 i1_cost = 0;
794 }
795
796 /* Calculate the replacement insn_rtx_costs. */
797 new_i3_cost = insn_rtx_cost (newpat, optimize_this_for_speed_p);
798 if (newi2pat)
799 {
800 new_i2_cost = insn_rtx_cost (newi2pat, optimize_this_for_speed_p);
801 new_cost = (new_i2_cost > 0 && new_i3_cost > 0)
802 ? new_i2_cost + new_i3_cost : 0;
803 }
804 else
805 {
806 new_cost = new_i3_cost;
807 new_i2_cost = 0;
808 }
809
810 if (undobuf.other_insn)
811 {
812 int old_other_cost, new_other_cost;
813
814 old_other_cost = INSN_COST (undobuf.other_insn);
815 new_other_cost = insn_rtx_cost (newotherpat, optimize_this_for_speed_p);
816 if (old_other_cost > 0 && new_other_cost > 0)
817 {
818 old_cost += old_other_cost;
819 new_cost += new_other_cost;
820 }
821 else
822 old_cost = 0;
823 }
824
825 /* Disallow this recombination if both new_cost and old_cost are
826 greater than zero, and new_cost is greater than old cost. */
827 if (old_cost > 0
828 && new_cost > old_cost)
829 {
830 if (dump_file)
831 {
832 if (i1)
833 {
834 fprintf (dump_file,
835 "rejecting combination of insns %d, %d and %d\n",
836 INSN_UID (i1), INSN_UID (i2), INSN_UID (i3));
837 fprintf (dump_file, "original costs %d + %d + %d = %d\n",
838 i1_cost, i2_cost, i3_cost, old_cost);
839 }
840 else
841 {
842 fprintf (dump_file,
843 "rejecting combination of insns %d and %d\n",
844 INSN_UID (i2), INSN_UID (i3));
845 fprintf (dump_file, "original costs %d + %d = %d\n",
846 i2_cost, i3_cost, old_cost);
847 }
848
849 if (newi2pat)
850 {
851 fprintf (dump_file, "replacement costs %d + %d = %d\n",
852 new_i2_cost, new_i3_cost, new_cost);
853 }
854 else
855 fprintf (dump_file, "replacement cost %d\n", new_cost);
856 }
857
858 return false;
859 }
860
861 /* Update the uid_insn_cost array with the replacement costs. */
862 INSN_COST (i2) = new_i2_cost;
863 INSN_COST (i3) = new_i3_cost;
864 if (i1)
865 INSN_COST (i1) = 0;
866
867 return true;
868 }
869
870
871 /* Delete any insns that copy a register to itself. */
872
873 static void
874 delete_noop_moves (void)
875 {
876 rtx insn, next;
877 basic_block bb;
878
879 FOR_EACH_BB (bb)
880 {
881 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb)); insn = next)
882 {
883 next = NEXT_INSN (insn);
884 if (INSN_P (insn) && noop_move_p (insn))
885 {
886 if (dump_file)
887 fprintf (dump_file, "deleting noop move %d\n", INSN_UID (insn));
888
889 delete_insn_and_edges (insn);
890 }
891 }
892 }
893 }
894
895
896 /* Fill in log links field for all insns. */
897
898 static void
899 create_log_links (void)
900 {
901 basic_block bb;
902 rtx *next_use, insn;
903 df_ref *def_vec, *use_vec;
904
905 next_use = XCNEWVEC (rtx, max_reg_num ());
906
907 /* Pass through each block from the end, recording the uses of each
908 register and establishing log links when def is encountered.
909 Note that we do not clear next_use array in order to save time,
910 so we have to test whether the use is in the same basic block as def.
911
912 There are a few cases below when we do not consider the definition or
913 usage -- these are taken from original flow.c did. Don't ask me why it is
914 done this way; I don't know and if it works, I don't want to know. */
915
916 FOR_EACH_BB (bb)
917 {
918 FOR_BB_INSNS_REVERSE (bb, insn)
919 {
920 if (!INSN_P (insn))
921 continue;
922
923 /* Log links are created only once. */
924 gcc_assert (!LOG_LINKS (insn));
925
926 for (def_vec = DF_INSN_DEFS (insn); *def_vec; def_vec++)
927 {
928 df_ref def = *def_vec;
929 int regno = DF_REF_REGNO (def);
930 rtx use_insn;
931
932 if (!next_use[regno])
933 continue;
934
935 /* Do not consider if it is pre/post modification in MEM. */
936 if (DF_REF_FLAGS (def) & DF_REF_PRE_POST_MODIFY)
937 continue;
938
939 /* Do not make the log link for frame pointer. */
940 if ((regno == FRAME_POINTER_REGNUM
941 && (! reload_completed || frame_pointer_needed))
942 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
943 || (regno == HARD_FRAME_POINTER_REGNUM
944 && (! reload_completed || frame_pointer_needed))
945 #endif
946 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
947 || (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
948 #endif
949 )
950 continue;
951
952 use_insn = next_use[regno];
953 if (BLOCK_FOR_INSN (use_insn) == bb)
954 {
955 /* flow.c claimed:
956
957 We don't build a LOG_LINK for hard registers contained
958 in ASM_OPERANDs. If these registers get replaced,
959 we might wind up changing the semantics of the insn,
960 even if reload can make what appear to be valid
961 assignments later. */
962 if (regno >= FIRST_PSEUDO_REGISTER
963 || asm_noperands (PATTERN (use_insn)) < 0)
964 {
965 /* Don't add duplicate links between instructions. */
966 rtx links;
967 for (links = LOG_LINKS (use_insn); links;
968 links = XEXP (links, 1))
969 if (insn == XEXP (links, 0))
970 break;
971
972 if (!links)
973 LOG_LINKS (use_insn) =
974 alloc_INSN_LIST (insn, LOG_LINKS (use_insn));
975 }
976 }
977 next_use[regno] = NULL_RTX;
978 }
979
980 for (use_vec = DF_INSN_USES (insn); *use_vec; use_vec++)
981 {
982 df_ref use = *use_vec;
983 int regno = DF_REF_REGNO (use);
984
985 /* Do not consider the usage of the stack pointer
986 by function call. */
987 if (DF_REF_FLAGS (use) & DF_REF_CALL_STACK_USAGE)
988 continue;
989
990 next_use[regno] = insn;
991 }
992 }
993 }
994
995 free (next_use);
996 }
997
998 /* Clear LOG_LINKS fields of insns. */
999
1000 static void
1001 clear_log_links (void)
1002 {
1003 rtx insn;
1004
1005 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
1006 if (INSN_P (insn))
1007 free_INSN_LIST_list (&LOG_LINKS (insn));
1008 }
1009
1010
1011
1012
1013 /* Main entry point for combiner. F is the first insn of the function.
1014 NREGS is the first unused pseudo-reg number.
1015
1016 Return nonzero if the combiner has turned an indirect jump
1017 instruction into a direct jump. */
1018 static int
1019 combine_instructions (rtx f, unsigned int nregs)
1020 {
1021 rtx insn, next;
1022 #ifdef HAVE_cc0
1023 rtx prev;
1024 #endif
1025 rtx links, nextlinks;
1026 rtx first;
1027
1028 int new_direct_jump_p = 0;
1029
1030 for (first = f; first && !INSN_P (first); )
1031 first = NEXT_INSN (first);
1032 if (!first)
1033 return 0;
1034
1035 combine_attempts = 0;
1036 combine_merges = 0;
1037 combine_extras = 0;
1038 combine_successes = 0;
1039
1040 rtl_hooks = combine_rtl_hooks;
1041
1042 VEC_safe_grow_cleared (reg_stat_type, heap, reg_stat, nregs);
1043
1044 init_recog_no_volatile ();
1045
1046 /* Allocate array for insn info. */
1047 max_uid_known = get_max_uid ();
1048 uid_log_links = XCNEWVEC (rtx, max_uid_known + 1);
1049 uid_insn_cost = XCNEWVEC (int, max_uid_known + 1);
1050
1051 nonzero_bits_mode = mode_for_size (HOST_BITS_PER_WIDE_INT, MODE_INT, 0);
1052
1053 /* Don't use reg_stat[].nonzero_bits when computing it. This can cause
1054 problems when, for example, we have j <<= 1 in a loop. */
1055
1056 nonzero_sign_valid = 0;
1057
1058 /* Scan all SETs and see if we can deduce anything about what
1059 bits are known to be zero for some registers and how many copies
1060 of the sign bit are known to exist for those registers.
1061
1062 Also set any known values so that we can use it while searching
1063 for what bits are known to be set. */
1064
1065 label_tick = label_tick_ebb_start = 1;
1066
1067 setup_incoming_promotions (first);
1068
1069 create_log_links ();
1070 FOR_EACH_BB (this_basic_block)
1071 {
1072 optimize_this_for_speed_p = optimize_bb_for_speed_p (this_basic_block);
1073 last_call_luid = 0;
1074 mem_last_set = -1;
1075 label_tick++;
1076 FOR_BB_INSNS (this_basic_block, insn)
1077 if (INSN_P (insn) && BLOCK_FOR_INSN (insn))
1078 {
1079 subst_low_luid = DF_INSN_LUID (insn);
1080 subst_insn = insn;
1081
1082 note_stores (PATTERN (insn), set_nonzero_bits_and_sign_copies,
1083 insn);
1084 record_dead_and_set_regs (insn);
1085
1086 #ifdef AUTO_INC_DEC
1087 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
1088 if (REG_NOTE_KIND (links) == REG_INC)
1089 set_nonzero_bits_and_sign_copies (XEXP (links, 0), NULL_RTX,
1090 insn);
1091 #endif
1092
1093 /* Record the current insn_rtx_cost of this instruction. */
1094 if (NONJUMP_INSN_P (insn))
1095 INSN_COST (insn) = insn_rtx_cost (PATTERN (insn),
1096 optimize_this_for_speed_p);
1097 if (dump_file)
1098 fprintf(dump_file, "insn_cost %d: %d\n",
1099 INSN_UID (insn), INSN_COST (insn));
1100 }
1101 else if (LABEL_P (insn))
1102 label_tick_ebb_start = label_tick;
1103 }
1104
1105 nonzero_sign_valid = 1;
1106
1107 /* Now scan all the insns in forward order. */
1108
1109 label_tick = label_tick_ebb_start = 1;
1110 init_reg_last ();
1111 setup_incoming_promotions (first);
1112
1113 FOR_EACH_BB (this_basic_block)
1114 {
1115 optimize_this_for_speed_p = optimize_bb_for_speed_p (this_basic_block);
1116 last_call_luid = 0;
1117 mem_last_set = -1;
1118 label_tick++;
1119 rtl_profile_for_bb (this_basic_block);
1120 for (insn = BB_HEAD (this_basic_block);
1121 insn != NEXT_INSN (BB_END (this_basic_block));
1122 insn = next ? next : NEXT_INSN (insn))
1123 {
1124 next = 0;
1125 if (INSN_P (insn))
1126 {
1127 /* See if we know about function return values before this
1128 insn based upon SUBREG flags. */
1129 check_promoted_subreg (insn, PATTERN (insn));
1130
1131 /* See if we can find hardregs and subreg of pseudos in
1132 narrower modes. This could help turning TRUNCATEs
1133 into SUBREGs. */
1134 note_uses (&PATTERN (insn), record_truncated_values, NULL);
1135
1136 /* Try this insn with each insn it links back to. */
1137
1138 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
1139 if ((next = try_combine (insn, XEXP (links, 0),
1140 NULL_RTX, &new_direct_jump_p)) != 0)
1141 goto retry;
1142
1143 /* Try each sequence of three linked insns ending with this one. */
1144
1145 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
1146 {
1147 rtx link = XEXP (links, 0);
1148
1149 /* If the linked insn has been replaced by a note, then there
1150 is no point in pursuing this chain any further. */
1151 if (NOTE_P (link))
1152 continue;
1153
1154 for (nextlinks = LOG_LINKS (link);
1155 nextlinks;
1156 nextlinks = XEXP (nextlinks, 1))
1157 if ((next = try_combine (insn, link,
1158 XEXP (nextlinks, 0),
1159 &new_direct_jump_p)) != 0)
1160 goto retry;
1161 }
1162
1163 #ifdef HAVE_cc0
1164 /* Try to combine a jump insn that uses CC0
1165 with a preceding insn that sets CC0, and maybe with its
1166 logical predecessor as well.
1167 This is how we make decrement-and-branch insns.
1168 We need this special code because data flow connections
1169 via CC0 do not get entered in LOG_LINKS. */
1170
1171 if (JUMP_P (insn)
1172 && (prev = prev_nonnote_insn (insn)) != 0
1173 && NONJUMP_INSN_P (prev)
1174 && sets_cc0_p (PATTERN (prev)))
1175 {
1176 if ((next = try_combine (insn, prev,
1177 NULL_RTX, &new_direct_jump_p)) != 0)
1178 goto retry;
1179
1180 for (nextlinks = LOG_LINKS (prev); nextlinks;
1181 nextlinks = XEXP (nextlinks, 1))
1182 if ((next = try_combine (insn, prev,
1183 XEXP (nextlinks, 0),
1184 &new_direct_jump_p)) != 0)
1185 goto retry;
1186 }
1187
1188 /* Do the same for an insn that explicitly references CC0. */
1189 if (NONJUMP_INSN_P (insn)
1190 && (prev = prev_nonnote_insn (insn)) != 0
1191 && NONJUMP_INSN_P (prev)
1192 && sets_cc0_p (PATTERN (prev))
1193 && GET_CODE (PATTERN (insn)) == SET
1194 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (insn))))
1195 {
1196 if ((next = try_combine (insn, prev,
1197 NULL_RTX, &new_direct_jump_p)) != 0)
1198 goto retry;
1199
1200 for (nextlinks = LOG_LINKS (prev); nextlinks;
1201 nextlinks = XEXP (nextlinks, 1))
1202 if ((next = try_combine (insn, prev,
1203 XEXP (nextlinks, 0),
1204 &new_direct_jump_p)) != 0)
1205 goto retry;
1206 }
1207
1208 /* Finally, see if any of the insns that this insn links to
1209 explicitly references CC0. If so, try this insn, that insn,
1210 and its predecessor if it sets CC0. */
1211 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
1212 if (NONJUMP_INSN_P (XEXP (links, 0))
1213 && GET_CODE (PATTERN (XEXP (links, 0))) == SET
1214 && reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (XEXP (links, 0))))
1215 && (prev = prev_nonnote_insn (XEXP (links, 0))) != 0
1216 && NONJUMP_INSN_P (prev)
1217 && sets_cc0_p (PATTERN (prev))
1218 && (next = try_combine (insn, XEXP (links, 0),
1219 prev, &new_direct_jump_p)) != 0)
1220 goto retry;
1221 #endif
1222
1223 /* Try combining an insn with two different insns whose results it
1224 uses. */
1225 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
1226 for (nextlinks = XEXP (links, 1); nextlinks;
1227 nextlinks = XEXP (nextlinks, 1))
1228 if ((next = try_combine (insn, XEXP (links, 0),
1229 XEXP (nextlinks, 0),
1230 &new_direct_jump_p)) != 0)
1231 goto retry;
1232
1233 /* Try this insn with each REG_EQUAL note it links back to. */
1234 for (links = LOG_LINKS (insn); links; links = XEXP (links, 1))
1235 {
1236 rtx set, note;
1237 rtx temp = XEXP (links, 0);
1238 if ((set = single_set (temp)) != 0
1239 && (note = find_reg_equal_equiv_note (temp)) != 0
1240 && (note = XEXP (note, 0), GET_CODE (note)) != EXPR_LIST
1241 /* Avoid using a register that may already been marked
1242 dead by an earlier instruction. */
1243 && ! unmentioned_reg_p (note, SET_SRC (set))
1244 && (GET_MODE (note) == VOIDmode
1245 ? SCALAR_INT_MODE_P (GET_MODE (SET_DEST (set)))
1246 : GET_MODE (SET_DEST (set)) == GET_MODE (note)))
1247 {
1248 /* Temporarily replace the set's source with the
1249 contents of the REG_EQUAL note. The insn will
1250 be deleted or recognized by try_combine. */
1251 rtx orig = SET_SRC (set);
1252 SET_SRC (set) = note;
1253 i2mod = temp;
1254 i2mod_old_rhs = copy_rtx (orig);
1255 i2mod_new_rhs = copy_rtx (note);
1256 next = try_combine (insn, i2mod, NULL_RTX,
1257 &new_direct_jump_p);
1258 i2mod = NULL_RTX;
1259 if (next)
1260 goto retry;
1261 SET_SRC (set) = orig;
1262 }
1263 }
1264
1265 if (!NOTE_P (insn))
1266 record_dead_and_set_regs (insn);
1267
1268 retry:
1269 ;
1270 }
1271 else if (LABEL_P (insn))
1272 label_tick_ebb_start = label_tick;
1273 }
1274 }
1275
1276 default_rtl_profile ();
1277 clear_log_links ();
1278 clear_bb_flags ();
1279 new_direct_jump_p |= purge_all_dead_edges ();
1280 delete_noop_moves ();
1281
1282 /* Clean up. */
1283 free (uid_log_links);
1284 free (uid_insn_cost);
1285 VEC_free (reg_stat_type, heap, reg_stat);
1286
1287 {
1288 struct undo *undo, *next;
1289 for (undo = undobuf.frees; undo; undo = next)
1290 {
1291 next = undo->next;
1292 free (undo);
1293 }
1294 undobuf.frees = 0;
1295 }
1296
1297 total_attempts += combine_attempts;
1298 total_merges += combine_merges;
1299 total_extras += combine_extras;
1300 total_successes += combine_successes;
1301
1302 nonzero_sign_valid = 0;
1303 rtl_hooks = general_rtl_hooks;
1304
1305 /* Make recognizer allow volatile MEMs again. */
1306 init_recog ();
1307
1308 return new_direct_jump_p;
1309 }
1310
1311 /* Wipe the last_xxx fields of reg_stat in preparation for another pass. */
1312
1313 static void
1314 init_reg_last (void)
1315 {
1316 unsigned int i;
1317 reg_stat_type *p;
1318
1319 for (i = 0; VEC_iterate (reg_stat_type, reg_stat, i, p); ++i)
1320 memset (p, 0, offsetof (reg_stat_type, sign_bit_copies));
1321 }
1322
1323 /* Set up any promoted values for incoming argument registers. */
1324
1325 static void
1326 setup_incoming_promotions (rtx first)
1327 {
1328 tree arg;
1329 bool strictly_local = false;
1330
1331 if (!targetm.calls.promote_function_args (TREE_TYPE (cfun->decl)))
1332 return;
1333
1334 for (arg = DECL_ARGUMENTS (current_function_decl); arg;
1335 arg = TREE_CHAIN (arg))
1336 {
1337 rtx reg = DECL_INCOMING_RTL (arg);
1338 int uns1, uns3;
1339 enum machine_mode mode1, mode2, mode3, mode4;
1340
1341 /* Only continue if the incoming argument is in a register. */
1342 if (!REG_P (reg))
1343 continue;
1344
1345 /* Determine, if possible, whether all call sites of the current
1346 function lie within the current compilation unit. (This does
1347 take into account the exporting of a function via taking its
1348 address, and so forth.) */
1349 strictly_local = cgraph_local_info (current_function_decl)->local;
1350
1351 /* The mode and signedness of the argument before any promotions happen
1352 (equal to the mode of the pseudo holding it at that stage). */
1353 mode1 = TYPE_MODE (TREE_TYPE (arg));
1354 uns1 = TYPE_UNSIGNED (TREE_TYPE (arg));
1355
1356 /* The mode and signedness of the argument after any source language and
1357 TARGET_PROMOTE_PROTOTYPES-driven promotions. */
1358 mode2 = TYPE_MODE (DECL_ARG_TYPE (arg));
1359 uns3 = TYPE_UNSIGNED (DECL_ARG_TYPE (arg));
1360
1361 /* The mode and signedness of the argument as it is actually passed,
1362 after any TARGET_PROMOTE_FUNCTION_ARGS-driven ABI promotions. */
1363 mode3 = promote_mode (DECL_ARG_TYPE (arg), mode2, &uns3, 1);
1364
1365 /* The mode of the register in which the argument is being passed. */
1366 mode4 = GET_MODE (reg);
1367
1368 /* Eliminate sign extensions in the callee when possible. Only
1369 do this when:
1370 (a) a mode promotion has occurred;
1371 (b) the mode of the register is the same as the mode of
1372 the argument as it is passed; and
1373 (c) the signedness does not change across any of the promotions; and
1374 (d) when no language-level promotions (which we cannot guarantee
1375 will have been done by an external caller) are necessary,
1376 unless we know that this function is only ever called from
1377 the current compilation unit -- all of whose call sites will
1378 do the mode1 --> mode2 promotion. */
1379 if (mode1 != mode3
1380 && mode3 == mode4
1381 && uns1 == uns3
1382 && (mode1 == mode2 || strictly_local))
1383 {
1384 /* Record that the value was promoted from mode1 to mode3,
1385 so that any sign extension at the head of the current
1386 function may be eliminated. */
1387 rtx x;
1388 x = gen_rtx_CLOBBER (mode1, const0_rtx);
1389 x = gen_rtx_fmt_e ((uns3 ? ZERO_EXTEND : SIGN_EXTEND), mode3, x);
1390 record_value_for_reg (reg, first, x);
1391 }
1392 }
1393 }
1394
1395 /* Called via note_stores. If X is a pseudo that is narrower than
1396 HOST_BITS_PER_WIDE_INT and is being set, record what bits are known zero.
1397
1398 If we are setting only a portion of X and we can't figure out what
1399 portion, assume all bits will be used since we don't know what will
1400 be happening.
1401
1402 Similarly, set how many bits of X are known to be copies of the sign bit
1403 at all locations in the function. This is the smallest number implied
1404 by any set of X. */
1405
1406 static void
1407 set_nonzero_bits_and_sign_copies (rtx x, const_rtx set, void *data)
1408 {
1409 rtx insn = (rtx) data;
1410 unsigned int num;
1411
1412 if (REG_P (x)
1413 && REGNO (x) >= FIRST_PSEUDO_REGISTER
1414 /* If this register is undefined at the start of the file, we can't
1415 say what its contents were. */
1416 && ! REGNO_REG_SET_P
1417 (DF_LR_IN (ENTRY_BLOCK_PTR->next_bb), REGNO (x))
1418 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT)
1419 {
1420 reg_stat_type *rsp = VEC_index (reg_stat_type, reg_stat, REGNO (x));
1421
1422 if (set == 0 || GET_CODE (set) == CLOBBER)
1423 {
1424 rsp->nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1425 rsp->sign_bit_copies = 1;
1426 return;
1427 }
1428
1429 /* If this register is being initialized using itself, and the
1430 register is uninitialized in this basic block, and there are
1431 no LOG_LINKS which set the register, then part of the
1432 register is uninitialized. In that case we can't assume
1433 anything about the number of nonzero bits.
1434
1435 ??? We could do better if we checked this in
1436 reg_{nonzero_bits,num_sign_bit_copies}_for_combine. Then we
1437 could avoid making assumptions about the insn which initially
1438 sets the register, while still using the information in other
1439 insns. We would have to be careful to check every insn
1440 involved in the combination. */
1441
1442 if (insn
1443 && reg_referenced_p (x, PATTERN (insn))
1444 && !REGNO_REG_SET_P (DF_LR_IN (BLOCK_FOR_INSN (insn)),
1445 REGNO (x)))
1446 {
1447 rtx link;
1448
1449 for (link = LOG_LINKS (insn); link; link = XEXP (link, 1))
1450 {
1451 if (dead_or_set_p (XEXP (link, 0), x))
1452 break;
1453 }
1454 if (!link)
1455 {
1456 rsp->nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1457 rsp->sign_bit_copies = 1;
1458 return;
1459 }
1460 }
1461
1462 /* If this is a complex assignment, see if we can convert it into a
1463 simple assignment. */
1464 set = expand_field_assignment (set);
1465
1466 /* If this is a simple assignment, or we have a paradoxical SUBREG,
1467 set what we know about X. */
1468
1469 if (SET_DEST (set) == x
1470 || (GET_CODE (SET_DEST (set)) == SUBREG
1471 && (GET_MODE_SIZE (GET_MODE (SET_DEST (set)))
1472 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (set)))))
1473 && SUBREG_REG (SET_DEST (set)) == x))
1474 {
1475 rtx src = SET_SRC (set);
1476
1477 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
1478 /* If X is narrower than a word and SRC is a non-negative
1479 constant that would appear negative in the mode of X,
1480 sign-extend it for use in reg_stat[].nonzero_bits because some
1481 machines (maybe most) will actually do the sign-extension
1482 and this is the conservative approach.
1483
1484 ??? For 2.5, try to tighten up the MD files in this regard
1485 instead of this kludge. */
1486
1487 if (GET_MODE_BITSIZE (GET_MODE (x)) < BITS_PER_WORD
1488 && GET_CODE (src) == CONST_INT
1489 && INTVAL (src) > 0
1490 && 0 != (INTVAL (src)
1491 & ((HOST_WIDE_INT) 1
1492 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
1493 src = GEN_INT (INTVAL (src)
1494 | ((HOST_WIDE_INT) (-1)
1495 << GET_MODE_BITSIZE (GET_MODE (x))));
1496 #endif
1497
1498 /* Don't call nonzero_bits if it cannot change anything. */
1499 if (rsp->nonzero_bits != ~(unsigned HOST_WIDE_INT) 0)
1500 rsp->nonzero_bits |= nonzero_bits (src, nonzero_bits_mode);
1501 num = num_sign_bit_copies (SET_SRC (set), GET_MODE (x));
1502 if (rsp->sign_bit_copies == 0
1503 || rsp->sign_bit_copies > num)
1504 rsp->sign_bit_copies = num;
1505 }
1506 else
1507 {
1508 rsp->nonzero_bits = GET_MODE_MASK (GET_MODE (x));
1509 rsp->sign_bit_copies = 1;
1510 }
1511 }
1512 }
1513
1514 /* See if INSN can be combined into I3. PRED and SUCC are optionally
1515 insns that were previously combined into I3 or that will be combined
1516 into the merger of INSN and I3.
1517
1518 Return 0 if the combination is not allowed for any reason.
1519
1520 If the combination is allowed, *PDEST will be set to the single
1521 destination of INSN and *PSRC to the single source, and this function
1522 will return 1. */
1523
1524 static int
1525 can_combine_p (rtx insn, rtx i3, rtx pred ATTRIBUTE_UNUSED, rtx succ,
1526 rtx *pdest, rtx *psrc)
1527 {
1528 int i;
1529 const_rtx set = 0;
1530 rtx src, dest;
1531 rtx p;
1532 #ifdef AUTO_INC_DEC
1533 rtx link;
1534 #endif
1535 int all_adjacent = (succ ? (next_active_insn (insn) == succ
1536 && next_active_insn (succ) == i3)
1537 : next_active_insn (insn) == i3);
1538
1539 /* Can combine only if previous insn is a SET of a REG, a SUBREG or CC0.
1540 or a PARALLEL consisting of such a SET and CLOBBERs.
1541
1542 If INSN has CLOBBER parallel parts, ignore them for our processing.
1543 By definition, these happen during the execution of the insn. When it
1544 is merged with another insn, all bets are off. If they are, in fact,
1545 needed and aren't also supplied in I3, they may be added by
1546 recog_for_combine. Otherwise, it won't match.
1547
1548 We can also ignore a SET whose SET_DEST is mentioned in a REG_UNUSED
1549 note.
1550
1551 Get the source and destination of INSN. If more than one, can't
1552 combine. */
1553
1554 if (GET_CODE (PATTERN (insn)) == SET)
1555 set = PATTERN (insn);
1556 else if (GET_CODE (PATTERN (insn)) == PARALLEL
1557 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
1558 {
1559 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
1560 {
1561 rtx elt = XVECEXP (PATTERN (insn), 0, i);
1562 rtx note;
1563
1564 switch (GET_CODE (elt))
1565 {
1566 /* This is important to combine floating point insns
1567 for the SH4 port. */
1568 case USE:
1569 /* Combining an isolated USE doesn't make sense.
1570 We depend here on combinable_i3pat to reject them. */
1571 /* The code below this loop only verifies that the inputs of
1572 the SET in INSN do not change. We call reg_set_between_p
1573 to verify that the REG in the USE does not change between
1574 I3 and INSN.
1575 If the USE in INSN was for a pseudo register, the matching
1576 insn pattern will likely match any register; combining this
1577 with any other USE would only be safe if we knew that the
1578 used registers have identical values, or if there was
1579 something to tell them apart, e.g. different modes. For
1580 now, we forgo such complicated tests and simply disallow
1581 combining of USES of pseudo registers with any other USE. */
1582 if (REG_P (XEXP (elt, 0))
1583 && GET_CODE (PATTERN (i3)) == PARALLEL)
1584 {
1585 rtx i3pat = PATTERN (i3);
1586 int i = XVECLEN (i3pat, 0) - 1;
1587 unsigned int regno = REGNO (XEXP (elt, 0));
1588
1589 do
1590 {
1591 rtx i3elt = XVECEXP (i3pat, 0, i);
1592
1593 if (GET_CODE (i3elt) == USE
1594 && REG_P (XEXP (i3elt, 0))
1595 && (REGNO (XEXP (i3elt, 0)) == regno
1596 ? reg_set_between_p (XEXP (elt, 0),
1597 PREV_INSN (insn), i3)
1598 : regno >= FIRST_PSEUDO_REGISTER))
1599 return 0;
1600 }
1601 while (--i >= 0);
1602 }
1603 break;
1604
1605 /* We can ignore CLOBBERs. */
1606 case CLOBBER:
1607 break;
1608
1609 case SET:
1610 /* Ignore SETs whose result isn't used but not those that
1611 have side-effects. */
1612 if (find_reg_note (insn, REG_UNUSED, SET_DEST (elt))
1613 && (!(note = find_reg_note (insn, REG_EH_REGION, NULL_RTX))
1614 || INTVAL (XEXP (note, 0)) <= 0)
1615 && ! side_effects_p (elt))
1616 break;
1617
1618 /* If we have already found a SET, this is a second one and
1619 so we cannot combine with this insn. */
1620 if (set)
1621 return 0;
1622
1623 set = elt;
1624 break;
1625
1626 default:
1627 /* Anything else means we can't combine. */
1628 return 0;
1629 }
1630 }
1631
1632 if (set == 0
1633 /* If SET_SRC is an ASM_OPERANDS we can't throw away these CLOBBERs,
1634 so don't do anything with it. */
1635 || GET_CODE (SET_SRC (set)) == ASM_OPERANDS)
1636 return 0;
1637 }
1638 else
1639 return 0;
1640
1641 if (set == 0)
1642 return 0;
1643
1644 set = expand_field_assignment (set);
1645 src = SET_SRC (set), dest = SET_DEST (set);
1646
1647 /* Don't eliminate a store in the stack pointer. */
1648 if (dest == stack_pointer_rtx
1649 /* Don't combine with an insn that sets a register to itself if it has
1650 a REG_EQUAL note. This may be part of a LIBCALL sequence. */
1651 || (rtx_equal_p (src, dest) && find_reg_note (insn, REG_EQUAL, NULL_RTX))
1652 /* Can't merge an ASM_OPERANDS. */
1653 || GET_CODE (src) == ASM_OPERANDS
1654 /* Can't merge a function call. */
1655 || GET_CODE (src) == CALL
1656 /* Don't eliminate a function call argument. */
1657 || (CALL_P (i3)
1658 && (find_reg_fusage (i3, USE, dest)
1659 || (REG_P (dest)
1660 && REGNO (dest) < FIRST_PSEUDO_REGISTER
1661 && global_regs[REGNO (dest)])))
1662 /* Don't substitute into an incremented register. */
1663 || FIND_REG_INC_NOTE (i3, dest)
1664 || (succ && FIND_REG_INC_NOTE (succ, dest))
1665 /* Don't substitute into a non-local goto, this confuses CFG. */
1666 || (JUMP_P (i3) && find_reg_note (i3, REG_NON_LOCAL_GOTO, NULL_RTX))
1667 /* Make sure that DEST is not used after SUCC but before I3. */
1668 || (succ && ! all_adjacent
1669 && reg_used_between_p (dest, succ, i3))
1670 /* Make sure that the value that is to be substituted for the register
1671 does not use any registers whose values alter in between. However,
1672 If the insns are adjacent, a use can't cross a set even though we
1673 think it might (this can happen for a sequence of insns each setting
1674 the same destination; last_set of that register might point to
1675 a NOTE). If INSN has a REG_EQUIV note, the register is always
1676 equivalent to the memory so the substitution is valid even if there
1677 are intervening stores. Also, don't move a volatile asm or
1678 UNSPEC_VOLATILE across any other insns. */
1679 || (! all_adjacent
1680 && (((!MEM_P (src)
1681 || ! find_reg_note (insn, REG_EQUIV, src))
1682 && use_crosses_set_p (src, DF_INSN_LUID (insn)))
1683 || (GET_CODE (src) == ASM_OPERANDS && MEM_VOLATILE_P (src))
1684 || GET_CODE (src) == UNSPEC_VOLATILE))
1685 /* Don't combine across a CALL_INSN, because that would possibly
1686 change whether the life span of some REGs crosses calls or not,
1687 and it is a pain to update that information.
1688 Exception: if source is a constant, moving it later can't hurt.
1689 Accept that as a special case. */
1690 || (DF_INSN_LUID (insn) < last_call_luid && ! CONSTANT_P (src)))
1691 return 0;
1692
1693 /* DEST must either be a REG or CC0. */
1694 if (REG_P (dest))
1695 {
1696 /* If register alignment is being enforced for multi-word items in all
1697 cases except for parameters, it is possible to have a register copy
1698 insn referencing a hard register that is not allowed to contain the
1699 mode being copied and which would not be valid as an operand of most
1700 insns. Eliminate this problem by not combining with such an insn.
1701
1702 Also, on some machines we don't want to extend the life of a hard
1703 register. */
1704
1705 if (REG_P (src)
1706 && ((REGNO (dest) < FIRST_PSEUDO_REGISTER
1707 && ! HARD_REGNO_MODE_OK (REGNO (dest), GET_MODE (dest)))
1708 /* Don't extend the life of a hard register unless it is
1709 user variable (if we have few registers) or it can't
1710 fit into the desired register (meaning something special
1711 is going on).
1712 Also avoid substituting a return register into I3, because
1713 reload can't handle a conflict with constraints of other
1714 inputs. */
1715 || (REGNO (src) < FIRST_PSEUDO_REGISTER
1716 && ! HARD_REGNO_MODE_OK (REGNO (src), GET_MODE (src)))))
1717 return 0;
1718 }
1719 else if (GET_CODE (dest) != CC0)
1720 return 0;
1721
1722
1723 if (GET_CODE (PATTERN (i3)) == PARALLEL)
1724 for (i = XVECLEN (PATTERN (i3), 0) - 1; i >= 0; i--)
1725 if (GET_CODE (XVECEXP (PATTERN (i3), 0, i)) == CLOBBER)
1726 {
1727 /* Don't substitute for a register intended as a clobberable
1728 operand. */
1729 rtx reg = XEXP (XVECEXP (PATTERN (i3), 0, i), 0);
1730 if (rtx_equal_p (reg, dest))
1731 return 0;
1732
1733 /* If the clobber represents an earlyclobber operand, we must not
1734 substitute an expression containing the clobbered register.
1735 As we do not analyze the constraint strings here, we have to
1736 make the conservative assumption. However, if the register is
1737 a fixed hard reg, the clobber cannot represent any operand;
1738 we leave it up to the machine description to either accept or
1739 reject use-and-clobber patterns. */
1740 if (!REG_P (reg)
1741 || REGNO (reg) >= FIRST_PSEUDO_REGISTER
1742 || !fixed_regs[REGNO (reg)])
1743 if (reg_overlap_mentioned_p (reg, src))
1744 return 0;
1745 }
1746
1747 /* If INSN contains anything volatile, or is an `asm' (whether volatile
1748 or not), reject, unless nothing volatile comes between it and I3 */
1749
1750 if (GET_CODE (src) == ASM_OPERANDS || volatile_refs_p (src))
1751 {
1752 /* Make sure succ doesn't contain a volatile reference. */
1753 if (succ != 0 && volatile_refs_p (PATTERN (succ)))
1754 return 0;
1755
1756 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
1757 if (INSN_P (p) && p != succ && volatile_refs_p (PATTERN (p)))
1758 return 0;
1759 }
1760
1761 /* If INSN is an asm, and DEST is a hard register, reject, since it has
1762 to be an explicit register variable, and was chosen for a reason. */
1763
1764 if (GET_CODE (src) == ASM_OPERANDS
1765 && REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER)
1766 return 0;
1767
1768 /* If there are any volatile insns between INSN and I3, reject, because
1769 they might affect machine state. */
1770
1771 for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
1772 if (INSN_P (p) && p != succ && volatile_insn_p (PATTERN (p)))
1773 return 0;
1774
1775 /* If INSN contains an autoincrement or autodecrement, make sure that
1776 register is not used between there and I3, and not already used in
1777 I3 either. Neither must it be used in PRED or SUCC, if they exist.
1778 Also insist that I3 not be a jump; if it were one
1779 and the incremented register were spilled, we would lose. */
1780
1781 #ifdef AUTO_INC_DEC
1782 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1783 if (REG_NOTE_KIND (link) == REG_INC
1784 && (JUMP_P (i3)
1785 || reg_used_between_p (XEXP (link, 0), insn, i3)
1786 || (pred != NULL_RTX
1787 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (pred)))
1788 || (succ != NULL_RTX
1789 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (succ)))
1790 || reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i3))))
1791 return 0;
1792 #endif
1793
1794 #ifdef HAVE_cc0
1795 /* Don't combine an insn that follows a CC0-setting insn.
1796 An insn that uses CC0 must not be separated from the one that sets it.
1797 We do, however, allow I2 to follow a CC0-setting insn if that insn
1798 is passed as I1; in that case it will be deleted also.
1799 We also allow combining in this case if all the insns are adjacent
1800 because that would leave the two CC0 insns adjacent as well.
1801 It would be more logical to test whether CC0 occurs inside I1 or I2,
1802 but that would be much slower, and this ought to be equivalent. */
1803
1804 p = prev_nonnote_insn (insn);
1805 if (p && p != pred && NONJUMP_INSN_P (p) && sets_cc0_p (PATTERN (p))
1806 && ! all_adjacent)
1807 return 0;
1808 #endif
1809
1810 /* If we get here, we have passed all the tests and the combination is
1811 to be allowed. */
1812
1813 *pdest = dest;
1814 *psrc = src;
1815
1816 return 1;
1817 }
1818
1819 /* LOC is the location within I3 that contains its pattern or the component
1820 of a PARALLEL of the pattern. We validate that it is valid for combining.
1821
1822 One problem is if I3 modifies its output, as opposed to replacing it
1823 entirely, we can't allow the output to contain I2DEST or I1DEST as doing
1824 so would produce an insn that is not equivalent to the original insns.
1825
1826 Consider:
1827
1828 (set (reg:DI 101) (reg:DI 100))
1829 (set (subreg:SI (reg:DI 101) 0) <foo>)
1830
1831 This is NOT equivalent to:
1832
1833 (parallel [(set (subreg:SI (reg:DI 100) 0) <foo>)
1834 (set (reg:DI 101) (reg:DI 100))])
1835
1836 Not only does this modify 100 (in which case it might still be valid
1837 if 100 were dead in I2), it sets 101 to the ORIGINAL value of 100.
1838
1839 We can also run into a problem if I2 sets a register that I1
1840 uses and I1 gets directly substituted into I3 (not via I2). In that
1841 case, we would be getting the wrong value of I2DEST into I3, so we
1842 must reject the combination. This case occurs when I2 and I1 both
1843 feed into I3, rather than when I1 feeds into I2, which feeds into I3.
1844 If I1_NOT_IN_SRC is nonzero, it means that finding I1 in the source
1845 of a SET must prevent combination from occurring.
1846
1847 Before doing the above check, we first try to expand a field assignment
1848 into a set of logical operations.
1849
1850 If PI3_DEST_KILLED is nonzero, it is a pointer to a location in which
1851 we place a register that is both set and used within I3. If more than one
1852 such register is detected, we fail.
1853
1854 Return 1 if the combination is valid, zero otherwise. */
1855
1856 static int
1857 combinable_i3pat (rtx i3, rtx *loc, rtx i2dest, rtx i1dest,
1858 int i1_not_in_src, rtx *pi3dest_killed)
1859 {
1860 rtx x = *loc;
1861
1862 if (GET_CODE (x) == SET)
1863 {
1864 rtx set = x ;
1865 rtx dest = SET_DEST (set);
1866 rtx src = SET_SRC (set);
1867 rtx inner_dest = dest;
1868 rtx subdest;
1869
1870 while (GET_CODE (inner_dest) == STRICT_LOW_PART
1871 || GET_CODE (inner_dest) == SUBREG
1872 || GET_CODE (inner_dest) == ZERO_EXTRACT)
1873 inner_dest = XEXP (inner_dest, 0);
1874
1875 /* Check for the case where I3 modifies its output, as discussed
1876 above. We don't want to prevent pseudos from being combined
1877 into the address of a MEM, so only prevent the combination if
1878 i1 or i2 set the same MEM. */
1879 if ((inner_dest != dest &&
1880 (!MEM_P (inner_dest)
1881 || rtx_equal_p (i2dest, inner_dest)
1882 || (i1dest && rtx_equal_p (i1dest, inner_dest)))
1883 && (reg_overlap_mentioned_p (i2dest, inner_dest)
1884 || (i1dest && reg_overlap_mentioned_p (i1dest, inner_dest))))
1885
1886 /* This is the same test done in can_combine_p except we can't test
1887 all_adjacent; we don't have to, since this instruction will stay
1888 in place, thus we are not considering increasing the lifetime of
1889 INNER_DEST.
1890
1891 Also, if this insn sets a function argument, combining it with
1892 something that might need a spill could clobber a previous
1893 function argument; the all_adjacent test in can_combine_p also
1894 checks this; here, we do a more specific test for this case. */
1895
1896 || (REG_P (inner_dest)
1897 && REGNO (inner_dest) < FIRST_PSEUDO_REGISTER
1898 && (! HARD_REGNO_MODE_OK (REGNO (inner_dest),
1899 GET_MODE (inner_dest))))
1900 || (i1_not_in_src && reg_overlap_mentioned_p (i1dest, src)))
1901 return 0;
1902
1903 /* If DEST is used in I3, it is being killed in this insn, so
1904 record that for later. We have to consider paradoxical
1905 subregs here, since they kill the whole register, but we
1906 ignore partial subregs, STRICT_LOW_PART, etc.
1907 Never add REG_DEAD notes for the FRAME_POINTER_REGNUM or the
1908 STACK_POINTER_REGNUM, since these are always considered to be
1909 live. Similarly for ARG_POINTER_REGNUM if it is fixed. */
1910 subdest = dest;
1911 if (GET_CODE (subdest) == SUBREG
1912 && (GET_MODE_SIZE (GET_MODE (subdest))
1913 >= GET_MODE_SIZE (GET_MODE (SUBREG_REG (subdest)))))
1914 subdest = SUBREG_REG (subdest);
1915 if (pi3dest_killed
1916 && REG_P (subdest)
1917 && reg_referenced_p (subdest, PATTERN (i3))
1918 && REGNO (subdest) != FRAME_POINTER_REGNUM
1919 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
1920 && REGNO (subdest) != HARD_FRAME_POINTER_REGNUM
1921 #endif
1922 #if ARG_POINTER_REGNUM != FRAME_POINTER_REGNUM
1923 && (REGNO (subdest) != ARG_POINTER_REGNUM
1924 || ! fixed_regs [REGNO (subdest)])
1925 #endif
1926 && REGNO (subdest) != STACK_POINTER_REGNUM)
1927 {
1928 if (*pi3dest_killed)
1929 return 0;
1930
1931 *pi3dest_killed = subdest;
1932 }
1933 }
1934
1935 else if (GET_CODE (x) == PARALLEL)
1936 {
1937 int i;
1938
1939 for (i = 0; i < XVECLEN (x, 0); i++)
1940 if (! combinable_i3pat (i3, &XVECEXP (x, 0, i), i2dest, i1dest,
1941 i1_not_in_src, pi3dest_killed))
1942 return 0;
1943 }
1944
1945 return 1;
1946 }
1947
1948 /* Return 1 if X is an arithmetic expression that contains a multiplication
1949 and division. We don't count multiplications by powers of two here. */
1950
1951 static int
1952 contains_muldiv (rtx x)
1953 {
1954 switch (GET_CODE (x))
1955 {
1956 case MOD: case DIV: case UMOD: case UDIV:
1957 return 1;
1958
1959 case MULT:
1960 return ! (GET_CODE (XEXP (x, 1)) == CONST_INT
1961 && exact_log2 (INTVAL (XEXP (x, 1))) >= 0);
1962 default:
1963 if (BINARY_P (x))
1964 return contains_muldiv (XEXP (x, 0))
1965 || contains_muldiv (XEXP (x, 1));
1966
1967 if (UNARY_P (x))
1968 return contains_muldiv (XEXP (x, 0));
1969
1970 return 0;
1971 }
1972 }
1973
1974 /* Determine whether INSN can be used in a combination. Return nonzero if
1975 not. This is used in try_combine to detect early some cases where we
1976 can't perform combinations. */
1977
1978 static int
1979 cant_combine_insn_p (rtx insn)
1980 {
1981 rtx set;
1982 rtx src, dest;
1983
1984 /* If this isn't really an insn, we can't do anything.
1985 This can occur when flow deletes an insn that it has merged into an
1986 auto-increment address. */
1987 if (! INSN_P (insn))
1988 return 1;
1989
1990 /* Never combine loads and stores involving hard regs that are likely
1991 to be spilled. The register allocator can usually handle such
1992 reg-reg moves by tying. If we allow the combiner to make
1993 substitutions of likely-spilled regs, reload might die.
1994 As an exception, we allow combinations involving fixed regs; these are
1995 not available to the register allocator so there's no risk involved. */
1996
1997 set = single_set (insn);
1998 if (! set)
1999 return 0;
2000 src = SET_SRC (set);
2001 dest = SET_DEST (set);
2002 if (GET_CODE (src) == SUBREG)
2003 src = SUBREG_REG (src);
2004 if (GET_CODE (dest) == SUBREG)
2005 dest = SUBREG_REG (dest);
2006 if (REG_P (src) && REG_P (dest)
2007 && ((REGNO (src) < FIRST_PSEUDO_REGISTER
2008 && ! fixed_regs[REGNO (src)]
2009 && CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (REGNO (src))))
2010 || (REGNO (dest) < FIRST_PSEUDO_REGISTER
2011 && ! fixed_regs[REGNO (dest)]
2012 && CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (REGNO (dest))))))
2013 return 1;
2014
2015 return 0;
2016 }
2017
2018 struct likely_spilled_retval_info
2019 {
2020 unsigned regno, nregs;
2021 unsigned mask;
2022 };
2023
2024 /* Called via note_stores by likely_spilled_retval_p. Remove from info->mask
2025 hard registers that are known to be written to / clobbered in full. */
2026 static void
2027 likely_spilled_retval_1 (rtx x, const_rtx set, void *data)
2028 {
2029 struct likely_spilled_retval_info *const info =
2030 (struct likely_spilled_retval_info *) data;
2031 unsigned regno, nregs;
2032 unsigned new_mask;
2033
2034 if (!REG_P (XEXP (set, 0)))
2035 return;
2036 regno = REGNO (x);
2037 if (regno >= info->regno + info->nregs)
2038 return;
2039 nregs = hard_regno_nregs[regno][GET_MODE (x)];
2040 if (regno + nregs <= info->regno)
2041 return;
2042 new_mask = (2U << (nregs - 1)) - 1;
2043 if (regno < info->regno)
2044 new_mask >>= info->regno - regno;
2045 else
2046 new_mask <<= regno - info->regno;
2047 info->mask &= ~new_mask;
2048 }
2049
2050 /* Return nonzero iff part of the return value is live during INSN, and
2051 it is likely spilled. This can happen when more than one insn is needed
2052 to copy the return value, e.g. when we consider to combine into the
2053 second copy insn for a complex value. */
2054
2055 static int
2056 likely_spilled_retval_p (rtx insn)
2057 {
2058 rtx use = BB_END (this_basic_block);
2059 rtx reg, p;
2060 unsigned regno, nregs;
2061 /* We assume here that no machine mode needs more than
2062 32 hard registers when the value overlaps with a register
2063 for which FUNCTION_VALUE_REGNO_P is true. */
2064 unsigned mask;
2065 struct likely_spilled_retval_info info;
2066
2067 if (!NONJUMP_INSN_P (use) || GET_CODE (PATTERN (use)) != USE || insn == use)
2068 return 0;
2069 reg = XEXP (PATTERN (use), 0);
2070 if (!REG_P (reg) || !FUNCTION_VALUE_REGNO_P (REGNO (reg)))
2071 return 0;
2072 regno = REGNO (reg);
2073 nregs = hard_regno_nregs[regno][GET_MODE (reg)];
2074 if (nregs == 1)
2075 return 0;
2076 mask = (2U << (nregs - 1)) - 1;
2077
2078 /* Disregard parts of the return value that are set later. */
2079 info.regno = regno;
2080 info.nregs = nregs;
2081 info.mask = mask;
2082 for (p = PREV_INSN (use); info.mask && p != insn; p = PREV_INSN (p))
2083 if (INSN_P (p))
2084 note_stores (PATTERN (p), likely_spilled_retval_1, &info);
2085 mask = info.mask;
2086
2087 /* Check if any of the (probably) live return value registers is
2088 likely spilled. */
2089 nregs --;
2090 do
2091 {
2092 if ((mask & 1 << nregs)
2093 && CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (regno + nregs)))
2094 return 1;
2095 } while (nregs--);
2096 return 0;
2097 }
2098
2099 /* Adjust INSN after we made a change to its destination.
2100
2101 Changing the destination can invalidate notes that say something about
2102 the results of the insn and a LOG_LINK pointing to the insn. */
2103
2104 static void
2105 adjust_for_new_dest (rtx insn)
2106 {
2107 /* For notes, be conservative and simply remove them. */
2108 remove_reg_equal_equiv_notes (insn);
2109
2110 /* The new insn will have a destination that was previously the destination
2111 of an insn just above it. Call distribute_links to make a LOG_LINK from
2112 the next use of that destination. */
2113 distribute_links (gen_rtx_INSN_LIST (VOIDmode, insn, NULL_RTX));
2114
2115 df_insn_rescan (insn);
2116 }
2117
2118 /* Return TRUE if combine can reuse reg X in mode MODE.
2119 ADDED_SETS is nonzero if the original set is still required. */
2120 static bool
2121 can_change_dest_mode (rtx x, int added_sets, enum machine_mode mode)
2122 {
2123 unsigned int regno;
2124
2125 if (!REG_P(x))
2126 return false;
2127
2128 regno = REGNO (x);
2129 /* Allow hard registers if the new mode is legal, and occupies no more
2130 registers than the old mode. */
2131 if (regno < FIRST_PSEUDO_REGISTER)
2132 return (HARD_REGNO_MODE_OK (regno, mode)
2133 && (hard_regno_nregs[regno][GET_MODE (x)]
2134 >= hard_regno_nregs[regno][mode]));
2135
2136 /* Or a pseudo that is only used once. */
2137 return (REG_N_SETS (regno) == 1 && !added_sets
2138 && !REG_USERVAR_P (x));
2139 }
2140
2141
2142 /* Check whether X, the destination of a set, refers to part of
2143 the register specified by REG. */
2144
2145 static bool
2146 reg_subword_p (rtx x, rtx reg)
2147 {
2148 /* Check that reg is an integer mode register. */
2149 if (!REG_P (reg) || GET_MODE_CLASS (GET_MODE (reg)) != MODE_INT)
2150 return false;
2151
2152 if (GET_CODE (x) == STRICT_LOW_PART
2153 || GET_CODE (x) == ZERO_EXTRACT)
2154 x = XEXP (x, 0);
2155
2156 return GET_CODE (x) == SUBREG
2157 && SUBREG_REG (x) == reg
2158 && GET_MODE_CLASS (GET_MODE (x)) == MODE_INT;
2159 }
2160
2161
2162 /* Try to combine the insns I1 and I2 into I3.
2163 Here I1 and I2 appear earlier than I3.
2164 I1 can be zero; then we combine just I2 into I3.
2165
2166 If we are combining three insns and the resulting insn is not recognized,
2167 try splitting it into two insns. If that happens, I2 and I3 are retained
2168 and I1 is pseudo-deleted by turning it into a NOTE. Otherwise, I1 and I2
2169 are pseudo-deleted.
2170
2171 Return 0 if the combination does not work. Then nothing is changed.
2172 If we did the combination, return the insn at which combine should
2173 resume scanning.
2174
2175 Set NEW_DIRECT_JUMP_P to a nonzero value if try_combine creates a
2176 new direct jump instruction. */
2177
2178 static rtx
2179 try_combine (rtx i3, rtx i2, rtx i1, int *new_direct_jump_p)
2180 {
2181 /* New patterns for I3 and I2, respectively. */
2182 rtx newpat, newi2pat = 0;
2183 rtvec newpat_vec_with_clobbers = 0;
2184 int substed_i2 = 0, substed_i1 = 0;
2185 /* Indicates need to preserve SET in I1 or I2 in I3 if it is not dead. */
2186 int added_sets_1, added_sets_2;
2187 /* Total number of SETs to put into I3. */
2188 int total_sets;
2189 /* Nonzero if I2's body now appears in I3. */
2190 int i2_is_used;
2191 /* INSN_CODEs for new I3, new I2, and user of condition code. */
2192 int insn_code_number, i2_code_number = 0, other_code_number = 0;
2193 /* Contains I3 if the destination of I3 is used in its source, which means
2194 that the old life of I3 is being killed. If that usage is placed into
2195 I2 and not in I3, a REG_DEAD note must be made. */
2196 rtx i3dest_killed = 0;
2197 /* SET_DEST and SET_SRC of I2 and I1. */
2198 rtx i2dest, i2src, i1dest = 0, i1src = 0;
2199 /* PATTERN (I1) and PATTERN (I2), or a copy of it in certain cases. */
2200 rtx i1pat = 0, i2pat = 0;
2201 /* Indicates if I2DEST or I1DEST is in I2SRC or I1_SRC. */
2202 int i2dest_in_i2src = 0, i1dest_in_i1src = 0, i2dest_in_i1src = 0;
2203 int i2dest_killed = 0, i1dest_killed = 0;
2204 int i1_feeds_i3 = 0;
2205 /* Notes that must be added to REG_NOTES in I3 and I2. */
2206 rtx new_i3_notes, new_i2_notes;
2207 /* Notes that we substituted I3 into I2 instead of the normal case. */
2208 int i3_subst_into_i2 = 0;
2209 /* Notes that I1, I2 or I3 is a MULT operation. */
2210 int have_mult = 0;
2211 int swap_i2i3 = 0;
2212 int changed_i3_dest = 0;
2213
2214 int maxreg;
2215 rtx temp;
2216 rtx link;
2217 rtx other_pat = 0;
2218 rtx new_other_notes;
2219 int i;
2220
2221 /* Exit early if one of the insns involved can't be used for
2222 combinations. */
2223 if (cant_combine_insn_p (i3)
2224 || cant_combine_insn_p (i2)
2225 || (i1 && cant_combine_insn_p (i1))
2226 || likely_spilled_retval_p (i3))
2227 return 0;
2228
2229 combine_attempts++;
2230 undobuf.other_insn = 0;
2231
2232 /* Reset the hard register usage information. */
2233 CLEAR_HARD_REG_SET (newpat_used_regs);
2234
2235 /* If I1 and I2 both feed I3, they can be in any order. To simplify the
2236 code below, set I1 to be the earlier of the two insns. */
2237 if (i1 && DF_INSN_LUID (i1) > DF_INSN_LUID (i2))
2238 temp = i1, i1 = i2, i2 = temp;
2239
2240 added_links_insn = 0;
2241
2242 /* First check for one important special-case that the code below will
2243 not handle. Namely, the case where I1 is zero, I2 is a PARALLEL
2244 and I3 is a SET whose SET_SRC is a SET_DEST in I2. In that case,
2245 we may be able to replace that destination with the destination of I3.
2246 This occurs in the common code where we compute both a quotient and
2247 remainder into a structure, in which case we want to do the computation
2248 directly into the structure to avoid register-register copies.
2249
2250 Note that this case handles both multiple sets in I2 and also
2251 cases where I2 has a number of CLOBBER or PARALLELs.
2252
2253 We make very conservative checks below and only try to handle the
2254 most common cases of this. For example, we only handle the case
2255 where I2 and I3 are adjacent to avoid making difficult register
2256 usage tests. */
2257
2258 if (i1 == 0 && NONJUMP_INSN_P (i3) && GET_CODE (PATTERN (i3)) == SET
2259 && REG_P (SET_SRC (PATTERN (i3)))
2260 && REGNO (SET_SRC (PATTERN (i3))) >= FIRST_PSEUDO_REGISTER
2261 && find_reg_note (i3, REG_DEAD, SET_SRC (PATTERN (i3)))
2262 && GET_CODE (PATTERN (i2)) == PARALLEL
2263 && ! side_effects_p (SET_DEST (PATTERN (i3)))
2264 /* If the dest of I3 is a ZERO_EXTRACT or STRICT_LOW_PART, the code
2265 below would need to check what is inside (and reg_overlap_mentioned_p
2266 doesn't support those codes anyway). Don't allow those destinations;
2267 the resulting insn isn't likely to be recognized anyway. */
2268 && GET_CODE (SET_DEST (PATTERN (i3))) != ZERO_EXTRACT
2269 && GET_CODE (SET_DEST (PATTERN (i3))) != STRICT_LOW_PART
2270 && ! reg_overlap_mentioned_p (SET_SRC (PATTERN (i3)),
2271 SET_DEST (PATTERN (i3)))
2272 && next_real_insn (i2) == i3)
2273 {
2274 rtx p2 = PATTERN (i2);
2275
2276 /* Make sure that the destination of I3,
2277 which we are going to substitute into one output of I2,
2278 is not used within another output of I2. We must avoid making this:
2279 (parallel [(set (mem (reg 69)) ...)
2280 (set (reg 69) ...)])
2281 which is not well-defined as to order of actions.
2282 (Besides, reload can't handle output reloads for this.)
2283
2284 The problem can also happen if the dest of I3 is a memory ref,
2285 if another dest in I2 is an indirect memory ref. */
2286 for (i = 0; i < XVECLEN (p2, 0); i++)
2287 if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
2288 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
2289 && reg_overlap_mentioned_p (SET_DEST (PATTERN (i3)),
2290 SET_DEST (XVECEXP (p2, 0, i))))
2291 break;
2292
2293 if (i == XVECLEN (p2, 0))
2294 for (i = 0; i < XVECLEN (p2, 0); i++)
2295 if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
2296 || GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
2297 && SET_DEST (XVECEXP (p2, 0, i)) == SET_SRC (PATTERN (i3)))
2298 {
2299 combine_merges++;
2300
2301 subst_insn = i3;
2302 subst_low_luid = DF_INSN_LUID (i2);
2303
2304 added_sets_2 = added_sets_1 = 0;
2305 i2dest = SET_SRC (PATTERN (i3));
2306 i2dest_killed = dead_or_set_p (i2, i2dest);
2307
2308 /* Replace the dest in I2 with our dest and make the resulting
2309 insn the new pattern for I3. Then skip to where we
2310 validate the pattern. Everything was set up above. */
2311 SUBST (SET_DEST (XVECEXP (p2, 0, i)),
2312 SET_DEST (PATTERN (i3)));
2313
2314 newpat = p2;
2315 i3_subst_into_i2 = 1;
2316 goto validate_replacement;
2317 }
2318 }
2319
2320 /* If I2 is setting a pseudo to a constant and I3 is setting some
2321 sub-part of it to another constant, merge them by making a new
2322 constant. */
2323 if (i1 == 0
2324 && (temp = single_set (i2)) != 0
2325 && (GET_CODE (SET_SRC (temp)) == CONST_INT
2326 || GET_CODE (SET_SRC (temp)) == CONST_DOUBLE)
2327 && GET_CODE (PATTERN (i3)) == SET
2328 && (GET_CODE (SET_SRC (PATTERN (i3))) == CONST_INT
2329 || GET_CODE (SET_SRC (PATTERN (i3))) == CONST_DOUBLE)
2330 && reg_subword_p (SET_DEST (PATTERN (i3)), SET_DEST (temp)))
2331 {
2332 rtx dest = SET_DEST (PATTERN (i3));
2333 int offset = -1;
2334 int width = 0;
2335
2336 if (GET_CODE (dest) == ZERO_EXTRACT)
2337 {
2338 if (GET_CODE (XEXP (dest, 1)) == CONST_INT
2339 && GET_CODE (XEXP (dest, 2)) == CONST_INT)
2340 {
2341 width = INTVAL (XEXP (dest, 1));
2342 offset = INTVAL (XEXP (dest, 2));
2343 dest = XEXP (dest, 0);
2344 if (BITS_BIG_ENDIAN)
2345 offset = GET_MODE_BITSIZE (GET_MODE (dest)) - width - offset;
2346 }
2347 }
2348 else
2349 {
2350 if (GET_CODE (dest) == STRICT_LOW_PART)
2351 dest = XEXP (dest, 0);
2352 width = GET_MODE_BITSIZE (GET_MODE (dest));
2353 offset = 0;
2354 }
2355
2356 if (offset >= 0)
2357 {
2358 /* If this is the low part, we're done. */
2359 if (subreg_lowpart_p (dest))
2360 ;
2361 /* Handle the case where inner is twice the size of outer. */
2362 else if (GET_MODE_BITSIZE (GET_MODE (SET_DEST (temp)))
2363 == 2 * GET_MODE_BITSIZE (GET_MODE (dest)))
2364 offset += GET_MODE_BITSIZE (GET_MODE (dest));
2365 /* Otherwise give up for now. */
2366 else
2367 offset = -1;
2368 }
2369
2370 if (offset >= 0
2371 && (GET_MODE_BITSIZE (GET_MODE (SET_DEST (temp)))
2372 <= HOST_BITS_PER_WIDE_INT * 2))
2373 {
2374 HOST_WIDE_INT mhi, ohi, ihi;
2375 HOST_WIDE_INT mlo, olo, ilo;
2376 rtx inner = SET_SRC (PATTERN (i3));
2377 rtx outer = SET_SRC (temp);
2378
2379 if (GET_CODE (outer) == CONST_INT)
2380 {
2381 olo = INTVAL (outer);
2382 ohi = olo < 0 ? -1 : 0;
2383 }
2384 else
2385 {
2386 olo = CONST_DOUBLE_LOW (outer);
2387 ohi = CONST_DOUBLE_HIGH (outer);
2388 }
2389
2390 if (GET_CODE (inner) == CONST_INT)
2391 {
2392 ilo = INTVAL (inner);
2393 ihi = ilo < 0 ? -1 : 0;
2394 }
2395 else
2396 {
2397 ilo = CONST_DOUBLE_LOW (inner);
2398 ihi = CONST_DOUBLE_HIGH (inner);
2399 }
2400
2401 if (width < HOST_BITS_PER_WIDE_INT)
2402 {
2403 mlo = ((unsigned HOST_WIDE_INT) 1 << width) - 1;
2404 mhi = 0;
2405 }
2406 else if (width < HOST_BITS_PER_WIDE_INT * 2)
2407 {
2408 mhi = ((unsigned HOST_WIDE_INT) 1
2409 << (width - HOST_BITS_PER_WIDE_INT)) - 1;
2410 mlo = -1;
2411 }
2412 else
2413 {
2414 mlo = -1;
2415 mhi = -1;
2416 }
2417
2418 ilo &= mlo;
2419 ihi &= mhi;
2420
2421 if (offset >= HOST_BITS_PER_WIDE_INT)
2422 {
2423 mhi = mlo << (offset - HOST_BITS_PER_WIDE_INT);
2424 mlo = 0;
2425 ihi = ilo << (offset - HOST_BITS_PER_WIDE_INT);
2426 ilo = 0;
2427 }
2428 else if (offset > 0)
2429 {
2430 mhi = (mhi << offset) | ((unsigned HOST_WIDE_INT) mlo
2431 >> (HOST_BITS_PER_WIDE_INT - offset));
2432 mlo = mlo << offset;
2433 ihi = (ihi << offset) | ((unsigned HOST_WIDE_INT) ilo
2434 >> (HOST_BITS_PER_WIDE_INT - offset));
2435 ilo = ilo << offset;
2436 }
2437
2438 olo = (olo & ~mlo) | ilo;
2439 ohi = (ohi & ~mhi) | ihi;
2440
2441 combine_merges++;
2442 subst_insn = i3;
2443 subst_low_luid = DF_INSN_LUID (i2);
2444 added_sets_2 = added_sets_1 = 0;
2445 i2dest = SET_DEST (temp);
2446 i2dest_killed = dead_or_set_p (i2, i2dest);
2447
2448 SUBST (SET_SRC (temp),
2449 immed_double_const (olo, ohi, GET_MODE (SET_DEST (temp))));
2450
2451 newpat = PATTERN (i2);
2452 goto validate_replacement;
2453 }
2454 }
2455
2456 #ifndef HAVE_cc0
2457 /* If we have no I1 and I2 looks like:
2458 (parallel [(set (reg:CC X) (compare:CC OP (const_int 0)))
2459 (set Y OP)])
2460 make up a dummy I1 that is
2461 (set Y OP)
2462 and change I2 to be
2463 (set (reg:CC X) (compare:CC Y (const_int 0)))
2464
2465 (We can ignore any trailing CLOBBERs.)
2466
2467 This undoes a previous combination and allows us to match a branch-and-
2468 decrement insn. */
2469
2470 if (i1 == 0 && GET_CODE (PATTERN (i2)) == PARALLEL
2471 && XVECLEN (PATTERN (i2), 0) >= 2
2472 && GET_CODE (XVECEXP (PATTERN (i2), 0, 0)) == SET
2473 && (GET_MODE_CLASS (GET_MODE (SET_DEST (XVECEXP (PATTERN (i2), 0, 0))))
2474 == MODE_CC)
2475 && GET_CODE (SET_SRC (XVECEXP (PATTERN (i2), 0, 0))) == COMPARE
2476 && XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 1) == const0_rtx
2477 && GET_CODE (XVECEXP (PATTERN (i2), 0, 1)) == SET
2478 && REG_P (SET_DEST (XVECEXP (PATTERN (i2), 0, 1)))
2479 && rtx_equal_p (XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 0),
2480 SET_SRC (XVECEXP (PATTERN (i2), 0, 1))))
2481 {
2482 for (i = XVECLEN (PATTERN (i2), 0) - 1; i >= 2; i--)
2483 if (GET_CODE (XVECEXP (PATTERN (i2), 0, i)) != CLOBBER)
2484 break;
2485
2486 if (i == 1)
2487 {
2488 /* We make I1 with the same INSN_UID as I2. This gives it
2489 the same DF_INSN_LUID for value tracking. Our fake I1 will
2490 never appear in the insn stream so giving it the same INSN_UID
2491 as I2 will not cause a problem. */
2492
2493 i1 = gen_rtx_INSN (VOIDmode, INSN_UID (i2), NULL_RTX, i2,
2494 BLOCK_FOR_INSN (i2), INSN_LOCATOR (i2),
2495 XVECEXP (PATTERN (i2), 0, 1), -1, NULL_RTX);
2496
2497 SUBST (PATTERN (i2), XVECEXP (PATTERN (i2), 0, 0));
2498 SUBST (XEXP (SET_SRC (PATTERN (i2)), 0),
2499 SET_DEST (PATTERN (i1)));
2500 }
2501 }
2502 #endif
2503
2504 /* Verify that I2 and I1 are valid for combining. */
2505 if (! can_combine_p (i2, i3, i1, NULL_RTX, &i2dest, &i2src)
2506 || (i1 && ! can_combine_p (i1, i3, NULL_RTX, i2, &i1dest, &i1src)))
2507 {
2508 undo_all ();
2509 return 0;
2510 }
2511
2512 /* Record whether I2DEST is used in I2SRC and similarly for the other
2513 cases. Knowing this will help in register status updating below. */
2514 i2dest_in_i2src = reg_overlap_mentioned_p (i2dest, i2src);
2515 i1dest_in_i1src = i1 && reg_overlap_mentioned_p (i1dest, i1src);
2516 i2dest_in_i1src = i1 && reg_overlap_mentioned_p (i2dest, i1src);
2517 i2dest_killed = dead_or_set_p (i2, i2dest);
2518 i1dest_killed = i1 && dead_or_set_p (i1, i1dest);
2519
2520 /* See if I1 directly feeds into I3. It does if I1DEST is not used
2521 in I2SRC. */
2522 i1_feeds_i3 = i1 && ! reg_overlap_mentioned_p (i1dest, i2src);
2523
2524 /* Ensure that I3's pattern can be the destination of combines. */
2525 if (! combinable_i3pat (i3, &PATTERN (i3), i2dest, i1dest,
2526 i1 && i2dest_in_i1src && i1_feeds_i3,
2527 &i3dest_killed))
2528 {
2529 undo_all ();
2530 return 0;
2531 }
2532
2533 /* See if any of the insns is a MULT operation. Unless one is, we will
2534 reject a combination that is, since it must be slower. Be conservative
2535 here. */
2536 if (GET_CODE (i2src) == MULT
2537 || (i1 != 0 && GET_CODE (i1src) == MULT)
2538 || (GET_CODE (PATTERN (i3)) == SET
2539 && GET_CODE (SET_SRC (PATTERN (i3))) == MULT))
2540 have_mult = 1;
2541
2542 /* If I3 has an inc, then give up if I1 or I2 uses the reg that is inc'd.
2543 We used to do this EXCEPT in one case: I3 has a post-inc in an
2544 output operand. However, that exception can give rise to insns like
2545 mov r3,(r3)+
2546 which is a famous insn on the PDP-11 where the value of r3 used as the
2547 source was model-dependent. Avoid this sort of thing. */
2548
2549 #if 0
2550 if (!(GET_CODE (PATTERN (i3)) == SET
2551 && REG_P (SET_SRC (PATTERN (i3)))
2552 && MEM_P (SET_DEST (PATTERN (i3)))
2553 && (GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_INC
2554 || GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_DEC)))
2555 /* It's not the exception. */
2556 #endif
2557 #ifdef AUTO_INC_DEC
2558 for (link = REG_NOTES (i3); link; link = XEXP (link, 1))
2559 if (REG_NOTE_KIND (link) == REG_INC
2560 && (reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i2))
2561 || (i1 != 0
2562 && reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i1)))))
2563 {
2564 undo_all ();
2565 return 0;
2566 }
2567 #endif
2568
2569 /* See if the SETs in I1 or I2 need to be kept around in the merged
2570 instruction: whenever the value set there is still needed past I3.
2571 For the SETs in I2, this is easy: we see if I2DEST dies or is set in I3.
2572
2573 For the SET in I1, we have two cases: If I1 and I2 independently
2574 feed into I3, the set in I1 needs to be kept around if I1DEST dies
2575 or is set in I3. Otherwise (if I1 feeds I2 which feeds I3), the set
2576 in I1 needs to be kept around unless I1DEST dies or is set in either
2577 I2 or I3. We can distinguish these cases by seeing if I2SRC mentions
2578 I1DEST. If so, we know I1 feeds into I2. */
2579
2580 added_sets_2 = ! dead_or_set_p (i3, i2dest);
2581
2582 added_sets_1
2583 = i1 && ! (i1_feeds_i3 ? dead_or_set_p (i3, i1dest)
2584 : (dead_or_set_p (i3, i1dest) || dead_or_set_p (i2, i1dest)));
2585
2586 /* If the set in I2 needs to be kept around, we must make a copy of
2587 PATTERN (I2), so that when we substitute I1SRC for I1DEST in
2588 PATTERN (I2), we are only substituting for the original I1DEST, not into
2589 an already-substituted copy. This also prevents making self-referential
2590 rtx. If I2 is a PARALLEL, we just need the piece that assigns I2SRC to
2591 I2DEST. */
2592
2593 if (added_sets_2)
2594 {
2595 if (GET_CODE (PATTERN (i2)) == PARALLEL)
2596 i2pat = gen_rtx_SET (VOIDmode, i2dest, copy_rtx (i2src));
2597 else
2598 i2pat = copy_rtx (PATTERN (i2));
2599 }
2600
2601 if (added_sets_1)
2602 {
2603 if (GET_CODE (PATTERN (i1)) == PARALLEL)
2604 i1pat = gen_rtx_SET (VOIDmode, i1dest, copy_rtx (i1src));
2605 else
2606 i1pat = copy_rtx (PATTERN (i1));
2607 }
2608
2609 combine_merges++;
2610
2611 /* Substitute in the latest insn for the regs set by the earlier ones. */
2612
2613 maxreg = max_reg_num ();
2614
2615 subst_insn = i3;
2616
2617 #ifndef HAVE_cc0
2618 /* Many machines that don't use CC0 have insns that can both perform an
2619 arithmetic operation and set the condition code. These operations will
2620 be represented as a PARALLEL with the first element of the vector
2621 being a COMPARE of an arithmetic operation with the constant zero.
2622 The second element of the vector will set some pseudo to the result
2623 of the same arithmetic operation. If we simplify the COMPARE, we won't
2624 match such a pattern and so will generate an extra insn. Here we test
2625 for this case, where both the comparison and the operation result are
2626 needed, and make the PARALLEL by just replacing I2DEST in I3SRC with
2627 I2SRC. Later we will make the PARALLEL that contains I2. */
2628
2629 if (i1 == 0 && added_sets_2 && GET_CODE (PATTERN (i3)) == SET
2630 && GET_CODE (SET_SRC (PATTERN (i3))) == COMPARE
2631 && XEXP (SET_SRC (PATTERN (i3)), 1) == const0_rtx
2632 && rtx_equal_p (XEXP (SET_SRC (PATTERN (i3)), 0), i2dest))
2633 {
2634 #ifdef SELECT_CC_MODE
2635 rtx *cc_use;
2636 enum machine_mode compare_mode;
2637 #endif
2638
2639 newpat = PATTERN (i3);
2640 SUBST (XEXP (SET_SRC (newpat), 0), i2src);
2641
2642 i2_is_used = 1;
2643
2644 #ifdef SELECT_CC_MODE
2645 /* See if a COMPARE with the operand we substituted in should be done
2646 with the mode that is currently being used. If not, do the same
2647 processing we do in `subst' for a SET; namely, if the destination
2648 is used only once, try to replace it with a register of the proper
2649 mode and also replace the COMPARE. */
2650 if (undobuf.other_insn == 0
2651 && (cc_use = find_single_use (SET_DEST (newpat), i3,
2652 &undobuf.other_insn))
2653 && ((compare_mode = SELECT_CC_MODE (GET_CODE (*cc_use),
2654 i2src, const0_rtx))
2655 != GET_MODE (SET_DEST (newpat))))
2656 {
2657 if (can_change_dest_mode(SET_DEST (newpat), added_sets_2,
2658 compare_mode))
2659 {
2660 unsigned int regno = REGNO (SET_DEST (newpat));
2661 rtx new_dest;
2662
2663 if (regno < FIRST_PSEUDO_REGISTER)
2664 new_dest = gen_rtx_REG (compare_mode, regno);
2665 else
2666 {
2667 SUBST_MODE (regno_reg_rtx[regno], compare_mode);
2668 new_dest = regno_reg_rtx[regno];
2669 }
2670
2671 SUBST (SET_DEST (newpat), new_dest);
2672 SUBST (XEXP (*cc_use, 0), new_dest);
2673 SUBST (SET_SRC (newpat),
2674 gen_rtx_COMPARE (compare_mode, i2src, const0_rtx));
2675 }
2676 else
2677 undobuf.other_insn = 0;
2678 }
2679 #endif
2680 }
2681 else
2682 #endif
2683 {
2684 /* It is possible that the source of I2 or I1 may be performing
2685 an unneeded operation, such as a ZERO_EXTEND of something
2686 that is known to have the high part zero. Handle that case
2687 by letting subst look at the innermost one of them.
2688
2689 Another way to do this would be to have a function that tries
2690 to simplify a single insn instead of merging two or more
2691 insns. We don't do this because of the potential of infinite
2692 loops and because of the potential extra memory required.
2693 However, doing it the way we are is a bit of a kludge and
2694 doesn't catch all cases.
2695
2696 But only do this if -fexpensive-optimizations since it slows
2697 things down and doesn't usually win.
2698
2699 This is not done in the COMPARE case above because the
2700 unmodified I2PAT is used in the PARALLEL and so a pattern
2701 with a modified I2SRC would not match. */
2702
2703 if (flag_expensive_optimizations)
2704 {
2705 /* Pass pc_rtx so no substitutions are done, just
2706 simplifications. */
2707 if (i1)
2708 {
2709 subst_low_luid = DF_INSN_LUID (i1);
2710 i1src = subst (i1src, pc_rtx, pc_rtx, 0, 0);
2711 }
2712 else
2713 {
2714 subst_low_luid = DF_INSN_LUID (i2);
2715 i2src = subst (i2src, pc_rtx, pc_rtx, 0, 0);
2716 }
2717 }
2718
2719 n_occurrences = 0; /* `subst' counts here */
2720
2721 /* If I1 feeds into I2 (not into I3) and I1DEST is in I1SRC, we
2722 need to make a unique copy of I2SRC each time we substitute it
2723 to avoid self-referential rtl. */
2724
2725 subst_low_luid = DF_INSN_LUID (i2);
2726 newpat = subst (PATTERN (i3), i2dest, i2src, 0,
2727 ! i1_feeds_i3 && i1dest_in_i1src);
2728 substed_i2 = 1;
2729
2730 /* Record whether i2's body now appears within i3's body. */
2731 i2_is_used = n_occurrences;
2732 }
2733
2734 /* If we already got a failure, don't try to do more. Otherwise,
2735 try to substitute in I1 if we have it. */
2736
2737 if (i1 && GET_CODE (newpat) != CLOBBER)
2738 {
2739 /* Check that an autoincrement side-effect on I1 has not been lost.
2740 This happens if I1DEST is mentioned in I2 and dies there, and
2741 has disappeared from the new pattern. */
2742 if ((FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
2743 && !i1_feeds_i3
2744 && dead_or_set_p (i2, i1dest)
2745 && !reg_overlap_mentioned_p (i1dest, newpat))
2746 /* Before we can do this substitution, we must redo the test done
2747 above (see detailed comments there) that ensures that I1DEST
2748 isn't mentioned in any SETs in NEWPAT that are field assignments. */
2749 || !combinable_i3pat (NULL_RTX, &newpat, i1dest, NULL_RTX, 0, 0))
2750 {
2751 undo_all ();
2752 return 0;
2753 }
2754
2755 n_occurrences = 0;
2756 subst_low_luid = DF_INSN_LUID (i1);
2757 newpat = subst (newpat, i1dest, i1src, 0, 0);
2758 substed_i1 = 1;
2759 }
2760
2761 /* Fail if an autoincrement side-effect has been duplicated. Be careful
2762 to count all the ways that I2SRC and I1SRC can be used. */
2763 if ((FIND_REG_INC_NOTE (i2, NULL_RTX) != 0
2764 && i2_is_used + added_sets_2 > 1)
2765 || (i1 != 0 && FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
2766 && (n_occurrences + added_sets_1 + (added_sets_2 && ! i1_feeds_i3)
2767 > 1))
2768 /* Fail if we tried to make a new register. */
2769 || max_reg_num () != maxreg
2770 /* Fail if we couldn't do something and have a CLOBBER. */
2771 || GET_CODE (newpat) == CLOBBER
2772 /* Fail if this new pattern is a MULT and we didn't have one before
2773 at the outer level. */
2774 || (GET_CODE (newpat) == SET && GET_CODE (SET_SRC (newpat)) == MULT
2775 && ! have_mult))
2776 {
2777 undo_all ();
2778 return 0;
2779 }
2780
2781 /* If the actions of the earlier insns must be kept
2782 in addition to substituting them into the latest one,
2783 we must make a new PARALLEL for the latest insn
2784 to hold additional the SETs. */
2785
2786 if (added_sets_1 || added_sets_2)
2787 {
2788 combine_extras++;
2789
2790 if (GET_CODE (newpat) == PARALLEL)
2791 {
2792 rtvec old = XVEC (newpat, 0);
2793 total_sets = XVECLEN (newpat, 0) + added_sets_1 + added_sets_2;
2794 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
2795 memcpy (XVEC (newpat, 0)->elem, &old->elem[0],
2796 sizeof (old->elem[0]) * old->num_elem);
2797 }
2798 else
2799 {
2800 rtx old = newpat;
2801 total_sets = 1 + added_sets_1 + added_sets_2;
2802 newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
2803 XVECEXP (newpat, 0, 0) = old;
2804 }
2805
2806 if (added_sets_1)
2807 XVECEXP (newpat, 0, --total_sets) = i1pat;
2808
2809 if (added_sets_2)
2810 {
2811 /* If there is no I1, use I2's body as is. We used to also not do
2812 the subst call below if I2 was substituted into I3,
2813 but that could lose a simplification. */
2814 if (i1 == 0)
2815 XVECEXP (newpat, 0, --total_sets) = i2pat;
2816 else
2817 /* See comment where i2pat is assigned. */
2818 XVECEXP (newpat, 0, --total_sets)
2819 = subst (i2pat, i1dest, i1src, 0, 0);
2820 }
2821 }
2822
2823 /* We come here when we are replacing a destination in I2 with the
2824 destination of I3. */
2825 validate_replacement:
2826
2827 /* Note which hard regs this insn has as inputs. */
2828 mark_used_regs_combine (newpat);
2829
2830 /* If recog_for_combine fails, it strips existing clobbers. If we'll
2831 consider splitting this pattern, we might need these clobbers. */
2832 if (i1 && GET_CODE (newpat) == PARALLEL
2833 && GET_CODE (XVECEXP (newpat, 0, XVECLEN (newpat, 0) - 1)) == CLOBBER)
2834 {
2835 int len = XVECLEN (newpat, 0);
2836
2837 newpat_vec_with_clobbers = rtvec_alloc (len);
2838 for (i = 0; i < len; i++)
2839 RTVEC_ELT (newpat_vec_with_clobbers, i) = XVECEXP (newpat, 0, i);
2840 }
2841
2842 /* Is the result of combination a valid instruction? */
2843 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2844
2845 /* If the result isn't valid, see if it is a PARALLEL of two SETs where
2846 the second SET's destination is a register that is unused and isn't
2847 marked as an instruction that might trap in an EH region. In that case,
2848 we just need the first SET. This can occur when simplifying a divmod
2849 insn. We *must* test for this case here because the code below that
2850 splits two independent SETs doesn't handle this case correctly when it
2851 updates the register status.
2852
2853 It's pointless doing this if we originally had two sets, one from
2854 i3, and one from i2. Combining then splitting the parallel results
2855 in the original i2 again plus an invalid insn (which we delete).
2856 The net effect is only to move instructions around, which makes
2857 debug info less accurate.
2858
2859 Also check the case where the first SET's destination is unused.
2860 That would not cause incorrect code, but does cause an unneeded
2861 insn to remain. */
2862
2863 if (insn_code_number < 0
2864 && !(added_sets_2 && i1 == 0)
2865 && GET_CODE (newpat) == PARALLEL
2866 && XVECLEN (newpat, 0) == 2
2867 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
2868 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
2869 && asm_noperands (newpat) < 0)
2870 {
2871 rtx set0 = XVECEXP (newpat, 0, 0);
2872 rtx set1 = XVECEXP (newpat, 0, 1);
2873 rtx note;
2874
2875 if (((REG_P (SET_DEST (set1))
2876 && find_reg_note (i3, REG_UNUSED, SET_DEST (set1)))
2877 || (GET_CODE (SET_DEST (set1)) == SUBREG
2878 && find_reg_note (i3, REG_UNUSED, SUBREG_REG (SET_DEST (set1)))))
2879 && (!(note = find_reg_note (i3, REG_EH_REGION, NULL_RTX))
2880 || INTVAL (XEXP (note, 0)) <= 0)
2881 && ! side_effects_p (SET_SRC (set1)))
2882 {
2883 newpat = set0;
2884 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2885 }
2886
2887 else if (((REG_P (SET_DEST (set0))
2888 && find_reg_note (i3, REG_UNUSED, SET_DEST (set0)))
2889 || (GET_CODE (SET_DEST (set0)) == SUBREG
2890 && find_reg_note (i3, REG_UNUSED,
2891 SUBREG_REG (SET_DEST (set0)))))
2892 && (!(note = find_reg_note (i3, REG_EH_REGION, NULL_RTX))
2893 || INTVAL (XEXP (note, 0)) <= 0)
2894 && ! side_effects_p (SET_SRC (set0)))
2895 {
2896 newpat = set1;
2897 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
2898
2899 if (insn_code_number >= 0)
2900 changed_i3_dest = 1;
2901 }
2902 }
2903
2904 /* If we were combining three insns and the result is a simple SET
2905 with no ASM_OPERANDS that wasn't recognized, try to split it into two
2906 insns. There are two ways to do this. It can be split using a
2907 machine-specific method (like when you have an addition of a large
2908 constant) or by combine in the function find_split_point. */
2909
2910 if (i1 && insn_code_number < 0 && GET_CODE (newpat) == SET
2911 && asm_noperands (newpat) < 0)
2912 {
2913 rtx parallel, m_split, *split;
2914
2915 /* See if the MD file can split NEWPAT. If it can't, see if letting it
2916 use I2DEST as a scratch register will help. In the latter case,
2917 convert I2DEST to the mode of the source of NEWPAT if we can. */
2918
2919 m_split = combine_split_insns (newpat, i3);
2920
2921 /* We can only use I2DEST as a scratch reg if it doesn't overlap any
2922 inputs of NEWPAT. */
2923
2924 /* ??? If I2DEST is not safe, and I1DEST exists, then it would be
2925 possible to try that as a scratch reg. This would require adding
2926 more code to make it work though. */
2927
2928 if (m_split == 0 && ! reg_overlap_mentioned_p (i2dest, newpat))
2929 {
2930 enum machine_mode new_mode = GET_MODE (SET_DEST (newpat));
2931
2932 /* First try to split using the original register as a
2933 scratch register. */
2934 parallel = gen_rtx_PARALLEL (VOIDmode,
2935 gen_rtvec (2, newpat,
2936 gen_rtx_CLOBBER (VOIDmode,
2937 i2dest)));
2938 m_split = combine_split_insns (parallel, i3);
2939
2940 /* If that didn't work, try changing the mode of I2DEST if
2941 we can. */
2942 if (m_split == 0
2943 && new_mode != GET_MODE (i2dest)
2944 && new_mode != VOIDmode
2945 && can_change_dest_mode (i2dest, added_sets_2, new_mode))
2946 {
2947 enum machine_mode old_mode = GET_MODE (i2dest);
2948 rtx ni2dest;
2949
2950 if (REGNO (i2dest) < FIRST_PSEUDO_REGISTER)
2951 ni2dest = gen_rtx_REG (new_mode, REGNO (i2dest));
2952 else
2953 {
2954 SUBST_MODE (regno_reg_rtx[REGNO (i2dest)], new_mode);
2955 ni2dest = regno_reg_rtx[REGNO (i2dest)];
2956 }
2957
2958 parallel = (gen_rtx_PARALLEL
2959 (VOIDmode,
2960 gen_rtvec (2, newpat,
2961 gen_rtx_CLOBBER (VOIDmode,
2962 ni2dest))));
2963 m_split = combine_split_insns (parallel, i3);
2964
2965 if (m_split == 0
2966 && REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
2967 {
2968 struct undo *buf;
2969
2970 adjust_reg_mode (regno_reg_rtx[REGNO (i2dest)], old_mode);
2971 buf = undobuf.undos;
2972 undobuf.undos = buf->next;
2973 buf->next = undobuf.frees;
2974 undobuf.frees = buf;
2975 }
2976 }
2977 }
2978
2979 /* If recog_for_combine has discarded clobbers, try to use them
2980 again for the split. */
2981 if (m_split == 0 && newpat_vec_with_clobbers)
2982 {
2983 parallel = gen_rtx_PARALLEL (VOIDmode, newpat_vec_with_clobbers);
2984 m_split = combine_split_insns (parallel, i3);
2985 }
2986
2987 if (m_split && NEXT_INSN (m_split) == NULL_RTX)
2988 {
2989 m_split = PATTERN (m_split);
2990 insn_code_number = recog_for_combine (&m_split, i3, &new_i3_notes);
2991 if (insn_code_number >= 0)
2992 newpat = m_split;
2993 }
2994 else if (m_split && NEXT_INSN (NEXT_INSN (m_split)) == NULL_RTX
2995 && (next_real_insn (i2) == i3
2996 || ! use_crosses_set_p (PATTERN (m_split), DF_INSN_LUID (i2))))
2997 {
2998 rtx i2set, i3set;
2999 rtx newi3pat = PATTERN (NEXT_INSN (m_split));
3000 newi2pat = PATTERN (m_split);
3001
3002 i3set = single_set (NEXT_INSN (m_split));
3003 i2set = single_set (m_split);
3004
3005 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3006
3007 /* If I2 or I3 has multiple SETs, we won't know how to track
3008 register status, so don't use these insns. If I2's destination
3009 is used between I2 and I3, we also can't use these insns. */
3010
3011 if (i2_code_number >= 0 && i2set && i3set
3012 && (next_real_insn (i2) == i3
3013 || ! reg_used_between_p (SET_DEST (i2set), i2, i3)))
3014 insn_code_number = recog_for_combine (&newi3pat, i3,
3015 &new_i3_notes);
3016 if (insn_code_number >= 0)
3017 newpat = newi3pat;
3018
3019 /* It is possible that both insns now set the destination of I3.
3020 If so, we must show an extra use of it. */
3021
3022 if (insn_code_number >= 0)
3023 {
3024 rtx new_i3_dest = SET_DEST (i3set);
3025 rtx new_i2_dest = SET_DEST (i2set);
3026
3027 while (GET_CODE (new_i3_dest) == ZERO_EXTRACT
3028 || GET_CODE (new_i3_dest) == STRICT_LOW_PART
3029 || GET_CODE (new_i3_dest) == SUBREG)
3030 new_i3_dest = XEXP (new_i3_dest, 0);
3031
3032 while (GET_CODE (new_i2_dest) == ZERO_EXTRACT
3033 || GET_CODE (new_i2_dest) == STRICT_LOW_PART
3034 || GET_CODE (new_i2_dest) == SUBREG)
3035 new_i2_dest = XEXP (new_i2_dest, 0);
3036
3037 if (REG_P (new_i3_dest)
3038 && REG_P (new_i2_dest)
3039 && REGNO (new_i3_dest) == REGNO (new_i2_dest))
3040 INC_REG_N_SETS (REGNO (new_i2_dest), 1);
3041 }
3042 }
3043
3044 /* If we can split it and use I2DEST, go ahead and see if that
3045 helps things be recognized. Verify that none of the registers
3046 are set between I2 and I3. */
3047 if (insn_code_number < 0 && (split = find_split_point (&newpat, i3)) != 0
3048 #ifdef HAVE_cc0
3049 && REG_P (i2dest)
3050 #endif
3051 /* We need I2DEST in the proper mode. If it is a hard register
3052 or the only use of a pseudo, we can change its mode.
3053 Make sure we don't change a hard register to have a mode that
3054 isn't valid for it, or change the number of registers. */
3055 && (GET_MODE (*split) == GET_MODE (i2dest)
3056 || GET_MODE (*split) == VOIDmode
3057 || can_change_dest_mode (i2dest, added_sets_2,
3058 GET_MODE (*split)))
3059 && (next_real_insn (i2) == i3
3060 || ! use_crosses_set_p (*split, DF_INSN_LUID (i2)))
3061 /* We can't overwrite I2DEST if its value is still used by
3062 NEWPAT. */
3063 && ! reg_referenced_p (i2dest, newpat))
3064 {
3065 rtx newdest = i2dest;
3066 enum rtx_code split_code = GET_CODE (*split);
3067 enum machine_mode split_mode = GET_MODE (*split);
3068 bool subst_done = false;
3069 newi2pat = NULL_RTX;
3070
3071 /* Get NEWDEST as a register in the proper mode. We have already
3072 validated that we can do this. */
3073 if (GET_MODE (i2dest) != split_mode && split_mode != VOIDmode)
3074 {
3075 if (REGNO (i2dest) < FIRST_PSEUDO_REGISTER)
3076 newdest = gen_rtx_REG (split_mode, REGNO (i2dest));
3077 else
3078 {
3079 SUBST_MODE (regno_reg_rtx[REGNO (i2dest)], split_mode);
3080 newdest = regno_reg_rtx[REGNO (i2dest)];
3081 }
3082 }
3083
3084 /* If *SPLIT is a (mult FOO (const_int pow2)), convert it to
3085 an ASHIFT. This can occur if it was inside a PLUS and hence
3086 appeared to be a memory address. This is a kludge. */
3087 if (split_code == MULT
3088 && GET_CODE (XEXP (*split, 1)) == CONST_INT
3089 && INTVAL (XEXP (*split, 1)) > 0
3090 && (i = exact_log2 (INTVAL (XEXP (*split, 1)))) >= 0)
3091 {
3092 SUBST (*split, gen_rtx_ASHIFT (split_mode,
3093 XEXP (*split, 0), GEN_INT (i)));
3094 /* Update split_code because we may not have a multiply
3095 anymore. */
3096 split_code = GET_CODE (*split);
3097 }
3098
3099 #ifdef INSN_SCHEDULING
3100 /* If *SPLIT is a paradoxical SUBREG, when we split it, it should
3101 be written as a ZERO_EXTEND. */
3102 if (split_code == SUBREG && MEM_P (SUBREG_REG (*split)))
3103 {
3104 #ifdef LOAD_EXTEND_OP
3105 /* Or as a SIGN_EXTEND if LOAD_EXTEND_OP says that that's
3106 what it really is. */
3107 if (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (*split)))
3108 == SIGN_EXTEND)
3109 SUBST (*split, gen_rtx_SIGN_EXTEND (split_mode,
3110 SUBREG_REG (*split)));
3111 else
3112 #endif
3113 SUBST (*split, gen_rtx_ZERO_EXTEND (split_mode,
3114 SUBREG_REG (*split)));
3115 }
3116 #endif
3117
3118 /* Attempt to split binary operators using arithmetic identities. */
3119 if (BINARY_P (SET_SRC (newpat))
3120 && split_mode == GET_MODE (SET_SRC (newpat))
3121 && ! side_effects_p (SET_SRC (newpat)))
3122 {
3123 rtx setsrc = SET_SRC (newpat);
3124 enum machine_mode mode = GET_MODE (setsrc);
3125 enum rtx_code code = GET_CODE (setsrc);
3126 rtx src_op0 = XEXP (setsrc, 0);
3127 rtx src_op1 = XEXP (setsrc, 1);
3128
3129 /* Split "X = Y op Y" as "Z = Y; X = Z op Z". */
3130 if (rtx_equal_p (src_op0, src_op1))
3131 {
3132 newi2pat = gen_rtx_SET (VOIDmode, newdest, src_op0);
3133 SUBST (XEXP (setsrc, 0), newdest);
3134 SUBST (XEXP (setsrc, 1), newdest);
3135 subst_done = true;
3136 }
3137 /* Split "((P op Q) op R) op S" where op is PLUS or MULT. */
3138 else if ((code == PLUS || code == MULT)
3139 && GET_CODE (src_op0) == code
3140 && GET_CODE (XEXP (src_op0, 0)) == code
3141 && (INTEGRAL_MODE_P (mode)
3142 || (FLOAT_MODE_P (mode)
3143 && flag_unsafe_math_optimizations)))
3144 {
3145 rtx p = XEXP (XEXP (src_op0, 0), 0);
3146 rtx q = XEXP (XEXP (src_op0, 0), 1);
3147 rtx r = XEXP (src_op0, 1);
3148 rtx s = src_op1;
3149
3150 /* Split both "((X op Y) op X) op Y" and
3151 "((X op Y) op Y) op X" as "T op T" where T is
3152 "X op Y". */
3153 if ((rtx_equal_p (p,r) && rtx_equal_p (q,s))
3154 || (rtx_equal_p (p,s) && rtx_equal_p (q,r)))
3155 {
3156 newi2pat = gen_rtx_SET (VOIDmode, newdest,
3157 XEXP (src_op0, 0));
3158 SUBST (XEXP (setsrc, 0), newdest);
3159 SUBST (XEXP (setsrc, 1), newdest);
3160 subst_done = true;
3161 }
3162 /* Split "((X op X) op Y) op Y)" as "T op T" where
3163 T is "X op Y". */
3164 else if (rtx_equal_p (p,q) && rtx_equal_p (r,s))
3165 {
3166 rtx tmp = simplify_gen_binary (code, mode, p, r);
3167 newi2pat = gen_rtx_SET (VOIDmode, newdest, tmp);
3168 SUBST (XEXP (setsrc, 0), newdest);
3169 SUBST (XEXP (setsrc, 1), newdest);
3170 subst_done = true;
3171 }
3172 }
3173 }
3174
3175 if (!subst_done)
3176 {
3177 newi2pat = gen_rtx_SET (VOIDmode, newdest, *split);
3178 SUBST (*split, newdest);
3179 }
3180
3181 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3182
3183 /* recog_for_combine might have added CLOBBERs to newi2pat.
3184 Make sure NEWPAT does not depend on the clobbered regs. */
3185 if (GET_CODE (newi2pat) == PARALLEL)
3186 for (i = XVECLEN (newi2pat, 0) - 1; i >= 0; i--)
3187 if (GET_CODE (XVECEXP (newi2pat, 0, i)) == CLOBBER)
3188 {
3189 rtx reg = XEXP (XVECEXP (newi2pat, 0, i), 0);
3190 if (reg_overlap_mentioned_p (reg, newpat))
3191 {
3192 undo_all ();
3193 return 0;
3194 }
3195 }
3196
3197 /* If the split point was a MULT and we didn't have one before,
3198 don't use one now. */
3199 if (i2_code_number >= 0 && ! (split_code == MULT && ! have_mult))
3200 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3201 }
3202 }
3203
3204 /* Check for a case where we loaded from memory in a narrow mode and
3205 then sign extended it, but we need both registers. In that case,
3206 we have a PARALLEL with both loads from the same memory location.
3207 We can split this into a load from memory followed by a register-register
3208 copy. This saves at least one insn, more if register allocation can
3209 eliminate the copy.
3210
3211 We cannot do this if the destination of the first assignment is a
3212 condition code register or cc0. We eliminate this case by making sure
3213 the SET_DEST and SET_SRC have the same mode.
3214
3215 We cannot do this if the destination of the second assignment is
3216 a register that we have already assumed is zero-extended. Similarly
3217 for a SUBREG of such a register. */
3218
3219 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
3220 && GET_CODE (newpat) == PARALLEL
3221 && XVECLEN (newpat, 0) == 2
3222 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
3223 && GET_CODE (SET_SRC (XVECEXP (newpat, 0, 0))) == SIGN_EXTEND
3224 && (GET_MODE (SET_DEST (XVECEXP (newpat, 0, 0)))
3225 == GET_MODE (SET_SRC (XVECEXP (newpat, 0, 0))))
3226 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
3227 && rtx_equal_p (SET_SRC (XVECEXP (newpat, 0, 1)),
3228 XEXP (SET_SRC (XVECEXP (newpat, 0, 0)), 0))
3229 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
3230 DF_INSN_LUID (i2))
3231 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
3232 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
3233 && ! (temp = SET_DEST (XVECEXP (newpat, 0, 1)),
3234 (REG_P (temp)
3235 && VEC_index (reg_stat_type, reg_stat,
3236 REGNO (temp))->nonzero_bits != 0
3237 && GET_MODE_BITSIZE (GET_MODE (temp)) < BITS_PER_WORD
3238 && GET_MODE_BITSIZE (GET_MODE (temp)) < HOST_BITS_PER_INT
3239 && (VEC_index (reg_stat_type, reg_stat,
3240 REGNO (temp))->nonzero_bits
3241 != GET_MODE_MASK (word_mode))))
3242 && ! (GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) == SUBREG
3243 && (temp = SUBREG_REG (SET_DEST (XVECEXP (newpat, 0, 1))),
3244 (REG_P (temp)
3245 && VEC_index (reg_stat_type, reg_stat,
3246 REGNO (temp))->nonzero_bits != 0
3247 && GET_MODE_BITSIZE (GET_MODE (temp)) < BITS_PER_WORD
3248 && GET_MODE_BITSIZE (GET_MODE (temp)) < HOST_BITS_PER_INT
3249 && (VEC_index (reg_stat_type, reg_stat,
3250 REGNO (temp))->nonzero_bits
3251 != GET_MODE_MASK (word_mode)))))
3252 && ! reg_overlap_mentioned_p (SET_DEST (XVECEXP (newpat, 0, 1)),
3253 SET_SRC (XVECEXP (newpat, 0, 1)))
3254 && ! find_reg_note (i3, REG_UNUSED,
3255 SET_DEST (XVECEXP (newpat, 0, 0))))
3256 {
3257 rtx ni2dest;
3258
3259 newi2pat = XVECEXP (newpat, 0, 0);
3260 ni2dest = SET_DEST (XVECEXP (newpat, 0, 0));
3261 newpat = XVECEXP (newpat, 0, 1);
3262 SUBST (SET_SRC (newpat),
3263 gen_lowpart (GET_MODE (SET_SRC (newpat)), ni2dest));
3264 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3265
3266 if (i2_code_number >= 0)
3267 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3268
3269 if (insn_code_number >= 0)
3270 swap_i2i3 = 1;
3271 }
3272
3273 /* Similarly, check for a case where we have a PARALLEL of two independent
3274 SETs but we started with three insns. In this case, we can do the sets
3275 as two separate insns. This case occurs when some SET allows two
3276 other insns to combine, but the destination of that SET is still live. */
3277
3278 else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
3279 && GET_CODE (newpat) == PARALLEL
3280 && XVECLEN (newpat, 0) == 2
3281 && GET_CODE (XVECEXP (newpat, 0, 0)) == SET
3282 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != ZERO_EXTRACT
3283 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != STRICT_LOW_PART
3284 && GET_CODE (XVECEXP (newpat, 0, 1)) == SET
3285 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
3286 && GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
3287 && ! use_crosses_set_p (SET_SRC (XVECEXP (newpat, 0, 1)),
3288 DF_INSN_LUID (i2))
3289 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 1)),
3290 XVECEXP (newpat, 0, 0))
3291 && ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 0)),
3292 XVECEXP (newpat, 0, 1))
3293 && ! (contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 0)))
3294 && contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 1))))
3295 #ifdef HAVE_cc0
3296 /* We cannot split the parallel into two sets if both sets
3297 reference cc0. */
3298 && ! (reg_referenced_p (cc0_rtx, XVECEXP (newpat, 0, 0))
3299 && reg_referenced_p (cc0_rtx, XVECEXP (newpat, 0, 1)))
3300 #endif
3301 )
3302 {
3303 /* Normally, it doesn't matter which of the two is done first,
3304 but it does if one references cc0. In that case, it has to
3305 be first. */
3306 #ifdef HAVE_cc0
3307 if (reg_referenced_p (cc0_rtx, XVECEXP (newpat, 0, 0)))
3308 {
3309 newi2pat = XVECEXP (newpat, 0, 0);
3310 newpat = XVECEXP (newpat, 0, 1);
3311 }
3312 else
3313 #endif
3314 {
3315 newi2pat = XVECEXP (newpat, 0, 1);
3316 newpat = XVECEXP (newpat, 0, 0);
3317 }
3318
3319 i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
3320
3321 if (i2_code_number >= 0)
3322 insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
3323 }
3324
3325 /* If it still isn't recognized, fail and change things back the way they
3326 were. */
3327 if ((insn_code_number < 0
3328 /* Is the result a reasonable ASM_OPERANDS? */
3329 && (! check_asm_operands (newpat) || added_sets_1 || added_sets_2)))
3330 {
3331 undo_all ();
3332 return 0;
3333 }
3334
3335 /* If we had to change another insn, make sure it is valid also. */
3336 if (undobuf.other_insn)
3337 {
3338 CLEAR_HARD_REG_SET (newpat_used_regs);
3339
3340 other_pat = PATTERN (undobuf.other_insn);
3341 other_code_number = recog_for_combine (&other_pat, undobuf.other_insn,
3342 &new_other_notes);
3343
3344 if (other_code_number < 0 && ! check_asm_operands (other_pat))
3345 {
3346 undo_all ();
3347 return 0;
3348 }
3349 }
3350
3351 #ifdef HAVE_cc0
3352 /* If I2 is the CC0 setter and I3 is the CC0 user then check whether
3353 they are adjacent to each other or not. */
3354 {
3355 rtx p = prev_nonnote_insn (i3);
3356 if (p && p != i2 && NONJUMP_INSN_P (p) && newi2pat
3357 && sets_cc0_p (newi2pat))
3358 {
3359 undo_all ();
3360 return 0;
3361 }
3362 }
3363 #endif
3364
3365 /* Only allow this combination if insn_rtx_costs reports that the
3366 replacement instructions are cheaper than the originals. */
3367 if (!combine_validate_cost (i1, i2, i3, newpat, newi2pat, other_pat))
3368 {
3369 undo_all ();
3370 return 0;
3371 }
3372
3373 /* If we will be able to accept this, we have made a
3374 change to the destination of I3. This requires us to
3375 do a few adjustments. */
3376
3377 if (changed_i3_dest)
3378 {
3379 PATTERN (i3) = newpat;
3380 adjust_for_new_dest (i3);
3381 }
3382
3383 /* We now know that we can do this combination. Merge the insns and
3384 update the status of registers and LOG_LINKS. */
3385
3386 if (undobuf.other_insn)
3387 {
3388 rtx note, next;
3389
3390 PATTERN (undobuf.other_insn) = other_pat;
3391
3392 /* If any of the notes in OTHER_INSN were REG_UNUSED, ensure that they
3393 are still valid. Then add any non-duplicate notes added by
3394 recog_for_combine. */
3395 for (note = REG_NOTES (undobuf.other_insn); note; note = next)
3396 {
3397 next = XEXP (note, 1);
3398
3399 if (REG_NOTE_KIND (note) == REG_UNUSED
3400 && ! reg_set_p (XEXP (note, 0), PATTERN (undobuf.other_insn)))
3401 remove_note (undobuf.other_insn, note);
3402 }
3403
3404 distribute_notes (new_other_notes, undobuf.other_insn,
3405 undobuf.other_insn, NULL_RTX, NULL_RTX, NULL_RTX);
3406 }
3407
3408 if (swap_i2i3)
3409 {
3410 rtx insn;
3411 rtx link;
3412 rtx ni2dest;
3413
3414 /* I3 now uses what used to be its destination and which is now
3415 I2's destination. This requires us to do a few adjustments. */
3416 PATTERN (i3) = newpat;
3417 adjust_for_new_dest (i3);
3418
3419 /* We need a LOG_LINK from I3 to I2. But we used to have one,
3420 so we still will.
3421
3422 However, some later insn might be using I2's dest and have
3423 a LOG_LINK pointing at I3. We must remove this link.
3424 The simplest way to remove the link is to point it at I1,
3425 which we know will be a NOTE. */
3426
3427 /* newi2pat is usually a SET here; however, recog_for_combine might
3428 have added some clobbers. */
3429 if (GET_CODE (newi2pat) == PARALLEL)
3430 ni2dest = SET_DEST (XVECEXP (newi2pat, 0, 0));
3431 else
3432 ni2dest = SET_DEST (newi2pat);
3433
3434 for (insn = NEXT_INSN (i3);
3435 insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR
3436 || insn != BB_HEAD (this_basic_block->next_bb));
3437 insn = NEXT_INSN (insn))
3438 {
3439 if (INSN_P (insn) && reg_referenced_p (ni2dest, PATTERN (insn)))
3440 {
3441 for (link = LOG_LINKS (insn); link;
3442 link = XEXP (link, 1))
3443 if (XEXP (link, 0) == i3)
3444 XEXP (link, 0) = i1;
3445
3446 break;
3447 }
3448 }
3449 }
3450
3451 {
3452 rtx i3notes, i2notes, i1notes = 0;
3453 rtx i3links, i2links, i1links = 0;
3454 rtx midnotes = 0;
3455 unsigned int regno;
3456 /* Compute which registers we expect to eliminate. newi2pat may be setting
3457 either i3dest or i2dest, so we must check it. Also, i1dest may be the
3458 same as i3dest, in which case newi2pat may be setting i1dest. */
3459 rtx elim_i2 = ((newi2pat && reg_set_p (i2dest, newi2pat))
3460 || i2dest_in_i2src || i2dest_in_i1src
3461 || !i2dest_killed
3462 ? 0 : i2dest);
3463 rtx elim_i1 = (i1 == 0 || i1dest_in_i1src
3464 || (newi2pat && reg_set_p (i1dest, newi2pat))
3465 || !i1dest_killed
3466 ? 0 : i1dest);
3467
3468 /* Get the old REG_NOTES and LOG_LINKS from all our insns and
3469 clear them. */
3470 i3notes = REG_NOTES (i3), i3links = LOG_LINKS (i3);
3471 i2notes = REG_NOTES (i2), i2links = LOG_LINKS (i2);
3472 if (i1)
3473 i1notes = REG_NOTES (i1), i1links = LOG_LINKS (i1);
3474
3475 /* Ensure that we do not have something that should not be shared but
3476 occurs multiple times in the new insns. Check this by first
3477 resetting all the `used' flags and then copying anything is shared. */
3478
3479 reset_used_flags (i3notes);
3480 reset_used_flags (i2notes);
3481 reset_used_flags (i1notes);
3482 reset_used_flags (newpat);
3483 reset_used_flags (newi2pat);
3484 if (undobuf.other_insn)
3485 reset_used_flags (PATTERN (undobuf.other_insn));
3486
3487 i3notes = copy_rtx_if_shared (i3notes);
3488 i2notes = copy_rtx_if_shared (i2notes);
3489 i1notes = copy_rtx_if_shared (i1notes);
3490 newpat = copy_rtx_if_shared (newpat);
3491 newi2pat = copy_rtx_if_shared (newi2pat);
3492 if (undobuf.other_insn)
3493 reset_used_flags (PATTERN (undobuf.other_insn));
3494
3495 INSN_CODE (i3) = insn_code_number;
3496 PATTERN (i3) = newpat;
3497
3498 if (CALL_P (i3) && CALL_INSN_FUNCTION_USAGE (i3))
3499 {
3500 rtx call_usage = CALL_INSN_FUNCTION_USAGE (i3);
3501
3502 reset_used_flags (call_usage);
3503 call_usage = copy_rtx (call_usage);
3504
3505 if (substed_i2)
3506 replace_rtx (call_usage, i2dest, i2src);
3507
3508 if (substed_i1)
3509 replace_rtx (call_usage, i1dest, i1src);
3510
3511 CALL_INSN_FUNCTION_USAGE (i3) = call_usage;
3512 }
3513
3514 if (undobuf.other_insn)
3515 INSN_CODE (undobuf.other_insn) = other_code_number;
3516
3517 /* We had one special case above where I2 had more than one set and
3518 we replaced a destination of one of those sets with the destination
3519 of I3. In that case, we have to update LOG_LINKS of insns later
3520 in this basic block. Note that this (expensive) case is rare.
3521
3522 Also, in this case, we must pretend that all REG_NOTEs for I2
3523 actually came from I3, so that REG_UNUSED notes from I2 will be
3524 properly handled. */
3525
3526 if (i3_subst_into_i2)
3527 {
3528 for (i = 0; i < XVECLEN (PATTERN (i2), 0); i++)
3529 if ((GET_CODE (XVECEXP (PATTERN (i2), 0, i)) == SET
3530 || GET_CODE (XVECEXP (PATTERN (i2), 0, i)) == CLOBBER)
3531 && REG_P (SET_DEST (XVECEXP (PATTERN (i2), 0, i)))
3532 && SET_DEST (XVECEXP (PATTERN (i2), 0, i)) != i2dest
3533 && ! find_reg_note (i2, REG_UNUSED,
3534 SET_DEST (XVECEXP (PATTERN (i2), 0, i))))
3535 for (temp = NEXT_INSN (i2);
3536 temp && (this_basic_block->next_bb == EXIT_BLOCK_PTR
3537 || BB_HEAD (this_basic_block) != temp);
3538 temp = NEXT_INSN (temp))
3539 if (temp != i3 && INSN_P (temp))
3540 for (link = LOG_LINKS (temp); link; link = XEXP (link, 1))
3541 if (XEXP (link, 0) == i2)
3542 XEXP (link, 0) = i3;
3543
3544 if (i3notes)
3545 {
3546 rtx link = i3notes;
3547 while (XEXP (link, 1))
3548 link = XEXP (link, 1);
3549 XEXP (link, 1) = i2notes;
3550 }
3551 else
3552 i3notes = i2notes;
3553 i2notes = 0;
3554 }
3555
3556 LOG_LINKS (i3) = 0;
3557 REG_NOTES (i3) = 0;
3558 LOG_LINKS (i2) = 0;
3559 REG_NOTES (i2) = 0;
3560
3561 if (newi2pat)
3562 {
3563 INSN_CODE (i2) = i2_code_number;
3564 PATTERN (i2) = newi2pat;
3565 }
3566 else
3567 SET_INSN_DELETED (i2);
3568
3569 if (i1)
3570 {
3571 LOG_LINKS (i1) = 0;
3572 REG_NOTES (i1) = 0;
3573 SET_INSN_DELETED (i1);
3574 }
3575
3576 /* Get death notes for everything that is now used in either I3 or
3577 I2 and used to die in a previous insn. If we built two new
3578 patterns, move from I1 to I2 then I2 to I3 so that we get the
3579 proper movement on registers that I2 modifies. */
3580
3581 if (newi2pat)
3582 {
3583 move_deaths (newi2pat, NULL_RTX, DF_INSN_LUID (i1), i2, &midnotes);
3584 move_deaths (newpat, newi2pat, DF_INSN_LUID (i1), i3, &midnotes);
3585 }
3586 else
3587 move_deaths (newpat, NULL_RTX, i1 ? DF_INSN_LUID (i1) : DF_INSN_LUID (i2),
3588 i3, &midnotes);
3589
3590 /* Distribute all the LOG_LINKS and REG_NOTES from I1, I2, and I3. */
3591 if (i3notes)
3592 distribute_notes (i3notes, i3, i3, newi2pat ? i2 : NULL_RTX,
3593 elim_i2, elim_i1);
3594 if (i2notes)
3595 distribute_notes (i2notes, i2, i3, newi2pat ? i2 : NULL_RTX,
3596 elim_i2, elim_i1);
3597 if (i1notes)
3598 distribute_notes (i1notes, i1, i3, newi2pat ? i2 : NULL_RTX,
3599 elim_i2, elim_i1);
3600 if (midnotes)
3601 distribute_notes (midnotes, NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
3602 elim_i2, elim_i1);
3603
3604 /* Distribute any notes added to I2 or I3 by recog_for_combine. We
3605 know these are REG_UNUSED and want them to go to the desired insn,
3606 so we always pass it as i3. */
3607
3608 if (newi2pat && new_i2_notes)
3609 distribute_notes (new_i2_notes, i2, i2, NULL_RTX, NULL_RTX, NULL_RTX);
3610
3611 if (new_i3_notes)
3612 distribute_notes (new_i3_notes, i3, i3, NULL_RTX, NULL_RTX, NULL_RTX);
3613
3614 /* If I3DEST was used in I3SRC, it really died in I3. We may need to
3615 put a REG_DEAD note for it somewhere. If NEWI2PAT exists and sets
3616 I3DEST, the death must be somewhere before I2, not I3. If we passed I3
3617 in that case, it might delete I2. Similarly for I2 and I1.
3618 Show an additional death due to the REG_DEAD note we make here. If
3619 we discard it in distribute_notes, we will decrement it again. */
3620
3621 if (i3dest_killed)
3622 {
3623 if (newi2pat && reg_set_p (i3dest_killed, newi2pat))
3624 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i3dest_killed,
3625 NULL_RTX),
3626 NULL_RTX, i2, NULL_RTX, elim_i2, elim_i1);
3627 else
3628 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i3dest_killed,
3629 NULL_RTX),
3630 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
3631 elim_i2, elim_i1);
3632 }
3633
3634 if (i2dest_in_i2src)
3635 {
3636 if (newi2pat && reg_set_p (i2dest, newi2pat))
3637 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i2dest, NULL_RTX),
3638 NULL_RTX, i2, NULL_RTX, NULL_RTX, NULL_RTX);
3639 else
3640 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i2dest, NULL_RTX),
3641 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
3642 NULL_RTX, NULL_RTX);
3643 }
3644
3645 if (i1dest_in_i1src)
3646 {
3647 if (newi2pat && reg_set_p (i1dest, newi2pat))
3648 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i1dest, NULL_RTX),
3649 NULL_RTX, i2, NULL_RTX, NULL_RTX, NULL_RTX);
3650 else
3651 distribute_notes (gen_rtx_EXPR_LIST (REG_DEAD, i1dest, NULL_RTX),
3652 NULL_RTX, i3, newi2pat ? i2 : NULL_RTX,
3653 NULL_RTX, NULL_RTX);
3654 }
3655
3656 distribute_links (i3links);
3657 distribute_links (i2links);
3658 distribute_links (i1links);
3659
3660 if (REG_P (i2dest))
3661 {
3662 rtx link;
3663 rtx i2_insn = 0, i2_val = 0, set;
3664
3665 /* The insn that used to set this register doesn't exist, and
3666 this life of the register may not exist either. See if one of
3667 I3's links points to an insn that sets I2DEST. If it does,
3668 that is now the last known value for I2DEST. If we don't update
3669 this and I2 set the register to a value that depended on its old
3670 contents, we will get confused. If this insn is used, thing
3671 will be set correctly in combine_instructions. */
3672
3673 for (link = LOG_LINKS (i3); link; link = XEXP (link, 1))
3674 if ((set = single_set (XEXP (link, 0))) != 0
3675 && rtx_equal_p (i2dest, SET_DEST (set)))
3676 i2_insn = XEXP (link, 0), i2_val = SET_SRC (set);
3677
3678 record_value_for_reg (i2dest, i2_insn, i2_val);
3679
3680 /* If the reg formerly set in I2 died only once and that was in I3,
3681 zero its use count so it won't make `reload' do any work. */
3682 if (! added_sets_2
3683 && (newi2pat == 0 || ! reg_mentioned_p (i2dest, newi2pat))
3684 && ! i2dest_in_i2src)
3685 {
3686 regno = REGNO (i2dest);
3687 INC_REG_N_SETS (regno, -1);
3688 }
3689 }
3690
3691 if (i1 && REG_P (i1dest))
3692 {
3693 rtx link;
3694 rtx i1_insn = 0, i1_val = 0, set;
3695
3696 for (link = LOG_LINKS (i3); link; link = XEXP (link, 1))
3697 if ((set = single_set (XEXP (link, 0))) != 0
3698 && rtx_equal_p (i1dest, SET_DEST (set)))
3699 i1_insn = XEXP (link, 0), i1_val = SET_SRC (set);
3700
3701 record_value_for_reg (i1dest, i1_insn, i1_val);
3702
3703 regno = REGNO (i1dest);
3704 if (! added_sets_1 && ! i1dest_in_i1src)
3705 INC_REG_N_SETS (regno, -1);
3706 }
3707
3708 /* Update reg_stat[].nonzero_bits et al for any changes that may have
3709 been made to this insn. The order of
3710 set_nonzero_bits_and_sign_copies() is important. Because newi2pat
3711 can affect nonzero_bits of newpat */
3712 if (newi2pat)
3713 note_stores (newi2pat, set_nonzero_bits_and_sign_copies, NULL);
3714 note_stores (newpat, set_nonzero_bits_and_sign_copies, NULL);
3715
3716 /* Set new_direct_jump_p if a new return or simple jump instruction
3717 has been created.
3718
3719 If I3 is now an unconditional jump, ensure that it has a
3720 BARRIER following it since it may have initially been a
3721 conditional jump. It may also be the last nonnote insn. */
3722
3723 if (returnjump_p (i3) || any_uncondjump_p (i3))
3724 {
3725 *new_direct_jump_p = 1;
3726 mark_jump_label (PATTERN (i3), i3, 0);
3727
3728 if ((temp = next_nonnote_insn (i3)) == NULL_RTX
3729 || !BARRIER_P (temp))
3730 emit_barrier_after (i3);
3731 }
3732
3733 if (undobuf.other_insn != NULL_RTX
3734 && (returnjump_p (undobuf.other_insn)
3735 || any_uncondjump_p (undobuf.other_insn)))
3736 {
3737 *new_direct_jump_p = 1;
3738
3739 if ((temp = next_nonnote_insn (undobuf.other_insn)) == NULL_RTX
3740 || !BARRIER_P (temp))
3741 emit_barrier_after (undobuf.other_insn);
3742 }
3743
3744 /* An NOOP jump does not need barrier, but it does need cleaning up
3745 of CFG. */
3746 if (GET_CODE (newpat) == SET
3747 && SET_SRC (newpat) == pc_rtx
3748 && SET_DEST (newpat) == pc_rtx)
3749 *new_direct_jump_p = 1;
3750 }
3751
3752 if (undobuf.other_insn != NULL_RTX)
3753 {
3754 if (dump_file)
3755 {
3756 fprintf (dump_file, "modifying other_insn ");
3757 dump_insn_slim (dump_file, undobuf.other_insn);
3758 }
3759 df_insn_rescan (undobuf.other_insn);
3760 }
3761
3762 if (i1 && !(NOTE_P(i1) && (NOTE_KIND (i1) == NOTE_INSN_DELETED)))
3763 {
3764 if (dump_file)
3765 {
3766 fprintf (dump_file, "modifying insn i1 ");
3767 dump_insn_slim (dump_file, i1);
3768 }
3769 df_insn_rescan (i1);
3770 }
3771
3772 if (i2 && !(NOTE_P(i2) && (NOTE_KIND (i2) == NOTE_INSN_DELETED)))
3773 {
3774 if (dump_file)
3775 {
3776 fprintf (dump_file, "modifying insn i2 ");
3777 dump_insn_slim (dump_file, i2);
3778 }
3779 df_insn_rescan (i2);
3780 }
3781
3782 if (i3 && !(NOTE_P(i3) && (NOTE_KIND (i3) == NOTE_INSN_DELETED)))
3783 {
3784 if (dump_file)
3785 {
3786 fprintf (dump_file, "modifying insn i3 ");
3787 dump_insn_slim (dump_file, i3);
3788 }
3789 df_insn_rescan (i3);
3790 }
3791
3792 combine_successes++;
3793 undo_commit ();
3794
3795 if (added_links_insn
3796 && (newi2pat == 0 || DF_INSN_LUID (added_links_insn) < DF_INSN_LUID (i2))
3797 && DF_INSN_LUID (added_links_insn) < DF_INSN_LUID (i3))
3798 return added_links_insn;
3799 else
3800 return newi2pat ? i2 : i3;
3801 }
3802
3803 /* Undo all the modifications recorded in undobuf. */
3804
3805 static void
3806 undo_all (void)
3807 {
3808 struct undo *undo, *next;
3809
3810 for (undo = undobuf.undos; undo; undo = next)
3811 {
3812 next = undo->next;
3813 switch (undo->kind)
3814 {
3815 case UNDO_RTX:
3816 *undo->where.r = undo->old_contents.r;
3817 break;
3818 case UNDO_INT:
3819 *undo->where.i = undo->old_contents.i;
3820 break;
3821 case UNDO_MODE:
3822 adjust_reg_mode (*undo->where.r, undo->old_contents.m);
3823 break;
3824 default:
3825 gcc_unreachable ();
3826 }
3827
3828 undo->next = undobuf.frees;
3829 undobuf.frees = undo;
3830 }
3831
3832 undobuf.undos = 0;
3833 }
3834
3835 /* We've committed to accepting the changes we made. Move all
3836 of the undos to the free list. */
3837
3838 static void
3839 undo_commit (void)
3840 {
3841 struct undo *undo, *next;
3842
3843 for (undo = undobuf.undos; undo; undo = next)
3844 {
3845 next = undo->next;
3846 undo->next = undobuf.frees;
3847 undobuf.frees = undo;
3848 }
3849 undobuf.undos = 0;
3850 }
3851
3852 /* Find the innermost point within the rtx at LOC, possibly LOC itself,
3853 where we have an arithmetic expression and return that point. LOC will
3854 be inside INSN.
3855
3856 try_combine will call this function to see if an insn can be split into
3857 two insns. */
3858
3859 static rtx *
3860 find_split_point (rtx *loc, rtx insn)
3861 {
3862 rtx x = *loc;
3863 enum rtx_code code = GET_CODE (x);
3864 rtx *split;
3865 unsigned HOST_WIDE_INT len = 0;
3866 HOST_WIDE_INT pos = 0;
3867 int unsignedp = 0;
3868 rtx inner = NULL_RTX;
3869
3870 /* First special-case some codes. */
3871 switch (code)
3872 {
3873 case SUBREG:
3874 #ifdef INSN_SCHEDULING
3875 /* If we are making a paradoxical SUBREG invalid, it becomes a split
3876 point. */
3877 if (MEM_P (SUBREG_REG (x)))
3878 return loc;
3879 #endif
3880 return find_split_point (&SUBREG_REG (x), insn);
3881
3882 case MEM:
3883 #ifdef HAVE_lo_sum
3884 /* If we have (mem (const ..)) or (mem (symbol_ref ...)), split it
3885 using LO_SUM and HIGH. */
3886 if (GET_CODE (XEXP (x, 0)) == CONST
3887 || GET_CODE (XEXP (x, 0)) == SYMBOL_REF)
3888 {
3889 SUBST (XEXP (x, 0),
3890 gen_rtx_LO_SUM (Pmode,
3891 gen_rtx_HIGH (Pmode, XEXP (x, 0)),
3892 XEXP (x, 0)));
3893 return &XEXP (XEXP (x, 0), 0);
3894 }
3895 #endif
3896
3897 /* If we have a PLUS whose second operand is a constant and the
3898 address is not valid, perhaps will can split it up using
3899 the machine-specific way to split large constants. We use
3900 the first pseudo-reg (one of the virtual regs) as a placeholder;
3901 it will not remain in the result. */
3902 if (GET_CODE (XEXP (x, 0)) == PLUS
3903 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
3904 && ! memory_address_p (GET_MODE (x), XEXP (x, 0)))
3905 {
3906 rtx reg = regno_reg_rtx[FIRST_PSEUDO_REGISTER];
3907 rtx seq = combine_split_insns (gen_rtx_SET (VOIDmode, reg,
3908 XEXP (x, 0)),
3909 subst_insn);
3910
3911 /* This should have produced two insns, each of which sets our
3912 placeholder. If the source of the second is a valid address,
3913 we can make put both sources together and make a split point
3914 in the middle. */
3915
3916 if (seq
3917 && NEXT_INSN (seq) != NULL_RTX
3918 && NEXT_INSN (NEXT_INSN (seq)) == NULL_RTX
3919 && NONJUMP_INSN_P (seq)
3920 && GET_CODE (PATTERN (seq)) == SET
3921 && SET_DEST (PATTERN (seq)) == reg
3922 && ! reg_mentioned_p (reg,
3923 SET_SRC (PATTERN (seq)))
3924 && NONJUMP_INSN_P (NEXT_INSN (seq))
3925 && GET_CODE (PATTERN (NEXT_INSN (seq))) == SET
3926 && SET_DEST (PATTERN (NEXT_INSN (seq))) == reg
3927 && memory_address_p (GET_MODE (x),
3928 SET_SRC (PATTERN (NEXT_INSN (seq)))))
3929 {
3930 rtx src1 = SET_SRC (PATTERN (seq));
3931 rtx src2 = SET_SRC (PATTERN (NEXT_INSN (seq)));
3932
3933 /* Replace the placeholder in SRC2 with SRC1. If we can
3934 find where in SRC2 it was placed, that can become our
3935 split point and we can replace this address with SRC2.
3936 Just try two obvious places. */
3937
3938 src2 = replace_rtx (src2, reg, src1);
3939 split = 0;
3940 if (XEXP (src2, 0) == src1)
3941 split = &XEXP (src2, 0);
3942 else if (GET_RTX_FORMAT (GET_CODE (XEXP (src2, 0)))[0] == 'e'
3943 && XEXP (XEXP (src2, 0), 0) == src1)
3944 split = &XEXP (XEXP (src2, 0), 0);
3945
3946 if (split)
3947 {
3948 SUBST (XEXP (x, 0), src2);
3949 return split;
3950 }
3951 }
3952
3953 /* If that didn't work, perhaps the first operand is complex and
3954 needs to be computed separately, so make a split point there.
3955 This will occur on machines that just support REG + CONST
3956 and have a constant moved through some previous computation. */
3957
3958 else if (!OBJECT_P (XEXP (XEXP (x, 0), 0))
3959 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
3960 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x, 0), 0)))))
3961 return &XEXP (XEXP (x, 0), 0);
3962 }
3963
3964 /* If we have a PLUS whose first operand is complex, try computing it
3965 separately by making a split there. */
3966 if (GET_CODE (XEXP (x, 0)) == PLUS
3967 && ! memory_address_p (GET_MODE (x), XEXP (x, 0))
3968 && ! OBJECT_P (XEXP (XEXP (x, 0), 0))
3969 && ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
3970 && OBJECT_P (SUBREG_REG (XEXP (XEXP (x, 0), 0)))))
3971 return &XEXP (XEXP (x, 0), 0);
3972 break;
3973
3974 case SET:
3975 #ifdef HAVE_cc0
3976 /* If SET_DEST is CC0 and SET_SRC is not an operand, a COMPARE, or a
3977 ZERO_EXTRACT, the most likely reason why this doesn't match is that
3978 we need to put the operand into a register. So split at that
3979 point. */
3980
3981 if (SET_DEST (x) == cc0_rtx
3982 && GET_CODE (SET_SRC (x)) != COMPARE
3983 && GET_CODE (SET_SRC (x)) != ZERO_EXTRACT
3984 && !OBJECT_P (SET_SRC (x))
3985 && ! (GET_CODE (SET_SRC (x)) == SUBREG
3986 && OBJECT_P (SUBREG_REG (SET_SRC (x)))))
3987 return &SET_SRC (x);
3988 #endif
3989
3990 /* See if we can split SET_SRC as it stands. */
3991 split = find_split_point (&SET_SRC (x), insn);
3992 if (split && split != &SET_SRC (x))
3993 return split;
3994
3995 /* See if we can split SET_DEST as it stands. */
3996 split = find_split_point (&SET_DEST (x), insn);
3997 if (split && split != &SET_DEST (x))
3998 return split;
3999
4000 /* See if this is a bitfield assignment with everything constant. If
4001 so, this is an IOR of an AND, so split it into that. */
4002 if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
4003 && (GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0)))
4004 <= HOST_BITS_PER_WIDE_INT)
4005 && GET_CODE (XEXP (SET_DEST (x), 1)) == CONST_INT
4006 && GET_CODE (XEXP (SET_DEST (x), 2)) == CONST_INT
4007 && GET_CODE (SET_SRC (x)) == CONST_INT
4008 && ((INTVAL (XEXP (SET_DEST (x), 1))
4009 + INTVAL (XEXP (SET_DEST (x), 2)))
4010 <= GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0))))
4011 && ! side_effects_p (XEXP (SET_DEST (x), 0)))
4012 {
4013 HOST_WIDE_INT pos = INTVAL (XEXP (SET_DEST (x), 2));
4014 unsigned HOST_WIDE_INT len = INTVAL (XEXP (SET_DEST (x), 1));
4015 unsigned HOST_WIDE_INT src = INTVAL (SET_SRC (x));
4016 rtx dest = XEXP (SET_DEST (x), 0);
4017 enum machine_mode mode = GET_MODE (dest);
4018 unsigned HOST_WIDE_INT mask = ((HOST_WIDE_INT) 1 << len) - 1;
4019 rtx or_mask;
4020
4021 if (BITS_BIG_ENDIAN)
4022 pos = GET_MODE_BITSIZE (mode) - len - pos;
4023
4024 or_mask = gen_int_mode (src << pos, mode);
4025 if (src == mask)
4026 SUBST (SET_SRC (x),
4027 simplify_gen_binary (IOR, mode, dest, or_mask));
4028 else
4029 {
4030 rtx negmask = gen_int_mode (~(mask << pos), mode);
4031 SUBST (SET_SRC (x),
4032 simplify_gen_binary (IOR, mode,
4033 simplify_gen_binary (AND, mode,
4034 dest, negmask),
4035 or_mask));
4036 }
4037
4038 SUBST (SET_DEST (x), dest);
4039
4040 split = find_split_point (&SET_SRC (x), insn);
4041 if (split && split != &SET_SRC (x))
4042 return split;
4043 }
4044
4045 /* Otherwise, see if this is an operation that we can split into two.
4046 If so, try to split that. */
4047 code = GET_CODE (SET_SRC (x));
4048
4049 switch (code)
4050 {
4051 case AND:
4052 /* If we are AND'ing with a large constant that is only a single
4053 bit and the result is only being used in a context where we
4054 need to know if it is zero or nonzero, replace it with a bit
4055 extraction. This will avoid the large constant, which might
4056 have taken more than one insn to make. If the constant were
4057 not a valid argument to the AND but took only one insn to make,
4058 this is no worse, but if it took more than one insn, it will
4059 be better. */
4060
4061 if (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
4062 && REG_P (XEXP (SET_SRC (x), 0))
4063 && (pos = exact_log2 (INTVAL (XEXP (SET_SRC (x), 1)))) >= 7
4064 && REG_P (SET_DEST (x))
4065 && (split = find_single_use (SET_DEST (x), insn, (rtx*) 0)) != 0
4066 && (GET_CODE (*split) == EQ || GET_CODE (*split) == NE)
4067 && XEXP (*split, 0) == SET_DEST (x)
4068 && XEXP (*split, 1) == const0_rtx)
4069 {
4070 rtx extraction = make_extraction (GET_MODE (SET_DEST (x)),
4071 XEXP (SET_SRC (x), 0),
4072 pos, NULL_RTX, 1, 1, 0, 0);
4073 if (extraction != 0)
4074 {
4075 SUBST (SET_SRC (x), extraction);
4076 return find_split_point (loc, insn);
4077 }
4078 }
4079 break;
4080
4081 case NE:
4082 /* If STORE_FLAG_VALUE is -1, this is (NE X 0) and only one bit of X
4083 is known to be on, this can be converted into a NEG of a shift. */
4084 if (STORE_FLAG_VALUE == -1 && XEXP (SET_SRC (x), 1) == const0_rtx
4085 && GET_MODE (SET_SRC (x)) == GET_MODE (XEXP (SET_SRC (x), 0))
4086 && 1 <= (pos = exact_log2
4087 (nonzero_bits (XEXP (SET_SRC (x), 0),
4088 GET_MODE (XEXP (SET_SRC (x), 0))))))
4089 {
4090 enum machine_mode mode = GET_MODE (XEXP (SET_SRC (x), 0));
4091
4092 SUBST (SET_SRC (x),
4093 gen_rtx_NEG (mode,
4094 gen_rtx_LSHIFTRT (mode,
4095 XEXP (SET_SRC (x), 0),
4096 GEN_INT (pos))));
4097
4098 split = find_split_point (&SET_SRC (x), insn);
4099 if (split && split != &SET_SRC (x))
4100 return split;
4101 }
4102 break;
4103
4104 case SIGN_EXTEND:
4105 inner = XEXP (SET_SRC (x), 0);
4106
4107 /* We can't optimize if either mode is a partial integer
4108 mode as we don't know how many bits are significant
4109 in those modes. */
4110 if (GET_MODE_CLASS (GET_MODE (inner)) == MODE_PARTIAL_INT
4111 || GET_MODE_CLASS (GET_MODE (SET_SRC (x))) == MODE_PARTIAL_INT)
4112 break;
4113
4114 pos = 0;
4115 len = GET_MODE_BITSIZE (GET_MODE (inner));
4116 unsignedp = 0;
4117 break;
4118
4119 case SIGN_EXTRACT:
4120 case ZERO_EXTRACT:
4121 if (GET_CODE (XEXP (SET_SRC (x), 1)) == CONST_INT
4122 && GET_CODE (XEXP (SET_SRC (x), 2)) == CONST_INT)
4123 {
4124 inner = XEXP (SET_SRC (x), 0);
4125 len = INTVAL (XEXP (SET_SRC (x), 1));
4126 pos = INTVAL (XEXP (SET_SRC (x), 2));
4127
4128 if (BITS_BIG_ENDIAN)
4129 pos = GET_MODE_BITSIZE (GET_MODE (inner)) - len - pos;
4130 unsignedp = (code == ZERO_EXTRACT);
4131 }
4132 break;
4133
4134 default:
4135 break;
4136 }
4137
4138 if (len && pos >= 0 && pos + len <= GET_MODE_BITSIZE (GET_MODE (inner)))
4139 {
4140 enum machine_mode mode = GET_MODE (SET_SRC (x));
4141
4142 /* For unsigned, we have a choice of a shift followed by an
4143 AND or two shifts. Use two shifts for field sizes where the
4144 constant might be too large. We assume here that we can
4145 always at least get 8-bit constants in an AND insn, which is
4146 true for every current RISC. */
4147
4148 if (unsignedp && len <= 8)
4149 {
4150 SUBST (SET_SRC (x),
4151 gen_rtx_AND (mode,
4152 gen_rtx_LSHIFTRT
4153 (mode, gen_lowpart (mode, inner),
4154 GEN_INT (pos)),
4155 GEN_INT (((HOST_WIDE_INT) 1 << len) - 1)));
4156
4157 split = find_split_point (&SET_SRC (x), insn);
4158 if (split && split != &SET_SRC (x))
4159 return split;
4160 }
4161 else
4162 {
4163 SUBST (SET_SRC (x),
4164 gen_rtx_fmt_ee
4165 (unsignedp ? LSHIFTRT : ASHIFTRT, mode,
4166 gen_rtx_ASHIFT (mode,
4167 gen_lowpart (mode, inner),
4168 GEN_INT (GET_MODE_BITSIZE (mode)
4169 - len - pos)),
4170 GEN_INT (GET_MODE_BITSIZE (mode) - len)));
4171
4172 split = find_split_point (&SET_SRC (x), insn);
4173 if (split && split != &SET_SRC (x))
4174 return split;
4175 }
4176 }
4177
4178 /* See if this is a simple operation with a constant as the second
4179 operand. It might be that this constant is out of range and hence
4180 could be used as a split point. */
4181 if (BINARY_P (SET_SRC (x))
4182 && CONSTANT_P (XEXP (SET_SRC (x), 1))
4183 && (OBJECT_P (XEXP (SET_SRC (x), 0))
4184 || (GET_CODE (XEXP (SET_SRC (x), 0)) == SUBREG
4185 && OBJECT_P (SUBREG_REG (XEXP (SET_SRC (x), 0))))))
4186 return &XEXP (SET_SRC (x), 1);
4187
4188 /* Finally, see if this is a simple operation with its first operand
4189 not in a register. The operation might require this operand in a
4190 register, so return it as a split point. We can always do this
4191 because if the first operand were another operation, we would have
4192 already found it as a split point. */
4193 if ((BINARY_P (SET_SRC (x)) || UNARY_P (SET_SRC (x)))
4194 && ! register_operand (XEXP (SET_SRC (x), 0), VOIDmode))
4195 return &XEXP (SET_SRC (x), 0);
4196
4197 return 0;
4198
4199 case AND:
4200 case IOR:
4201 /* We write NOR as (and (not A) (not B)), but if we don't have a NOR,
4202 it is better to write this as (not (ior A B)) so we can split it.
4203 Similarly for IOR. */
4204 if (GET_CODE (XEXP (x, 0)) == NOT && GET_CODE (XEXP (x, 1)) == NOT)
4205 {
4206 SUBST (*loc,
4207 gen_rtx_NOT (GET_MODE (x),
4208 gen_rtx_fmt_ee (code == IOR ? AND : IOR,
4209 GET_MODE (x),
4210 XEXP (XEXP (x, 0), 0),
4211 XEXP (XEXP (x, 1), 0))));
4212 return find_split_point (loc, insn);
4213 }
4214
4215 /* Many RISC machines have a large set of logical insns. If the
4216 second operand is a NOT, put it first so we will try to split the
4217 other operand first. */
4218 if (GET_CODE (XEXP (x, 1)) == NOT)
4219 {
4220 rtx tem = XEXP (x, 0);
4221 SUBST (XEXP (x, 0), XEXP (x, 1));
4222 SUBST (XEXP (x, 1), tem);
4223 }
4224 break;
4225
4226 default:
4227 break;
4228 }
4229
4230 /* Otherwise, select our actions depending on our rtx class. */
4231 switch (GET_RTX_CLASS (code))
4232 {
4233 case RTX_BITFIELD_OPS: /* This is ZERO_EXTRACT and SIGN_EXTRACT. */
4234 case RTX_TERNARY:
4235 split = find_split_point (&XEXP (x, 2), insn);
4236 if (split)
4237 return split;
4238 /* ... fall through ... */
4239 case RTX_BIN_ARITH:
4240 case RTX_COMM_ARITH:
4241 case RTX_COMPARE:
4242 case RTX_COMM_COMPARE:
4243 split = find_split_point (&XEXP (x, 1), insn);
4244 if (split)
4245 return split;
4246 /* ... fall through ... */
4247 case RTX_UNARY:
4248 /* Some machines have (and (shift ...) ...) insns. If X is not
4249 an AND, but XEXP (X, 0) is, use it as our split point. */
4250 if (GET_CODE (x) != AND && GET_CODE (XEXP (x, 0)) == AND)
4251 return &XEXP (x, 0);
4252
4253 split = find_split_point (&XEXP (x, 0), insn);
4254 if (split)
4255 return split;
4256 return loc;
4257
4258 default:
4259 /* Otherwise, we don't have a split point. */
4260 return 0;
4261 }
4262 }
4263
4264 /* Throughout X, replace FROM with TO, and return the result.
4265 The result is TO if X is FROM;
4266 otherwise the result is X, but its contents may have been modified.
4267 If they were modified, a record was made in undobuf so that
4268 undo_all will (among other things) return X to its original state.
4269
4270 If the number of changes necessary is too much to record to undo,
4271 the excess changes are not made, so the result is invalid.
4272 The changes already made can still be undone.
4273 undobuf.num_undo is incremented for such changes, so by testing that
4274 the caller can tell whether the result is valid.
4275
4276 `n_occurrences' is incremented each time FROM is replaced.
4277
4278 IN_DEST is nonzero if we are processing the SET_DEST of a SET.
4279
4280 UNIQUE_COPY is nonzero if each substitution must be unique. We do this
4281 by copying if `n_occurrences' is nonzero. */
4282
4283 static rtx
4284 subst (rtx x, rtx from, rtx to, int in_dest, int unique_copy)
4285 {
4286 enum rtx_code code = GET_CODE (x);
4287 enum machine_mode op0_mode = VOIDmode;
4288 const char *fmt;
4289 int len, i;
4290 rtx new_rtx;
4291
4292 /* Two expressions are equal if they are identical copies of a shared
4293 RTX or if they are both registers with the same register number
4294 and mode. */
4295
4296 #define COMBINE_RTX_EQUAL_P(X,Y) \
4297 ((X) == (Y) \
4298 || (REG_P (X) && REG_P (Y) \
4299 && REGNO (X) == REGNO (Y) && GET_MODE (X) == GET_MODE (Y)))
4300
4301 if (! in_dest && COMBINE_RTX_EQUAL_P (x, from))
4302 {
4303 n_occurrences++;
4304 return (unique_copy && n_occurrences > 1 ? copy_rtx (to) : to);
4305 }
4306
4307 /* If X and FROM are the same register but different modes, they
4308 will not have been seen as equal above. However, the log links code
4309 will make a LOG_LINKS entry for that case. If we do nothing, we
4310 will try to rerecognize our original insn and, when it succeeds,
4311 we will delete the feeding insn, which is incorrect.
4312
4313 So force this insn not to match in this (rare) case. */
4314 if (! in_dest && code == REG && REG_P (from)
4315 && reg_overlap_mentioned_p (x, from))
4316 return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
4317
4318 /* If this is an object, we are done unless it is a MEM or LO_SUM, both
4319 of which may contain things that can be combined. */
4320 if (code != MEM && code != LO_SUM && OBJECT_P (x))
4321 return x;
4322
4323 /* It is possible to have a subexpression appear twice in the insn.
4324 Suppose that FROM is a register that appears within TO.
4325 Then, after that subexpression has been scanned once by `subst',
4326 the second time it is scanned, TO may be found. If we were
4327 to scan TO here, we would find FROM within it and create a
4328 self-referent rtl structure which is completely wrong. */
4329 if (COMBINE_RTX_EQUAL_P (x, to))
4330 return to;
4331
4332 /* Parallel asm_operands need special attention because all of the
4333 inputs are shared across the arms. Furthermore, unsharing the
4334 rtl results in recognition failures. Failure to handle this case
4335 specially can result in circular rtl.
4336
4337 Solve this by doing a normal pass across the first entry of the
4338 parallel, and only processing the SET_DESTs of the subsequent
4339 entries. Ug. */
4340
4341 if (code == PARALLEL
4342 && GET_CODE (XVECEXP (x, 0, 0)) == SET
4343 && GET_CODE (SET_SRC (XVECEXP (x, 0, 0))) == ASM_OPERANDS)
4344 {
4345 new_rtx = subst (XVECEXP (x, 0, 0), from, to, 0, unique_copy);
4346
4347 /* If this substitution failed, this whole thing fails. */
4348 if (GET_CODE (new_rtx) == CLOBBER
4349 && XEXP (new_rtx, 0) == const0_rtx)
4350 return new_rtx;
4351
4352 SUBST (XVECEXP (x, 0, 0), new_rtx);
4353
4354 for (i = XVECLEN (x, 0) - 1; i >= 1; i--)
4355 {
4356 rtx dest = SET_DEST (XVECEXP (x, 0, i));
4357
4358 if (!REG_P (dest)
4359 && GET_CODE (dest) != CC0
4360 && GET_CODE (dest) != PC)
4361 {
4362 new_rtx = subst (dest, from, to, 0, unique_copy);
4363
4364 /* If this substitution failed, this whole thing fails. */
4365 if (GET_CODE (new_rtx) == CLOBBER
4366 && XEXP (new_rtx, 0) == const0_rtx)
4367 return new_rtx;
4368
4369 SUBST (SET_DEST (XVECEXP (x, 0, i)), new_rtx);
4370 }
4371 }
4372 }
4373 else
4374 {
4375 len = GET_RTX_LENGTH (code);
4376 fmt = GET_RTX_FORMAT (code);
4377
4378 /* We don't need to process a SET_DEST that is a register, CC0,
4379 or PC, so set up to skip this common case. All other cases
4380 where we want to suppress replacing something inside a
4381 SET_SRC are handled via the IN_DEST operand. */
4382 if (code == SET
4383 && (REG_P (SET_DEST (x))
4384 || GET_CODE (SET_DEST (x)) == CC0
4385 || GET_CODE (SET_DEST (x)) == PC))
4386 fmt = "ie";
4387
4388 /* Get the mode of operand 0 in case X is now a SIGN_EXTEND of a
4389 constant. */
4390 if (fmt[0] == 'e')
4391 op0_mode = GET_MODE (XEXP (x, 0));
4392
4393 for (i = 0; i < len; i++)
4394 {
4395 if (fmt[i] == 'E')
4396 {
4397 int j;
4398 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
4399 {
4400 if (COMBINE_RTX_EQUAL_P (XVECEXP (x, i, j), from))
4401 {
4402 new_rtx = (unique_copy && n_occurrences
4403 ? copy_rtx (to) : to);
4404 n_occurrences++;
4405 }
4406 else
4407 {
4408 new_rtx = subst (XVECEXP (x, i, j), from, to, 0,
4409 unique_copy);
4410
4411 /* If this substitution failed, this whole thing
4412 fails. */
4413 if (GET_CODE (new_rtx) == CLOBBER
4414 && XEXP (new_rtx, 0) == const0_rtx)
4415 return new_rtx;
4416 }
4417
4418 SUBST (XVECEXP (x, i, j), new_rtx);
4419 }
4420 }
4421 else if (fmt[i] == 'e')
4422 {
4423 /* If this is a register being set, ignore it. */
4424 new_rtx = XEXP (x, i);
4425 if (in_dest
4426 && i == 0
4427 && (((code == SUBREG || code == ZERO_EXTRACT)
4428 && REG_P (new_rtx))
4429 || code == STRICT_LOW_PART))
4430 ;
4431
4432 else if (COMBINE_RTX_EQUAL_P (XEXP (x, i), from))
4433 {
4434 /* In general, don't install a subreg involving two
4435 modes not tieable. It can worsen register
4436 allocation, and can even make invalid reload
4437 insns, since the reg inside may need to be copied
4438 from in the outside mode, and that may be invalid
4439 if it is an fp reg copied in integer mode.
4440
4441 We allow two exceptions to this: It is valid if
4442 it is inside another SUBREG and the mode of that
4443 SUBREG and the mode of the inside of TO is
4444 tieable and it is valid if X is a SET that copies
4445 FROM to CC0. */
4446
4447 if (GET_CODE (to) == SUBREG
4448 && ! MODES_TIEABLE_P (GET_MODE (to),
4449 GET_MODE (SUBREG_REG (to)))
4450 && ! (code == SUBREG
4451 && MODES_TIEABLE_P (GET_MODE (x),
4452 GET_MODE (SUBREG_REG (to))))
4453 #ifdef HAVE_cc0
4454 && ! (code == SET && i == 1 && XEXP (x, 0) == cc0_rtx)
4455 #endif
4456 )
4457 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
4458
4459 #ifdef CANNOT_CHANGE_MODE_CLASS
4460 if (code == SUBREG
4461 && REG_P (to)
4462 && REGNO (to) < FIRST_PSEUDO_REGISTER
4463 && REG_CANNOT_CHANGE_MODE_P (REGNO (to),
4464 GET_MODE (to),
4465 GET_MODE (x)))
4466 return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
4467 #endif
4468
4469 new_rtx = (unique_copy && n_occurrences ? copy_rtx (to) : to);
4470 n_occurrences++;
4471 }
4472 else
4473 /* If we are in a SET_DEST, suppress most cases unless we
4474 have gone inside a MEM, in which case we want to
4475 simplify the address. We assume here that things that
4476 are actually part of the destination have their inner
4477 parts in the first expression. This is true for SUBREG,
4478 STRICT_LOW_PART, and ZERO_EXTRACT, which are the only
4479 things aside from REG and MEM that should appear in a
4480 SET_DEST. */
4481 new_rtx = subst (XEXP (x, i), from, to,
4482 (((in_dest
4483 && (code == SUBREG || code == STRICT_LOW_PART
4484 || code == ZERO_EXTRACT))
4485 || code == SET)
4486 && i == 0), unique_copy);
4487
4488 /* If we found that we will have to reject this combination,
4489 indicate that by returning the CLOBBER ourselves, rather than
4490 an expression containing it. This will speed things up as
4491 well as prevent accidents where two CLOBBERs are considered
4492 to be equal, thus producing an incorrect simplification. */
4493
4494 if (GET_CODE (new_rtx) == CLOBBER && XEXP (new_rtx, 0) == const0_rtx)
4495 return new_rtx;
4496
4497 if (GET_CODE (x) == SUBREG
4498 && (GET_CODE (new_rtx) == CONST_INT
4499 || GET_CODE (new_rtx) == CONST_DOUBLE))
4500 {
4501 enum machine_mode mode = GET_MODE (x);
4502
4503 x = simplify_subreg (GET_MODE (x), new_rtx,
4504 GET_MODE (SUBREG_REG (x)),
4505 SUBREG_BYTE (x));
4506 if (! x)
4507 x = gen_rtx_CLOBBER (mode, const0_rtx);
4508 }
4509 else if (GET_CODE (new_rtx) == CONST_INT
4510 && GET_CODE (x) == ZERO_EXTEND)
4511 {
4512 x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
4513 new_rtx, GET_MODE (XEXP (x, 0)));
4514 gcc_assert (x);
4515 }
4516 else
4517 SUBST (XEXP (x, i), new_rtx);
4518 }
4519 }
4520 }
4521
4522 /* Check if we are loading something from the constant pool via float
4523 extension; in this case we would undo compress_float_constant
4524 optimization and degenerate constant load to an immediate value. */
4525 if (GET_CODE (x) == FLOAT_EXTEND
4526 && MEM_P (XEXP (x, 0))
4527 && MEM_READONLY_P (XEXP (x, 0)))
4528 {
4529 rtx tmp = avoid_constant_pool_reference (x);
4530 if (x != tmp)
4531 return x;
4532 }
4533
4534 /* Try to simplify X. If the simplification changed the code, it is likely
4535 that further simplification will help, so loop, but limit the number
4536 of repetitions that will be performed. */
4537
4538 for (i = 0; i < 4; i++)
4539 {
4540 /* If X is sufficiently simple, don't bother trying to do anything
4541 with it. */
4542 if (code != CONST_INT && code != REG && code != CLOBBER)
4543 x = combine_simplify_rtx (x, op0_mode, in_dest);
4544
4545 if (GET_CODE (x) == code)
4546 break;
4547
4548 code = GET_CODE (x);
4549
4550 /* We no longer know the original mode of operand 0 since we
4551 have changed the form of X) */
4552 op0_mode = VOIDmode;
4553 }
4554
4555 return x;
4556 }
4557
4558 /* Simplify X, a piece of RTL. We just operate on the expression at the
4559 outer level; call `subst' to simplify recursively. Return the new
4560 expression.
4561
4562 OP0_MODE is the original mode of XEXP (x, 0). IN_DEST is nonzero
4563 if we are inside a SET_DEST. */
4564
4565 static rtx
4566 combine_simplify_rtx (rtx x, enum machine_mode op0_mode, int in_dest)
4567 {
4568 enum rtx_code code = GET_CODE (x);
4569 enum machine_mode mode = GET_MODE (x);
4570 rtx temp;
4571 int i;
4572
4573 /* If this is a commutative operation, put a constant last and a complex
4574 expression first. We don't need to do this for comparisons here. */
4575 if (COMMUTATIVE_ARITH_P (x)
4576 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
4577 {
4578 temp = XEXP (x, 0);
4579 SUBST (XEXP (x, 0), XEXP (x, 1));
4580 SUBST (XEXP (x, 1), temp);
4581 }
4582
4583 /* If this is a simple operation applied to an IF_THEN_ELSE, try
4584 applying it to the arms of the IF_THEN_ELSE. This often simplifies
4585 things. Check for cases where both arms are testing the same
4586 condition.
4587
4588 Don't do anything if all operands are very simple. */
4589
4590 if ((BINARY_P (x)
4591 && ((!OBJECT_P (XEXP (x, 0))
4592 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
4593 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))
4594 || (!OBJECT_P (XEXP (x, 1))
4595 && ! (GET_CODE (XEXP (x, 1)) == SUBREG
4596 && OBJECT_P (SUBREG_REG (XEXP (x, 1)))))))
4597 || (UNARY_P (x)
4598 && (!OBJECT_P (XEXP (x, 0))
4599 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
4600 && OBJECT_P (SUBREG_REG (XEXP (x, 0)))))))
4601 {
4602 rtx cond, true_rtx, false_rtx;
4603
4604 cond = if_then_else_cond (x, &true_rtx, &false_rtx);
4605 if (cond != 0
4606 /* If everything is a comparison, what we have is highly unlikely
4607 to be simpler, so don't use it. */
4608 && ! (COMPARISON_P (x)
4609 && (COMPARISON_P (true_rtx) || COMPARISON_P (false_rtx))))
4610 {
4611 rtx cop1 = const0_rtx;
4612 enum rtx_code cond_code = simplify_comparison (NE, &cond, &cop1);
4613
4614 if (cond_code == NE && COMPARISON_P (cond))
4615 return x;
4616
4617 /* Simplify the alternative arms; this may collapse the true and
4618 false arms to store-flag values. Be careful to use copy_rtx
4619 here since true_rtx or false_rtx might share RTL with x as a
4620 result of the if_then_else_cond call above. */
4621 true_rtx = subst (copy_rtx (true_rtx), pc_rtx, pc_rtx, 0, 0);
4622 false_rtx = subst (copy_rtx (false_rtx), pc_rtx, pc_rtx, 0, 0);
4623
4624 /* If true_rtx and false_rtx are not general_operands, an if_then_else
4625 is unlikely to be simpler. */
4626 if (general_operand (true_rtx, VOIDmode)
4627 && general_operand (false_rtx, VOIDmode))
4628 {
4629 enum rtx_code reversed;
4630
4631 /* Restarting if we generate a store-flag expression will cause
4632 us to loop. Just drop through in this case. */
4633
4634 /* If the result values are STORE_FLAG_VALUE and zero, we can
4635 just make the comparison operation. */
4636 if (true_rtx == const_true_rtx && false_rtx == const0_rtx)
4637 x = simplify_gen_relational (cond_code, mode, VOIDmode,
4638 cond, cop1);
4639 else if (true_rtx == const0_rtx && false_rtx == const_true_rtx
4640 && ((reversed = reversed_comparison_code_parts
4641 (cond_code, cond, cop1, NULL))
4642 != UNKNOWN))
4643 x = simplify_gen_relational (reversed, mode, VOIDmode,
4644 cond, cop1);
4645
4646 /* Likewise, we can make the negate of a comparison operation
4647 if the result values are - STORE_FLAG_VALUE and zero. */
4648 else if (GET_CODE (true_rtx) == CONST_INT
4649 && INTVAL (true_rtx) == - STORE_FLAG_VALUE
4650 && false_rtx == const0_rtx)
4651 x = simplify_gen_unary (NEG, mode,
4652 simplify_gen_relational (cond_code,
4653 mode, VOIDmode,
4654 cond, cop1),
4655 mode);
4656 else if (GET_CODE (false_rtx) == CONST_INT
4657 && INTVAL (false_rtx) == - STORE_FLAG_VALUE
4658 && true_rtx == const0_rtx
4659 && ((reversed = reversed_comparison_code_parts
4660 (cond_code, cond, cop1, NULL))
4661 != UNKNOWN))
4662 x = simplify_gen_unary (NEG, mode,
4663 simplify_gen_relational (reversed,
4664 mode, VOIDmode,
4665 cond, cop1),
4666 mode);
4667 else
4668 return gen_rtx_IF_THEN_ELSE (mode,
4669 simplify_gen_relational (cond_code,
4670 mode,
4671 VOIDmode,
4672 cond,
4673 cop1),
4674 true_rtx, false_rtx);
4675
4676 code = GET_CODE (x);
4677 op0_mode = VOIDmode;
4678 }
4679 }
4680 }
4681
4682 /* Try to fold this expression in case we have constants that weren't
4683 present before. */
4684 temp = 0;
4685 switch (GET_RTX_CLASS (code))
4686 {
4687 case RTX_UNARY:
4688 if (op0_mode == VOIDmode)
4689 op0_mode = GET_MODE (XEXP (x, 0));
4690 temp = simplify_unary_operation (code, mode, XEXP (x, 0), op0_mode);
4691 break;
4692 case RTX_COMPARE:
4693 case RTX_COMM_COMPARE:
4694 {
4695 enum machine_mode cmp_mode = GET_MODE (XEXP (x, 0));
4696 if (cmp_mode == VOIDmode)
4697 {
4698 cmp_mode = GET_MODE (XEXP (x, 1));
4699 if (cmp_mode == VOIDmode)
4700 cmp_mode = op0_mode;
4701 }
4702 temp = simplify_relational_operation (code, mode, cmp_mode,
4703 XEXP (x, 0), XEXP (x, 1));
4704 }
4705 break;
4706 case RTX_COMM_ARITH:
4707 case RTX_BIN_ARITH:
4708 temp = simplify_binary_operation (code, mode, XEXP (x, 0), XEXP (x, 1));
4709 break;
4710 case RTX_BITFIELD_OPS:
4711 case RTX_TERNARY:
4712 temp = simplify_ternary_operation (code, mode, op0_mode, XEXP (x, 0),
4713 XEXP (x, 1), XEXP (x, 2));
4714 break;
4715 default:
4716 break;
4717 }
4718
4719 if (temp)
4720 {
4721 x = temp;
4722 code = GET_CODE (temp);
4723 op0_mode = VOIDmode;
4724 mode = GET_MODE (temp);
4725 }
4726
4727 /* First see if we can apply the inverse distributive law. */
4728 if (code == PLUS || code == MINUS
4729 || code == AND || code == IOR || code == XOR)
4730 {
4731 x = apply_distributive_law (x);
4732 code = GET_CODE (x);
4733 op0_mode = VOIDmode;
4734 }
4735
4736 /* If CODE is an associative operation not otherwise handled, see if we
4737 can associate some operands. This can win if they are constants or
4738 if they are logically related (i.e. (a & b) & a). */
4739 if ((code == PLUS || code == MINUS || code == MULT || code == DIV
4740 || code == AND || code == IOR || code == XOR
4741 || code == SMAX || code == SMIN || code == UMAX || code == UMIN)
4742 && ((INTEGRAL_MODE_P (mode) && code != DIV)
4743 || (flag_associative_math && FLOAT_MODE_P (mode))))
4744 {
4745 if (GET_CODE (XEXP (x, 0)) == code)
4746 {
4747 rtx other = XEXP (XEXP (x, 0), 0);
4748 rtx inner_op0 = XEXP (XEXP (x, 0), 1);
4749 rtx inner_op1 = XEXP (x, 1);
4750 rtx inner;
4751
4752 /* Make sure we pass the constant operand if any as the second
4753 one if this is a commutative operation. */
4754 if (CONSTANT_P (inner_op0) && COMMUTATIVE_ARITH_P (x))
4755 {
4756 rtx tem = inner_op0;
4757 inner_op0 = inner_op1;
4758 inner_op1 = tem;
4759 }
4760 inner = simplify_binary_operation (code == MINUS ? PLUS
4761 : code == DIV ? MULT
4762 : code,
4763 mode, inner_op0, inner_op1);
4764
4765 /* For commutative operations, try the other pair if that one
4766 didn't simplify. */
4767 if (inner == 0 && COMMUTATIVE_ARITH_P (x))
4768 {
4769 other = XEXP (XEXP (x, 0), 1);
4770 inner = simplify_binary_operation (code, mode,
4771 XEXP (XEXP (x, 0), 0),
4772 XEXP (x, 1));
4773 }
4774
4775 if (inner)
4776 return simplify_gen_binary (code, mode, other, inner);
4777 }
4778 }
4779
4780 /* A little bit of algebraic simplification here. */
4781 switch (code)
4782 {
4783 case MEM:
4784 /* Ensure that our address has any ASHIFTs converted to MULT in case
4785 address-recognizing predicates are called later. */
4786 temp = make_compound_operation (XEXP (x, 0), MEM);
4787 SUBST (XEXP (x, 0), temp);
4788 break;
4789
4790 case SUBREG:
4791 if (op0_mode == VOIDmode)
4792 op0_mode = GET_MODE (SUBREG_REG (x));
4793
4794 /* See if this can be moved to simplify_subreg. */
4795 if (CONSTANT_P (SUBREG_REG (x))
4796 && subreg_lowpart_offset (mode, op0_mode) == SUBREG_BYTE (x)
4797 /* Don't call gen_lowpart if the inner mode
4798 is VOIDmode and we cannot simplify it, as SUBREG without
4799 inner mode is invalid. */
4800 && (GET_MODE (SUBREG_REG (x)) != VOIDmode
4801 || gen_lowpart_common (mode, SUBREG_REG (x))))
4802 return gen_lowpart (mode, SUBREG_REG (x));
4803
4804 if (GET_MODE_CLASS (GET_MODE (SUBREG_REG (x))) == MODE_CC)
4805 break;
4806 {
4807 rtx temp;
4808 temp = simplify_subreg (mode, SUBREG_REG (x), op0_mode,
4809 SUBREG_BYTE (x));
4810 if (temp)
4811 return temp;
4812 }
4813
4814 /* Don't change the mode of the MEM if that would change the meaning
4815 of the address. */
4816 if (MEM_P (SUBREG_REG (x))
4817 && (MEM_VOLATILE_P (SUBREG_REG (x))
4818 || mode_dependent_address_p (XEXP (SUBREG_REG (x), 0))))
4819 return gen_rtx_CLOBBER (mode, const0_rtx);
4820
4821 /* Note that we cannot do any narrowing for non-constants since
4822 we might have been counting on using the fact that some bits were
4823 zero. We now do this in the SET. */
4824
4825 break;
4826
4827 case NEG:
4828 temp = expand_compound_operation (XEXP (x, 0));
4829
4830 /* For C equal to the width of MODE minus 1, (neg (ashiftrt X C)) can be
4831 replaced by (lshiftrt X C). This will convert
4832 (neg (sign_extract X 1 Y)) to (zero_extract X 1 Y). */
4833
4834 if (GET_CODE (temp) == ASHIFTRT
4835 && GET_CODE (XEXP (temp, 1)) == CONST_INT
4836 && INTVAL (XEXP (temp, 1)) == GET_MODE_BITSIZE (mode) - 1)
4837 return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (temp, 0),
4838 INTVAL (XEXP (temp, 1)));
4839
4840 /* If X has only a single bit that might be nonzero, say, bit I, convert
4841 (neg X) to (ashiftrt (ashift X C-I) C-I) where C is the bitsize of
4842 MODE minus 1. This will convert (neg (zero_extract X 1 Y)) to
4843 (sign_extract X 1 Y). But only do this if TEMP isn't a register
4844 or a SUBREG of one since we'd be making the expression more
4845 complex if it was just a register. */
4846
4847 if (!REG_P (temp)
4848 && ! (GET_CODE (temp) == SUBREG
4849 && REG_P (SUBREG_REG (temp)))
4850 && (i = exact_log2 (nonzero_bits (temp, mode))) >= 0)
4851 {
4852 rtx temp1 = simplify_shift_const
4853 (NULL_RTX, ASHIFTRT, mode,
4854 simplify_shift_const (NULL_RTX, ASHIFT, mode, temp,
4855 GET_MODE_BITSIZE (mode) - 1 - i),
4856 GET_MODE_BITSIZE (mode) - 1 - i);
4857
4858 /* If all we did was surround TEMP with the two shifts, we
4859 haven't improved anything, so don't use it. Otherwise,
4860 we are better off with TEMP1. */
4861 if (GET_CODE (temp1) != ASHIFTRT
4862 || GET_CODE (XEXP (temp1, 0)) != ASHIFT
4863 || XEXP (XEXP (temp1, 0), 0) != temp)
4864 return temp1;
4865 }
4866 break;
4867
4868 case TRUNCATE:
4869 /* We can't handle truncation to a partial integer mode here
4870 because we don't know the real bitsize of the partial
4871 integer mode. */
4872 if (GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
4873 break;
4874
4875 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4876 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
4877 GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))))
4878 SUBST (XEXP (x, 0),
4879 force_to_mode (XEXP (x, 0), GET_MODE (XEXP (x, 0)),
4880 GET_MODE_MASK (mode), 0));
4881
4882 /* Similarly to what we do in simplify-rtx.c, a truncate of a register
4883 whose value is a comparison can be replaced with a subreg if
4884 STORE_FLAG_VALUE permits. */
4885 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4886 && ((HOST_WIDE_INT) STORE_FLAG_VALUE & ~GET_MODE_MASK (mode)) == 0
4887 && (temp = get_last_value (XEXP (x, 0)))
4888 && COMPARISON_P (temp))
4889 return gen_lowpart (mode, XEXP (x, 0));
4890 break;
4891
4892 #ifdef HAVE_cc0
4893 case COMPARE:
4894 /* Convert (compare FOO (const_int 0)) to FOO unless we aren't
4895 using cc0, in which case we want to leave it as a COMPARE
4896 so we can distinguish it from a register-register-copy. */
4897 if (XEXP (x, 1) == const0_rtx)
4898 return XEXP (x, 0);
4899
4900 /* x - 0 is the same as x unless x's mode has signed zeros and
4901 allows rounding towards -infinity. Under those conditions,
4902 0 - 0 is -0. */
4903 if (!(HONOR_SIGNED_ZEROS (GET_MODE (XEXP (x, 0)))
4904 && HONOR_SIGN_DEPENDENT_ROUNDING (GET_MODE (XEXP (x, 0))))
4905 && XEXP (x, 1) == CONST0_RTX (GET_MODE (XEXP (x, 0))))
4906 return XEXP (x, 0);
4907 break;
4908 #endif
4909
4910 case CONST:
4911 /* (const (const X)) can become (const X). Do it this way rather than
4912 returning the inner CONST since CONST can be shared with a
4913 REG_EQUAL note. */
4914 if (GET_CODE (XEXP (x, 0)) == CONST)
4915 SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
4916 break;
4917
4918 #ifdef HAVE_lo_sum
4919 case LO_SUM:
4920 /* Convert (lo_sum (high FOO) FOO) to FOO. This is necessary so we
4921 can add in an offset. find_split_point will split this address up
4922 again if it doesn't match. */
4923 if (GET_CODE (XEXP (x, 0)) == HIGH
4924 && rtx_equal_p (XEXP (XEXP (x, 0), 0), XEXP (x, 1)))
4925 return XEXP (x, 1);
4926 break;
4927 #endif
4928
4929 case PLUS:
4930 /* (plus (xor (and <foo> (const_int pow2 - 1)) <c>) <-c>)
4931 when c is (const_int (pow2 + 1) / 2) is a sign extension of a
4932 bit-field and can be replaced by either a sign_extend or a
4933 sign_extract. The `and' may be a zero_extend and the two
4934 <c>, -<c> constants may be reversed. */
4935 if (GET_CODE (XEXP (x, 0)) == XOR
4936 && GET_CODE (XEXP (x, 1)) == CONST_INT
4937 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
4938 && INTVAL (XEXP (x, 1)) == -INTVAL (XEXP (XEXP (x, 0), 1))
4939 && ((i = exact_log2 (INTVAL (XEXP (XEXP (x, 0), 1)))) >= 0
4940 || (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0)
4941 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4942 && ((GET_CODE (XEXP (XEXP (x, 0), 0)) == AND
4943 && GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 1)) == CONST_INT
4944 && (INTVAL (XEXP (XEXP (XEXP (x, 0), 0), 1))
4945 == ((HOST_WIDE_INT) 1 << (i + 1)) - 1))
4946 || (GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND
4947 && (GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)))
4948 == (unsigned int) i + 1))))
4949 return simplify_shift_const
4950 (NULL_RTX, ASHIFTRT, mode,
4951 simplify_shift_const (NULL_RTX, ASHIFT, mode,
4952 XEXP (XEXP (XEXP (x, 0), 0), 0),
4953 GET_MODE_BITSIZE (mode) - (i + 1)),
4954 GET_MODE_BITSIZE (mode) - (i + 1));
4955
4956 /* If only the low-order bit of X is possibly nonzero, (plus x -1)
4957 can become (ashiftrt (ashift (xor x 1) C) C) where C is
4958 the bitsize of the mode - 1. This allows simplification of
4959 "a = (b & 8) == 0;" */
4960 if (XEXP (x, 1) == constm1_rtx
4961 && !REG_P (XEXP (x, 0))
4962 && ! (GET_CODE (XEXP (x, 0)) == SUBREG
4963 && REG_P (SUBREG_REG (XEXP (x, 0))))
4964 && nonzero_bits (XEXP (x, 0), mode) == 1)
4965 return simplify_shift_const (NULL_RTX, ASHIFTRT, mode,
4966 simplify_shift_const (NULL_RTX, ASHIFT, mode,
4967 gen_rtx_XOR (mode, XEXP (x, 0), const1_rtx),
4968 GET_MODE_BITSIZE (mode) - 1),
4969 GET_MODE_BITSIZE (mode) - 1);
4970
4971 /* If we are adding two things that have no bits in common, convert
4972 the addition into an IOR. This will often be further simplified,
4973 for example in cases like ((a & 1) + (a & 2)), which can
4974 become a & 3. */
4975
4976 if (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
4977 && (nonzero_bits (XEXP (x, 0), mode)
4978 & nonzero_bits (XEXP (x, 1), mode)) == 0)
4979 {
4980 /* Try to simplify the expression further. */
4981 rtx tor = simplify_gen_binary (IOR, mode, XEXP (x, 0), XEXP (x, 1));
4982 temp = combine_simplify_rtx (tor, mode, in_dest);
4983
4984 /* If we could, great. If not, do not go ahead with the IOR
4985 replacement, since PLUS appears in many special purpose
4986 address arithmetic instructions. */
4987 if (GET_CODE (temp) != CLOBBER && temp != tor)
4988 return temp;
4989 }
4990 break;
4991
4992 case MINUS:
4993 /* (minus <foo> (and <foo> (const_int -pow2))) becomes
4994 (and <foo> (const_int pow2-1)) */
4995 if (GET_CODE (XEXP (x, 1)) == AND
4996 && GET_CODE (XEXP (XEXP (x, 1), 1)) == CONST_INT
4997 && exact_log2 (-INTVAL (XEXP (XEXP (x, 1), 1))) >= 0
4998 && rtx_equal_p (XEXP (XEXP (x, 1), 0), XEXP (x, 0)))
4999 return simplify_and_const_int (NULL_RTX, mode, XEXP (x, 0),
5000 -INTVAL (XEXP (XEXP (x, 1), 1)) - 1);
5001 break;
5002
5003 case MULT:
5004 /* If we have (mult (plus A B) C), apply the distributive law and then
5005 the inverse distributive law to see if things simplify. This
5006 occurs mostly in addresses, often when unrolling loops. */
5007
5008 if (GET_CODE (XEXP (x, 0)) == PLUS)
5009 {
5010 rtx result = distribute_and_simplify_rtx (x, 0);
5011 if (result)
5012 return result;
5013 }
5014
5015 /* Try simplify a*(b/c) as (a*b)/c. */
5016 if (FLOAT_MODE_P (mode) && flag_associative_math
5017 && GET_CODE (XEXP (x, 0)) == DIV)
5018 {
5019 rtx tem = simplify_binary_operation (MULT, mode,
5020 XEXP (XEXP (x, 0), 0),
5021 XEXP (x, 1));
5022 if (tem)
5023 return simplify_gen_binary (DIV, mode, tem, XEXP (XEXP (x, 0), 1));
5024 }
5025 break;
5026
5027 case UDIV:
5028 /* If this is a divide by a power of two, treat it as a shift if
5029 its first operand is a shift. */
5030 if (GET_CODE (XEXP (x, 1)) == CONST_INT
5031 && (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0
5032 && (GET_CODE (XEXP (x, 0)) == ASHIFT
5033 || GET_CODE (XEXP (x, 0)) == LSHIFTRT
5034 || GET_CODE (XEXP (x, 0)) == ASHIFTRT
5035 || GET_CODE (XEXP (x, 0)) == ROTATE
5036 || GET_CODE (XEXP (x, 0)) == ROTATERT))
5037 return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (x, 0), i);
5038 break;
5039
5040 case EQ: case NE:
5041 case GT: case GTU: case GE: case GEU:
5042 case LT: case LTU: case LE: case LEU:
5043 case UNEQ: case LTGT:
5044 case UNGT: case UNGE:
5045 case UNLT: case UNLE:
5046 case UNORDERED: case ORDERED:
5047 /* If the first operand is a condition code, we can't do anything
5048 with it. */
5049 if (GET_CODE (XEXP (x, 0)) == COMPARE
5050 || (GET_MODE_CLASS (GET_MODE (XEXP (x, 0))) != MODE_CC
5051 && ! CC0_P (XEXP (x, 0))))
5052 {
5053 rtx op0 = XEXP (x, 0);
5054 rtx op1 = XEXP (x, 1);
5055 enum rtx_code new_code;
5056
5057 if (GET_CODE (op0) == COMPARE)
5058 op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
5059
5060 /* Simplify our comparison, if possible. */
5061 new_code = simplify_comparison (code, &op0, &op1);
5062
5063 /* If STORE_FLAG_VALUE is 1, we can convert (ne x 0) to simply X
5064 if only the low-order bit is possibly nonzero in X (such as when
5065 X is a ZERO_EXTRACT of one bit). Similarly, we can convert EQ to
5066 (xor X 1) or (minus 1 X); we use the former. Finally, if X is
5067 known to be either 0 or -1, NE becomes a NEG and EQ becomes
5068 (plus X 1).
5069
5070 Remove any ZERO_EXTRACT we made when thinking this was a
5071 comparison. It may now be simpler to use, e.g., an AND. If a
5072 ZERO_EXTRACT is indeed appropriate, it will be placed back by
5073 the call to make_compound_operation in the SET case. */
5074
5075 if (STORE_FLAG_VALUE == 1
5076 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
5077 && op1 == const0_rtx
5078 && mode == GET_MODE (op0)
5079 && nonzero_bits (op0, mode) == 1)
5080 return gen_lowpart (mode,
5081 expand_compound_operation (op0));
5082
5083 else if (STORE_FLAG_VALUE == 1
5084 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
5085 && op1 == const0_rtx
5086 && mode == GET_MODE (op0)
5087 && (num_sign_bit_copies (op0, mode)
5088 == GET_MODE_BITSIZE (mode)))
5089 {
5090 op0 = expand_compound_operation (op0);
5091 return simplify_gen_unary (NEG, mode,
5092 gen_lowpart (mode, op0),
5093 mode);
5094 }
5095
5096 else if (STORE_FLAG_VALUE == 1
5097 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
5098 && op1 == const0_rtx
5099 && mode == GET_MODE (op0)
5100 && nonzero_bits (op0, mode) == 1)
5101 {
5102 op0 = expand_compound_operation (op0);
5103 return simplify_gen_binary (XOR, mode,
5104 gen_lowpart (mode, op0),
5105 const1_rtx);
5106 }
5107
5108 else if (STORE_FLAG_VALUE == 1
5109 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
5110 && op1 == const0_rtx
5111 && mode == GET_MODE (op0)
5112 && (num_sign_bit_copies (op0, mode)
5113 == GET_MODE_BITSIZE (mode)))
5114 {
5115 op0 = expand_compound_operation (op0);
5116 return plus_constant (gen_lowpart (mode, op0), 1);
5117 }
5118
5119 /* If STORE_FLAG_VALUE is -1, we have cases similar to
5120 those above. */
5121 if (STORE_FLAG_VALUE == -1
5122 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
5123 && op1 == const0_rtx
5124 && (num_sign_bit_copies (op0, mode)
5125 == GET_MODE_BITSIZE (mode)))
5126 return gen_lowpart (mode,
5127 expand_compound_operation (op0));
5128
5129 else if (STORE_FLAG_VALUE == -1
5130 && new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
5131 && op1 == const0_rtx
5132 && mode == GET_MODE (op0)
5133 && nonzero_bits (op0, mode) == 1)
5134 {
5135 op0 = expand_compound_operation (op0);
5136 return simplify_gen_unary (NEG, mode,
5137 gen_lowpart (mode, op0),
5138 mode);
5139 }
5140
5141 else if (STORE_FLAG_VALUE == -1
5142 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
5143 && op1 == const0_rtx
5144 && mode == GET_MODE (op0)
5145 && (num_sign_bit_copies (op0, mode)
5146 == GET_MODE_BITSIZE (mode)))
5147 {
5148 op0 = expand_compound_operation (op0);
5149 return simplify_gen_unary (NOT, mode,
5150 gen_lowpart (mode, op0),
5151 mode);
5152 }
5153
5154 /* If X is 0/1, (eq X 0) is X-1. */
5155 else if (STORE_FLAG_VALUE == -1
5156 && new_code == EQ && GET_MODE_CLASS (mode) == MODE_INT
5157 && op1 == const0_rtx
5158 && mode == GET_MODE (op0)
5159 && nonzero_bits (op0, mode) == 1)
5160 {
5161 op0 = expand_compound_operation (op0);
5162 return plus_constant (gen_lowpart (mode, op0), -1);
5163 }
5164
5165 /* If STORE_FLAG_VALUE says to just test the sign bit and X has just
5166 one bit that might be nonzero, we can convert (ne x 0) to
5167 (ashift x c) where C puts the bit in the sign bit. Remove any
5168 AND with STORE_FLAG_VALUE when we are done, since we are only
5169 going to test the sign bit. */
5170 if (new_code == NE && GET_MODE_CLASS (mode) == MODE_INT
5171 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5172 && ((STORE_FLAG_VALUE & GET_MODE_MASK (mode))
5173 == (unsigned HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (mode) - 1))
5174 && op1 == const0_rtx
5175 && mode == GET_MODE (op0)
5176 && (i = exact_log2 (nonzero_bits (op0, mode))) >= 0)
5177 {
5178 x = simplify_shift_const (NULL_RTX, ASHIFT, mode,
5179 expand_compound_operation (op0),
5180 GET_MODE_BITSIZE (mode) - 1 - i);
5181 if (GET_CODE (x) == AND && XEXP (x, 1) == const_true_rtx)
5182 return XEXP (x, 0);
5183 else
5184 return x;
5185 }
5186
5187 /* If the code changed, return a whole new comparison. */
5188 if (new_code != code)
5189 return gen_rtx_fmt_ee (new_code, mode, op0, op1);
5190
5191 /* Otherwise, keep this operation, but maybe change its operands.
5192 This also converts (ne (compare FOO BAR) 0) to (ne FOO BAR). */
5193 SUBST (XEXP (x, 0), op0);
5194 SUBST (XEXP (x, 1), op1);
5195 }
5196 break;
5197
5198 case IF_THEN_ELSE:
5199 return simplify_if_then_else (x);
5200
5201 case ZERO_EXTRACT:
5202 case SIGN_EXTRACT:
5203 case ZERO_EXTEND:
5204 case SIGN_EXTEND:
5205 /* If we are processing SET_DEST, we are done. */
5206 if (in_dest)
5207 return x;
5208
5209 return expand_compound_operation (x);
5210
5211 case SET:
5212 return simplify_set (x);
5213
5214 case AND:
5215 case IOR:
5216 return simplify_logical (x);
5217
5218 case ASHIFT:
5219 case LSHIFTRT:
5220 case ASHIFTRT:
5221 case ROTATE:
5222 case ROTATERT:
5223 /* If this is a shift by a constant amount, simplify it. */
5224 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
5225 return simplify_shift_const (x, code, mode, XEXP (x, 0),
5226 INTVAL (XEXP (x, 1)));
5227
5228 else if (SHIFT_COUNT_TRUNCATED && !REG_P (XEXP (x, 1)))
5229 SUBST (XEXP (x, 1),
5230 force_to_mode (XEXP (x, 1), GET_MODE (XEXP (x, 1)),
5231 ((HOST_WIDE_INT) 1
5232 << exact_log2 (GET_MODE_BITSIZE (GET_MODE (x))))
5233 - 1,
5234 0));
5235 break;
5236
5237 default:
5238 break;
5239 }
5240
5241 return x;
5242 }
5243
5244 /* Simplify X, an IF_THEN_ELSE expression. Return the new expression. */
5245
5246 static rtx
5247 simplify_if_then_else (rtx x)
5248 {
5249 enum machine_mode mode = GET_MODE (x);
5250 rtx cond = XEXP (x, 0);
5251 rtx true_rtx = XEXP (x, 1);
5252 rtx false_rtx = XEXP (x, 2);
5253 enum rtx_code true_code = GET_CODE (cond);
5254 int comparison_p = COMPARISON_P (cond);
5255 rtx temp;
5256 int i;
5257 enum rtx_code false_code;
5258 rtx reversed;
5259
5260 /* Simplify storing of the truth value. */
5261 if (comparison_p && true_rtx == const_true_rtx && false_rtx == const0_rtx)
5262 return simplify_gen_relational (true_code, mode, VOIDmode,
5263 XEXP (cond, 0), XEXP (cond, 1));
5264
5265 /* Also when the truth value has to be reversed. */
5266 if (comparison_p
5267 && true_rtx == const0_rtx && false_rtx == const_true_rtx
5268 && (reversed = reversed_comparison (cond, mode)))
5269 return reversed;
5270
5271 /* Sometimes we can simplify the arm of an IF_THEN_ELSE if a register used
5272 in it is being compared against certain values. Get the true and false
5273 comparisons and see if that says anything about the value of each arm. */
5274
5275 if (comparison_p
5276 && ((false_code = reversed_comparison_code (cond, NULL))
5277 != UNKNOWN)
5278 && REG_P (XEXP (cond, 0)))
5279 {
5280 HOST_WIDE_INT nzb;
5281 rtx from = XEXP (cond, 0);
5282 rtx true_val = XEXP (cond, 1);
5283 rtx false_val = true_val;
5284 int swapped = 0;
5285
5286 /* If FALSE_CODE is EQ, swap the codes and arms. */
5287
5288 if (false_code == EQ)
5289 {
5290 swapped = 1, true_code = EQ, false_code = NE;
5291 temp = true_rtx, true_rtx = false_rtx, false_rtx = temp;
5292 }
5293
5294 /* If we are comparing against zero and the expression being tested has
5295 only a single bit that might be nonzero, that is its value when it is
5296 not equal to zero. Similarly if it is known to be -1 or 0. */
5297
5298 if (true_code == EQ && true_val == const0_rtx
5299 && exact_log2 (nzb = nonzero_bits (from, GET_MODE (from))) >= 0)
5300 {
5301 false_code = EQ;
5302 false_val = GEN_INT (trunc_int_for_mode (nzb, GET_MODE (from)));
5303 }
5304 else if (true_code == EQ && true_val == const0_rtx
5305 && (num_sign_bit_copies (from, GET_MODE (from))
5306 == GET_MODE_BITSIZE (GET_MODE (from))))
5307 {
5308 false_code = EQ;
5309 false_val = constm1_rtx;
5310 }
5311
5312 /* Now simplify an arm if we know the value of the register in the
5313 branch and it is used in the arm. Be careful due to the potential
5314 of locally-shared RTL. */
5315
5316 if (reg_mentioned_p (from, true_rtx))
5317 true_rtx = subst (known_cond (copy_rtx (true_rtx), true_code,
5318 from, true_val),
5319 pc_rtx, pc_rtx, 0, 0);
5320 if (reg_mentioned_p (from, false_rtx))
5321 false_rtx = subst (known_cond (copy_rtx (false_rtx), false_code,
5322 from, false_val),
5323 pc_rtx, pc_rtx, 0, 0);
5324
5325 SUBST (XEXP (x, 1), swapped ? false_rtx : true_rtx);
5326 SUBST (XEXP (x, 2), swapped ? true_rtx : false_rtx);
5327
5328 true_rtx = XEXP (x, 1);
5329 false_rtx = XEXP (x, 2);
5330 true_code = GET_CODE (cond);
5331 }
5332
5333 /* If we have (if_then_else FOO (pc) (label_ref BAR)) and FOO can be
5334 reversed, do so to avoid needing two sets of patterns for
5335 subtract-and-branch insns. Similarly if we have a constant in the true
5336 arm, the false arm is the same as the first operand of the comparison, or
5337 the false arm is more complicated than the true arm. */
5338
5339 if (comparison_p
5340 && reversed_comparison_code (cond, NULL) != UNKNOWN
5341 && (true_rtx == pc_rtx
5342 || (CONSTANT_P (true_rtx)
5343 && GET_CODE (false_rtx) != CONST_INT && false_rtx != pc_rtx)
5344 || true_rtx == const0_rtx
5345 || (OBJECT_P (true_rtx) && !OBJECT_P (false_rtx))
5346 || (GET_CODE (true_rtx) == SUBREG && OBJECT_P (SUBREG_REG (true_rtx))
5347 && !OBJECT_P (false_rtx))
5348 || reg_mentioned_p (true_rtx, false_rtx)
5349 || rtx_equal_p (false_rtx, XEXP (cond, 0))))
5350 {
5351 true_code = reversed_comparison_code (cond, NULL);
5352 SUBST (XEXP (x, 0), reversed_comparison (cond, GET_MODE (cond)));
5353 SUBST (XEXP (x, 1), false_rtx);
5354 SUBST (XEXP (x, 2), true_rtx);
5355
5356 temp = true_rtx, true_rtx = false_rtx, false_rtx = temp;
5357 cond = XEXP (x, 0);
5358
5359 /* It is possible that the conditional has been simplified out. */
5360 true_code = GET_CODE (cond);
5361 comparison_p = COMPARISON_P (cond);
5362 }
5363
5364 /* If the two arms are identical, we don't need the comparison. */
5365
5366 if (rtx_equal_p (true_rtx, false_rtx) && ! side_effects_p (cond))
5367 return true_rtx;
5368
5369 /* Convert a == b ? b : a to "a". */
5370 if (true_code == EQ && ! side_effects_p (cond)
5371 && !HONOR_NANS (mode)
5372 && rtx_equal_p (XEXP (cond, 0), false_rtx)
5373 && rtx_equal_p (XEXP (cond, 1), true_rtx))
5374 return false_rtx;
5375 else if (true_code == NE && ! side_effects_p (cond)
5376 && !HONOR_NANS (mode)
5377 && rtx_equal_p (XEXP (cond, 0), true_rtx)
5378 && rtx_equal_p (XEXP (cond, 1), false_rtx))
5379 return true_rtx;
5380
5381 /* Look for cases where we have (abs x) or (neg (abs X)). */
5382
5383 if (GET_MODE_CLASS (mode) == MODE_INT
5384 && comparison_p
5385 && XEXP (cond, 1) == const0_rtx
5386 && GET_CODE (false_rtx) == NEG
5387 && rtx_equal_p (true_rtx, XEXP (false_rtx, 0))
5388 && rtx_equal_p (true_rtx, XEXP (cond, 0))
5389 && ! side_effects_p (true_rtx))
5390 switch (true_code)
5391 {
5392 case GT:
5393 case GE:
5394 return simplify_gen_unary (ABS, mode, true_rtx, mode);
5395 case LT:
5396 case LE:
5397 return
5398 simplify_gen_unary (NEG, mode,
5399 simplify_gen_unary (ABS, mode, true_rtx, mode),
5400 mode);
5401 default:
5402 break;
5403 }
5404
5405 /* Look for MIN or MAX. */
5406
5407 if ((! FLOAT_MODE_P (mode) || flag_unsafe_math_optimizations)
5408 && comparison_p
5409 && rtx_equal_p (XEXP (cond, 0), true_rtx)
5410 && rtx_equal_p (XEXP (cond, 1), false_rtx)
5411 && ! side_effects_p (cond))
5412 switch (true_code)
5413 {
5414 case GE:
5415 case GT:
5416 return simplify_gen_binary (SMAX, mode, true_rtx, false_rtx);
5417 case LE:
5418 case LT:
5419 return simplify_gen_binary (SMIN, mode, true_rtx, false_rtx);
5420 case GEU:
5421 case GTU:
5422 return simplify_gen_binary (UMAX, mode, true_rtx, false_rtx);
5423 case LEU:
5424 case LTU:
5425 return simplify_gen_binary (UMIN, mode, true_rtx, false_rtx);
5426 default:
5427 break;
5428 }
5429
5430 /* If we have (if_then_else COND (OP Z C1) Z) and OP is an identity when its
5431 second operand is zero, this can be done as (OP Z (mult COND C2)) where
5432 C2 = C1 * STORE_FLAG_VALUE. Similarly if OP has an outer ZERO_EXTEND or
5433 SIGN_EXTEND as long as Z is already extended (so we don't destroy it).
5434 We can do this kind of thing in some cases when STORE_FLAG_VALUE is
5435 neither 1 or -1, but it isn't worth checking for. */
5436
5437 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
5438 && comparison_p
5439 && GET_MODE_CLASS (mode) == MODE_INT
5440 && ! side_effects_p (x))
5441 {
5442 rtx t = make_compound_operation (true_rtx, SET);
5443 rtx f = make_compound_operation (false_rtx, SET);
5444 rtx cond_op0 = XEXP (cond, 0);
5445 rtx cond_op1 = XEXP (cond, 1);
5446 enum rtx_code op = UNKNOWN, extend_op = UNKNOWN;
5447 enum machine_mode m = mode;
5448 rtx z = 0, c1 = NULL_RTX;
5449
5450 if ((GET_CODE (t) == PLUS || GET_CODE (t) == MINUS
5451 || GET_CODE (t) == IOR || GET_CODE (t) == XOR
5452 || GET_CODE (t) == ASHIFT
5453 || GET_CODE (t) == LSHIFTRT || GET_CODE (t) == ASHIFTRT)
5454 && rtx_equal_p (XEXP (t, 0), f))
5455 c1 = XEXP (t, 1), op = GET_CODE (t), z = f;
5456
5457 /* If an identity-zero op is commutative, check whether there
5458 would be a match if we swapped the operands. */
5459 else if ((GET_CODE (t) == PLUS || GET_CODE (t) == IOR
5460 || GET_CODE (t) == XOR)
5461 && rtx_equal_p (XEXP (t, 1), f))
5462 c1 = XEXP (t, 0), op = GET_CODE (t), z = f;
5463 else if (GET_CODE (t) == SIGN_EXTEND
5464 && (GET_CODE (XEXP (t, 0)) == PLUS
5465 || GET_CODE (XEXP (t, 0)) == MINUS
5466 || GET_CODE (XEXP (t, 0)) == IOR
5467 || GET_CODE (XEXP (t, 0)) == XOR
5468 || GET_CODE (XEXP (t, 0)) == ASHIFT
5469 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
5470 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
5471 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
5472 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
5473 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
5474 && (num_sign_bit_copies (f, GET_MODE (f))
5475 > (unsigned int)
5476 (GET_MODE_BITSIZE (mode)
5477 - GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (t, 0), 0))))))
5478 {
5479 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
5480 extend_op = SIGN_EXTEND;
5481 m = GET_MODE (XEXP (t, 0));
5482 }
5483 else if (GET_CODE (t) == SIGN_EXTEND
5484 && (GET_CODE (XEXP (t, 0)) == PLUS
5485 || GET_CODE (XEXP (t, 0)) == IOR
5486 || GET_CODE (XEXP (t, 0)) == XOR)
5487 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
5488 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
5489 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
5490 && (num_sign_bit_copies (f, GET_MODE (f))
5491 > (unsigned int)
5492 (GET_MODE_BITSIZE (mode)
5493 - GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (t, 0), 1))))))
5494 {
5495 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
5496 extend_op = SIGN_EXTEND;
5497 m = GET_MODE (XEXP (t, 0));
5498 }
5499 else if (GET_CODE (t) == ZERO_EXTEND
5500 && (GET_CODE (XEXP (t, 0)) == PLUS
5501 || GET_CODE (XEXP (t, 0)) == MINUS
5502 || GET_CODE (XEXP (t, 0)) == IOR
5503 || GET_CODE (XEXP (t, 0)) == XOR
5504 || GET_CODE (XEXP (t, 0)) == ASHIFT
5505 || GET_CODE (XEXP (t, 0)) == LSHIFTRT
5506 || GET_CODE (XEXP (t, 0)) == ASHIFTRT)
5507 && GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
5508 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5509 && subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
5510 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
5511 && ((nonzero_bits (f, GET_MODE (f))
5512 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 0))))
5513 == 0))
5514 {
5515 c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
5516 extend_op = ZERO_EXTEND;
5517 m = GET_MODE (XEXP (t, 0));
5518 }
5519 else if (GET_CODE (t) == ZERO_EXTEND
5520 && (GET_CODE (XEXP (t, 0)) == PLUS
5521 || GET_CODE (XEXP (t, 0)) == IOR
5522 || GET_CODE (XEXP (t, 0)) == XOR)
5523 && GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
5524 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5525 && subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
5526 && rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
5527 && ((nonzero_bits (f, GET_MODE (f))
5528 & ~GET_MODE_MASK (GET_MODE (XEXP (XEXP (t, 0), 1))))
5529 == 0))
5530 {
5531 c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
5532 extend_op = ZERO_EXTEND;
5533 m = GET_MODE (XEXP (t, 0));
5534 }
5535
5536 if (z)
5537 {
5538 temp = subst (simplify_gen_relational (true_code, m, VOIDmode,
5539 cond_op0, cond_op1),
5540 pc_rtx, pc_rtx, 0, 0);
5541 temp = simplify_gen_binary (MULT, m, temp,
5542 simplify_gen_binary (MULT, m, c1,
5543 const_true_rtx));
5544 temp = subst (temp, pc_rtx, pc_rtx, 0, 0);
5545 temp = simplify_gen_binary (op, m, gen_lowpart (m, z), temp);
5546
5547 if (extend_op != UNKNOWN)
5548 temp = simplify_gen_unary (extend_op, mode, temp, m);
5549
5550 return temp;
5551 }
5552 }
5553
5554 /* If we have (if_then_else (ne A 0) C1 0) and either A is known to be 0 or
5555 1 and C1 is a single bit or A is known to be 0 or -1 and C1 is the
5556 negation of a single bit, we can convert this operation to a shift. We
5557 can actually do this more generally, but it doesn't seem worth it. */
5558
5559 if (true_code == NE && XEXP (cond, 1) == const0_rtx
5560 && false_rtx == const0_rtx && GET_CODE (true_rtx) == CONST_INT
5561 && ((1 == nonzero_bits (XEXP (cond, 0), mode)
5562 && (i = exact_log2 (INTVAL (true_rtx))) >= 0)
5563 || ((num_sign_bit_copies (XEXP (cond, 0), mode)
5564 == GET_MODE_BITSIZE (mode))
5565 && (i = exact_log2 (-INTVAL (true_rtx))) >= 0)))
5566 return
5567 simplify_shift_const (NULL_RTX, ASHIFT, mode,
5568 gen_lowpart (mode, XEXP (cond, 0)), i);
5569
5570 /* (IF_THEN_ELSE (NE REG 0) (0) (8)) is REG for nonzero_bits (REG) == 8. */
5571 if (true_code == NE && XEXP (cond, 1) == const0_rtx
5572 && false_rtx == const0_rtx && GET_CODE (true_rtx) == CONST_INT
5573 && GET_MODE (XEXP (cond, 0)) == mode
5574 && (INTVAL (true_rtx) & GET_MODE_MASK (mode))
5575 == nonzero_bits (XEXP (cond, 0), mode)
5576 && (i = exact_log2 (INTVAL (true_rtx) & GET_MODE_MASK (mode))) >= 0)
5577 return XEXP (cond, 0);
5578
5579 return x;
5580 }
5581
5582 /* Simplify X, a SET expression. Return the new expression. */
5583
5584 static rtx
5585 simplify_set (rtx x)
5586 {
5587 rtx src = SET_SRC (x);
5588 rtx dest = SET_DEST (x);
5589 enum machine_mode mode
5590 = GET_MODE (src) != VOIDmode ? GET_MODE (src) : GET_MODE (dest);
5591 rtx other_insn;
5592 rtx *cc_use;
5593
5594 /* (set (pc) (return)) gets written as (return). */
5595 if (GET_CODE (dest) == PC && GET_CODE (src) == RETURN)
5596 return src;
5597
5598 /* Now that we know for sure which bits of SRC we are using, see if we can
5599 simplify the expression for the object knowing that we only need the
5600 low-order bits. */
5601
5602 if (GET_MODE_CLASS (mode) == MODE_INT
5603 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
5604 {
5605 src = force_to_mode (src, mode, ~(HOST_WIDE_INT) 0, 0);
5606 SUBST (SET_SRC (x), src);
5607 }
5608
5609 /* If we are setting CC0 or if the source is a COMPARE, look for the use of
5610 the comparison result and try to simplify it unless we already have used
5611 undobuf.other_insn. */
5612 if ((GET_MODE_CLASS (mode) == MODE_CC
5613 || GET_CODE (src) == COMPARE
5614 || CC0_P (dest))
5615 && (cc_use = find_single_use (dest, subst_insn, &other_insn)) != 0
5616 && (undobuf.other_insn == 0 || other_insn == undobuf.other_insn)
5617 && COMPARISON_P (*cc_use)
5618 && rtx_equal_p (XEXP (*cc_use, 0), dest))
5619 {
5620 enum rtx_code old_code = GET_CODE (*cc_use);
5621 enum rtx_code new_code;
5622 rtx op0, op1, tmp;
5623 int other_changed = 0;
5624 enum machine_mode compare_mode = GET_MODE (dest);
5625
5626 if (GET_CODE (src) == COMPARE)
5627 op0 = XEXP (src, 0), op1 = XEXP (src, 1);
5628 else
5629 op0 = src, op1 = CONST0_RTX (GET_MODE (src));
5630
5631 tmp = simplify_relational_operation (old_code, compare_mode, VOIDmode,
5632 op0, op1);
5633 if (!tmp)
5634 new_code = old_code;
5635 else if (!CONSTANT_P (tmp))
5636 {
5637 new_code = GET_CODE (tmp);
5638 op0 = XEXP (tmp, 0);
5639 op1 = XEXP (tmp, 1);
5640 }
5641 else
5642 {
5643 rtx pat = PATTERN (other_insn);
5644 undobuf.other_insn = other_insn;
5645 SUBST (*cc_use, tmp);
5646
5647 /* Attempt to simplify CC user. */
5648 if (GET_CODE (pat) == SET)
5649 {
5650 rtx new_rtx = simplify_rtx (SET_SRC (pat));
5651 if (new_rtx != NULL_RTX)
5652 SUBST (SET_SRC (pat), new_rtx);
5653 }
5654
5655 /* Convert X into a no-op move. */
5656 SUBST (SET_DEST (x), pc_rtx);
5657 SUBST (SET_SRC (x), pc_rtx);
5658 return x;
5659 }
5660
5661 /* Simplify our comparison, if possible. */
5662 new_code = simplify_comparison (new_code, &op0, &op1);
5663
5664 #ifdef SELECT_CC_MODE
5665 /* If this machine has CC modes other than CCmode, check to see if we
5666 need to use a different CC mode here. */
5667 if (GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
5668 compare_mode = GET_MODE (op0);
5669 else
5670 compare_mode = SELECT_CC_MODE (new_code, op0, op1);
5671
5672 #ifndef HAVE_cc0
5673 /* If the mode changed, we have to change SET_DEST, the mode in the
5674 compare, and the mode in the place SET_DEST is used. If SET_DEST is
5675 a hard register, just build new versions with the proper mode. If it
5676 is a pseudo, we lose unless it is only time we set the pseudo, in
5677 which case we can safely change its mode. */
5678 if (compare_mode != GET_MODE (dest))
5679 {
5680 if (can_change_dest_mode (dest, 0, compare_mode))
5681 {
5682 unsigned int regno = REGNO (dest);
5683 rtx new_dest;
5684
5685 if (regno < FIRST_PSEUDO_REGISTER)
5686 new_dest = gen_rtx_REG (compare_mode, regno);
5687 else
5688 {
5689 SUBST_MODE (regno_reg_rtx[regno], compare_mode);
5690 new_dest = regno_reg_rtx[regno];
5691 }
5692
5693 SUBST (SET_DEST (x), new_dest);
5694 SUBST (XEXP (*cc_use, 0), new_dest);
5695 other_changed = 1;
5696
5697 dest = new_dest;
5698 }
5699 }
5700 #endif /* cc0 */
5701 #endif /* SELECT_CC_MODE */
5702
5703 /* If the code changed, we have to build a new comparison in
5704 undobuf.other_insn. */
5705 if (new_code != old_code)
5706 {
5707 int other_changed_previously = other_changed;
5708 unsigned HOST_WIDE_INT mask;
5709 rtx old_cc_use = *cc_use;
5710
5711 SUBST (*cc_use, gen_rtx_fmt_ee (new_code, GET_MODE (*cc_use),
5712 dest, const0_rtx));
5713 other_changed = 1;
5714
5715 /* If the only change we made was to change an EQ into an NE or
5716 vice versa, OP0 has only one bit that might be nonzero, and OP1
5717 is zero, check if changing the user of the condition code will
5718 produce a valid insn. If it won't, we can keep the original code
5719 in that insn by surrounding our operation with an XOR. */
5720
5721 if (((old_code == NE && new_code == EQ)
5722 || (old_code == EQ && new_code == NE))
5723 && ! other_changed_previously && op1 == const0_rtx
5724 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
5725 && exact_log2 (mask = nonzero_bits (op0, GET_MODE (op0))) >= 0)
5726 {
5727 rtx pat = PATTERN (other_insn), note = 0;
5728
5729 if ((recog_for_combine (&pat, other_insn, &note) < 0
5730 && ! check_asm_operands (pat)))
5731 {
5732 *cc_use = old_cc_use;
5733 other_changed = 0;
5734
5735 op0 = simplify_gen_binary (XOR, GET_MODE (op0),
5736 op0, GEN_INT (mask));
5737 }
5738 }
5739 }
5740
5741 if (other_changed)
5742 undobuf.other_insn = other_insn;
5743
5744 #ifdef HAVE_cc0
5745 /* If we are now comparing against zero, change our source if
5746 needed. If we do not use cc0, we always have a COMPARE. */
5747 if (op1 == const0_rtx && dest == cc0_rtx)
5748 {
5749 SUBST (SET_SRC (x), op0);
5750 src = op0;
5751 }
5752 else
5753 #endif
5754
5755 /* Otherwise, if we didn't previously have a COMPARE in the
5756 correct mode, we need one. */
5757 if (GET_CODE (src) != COMPARE || GET_MODE (src) != compare_mode)
5758 {
5759 SUBST (SET_SRC (x), gen_rtx_COMPARE (compare_mode, op0, op1));
5760 src = SET_SRC (x);
5761 }
5762 else if (GET_MODE (op0) == compare_mode && op1 == const0_rtx)
5763 {
5764 SUBST (SET_SRC (x), op0);
5765 src = SET_SRC (x);
5766 }
5767 /* Otherwise, update the COMPARE if needed. */
5768 else if (XEXP (src, 0) != op0 || XEXP (src, 1) != op1)
5769 {
5770 SUBST (SET_SRC (x), gen_rtx_COMPARE (compare_mode, op0, op1));
5771 src = SET_SRC (x);
5772 }
5773 }
5774 else
5775 {
5776 /* Get SET_SRC in a form where we have placed back any
5777 compound expressions. Then do the checks below. */
5778 src = make_compound_operation (src, SET);
5779 SUBST (SET_SRC (x), src);
5780 }
5781
5782 /* If we have (set x (subreg:m1 (op:m2 ...) 0)) with OP being some operation,
5783 and X being a REG or (subreg (reg)), we may be able to convert this to
5784 (set (subreg:m2 x) (op)).
5785
5786 We can always do this if M1 is narrower than M2 because that means that
5787 we only care about the low bits of the result.
5788
5789 However, on machines without WORD_REGISTER_OPERATIONS defined, we cannot
5790 perform a narrower operation than requested since the high-order bits will
5791 be undefined. On machine where it is defined, this transformation is safe
5792 as long as M1 and M2 have the same number of words. */
5793
5794 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
5795 && !OBJECT_P (SUBREG_REG (src))
5796 && (((GET_MODE_SIZE (GET_MODE (src)) + (UNITS_PER_WORD - 1))
5797 / UNITS_PER_WORD)
5798 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
5799 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD))
5800 #ifndef WORD_REGISTER_OPERATIONS
5801 && (GET_MODE_SIZE (GET_MODE (src))
5802 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))))
5803 #endif
5804 #ifdef CANNOT_CHANGE_MODE_CLASS
5805 && ! (REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER
5806 && REG_CANNOT_CHANGE_MODE_P (REGNO (dest),
5807 GET_MODE (SUBREG_REG (src)),
5808 GET_MODE (src)))
5809 #endif
5810 && (REG_P (dest)
5811 || (GET_CODE (dest) == SUBREG
5812 && REG_P (SUBREG_REG (dest)))))
5813 {
5814 SUBST (SET_DEST (x),
5815 gen_lowpart (GET_MODE (SUBREG_REG (src)),
5816 dest));
5817 SUBST (SET_SRC (x), SUBREG_REG (src));
5818
5819 src = SET_SRC (x), dest = SET_DEST (x);
5820 }
5821
5822 #ifdef HAVE_cc0
5823 /* If we have (set (cc0) (subreg ...)), we try to remove the subreg
5824 in SRC. */
5825 if (dest == cc0_rtx
5826 && GET_CODE (src) == SUBREG
5827 && subreg_lowpart_p (src)
5828 && (GET_MODE_BITSIZE (GET_MODE (src))
5829 < GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (src)))))
5830 {
5831 rtx inner = SUBREG_REG (src);
5832 enum machine_mode inner_mode = GET_MODE (inner);
5833
5834 /* Here we make sure that we don't have a sign bit on. */
5835 if (GET_MODE_BITSIZE (inner_mode) <= HOST_BITS_PER_WIDE_INT
5836 && (nonzero_bits (inner, inner_mode)
5837 < ((unsigned HOST_WIDE_INT) 1
5838 << (GET_MODE_BITSIZE (GET_MODE (src)) - 1))))
5839 {
5840 SUBST (SET_SRC (x), inner);
5841 src = SET_SRC (x);
5842 }
5843 }
5844 #endif
5845
5846 #ifdef LOAD_EXTEND_OP
5847 /* If we have (set FOO (subreg:M (mem:N BAR) 0)) with M wider than N, this
5848 would require a paradoxical subreg. Replace the subreg with a
5849 zero_extend to avoid the reload that would otherwise be required. */
5850
5851 if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
5852 && INTEGRAL_MODE_P (GET_MODE (SUBREG_REG (src)))
5853 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))) != UNKNOWN
5854 && SUBREG_BYTE (src) == 0
5855 && (GET_MODE_SIZE (GET_MODE (src))
5856 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))))
5857 && MEM_P (SUBREG_REG (src)))
5858 {
5859 SUBST (SET_SRC (x),
5860 gen_rtx_fmt_e (LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (src))),
5861 GET_MODE (src), SUBREG_REG (src)));
5862
5863 src = SET_SRC (x);
5864 }
5865 #endif
5866
5867 /* If we don't have a conditional move, SET_SRC is an IF_THEN_ELSE, and we
5868 are comparing an item known to be 0 or -1 against 0, use a logical
5869 operation instead. Check for one of the arms being an IOR of the other
5870 arm with some value. We compute three terms to be IOR'ed together. In
5871 practice, at most two will be nonzero. Then we do the IOR's. */
5872
5873 if (GET_CODE (dest) != PC
5874 && GET_CODE (src) == IF_THEN_ELSE
5875 && GET_MODE_CLASS (GET_MODE (src)) == MODE_INT
5876 && (GET_CODE (XEXP (src, 0)) == EQ || GET_CODE (XEXP (src, 0)) == NE)
5877 && XEXP (XEXP (src, 0), 1) == const0_rtx
5878 && GET_MODE (src) == GET_MODE (XEXP (XEXP (src, 0), 0))
5879 #ifdef HAVE_conditional_move
5880 && ! can_conditionally_move_p (GET_MODE (src))
5881 #endif
5882 && (num_sign_bit_copies (XEXP (XEXP (src, 0), 0),
5883 GET_MODE (XEXP (XEXP (src, 0), 0)))
5884 == GET_MODE_BITSIZE (GET_MODE (XEXP (XEXP (src, 0), 0))))
5885 && ! side_effects_p (src))
5886 {
5887 rtx true_rtx = (GET_CODE (XEXP (src, 0)) == NE
5888 ? XEXP (src, 1) : XEXP (src, 2));
5889 rtx false_rtx = (GET_CODE (XEXP (src, 0)) == NE
5890 ? XEXP (src, 2) : XEXP (src, 1));
5891 rtx term1 = const0_rtx, term2, term3;
5892
5893 if (GET_CODE (true_rtx) == IOR
5894 && rtx_equal_p (XEXP (true_rtx, 0), false_rtx))
5895 term1 = false_rtx, true_rtx = XEXP (true_rtx, 1), false_rtx = const0_rtx;
5896 else if (GET_CODE (true_rtx) == IOR
5897 && rtx_equal_p (XEXP (true_rtx, 1), false_rtx))
5898 term1 = false_rtx, true_rtx = XEXP (true_rtx, 0), false_rtx = const0_rtx;
5899 else if (GET_CODE (false_rtx) == IOR
5900 && rtx_equal_p (XEXP (false_rtx, 0), true_rtx))
5901 term1 = true_rtx, false_rtx = XEXP (false_rtx, 1), true_rtx = const0_rtx;
5902 else if (GET_CODE (false_rtx) == IOR
5903 && rtx_equal_p (XEXP (false_rtx, 1), true_rtx))
5904 term1 = true_rtx, false_rtx = XEXP (false_rtx, 0), true_rtx = const0_rtx;
5905
5906 term2 = simplify_gen_binary (AND, GET_MODE (src),
5907 XEXP (XEXP (src, 0), 0), true_rtx);
5908 term3 = simplify_gen_binary (AND, GET_MODE (src),
5909 simplify_gen_unary (NOT, GET_MODE (src),
5910 XEXP (XEXP (src, 0), 0),
5911 GET_MODE (src)),
5912 false_rtx);
5913
5914 SUBST (SET_SRC (x),
5915 simplify_gen_binary (IOR, GET_MODE (src),
5916 simplify_gen_binary (IOR, GET_MODE (src),
5917 term1, term2),
5918 term3));
5919
5920 src = SET_SRC (x);
5921 }
5922
5923 /* If either SRC or DEST is a CLOBBER of (const_int 0), make this
5924 whole thing fail. */
5925 if (GET_CODE (src) == CLOBBER && XEXP (src, 0) == const0_rtx)
5926 return src;
5927 else if (GET_CODE (dest) == CLOBBER && XEXP (dest, 0) == const0_rtx)
5928 return dest;
5929 else
5930 /* Convert this into a field assignment operation, if possible. */
5931 return make_field_assignment (x);
5932 }
5933
5934 /* Simplify, X, and AND, IOR, or XOR operation, and return the simplified
5935 result. */
5936
5937 static rtx
5938 simplify_logical (rtx x)
5939 {
5940 enum machine_mode mode = GET_MODE (x);
5941 rtx op0 = XEXP (x, 0);
5942 rtx op1 = XEXP (x, 1);
5943
5944 switch (GET_CODE (x))
5945 {
5946 case AND:
5947 /* We can call simplify_and_const_int only if we don't lose
5948 any (sign) bits when converting INTVAL (op1) to
5949 "unsigned HOST_WIDE_INT". */
5950 if (GET_CODE (op1) == CONST_INT
5951 && (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
5952 || INTVAL (op1) > 0))
5953 {
5954 x = simplify_and_const_int (x, mode, op0, INTVAL (op1));
5955 if (GET_CODE (x) != AND)
5956 return x;
5957
5958 op0 = XEXP (x, 0);
5959 op1 = XEXP (x, 1);
5960 }
5961
5962 /* If we have any of (and (ior A B) C) or (and (xor A B) C),
5963 apply the distributive law and then the inverse distributive
5964 law to see if things simplify. */
5965 if (GET_CODE (op0) == IOR || GET_CODE (op0) == XOR)
5966 {
5967 rtx result = distribute_and_simplify_rtx (x, 0);
5968 if (result)
5969 return result;
5970 }
5971 if (GET_CODE (op1) == IOR || GET_CODE (op1) == XOR)
5972 {
5973 rtx result = distribute_and_simplify_rtx (x, 1);
5974 if (result)
5975 return result;
5976 }
5977 break;
5978
5979 case IOR:
5980 /* If we have (ior (and A B) C), apply the distributive law and then
5981 the inverse distributive law to see if things simplify. */
5982
5983 if (GET_CODE (op0) == AND)
5984 {
5985 rtx result = distribute_and_simplify_rtx (x, 0);
5986 if (result)
5987 return result;
5988 }
5989
5990 if (GET_CODE (op1) == AND)
5991 {
5992 rtx result = distribute_and_simplify_rtx (x, 1);
5993 if (result)
5994 return result;
5995 }
5996 break;
5997
5998 default:
5999 gcc_unreachable ();
6000 }
6001
6002 return x;
6003 }
6004
6005 /* We consider ZERO_EXTRACT, SIGN_EXTRACT, and SIGN_EXTEND as "compound
6006 operations" because they can be replaced with two more basic operations.
6007 ZERO_EXTEND is also considered "compound" because it can be replaced with
6008 an AND operation, which is simpler, though only one operation.
6009
6010 The function expand_compound_operation is called with an rtx expression
6011 and will convert it to the appropriate shifts and AND operations,
6012 simplifying at each stage.
6013
6014 The function make_compound_operation is called to convert an expression
6015 consisting of shifts and ANDs into the equivalent compound expression.
6016 It is the inverse of this function, loosely speaking. */
6017
6018 static rtx
6019 expand_compound_operation (rtx x)
6020 {
6021 unsigned HOST_WIDE_INT pos = 0, len;
6022 int unsignedp = 0;
6023 unsigned int modewidth;
6024 rtx tem;
6025
6026 switch (GET_CODE (x))
6027 {
6028 case ZERO_EXTEND:
6029 unsignedp = 1;
6030 case SIGN_EXTEND:
6031 /* We can't necessarily use a const_int for a multiword mode;
6032 it depends on implicitly extending the value.
6033 Since we don't know the right way to extend it,
6034 we can't tell whether the implicit way is right.
6035
6036 Even for a mode that is no wider than a const_int,
6037 we can't win, because we need to sign extend one of its bits through
6038 the rest of it, and we don't know which bit. */
6039 if (GET_CODE (XEXP (x, 0)) == CONST_INT)
6040 return x;
6041
6042 /* Return if (subreg:MODE FROM 0) is not a safe replacement for
6043 (zero_extend:MODE FROM) or (sign_extend:MODE FROM). It is for any MEM
6044 because (SUBREG (MEM...)) is guaranteed to cause the MEM to be
6045 reloaded. If not for that, MEM's would very rarely be safe.
6046
6047 Reject MODEs bigger than a word, because we might not be able
6048 to reference a two-register group starting with an arbitrary register
6049 (and currently gen_lowpart might crash for a SUBREG). */
6050
6051 if (GET_MODE_SIZE (GET_MODE (XEXP (x, 0))) > UNITS_PER_WORD)
6052 return x;
6053
6054 /* Reject MODEs that aren't scalar integers because turning vector
6055 or complex modes into shifts causes problems. */
6056
6057 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x, 0))))
6058 return x;
6059
6060 len = GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)));
6061 /* If the inner object has VOIDmode (the only way this can happen
6062 is if it is an ASM_OPERANDS), we can't do anything since we don't
6063 know how much masking to do. */
6064 if (len == 0)
6065 return x;
6066
6067 break;
6068
6069 case ZERO_EXTRACT:
6070 unsignedp = 1;
6071
6072 /* ... fall through ... */
6073
6074 case SIGN_EXTRACT:
6075 /* If the operand is a CLOBBER, just return it. */
6076 if (GET_CODE (XEXP (x, 0)) == CLOBBER)
6077 return XEXP (x, 0);
6078
6079 if (GET_CODE (XEXP (x, 1)) != CONST_INT
6080 || GET_CODE (XEXP (x, 2)) != CONST_INT
6081 || GET_MODE (XEXP (x, 0)) == VOIDmode)
6082 return x;
6083
6084 /* Reject MODEs that aren't scalar integers because turning vector
6085 or complex modes into shifts causes problems. */
6086
6087 if (! SCALAR_INT_MODE_P (GET_MODE (XEXP (x, 0))))
6088 return x;
6089
6090 len = INTVAL (XEXP (x, 1));
6091 pos = INTVAL (XEXP (x, 2));
6092
6093 /* This should stay within the object being extracted, fail otherwise. */
6094 if (len + pos > GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))))
6095 return x;
6096
6097 if (BITS_BIG_ENDIAN)
6098 pos = GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - len - pos;
6099
6100 break;
6101
6102 default:
6103 return x;
6104 }
6105 /* Convert sign extension to zero extension, if we know that the high
6106 bit is not set, as this is easier to optimize. It will be converted
6107 back to cheaper alternative in make_extraction. */
6108 if (GET_CODE (x) == SIGN_EXTEND
6109 && (GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
6110 && ((nonzero_bits (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
6111 & ~(((unsigned HOST_WIDE_INT)
6112 GET_MODE_MASK (GET_MODE (XEXP (x, 0))))
6113 >> 1))
6114 == 0)))
6115 {
6116 rtx temp = gen_rtx_ZERO_EXTEND (GET_MODE (x), XEXP (x, 0));
6117 rtx temp2 = expand_compound_operation (temp);
6118
6119 /* Make sure this is a profitable operation. */
6120 if (rtx_cost (x, SET, optimize_this_for_speed_p)
6121 > rtx_cost (temp2, SET, optimize_this_for_speed_p))
6122 return temp2;
6123 else if (rtx_cost (x, SET, optimize_this_for_speed_p)
6124 > rtx_cost (temp, SET, optimize_this_for_speed_p))
6125 return temp;
6126 else
6127 return x;
6128 }
6129
6130 /* We can optimize some special cases of ZERO_EXTEND. */
6131 if (GET_CODE (x) == ZERO_EXTEND)
6132 {
6133 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI if we
6134 know that the last value didn't have any inappropriate bits
6135 set. */
6136 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
6137 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
6138 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
6139 && (nonzero_bits (XEXP (XEXP (x, 0), 0), GET_MODE (x))
6140 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
6141 return XEXP (XEXP (x, 0), 0);
6142
6143 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
6144 if (GET_CODE (XEXP (x, 0)) == SUBREG
6145 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
6146 && subreg_lowpart_p (XEXP (x, 0))
6147 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
6148 && (nonzero_bits (SUBREG_REG (XEXP (x, 0)), GET_MODE (x))
6149 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
6150 return SUBREG_REG (XEXP (x, 0));
6151
6152 /* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI when foo
6153 is a comparison and STORE_FLAG_VALUE permits. This is like
6154 the first case, but it works even when GET_MODE (x) is larger
6155 than HOST_WIDE_INT. */
6156 if (GET_CODE (XEXP (x, 0)) == TRUNCATE
6157 && GET_MODE (XEXP (XEXP (x, 0), 0)) == GET_MODE (x)
6158 && COMPARISON_P (XEXP (XEXP (x, 0), 0))
6159 && (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
6160 <= HOST_BITS_PER_WIDE_INT)
6161 && ((HOST_WIDE_INT) STORE_FLAG_VALUE
6162 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
6163 return XEXP (XEXP (x, 0), 0);
6164
6165 /* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
6166 if (GET_CODE (XEXP (x, 0)) == SUBREG
6167 && GET_MODE (SUBREG_REG (XEXP (x, 0))) == GET_MODE (x)
6168 && subreg_lowpart_p (XEXP (x, 0))
6169 && COMPARISON_P (SUBREG_REG (XEXP (x, 0)))
6170 && (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
6171 <= HOST_BITS_PER_WIDE_INT)
6172 && ((HOST_WIDE_INT) STORE_FLAG_VALUE
6173 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0)))) == 0)
6174 return SUBREG_REG (XEXP (x, 0));
6175
6176 }
6177
6178 /* If we reach here, we want to return a pair of shifts. The inner
6179 shift is a left shift of BITSIZE - POS - LEN bits. The outer
6180 shift is a right shift of BITSIZE - LEN bits. It is arithmetic or
6181 logical depending on the value of UNSIGNEDP.
6182
6183 If this was a ZERO_EXTEND or ZERO_EXTRACT, this pair of shifts will be
6184 converted into an AND of a shift.
6185
6186 We must check for the case where the left shift would have a negative
6187 count. This can happen in a case like (x >> 31) & 255 on machines
6188 that can't shift by a constant. On those machines, we would first
6189 combine the shift with the AND to produce a variable-position
6190 extraction. Then the constant of 31 would be substituted in to produce
6191 a such a position. */
6192
6193 modewidth = GET_MODE_BITSIZE (GET_MODE (x));
6194 if (modewidth + len >= pos)
6195 {
6196 enum machine_mode mode = GET_MODE (x);
6197 tem = gen_lowpart (mode, XEXP (x, 0));
6198 if (!tem || GET_CODE (tem) == CLOBBER)
6199 return x;
6200 tem = simplify_shift_const (NULL_RTX, ASHIFT, mode,
6201 tem, modewidth - pos - len);
6202 tem = simplify_shift_const (NULL_RTX, unsignedp ? LSHIFTRT : ASHIFTRT,
6203 mode, tem, modewidth - len);
6204 }
6205 else if (unsignedp && len < HOST_BITS_PER_WIDE_INT)
6206 tem = simplify_and_const_int (NULL_RTX, GET_MODE (x),
6207 simplify_shift_const (NULL_RTX, LSHIFTRT,
6208 GET_MODE (x),
6209 XEXP (x, 0), pos),
6210 ((HOST_WIDE_INT) 1 << len) - 1);
6211 else
6212 /* Any other cases we can't handle. */
6213 return x;
6214
6215 /* If we couldn't do this for some reason, return the original
6216 expression. */
6217 if (GET_CODE (tem) == CLOBBER)
6218 return x;
6219
6220 return tem;
6221 }
6222
6223 /* X is a SET which contains an assignment of one object into
6224 a part of another (such as a bit-field assignment, STRICT_LOW_PART,
6225 or certain SUBREGS). If possible, convert it into a series of
6226 logical operations.
6227
6228 We half-heartedly support variable positions, but do not at all
6229 support variable lengths. */
6230
6231 static const_rtx
6232 expand_field_assignment (const_rtx x)
6233 {
6234 rtx inner;
6235 rtx pos; /* Always counts from low bit. */
6236 int len;
6237 rtx mask, cleared, masked;
6238 enum machine_mode compute_mode;
6239
6240 /* Loop until we find something we can't simplify. */
6241 while (1)
6242 {
6243 if (GET_CODE (SET_DEST (x)) == STRICT_LOW_PART
6244 && GET_CODE (XEXP (SET_DEST (x), 0)) == SUBREG)
6245 {
6246 inner = SUBREG_REG (XEXP (SET_DEST (x), 0));
6247 len = GET_MODE_BITSIZE (GET_MODE (XEXP (SET_DEST (x), 0)));
6248 pos = GEN_INT (subreg_lsb (XEXP (SET_DEST (x), 0)));
6249 }
6250 else if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
6251 && GET_CODE (XEXP (SET_DEST (x), 1)) == CONST_INT)
6252 {
6253 inner = XEXP (SET_DEST (x), 0);
6254 len = INTVAL (XEXP (SET_DEST (x), 1));
6255 pos = XEXP (SET_DEST (x), 2);
6256
6257 /* A constant position should stay within the width of INNER. */
6258 if (GET_CODE (pos) == CONST_INT
6259 && INTVAL (pos) + len > GET_MODE_BITSIZE (GET_MODE (inner)))
6260 break;
6261
6262 if (BITS_BIG_ENDIAN)
6263 {
6264 if (GET_CODE (pos) == CONST_INT)
6265 pos = GEN_INT (GET_MODE_BITSIZE (GET_MODE (inner)) - len
6266 - INTVAL (pos));
6267 else if (GET_CODE (pos) == MINUS
6268 && GET_CODE (XEXP (pos, 1)) == CONST_INT
6269 && (INTVAL (XEXP (pos, 1))
6270 == GET_MODE_BITSIZE (GET_MODE (inner)) - len))
6271 /* If position is ADJUST - X, new position is X. */
6272 pos = XEXP (pos, 0);
6273 else
6274 pos = simplify_gen_binary (MINUS, GET_MODE (pos),
6275 GEN_INT (GET_MODE_BITSIZE (
6276 GET_MODE (inner))
6277 - len),
6278 pos);
6279 }
6280 }
6281
6282 /* A SUBREG between two modes that occupy the same numbers of words
6283 can be done by moving the SUBREG to the source. */
6284 else if (GET_CODE (SET_DEST (x)) == SUBREG
6285 /* We need SUBREGs to compute nonzero_bits properly. */
6286 && nonzero_sign_valid
6287 && (((GET_MODE_SIZE (GET_MODE (SET_DEST (x)))
6288 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
6289 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (x))))
6290 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
6291 {
6292 x = gen_rtx_SET (VOIDmode, SUBREG_REG (SET_DEST (x)),
6293 gen_lowpart
6294 (GET_MODE (SUBREG_REG (SET_DEST (x))),
6295 SET_SRC (x)));
6296 continue;
6297 }
6298 else
6299 break;
6300
6301 while (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
6302 inner = SUBREG_REG (inner);
6303
6304 compute_mode = GET_MODE (inner);
6305
6306 /* Don't attempt bitwise arithmetic on non scalar integer modes. */
6307 if (! SCALAR_INT_MODE_P (compute_mode))
6308 {
6309 enum machine_mode imode;
6310
6311 /* Don't do anything for vector or complex integral types. */
6312 if (! FLOAT_MODE_P (compute_mode))
6313 break;
6314
6315 /* Try to find an integral mode to pun with. */
6316 imode = mode_for_size (GET_MODE_BITSIZE (compute_mode), MODE_INT, 0);
6317 if (imode == BLKmode)
6318 break;
6319
6320 compute_mode = imode;
6321 inner = gen_lowpart (imode, inner);
6322 }
6323
6324 /* Compute a mask of LEN bits, if we can do this on the host machine. */
6325 if (len >= HOST_BITS_PER_WIDE_INT)
6326 break;
6327
6328 /* Now compute the equivalent expression. Make a copy of INNER
6329 for the SET_DEST in case it is a MEM into which we will substitute;
6330 we don't want shared RTL in that case. */
6331 mask = GEN_INT (((HOST_WIDE_INT) 1 << len) - 1);
6332 cleared = simplify_gen_binary (AND, compute_mode,
6333 simplify_gen_unary (NOT, compute_mode,
6334 simplify_gen_binary (ASHIFT,
6335 compute_mode,
6336 mask, pos),
6337 compute_mode),
6338 inner);
6339 masked = simplify_gen_binary (ASHIFT, compute_mode,
6340 simplify_gen_binary (
6341 AND, compute_mode,
6342 gen_lowpart (compute_mode, SET_SRC (x)),
6343 mask),
6344 pos);
6345
6346 x = gen_rtx_SET (VOIDmode, copy_rtx (inner),
6347 simplify_gen_binary (IOR, compute_mode,
6348 cleared, masked));
6349 }
6350
6351 return x;
6352 }
6353
6354 /* Return an RTX for a reference to LEN bits of INNER. If POS_RTX is nonzero,
6355 it is an RTX that represents a variable starting position; otherwise,
6356 POS is the (constant) starting bit position (counted from the LSB).
6357
6358 UNSIGNEDP is nonzero for an unsigned reference and zero for a
6359 signed reference.
6360
6361 IN_DEST is nonzero if this is a reference in the destination of a
6362 SET. This is used when a ZERO_ or SIGN_EXTRACT isn't needed. If nonzero,
6363 a STRICT_LOW_PART will be used, if zero, ZERO_EXTEND or SIGN_EXTEND will
6364 be used.
6365
6366 IN_COMPARE is nonzero if we are in a COMPARE. This means that a
6367 ZERO_EXTRACT should be built even for bits starting at bit 0.
6368
6369 MODE is the desired mode of the result (if IN_DEST == 0).
6370
6371 The result is an RTX for the extraction or NULL_RTX if the target
6372 can't handle it. */
6373
6374 static rtx
6375 make_extraction (enum machine_mode mode, rtx inner, HOST_WIDE_INT pos,
6376 rtx pos_rtx, unsigned HOST_WIDE_INT len, int unsignedp,
6377 int in_dest, int in_compare)
6378 {
6379 /* This mode describes the size of the storage area
6380 to fetch the overall value from. Within that, we
6381 ignore the POS lowest bits, etc. */
6382 enum machine_mode is_mode = GET_MODE (inner);
6383 enum machine_mode inner_mode;
6384 enum machine_mode wanted_inner_mode;
6385 enum machine_mode wanted_inner_reg_mode = word_mode;
6386 enum machine_mode pos_mode = word_mode;
6387 enum machine_mode extraction_mode = word_mode;
6388 enum machine_mode tmode = mode_for_size (len, MODE_INT, 1);
6389 rtx new_rtx = 0;
6390 rtx orig_pos_rtx = pos_rtx;
6391 HOST_WIDE_INT orig_pos;
6392
6393 if (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
6394 {
6395 /* If going from (subreg:SI (mem:QI ...)) to (mem:QI ...),
6396 consider just the QI as the memory to extract from.
6397 The subreg adds or removes high bits; its mode is
6398 irrelevant to the meaning of this extraction,
6399 since POS and LEN count from the lsb. */
6400 if (MEM_P (SUBREG_REG (inner)))
6401 is_mode = GET_MODE (SUBREG_REG (inner));
6402 inner = SUBREG_REG (inner);
6403 }
6404 else if (GET_CODE (inner) == ASHIFT
6405 && GET_CODE (XEXP (inner, 1)) == CONST_INT
6406 && pos_rtx == 0 && pos == 0
6407 && len > (unsigned HOST_WIDE_INT) INTVAL (XEXP (inner, 1)))
6408 {
6409 /* We're extracting the least significant bits of an rtx
6410 (ashift X (const_int C)), where LEN > C. Extract the
6411 least significant (LEN - C) bits of X, giving an rtx
6412 whose mode is MODE, then shift it left C times. */
6413 new_rtx = make_extraction (mode, XEXP (inner, 0),
6414 0, 0, len - INTVAL (XEXP (inner, 1)),
6415 unsignedp, in_dest, in_compare);
6416 if (new_rtx != 0)
6417 return gen_rtx_ASHIFT (mode, new_rtx, XEXP (inner, 1));
6418 }
6419
6420 inner_mode = GET_MODE (inner);
6421
6422 if (pos_rtx && GET_CODE (pos_rtx) == CONST_INT)
6423 pos = INTVAL (pos_rtx), pos_rtx = 0;
6424
6425 /* See if this can be done without an extraction. We never can if the
6426 width of the field is not the same as that of some integer mode. For
6427 registers, we can only avoid the extraction if the position is at the
6428 low-order bit and this is either not in the destination or we have the
6429 appropriate STRICT_LOW_PART operation available.
6430
6431 For MEM, we can avoid an extract if the field starts on an appropriate
6432 boundary and we can change the mode of the memory reference. */
6433
6434 if (tmode != BLKmode
6435 && ((pos_rtx == 0 && (pos % BITS_PER_WORD) == 0
6436 && !MEM_P (inner)
6437 && (inner_mode == tmode
6438 || !REG_P (inner)
6439 || TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (tmode),
6440 GET_MODE_BITSIZE (inner_mode))
6441 || reg_truncated_to_mode (tmode, inner))
6442 && (! in_dest
6443 || (REG_P (inner)
6444 && have_insn_for (STRICT_LOW_PART, tmode))))
6445 || (MEM_P (inner) && pos_rtx == 0
6446 && (pos
6447 % (STRICT_ALIGNMENT ? GET_MODE_ALIGNMENT (tmode)
6448 : BITS_PER_UNIT)) == 0
6449 /* We can't do this if we are widening INNER_MODE (it
6450 may not be aligned, for one thing). */
6451 && GET_MODE_BITSIZE (inner_mode) >= GET_MODE_BITSIZE (tmode)
6452 && (inner_mode == tmode
6453 || (! mode_dependent_address_p (XEXP (inner, 0))
6454 && ! MEM_VOLATILE_P (inner))))))
6455 {
6456 /* If INNER is a MEM, make a new MEM that encompasses just the desired
6457 field. If the original and current mode are the same, we need not
6458 adjust the offset. Otherwise, we do if bytes big endian.
6459
6460 If INNER is not a MEM, get a piece consisting of just the field
6461 of interest (in this case POS % BITS_PER_WORD must be 0). */
6462
6463 if (MEM_P (inner))
6464 {
6465 HOST_WIDE_INT offset;
6466
6467 /* POS counts from lsb, but make OFFSET count in memory order. */
6468 if (BYTES_BIG_ENDIAN)
6469 offset = (GET_MODE_BITSIZE (is_mode) - len - pos) / BITS_PER_UNIT;
6470 else
6471 offset = pos / BITS_PER_UNIT;
6472
6473 new_rtx = adjust_address_nv (inner, tmode, offset);
6474 }
6475 else if (REG_P (inner))
6476 {
6477 if (tmode != inner_mode)
6478 {
6479 /* We can't call gen_lowpart in a DEST since we
6480 always want a SUBREG (see below) and it would sometimes
6481 return a new hard register. */
6482 if (pos || in_dest)
6483 {
6484 HOST_WIDE_INT final_word = pos / BITS_PER_WORD;
6485
6486 if (WORDS_BIG_ENDIAN
6487 && GET_MODE_SIZE (inner_mode) > UNITS_PER_WORD)
6488 final_word = ((GET_MODE_SIZE (inner_mode)
6489 - GET_MODE_SIZE (tmode))
6490 / UNITS_PER_WORD) - final_word;
6491
6492 final_word *= UNITS_PER_WORD;
6493 if (BYTES_BIG_ENDIAN &&
6494 GET_MODE_SIZE (inner_mode) > GET_MODE_SIZE (tmode))
6495 final_word += (GET_MODE_SIZE (inner_mode)
6496 - GET_MODE_SIZE (tmode)) % UNITS_PER_WORD;
6497
6498 /* Avoid creating invalid subregs, for example when
6499 simplifying (x>>32)&255. */
6500 if (!validate_subreg (tmode, inner_mode, inner, final_word))
6501 return NULL_RTX;
6502
6503 new_rtx = gen_rtx_SUBREG (tmode, inner, final_word);
6504 }
6505 else
6506 new_rtx = gen_lowpart (tmode, inner);
6507 }
6508 else
6509 new_rtx = inner;
6510 }
6511 else
6512 new_rtx = force_to_mode (inner, tmode,
6513 len >= HOST_BITS_PER_WIDE_INT
6514 ? ~(unsigned HOST_WIDE_INT) 0
6515 : ((unsigned HOST_WIDE_INT) 1 << len) - 1,
6516 0);
6517
6518 /* If this extraction is going into the destination of a SET,
6519 make a STRICT_LOW_PART unless we made a MEM. */
6520
6521 if (in_dest)
6522 return (MEM_P (new_rtx) ? new_rtx
6523 : (GET_CODE (new_rtx) != SUBREG
6524 ? gen_rtx_CLOBBER (tmode, const0_rtx)
6525 : gen_rtx_STRICT_LOW_PART (VOIDmode, new_rtx)));
6526
6527 if (mode == tmode)
6528 return new_rtx;
6529
6530 if (GET_CODE (new_rtx) == CONST_INT)
6531 return gen_int_mode (INTVAL (new_rtx), mode);
6532
6533 /* If we know that no extraneous bits are set, and that the high
6534 bit is not set, convert the extraction to the cheaper of
6535 sign and zero extension, that are equivalent in these cases. */
6536 if (flag_expensive_optimizations
6537 && (GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT
6538 && ((nonzero_bits (new_rtx, tmode)
6539 & ~(((unsigned HOST_WIDE_INT)
6540 GET_MODE_MASK (tmode))
6541 >> 1))
6542 == 0)))
6543 {
6544 rtx temp = gen_rtx_ZERO_EXTEND (mode, new_rtx);
6545 rtx temp1 = gen_rtx_SIGN_EXTEND (mode, new_rtx);
6546
6547 /* Prefer ZERO_EXTENSION, since it gives more information to
6548 backends. */
6549 if (rtx_cost (temp, SET, optimize_this_for_speed_p)
6550 <= rtx_cost (temp1, SET, optimize_this_for_speed_p))
6551 return temp;
6552 return temp1;
6553 }
6554
6555 /* Otherwise, sign- or zero-extend unless we already are in the
6556 proper mode. */
6557
6558 return (gen_rtx_fmt_e (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
6559 mode, new_rtx));
6560 }
6561
6562 /* Unless this is a COMPARE or we have a funny memory reference,
6563 don't do anything with zero-extending field extracts starting at
6564 the low-order bit since they are simple AND operations. */
6565 if (pos_rtx == 0 && pos == 0 && ! in_dest
6566 && ! in_compare && unsignedp)
6567 return 0;
6568
6569 /* Unless INNER is not MEM, reject this if we would be spanning bytes or
6570 if the position is not a constant and the length is not 1. In all
6571 other cases, we would only be going outside our object in cases when
6572 an original shift would have been undefined. */
6573 if (MEM_P (inner)
6574 && ((pos_rtx == 0 && pos + len > GET_MODE_BITSIZE (is_mode))
6575 || (pos_rtx != 0 && len != 1)))
6576 return 0;
6577
6578 /* Get the mode to use should INNER not be a MEM, the mode for the position,
6579 and the mode for the result. */
6580 if (in_dest && mode_for_extraction (EP_insv, -1) != MAX_MACHINE_MODE)
6581 {
6582 wanted_inner_reg_mode = mode_for_extraction (EP_insv, 0);
6583 pos_mode = mode_for_extraction (EP_insv, 2);
6584 extraction_mode = mode_for_extraction (EP_insv, 3);
6585 }
6586
6587 if (! in_dest && unsignedp
6588 && mode_for_extraction (EP_extzv, -1) != MAX_MACHINE_MODE)
6589 {
6590 wanted_inner_reg_mode = mode_for_extraction (EP_extzv, 1);
6591 pos_mode = mode_for_extraction (EP_extzv, 3);
6592 extraction_mode = mode_for_extraction (EP_extzv, 0);
6593 }
6594
6595 if (! in_dest && ! unsignedp
6596 && mode_for_extraction (EP_extv, -1) != MAX_MACHINE_MODE)
6597 {
6598 wanted_inner_reg_mode = mode_for_extraction (EP_extv, 1);
6599 pos_mode = mode_for_extraction (EP_extv, 3);
6600 extraction_mode = mode_for_extraction (EP_extv, 0);
6601 }
6602
6603 /* Never narrow an object, since that might not be safe. */
6604
6605 if (mode != VOIDmode
6606 && GET_MODE_SIZE (extraction_mode) < GET_MODE_SIZE (mode))
6607 extraction_mode = mode;
6608
6609 if (pos_rtx && GET_MODE (pos_rtx) != VOIDmode
6610 && GET_MODE_SIZE (pos_mode) < GET_MODE_SIZE (GET_MODE (pos_rtx)))
6611 pos_mode = GET_MODE (pos_rtx);
6612
6613 /* If this is not from memory, the desired mode is the preferred mode
6614 for an extraction pattern's first input operand, or word_mode if there
6615 is none. */
6616 if (!MEM_P (inner))
6617 wanted_inner_mode = wanted_inner_reg_mode;
6618 else
6619 {
6620 /* Be careful not to go beyond the extracted object and maintain the
6621 natural alignment of the memory. */
6622 wanted_inner_mode = smallest_mode_for_size (len, MODE_INT);
6623 while (pos % GET_MODE_BITSIZE (wanted_inner_mode) + len
6624 > GET_MODE_BITSIZE (wanted_inner_mode))
6625 {
6626 wanted_inner_mode = GET_MODE_WIDER_MODE (wanted_inner_mode);
6627 gcc_assert (wanted_inner_mode != VOIDmode);
6628 }
6629
6630 /* If we have to change the mode of memory and cannot, the desired mode
6631 is EXTRACTION_MODE. */
6632 if (inner_mode != wanted_inner_mode
6633 && (mode_dependent_address_p (XEXP (inner, 0))
6634 || MEM_VOLATILE_P (inner)
6635 || pos_rtx))
6636 wanted_inner_mode = extraction_mode;
6637 }
6638
6639 orig_pos = pos;
6640
6641 if (BITS_BIG_ENDIAN)
6642 {
6643 /* POS is passed as if BITS_BIG_ENDIAN == 0, so we need to convert it to
6644 BITS_BIG_ENDIAN style. If position is constant, compute new
6645 position. Otherwise, build subtraction.
6646 Note that POS is relative to the mode of the original argument.
6647 If it's a MEM we need to recompute POS relative to that.
6648 However, if we're extracting from (or inserting into) a register,
6649 we want to recompute POS relative to wanted_inner_mode. */
6650 int width = (MEM_P (inner)
6651 ? GET_MODE_BITSIZE (is_mode)
6652 : GET_MODE_BITSIZE (wanted_inner_mode));
6653
6654 if (pos_rtx == 0)
6655 pos = width - len - pos;
6656 else
6657 pos_rtx
6658 = gen_rtx_MINUS (GET_MODE (pos_rtx), GEN_INT (width - len), pos_rtx);
6659 /* POS may be less than 0 now, but we check for that below.
6660 Note that it can only be less than 0 if !MEM_P (inner). */
6661 }
6662
6663 /* If INNER has a wider mode, and this is a constant extraction, try to
6664 make it smaller and adjust the byte to point to the byte containing
6665 the value. */
6666 if (wanted_inner_mode != VOIDmode
6667 && inner_mode != wanted_inner_mode
6668 && ! pos_rtx
6669 && GET_MODE_SIZE (wanted_inner_mode) < GET_MODE_SIZE (is_mode)
6670 && MEM_P (inner)
6671 && ! mode_dependent_address_p (XEXP (inner, 0))
6672 && ! MEM_VOLATILE_P (inner))
6673 {
6674 int offset = 0;
6675
6676 /* The computations below will be correct if the machine is big
6677 endian in both bits and bytes or little endian in bits and bytes.
6678 If it is mixed, we must adjust. */
6679
6680 /* If bytes are big endian and we had a paradoxical SUBREG, we must
6681 adjust OFFSET to compensate. */
6682 if (BYTES_BIG_ENDIAN
6683 && GET_MODE_SIZE (inner_mode) < GET_MODE_SIZE (is_mode))
6684 offset -= GET_MODE_SIZE (is_mode) - GET_MODE_SIZE (inner_mode);
6685
6686 /* We can now move to the desired byte. */
6687 offset += (pos / GET_MODE_BITSIZE (wanted_inner_mode))
6688 * GET_MODE_SIZE (wanted_inner_mode);
6689 pos %= GET_MODE_BITSIZE (wanted_inner_mode);
6690
6691 if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN
6692 && is_mode != wanted_inner_mode)
6693 offset = (GET_MODE_SIZE (is_mode)
6694 - GET_MODE_SIZE (wanted_inner_mode) - offset);
6695
6696 inner = adjust_address_nv (inner, wanted_inner_mode, offset);
6697 }
6698
6699 /* If INNER is not memory, we can always get it into the proper mode. If we
6700 are changing its mode, POS must be a constant and smaller than the size
6701 of the new mode. */
6702 else if (!MEM_P (inner))
6703 {
6704 if (GET_MODE (inner) != wanted_inner_mode
6705 && (pos_rtx != 0
6706 || orig_pos + len > GET_MODE_BITSIZE (wanted_inner_mode)))
6707 return 0;
6708
6709 if (orig_pos < 0)
6710 return 0;
6711
6712 inner = force_to_mode (inner, wanted_inner_mode,
6713 pos_rtx
6714 || len + orig_pos >= HOST_BITS_PER_WIDE_INT
6715 ? ~(unsigned HOST_WIDE_INT) 0
6716 : ((((unsigned HOST_WIDE_INT) 1 << len) - 1)
6717 << orig_pos),
6718 0);
6719 }
6720
6721 /* Adjust mode of POS_RTX, if needed. If we want a wider mode, we
6722 have to zero extend. Otherwise, we can just use a SUBREG. */
6723 if (pos_rtx != 0
6724 && GET_MODE_SIZE (pos_mode) > GET_MODE_SIZE (GET_MODE (pos_rtx)))
6725 {
6726 rtx temp = gen_rtx_ZERO_EXTEND (pos_mode, pos_rtx);
6727
6728 /* If we know that no extraneous bits are set, and that the high
6729 bit is not set, convert extraction to cheaper one - either
6730 SIGN_EXTENSION or ZERO_EXTENSION, that are equivalent in these
6731 cases. */
6732 if (flag_expensive_optimizations
6733 && (GET_MODE_BITSIZE (GET_MODE (pos_rtx)) <= HOST_BITS_PER_WIDE_INT
6734 && ((nonzero_bits (pos_rtx, GET_MODE (pos_rtx))
6735 & ~(((unsigned HOST_WIDE_INT)
6736 GET_MODE_MASK (GET_MODE (pos_rtx)))
6737 >> 1))
6738 == 0)))
6739 {
6740 rtx temp1 = gen_rtx_SIGN_EXTEND (pos_mode, pos_rtx);
6741
6742 /* Prefer ZERO_EXTENSION, since it gives more information to
6743 backends. */
6744 if (rtx_cost (temp1, SET, optimize_this_for_speed_p)
6745 < rtx_cost (temp, SET, optimize_this_for_speed_p))
6746 temp = temp1;
6747 }
6748 pos_rtx = temp;
6749 }
6750 else if (pos_rtx != 0
6751 && GET_MODE_SIZE (pos_mode) < GET_MODE_SIZE (GET_MODE (pos_rtx)))
6752 pos_rtx = gen_lowpart (pos_mode, pos_rtx);
6753
6754 /* Make POS_RTX unless we already have it and it is correct. If we don't
6755 have a POS_RTX but we do have an ORIG_POS_RTX, the latter must
6756 be a CONST_INT. */
6757 if (pos_rtx == 0 && orig_pos_rtx != 0 && INTVAL (orig_pos_rtx) == pos)
6758 pos_rtx = orig_pos_rtx;
6759
6760 else if (pos_rtx == 0)
6761 pos_rtx = GEN_INT (pos);
6762
6763 /* Make the required operation. See if we can use existing rtx. */
6764 new_rtx = gen_rtx_fmt_eee (unsignedp ? ZERO_EXTRACT : SIGN_EXTRACT,
6765 extraction_mode, inner, GEN_INT (len), pos_rtx);
6766 if (! in_dest)
6767 new_rtx = gen_lowpart (mode, new_rtx);
6768
6769 return new_rtx;
6770 }
6771
6772 /* See if X contains an ASHIFT of COUNT or more bits that can be commuted
6773 with any other operations in X. Return X without that shift if so. */
6774
6775 static rtx
6776 extract_left_shift (rtx x, int count)
6777 {
6778 enum rtx_code code = GET_CODE (x);
6779 enum machine_mode mode = GET_MODE (x);
6780 rtx tem;
6781
6782 switch (code)
6783 {
6784 case ASHIFT:
6785 /* This is the shift itself. If it is wide enough, we will return
6786 either the value being shifted if the shift count is equal to
6787 COUNT or a shift for the difference. */
6788 if (GET_CODE (XEXP (x, 1)) == CONST_INT
6789 && INTVAL (XEXP (x, 1)) >= count)
6790 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (x, 0),
6791 INTVAL (XEXP (x, 1)) - count);
6792 break;
6793
6794 case NEG: case NOT:
6795 if ((tem = extract_left_shift (XEXP (x, 0), count)) != 0)
6796 return simplify_gen_unary (code, mode, tem, mode);
6797
6798 break;
6799
6800 case PLUS: case IOR: case XOR: case AND:
6801 /* If we can safely shift this constant and we find the inner shift,
6802 make a new operation. */
6803 if (GET_CODE (XEXP (x, 1)) == CONST_INT
6804 && (INTVAL (XEXP (x, 1)) & ((((HOST_WIDE_INT) 1 << count)) - 1)) == 0
6805 && (tem = extract_left_shift (XEXP (x, 0), count)) != 0)
6806 return simplify_gen_binary (code, mode, tem,
6807 GEN_INT (INTVAL (XEXP (x, 1)) >> count));
6808
6809 break;
6810
6811 default:
6812 break;
6813 }
6814
6815 return 0;
6816 }
6817
6818 /* Look at the expression rooted at X. Look for expressions
6819 equivalent to ZERO_EXTRACT, SIGN_EXTRACT, ZERO_EXTEND, SIGN_EXTEND.
6820 Form these expressions.
6821
6822 Return the new rtx, usually just X.
6823
6824 Also, for machines like the VAX that don't have logical shift insns,
6825 try to convert logical to arithmetic shift operations in cases where
6826 they are equivalent. This undoes the canonicalizations to logical
6827 shifts done elsewhere.
6828
6829 We try, as much as possible, to re-use rtl expressions to save memory.
6830
6831 IN_CODE says what kind of expression we are processing. Normally, it is
6832 SET. In a memory address (inside a MEM, PLUS or minus, the latter two
6833 being kludges), it is MEM. When processing the arguments of a comparison
6834 or a COMPARE against zero, it is COMPARE. */
6835
6836 static rtx
6837 make_compound_operation (rtx x, enum rtx_code in_code)
6838 {
6839 enum rtx_code code = GET_CODE (x);
6840 enum machine_mode mode = GET_MODE (x);
6841 int mode_width = GET_MODE_BITSIZE (mode);
6842 rtx rhs, lhs;
6843 enum rtx_code next_code;
6844 int i, j;
6845 rtx new_rtx = 0;
6846 rtx tem;
6847 const char *fmt;
6848
6849 /* Select the code to be used in recursive calls. Once we are inside an
6850 address, we stay there. If we have a comparison, set to COMPARE,
6851 but once inside, go back to our default of SET. */
6852
6853 next_code = (code == MEM || code == PLUS || code == MINUS ? MEM
6854 : ((code == COMPARE || COMPARISON_P (x))
6855 && XEXP (x, 1) == const0_rtx) ? COMPARE
6856 : in_code == COMPARE ? SET : in_code);
6857
6858 /* Process depending on the code of this operation. If NEW is set
6859 nonzero, it will be returned. */
6860
6861 switch (code)
6862 {
6863 case ASHIFT:
6864 /* Convert shifts by constants into multiplications if inside
6865 an address. */
6866 if (in_code == MEM && GET_CODE (XEXP (x, 1)) == CONST_INT
6867 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
6868 && INTVAL (XEXP (x, 1)) >= 0)
6869 {
6870 new_rtx = make_compound_operation (XEXP (x, 0), next_code);
6871 new_rtx = gen_rtx_MULT (mode, new_rtx,
6872 GEN_INT ((HOST_WIDE_INT) 1
6873 << INTVAL (XEXP (x, 1))));
6874 }
6875 break;
6876
6877 case AND:
6878 /* If the second operand is not a constant, we can't do anything
6879 with it. */
6880 if (GET_CODE (XEXP (x, 1)) != CONST_INT)
6881 break;
6882
6883 /* If the constant is a power of two minus one and the first operand
6884 is a logical right shift, make an extraction. */
6885 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
6886 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6887 {
6888 new_rtx = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
6889 new_rtx = make_extraction (mode, new_rtx, 0, XEXP (XEXP (x, 0), 1), i, 1,
6890 0, in_code == COMPARE);
6891 }
6892
6893 /* Same as previous, but for (subreg (lshiftrt ...)) in first op. */
6894 else if (GET_CODE (XEXP (x, 0)) == SUBREG
6895 && subreg_lowpart_p (XEXP (x, 0))
6896 && GET_CODE (SUBREG_REG (XEXP (x, 0))) == LSHIFTRT
6897 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6898 {
6899 new_rtx = make_compound_operation (XEXP (SUBREG_REG (XEXP (x, 0)), 0),
6900 next_code);
6901 new_rtx = make_extraction (GET_MODE (SUBREG_REG (XEXP (x, 0))), new_rtx, 0,
6902 XEXP (SUBREG_REG (XEXP (x, 0)), 1), i, 1,
6903 0, in_code == COMPARE);
6904 }
6905 /* Same as previous, but for (xor/ior (lshiftrt...) (lshiftrt...)). */
6906 else if ((GET_CODE (XEXP (x, 0)) == XOR
6907 || GET_CODE (XEXP (x, 0)) == IOR)
6908 && GET_CODE (XEXP (XEXP (x, 0), 0)) == LSHIFTRT
6909 && GET_CODE (XEXP (XEXP (x, 0), 1)) == LSHIFTRT
6910 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6911 {
6912 /* Apply the distributive law, and then try to make extractions. */
6913 new_rtx = gen_rtx_fmt_ee (GET_CODE (XEXP (x, 0)), mode,
6914 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 0),
6915 XEXP (x, 1)),
6916 gen_rtx_AND (mode, XEXP (XEXP (x, 0), 1),
6917 XEXP (x, 1)));
6918 new_rtx = make_compound_operation (new_rtx, in_code);
6919 }
6920
6921 /* If we are have (and (rotate X C) M) and C is larger than the number
6922 of bits in M, this is an extraction. */
6923
6924 else if (GET_CODE (XEXP (x, 0)) == ROTATE
6925 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
6926 && (i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0
6927 && i <= INTVAL (XEXP (XEXP (x, 0), 1)))
6928 {
6929 new_rtx = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
6930 new_rtx = make_extraction (mode, new_rtx,
6931 (GET_MODE_BITSIZE (mode)
6932 - INTVAL (XEXP (XEXP (x, 0), 1))),
6933 NULL_RTX, i, 1, 0, in_code == COMPARE);
6934 }
6935
6936 /* On machines without logical shifts, if the operand of the AND is
6937 a logical shift and our mask turns off all the propagated sign
6938 bits, we can replace the logical shift with an arithmetic shift. */
6939 else if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
6940 && !have_insn_for (LSHIFTRT, mode)
6941 && have_insn_for (ASHIFTRT, mode)
6942 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
6943 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
6944 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
6945 && mode_width <= HOST_BITS_PER_WIDE_INT)
6946 {
6947 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
6948
6949 mask >>= INTVAL (XEXP (XEXP (x, 0), 1));
6950 if ((INTVAL (XEXP (x, 1)) & ~mask) == 0)
6951 SUBST (XEXP (x, 0),
6952 gen_rtx_ASHIFTRT (mode,
6953 make_compound_operation
6954 (XEXP (XEXP (x, 0), 0), next_code),
6955 XEXP (XEXP (x, 0), 1)));
6956 }
6957
6958 /* If the constant is one less than a power of two, this might be
6959 representable by an extraction even if no shift is present.
6960 If it doesn't end up being a ZERO_EXTEND, we will ignore it unless
6961 we are in a COMPARE. */
6962 else if ((i = exact_log2 (INTVAL (XEXP (x, 1)) + 1)) >= 0)
6963 new_rtx = make_extraction (mode,
6964 make_compound_operation (XEXP (x, 0),
6965 next_code),
6966 0, NULL_RTX, i, 1, 0, in_code == COMPARE);
6967
6968 /* If we are in a comparison and this is an AND with a power of two,
6969 convert this into the appropriate bit extract. */
6970 else if (in_code == COMPARE
6971 && (i = exact_log2 (INTVAL (XEXP (x, 1)))) >= 0)
6972 new_rtx = make_extraction (mode,
6973 make_compound_operation (XEXP (x, 0),
6974 next_code),
6975 i, NULL_RTX, 1, 1, 0, 1);
6976
6977 break;
6978
6979 case LSHIFTRT:
6980 /* If the sign bit is known to be zero, replace this with an
6981 arithmetic shift. */
6982 if (have_insn_for (ASHIFTRT, mode)
6983 && ! have_insn_for (LSHIFTRT, mode)
6984 && mode_width <= HOST_BITS_PER_WIDE_INT
6985 && (nonzero_bits (XEXP (x, 0), mode) & (1 << (mode_width - 1))) == 0)
6986 {
6987 new_rtx = gen_rtx_ASHIFTRT (mode,
6988 make_compound_operation (XEXP (x, 0),
6989 next_code),
6990 XEXP (x, 1));
6991 break;
6992 }
6993
6994 /* ... fall through ... */
6995
6996 case ASHIFTRT:
6997 lhs = XEXP (x, 0);
6998 rhs = XEXP (x, 1);
6999
7000 /* If we have (ashiftrt (ashift foo C1) C2) with C2 >= C1,
7001 this is a SIGN_EXTRACT. */
7002 if (GET_CODE (rhs) == CONST_INT
7003 && GET_CODE (lhs) == ASHIFT
7004 && GET_CODE (XEXP (lhs, 1)) == CONST_INT
7005 && INTVAL (rhs) >= INTVAL (XEXP (lhs, 1))
7006 && INTVAL (rhs) < mode_width)
7007 {
7008 new_rtx = make_compound_operation (XEXP (lhs, 0), next_code);
7009 new_rtx = make_extraction (mode, new_rtx,
7010 INTVAL (rhs) - INTVAL (XEXP (lhs, 1)),
7011 NULL_RTX, mode_width - INTVAL (rhs),
7012 code == LSHIFTRT, 0, in_code == COMPARE);
7013 break;
7014 }
7015
7016 /* See if we have operations between an ASHIFTRT and an ASHIFT.
7017 If so, try to merge the shifts into a SIGN_EXTEND. We could
7018 also do this for some cases of SIGN_EXTRACT, but it doesn't
7019 seem worth the effort; the case checked for occurs on Alpha. */
7020
7021 if (!OBJECT_P (lhs)
7022 && ! (GET_CODE (lhs) == SUBREG
7023 && (OBJECT_P (SUBREG_REG (lhs))))
7024 && GET_CODE (rhs) == CONST_INT
7025 && INTVAL (rhs) < HOST_BITS_PER_WIDE_INT
7026 && INTVAL (rhs) < mode_width
7027 && (new_rtx = extract_left_shift (lhs, INTVAL (rhs))) != 0)
7028 new_rtx = make_extraction (mode, make_compound_operation (new_rtx, next_code),
7029 0, NULL_RTX, mode_width - INTVAL (rhs),
7030 code == LSHIFTRT, 0, in_code == COMPARE);
7031
7032 break;
7033
7034 case SUBREG:
7035 /* Call ourselves recursively on the inner expression. If we are
7036 narrowing the object and it has a different RTL code from
7037 what it originally did, do this SUBREG as a force_to_mode. */
7038
7039 tem = make_compound_operation (SUBREG_REG (x), in_code);
7040
7041 {
7042 rtx simplified;
7043 simplified = simplify_subreg (GET_MODE (x), tem, GET_MODE (tem),
7044 SUBREG_BYTE (x));
7045
7046 if (simplified)
7047 tem = simplified;
7048
7049 if (GET_CODE (tem) != GET_CODE (SUBREG_REG (x))
7050 && GET_MODE_SIZE (mode) < GET_MODE_SIZE (GET_MODE (tem))
7051 && subreg_lowpart_p (x))
7052 {
7053 rtx newer = force_to_mode (tem, mode, ~(HOST_WIDE_INT) 0,
7054 0);
7055
7056 /* If we have something other than a SUBREG, we might have
7057 done an expansion, so rerun ourselves. */
7058 if (GET_CODE (newer) != SUBREG)
7059 newer = make_compound_operation (newer, in_code);
7060
7061 return newer;
7062 }
7063
7064 if (simplified)
7065 return tem;
7066 }
7067 break;
7068
7069 default:
7070 break;
7071 }
7072
7073 if (new_rtx)
7074 {
7075 x = gen_lowpart (mode, new_rtx);
7076 code = GET_CODE (x);
7077 }
7078
7079 /* Now recursively process each operand of this operation. */
7080 fmt = GET_RTX_FORMAT (code);
7081 for (i = 0; i < GET_RTX_LENGTH (code); i++)
7082 if (fmt[i] == 'e')
7083 {
7084 new_rtx = make_compound_operation (XEXP (x, i), next_code);
7085 SUBST (XEXP (x, i), new_rtx);
7086 }
7087 else if (fmt[i] == 'E')
7088 for (j = 0; j < XVECLEN (x, i); j++)
7089 {
7090 new_rtx = make_compound_operation (XVECEXP (x, i, j), next_code);
7091 SUBST (XVECEXP (x, i, j), new_rtx);
7092 }
7093
7094 /* If this is a commutative operation, the changes to the operands
7095 may have made it noncanonical. */
7096 if (COMMUTATIVE_ARITH_P (x)
7097 && swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
7098 {
7099 tem = XEXP (x, 0);
7100 SUBST (XEXP (x, 0), XEXP (x, 1));
7101 SUBST (XEXP (x, 1), tem);
7102 }
7103
7104 return x;
7105 }
7106
7107 /* Given M see if it is a value that would select a field of bits
7108 within an item, but not the entire word. Return -1 if not.
7109 Otherwise, return the starting position of the field, where 0 is the
7110 low-order bit.
7111
7112 *PLEN is set to the length of the field. */
7113
7114 static int
7115 get_pos_from_mask (unsigned HOST_WIDE_INT m, unsigned HOST_WIDE_INT *plen)
7116 {
7117 /* Get the bit number of the first 1 bit from the right, -1 if none. */
7118 int pos = exact_log2 (m & -m);
7119 int len = 0;
7120
7121 if (pos >= 0)
7122 /* Now shift off the low-order zero bits and see if we have a
7123 power of two minus 1. */
7124 len = exact_log2 ((m >> pos) + 1);
7125
7126 if (len <= 0)
7127 pos = -1;
7128
7129 *plen = len;
7130 return pos;
7131 }
7132
7133 /* If X refers to a register that equals REG in value, replace these
7134 references with REG. */
7135 static rtx
7136 canon_reg_for_combine (rtx x, rtx reg)
7137 {
7138 rtx op0, op1, op2;
7139 const char *fmt;
7140 int i;
7141 bool copied;
7142
7143 enum rtx_code code = GET_CODE (x);
7144 switch (GET_RTX_CLASS (code))
7145 {
7146 case RTX_UNARY:
7147 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
7148 if (op0 != XEXP (x, 0))
7149 return simplify_gen_unary (GET_CODE (x), GET_MODE (x), op0,
7150 GET_MODE (reg));
7151 break;
7152
7153 case RTX_BIN_ARITH:
7154 case RTX_COMM_ARITH:
7155 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
7156 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
7157 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
7158 return simplify_gen_binary (GET_CODE (x), GET_MODE (x), op0, op1);
7159 break;
7160
7161 case RTX_COMPARE:
7162 case RTX_COMM_COMPARE:
7163 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
7164 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
7165 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
7166 return simplify_gen_relational (GET_CODE (x), GET_MODE (x),
7167 GET_MODE (op0), op0, op1);
7168 break;
7169
7170 case RTX_TERNARY:
7171 case RTX_BITFIELD_OPS:
7172 op0 = canon_reg_for_combine (XEXP (x, 0), reg);
7173 op1 = canon_reg_for_combine (XEXP (x, 1), reg);
7174 op2 = canon_reg_for_combine (XEXP (x, 2), reg);
7175 if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1) || op2 != XEXP (x, 2))
7176 return simplify_gen_ternary (GET_CODE (x), GET_MODE (x),
7177 GET_MODE (op0), op0, op1, op2);
7178
7179 case RTX_OBJ:
7180 if (REG_P (x))
7181 {
7182 if (rtx_equal_p (get_last_value (reg), x)
7183 || rtx_equal_p (reg, get_last_value (x)))
7184 return reg;
7185 else
7186 break;
7187 }
7188
7189 /* fall through */
7190
7191 default:
7192 fmt = GET_RTX_FORMAT (code);
7193 copied = false;
7194 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
7195 if (fmt[i] == 'e')
7196 {
7197 rtx op = canon_reg_for_combine (XEXP (x, i), reg);
7198 if (op != XEXP (x, i))
7199 {
7200 if (!copied)
7201 {
7202 copied = true;
7203 x = copy_rtx (x);
7204 }
7205 XEXP (x, i) = op;
7206 }
7207 }
7208 else if (fmt[i] == 'E')
7209 {
7210 int j;
7211 for (j = 0; j < XVECLEN (x, i); j++)
7212 {
7213 rtx op = canon_reg_for_combine (XVECEXP (x, i, j), reg);
7214 if (op != XVECEXP (x, i, j))
7215 {
7216 if (!copied)
7217 {
7218 copied = true;
7219 x = copy_rtx (x);
7220 }
7221 XVECEXP (x, i, j) = op;
7222 }
7223 }
7224 }
7225
7226 break;
7227 }
7228
7229 return x;
7230 }
7231
7232 /* Return X converted to MODE. If the value is already truncated to
7233 MODE we can just return a subreg even though in the general case we
7234 would need an explicit truncation. */
7235
7236 static rtx
7237 gen_lowpart_or_truncate (enum machine_mode mode, rtx x)
7238 {
7239 if (GET_MODE_SIZE (GET_MODE (x)) <= GET_MODE_SIZE (mode)
7240 || TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
7241 GET_MODE_BITSIZE (GET_MODE (x)))
7242 || (REG_P (x) && reg_truncated_to_mode (mode, x)))
7243 return gen_lowpart (mode, x);
7244 else
7245 return simplify_gen_unary (TRUNCATE, mode, x, GET_MODE (x));
7246 }
7247
7248 /* See if X can be simplified knowing that we will only refer to it in
7249 MODE and will only refer to those bits that are nonzero in MASK.
7250 If other bits are being computed or if masking operations are done
7251 that select a superset of the bits in MASK, they can sometimes be
7252 ignored.
7253
7254 Return a possibly simplified expression, but always convert X to
7255 MODE. If X is a CONST_INT, AND the CONST_INT with MASK.
7256
7257 If JUST_SELECT is nonzero, don't optimize by noticing that bits in MASK
7258 are all off in X. This is used when X will be complemented, by either
7259 NOT, NEG, or XOR. */
7260
7261 static rtx
7262 force_to_mode (rtx x, enum machine_mode mode, unsigned HOST_WIDE_INT mask,
7263 int just_select)
7264 {
7265 enum rtx_code code = GET_CODE (x);
7266 int next_select = just_select || code == XOR || code == NOT || code == NEG;
7267 enum machine_mode op_mode;
7268 unsigned HOST_WIDE_INT fuller_mask, nonzero;
7269 rtx op0, op1, temp;
7270
7271 /* If this is a CALL or ASM_OPERANDS, don't do anything. Some of the
7272 code below will do the wrong thing since the mode of such an
7273 expression is VOIDmode.
7274
7275 Also do nothing if X is a CLOBBER; this can happen if X was
7276 the return value from a call to gen_lowpart. */
7277 if (code == CALL || code == ASM_OPERANDS || code == CLOBBER)
7278 return x;
7279
7280 /* We want to perform the operation is its present mode unless we know
7281 that the operation is valid in MODE, in which case we do the operation
7282 in MODE. */
7283 op_mode = ((GET_MODE_CLASS (mode) == GET_MODE_CLASS (GET_MODE (x))
7284 && have_insn_for (code, mode))
7285 ? mode : GET_MODE (x));
7286
7287 /* It is not valid to do a right-shift in a narrower mode
7288 than the one it came in with. */
7289 if ((code == LSHIFTRT || code == ASHIFTRT)
7290 && GET_MODE_BITSIZE (mode) < GET_MODE_BITSIZE (GET_MODE (x)))
7291 op_mode = GET_MODE (x);
7292
7293 /* Truncate MASK to fit OP_MODE. */
7294 if (op_mode)
7295 mask &= GET_MODE_MASK (op_mode);
7296
7297 /* When we have an arithmetic operation, or a shift whose count we
7298 do not know, we need to assume that all bits up to the highest-order
7299 bit in MASK will be needed. This is how we form such a mask. */
7300 if (mask & ((unsigned HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1)))
7301 fuller_mask = ~(unsigned HOST_WIDE_INT) 0;
7302 else
7303 fuller_mask = (((unsigned HOST_WIDE_INT) 1 << (floor_log2 (mask) + 1))
7304 - 1);
7305
7306 /* Determine what bits of X are guaranteed to be (non)zero. */
7307 nonzero = nonzero_bits (x, mode);
7308
7309 /* If none of the bits in X are needed, return a zero. */
7310 if (!just_select && (nonzero & mask) == 0 && !side_effects_p (x))
7311 x = const0_rtx;
7312
7313 /* If X is a CONST_INT, return a new one. Do this here since the
7314 test below will fail. */
7315 if (GET_CODE (x) == CONST_INT)
7316 {
7317 if (SCALAR_INT_MODE_P (mode))
7318 return gen_int_mode (INTVAL (x) & mask, mode);
7319 else
7320 {
7321 x = GEN_INT (INTVAL (x) & mask);
7322 return gen_lowpart_common (mode, x);
7323 }
7324 }
7325
7326 /* If X is narrower than MODE and we want all the bits in X's mode, just
7327 get X in the proper mode. */
7328 if (GET_MODE_SIZE (GET_MODE (x)) < GET_MODE_SIZE (mode)
7329 && (GET_MODE_MASK (GET_MODE (x)) & ~mask) == 0)
7330 return gen_lowpart (mode, x);
7331
7332 /* The arithmetic simplifications here do the wrong thing on vector modes. */
7333 if (VECTOR_MODE_P (mode) || VECTOR_MODE_P (GET_MODE (x)))
7334 return gen_lowpart (mode, x);
7335
7336 switch (code)
7337 {
7338 case CLOBBER:
7339 /* If X is a (clobber (const_int)), return it since we know we are
7340 generating something that won't match. */
7341 return x;
7342
7343 case SIGN_EXTEND:
7344 case ZERO_EXTEND:
7345 case ZERO_EXTRACT:
7346 case SIGN_EXTRACT:
7347 x = expand_compound_operation (x);
7348 if (GET_CODE (x) != code)
7349 return force_to_mode (x, mode, mask, next_select);
7350 break;
7351
7352 case SUBREG:
7353 if (subreg_lowpart_p (x)
7354 /* We can ignore the effect of this SUBREG if it narrows the mode or
7355 if the constant masks to zero all the bits the mode doesn't
7356 have. */
7357 && ((GET_MODE_SIZE (GET_MODE (x))
7358 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
7359 || (0 == (mask
7360 & GET_MODE_MASK (GET_MODE (x))
7361 & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x)))))))
7362 return force_to_mode (SUBREG_REG (x), mode, mask, next_select);
7363 break;
7364
7365 case AND:
7366 /* If this is an AND with a constant, convert it into an AND
7367 whose constant is the AND of that constant with MASK. If it
7368 remains an AND of MASK, delete it since it is redundant. */
7369
7370 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
7371 {
7372 x = simplify_and_const_int (x, op_mode, XEXP (x, 0),
7373 mask & INTVAL (XEXP (x, 1)));
7374
7375 /* If X is still an AND, see if it is an AND with a mask that
7376 is just some low-order bits. If so, and it is MASK, we don't
7377 need it. */
7378
7379 if (GET_CODE (x) == AND && GET_CODE (XEXP (x, 1)) == CONST_INT
7380 && ((INTVAL (XEXP (x, 1)) & GET_MODE_MASK (GET_MODE (x)))
7381 == mask))
7382 x = XEXP (x, 0);
7383
7384 /* If it remains an AND, try making another AND with the bits
7385 in the mode mask that aren't in MASK turned on. If the
7386 constant in the AND is wide enough, this might make a
7387 cheaper constant. */
7388
7389 if (GET_CODE (x) == AND && GET_CODE (XEXP (x, 1)) == CONST_INT
7390 && GET_MODE_MASK (GET_MODE (x)) != mask
7391 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT)
7392 {
7393 HOST_WIDE_INT cval = (INTVAL (XEXP (x, 1))
7394 | (GET_MODE_MASK (GET_MODE (x)) & ~mask));
7395 int width = GET_MODE_BITSIZE (GET_MODE (x));
7396 rtx y;
7397
7398 /* If MODE is narrower than HOST_WIDE_INT and CVAL is a negative
7399 number, sign extend it. */
7400 if (width > 0 && width < HOST_BITS_PER_WIDE_INT
7401 && (cval & ((HOST_WIDE_INT) 1 << (width - 1))) != 0)
7402 cval |= (HOST_WIDE_INT) -1 << width;
7403
7404 y = simplify_gen_binary (AND, GET_MODE (x),
7405 XEXP (x, 0), GEN_INT (cval));
7406 if (rtx_cost (y, SET, optimize_this_for_speed_p)
7407 < rtx_cost (x, SET, optimize_this_for_speed_p))
7408 x = y;
7409 }
7410
7411 break;
7412 }
7413
7414 goto binop;
7415
7416 case PLUS:
7417 /* In (and (plus FOO C1) M), if M is a mask that just turns off
7418 low-order bits (as in an alignment operation) and FOO is already
7419 aligned to that boundary, mask C1 to that boundary as well.
7420 This may eliminate that PLUS and, later, the AND. */
7421
7422 {
7423 unsigned int width = GET_MODE_BITSIZE (mode);
7424 unsigned HOST_WIDE_INT smask = mask;
7425
7426 /* If MODE is narrower than HOST_WIDE_INT and mask is a negative
7427 number, sign extend it. */
7428
7429 if (width < HOST_BITS_PER_WIDE_INT
7430 && (smask & ((HOST_WIDE_INT) 1 << (width - 1))) != 0)
7431 smask |= (HOST_WIDE_INT) -1 << width;
7432
7433 if (GET_CODE (XEXP (x, 1)) == CONST_INT
7434 && exact_log2 (- smask) >= 0
7435 && (nonzero_bits (XEXP (x, 0), mode) & ~smask) == 0
7436 && (INTVAL (XEXP (x, 1)) & ~smask) != 0)
7437 return force_to_mode (plus_constant (XEXP (x, 0),
7438 (INTVAL (XEXP (x, 1)) & smask)),
7439 mode, smask, next_select);
7440 }
7441
7442 /* ... fall through ... */
7443
7444 case MULT:
7445 /* For PLUS, MINUS and MULT, we need any bits less significant than the
7446 most significant bit in MASK since carries from those bits will
7447 affect the bits we are interested in. */
7448 mask = fuller_mask;
7449 goto binop;
7450
7451 case MINUS:
7452 /* If X is (minus C Y) where C's least set bit is larger than any bit
7453 in the mask, then we may replace with (neg Y). */
7454 if (GET_CODE (XEXP (x, 0)) == CONST_INT
7455 && (((unsigned HOST_WIDE_INT) (INTVAL (XEXP (x, 0))
7456 & -INTVAL (XEXP (x, 0))))
7457 > mask))
7458 {
7459 x = simplify_gen_unary (NEG, GET_MODE (x), XEXP (x, 1),
7460 GET_MODE (x));
7461 return force_to_mode (x, mode, mask, next_select);
7462 }
7463
7464 /* Similarly, if C contains every bit in the fuller_mask, then we may
7465 replace with (not Y). */
7466 if (GET_CODE (XEXP (x, 0)) == CONST_INT
7467 && ((INTVAL (XEXP (x, 0)) | (HOST_WIDE_INT) fuller_mask)
7468 == INTVAL (XEXP (x, 0))))
7469 {
7470 x = simplify_gen_unary (NOT, GET_MODE (x),
7471 XEXP (x, 1), GET_MODE (x));
7472 return force_to_mode (x, mode, mask, next_select);
7473 }
7474
7475 mask = fuller_mask;
7476 goto binop;
7477
7478 case IOR:
7479 case XOR:
7480 /* If X is (ior (lshiftrt FOO C1) C2), try to commute the IOR and
7481 LSHIFTRT so we end up with an (and (lshiftrt (ior ...) ...) ...)
7482 operation which may be a bitfield extraction. Ensure that the
7483 constant we form is not wider than the mode of X. */
7484
7485 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
7486 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
7487 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
7488 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
7489 && GET_CODE (XEXP (x, 1)) == CONST_INT
7490 && ((INTVAL (XEXP (XEXP (x, 0), 1))
7491 + floor_log2 (INTVAL (XEXP (x, 1))))
7492 < GET_MODE_BITSIZE (GET_MODE (x)))
7493 && (INTVAL (XEXP (x, 1))
7494 & ~nonzero_bits (XEXP (x, 0), GET_MODE (x))) == 0)
7495 {
7496 temp = GEN_INT ((INTVAL (XEXP (x, 1)) & mask)
7497 << INTVAL (XEXP (XEXP (x, 0), 1)));
7498 temp = simplify_gen_binary (GET_CODE (x), GET_MODE (x),
7499 XEXP (XEXP (x, 0), 0), temp);
7500 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x), temp,
7501 XEXP (XEXP (x, 0), 1));
7502 return force_to_mode (x, mode, mask, next_select);
7503 }
7504
7505 binop:
7506 /* For most binary operations, just propagate into the operation and
7507 change the mode if we have an operation of that mode. */
7508
7509 op0 = gen_lowpart_or_truncate (op_mode,
7510 force_to_mode (XEXP (x, 0), mode, mask,
7511 next_select));
7512 op1 = gen_lowpart_or_truncate (op_mode,
7513 force_to_mode (XEXP (x, 1), mode, mask,
7514 next_select));
7515
7516 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
7517 x = simplify_gen_binary (code, op_mode, op0, op1);
7518 break;
7519
7520 case ASHIFT:
7521 /* For left shifts, do the same, but just for the first operand.
7522 However, we cannot do anything with shifts where we cannot
7523 guarantee that the counts are smaller than the size of the mode
7524 because such a count will have a different meaning in a
7525 wider mode. */
7526
7527 if (! (GET_CODE (XEXP (x, 1)) == CONST_INT
7528 && INTVAL (XEXP (x, 1)) >= 0
7529 && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (mode))
7530 && ! (GET_MODE (XEXP (x, 1)) != VOIDmode
7531 && (nonzero_bits (XEXP (x, 1), GET_MODE (XEXP (x, 1)))
7532 < (unsigned HOST_WIDE_INT) GET_MODE_BITSIZE (mode))))
7533 break;
7534
7535 /* If the shift count is a constant and we can do arithmetic in
7536 the mode of the shift, refine which bits we need. Otherwise, use the
7537 conservative form of the mask. */
7538 if (GET_CODE (XEXP (x, 1)) == CONST_INT
7539 && INTVAL (XEXP (x, 1)) >= 0
7540 && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (op_mode)
7541 && GET_MODE_BITSIZE (op_mode) <= HOST_BITS_PER_WIDE_INT)
7542 mask >>= INTVAL (XEXP (x, 1));
7543 else
7544 mask = fuller_mask;
7545
7546 op0 = gen_lowpart_or_truncate (op_mode,
7547 force_to_mode (XEXP (x, 0), op_mode,
7548 mask, next_select));
7549
7550 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
7551 x = simplify_gen_binary (code, op_mode, op0, XEXP (x, 1));
7552 break;
7553
7554 case LSHIFTRT:
7555 /* Here we can only do something if the shift count is a constant,
7556 this shift constant is valid for the host, and we can do arithmetic
7557 in OP_MODE. */
7558
7559 if (GET_CODE (XEXP (x, 1)) == CONST_INT
7560 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
7561 && GET_MODE_BITSIZE (op_mode) <= HOST_BITS_PER_WIDE_INT)
7562 {
7563 rtx inner = XEXP (x, 0);
7564 unsigned HOST_WIDE_INT inner_mask;
7565
7566 /* Select the mask of the bits we need for the shift operand. */
7567 inner_mask = mask << INTVAL (XEXP (x, 1));
7568
7569 /* We can only change the mode of the shift if we can do arithmetic
7570 in the mode of the shift and INNER_MASK is no wider than the
7571 width of X's mode. */
7572 if ((inner_mask & ~GET_MODE_MASK (GET_MODE (x))) != 0)
7573 op_mode = GET_MODE (x);
7574
7575 inner = force_to_mode (inner, op_mode, inner_mask, next_select);
7576
7577 if (GET_MODE (x) != op_mode || inner != XEXP (x, 0))
7578 x = simplify_gen_binary (LSHIFTRT, op_mode, inner, XEXP (x, 1));
7579 }
7580
7581 /* If we have (and (lshiftrt FOO C1) C2) where the combination of the
7582 shift and AND produces only copies of the sign bit (C2 is one less
7583 than a power of two), we can do this with just a shift. */
7584
7585 if (GET_CODE (x) == LSHIFTRT
7586 && GET_CODE (XEXP (x, 1)) == CONST_INT
7587 /* The shift puts one of the sign bit copies in the least significant
7588 bit. */
7589 && ((INTVAL (XEXP (x, 1))
7590 + num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0))))
7591 >= GET_MODE_BITSIZE (GET_MODE (x)))
7592 && exact_log2 (mask + 1) >= 0
7593 /* Number of bits left after the shift must be more than the mask
7594 needs. */
7595 && ((INTVAL (XEXP (x, 1)) + exact_log2 (mask + 1))
7596 <= GET_MODE_BITSIZE (GET_MODE (x)))
7597 /* Must be more sign bit copies than the mask needs. */
7598 && ((int) num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
7599 >= exact_log2 (mask + 1)))
7600 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x), XEXP (x, 0),
7601 GEN_INT (GET_MODE_BITSIZE (GET_MODE (x))
7602 - exact_log2 (mask + 1)));
7603
7604 goto shiftrt;
7605
7606 case ASHIFTRT:
7607 /* If we are just looking for the sign bit, we don't need this shift at
7608 all, even if it has a variable count. */
7609 if (GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
7610 && (mask == ((unsigned HOST_WIDE_INT) 1
7611 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
7612 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
7613
7614 /* If this is a shift by a constant, get a mask that contains those bits
7615 that are not copies of the sign bit. We then have two cases: If
7616 MASK only includes those bits, this can be a logical shift, which may
7617 allow simplifications. If MASK is a single-bit field not within
7618 those bits, we are requesting a copy of the sign bit and hence can
7619 shift the sign bit to the appropriate location. */
7620
7621 if (GET_CODE (XEXP (x, 1)) == CONST_INT && INTVAL (XEXP (x, 1)) >= 0
7622 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
7623 {
7624 int i;
7625
7626 /* If the considered data is wider than HOST_WIDE_INT, we can't
7627 represent a mask for all its bits in a single scalar.
7628 But we only care about the lower bits, so calculate these. */
7629
7630 if (GET_MODE_BITSIZE (GET_MODE (x)) > HOST_BITS_PER_WIDE_INT)
7631 {
7632 nonzero = ~(HOST_WIDE_INT) 0;
7633
7634 /* GET_MODE_BITSIZE (GET_MODE (x)) - INTVAL (XEXP (x, 1))
7635 is the number of bits a full-width mask would have set.
7636 We need only shift if these are fewer than nonzero can
7637 hold. If not, we must keep all bits set in nonzero. */
7638
7639 if (GET_MODE_BITSIZE (GET_MODE (x)) - INTVAL (XEXP (x, 1))
7640 < HOST_BITS_PER_WIDE_INT)
7641 nonzero >>= INTVAL (XEXP (x, 1))
7642 + HOST_BITS_PER_WIDE_INT
7643 - GET_MODE_BITSIZE (GET_MODE (x)) ;
7644 }
7645 else
7646 {
7647 nonzero = GET_MODE_MASK (GET_MODE (x));
7648 nonzero >>= INTVAL (XEXP (x, 1));
7649 }
7650
7651 if ((mask & ~nonzero) == 0)
7652 {
7653 x = simplify_shift_const (NULL_RTX, LSHIFTRT, GET_MODE (x),
7654 XEXP (x, 0), INTVAL (XEXP (x, 1)));
7655 if (GET_CODE (x) != ASHIFTRT)
7656 return force_to_mode (x, mode, mask, next_select);
7657 }
7658
7659 else if ((i = exact_log2 (mask)) >= 0)
7660 {
7661 x = simplify_shift_const
7662 (NULL_RTX, LSHIFTRT, GET_MODE (x), XEXP (x, 0),
7663 GET_MODE_BITSIZE (GET_MODE (x)) - 1 - i);
7664
7665 if (GET_CODE (x) != ASHIFTRT)
7666 return force_to_mode (x, mode, mask, next_select);
7667 }
7668 }
7669
7670 /* If MASK is 1, convert this to an LSHIFTRT. This can be done
7671 even if the shift count isn't a constant. */
7672 if (mask == 1)
7673 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x),
7674 XEXP (x, 0), XEXP (x, 1));
7675
7676 shiftrt:
7677
7678 /* If this is a zero- or sign-extension operation that just affects bits
7679 we don't care about, remove it. Be sure the call above returned
7680 something that is still a shift. */
7681
7682 if ((GET_CODE (x) == LSHIFTRT || GET_CODE (x) == ASHIFTRT)
7683 && GET_CODE (XEXP (x, 1)) == CONST_INT
7684 && INTVAL (XEXP (x, 1)) >= 0
7685 && (INTVAL (XEXP (x, 1))
7686 <= GET_MODE_BITSIZE (GET_MODE (x)) - (floor_log2 (mask) + 1))
7687 && GET_CODE (XEXP (x, 0)) == ASHIFT
7688 && XEXP (XEXP (x, 0), 1) == XEXP (x, 1))
7689 return force_to_mode (XEXP (XEXP (x, 0), 0), mode, mask,
7690 next_select);
7691
7692 break;
7693
7694 case ROTATE:
7695 case ROTATERT:
7696 /* If the shift count is constant and we can do computations
7697 in the mode of X, compute where the bits we care about are.
7698 Otherwise, we can't do anything. Don't change the mode of
7699 the shift or propagate MODE into the shift, though. */
7700 if (GET_CODE (XEXP (x, 1)) == CONST_INT
7701 && INTVAL (XEXP (x, 1)) >= 0)
7702 {
7703 temp = simplify_binary_operation (code == ROTATE ? ROTATERT : ROTATE,
7704 GET_MODE (x), GEN_INT (mask),
7705 XEXP (x, 1));
7706 if (temp && GET_CODE (temp) == CONST_INT)
7707 SUBST (XEXP (x, 0),
7708 force_to_mode (XEXP (x, 0), GET_MODE (x),
7709 INTVAL (temp), next_select));
7710 }
7711 break;
7712
7713 case NEG:
7714 /* If we just want the low-order bit, the NEG isn't needed since it
7715 won't change the low-order bit. */
7716 if (mask == 1)
7717 return force_to_mode (XEXP (x, 0), mode, mask, just_select);
7718
7719 /* We need any bits less significant than the most significant bit in
7720 MASK since carries from those bits will affect the bits we are
7721 interested in. */
7722 mask = fuller_mask;
7723 goto unop;
7724
7725 case NOT:
7726 /* (not FOO) is (xor FOO CONST), so if FOO is an LSHIFTRT, we can do the
7727 same as the XOR case above. Ensure that the constant we form is not
7728 wider than the mode of X. */
7729
7730 if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
7731 && GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT
7732 && INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
7733 && (INTVAL (XEXP (XEXP (x, 0), 1)) + floor_log2 (mask)
7734 < GET_MODE_BITSIZE (GET_MODE (x)))
7735 && INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT)
7736 {
7737 temp = gen_int_mode (mask << INTVAL (XEXP (XEXP (x, 0), 1)),
7738 GET_MODE (x));
7739 temp = simplify_gen_binary (XOR, GET_MODE (x),
7740 XEXP (XEXP (x, 0), 0), temp);
7741 x = simplify_gen_binary (LSHIFTRT, GET_MODE (x),
7742 temp, XEXP (XEXP (x, 0), 1));
7743
7744 return force_to_mode (x, mode, mask, next_select);
7745 }
7746
7747 /* (and (not FOO) CONST) is (not (or FOO (not CONST))), so we must
7748 use the full mask inside the NOT. */
7749 mask = fuller_mask;
7750
7751 unop:
7752 op0 = gen_lowpart_or_truncate (op_mode,
7753 force_to_mode (XEXP (x, 0), mode, mask,
7754 next_select));
7755 if (op_mode != GET_MODE (x) || op0 != XEXP (x, 0))
7756 x = simplify_gen_unary (code, op_mode, op0, op_mode);
7757 break;
7758
7759 case NE:
7760 /* (and (ne FOO 0) CONST) can be (and FOO CONST) if CONST is included
7761 in STORE_FLAG_VALUE and FOO has a single bit that might be nonzero,
7762 which is equal to STORE_FLAG_VALUE. */
7763 if ((mask & ~STORE_FLAG_VALUE) == 0 && XEXP (x, 1) == const0_rtx
7764 && GET_MODE (XEXP (x, 0)) == mode
7765 && exact_log2 (nonzero_bits (XEXP (x, 0), mode)) >= 0
7766 && (nonzero_bits (XEXP (x, 0), mode)
7767 == (unsigned HOST_WIDE_INT) STORE_FLAG_VALUE))
7768 return force_to_mode (XEXP (x, 0), mode, mask, next_select);
7769
7770 break;
7771
7772 case IF_THEN_ELSE:
7773 /* We have no way of knowing if the IF_THEN_ELSE can itself be
7774 written in a narrower mode. We play it safe and do not do so. */
7775
7776 SUBST (XEXP (x, 1),
7777 gen_lowpart_or_truncate (GET_MODE (x),
7778 force_to_mode (XEXP (x, 1), mode,
7779 mask, next_select)));
7780 SUBST (XEXP (x, 2),
7781 gen_lowpart_or_truncate (GET_MODE (x),
7782 force_to_mode (XEXP (x, 2), mode,
7783 mask, next_select)));
7784 break;
7785
7786 default:
7787 break;
7788 }
7789
7790 /* Ensure we return a value of the proper mode. */
7791 return gen_lowpart_or_truncate (mode, x);
7792 }
7793
7794 /* Return nonzero if X is an expression that has one of two values depending on
7795 whether some other value is zero or nonzero. In that case, we return the
7796 value that is being tested, *PTRUE is set to the value if the rtx being
7797 returned has a nonzero value, and *PFALSE is set to the other alternative.
7798
7799 If we return zero, we set *PTRUE and *PFALSE to X. */
7800
7801 static rtx
7802 if_then_else_cond (rtx x, rtx *ptrue, rtx *pfalse)
7803 {
7804 enum machine_mode mode = GET_MODE (x);
7805 enum rtx_code code = GET_CODE (x);
7806 rtx cond0, cond1, true0, true1, false0, false1;
7807 unsigned HOST_WIDE_INT nz;
7808
7809 /* If we are comparing a value against zero, we are done. */
7810 if ((code == NE || code == EQ)
7811 && XEXP (x, 1) == const0_rtx)
7812 {
7813 *ptrue = (code == NE) ? const_true_rtx : const0_rtx;
7814 *pfalse = (code == NE) ? const0_rtx : const_true_rtx;
7815 return XEXP (x, 0);
7816 }
7817
7818 /* If this is a unary operation whose operand has one of two values, apply
7819 our opcode to compute those values. */
7820 else if (UNARY_P (x)
7821 && (cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0)) != 0)
7822 {
7823 *ptrue = simplify_gen_unary (code, mode, true0, GET_MODE (XEXP (x, 0)));
7824 *pfalse = simplify_gen_unary (code, mode, false0,
7825 GET_MODE (XEXP (x, 0)));
7826 return cond0;
7827 }
7828
7829 /* If this is a COMPARE, do nothing, since the IF_THEN_ELSE we would
7830 make can't possibly match and would suppress other optimizations. */
7831 else if (code == COMPARE)
7832 ;
7833
7834 /* If this is a binary operation, see if either side has only one of two
7835 values. If either one does or if both do and they are conditional on
7836 the same value, compute the new true and false values. */
7837 else if (BINARY_P (x))
7838 {
7839 cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0);
7840 cond1 = if_then_else_cond (XEXP (x, 1), &true1, &false1);
7841
7842 if ((cond0 != 0 || cond1 != 0)
7843 && ! (cond0 != 0 && cond1 != 0 && ! rtx_equal_p (cond0, cond1)))
7844 {
7845 /* If if_then_else_cond returned zero, then true/false are the
7846 same rtl. We must copy one of them to prevent invalid rtl
7847 sharing. */
7848 if (cond0 == 0)
7849 true0 = copy_rtx (true0);
7850 else if (cond1 == 0)
7851 true1 = copy_rtx (true1);
7852
7853 if (COMPARISON_P (x))
7854 {
7855 *ptrue = simplify_gen_relational (code, mode, VOIDmode,
7856 true0, true1);
7857 *pfalse = simplify_gen_relational (code, mode, VOIDmode,
7858 false0, false1);
7859 }
7860 else
7861 {
7862 *ptrue = simplify_gen_binary (code, mode, true0, true1);
7863 *pfalse = simplify_gen_binary (code, mode, false0, false1);
7864 }
7865
7866 return cond0 ? cond0 : cond1;
7867 }
7868
7869 /* See if we have PLUS, IOR, XOR, MINUS or UMAX, where one of the
7870 operands is zero when the other is nonzero, and vice-versa,
7871 and STORE_FLAG_VALUE is 1 or -1. */
7872
7873 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
7874 && (code == PLUS || code == IOR || code == XOR || code == MINUS
7875 || code == UMAX)
7876 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
7877 {
7878 rtx op0 = XEXP (XEXP (x, 0), 1);
7879 rtx op1 = XEXP (XEXP (x, 1), 1);
7880
7881 cond0 = XEXP (XEXP (x, 0), 0);
7882 cond1 = XEXP (XEXP (x, 1), 0);
7883
7884 if (COMPARISON_P (cond0)
7885 && COMPARISON_P (cond1)
7886 && ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL)
7887 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
7888 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
7889 || ((swap_condition (GET_CODE (cond0))
7890 == reversed_comparison_code (cond1, NULL))
7891 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
7892 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
7893 && ! side_effects_p (x))
7894 {
7895 *ptrue = simplify_gen_binary (MULT, mode, op0, const_true_rtx);
7896 *pfalse = simplify_gen_binary (MULT, mode,
7897 (code == MINUS
7898 ? simplify_gen_unary (NEG, mode,
7899 op1, mode)
7900 : op1),
7901 const_true_rtx);
7902 return cond0;
7903 }
7904 }
7905
7906 /* Similarly for MULT, AND and UMIN, except that for these the result
7907 is always zero. */
7908 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
7909 && (code == MULT || code == AND || code == UMIN)
7910 && GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
7911 {
7912 cond0 = XEXP (XEXP (x, 0), 0);
7913 cond1 = XEXP (XEXP (x, 1), 0);
7914
7915 if (COMPARISON_P (cond0)
7916 && COMPARISON_P (cond1)
7917 && ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL)
7918 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
7919 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
7920 || ((swap_condition (GET_CODE (cond0))
7921 == reversed_comparison_code (cond1, NULL))
7922 && rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
7923 && rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
7924 && ! side_effects_p (x))
7925 {
7926 *ptrue = *pfalse = const0_rtx;
7927 return cond0;
7928 }
7929 }
7930 }
7931
7932 else if (code == IF_THEN_ELSE)
7933 {
7934 /* If we have IF_THEN_ELSE already, extract the condition and
7935 canonicalize it if it is NE or EQ. */
7936 cond0 = XEXP (x, 0);
7937 *ptrue = XEXP (x, 1), *pfalse = XEXP (x, 2);
7938 if (GET_CODE (cond0) == NE && XEXP (cond0, 1) == const0_rtx)
7939 return XEXP (cond0, 0);
7940 else if (GET_CODE (cond0) == EQ && XEXP (cond0, 1) == const0_rtx)
7941 {
7942 *ptrue = XEXP (x, 2), *pfalse = XEXP (x, 1);
7943 return XEXP (cond0, 0);
7944 }
7945 else
7946 return cond0;
7947 }
7948
7949 /* If X is a SUBREG, we can narrow both the true and false values
7950 if the inner expression, if there is a condition. */
7951 else if (code == SUBREG
7952 && 0 != (cond0 = if_then_else_cond (SUBREG_REG (x),
7953 &true0, &false0)))
7954 {
7955 true0 = simplify_gen_subreg (mode, true0,
7956 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
7957 false0 = simplify_gen_subreg (mode, false0,
7958 GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
7959 if (true0 && false0)
7960 {
7961 *ptrue = true0;
7962 *pfalse = false0;
7963 return cond0;
7964 }
7965 }
7966
7967 /* If X is a constant, this isn't special and will cause confusions
7968 if we treat it as such. Likewise if it is equivalent to a constant. */
7969 else if (CONSTANT_P (x)
7970 || ((cond0 = get_last_value (x)) != 0 && CONSTANT_P (cond0)))
7971 ;
7972
7973 /* If we're in BImode, canonicalize on 0 and STORE_FLAG_VALUE, as that
7974 will be least confusing to the rest of the compiler. */
7975 else if (mode == BImode)
7976 {
7977 *ptrue = GEN_INT (STORE_FLAG_VALUE), *pfalse = const0_rtx;
7978 return x;
7979 }
7980
7981 /* If X is known to be either 0 or -1, those are the true and
7982 false values when testing X. */
7983 else if (x == constm1_rtx || x == const0_rtx
7984 || (mode != VOIDmode
7985 && num_sign_bit_copies (x, mode) == GET_MODE_BITSIZE (mode)))
7986 {
7987 *ptrue = constm1_rtx, *pfalse = const0_rtx;
7988 return x;
7989 }
7990
7991 /* Likewise for 0 or a single bit. */
7992 else if (SCALAR_INT_MODE_P (mode)
7993 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
7994 && exact_log2 (nz = nonzero_bits (x, mode)) >= 0)
7995 {
7996 *ptrue = gen_int_mode (nz, mode), *pfalse = const0_rtx;
7997 return x;
7998 }
7999
8000 /* Otherwise fail; show no condition with true and false values the same. */
8001 *ptrue = *pfalse = x;
8002 return 0;
8003 }
8004
8005 /* Return the value of expression X given the fact that condition COND
8006 is known to be true when applied to REG as its first operand and VAL
8007 as its second. X is known to not be shared and so can be modified in
8008 place.
8009
8010 We only handle the simplest cases, and specifically those cases that
8011 arise with IF_THEN_ELSE expressions. */
8012
8013 static rtx
8014 known_cond (rtx x, enum rtx_code cond, rtx reg, rtx val)
8015 {
8016 enum rtx_code code = GET_CODE (x);
8017 rtx temp;
8018 const char *fmt;
8019 int i, j;
8020
8021 if (side_effects_p (x))
8022 return x;
8023
8024 /* If either operand of the condition is a floating point value,
8025 then we have to avoid collapsing an EQ comparison. */
8026 if (cond == EQ
8027 && rtx_equal_p (x, reg)
8028 && ! FLOAT_MODE_P (GET_MODE (x))
8029 && ! FLOAT_MODE_P (GET_MODE (val)))
8030 return val;
8031
8032 if (cond == UNEQ && rtx_equal_p (x, reg))
8033 return val;
8034
8035 /* If X is (abs REG) and we know something about REG's relationship
8036 with zero, we may be able to simplify this. */
8037
8038 if (code == ABS && rtx_equal_p (XEXP (x, 0), reg) && val == const0_rtx)
8039 switch (cond)
8040 {
8041 case GE: case GT: case EQ:
8042 return XEXP (x, 0);
8043 case LT: case LE:
8044 return simplify_gen_unary (NEG, GET_MODE (XEXP (x, 0)),
8045 XEXP (x, 0),
8046 GET_MODE (XEXP (x, 0)));
8047 default:
8048 break;
8049 }
8050
8051 /* The only other cases we handle are MIN, MAX, and comparisons if the
8052 operands are the same as REG and VAL. */
8053
8054 else if (COMPARISON_P (x) || COMMUTATIVE_ARITH_P (x))
8055 {
8056 if (rtx_equal_p (XEXP (x, 0), val))
8057 cond = swap_condition (cond), temp = val, val = reg, reg = temp;
8058
8059 if (rtx_equal_p (XEXP (x, 0), reg) && rtx_equal_p (XEXP (x, 1), val))
8060 {
8061 if (COMPARISON_P (x))
8062 {
8063 if (comparison_dominates_p (cond, code))
8064 return const_true_rtx;
8065
8066 code = reversed_comparison_code (x, NULL);
8067 if (code != UNKNOWN
8068 && comparison_dominates_p (cond, code))
8069 return const0_rtx;
8070 else
8071 return x;
8072 }
8073 else if (code == SMAX || code == SMIN
8074 || code == UMIN || code == UMAX)
8075 {
8076 int unsignedp = (code == UMIN || code == UMAX);
8077
8078 /* Do not reverse the condition when it is NE or EQ.
8079 This is because we cannot conclude anything about
8080 the value of 'SMAX (x, y)' when x is not equal to y,
8081 but we can when x equals y. */
8082 if ((code == SMAX || code == UMAX)
8083 && ! (cond == EQ || cond == NE))
8084 cond = reverse_condition (cond);
8085
8086 switch (cond)
8087 {
8088 case GE: case GT:
8089 return unsignedp ? x : XEXP (x, 1);
8090 case LE: case LT:
8091 return unsignedp ? x : XEXP (x, 0);
8092 case GEU: case GTU:
8093 return unsignedp ? XEXP (x, 1) : x;
8094 case LEU: case LTU:
8095 return unsignedp ? XEXP (x, 0) : x;
8096 default:
8097 break;
8098 }
8099 }
8100 }
8101 }
8102 else if (code == SUBREG)
8103 {
8104 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (x));
8105 rtx new_rtx, r = known_cond (SUBREG_REG (x), cond, reg, val);
8106
8107 if (SUBREG_REG (x) != r)
8108 {
8109 /* We must simplify subreg here, before we lose track of the
8110 original inner_mode. */
8111 new_rtx = simplify_subreg (GET_MODE (x), r,
8112 inner_mode, SUBREG_BYTE (x));
8113 if (new_rtx)
8114 return new_rtx;
8115 else
8116 SUBST (SUBREG_REG (x), r);
8117 }
8118
8119 return x;
8120 }
8121 /* We don't have to handle SIGN_EXTEND here, because even in the
8122 case of replacing something with a modeless CONST_INT, a
8123 CONST_INT is already (supposed to be) a valid sign extension for
8124 its narrower mode, which implies it's already properly
8125 sign-extended for the wider mode. Now, for ZERO_EXTEND, the
8126 story is different. */
8127 else if (code == ZERO_EXTEND)
8128 {
8129 enum machine_mode inner_mode = GET_MODE (XEXP (x, 0));
8130 rtx new_rtx, r = known_cond (XEXP (x, 0), cond, reg, val);
8131
8132 if (XEXP (x, 0) != r)
8133 {
8134 /* We must simplify the zero_extend here, before we lose
8135 track of the original inner_mode. */
8136 new_rtx = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
8137 r, inner_mode);
8138 if (new_rtx)
8139 return new_rtx;
8140 else
8141 SUBST (XEXP (x, 0), r);
8142 }
8143
8144 return x;
8145 }
8146
8147 fmt = GET_RTX_FORMAT (code);
8148 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
8149 {
8150 if (fmt[i] == 'e')
8151 SUBST (XEXP (x, i), known_cond (XEXP (x, i), cond, reg, val));
8152 else if (fmt[i] == 'E')
8153 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
8154 SUBST (XVECEXP (x, i, j), known_cond (XVECEXP (x, i, j),
8155 cond, reg, val));
8156 }
8157
8158 return x;
8159 }
8160
8161 /* See if X and Y are equal for the purposes of seeing if we can rewrite an
8162 assignment as a field assignment. */
8163
8164 static int
8165 rtx_equal_for_field_assignment_p (rtx x, rtx y)
8166 {
8167 if (x == y || rtx_equal_p (x, y))
8168 return 1;
8169
8170 if (x == 0 || y == 0 || GET_MODE (x) != GET_MODE (y))
8171 return 0;
8172
8173 /* Check for a paradoxical SUBREG of a MEM compared with the MEM.
8174 Note that all SUBREGs of MEM are paradoxical; otherwise they
8175 would have been rewritten. */
8176 if (MEM_P (x) && GET_CODE (y) == SUBREG
8177 && MEM_P (SUBREG_REG (y))
8178 && rtx_equal_p (SUBREG_REG (y),
8179 gen_lowpart (GET_MODE (SUBREG_REG (y)), x)))
8180 return 1;
8181
8182 if (MEM_P (y) && GET_CODE (x) == SUBREG
8183 && MEM_P (SUBREG_REG (x))
8184 && rtx_equal_p (SUBREG_REG (x),
8185 gen_lowpart (GET_MODE (SUBREG_REG (x)), y)))
8186 return 1;
8187
8188 /* We used to see if get_last_value of X and Y were the same but that's
8189 not correct. In one direction, we'll cause the assignment to have
8190 the wrong destination and in the case, we'll import a register into this
8191 insn that might have already have been dead. So fail if none of the
8192 above cases are true. */
8193 return 0;
8194 }
8195
8196 /* See if X, a SET operation, can be rewritten as a bit-field assignment.
8197 Return that assignment if so.
8198
8199 We only handle the most common cases. */
8200
8201 static rtx
8202 make_field_assignment (rtx x)
8203 {
8204 rtx dest = SET_DEST (x);
8205 rtx src = SET_SRC (x);
8206 rtx assign;
8207 rtx rhs, lhs;
8208 HOST_WIDE_INT c1;
8209 HOST_WIDE_INT pos;
8210 unsigned HOST_WIDE_INT len;
8211 rtx other;
8212 enum machine_mode mode;
8213
8214 /* If SRC was (and (not (ashift (const_int 1) POS)) DEST), this is
8215 a clear of a one-bit field. We will have changed it to
8216 (and (rotate (const_int -2) POS) DEST), so check for that. Also check
8217 for a SUBREG. */
8218
8219 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == ROTATE
8220 && GET_CODE (XEXP (XEXP (src, 0), 0)) == CONST_INT
8221 && INTVAL (XEXP (XEXP (src, 0), 0)) == -2
8222 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
8223 {
8224 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
8225 1, 1, 1, 0);
8226 if (assign != 0)
8227 return gen_rtx_SET (VOIDmode, assign, const0_rtx);
8228 return x;
8229 }
8230
8231 if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == SUBREG
8232 && subreg_lowpart_p (XEXP (src, 0))
8233 && (GET_MODE_SIZE (GET_MODE (XEXP (src, 0)))
8234 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (XEXP (src, 0)))))
8235 && GET_CODE (SUBREG_REG (XEXP (src, 0))) == ROTATE
8236 && GET_CODE (XEXP (SUBREG_REG (XEXP (src, 0)), 0)) == CONST_INT
8237 && INTVAL (XEXP (SUBREG_REG (XEXP (src, 0)), 0)) == -2
8238 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
8239 {
8240 assign = make_extraction (VOIDmode, dest, 0,
8241 XEXP (SUBREG_REG (XEXP (src, 0)), 1),
8242 1, 1, 1, 0);
8243 if (assign != 0)
8244 return gen_rtx_SET (VOIDmode, assign, const0_rtx);
8245 return x;
8246 }
8247
8248 /* If SRC is (ior (ashift (const_int 1) POS) DEST), this is a set of a
8249 one-bit field. */
8250 if (GET_CODE (src) == IOR && GET_CODE (XEXP (src, 0)) == ASHIFT
8251 && XEXP (XEXP (src, 0), 0) == const1_rtx
8252 && rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
8253 {
8254 assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
8255 1, 1, 1, 0);
8256 if (assign != 0)
8257 return gen_rtx_SET (VOIDmode, assign, const1_rtx);
8258 return x;
8259 }
8260
8261 /* If DEST is already a field assignment, i.e. ZERO_EXTRACT, and the
8262 SRC is an AND with all bits of that field set, then we can discard
8263 the AND. */
8264 if (GET_CODE (dest) == ZERO_EXTRACT
8265 && GET_CODE (XEXP (dest, 1)) == CONST_INT
8266 && GET_CODE (src) == AND
8267 && GET_CODE (XEXP (src, 1)) == CONST_INT)
8268 {
8269 HOST_WIDE_INT width = INTVAL (XEXP (dest, 1));
8270 unsigned HOST_WIDE_INT and_mask = INTVAL (XEXP (src, 1));
8271 unsigned HOST_WIDE_INT ze_mask;
8272
8273 if (width >= HOST_BITS_PER_WIDE_INT)
8274 ze_mask = -1;
8275 else
8276 ze_mask = ((unsigned HOST_WIDE_INT)1 << width) - 1;
8277
8278 /* Complete overlap. We can remove the source AND. */
8279 if ((and_mask & ze_mask) == ze_mask)
8280 return gen_rtx_SET (VOIDmode, dest, XEXP (src, 0));
8281
8282 /* Partial overlap. We can reduce the source AND. */
8283 if ((and_mask & ze_mask) != and_mask)
8284 {
8285 mode = GET_MODE (src);
8286 src = gen_rtx_AND (mode, XEXP (src, 0),
8287 gen_int_mode (and_mask & ze_mask, mode));
8288 return gen_rtx_SET (VOIDmode, dest, src);
8289 }
8290 }
8291
8292 /* The other case we handle is assignments into a constant-position
8293 field. They look like (ior/xor (and DEST C1) OTHER). If C1 represents
8294 a mask that has all one bits except for a group of zero bits and
8295 OTHER is known to have zeros where C1 has ones, this is such an
8296 assignment. Compute the position and length from C1. Shift OTHER
8297 to the appropriate position, force it to the required mode, and
8298 make the extraction. Check for the AND in both operands. */
8299
8300 if (GET_CODE (src) != IOR && GET_CODE (src) != XOR)
8301 return x;
8302
8303 rhs = expand_compound_operation (XEXP (src, 0));
8304 lhs = expand_compound_operation (XEXP (src, 1));
8305
8306 if (GET_CODE (rhs) == AND
8307 && GET_CODE (XEXP (rhs, 1)) == CONST_INT
8308 && rtx_equal_for_field_assignment_p (XEXP (rhs, 0), dest))
8309 c1 = INTVAL (XEXP (rhs, 1)), other = lhs;
8310 else if (GET_CODE (lhs) == AND
8311 && GET_CODE (XEXP (lhs, 1)) == CONST_INT
8312 && rtx_equal_for_field_assignment_p (XEXP (lhs, 0), dest))
8313 c1 = INTVAL (XEXP (lhs, 1)), other = rhs;
8314 else
8315 return x;
8316
8317 pos = get_pos_from_mask ((~c1) & GET_MODE_MASK (GET_MODE (dest)), &len);
8318 if (pos < 0 || pos + len > GET_MODE_BITSIZE (GET_MODE (dest))
8319 || GET_MODE_BITSIZE (GET_MODE (dest)) > HOST_BITS_PER_WIDE_INT
8320 || (c1 & nonzero_bits (other, GET_MODE (dest))) != 0)
8321 return x;
8322
8323 assign = make_extraction (VOIDmode, dest, pos, NULL_RTX, len, 1, 1, 0);
8324 if (assign == 0)
8325 return x;
8326
8327 /* The mode to use for the source is the mode of the assignment, or of
8328 what is inside a possible STRICT_LOW_PART. */
8329 mode = (GET_CODE (assign) == STRICT_LOW_PART
8330 ? GET_MODE (XEXP (assign, 0)) : GET_MODE (assign));
8331
8332 /* Shift OTHER right POS places and make it the source, restricting it
8333 to the proper length and mode. */
8334
8335 src = canon_reg_for_combine (simplify_shift_const (NULL_RTX, LSHIFTRT,
8336 GET_MODE (src),
8337 other, pos),
8338 dest);
8339 src = force_to_mode (src, mode,
8340 GET_MODE_BITSIZE (mode) >= HOST_BITS_PER_WIDE_INT
8341 ? ~(unsigned HOST_WIDE_INT) 0
8342 : ((unsigned HOST_WIDE_INT) 1 << len) - 1,
8343 0);
8344
8345 /* If SRC is masked by an AND that does not make a difference in
8346 the value being stored, strip it. */
8347 if (GET_CODE (assign) == ZERO_EXTRACT
8348 && GET_CODE (XEXP (assign, 1)) == CONST_INT
8349 && INTVAL (XEXP (assign, 1)) < HOST_BITS_PER_WIDE_INT
8350 && GET_CODE (src) == AND
8351 && GET_CODE (XEXP (src, 1)) == CONST_INT
8352 && ((unsigned HOST_WIDE_INT) INTVAL (XEXP (src, 1))
8353 == ((unsigned HOST_WIDE_INT) 1 << INTVAL (XEXP (assign, 1))) - 1))
8354 src = XEXP (src, 0);
8355
8356 return gen_rtx_SET (VOIDmode, assign, src);
8357 }
8358
8359 /* See if X is of the form (+ (* a c) (* b c)) and convert to (* (+ a b) c)
8360 if so. */
8361
8362 static rtx
8363 apply_distributive_law (rtx x)
8364 {
8365 enum rtx_code code = GET_CODE (x);
8366 enum rtx_code inner_code;
8367 rtx lhs, rhs, other;
8368 rtx tem;
8369
8370 /* Distributivity is not true for floating point as it can change the
8371 value. So we don't do it unless -funsafe-math-optimizations. */
8372 if (FLOAT_MODE_P (GET_MODE (x))
8373 && ! flag_unsafe_math_optimizations)
8374 return x;
8375
8376 /* The outer operation can only be one of the following: */
8377 if (code != IOR && code != AND && code != XOR
8378 && code != PLUS && code != MINUS)
8379 return x;
8380
8381 lhs = XEXP (x, 0);
8382 rhs = XEXP (x, 1);
8383
8384 /* If either operand is a primitive we can't do anything, so get out
8385 fast. */
8386 if (OBJECT_P (lhs) || OBJECT_P (rhs))
8387 return x;
8388
8389 lhs = expand_compound_operation (lhs);
8390 rhs = expand_compound_operation (rhs);
8391 inner_code = GET_CODE (lhs);
8392 if (inner_code != GET_CODE (rhs))
8393 return x;
8394
8395 /* See if the inner and outer operations distribute. */
8396 switch (inner_code)
8397 {
8398 case LSHIFTRT:
8399 case ASHIFTRT:
8400 case AND:
8401 case IOR:
8402 /* These all distribute except over PLUS. */
8403 if (code == PLUS || code == MINUS)
8404 return x;
8405 break;
8406
8407 case MULT:
8408 if (code != PLUS && code != MINUS)
8409 return x;
8410 break;
8411
8412 case ASHIFT:
8413 /* This is also a multiply, so it distributes over everything. */
8414 break;
8415
8416 case SUBREG:
8417 /* Non-paradoxical SUBREGs distributes over all operations,
8418 provided the inner modes and byte offsets are the same, this
8419 is an extraction of a low-order part, we don't convert an fp
8420 operation to int or vice versa, this is not a vector mode,
8421 and we would not be converting a single-word operation into a
8422 multi-word operation. The latter test is not required, but
8423 it prevents generating unneeded multi-word operations. Some
8424 of the previous tests are redundant given the latter test,
8425 but are retained because they are required for correctness.
8426
8427 We produce the result slightly differently in this case. */
8428
8429 if (GET_MODE (SUBREG_REG (lhs)) != GET_MODE (SUBREG_REG (rhs))
8430 || SUBREG_BYTE (lhs) != SUBREG_BYTE (rhs)
8431 || ! subreg_lowpart_p (lhs)
8432 || (GET_MODE_CLASS (GET_MODE (lhs))
8433 != GET_MODE_CLASS (GET_MODE (SUBREG_REG (lhs))))
8434 || (GET_MODE_SIZE (GET_MODE (lhs))
8435 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (lhs))))
8436 || VECTOR_MODE_P (GET_MODE (lhs))
8437 || GET_MODE_SIZE (GET_MODE (SUBREG_REG (lhs))) > UNITS_PER_WORD
8438 /* Result might need to be truncated. Don't change mode if
8439 explicit truncation is needed. */
8440 || !TRULY_NOOP_TRUNCATION
8441 (GET_MODE_BITSIZE (GET_MODE (x)),
8442 GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (lhs)))))
8443 return x;
8444
8445 tem = simplify_gen_binary (code, GET_MODE (SUBREG_REG (lhs)),
8446 SUBREG_REG (lhs), SUBREG_REG (rhs));
8447 return gen_lowpart (GET_MODE (x), tem);
8448
8449 default:
8450 return x;
8451 }
8452
8453 /* Set LHS and RHS to the inner operands (A and B in the example
8454 above) and set OTHER to the common operand (C in the example).
8455 There is only one way to do this unless the inner operation is
8456 commutative. */
8457 if (COMMUTATIVE_ARITH_P (lhs)
8458 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 0)))
8459 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 1);
8460 else if (COMMUTATIVE_ARITH_P (lhs)
8461 && rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 1)))
8462 other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 0);
8463 else if (COMMUTATIVE_ARITH_P (lhs)
8464 && rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 0)))
8465 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 1);
8466 else if (rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 1)))
8467 other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 0);
8468 else
8469 return x;
8470
8471 /* Form the new inner operation, seeing if it simplifies first. */
8472 tem = simplify_gen_binary (code, GET_MODE (x), lhs, rhs);
8473
8474 /* There is one exception to the general way of distributing:
8475 (a | c) ^ (b | c) -> (a ^ b) & ~c */
8476 if (code == XOR && inner_code == IOR)
8477 {
8478 inner_code = AND;
8479 other = simplify_gen_unary (NOT, GET_MODE (x), other, GET_MODE (x));
8480 }
8481
8482 /* We may be able to continuing distributing the result, so call
8483 ourselves recursively on the inner operation before forming the
8484 outer operation, which we return. */
8485 return simplify_gen_binary (inner_code, GET_MODE (x),
8486 apply_distributive_law (tem), other);
8487 }
8488
8489 /* See if X is of the form (* (+ A B) C), and if so convert to
8490 (+ (* A C) (* B C)) and try to simplify.
8491
8492 Most of the time, this results in no change. However, if some of
8493 the operands are the same or inverses of each other, simplifications
8494 will result.
8495
8496 For example, (and (ior A B) (not B)) can occur as the result of
8497 expanding a bit field assignment. When we apply the distributive
8498 law to this, we get (ior (and (A (not B))) (and (B (not B)))),
8499 which then simplifies to (and (A (not B))).
8500
8501 Note that no checks happen on the validity of applying the inverse
8502 distributive law. This is pointless since we can do it in the
8503 few places where this routine is called.
8504
8505 N is the index of the term that is decomposed (the arithmetic operation,
8506 i.e. (+ A B) in the first example above). !N is the index of the term that
8507 is distributed, i.e. of C in the first example above. */
8508 static rtx
8509 distribute_and_simplify_rtx (rtx x, int n)
8510 {
8511 enum machine_mode mode;
8512 enum rtx_code outer_code, inner_code;
8513 rtx decomposed, distributed, inner_op0, inner_op1, new_op0, new_op1, tmp;
8514
8515 decomposed = XEXP (x, n);
8516 if (!ARITHMETIC_P (decomposed))
8517 return NULL_RTX;
8518
8519 mode = GET_MODE (x);
8520 outer_code = GET_CODE (x);
8521 distributed = XEXP (x, !n);
8522
8523 inner_code = GET_CODE (decomposed);
8524 inner_op0 = XEXP (decomposed, 0);
8525 inner_op1 = XEXP (decomposed, 1);
8526
8527 /* Special case (and (xor B C) (not A)), which is equivalent to
8528 (xor (ior A B) (ior A C)) */
8529 if (outer_code == AND && inner_code == XOR && GET_CODE (distributed) == NOT)
8530 {
8531 distributed = XEXP (distributed, 0);
8532 outer_code = IOR;
8533 }
8534
8535 if (n == 0)
8536 {
8537 /* Distribute the second term. */
8538 new_op0 = simplify_gen_binary (outer_code, mode, inner_op0, distributed);
8539 new_op1 = simplify_gen_binary (outer_code, mode, inner_op1, distributed);
8540 }
8541 else
8542 {
8543 /* Distribute the first term. */
8544 new_op0 = simplify_gen_binary (outer_code, mode, distributed, inner_op0);
8545 new_op1 = simplify_gen_binary (outer_code, mode, distributed, inner_op1);
8546 }
8547
8548 tmp = apply_distributive_law (simplify_gen_binary (inner_code, mode,
8549 new_op0, new_op1));
8550 if (GET_CODE (tmp) != outer_code
8551 && rtx_cost (tmp, SET, optimize_this_for_speed_p)
8552 < rtx_cost (x, SET, optimize_this_for_speed_p))
8553 return tmp;
8554
8555 return NULL_RTX;
8556 }
8557
8558 /* Simplify a logical `and' of VAROP with the constant CONSTOP, to be done
8559 in MODE. Return an equivalent form, if different from (and VAROP
8560 (const_int CONSTOP)). Otherwise, return NULL_RTX. */
8561
8562 static rtx
8563 simplify_and_const_int_1 (enum machine_mode mode, rtx varop,
8564 unsigned HOST_WIDE_INT constop)
8565 {
8566 unsigned HOST_WIDE_INT nonzero;
8567 unsigned HOST_WIDE_INT orig_constop;
8568 rtx orig_varop;
8569 int i;
8570
8571 orig_varop = varop;
8572 orig_constop = constop;
8573 if (GET_CODE (varop) == CLOBBER)
8574 return NULL_RTX;
8575
8576 /* Simplify VAROP knowing that we will be only looking at some of the
8577 bits in it.
8578
8579 Note by passing in CONSTOP, we guarantee that the bits not set in
8580 CONSTOP are not significant and will never be examined. We must
8581 ensure that is the case by explicitly masking out those bits
8582 before returning. */
8583 varop = force_to_mode (varop, mode, constop, 0);
8584
8585 /* If VAROP is a CLOBBER, we will fail so return it. */
8586 if (GET_CODE (varop) == CLOBBER)
8587 return varop;
8588
8589 /* If VAROP is a CONST_INT, then we need to apply the mask in CONSTOP
8590 to VAROP and return the new constant. */
8591 if (GET_CODE (varop) == CONST_INT)
8592 return gen_int_mode (INTVAL (varop) & constop, mode);
8593
8594 /* See what bits may be nonzero in VAROP. Unlike the general case of
8595 a call to nonzero_bits, here we don't care about bits outside
8596 MODE. */
8597
8598 nonzero = nonzero_bits (varop, mode) & GET_MODE_MASK (mode);
8599
8600 /* Turn off all bits in the constant that are known to already be zero.
8601 Thus, if the AND isn't needed at all, we will have CONSTOP == NONZERO_BITS
8602 which is tested below. */
8603
8604 constop &= nonzero;
8605
8606 /* If we don't have any bits left, return zero. */
8607 if (constop == 0)
8608 return const0_rtx;
8609
8610 /* If VAROP is a NEG of something known to be zero or 1 and CONSTOP is
8611 a power of two, we can replace this with an ASHIFT. */
8612 if (GET_CODE (varop) == NEG && nonzero_bits (XEXP (varop, 0), mode) == 1
8613 && (i = exact_log2 (constop)) >= 0)
8614 return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (varop, 0), i);
8615
8616 /* If VAROP is an IOR or XOR, apply the AND to both branches of the IOR
8617 or XOR, then try to apply the distributive law. This may eliminate
8618 operations if either branch can be simplified because of the AND.
8619 It may also make some cases more complex, but those cases probably
8620 won't match a pattern either with or without this. */
8621
8622 if (GET_CODE (varop) == IOR || GET_CODE (varop) == XOR)
8623 return
8624 gen_lowpart
8625 (mode,
8626 apply_distributive_law
8627 (simplify_gen_binary (GET_CODE (varop), GET_MODE (varop),
8628 simplify_and_const_int (NULL_RTX,
8629 GET_MODE (varop),
8630 XEXP (varop, 0),
8631 constop),
8632 simplify_and_const_int (NULL_RTX,
8633 GET_MODE (varop),
8634 XEXP (varop, 1),
8635 constop))));
8636
8637 /* If VAROP is PLUS, and the constant is a mask of low bits, distribute
8638 the AND and see if one of the operands simplifies to zero. If so, we
8639 may eliminate it. */
8640
8641 if (GET_CODE (varop) == PLUS
8642 && exact_log2 (constop + 1) >= 0)
8643 {
8644 rtx o0, o1;
8645
8646 o0 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 0), constop);
8647 o1 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 1), constop);
8648 if (o0 == const0_rtx)
8649 return o1;
8650 if (o1 == const0_rtx)
8651 return o0;
8652 }
8653
8654 /* Make a SUBREG if necessary. If we can't make it, fail. */
8655 varop = gen_lowpart (mode, varop);
8656 if (varop == NULL_RTX || GET_CODE (varop) == CLOBBER)
8657 return NULL_RTX;
8658
8659 /* If we are only masking insignificant bits, return VAROP. */
8660 if (constop == nonzero)
8661 return varop;
8662
8663 if (varop == orig_varop && constop == orig_constop)
8664 return NULL_RTX;
8665
8666 /* Otherwise, return an AND. */
8667 return simplify_gen_binary (AND, mode, varop, gen_int_mode (constop, mode));
8668 }
8669
8670
8671 /* We have X, a logical `and' of VAROP with the constant CONSTOP, to be done
8672 in MODE.
8673
8674 Return an equivalent form, if different from X. Otherwise, return X. If
8675 X is zero, we are to always construct the equivalent form. */
8676
8677 static rtx
8678 simplify_and_const_int (rtx x, enum machine_mode mode, rtx varop,
8679 unsigned HOST_WIDE_INT constop)
8680 {
8681 rtx tem = simplify_and_const_int_1 (mode, varop, constop);
8682 if (tem)
8683 return tem;
8684
8685 if (!x)
8686 x = simplify_gen_binary (AND, GET_MODE (varop), varop,
8687 gen_int_mode (constop, mode));
8688 if (GET_MODE (x) != mode)
8689 x = gen_lowpart (mode, x);
8690 return x;
8691 }
8692
8693 /* Given a REG, X, compute which bits in X can be nonzero.
8694 We don't care about bits outside of those defined in MODE.
8695
8696 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
8697 a shift, AND, or zero_extract, we can do better. */
8698
8699 static rtx
8700 reg_nonzero_bits_for_combine (const_rtx x, enum machine_mode mode,
8701 const_rtx known_x ATTRIBUTE_UNUSED,
8702 enum machine_mode known_mode ATTRIBUTE_UNUSED,
8703 unsigned HOST_WIDE_INT known_ret ATTRIBUTE_UNUSED,
8704 unsigned HOST_WIDE_INT *nonzero)
8705 {
8706 rtx tem;
8707 reg_stat_type *rsp;
8708
8709 /* If X is a register whose nonzero bits value is current, use it.
8710 Otherwise, if X is a register whose value we can find, use that
8711 value. Otherwise, use the previously-computed global nonzero bits
8712 for this register. */
8713
8714 rsp = VEC_index (reg_stat_type, reg_stat, REGNO (x));
8715 if (rsp->last_set_value != 0
8716 && (rsp->last_set_mode == mode
8717 || (GET_MODE_CLASS (rsp->last_set_mode) == MODE_INT
8718 && GET_MODE_CLASS (mode) == MODE_INT))
8719 && ((rsp->last_set_label >= label_tick_ebb_start
8720 && rsp->last_set_label < label_tick)
8721 || (rsp->last_set_label == label_tick
8722 && DF_INSN_LUID (rsp->last_set) < subst_low_luid)
8723 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
8724 && REG_N_SETS (REGNO (x)) == 1
8725 && !REGNO_REG_SET_P
8726 (DF_LR_IN (ENTRY_BLOCK_PTR->next_bb), REGNO (x)))))
8727 {
8728 *nonzero &= rsp->last_set_nonzero_bits;
8729 return NULL;
8730 }
8731
8732 tem = get_last_value (x);
8733
8734 if (tem)
8735 {
8736 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
8737 /* If X is narrower than MODE and TEM is a non-negative
8738 constant that would appear negative in the mode of X,
8739 sign-extend it for use in reg_nonzero_bits because some
8740 machines (maybe most) will actually do the sign-extension
8741 and this is the conservative approach.
8742
8743 ??? For 2.5, try to tighten up the MD files in this regard
8744 instead of this kludge. */
8745
8746 if (GET_MODE_BITSIZE (GET_MODE (x)) < GET_MODE_BITSIZE (mode)
8747 && GET_CODE (tem) == CONST_INT
8748 && INTVAL (tem) > 0
8749 && 0 != (INTVAL (tem)
8750 & ((HOST_WIDE_INT) 1
8751 << (GET_MODE_BITSIZE (GET_MODE (x)) - 1))))
8752 tem = GEN_INT (INTVAL (tem)
8753 | ((HOST_WIDE_INT) (-1)
8754 << GET_MODE_BITSIZE (GET_MODE (x))));
8755 #endif
8756 return tem;
8757 }
8758 else if (nonzero_sign_valid && rsp->nonzero_bits)
8759 {
8760 unsigned HOST_WIDE_INT mask = rsp->nonzero_bits;
8761
8762 if (GET_MODE_BITSIZE (GET_MODE (x)) < GET_MODE_BITSIZE (mode))
8763 /* We don't know anything about the upper bits. */
8764 mask |= GET_MODE_MASK (mode) ^ GET_MODE_MASK (GET_MODE (x));
8765 *nonzero &= mask;
8766 }
8767
8768 return NULL;
8769 }
8770
8771 /* Return the number of bits at the high-order end of X that are known to
8772 be equal to the sign bit. X will be used in mode MODE; if MODE is
8773 VOIDmode, X will be used in its own mode. The returned value will always
8774 be between 1 and the number of bits in MODE. */
8775
8776 static rtx
8777 reg_num_sign_bit_copies_for_combine (const_rtx x, enum machine_mode mode,
8778 const_rtx known_x ATTRIBUTE_UNUSED,
8779 enum machine_mode known_mode
8780 ATTRIBUTE_UNUSED,
8781 unsigned int known_ret ATTRIBUTE_UNUSED,
8782 unsigned int *result)
8783 {
8784 rtx tem;
8785 reg_stat_type *rsp;
8786
8787 rsp = VEC_index (reg_stat_type, reg_stat, REGNO (x));
8788 if (rsp->last_set_value != 0
8789 && rsp->last_set_mode == mode
8790 && ((rsp->last_set_label >= label_tick_ebb_start
8791 && rsp->last_set_label < label_tick)
8792 || (rsp->last_set_label == label_tick
8793 && DF_INSN_LUID (rsp->last_set) < subst_low_luid)
8794 || (REGNO (x) >= FIRST_PSEUDO_REGISTER
8795 && REG_N_SETS (REGNO (x)) == 1
8796 && !REGNO_REG_SET_P
8797 (DF_LR_IN (ENTRY_BLOCK_PTR->next_bb), REGNO (x)))))
8798 {
8799 *result = rsp->last_set_sign_bit_copies;
8800 return NULL;
8801 }
8802
8803 tem = get_last_value (x);
8804 if (tem != 0)
8805 return tem;
8806
8807 if (nonzero_sign_valid && rsp->sign_bit_copies != 0
8808 && GET_MODE_BITSIZE (GET_MODE (x)) == GET_MODE_BITSIZE (mode))
8809 *result = rsp->sign_bit_copies;
8810
8811 return NULL;
8812 }
8813
8814 /* Return the number of "extended" bits there are in X, when interpreted
8815 as a quantity in MODE whose signedness is indicated by UNSIGNEDP. For
8816 unsigned quantities, this is the number of high-order zero bits.
8817 For signed quantities, this is the number of copies of the sign bit
8818 minus 1. In both case, this function returns the number of "spare"
8819 bits. For example, if two quantities for which this function returns
8820 at least 1 are added, the addition is known not to overflow.
8821
8822 This function will always return 0 unless called during combine, which
8823 implies that it must be called from a define_split. */
8824
8825 unsigned int
8826 extended_count (const_rtx x, enum machine_mode mode, int unsignedp)
8827 {
8828 if (nonzero_sign_valid == 0)
8829 return 0;
8830
8831 return (unsignedp
8832 ? (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
8833 ? (unsigned int) (GET_MODE_BITSIZE (mode) - 1
8834 - floor_log2 (nonzero_bits (x, mode)))
8835 : 0)
8836 : num_sign_bit_copies (x, mode) - 1);
8837 }
8838
8839 /* This function is called from `simplify_shift_const' to merge two
8840 outer operations. Specifically, we have already found that we need
8841 to perform operation *POP0 with constant *PCONST0 at the outermost
8842 position. We would now like to also perform OP1 with constant CONST1
8843 (with *POP0 being done last).
8844
8845 Return 1 if we can do the operation and update *POP0 and *PCONST0 with
8846 the resulting operation. *PCOMP_P is set to 1 if we would need to
8847 complement the innermost operand, otherwise it is unchanged.
8848
8849 MODE is the mode in which the operation will be done. No bits outside
8850 the width of this mode matter. It is assumed that the width of this mode
8851 is smaller than or equal to HOST_BITS_PER_WIDE_INT.
8852
8853 If *POP0 or OP1 are UNKNOWN, it means no operation is required. Only NEG, PLUS,
8854 IOR, XOR, and AND are supported. We may set *POP0 to SET if the proper
8855 result is simply *PCONST0.
8856
8857 If the resulting operation cannot be expressed as one operation, we
8858 return 0 and do not change *POP0, *PCONST0, and *PCOMP_P. */
8859
8860 static int
8861 merge_outer_ops (enum rtx_code *pop0, HOST_WIDE_INT *pconst0, enum rtx_code op1, HOST_WIDE_INT const1, enum machine_mode mode, int *pcomp_p)
8862 {
8863 enum rtx_code op0 = *pop0;
8864 HOST_WIDE_INT const0 = *pconst0;
8865
8866 const0 &= GET_MODE_MASK (mode);
8867 const1 &= GET_MODE_MASK (mode);
8868
8869 /* If OP0 is an AND, clear unimportant bits in CONST1. */
8870 if (op0 == AND)
8871 const1 &= const0;
8872
8873 /* If OP0 or OP1 is UNKNOWN, this is easy. Similarly if they are the same or
8874 if OP0 is SET. */
8875
8876 if (op1 == UNKNOWN || op0 == SET)
8877 return 1;
8878
8879 else if (op0 == UNKNOWN)
8880 op0 = op1, const0 = const1;
8881
8882 else if (op0 == op1)
8883 {
8884 switch (op0)
8885 {
8886 case AND:
8887 const0 &= const1;
8888 break;
8889 case IOR:
8890 const0 |= const1;
8891 break;
8892 case XOR:
8893 const0 ^= const1;
8894 break;
8895 case PLUS:
8896 const0 += const1;
8897 break;
8898 case NEG:
8899 op0 = UNKNOWN;
8900 break;
8901 default:
8902 break;
8903 }
8904 }
8905
8906 /* Otherwise, if either is a PLUS or NEG, we can't do anything. */
8907 else if (op0 == PLUS || op1 == PLUS || op0 == NEG || op1 == NEG)
8908 return 0;
8909
8910 /* If the two constants aren't the same, we can't do anything. The
8911 remaining six cases can all be done. */
8912 else if (const0 != const1)
8913 return 0;
8914
8915 else
8916 switch (op0)
8917 {
8918 case IOR:
8919 if (op1 == AND)
8920 /* (a & b) | b == b */
8921 op0 = SET;
8922 else /* op1 == XOR */
8923 /* (a ^ b) | b == a | b */
8924 {;}
8925 break;
8926
8927 case XOR:
8928 if (op1 == AND)
8929 /* (a & b) ^ b == (~a) & b */
8930 op0 = AND, *pcomp_p = 1;
8931 else /* op1 == IOR */
8932 /* (a | b) ^ b == a & ~b */
8933 op0 = AND, const0 = ~const0;
8934 break;
8935
8936 case AND:
8937 if (op1 == IOR)
8938 /* (a | b) & b == b */
8939 op0 = SET;
8940 else /* op1 == XOR */
8941 /* (a ^ b) & b) == (~a) & b */
8942 *pcomp_p = 1;
8943 break;
8944 default:
8945 break;
8946 }
8947
8948 /* Check for NO-OP cases. */
8949 const0 &= GET_MODE_MASK (mode);
8950 if (const0 == 0
8951 && (op0 == IOR || op0 == XOR || op0 == PLUS))
8952 op0 = UNKNOWN;
8953 else if (const0 == 0 && op0 == AND)
8954 op0 = SET;
8955 else if ((unsigned HOST_WIDE_INT) const0 == GET_MODE_MASK (mode)
8956 && op0 == AND)
8957 op0 = UNKNOWN;
8958
8959 *pop0 = op0;
8960
8961 /* ??? Slightly redundant with the above mask, but not entirely.
8962 Moving this above means we'd have to sign-extend the mode mask
8963 for the final test. */
8964 if (op0 != UNKNOWN && op0 != NEG)
8965 *pconst0 = trunc_int_for_mode (const0, mode);
8966
8967 return 1;
8968 }
8969
8970 /* Simplify a shift of VAROP by COUNT bits. CODE says what kind of shift.
8971 The result of the shift is RESULT_MODE. Return NULL_RTX if we cannot
8972 simplify it. Otherwise, return a simplified value.
8973
8974 The shift is normally computed in the widest mode we find in VAROP, as
8975 long as it isn't a different number of words than RESULT_MODE. Exceptions
8976 are ASHIFTRT and ROTATE, which are always done in their original mode. */
8977
8978 static rtx
8979 simplify_shift_const_1 (enum rtx_code code, enum machine_mode result_mode,
8980 rtx varop, int orig_count)
8981 {
8982 enum rtx_code orig_code = code;
8983 rtx orig_varop = varop;
8984 int count;
8985 enum machine_mode mode = result_mode;
8986 enum machine_mode shift_mode, tmode;
8987 unsigned int mode_words
8988 = (GET_MODE_SIZE (mode) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
8989 /* We form (outer_op (code varop count) (outer_const)). */
8990 enum rtx_code outer_op = UNKNOWN;
8991 HOST_WIDE_INT outer_const = 0;
8992 int complement_p = 0;
8993 rtx new_rtx, x;
8994
8995 /* Make sure and truncate the "natural" shift on the way in. We don't
8996 want to do this inside the loop as it makes it more difficult to
8997 combine shifts. */
8998 if (SHIFT_COUNT_TRUNCATED)
8999 orig_count &= GET_MODE_BITSIZE (mode) - 1;
9000
9001 /* If we were given an invalid count, don't do anything except exactly
9002 what was requested. */
9003
9004 if (orig_count < 0 || orig_count >= (int) GET_MODE_BITSIZE (mode))
9005 return NULL_RTX;
9006
9007 count = orig_count;
9008
9009 /* Unless one of the branches of the `if' in this loop does a `continue',
9010 we will `break' the loop after the `if'. */
9011
9012 while (count != 0)
9013 {
9014 /* If we have an operand of (clobber (const_int 0)), fail. */
9015 if (GET_CODE (varop) == CLOBBER)
9016 return NULL_RTX;
9017
9018 /* Convert ROTATERT to ROTATE. */
9019 if (code == ROTATERT)
9020 {
9021 unsigned int bitsize = GET_MODE_BITSIZE (result_mode);;
9022 code = ROTATE;
9023 if (VECTOR_MODE_P (result_mode))
9024 count = bitsize / GET_MODE_NUNITS (result_mode) - count;
9025 else
9026 count = bitsize - count;
9027 }
9028
9029 /* We need to determine what mode we will do the shift in. If the
9030 shift is a right shift or a ROTATE, we must always do it in the mode
9031 it was originally done in. Otherwise, we can do it in MODE, the
9032 widest mode encountered. */
9033 shift_mode
9034 = (code == ASHIFTRT || code == LSHIFTRT || code == ROTATE
9035 ? result_mode : mode);
9036
9037 /* Handle cases where the count is greater than the size of the mode
9038 minus 1. For ASHIFT, use the size minus one as the count (this can
9039 occur when simplifying (lshiftrt (ashiftrt ..))). For rotates,
9040 take the count modulo the size. For other shifts, the result is
9041 zero.
9042
9043 Since these shifts are being produced by the compiler by combining
9044 multiple operations, each of which are defined, we know what the
9045 result is supposed to be. */
9046
9047 if (count > (GET_MODE_BITSIZE (shift_mode) - 1))
9048 {
9049 if (code == ASHIFTRT)
9050 count = GET_MODE_BITSIZE (shift_mode) - 1;
9051 else if (code == ROTATE || code == ROTATERT)
9052 count %= GET_MODE_BITSIZE (shift_mode);
9053 else
9054 {
9055 /* We can't simply return zero because there may be an
9056 outer op. */
9057 varop = const0_rtx;
9058 count = 0;
9059 break;
9060 }
9061 }
9062
9063 /* If we discovered we had to complement VAROP, leave. Making a NOT
9064 here would cause an infinite loop. */
9065 if (complement_p)
9066 break;
9067
9068 /* An arithmetic right shift of a quantity known to be -1 or 0
9069 is a no-op. */
9070 if (code == ASHIFTRT
9071 && (num_sign_bit_copies (varop, shift_mode)
9072 == GET_MODE_BITSIZE (shift_mode)))
9073 {
9074 count = 0;
9075 break;
9076 }
9077
9078 /* If we are doing an arithmetic right shift and discarding all but
9079 the sign bit copies, this is equivalent to doing a shift by the
9080 bitsize minus one. Convert it into that shift because it will often
9081 allow other simplifications. */
9082
9083 if (code == ASHIFTRT
9084 && (count + num_sign_bit_copies (varop, shift_mode)
9085 >= GET_MODE_BITSIZE (shift_mode)))
9086 count = GET_MODE_BITSIZE (shift_mode) - 1;
9087
9088 /* We simplify the tests below and elsewhere by converting
9089 ASHIFTRT to LSHIFTRT if we know the sign bit is clear.
9090 `make_compound_operation' will convert it to an ASHIFTRT for
9091 those machines (such as VAX) that don't have an LSHIFTRT. */
9092 if (GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
9093 && code == ASHIFTRT
9094 && ((nonzero_bits (varop, shift_mode)
9095 & ((HOST_WIDE_INT) 1 << (GET_MODE_BITSIZE (shift_mode) - 1)))
9096 == 0))
9097 code = LSHIFTRT;
9098
9099 if (((code == LSHIFTRT
9100 && GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
9101 && !(nonzero_bits (varop, shift_mode) >> count))
9102 || (code == ASHIFT
9103 && GET_MODE_BITSIZE (shift_mode) <= HOST_BITS_PER_WIDE_INT
9104 && !((nonzero_bits (varop, shift_mode) << count)
9105 & GET_MODE_MASK (shift_mode))))
9106 && !side_effects_p (varop))
9107 varop = const0_rtx;
9108
9109 switch (GET_CODE (varop))
9110 {
9111 case SIGN_EXTEND:
9112 case ZERO_EXTEND:
9113 case SIGN_EXTRACT:
9114 case ZERO_EXTRACT:
9115 new_rtx = expand_compound_operation (varop);
9116 if (new_rtx != varop)
9117 {
9118 varop = new_rtx;
9119 continue;
9120 }
9121 break;
9122
9123 case MEM:
9124 /* If we have (xshiftrt (mem ...) C) and C is MODE_WIDTH
9125 minus the width of a smaller mode, we can do this with a
9126 SIGN_EXTEND or ZERO_EXTEND from the narrower memory location. */
9127 if ((code == ASHIFTRT || code == LSHIFTRT)
9128 && ! mode_dependent_address_p (XEXP (varop, 0))
9129 && ! MEM_VOLATILE_P (varop)
9130 && (tmode = mode_for_size (GET_MODE_BITSIZE (mode) - count,
9131 MODE_INT, 1)) != BLKmode)
9132 {
9133 new_rtx = adjust_address_nv (varop, tmode,
9134 BYTES_BIG_ENDIAN ? 0
9135 : count / BITS_PER_UNIT);
9136
9137 varop = gen_rtx_fmt_e (code == ASHIFTRT ? SIGN_EXTEND
9138 : ZERO_EXTEND, mode, new_rtx);
9139 count = 0;
9140 continue;
9141 }
9142 break;
9143
9144 case SUBREG:
9145 /* If VAROP is a SUBREG, strip it as long as the inner operand has
9146 the same number of words as what we've seen so far. Then store
9147 the widest mode in MODE. */
9148 if (subreg_lowpart_p (varop)
9149 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
9150 > GET_MODE_SIZE (GET_MODE (varop)))
9151 && (unsigned int) ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (varop)))
9152 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
9153 == mode_words)
9154 {
9155 varop = SUBREG_REG (varop);
9156 if (GET_MODE_SIZE (GET_MODE (varop)) > GET_MODE_SIZE (mode))
9157 mode = GET_MODE (varop);
9158 continue;
9159 }
9160 break;
9161
9162 case MULT:
9163 /* Some machines use MULT instead of ASHIFT because MULT
9164 is cheaper. But it is still better on those machines to
9165 merge two shifts into one. */
9166 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
9167 && exact_log2 (INTVAL (XEXP (varop, 1))) >= 0)
9168 {
9169 varop
9170 = simplify_gen_binary (ASHIFT, GET_MODE (varop),
9171 XEXP (varop, 0),
9172 GEN_INT (exact_log2 (
9173 INTVAL (XEXP (varop, 1)))));
9174 continue;
9175 }
9176 break;
9177
9178 case UDIV:
9179 /* Similar, for when divides are cheaper. */
9180 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
9181 && exact_log2 (INTVAL (XEXP (varop, 1))) >= 0)
9182 {
9183 varop
9184 = simplify_gen_binary (LSHIFTRT, GET_MODE (varop),
9185 XEXP (varop, 0),
9186 GEN_INT (exact_log2 (
9187 INTVAL (XEXP (varop, 1)))));
9188 continue;
9189 }
9190 break;
9191
9192 case ASHIFTRT:
9193 /* If we are extracting just the sign bit of an arithmetic
9194 right shift, that shift is not needed. However, the sign
9195 bit of a wider mode may be different from what would be
9196 interpreted as the sign bit in a narrower mode, so, if
9197 the result is narrower, don't discard the shift. */
9198 if (code == LSHIFTRT
9199 && count == (GET_MODE_BITSIZE (result_mode) - 1)
9200 && (GET_MODE_BITSIZE (result_mode)
9201 >= GET_MODE_BITSIZE (GET_MODE (varop))))
9202 {
9203 varop = XEXP (varop, 0);
9204 continue;
9205 }
9206
9207 /* ... fall through ... */
9208
9209 case LSHIFTRT:
9210 case ASHIFT:
9211 case ROTATE:
9212 /* Here we have two nested shifts. The result is usually the
9213 AND of a new shift with a mask. We compute the result below. */
9214 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
9215 && INTVAL (XEXP (varop, 1)) >= 0
9216 && INTVAL (XEXP (varop, 1)) < GET_MODE_BITSIZE (GET_MODE (varop))
9217 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
9218 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
9219 && !VECTOR_MODE_P (result_mode))
9220 {
9221 enum rtx_code first_code = GET_CODE (varop);
9222 unsigned int first_count = INTVAL (XEXP (varop, 1));
9223 unsigned HOST_WIDE_INT mask;
9224 rtx mask_rtx;
9225
9226 /* We have one common special case. We can't do any merging if
9227 the inner code is an ASHIFTRT of a smaller mode. However, if
9228 we have (ashift:M1 (subreg:M1 (ashiftrt:M2 FOO C1) 0) C2)
9229 with C2 == GET_MODE_BITSIZE (M1) - GET_MODE_BITSIZE (M2),
9230 we can convert it to
9231 (ashiftrt:M1 (ashift:M1 (and:M1 (subreg:M1 FOO 0 C2) C3) C1).
9232 This simplifies certain SIGN_EXTEND operations. */
9233 if (code == ASHIFT && first_code == ASHIFTRT
9234 && count == (GET_MODE_BITSIZE (result_mode)
9235 - GET_MODE_BITSIZE (GET_MODE (varop))))
9236 {
9237 /* C3 has the low-order C1 bits zero. */
9238
9239 mask = (GET_MODE_MASK (mode)
9240 & ~(((HOST_WIDE_INT) 1 << first_count) - 1));
9241
9242 varop = simplify_and_const_int (NULL_RTX, result_mode,
9243 XEXP (varop, 0), mask);
9244 varop = simplify_shift_const (NULL_RTX, ASHIFT, result_mode,
9245 varop, count);
9246 count = first_count;
9247 code = ASHIFTRT;
9248 continue;
9249 }
9250
9251 /* If this was (ashiftrt (ashift foo C1) C2) and FOO has more
9252 than C1 high-order bits equal to the sign bit, we can convert
9253 this to either an ASHIFT or an ASHIFTRT depending on the
9254 two counts.
9255
9256 We cannot do this if VAROP's mode is not SHIFT_MODE. */
9257
9258 if (code == ASHIFTRT && first_code == ASHIFT
9259 && GET_MODE (varop) == shift_mode
9260 && (num_sign_bit_copies (XEXP (varop, 0), shift_mode)
9261 > first_count))
9262 {
9263 varop = XEXP (varop, 0);
9264 count -= first_count;
9265 if (count < 0)
9266 {
9267 count = -count;
9268 code = ASHIFT;
9269 }
9270
9271 continue;
9272 }
9273
9274 /* There are some cases we can't do. If CODE is ASHIFTRT,
9275 we can only do this if FIRST_CODE is also ASHIFTRT.
9276
9277 We can't do the case when CODE is ROTATE and FIRST_CODE is
9278 ASHIFTRT.
9279
9280 If the mode of this shift is not the mode of the outer shift,
9281 we can't do this if either shift is a right shift or ROTATE.
9282
9283 Finally, we can't do any of these if the mode is too wide
9284 unless the codes are the same.
9285
9286 Handle the case where the shift codes are the same
9287 first. */
9288
9289 if (code == first_code)
9290 {
9291 if (GET_MODE (varop) != result_mode
9292 && (code == ASHIFTRT || code == LSHIFTRT
9293 || code == ROTATE))
9294 break;
9295
9296 count += first_count;
9297 varop = XEXP (varop, 0);
9298 continue;
9299 }
9300
9301 if (code == ASHIFTRT
9302 || (code == ROTATE && first_code == ASHIFTRT)
9303 || GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT
9304 || (GET_MODE (varop) != result_mode
9305 && (first_code == ASHIFTRT || first_code == LSHIFTRT
9306 || first_code == ROTATE
9307 || code == ROTATE)))
9308 break;
9309
9310 /* To compute the mask to apply after the shift, shift the
9311 nonzero bits of the inner shift the same way the
9312 outer shift will. */
9313
9314 mask_rtx = GEN_INT (nonzero_bits (varop, GET_MODE (varop)));
9315
9316 mask_rtx
9317 = simplify_const_binary_operation (code, result_mode, mask_rtx,
9318 GEN_INT (count));
9319
9320 /* Give up if we can't compute an outer operation to use. */
9321 if (mask_rtx == 0
9322 || GET_CODE (mask_rtx) != CONST_INT
9323 || ! merge_outer_ops (&outer_op, &outer_const, AND,
9324 INTVAL (mask_rtx),
9325 result_mode, &complement_p))
9326 break;
9327
9328 /* If the shifts are in the same direction, we add the
9329 counts. Otherwise, we subtract them. */
9330 if ((code == ASHIFTRT || code == LSHIFTRT)
9331 == (first_code == ASHIFTRT || first_code == LSHIFTRT))
9332 count += first_count;
9333 else
9334 count -= first_count;
9335
9336 /* If COUNT is positive, the new shift is usually CODE,
9337 except for the two exceptions below, in which case it is
9338 FIRST_CODE. If the count is negative, FIRST_CODE should
9339 always be used */
9340 if (count > 0
9341 && ((first_code == ROTATE && code == ASHIFT)
9342 || (first_code == ASHIFTRT && code == LSHIFTRT)))
9343 code = first_code;
9344 else if (count < 0)
9345 code = first_code, count = -count;
9346
9347 varop = XEXP (varop, 0);
9348 continue;
9349 }
9350
9351 /* If we have (A << B << C) for any shift, we can convert this to
9352 (A << C << B). This wins if A is a constant. Only try this if
9353 B is not a constant. */
9354
9355 else if (GET_CODE (varop) == code
9356 && GET_CODE (XEXP (varop, 0)) == CONST_INT
9357 && GET_CODE (XEXP (varop, 1)) != CONST_INT)
9358 {
9359 rtx new_rtx = simplify_const_binary_operation (code, mode,
9360 XEXP (varop, 0),
9361 GEN_INT (count));
9362 varop = gen_rtx_fmt_ee (code, mode, new_rtx, XEXP (varop, 1));
9363 count = 0;
9364 continue;
9365 }
9366 break;
9367
9368 case NOT:
9369 if (VECTOR_MODE_P (mode))
9370 break;
9371
9372 /* Make this fit the case below. */
9373 varop = gen_rtx_XOR (mode, XEXP (varop, 0),
9374 GEN_INT (GET_MODE_MASK (mode)));
9375 continue;
9376
9377 case IOR:
9378 case AND:
9379 case XOR:
9380 /* If we have (xshiftrt (ior (plus X (const_int -1)) X) C)
9381 with C the size of VAROP - 1 and the shift is logical if
9382 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
9383 we have an (le X 0) operation. If we have an arithmetic shift
9384 and STORE_FLAG_VALUE is 1 or we have a logical shift with
9385 STORE_FLAG_VALUE of -1, we have a (neg (le X 0)) operation. */
9386
9387 if (GET_CODE (varop) == IOR && GET_CODE (XEXP (varop, 0)) == PLUS
9388 && XEXP (XEXP (varop, 0), 1) == constm1_rtx
9389 && (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
9390 && (code == LSHIFTRT || code == ASHIFTRT)
9391 && count == (GET_MODE_BITSIZE (GET_MODE (varop)) - 1)
9392 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
9393 {
9394 count = 0;
9395 varop = gen_rtx_LE (GET_MODE (varop), XEXP (varop, 1),
9396 const0_rtx);
9397
9398 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
9399 varop = gen_rtx_NEG (GET_MODE (varop), varop);
9400
9401 continue;
9402 }
9403
9404 /* If we have (shift (logical)), move the logical to the outside
9405 to allow it to possibly combine with another logical and the
9406 shift to combine with another shift. This also canonicalizes to
9407 what a ZERO_EXTRACT looks like. Also, some machines have
9408 (and (shift)) insns. */
9409
9410 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
9411 /* We can't do this if we have (ashiftrt (xor)) and the
9412 constant has its sign bit set in shift_mode. */
9413 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
9414 && 0 > trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
9415 shift_mode))
9416 && (new_rtx = simplify_const_binary_operation (code, result_mode,
9417 XEXP (varop, 1),
9418 GEN_INT (count))) != 0
9419 && GET_CODE (new_rtx) == CONST_INT
9420 && merge_outer_ops (&outer_op, &outer_const, GET_CODE (varop),
9421 INTVAL (new_rtx), result_mode, &complement_p))
9422 {
9423 varop = XEXP (varop, 0);
9424 continue;
9425 }
9426
9427 /* If we can't do that, try to simplify the shift in each arm of the
9428 logical expression, make a new logical expression, and apply
9429 the inverse distributive law. This also can't be done
9430 for some (ashiftrt (xor)). */
9431 if (GET_CODE (XEXP (varop, 1)) == CONST_INT
9432 && !(code == ASHIFTRT && GET_CODE (varop) == XOR
9433 && 0 > trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
9434 shift_mode)))
9435 {
9436 rtx lhs = simplify_shift_const (NULL_RTX, code, shift_mode,
9437 XEXP (varop, 0), count);
9438 rtx rhs = simplify_shift_const (NULL_RTX, code, shift_mode,
9439 XEXP (varop, 1), count);
9440
9441 varop = simplify_gen_binary (GET_CODE (varop), shift_mode,
9442 lhs, rhs);
9443 varop = apply_distributive_law (varop);
9444
9445 count = 0;
9446 continue;
9447 }
9448 break;
9449
9450 case EQ:
9451 /* Convert (lshiftrt (eq FOO 0) C) to (xor FOO 1) if STORE_FLAG_VALUE
9452 says that the sign bit can be tested, FOO has mode MODE, C is
9453 GET_MODE_BITSIZE (MODE) - 1, and FOO has only its low-order bit
9454 that may be nonzero. */
9455 if (code == LSHIFTRT
9456 && XEXP (varop, 1) == const0_rtx
9457 && GET_MODE (XEXP (varop, 0)) == result_mode
9458 && count == (GET_MODE_BITSIZE (result_mode) - 1)
9459 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
9460 && STORE_FLAG_VALUE == -1
9461 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
9462 && merge_outer_ops (&outer_op, &outer_const, XOR,
9463 (HOST_WIDE_INT) 1, result_mode,
9464 &complement_p))
9465 {
9466 varop = XEXP (varop, 0);
9467 count = 0;
9468 continue;
9469 }
9470 break;
9471
9472 case NEG:
9473 /* (lshiftrt (neg A) C) where A is either 0 or 1 and C is one less
9474 than the number of bits in the mode is equivalent to A. */
9475 if (code == LSHIFTRT
9476 && count == (GET_MODE_BITSIZE (result_mode) - 1)
9477 && nonzero_bits (XEXP (varop, 0), result_mode) == 1)
9478 {
9479 varop = XEXP (varop, 0);
9480 count = 0;
9481 continue;
9482 }
9483
9484 /* NEG commutes with ASHIFT since it is multiplication. Move the
9485 NEG outside to allow shifts to combine. */
9486 if (code == ASHIFT
9487 && merge_outer_ops (&outer_op, &outer_const, NEG,
9488 (HOST_WIDE_INT) 0, result_mode,
9489 &complement_p))
9490 {
9491 varop = XEXP (varop, 0);
9492 continue;
9493 }
9494 break;
9495
9496 case PLUS:
9497 /* (lshiftrt (plus A -1) C) where A is either 0 or 1 and C
9498 is one less than the number of bits in the mode is
9499 equivalent to (xor A 1). */
9500 if (code == LSHIFTRT
9501 && count == (GET_MODE_BITSIZE (result_mode) - 1)
9502 && XEXP (varop, 1) == constm1_rtx
9503 && nonzero_bits (XEXP (varop, 0), result_mode) == 1
9504 && merge_outer_ops (&outer_op, &outer_const, XOR,
9505 (HOST_WIDE_INT) 1, result_mode,
9506 &complement_p))
9507 {
9508 count = 0;
9509 varop = XEXP (varop, 0);
9510 continue;
9511 }
9512
9513 /* If we have (xshiftrt (plus FOO BAR) C), and the only bits
9514 that might be nonzero in BAR are those being shifted out and those
9515 bits are known zero in FOO, we can replace the PLUS with FOO.
9516 Similarly in the other operand order. This code occurs when
9517 we are computing the size of a variable-size array. */
9518
9519 if ((code == ASHIFTRT || code == LSHIFTRT)
9520 && count < HOST_BITS_PER_WIDE_INT
9521 && nonzero_bits (XEXP (varop, 1), result_mode) >> count == 0
9522 && (nonzero_bits (XEXP (varop, 1), result_mode)
9523 & nonzero_bits (XEXP (varop, 0), result_mode)) == 0)
9524 {
9525 varop = XEXP (varop, 0);
9526 continue;
9527 }
9528 else if ((code == ASHIFTRT || code == LSHIFTRT)
9529 && count < HOST_BITS_PER_WIDE_INT
9530 && GET_MODE_BITSIZE (result_mode) <= HOST_BITS_PER_WIDE_INT
9531 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
9532 >> count)
9533 && 0 == (nonzero_bits (XEXP (varop, 0), result_mode)
9534 & nonzero_bits (XEXP (varop, 1),
9535 result_mode)))
9536 {
9537 varop = XEXP (varop, 1);
9538 continue;
9539 }
9540
9541 /* (ashift (plus foo C) N) is (plus (ashift foo N) C'). */
9542 if (code == ASHIFT
9543 && GET_CODE (XEXP (varop, 1)) == CONST_INT
9544 && (new_rtx = simplify_const_binary_operation (ASHIFT, result_mode,
9545 XEXP (varop, 1),
9546 GEN_INT (count))) != 0
9547 && GET_CODE (new_rtx) == CONST_INT
9548 && merge_outer_ops (&outer_op, &outer_const, PLUS,
9549 INTVAL (new_rtx), result_mode, &complement_p))
9550 {
9551 varop = XEXP (varop, 0);
9552 continue;
9553 }
9554
9555 /* Check for 'PLUS signbit', which is the canonical form of 'XOR
9556 signbit', and attempt to change the PLUS to an XOR and move it to
9557 the outer operation as is done above in the AND/IOR/XOR case
9558 leg for shift(logical). See details in logical handling above
9559 for reasoning in doing so. */
9560 if (code == LSHIFTRT
9561 && GET_CODE (XEXP (varop, 1)) == CONST_INT
9562 && mode_signbit_p (result_mode, XEXP (varop, 1))
9563 && (new_rtx = simplify_const_binary_operation (code, result_mode,
9564 XEXP (varop, 1),
9565 GEN_INT (count))) != 0
9566 && GET_CODE (new_rtx) == CONST_INT
9567 && merge_outer_ops (&outer_op, &outer_const, XOR,
9568 INTVAL (new_rtx), result_mode, &complement_p))
9569 {
9570 varop = XEXP (varop, 0);
9571 continue;
9572 }
9573
9574 break;
9575
9576 case MINUS:
9577 /* If we have (xshiftrt (minus (ashiftrt X C)) X) C)
9578 with C the size of VAROP - 1 and the shift is logical if
9579 STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
9580 we have a (gt X 0) operation. If the shift is arithmetic with
9581 STORE_FLAG_VALUE of 1 or logical with STORE_FLAG_VALUE == -1,
9582 we have a (neg (gt X 0)) operation. */
9583
9584 if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
9585 && GET_CODE (XEXP (varop, 0)) == ASHIFTRT
9586 && count == (GET_MODE_BITSIZE (GET_MODE (varop)) - 1)
9587 && (code == LSHIFTRT || code == ASHIFTRT)
9588 && GET_CODE (XEXP (XEXP (varop, 0), 1)) == CONST_INT
9589 && INTVAL (XEXP (XEXP (varop, 0), 1)) == count
9590 && rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
9591 {
9592 count = 0;
9593 varop = gen_rtx_GT (GET_MODE (varop), XEXP (varop, 1),
9594 const0_rtx);
9595
9596 if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
9597 varop = gen_rtx_NEG (GET_MODE (varop), varop);
9598
9599 continue;
9600 }
9601 break;
9602
9603 case TRUNCATE:
9604 /* Change (lshiftrt (truncate (lshiftrt))) to (truncate (lshiftrt))
9605 if the truncate does not affect the value. */
9606 if (code == LSHIFTRT
9607 && GET_CODE (XEXP (varop, 0)) == LSHIFTRT
9608 && GET_CODE (XEXP (XEXP (varop, 0), 1)) == CONST_INT
9609 && (INTVAL (XEXP (XEXP (varop, 0), 1))
9610 >= (GET_MODE_BITSIZE (GET_MODE (XEXP (varop, 0)))
9611 - GET_MODE_BITSIZE (GET_MODE (varop)))))
9612 {
9613 rtx varop_inner = XEXP (varop, 0);
9614
9615 varop_inner
9616 = gen_rtx_LSHIFTRT (GET_MODE (varop_inner),
9617 XEXP (varop_inner, 0),
9618 GEN_INT
9619 (count + INTVAL (XEXP (varop_inner, 1))));
9620 varop = gen_rtx_TRUNCATE (GET_MODE (varop), varop_inner);
9621 count = 0;
9622 continue;
9623 }
9624 break;
9625
9626 default:
9627 break;
9628 }
9629
9630 break;
9631 }
9632
9633 /* We need to determine what mode to do the shift in. If the shift is
9634 a right shift or ROTATE, we must always do it in the mode it was
9635 originally done in. Otherwise, we can do it in MODE, the widest mode
9636 encountered. The code we care about is that of the shift that will
9637 actually be done, not the shift that was originally requested. */
9638 shift_mode
9639 = (code == ASHIFTRT || code == LSHIFTRT || code == ROTATE
9640 ? result_mode : mode);
9641
9642 /* We have now finished analyzing the shift. The result should be
9643 a shift of type CODE with SHIFT_MODE shifting VAROP COUNT places. If
9644 OUTER_OP is non-UNKNOWN, it is an operation that needs to be applied
9645 to the result of the shift. OUTER_CONST is the relevant constant,
9646 but we must turn off all bits turned off in the shift. */
9647
9648 if (outer_op == UNKNOWN
9649 && orig_code == code && orig_count == count
9650 && varop == orig_varop
9651 && shift_mode == GET_MODE (varop))
9652 return NULL_RTX;
9653
9654 /* Make a SUBREG if necessary. If we can't make it, fail. */
9655 varop = gen_lowpart (shift_mode, varop);
9656 if (varop == NULL_RTX || GET_CODE (varop) == CLOBBER)
9657 return NULL_RTX;
9658
9659 /* If we have an outer operation and we just made a shift, it is
9660 possible that we could have simplified the shift were it not
9661 for the outer operation. So try to do the simplification
9662 recursively. */
9663
9664 if (outer_op != UNKNOWN)
9665 x = simplify_shift_const_1 (code, shift_mode, varop, count);
9666 else
9667 x = NULL_RTX;
9668
9669 if (x == NULL_RTX)
9670 x = simplify_gen_binary (code, shift_mode, varop, GEN_INT (count));
9671
9672 /* If we were doing an LSHIFTRT in a wider mode than it was originally,
9673 turn off all the bits that the shift would have turned off. */
9674 if (orig_code == LSHIFTRT && result_mode != shift_mode)
9675 x = simplify_and_const_int (NULL_RTX, shift_mode, x,
9676 GET_MODE_MASK (result_mode) >> orig_count);
9677
9678 /* Do the remainder of the processing in RESULT_MODE. */
9679 x = gen_lowpart_or_truncate (result_mode, x);
9680
9681 /* If COMPLEMENT_P is set, we have to complement X before doing the outer
9682 operation. */
9683 if (complement_p)
9684 x = simplify_gen_unary (NOT, result_mode, x, result_mode);
9685
9686 if (outer_op != UNKNOWN)
9687 {
9688 if (GET_RTX_CLASS (outer_op) != RTX_UNARY
9689 && GET_MODE_BITSIZE (result_mode) < HOST_BITS_PER_WIDE_INT)
9690 outer_const = trunc_int_for_mode (outer_const, result_mode);
9691
9692 if (outer_op == AND)
9693 x = simplify_and_const_int (NULL_RTX, result_mode, x, outer_const);
9694 else if (outer_op == SET)
9695 {
9696 /* This means that we have determined that the result is
9697 equivalent to a constant. This should be rare. */
9698 if (!side_effects_p (x))
9699 x = GEN_INT (outer_const);
9700 }
9701 else if (GET_RTX_CLASS (outer_op) == RTX_UNARY)
9702 x = simplify_gen_unary (outer_op, result_mode, x, result_mode);
9703 else
9704 x = simplify_gen_binary (outer_op, result_mode, x,
9705 GEN_INT (outer_const));
9706 }
9707
9708 return x;
9709 }
9710
9711 /* Simplify a shift of VAROP by COUNT bits. CODE says what kind of shift.
9712 The result of the shift is RESULT_MODE. If we cannot simplify it,
9713 return X or, if it is NULL, synthesize the expression with
9714 simplify_gen_binary. Otherwise, return a simplified value.
9715
9716 The shift is normally computed in the widest mode we find in VAROP, as
9717 long as it isn't a different number of words than RESULT_MODE. Exceptions
9718 are ASHIFTRT and ROTATE, which are always done in their original mode. */
9719
9720 static rtx
9721 simplify_shift_const (rtx x, enum rtx_code code, enum machine_mode result_mode,
9722 rtx varop, int count)
9723 {
9724 rtx tem = simplify_shift_const_1 (code, result_mode, varop, count);
9725 if (tem)
9726 return tem;
9727
9728 if (!x)
9729 x = simplify_gen_binary (code, GET_MODE (varop), varop, GEN_INT (count));
9730 if (GET_MODE (x) != result_mode)
9731 x = gen_lowpart (result_mode, x);
9732 return x;
9733 }
9734
9735
9736 /* Like recog, but we receive the address of a pointer to a new pattern.
9737 We try to match the rtx that the pointer points to.
9738 If that fails, we may try to modify or replace the pattern,
9739 storing the replacement into the same pointer object.
9740
9741 Modifications include deletion or addition of CLOBBERs.
9742
9743 PNOTES is a pointer to a location where any REG_UNUSED notes added for
9744 the CLOBBERs are placed.
9745
9746 The value is the final insn code from the pattern ultimately matched,
9747 or -1. */
9748
9749 static int
9750 recog_for_combine (rtx *pnewpat, rtx insn, rtx *pnotes)
9751 {
9752 rtx pat = *pnewpat;
9753 int insn_code_number;
9754 int num_clobbers_to_add = 0;
9755 int i;
9756 rtx notes = 0;
9757 rtx old_notes, old_pat;
9758
9759 /* If PAT is a PARALLEL, check to see if it contains the CLOBBER
9760 we use to indicate that something didn't match. If we find such a
9761 thing, force rejection. */
9762 if (GET_CODE (pat) == PARALLEL)
9763 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
9764 if (GET_CODE (XVECEXP (pat, 0, i)) == CLOBBER
9765 && XEXP (XVECEXP (pat, 0, i), 0) == const0_rtx)
9766 return -1;
9767
9768 old_pat = PATTERN (insn);
9769 old_notes = REG_NOTES (insn);
9770 PATTERN (insn) = pat;
9771 REG_NOTES (insn) = 0;
9772
9773 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
9774 if (dump_file && (dump_flags & TDF_DETAILS))
9775 {
9776 if (insn_code_number < 0)
9777 fputs ("Failed to match this instruction:\n", dump_file);
9778 else
9779 fputs ("Successfully matched this instruction:\n", dump_file);
9780 print_rtl_single (dump_file, pat);
9781 }
9782
9783 /* If it isn't, there is the possibility that we previously had an insn
9784 that clobbered some register as a side effect, but the combined
9785 insn doesn't need to do that. So try once more without the clobbers
9786 unless this represents an ASM insn. */
9787
9788 if (insn_code_number < 0 && ! check_asm_operands (pat)
9789 && GET_CODE (pat) == PARALLEL)
9790 {
9791 int pos;
9792
9793 for (pos = 0, i = 0; i < XVECLEN (pat, 0); i++)
9794 if (GET_CODE (XVECEXP (pat, 0, i)) != CLOBBER)
9795 {
9796 if (i != pos)
9797 SUBST (XVECEXP (pat, 0, pos), XVECEXP (pat, 0, i));
9798 pos++;
9799 }
9800
9801 SUBST_INT (XVECLEN (pat, 0), pos);
9802
9803 if (pos == 1)
9804 pat = XVECEXP (pat, 0, 0);
9805
9806 PATTERN (insn) = pat;
9807 insn_code_number = recog (pat, insn, &num_clobbers_to_add);
9808 if (dump_file && (dump_flags & TDF_DETAILS))
9809 {
9810 if (insn_code_number < 0)
9811 fputs ("Failed to match this instruction:\n", dump_file);
9812 else
9813 fputs ("Successfully matched this instruction:\n", dump_file);
9814 print_rtl_single (dump_file, pat);
9815 }
9816 }
9817 PATTERN (insn) = old_pat;
9818 REG_NOTES (insn) = old_notes;
9819
9820 /* Recognize all noop sets, these will be killed by followup pass. */
9821 if (insn_code_number < 0 && GET_CODE (pat) == SET && set_noop_p (pat))
9822 insn_code_number = NOOP_MOVE_INSN_CODE, num_clobbers_to_add = 0;
9823
9824 /* If we had any clobbers to add, make a new pattern than contains
9825 them. Then check to make sure that all of them are dead. */
9826 if (num_clobbers_to_add)
9827 {
9828 rtx newpat = gen_rtx_PARALLEL (VOIDmode,
9829 rtvec_alloc (GET_CODE (pat) == PARALLEL
9830 ? (XVECLEN (pat, 0)
9831 + num_clobbers_to_add)
9832 : num_clobbers_to_add + 1));
9833
9834 if (GET_CODE (pat) == PARALLEL)
9835 for (i = 0; i < XVECLEN (pat, 0); i++)
9836 XVECEXP (newpat, 0, i) = XVECEXP (pat, 0, i);
9837 else
9838 XVECEXP (newpat, 0, 0) = pat;
9839
9840 add_clobbers (newpat, insn_code_number);
9841
9842 for (i = XVECLEN (newpat, 0) - num_clobbers_to_add;
9843 i < XVECLEN (newpat, 0); i++)
9844 {
9845 if (REG_P (XEXP (XVECEXP (newpat, 0, i), 0))
9846 && ! reg_dead_at_p (XEXP (XVECEXP (newpat, 0, i), 0), insn))
9847 return -1;
9848 if (GET_CODE (XEXP (XVECEXP (newpat, 0, i), 0)) != SCRATCH)
9849 {
9850 gcc_assert (REG_P (XEXP (XVECEXP (newpat, 0, i), 0)));
9851 notes = gen_rtx_EXPR_LIST (REG_UNUSED,
9852 XEXP (XVECEXP (newpat, 0, i), 0), notes);
9853 }
9854 }
9855 pat = newpat;
9856 }
9857
9858 *pnewpat = pat;
9859 *pnotes = notes;
9860
9861 return insn_code_number;
9862 }
9863
9864 /* Like gen_lowpart_general but for use by combine. In combine it
9865 is not possible to create any new pseudoregs. However, it is
9866 safe to create invalid memory addresses, because combine will
9867 try to recognize them and all they will do is make the combine
9868 attempt fail.
9869
9870 If for some reason this cannot do its job, an rtx
9871 (clobber (const_int 0)) is returned.
9872 An insn containing that will not be recognized. */
9873
9874 static rtx
9875 gen_lowpart_for_combine (enum machine_mode omode, rtx x)
9876 {
9877 enum machine_mode imode = GET_MODE (x);
9878 unsigned int osize = GET_MODE_SIZE (omode);
9879 unsigned int isize = GET_MODE_SIZE (imode);
9880 rtx result;
9881
9882 if (omode == imode)
9883 return x;
9884
9885 /* Return identity if this is a CONST or symbolic reference. */
9886 if (omode == Pmode
9887 && (GET_CODE (x) == CONST
9888 || GET_CODE (x) == SYMBOL_REF
9889 || GET_CODE (x) == LABEL_REF))
9890 return x;
9891
9892 /* We can only support MODE being wider than a word if X is a
9893 constant integer or has a mode the same size. */
9894 if (GET_MODE_SIZE (omode) > UNITS_PER_WORD
9895 && ! ((imode == VOIDmode
9896 && (GET_CODE (x) == CONST_INT
9897 || GET_CODE (x) == CONST_DOUBLE))
9898 || isize == osize))
9899 goto fail;
9900
9901 /* X might be a paradoxical (subreg (mem)). In that case, gen_lowpart
9902 won't know what to do. So we will strip off the SUBREG here and
9903 process normally. */
9904 if (GET_CODE (x) == SUBREG && MEM_P (SUBREG_REG (x)))
9905 {
9906 x = SUBREG_REG (x);
9907
9908 /* For use in case we fall down into the address adjustments
9909 further below, we need to adjust the known mode and size of
9910 x; imode and isize, since we just adjusted x. */
9911 imode = GET_MODE (x);
9912
9913 if (imode == omode)
9914 return x;
9915
9916 isize = GET_MODE_SIZE (imode);
9917 }
9918
9919 result = gen_lowpart_common (omode, x);
9920
9921 if (result)
9922 return result;
9923
9924 if (MEM_P (x))
9925 {
9926 int offset = 0;
9927
9928 /* Refuse to work on a volatile memory ref or one with a mode-dependent
9929 address. */
9930 if (MEM_VOLATILE_P (x) || mode_dependent_address_p (XEXP (x, 0)))
9931 goto fail;
9932
9933 /* If we want to refer to something bigger than the original memref,
9934 generate a paradoxical subreg instead. That will force a reload
9935 of the original memref X. */
9936 if (isize < osize)
9937 return gen_rtx_SUBREG (omode, x, 0);
9938
9939 if (WORDS_BIG_ENDIAN)
9940 offset = MAX (isize, UNITS_PER_WORD) - MAX (osize, UNITS_PER_WORD);
9941
9942 /* Adjust the address so that the address-after-the-data is
9943 unchanged. */
9944 if (BYTES_BIG_ENDIAN)
9945 offset -= MIN (UNITS_PER_WORD, osize) - MIN (UNITS_PER_WORD, isize);
9946
9947 return adjust_address_nv (x, omode, offset);
9948 }
9949
9950 /* If X is a comparison operator, rewrite it in a new mode. This
9951 probably won't match, but may allow further simplifications. */
9952 else if (COMPARISON_P (x))
9953 return gen_rtx_fmt_ee (GET_CODE (x), omode, XEXP (x, 0), XEXP (x, 1));
9954
9955 /* If we couldn't simplify X any other way, just enclose it in a
9956 SUBREG. Normally, this SUBREG won't match, but some patterns may
9957 include an explicit SUBREG or we may simplify it further in combine. */
9958 else
9959 {
9960 int offset = 0;
9961 rtx res;
9962
9963 offset = subreg_lowpart_offset (omode, imode);
9964 if (imode == VOIDmode)
9965 {
9966 imode = int_mode_for_mode (omode);
9967 x = gen_lowpart_common (imode, x);
9968 if (x == NULL)
9969 goto fail;
9970 }
9971 res = simplify_gen_subreg (omode, x, imode, offset);
9972 if (res)
9973 return res;
9974 }
9975
9976 fail:
9977 return gen_rtx_CLOBBER (omode, const0_rtx);
9978 }
9979
9980 /* Simplify a comparison between *POP0 and *POP1 where CODE is the
9981 comparison code that will be tested.
9982
9983 The result is a possibly different comparison code to use. *POP0 and
9984 *POP1 may be updated.
9985
9986 It is possible that we might detect that a comparison is either always
9987 true or always false. However, we do not perform general constant
9988 folding in combine, so this knowledge isn't useful. Such tautologies
9989 should have been detected earlier. Hence we ignore all such cases. */
9990
9991 static enum rtx_code
9992 simplify_comparison (enum rtx_code code, rtx *pop0, rtx *pop1)
9993 {
9994 rtx op0 = *pop0;
9995 rtx op1 = *pop1;
9996 rtx tem, tem1;
9997 int i;
9998 enum machine_mode mode, tmode;
9999
10000 /* Try a few ways of applying the same transformation to both operands. */
10001 while (1)
10002 {
10003 #ifndef WORD_REGISTER_OPERATIONS
10004 /* The test below this one won't handle SIGN_EXTENDs on these machines,
10005 so check specially. */
10006 if (code != GTU && code != GEU && code != LTU && code != LEU
10007 && GET_CODE (op0) == ASHIFTRT && GET_CODE (op1) == ASHIFTRT
10008 && GET_CODE (XEXP (op0, 0)) == ASHIFT
10009 && GET_CODE (XEXP (op1, 0)) == ASHIFT
10010 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == SUBREG
10011 && GET_CODE (XEXP (XEXP (op1, 0), 0)) == SUBREG
10012 && (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0)))
10013 == GET_MODE (SUBREG_REG (XEXP (XEXP (op1, 0), 0))))
10014 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10015 && XEXP (op0, 1) == XEXP (op1, 1)
10016 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
10017 && XEXP (op0, 1) == XEXP (XEXP (op1, 0), 1)
10018 && (INTVAL (XEXP (op0, 1))
10019 == (GET_MODE_BITSIZE (GET_MODE (op0))
10020 - (GET_MODE_BITSIZE
10021 (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0))))))))
10022 {
10023 op0 = SUBREG_REG (XEXP (XEXP (op0, 0), 0));
10024 op1 = SUBREG_REG (XEXP (XEXP (op1, 0), 0));
10025 }
10026 #endif
10027
10028 /* If both operands are the same constant shift, see if we can ignore the
10029 shift. We can if the shift is a rotate or if the bits shifted out of
10030 this shift are known to be zero for both inputs and if the type of
10031 comparison is compatible with the shift. */
10032 if (GET_CODE (op0) == GET_CODE (op1)
10033 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
10034 && ((GET_CODE (op0) == ROTATE && (code == NE || code == EQ))
10035 || ((GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFT)
10036 && (code != GT && code != LT && code != GE && code != LE))
10037 || (GET_CODE (op0) == ASHIFTRT
10038 && (code != GTU && code != LTU
10039 && code != GEU && code != LEU)))
10040 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10041 && INTVAL (XEXP (op0, 1)) >= 0
10042 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
10043 && XEXP (op0, 1) == XEXP (op1, 1))
10044 {
10045 enum machine_mode mode = GET_MODE (op0);
10046 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
10047 int shift_count = INTVAL (XEXP (op0, 1));
10048
10049 if (GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFTRT)
10050 mask &= (mask >> shift_count) << shift_count;
10051 else if (GET_CODE (op0) == ASHIFT)
10052 mask = (mask & (mask << shift_count)) >> shift_count;
10053
10054 if ((nonzero_bits (XEXP (op0, 0), mode) & ~mask) == 0
10055 && (nonzero_bits (XEXP (op1, 0), mode) & ~mask) == 0)
10056 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0);
10057 else
10058 break;
10059 }
10060
10061 /* If both operands are AND's of a paradoxical SUBREG by constant, the
10062 SUBREGs are of the same mode, and, in both cases, the AND would
10063 be redundant if the comparison was done in the narrower mode,
10064 do the comparison in the narrower mode (e.g., we are AND'ing with 1
10065 and the operand's possibly nonzero bits are 0xffffff01; in that case
10066 if we only care about QImode, we don't need the AND). This case
10067 occurs if the output mode of an scc insn is not SImode and
10068 STORE_FLAG_VALUE == 1 (e.g., the 386).
10069
10070 Similarly, check for a case where the AND's are ZERO_EXTEND
10071 operations from some narrower mode even though a SUBREG is not
10072 present. */
10073
10074 else if (GET_CODE (op0) == AND && GET_CODE (op1) == AND
10075 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10076 && GET_CODE (XEXP (op1, 1)) == CONST_INT)
10077 {
10078 rtx inner_op0 = XEXP (op0, 0);
10079 rtx inner_op1 = XEXP (op1, 0);
10080 HOST_WIDE_INT c0 = INTVAL (XEXP (op0, 1));
10081 HOST_WIDE_INT c1 = INTVAL (XEXP (op1, 1));
10082 int changed = 0;
10083
10084 if (GET_CODE (inner_op0) == SUBREG && GET_CODE (inner_op1) == SUBREG
10085 && (GET_MODE_SIZE (GET_MODE (inner_op0))
10086 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (inner_op0))))
10087 && (GET_MODE (SUBREG_REG (inner_op0))
10088 == GET_MODE (SUBREG_REG (inner_op1)))
10089 && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (inner_op0)))
10090 <= HOST_BITS_PER_WIDE_INT)
10091 && (0 == ((~c0) & nonzero_bits (SUBREG_REG (inner_op0),
10092 GET_MODE (SUBREG_REG (inner_op0)))))
10093 && (0 == ((~c1) & nonzero_bits (SUBREG_REG (inner_op1),
10094 GET_MODE (SUBREG_REG (inner_op1))))))
10095 {
10096 op0 = SUBREG_REG (inner_op0);
10097 op1 = SUBREG_REG (inner_op1);
10098
10099 /* The resulting comparison is always unsigned since we masked
10100 off the original sign bit. */
10101 code = unsigned_condition (code);
10102
10103 changed = 1;
10104 }
10105
10106 else if (c0 == c1)
10107 for (tmode = GET_CLASS_NARROWEST_MODE
10108 (GET_MODE_CLASS (GET_MODE (op0)));
10109 tmode != GET_MODE (op0); tmode = GET_MODE_WIDER_MODE (tmode))
10110 if ((unsigned HOST_WIDE_INT) c0 == GET_MODE_MASK (tmode))
10111 {
10112 op0 = gen_lowpart (tmode, inner_op0);
10113 op1 = gen_lowpart (tmode, inner_op1);
10114 code = unsigned_condition (code);
10115 changed = 1;
10116 break;
10117 }
10118
10119 if (! changed)
10120 break;
10121 }
10122
10123 /* If both operands are NOT, we can strip off the outer operation
10124 and adjust the comparison code for swapped operands; similarly for
10125 NEG, except that this must be an equality comparison. */
10126 else if ((GET_CODE (op0) == NOT && GET_CODE (op1) == NOT)
10127 || (GET_CODE (op0) == NEG && GET_CODE (op1) == NEG
10128 && (code == EQ || code == NE)))
10129 op0 = XEXP (op0, 0), op1 = XEXP (op1, 0), code = swap_condition (code);
10130
10131 else
10132 break;
10133 }
10134
10135 /* If the first operand is a constant, swap the operands and adjust the
10136 comparison code appropriately, but don't do this if the second operand
10137 is already a constant integer. */
10138 if (swap_commutative_operands_p (op0, op1))
10139 {
10140 tem = op0, op0 = op1, op1 = tem;
10141 code = swap_condition (code);
10142 }
10143
10144 /* We now enter a loop during which we will try to simplify the comparison.
10145 For the most part, we only are concerned with comparisons with zero,
10146 but some things may really be comparisons with zero but not start
10147 out looking that way. */
10148
10149 while (GET_CODE (op1) == CONST_INT)
10150 {
10151 enum machine_mode mode = GET_MODE (op0);
10152 unsigned int mode_width = GET_MODE_BITSIZE (mode);
10153 unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
10154 int equality_comparison_p;
10155 int sign_bit_comparison_p;
10156 int unsigned_comparison_p;
10157 HOST_WIDE_INT const_op;
10158
10159 /* We only want to handle integral modes. This catches VOIDmode,
10160 CCmode, and the floating-point modes. An exception is that we
10161 can handle VOIDmode if OP0 is a COMPARE or a comparison
10162 operation. */
10163
10164 if (GET_MODE_CLASS (mode) != MODE_INT
10165 && ! (mode == VOIDmode
10166 && (GET_CODE (op0) == COMPARE || COMPARISON_P (op0))))
10167 break;
10168
10169 /* Get the constant we are comparing against and turn off all bits
10170 not on in our mode. */
10171 const_op = INTVAL (op1);
10172 if (mode != VOIDmode)
10173 const_op = trunc_int_for_mode (const_op, mode);
10174 op1 = GEN_INT (const_op);
10175
10176 /* If we are comparing against a constant power of two and the value
10177 being compared can only have that single bit nonzero (e.g., it was
10178 `and'ed with that bit), we can replace this with a comparison
10179 with zero. */
10180 if (const_op
10181 && (code == EQ || code == NE || code == GE || code == GEU
10182 || code == LT || code == LTU)
10183 && mode_width <= HOST_BITS_PER_WIDE_INT
10184 && exact_log2 (const_op) >= 0
10185 && nonzero_bits (op0, mode) == (unsigned HOST_WIDE_INT) const_op)
10186 {
10187 code = (code == EQ || code == GE || code == GEU ? NE : EQ);
10188 op1 = const0_rtx, const_op = 0;
10189 }
10190
10191 /* Similarly, if we are comparing a value known to be either -1 or
10192 0 with -1, change it to the opposite comparison against zero. */
10193
10194 if (const_op == -1
10195 && (code == EQ || code == NE || code == GT || code == LE
10196 || code == GEU || code == LTU)
10197 && num_sign_bit_copies (op0, mode) == mode_width)
10198 {
10199 code = (code == EQ || code == LE || code == GEU ? NE : EQ);
10200 op1 = const0_rtx, const_op = 0;
10201 }
10202
10203 /* Do some canonicalizations based on the comparison code. We prefer
10204 comparisons against zero and then prefer equality comparisons.
10205 If we can reduce the size of a constant, we will do that too. */
10206
10207 switch (code)
10208 {
10209 case LT:
10210 /* < C is equivalent to <= (C - 1) */
10211 if (const_op > 0)
10212 {
10213 const_op -= 1;
10214 op1 = GEN_INT (const_op);
10215 code = LE;
10216 /* ... fall through to LE case below. */
10217 }
10218 else
10219 break;
10220
10221 case LE:
10222 /* <= C is equivalent to < (C + 1); we do this for C < 0 */
10223 if (const_op < 0)
10224 {
10225 const_op += 1;
10226 op1 = GEN_INT (const_op);
10227 code = LT;
10228 }
10229
10230 /* If we are doing a <= 0 comparison on a value known to have
10231 a zero sign bit, we can replace this with == 0. */
10232 else if (const_op == 0
10233 && mode_width <= HOST_BITS_PER_WIDE_INT
10234 && (nonzero_bits (op0, mode)
10235 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)
10236 code = EQ;
10237 break;
10238
10239 case GE:
10240 /* >= C is equivalent to > (C - 1). */
10241 if (const_op > 0)
10242 {
10243 const_op -= 1;
10244 op1 = GEN_INT (const_op);
10245 code = GT;
10246 /* ... fall through to GT below. */
10247 }
10248 else
10249 break;
10250
10251 case GT:
10252 /* > C is equivalent to >= (C + 1); we do this for C < 0. */
10253 if (const_op < 0)
10254 {
10255 const_op += 1;
10256 op1 = GEN_INT (const_op);
10257 code = GE;
10258 }
10259
10260 /* If we are doing a > 0 comparison on a value known to have
10261 a zero sign bit, we can replace this with != 0. */
10262 else if (const_op == 0
10263 && mode_width <= HOST_BITS_PER_WIDE_INT
10264 && (nonzero_bits (op0, mode)
10265 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)
10266 code = NE;
10267 break;
10268
10269 case LTU:
10270 /* < C is equivalent to <= (C - 1). */
10271 if (const_op > 0)
10272 {
10273 const_op -= 1;
10274 op1 = GEN_INT (const_op);
10275 code = LEU;
10276 /* ... fall through ... */
10277 }
10278
10279 /* (unsigned) < 0x80000000 is equivalent to >= 0. */
10280 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
10281 && (const_op == (HOST_WIDE_INT) 1 << (mode_width - 1)))
10282 {
10283 const_op = 0, op1 = const0_rtx;
10284 code = GE;
10285 break;
10286 }
10287 else
10288 break;
10289
10290 case LEU:
10291 /* unsigned <= 0 is equivalent to == 0 */
10292 if (const_op == 0)
10293 code = EQ;
10294
10295 /* (unsigned) <= 0x7fffffff is equivalent to >= 0. */
10296 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
10297 && (const_op == ((HOST_WIDE_INT) 1 << (mode_width - 1)) - 1))
10298 {
10299 const_op = 0, op1 = const0_rtx;
10300 code = GE;
10301 }
10302 break;
10303
10304 case GEU:
10305 /* >= C is equivalent to > (C - 1). */
10306 if (const_op > 1)
10307 {
10308 const_op -= 1;
10309 op1 = GEN_INT (const_op);
10310 code = GTU;
10311 /* ... fall through ... */
10312 }
10313
10314 /* (unsigned) >= 0x80000000 is equivalent to < 0. */
10315 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
10316 && (const_op == (HOST_WIDE_INT) 1 << (mode_width - 1)))
10317 {
10318 const_op = 0, op1 = const0_rtx;
10319 code = LT;
10320 break;
10321 }
10322 else
10323 break;
10324
10325 case GTU:
10326 /* unsigned > 0 is equivalent to != 0 */
10327 if (const_op == 0)
10328 code = NE;
10329
10330 /* (unsigned) > 0x7fffffff is equivalent to < 0. */
10331 else if ((mode_width <= HOST_BITS_PER_WIDE_INT)
10332 && (const_op == ((HOST_WIDE_INT) 1 << (mode_width - 1)) - 1))
10333 {
10334 const_op = 0, op1 = const0_rtx;
10335 code = LT;
10336 }
10337 break;
10338
10339 default:
10340 break;
10341 }
10342
10343 /* Compute some predicates to simplify code below. */
10344
10345 equality_comparison_p = (code == EQ || code == NE);
10346 sign_bit_comparison_p = ((code == LT || code == GE) && const_op == 0);
10347 unsigned_comparison_p = (code == LTU || code == LEU || code == GTU
10348 || code == GEU);
10349
10350 /* If this is a sign bit comparison and we can do arithmetic in
10351 MODE, say that we will only be needing the sign bit of OP0. */
10352 if (sign_bit_comparison_p
10353 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
10354 op0 = force_to_mode (op0, mode,
10355 ((HOST_WIDE_INT) 1
10356 << (GET_MODE_BITSIZE (mode) - 1)),
10357 0);
10358
10359 /* Now try cases based on the opcode of OP0. If none of the cases
10360 does a "continue", we exit this loop immediately after the
10361 switch. */
10362
10363 switch (GET_CODE (op0))
10364 {
10365 case ZERO_EXTRACT:
10366 /* If we are extracting a single bit from a variable position in
10367 a constant that has only a single bit set and are comparing it
10368 with zero, we can convert this into an equality comparison
10369 between the position and the location of the single bit. */
10370 /* Except we can't if SHIFT_COUNT_TRUNCATED is set, since we might
10371 have already reduced the shift count modulo the word size. */
10372 if (!SHIFT_COUNT_TRUNCATED
10373 && GET_CODE (XEXP (op0, 0)) == CONST_INT
10374 && XEXP (op0, 1) == const1_rtx
10375 && equality_comparison_p && const_op == 0
10376 && (i = exact_log2 (INTVAL (XEXP (op0, 0)))) >= 0)
10377 {
10378 if (BITS_BIG_ENDIAN)
10379 {
10380 enum machine_mode new_mode
10381 = mode_for_extraction (EP_extzv, 1);
10382 if (new_mode == MAX_MACHINE_MODE)
10383 i = BITS_PER_WORD - 1 - i;
10384 else
10385 {
10386 mode = new_mode;
10387 i = (GET_MODE_BITSIZE (mode) - 1 - i);
10388 }
10389 }
10390
10391 op0 = XEXP (op0, 2);
10392 op1 = GEN_INT (i);
10393 const_op = i;
10394
10395 /* Result is nonzero iff shift count is equal to I. */
10396 code = reverse_condition (code);
10397 continue;
10398 }
10399
10400 /* ... fall through ... */
10401
10402 case SIGN_EXTRACT:
10403 tem = expand_compound_operation (op0);
10404 if (tem != op0)
10405 {
10406 op0 = tem;
10407 continue;
10408 }
10409 break;
10410
10411 case NOT:
10412 /* If testing for equality, we can take the NOT of the constant. */
10413 if (equality_comparison_p
10414 && (tem = simplify_unary_operation (NOT, mode, op1, mode)) != 0)
10415 {
10416 op0 = XEXP (op0, 0);
10417 op1 = tem;
10418 continue;
10419 }
10420
10421 /* If just looking at the sign bit, reverse the sense of the
10422 comparison. */
10423 if (sign_bit_comparison_p)
10424 {
10425 op0 = XEXP (op0, 0);
10426 code = (code == GE ? LT : GE);
10427 continue;
10428 }
10429 break;
10430
10431 case NEG:
10432 /* If testing for equality, we can take the NEG of the constant. */
10433 if (equality_comparison_p
10434 && (tem = simplify_unary_operation (NEG, mode, op1, mode)) != 0)
10435 {
10436 op0 = XEXP (op0, 0);
10437 op1 = tem;
10438 continue;
10439 }
10440
10441 /* The remaining cases only apply to comparisons with zero. */
10442 if (const_op != 0)
10443 break;
10444
10445 /* When X is ABS or is known positive,
10446 (neg X) is < 0 if and only if X != 0. */
10447
10448 if (sign_bit_comparison_p
10449 && (GET_CODE (XEXP (op0, 0)) == ABS
10450 || (mode_width <= HOST_BITS_PER_WIDE_INT
10451 && (nonzero_bits (XEXP (op0, 0), mode)
10452 & ((HOST_WIDE_INT) 1 << (mode_width - 1))) == 0)))
10453 {
10454 op0 = XEXP (op0, 0);
10455 code = (code == LT ? NE : EQ);
10456 continue;
10457 }
10458
10459 /* If we have NEG of something whose two high-order bits are the
10460 same, we know that "(-a) < 0" is equivalent to "a > 0". */
10461 if (num_sign_bit_copies (op0, mode) >= 2)
10462 {
10463 op0 = XEXP (op0, 0);
10464 code = swap_condition (code);
10465 continue;
10466 }
10467 break;
10468
10469 case ROTATE:
10470 /* If we are testing equality and our count is a constant, we
10471 can perform the inverse operation on our RHS. */
10472 if (equality_comparison_p && GET_CODE (XEXP (op0, 1)) == CONST_INT
10473 && (tem = simplify_binary_operation (ROTATERT, mode,
10474 op1, XEXP (op0, 1))) != 0)
10475 {
10476 op0 = XEXP (op0, 0);
10477 op1 = tem;
10478 continue;
10479 }
10480
10481 /* If we are doing a < 0 or >= 0 comparison, it means we are testing
10482 a particular bit. Convert it to an AND of a constant of that
10483 bit. This will be converted into a ZERO_EXTRACT. */
10484 if (const_op == 0 && sign_bit_comparison_p
10485 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10486 && mode_width <= HOST_BITS_PER_WIDE_INT)
10487 {
10488 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
10489 ((HOST_WIDE_INT) 1
10490 << (mode_width - 1
10491 - INTVAL (XEXP (op0, 1)))));
10492 code = (code == LT ? NE : EQ);
10493 continue;
10494 }
10495
10496 /* Fall through. */
10497
10498 case ABS:
10499 /* ABS is ignorable inside an equality comparison with zero. */
10500 if (const_op == 0 && equality_comparison_p)
10501 {
10502 op0 = XEXP (op0, 0);
10503 continue;
10504 }
10505 break;
10506
10507 case SIGN_EXTEND:
10508 /* Can simplify (compare (zero/sign_extend FOO) CONST) to
10509 (compare FOO CONST) if CONST fits in FOO's mode and we
10510 are either testing inequality or have an unsigned
10511 comparison with ZERO_EXTEND or a signed comparison with
10512 SIGN_EXTEND. But don't do it if we don't have a compare
10513 insn of the given mode, since we'd have to revert it
10514 later on, and then we wouldn't know whether to sign- or
10515 zero-extend. */
10516 mode = GET_MODE (XEXP (op0, 0));
10517 if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
10518 && ! unsigned_comparison_p
10519 && (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
10520 && ((unsigned HOST_WIDE_INT) const_op
10521 < (((unsigned HOST_WIDE_INT) 1
10522 << (GET_MODE_BITSIZE (mode) - 1))))
10523 && optab_handler (cmp_optab, mode)->insn_code != CODE_FOR_nothing)
10524 {
10525 op0 = XEXP (op0, 0);
10526 continue;
10527 }
10528 break;
10529
10530 case SUBREG:
10531 /* Check for the case where we are comparing A - C1 with C2, that is
10532
10533 (subreg:MODE (plus (A) (-C1))) op (C2)
10534
10535 with C1 a constant, and try to lift the SUBREG, i.e. to do the
10536 comparison in the wider mode. One of the following two conditions
10537 must be true in order for this to be valid:
10538
10539 1. The mode extension results in the same bit pattern being added
10540 on both sides and the comparison is equality or unsigned. As
10541 C2 has been truncated to fit in MODE, the pattern can only be
10542 all 0s or all 1s.
10543
10544 2. The mode extension results in the sign bit being copied on
10545 each side.
10546
10547 The difficulty here is that we have predicates for A but not for
10548 (A - C1) so we need to check that C1 is within proper bounds so
10549 as to perturbate A as little as possible. */
10550
10551 if (mode_width <= HOST_BITS_PER_WIDE_INT
10552 && subreg_lowpart_p (op0)
10553 && GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0))) > mode_width
10554 && GET_CODE (SUBREG_REG (op0)) == PLUS
10555 && GET_CODE (XEXP (SUBREG_REG (op0), 1)) == CONST_INT)
10556 {
10557 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
10558 rtx a = XEXP (SUBREG_REG (op0), 0);
10559 HOST_WIDE_INT c1 = -INTVAL (XEXP (SUBREG_REG (op0), 1));
10560
10561 if ((c1 > 0
10562 && (unsigned HOST_WIDE_INT) c1
10563 < (unsigned HOST_WIDE_INT) 1 << (mode_width - 1)
10564 && (equality_comparison_p || unsigned_comparison_p)
10565 /* (A - C1) zero-extends if it is positive and sign-extends
10566 if it is negative, C2 both zero- and sign-extends. */
10567 && ((0 == (nonzero_bits (a, inner_mode)
10568 & ~GET_MODE_MASK (mode))
10569 && const_op >= 0)
10570 /* (A - C1) sign-extends if it is positive and 1-extends
10571 if it is negative, C2 both sign- and 1-extends. */
10572 || (num_sign_bit_copies (a, inner_mode)
10573 > (unsigned int) (GET_MODE_BITSIZE (inner_mode)
10574 - mode_width)
10575 && const_op < 0)))
10576 || ((unsigned HOST_WIDE_INT) c1
10577 < (unsigned HOST_WIDE_INT) 1 << (mode_width - 2)
10578 /* (A - C1) always sign-extends, like C2. */
10579 && num_sign_bit_copies (a, inner_mode)
10580 > (unsigned int) (GET_MODE_BITSIZE (inner_mode)
10581 - (mode_width - 1))))
10582 {
10583 op0 = SUBREG_REG (op0);
10584 continue;
10585 }
10586 }
10587
10588 /* If the inner mode is narrower and we are extracting the low part,
10589 we can treat the SUBREG as if it were a ZERO_EXTEND. */
10590 if (subreg_lowpart_p (op0)
10591 && GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0))) < mode_width)
10592 /* Fall through */ ;
10593 else
10594 break;
10595
10596 /* ... fall through ... */
10597
10598 case ZERO_EXTEND:
10599 mode = GET_MODE (XEXP (op0, 0));
10600 if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
10601 && (unsigned_comparison_p || equality_comparison_p)
10602 && (GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
10603 && ((unsigned HOST_WIDE_INT) const_op < GET_MODE_MASK (mode))
10604 && optab_handler (cmp_optab, mode)->insn_code != CODE_FOR_nothing)
10605 {
10606 op0 = XEXP (op0, 0);
10607 continue;
10608 }
10609 break;
10610
10611 case PLUS:
10612 /* (eq (plus X A) B) -> (eq X (minus B A)). We can only do
10613 this for equality comparisons due to pathological cases involving
10614 overflows. */
10615 if (equality_comparison_p
10616 && 0 != (tem = simplify_binary_operation (MINUS, mode,
10617 op1, XEXP (op0, 1))))
10618 {
10619 op0 = XEXP (op0, 0);
10620 op1 = tem;
10621 continue;
10622 }
10623
10624 /* (plus (abs X) (const_int -1)) is < 0 if and only if X == 0. */
10625 if (const_op == 0 && XEXP (op0, 1) == constm1_rtx
10626 && GET_CODE (XEXP (op0, 0)) == ABS && sign_bit_comparison_p)
10627 {
10628 op0 = XEXP (XEXP (op0, 0), 0);
10629 code = (code == LT ? EQ : NE);
10630 continue;
10631 }
10632 break;
10633
10634 case MINUS:
10635 /* We used to optimize signed comparisons against zero, but that
10636 was incorrect. Unsigned comparisons against zero (GTU, LEU)
10637 arrive here as equality comparisons, or (GEU, LTU) are
10638 optimized away. No need to special-case them. */
10639
10640 /* (eq (minus A B) C) -> (eq A (plus B C)) or
10641 (eq B (minus A C)), whichever simplifies. We can only do
10642 this for equality comparisons due to pathological cases involving
10643 overflows. */
10644 if (equality_comparison_p
10645 && 0 != (tem = simplify_binary_operation (PLUS, mode,
10646 XEXP (op0, 1), op1)))
10647 {
10648 op0 = XEXP (op0, 0);
10649 op1 = tem;
10650 continue;
10651 }
10652
10653 if (equality_comparison_p
10654 && 0 != (tem = simplify_binary_operation (MINUS, mode,
10655 XEXP (op0, 0), op1)))
10656 {
10657 op0 = XEXP (op0, 1);
10658 op1 = tem;
10659 continue;
10660 }
10661
10662 /* The sign bit of (minus (ashiftrt X C) X), where C is the number
10663 of bits in X minus 1, is one iff X > 0. */
10664 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == ASHIFTRT
10665 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
10666 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (XEXP (op0, 0), 1))
10667 == mode_width - 1
10668 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
10669 {
10670 op0 = XEXP (op0, 1);
10671 code = (code == GE ? LE : GT);
10672 continue;
10673 }
10674 break;
10675
10676 case XOR:
10677 /* (eq (xor A B) C) -> (eq A (xor B C)). This is a simplification
10678 if C is zero or B is a constant. */
10679 if (equality_comparison_p
10680 && 0 != (tem = simplify_binary_operation (XOR, mode,
10681 XEXP (op0, 1), op1)))
10682 {
10683 op0 = XEXP (op0, 0);
10684 op1 = tem;
10685 continue;
10686 }
10687 break;
10688
10689 case EQ: case NE:
10690 case UNEQ: case LTGT:
10691 case LT: case LTU: case UNLT: case LE: case LEU: case UNLE:
10692 case GT: case GTU: case UNGT: case GE: case GEU: case UNGE:
10693 case UNORDERED: case ORDERED:
10694 /* We can't do anything if OP0 is a condition code value, rather
10695 than an actual data value. */
10696 if (const_op != 0
10697 || CC0_P (XEXP (op0, 0))
10698 || GET_MODE_CLASS (GET_MODE (XEXP (op0, 0))) == MODE_CC)
10699 break;
10700
10701 /* Get the two operands being compared. */
10702 if (GET_CODE (XEXP (op0, 0)) == COMPARE)
10703 tem = XEXP (XEXP (op0, 0), 0), tem1 = XEXP (XEXP (op0, 0), 1);
10704 else
10705 tem = XEXP (op0, 0), tem1 = XEXP (op0, 1);
10706
10707 /* Check for the cases where we simply want the result of the
10708 earlier test or the opposite of that result. */
10709 if (code == NE || code == EQ
10710 || (GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT
10711 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
10712 && (STORE_FLAG_VALUE
10713 & (((HOST_WIDE_INT) 1
10714 << (GET_MODE_BITSIZE (GET_MODE (op0)) - 1))))
10715 && (code == LT || code == GE)))
10716 {
10717 enum rtx_code new_code;
10718 if (code == LT || code == NE)
10719 new_code = GET_CODE (op0);
10720 else
10721 new_code = reversed_comparison_code (op0, NULL);
10722
10723 if (new_code != UNKNOWN)
10724 {
10725 code = new_code;
10726 op0 = tem;
10727 op1 = tem1;
10728 continue;
10729 }
10730 }
10731 break;
10732
10733 case IOR:
10734 /* The sign bit of (ior (plus X (const_int -1)) X) is nonzero
10735 iff X <= 0. */
10736 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == PLUS
10737 && XEXP (XEXP (op0, 0), 1) == constm1_rtx
10738 && rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
10739 {
10740 op0 = XEXP (op0, 1);
10741 code = (code == GE ? GT : LE);
10742 continue;
10743 }
10744 break;
10745
10746 case AND:
10747 /* Convert (and (xshift 1 X) Y) to (and (lshiftrt Y X) 1). This
10748 will be converted to a ZERO_EXTRACT later. */
10749 if (const_op == 0 && equality_comparison_p
10750 && GET_CODE (XEXP (op0, 0)) == ASHIFT
10751 && XEXP (XEXP (op0, 0), 0) == const1_rtx)
10752 {
10753 op0 = simplify_and_const_int
10754 (NULL_RTX, mode, gen_rtx_LSHIFTRT (mode,
10755 XEXP (op0, 1),
10756 XEXP (XEXP (op0, 0), 1)),
10757 (HOST_WIDE_INT) 1);
10758 continue;
10759 }
10760
10761 /* If we are comparing (and (lshiftrt X C1) C2) for equality with
10762 zero and X is a comparison and C1 and C2 describe only bits set
10763 in STORE_FLAG_VALUE, we can compare with X. */
10764 if (const_op == 0 && equality_comparison_p
10765 && mode_width <= HOST_BITS_PER_WIDE_INT
10766 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10767 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT
10768 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
10769 && INTVAL (XEXP (XEXP (op0, 0), 1)) >= 0
10770 && INTVAL (XEXP (XEXP (op0, 0), 1)) < HOST_BITS_PER_WIDE_INT)
10771 {
10772 mask = ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
10773 << INTVAL (XEXP (XEXP (op0, 0), 1)));
10774 if ((~STORE_FLAG_VALUE & mask) == 0
10775 && (COMPARISON_P (XEXP (XEXP (op0, 0), 0))
10776 || ((tem = get_last_value (XEXP (XEXP (op0, 0), 0))) != 0
10777 && COMPARISON_P (tem))))
10778 {
10779 op0 = XEXP (XEXP (op0, 0), 0);
10780 continue;
10781 }
10782 }
10783
10784 /* If we are doing an equality comparison of an AND of a bit equal
10785 to the sign bit, replace this with a LT or GE comparison of
10786 the underlying value. */
10787 if (equality_comparison_p
10788 && const_op == 0
10789 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10790 && mode_width <= HOST_BITS_PER_WIDE_INT
10791 && ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
10792 == (unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
10793 {
10794 op0 = XEXP (op0, 0);
10795 code = (code == EQ ? GE : LT);
10796 continue;
10797 }
10798
10799 /* If this AND operation is really a ZERO_EXTEND from a narrower
10800 mode, the constant fits within that mode, and this is either an
10801 equality or unsigned comparison, try to do this comparison in
10802 the narrower mode.
10803
10804 Note that in:
10805
10806 (ne:DI (and:DI (reg:DI 4) (const_int 0xffffffff)) (const_int 0))
10807 -> (ne:DI (reg:SI 4) (const_int 0))
10808
10809 unless TRULY_NOOP_TRUNCATION allows it or the register is
10810 known to hold a value of the required mode the
10811 transformation is invalid. */
10812 if ((equality_comparison_p || unsigned_comparison_p)
10813 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10814 && (i = exact_log2 ((INTVAL (XEXP (op0, 1))
10815 & GET_MODE_MASK (mode))
10816 + 1)) >= 0
10817 && const_op >> i == 0
10818 && (tmode = mode_for_size (i, MODE_INT, 1)) != BLKmode
10819 && (TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (tmode),
10820 GET_MODE_BITSIZE (GET_MODE (op0)))
10821 || (REG_P (XEXP (op0, 0))
10822 && reg_truncated_to_mode (tmode, XEXP (op0, 0)))))
10823 {
10824 op0 = gen_lowpart (tmode, XEXP (op0, 0));
10825 continue;
10826 }
10827
10828 /* If this is (and:M1 (subreg:M2 X 0) (const_int C1)) where C1
10829 fits in both M1 and M2 and the SUBREG is either paradoxical
10830 or represents the low part, permute the SUBREG and the AND
10831 and try again. */
10832 if (GET_CODE (XEXP (op0, 0)) == SUBREG)
10833 {
10834 unsigned HOST_WIDE_INT c1;
10835 tmode = GET_MODE (SUBREG_REG (XEXP (op0, 0)));
10836 /* Require an integral mode, to avoid creating something like
10837 (AND:SF ...). */
10838 if (SCALAR_INT_MODE_P (tmode)
10839 /* It is unsafe to commute the AND into the SUBREG if the
10840 SUBREG is paradoxical and WORD_REGISTER_OPERATIONS is
10841 not defined. As originally written the upper bits
10842 have a defined value due to the AND operation.
10843 However, if we commute the AND inside the SUBREG then
10844 they no longer have defined values and the meaning of
10845 the code has been changed. */
10846 && (0
10847 #ifdef WORD_REGISTER_OPERATIONS
10848 || (mode_width > GET_MODE_BITSIZE (tmode)
10849 && mode_width <= BITS_PER_WORD)
10850 #endif
10851 || (mode_width <= GET_MODE_BITSIZE (tmode)
10852 && subreg_lowpart_p (XEXP (op0, 0))))
10853 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10854 && mode_width <= HOST_BITS_PER_WIDE_INT
10855 && GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT
10856 && ((c1 = INTVAL (XEXP (op0, 1))) & ~mask) == 0
10857 && (c1 & ~GET_MODE_MASK (tmode)) == 0
10858 && c1 != mask
10859 && c1 != GET_MODE_MASK (tmode))
10860 {
10861 op0 = simplify_gen_binary (AND, tmode,
10862 SUBREG_REG (XEXP (op0, 0)),
10863 gen_int_mode (c1, tmode));
10864 op0 = gen_lowpart (mode, op0);
10865 continue;
10866 }
10867 }
10868
10869 /* Convert (ne (and (not X) 1) 0) to (eq (and X 1) 0). */
10870 if (const_op == 0 && equality_comparison_p
10871 && XEXP (op0, 1) == const1_rtx
10872 && GET_CODE (XEXP (op0, 0)) == NOT)
10873 {
10874 op0 = simplify_and_const_int
10875 (NULL_RTX, mode, XEXP (XEXP (op0, 0), 0), (HOST_WIDE_INT) 1);
10876 code = (code == NE ? EQ : NE);
10877 continue;
10878 }
10879
10880 /* Convert (ne (and (lshiftrt (not X)) 1) 0) to
10881 (eq (and (lshiftrt X) 1) 0).
10882 Also handle the case where (not X) is expressed using xor. */
10883 if (const_op == 0 && equality_comparison_p
10884 && XEXP (op0, 1) == const1_rtx
10885 && GET_CODE (XEXP (op0, 0)) == LSHIFTRT)
10886 {
10887 rtx shift_op = XEXP (XEXP (op0, 0), 0);
10888 rtx shift_count = XEXP (XEXP (op0, 0), 1);
10889
10890 if (GET_CODE (shift_op) == NOT
10891 || (GET_CODE (shift_op) == XOR
10892 && GET_CODE (XEXP (shift_op, 1)) == CONST_INT
10893 && GET_CODE (shift_count) == CONST_INT
10894 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
10895 && (INTVAL (XEXP (shift_op, 1))
10896 == (HOST_WIDE_INT) 1 << INTVAL (shift_count))))
10897 {
10898 op0 = simplify_and_const_int
10899 (NULL_RTX, mode,
10900 gen_rtx_LSHIFTRT (mode, XEXP (shift_op, 0), shift_count),
10901 (HOST_WIDE_INT) 1);
10902 code = (code == NE ? EQ : NE);
10903 continue;
10904 }
10905 }
10906 break;
10907
10908 case ASHIFT:
10909 /* If we have (compare (ashift FOO N) (const_int C)) and
10910 the high order N bits of FOO (N+1 if an inequality comparison)
10911 are known to be zero, we can do this by comparing FOO with C
10912 shifted right N bits so long as the low-order N bits of C are
10913 zero. */
10914 if (GET_CODE (XEXP (op0, 1)) == CONST_INT
10915 && INTVAL (XEXP (op0, 1)) >= 0
10916 && ((INTVAL (XEXP (op0, 1)) + ! equality_comparison_p)
10917 < HOST_BITS_PER_WIDE_INT)
10918 && ((const_op
10919 & (((HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1))) - 1)) == 0)
10920 && mode_width <= HOST_BITS_PER_WIDE_INT
10921 && (nonzero_bits (XEXP (op0, 0), mode)
10922 & ~(mask >> (INTVAL (XEXP (op0, 1))
10923 + ! equality_comparison_p))) == 0)
10924 {
10925 /* We must perform a logical shift, not an arithmetic one,
10926 as we want the top N bits of C to be zero. */
10927 unsigned HOST_WIDE_INT temp = const_op & GET_MODE_MASK (mode);
10928
10929 temp >>= INTVAL (XEXP (op0, 1));
10930 op1 = gen_int_mode (temp, mode);
10931 op0 = XEXP (op0, 0);
10932 continue;
10933 }
10934
10935 /* If we are doing a sign bit comparison, it means we are testing
10936 a particular bit. Convert it to the appropriate AND. */
10937 if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 1)) == CONST_INT
10938 && mode_width <= HOST_BITS_PER_WIDE_INT)
10939 {
10940 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
10941 ((HOST_WIDE_INT) 1
10942 << (mode_width - 1
10943 - INTVAL (XEXP (op0, 1)))));
10944 code = (code == LT ? NE : EQ);
10945 continue;
10946 }
10947
10948 /* If this an equality comparison with zero and we are shifting
10949 the low bit to the sign bit, we can convert this to an AND of the
10950 low-order bit. */
10951 if (const_op == 0 && equality_comparison_p
10952 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10953 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (op0, 1))
10954 == mode_width - 1)
10955 {
10956 op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
10957 (HOST_WIDE_INT) 1);
10958 continue;
10959 }
10960 break;
10961
10962 case ASHIFTRT:
10963 /* If this is an equality comparison with zero, we can do this
10964 as a logical shift, which might be much simpler. */
10965 if (equality_comparison_p && const_op == 0
10966 && GET_CODE (XEXP (op0, 1)) == CONST_INT)
10967 {
10968 op0 = simplify_shift_const (NULL_RTX, LSHIFTRT, mode,
10969 XEXP (op0, 0),
10970 INTVAL (XEXP (op0, 1)));
10971 continue;
10972 }
10973
10974 /* If OP0 is a sign extension and CODE is not an unsigned comparison,
10975 do the comparison in a narrower mode. */
10976 if (! unsigned_comparison_p
10977 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10978 && GET_CODE (XEXP (op0, 0)) == ASHIFT
10979 && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
10980 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
10981 MODE_INT, 1)) != BLKmode
10982 && (((unsigned HOST_WIDE_INT) const_op
10983 + (GET_MODE_MASK (tmode) >> 1) + 1)
10984 <= GET_MODE_MASK (tmode)))
10985 {
10986 op0 = gen_lowpart (tmode, XEXP (XEXP (op0, 0), 0));
10987 continue;
10988 }
10989
10990 /* Likewise if OP0 is a PLUS of a sign extension with a
10991 constant, which is usually represented with the PLUS
10992 between the shifts. */
10993 if (! unsigned_comparison_p
10994 && GET_CODE (XEXP (op0, 1)) == CONST_INT
10995 && GET_CODE (XEXP (op0, 0)) == PLUS
10996 && GET_CODE (XEXP (XEXP (op0, 0), 1)) == CONST_INT
10997 && GET_CODE (XEXP (XEXP (op0, 0), 0)) == ASHIFT
10998 && XEXP (op0, 1) == XEXP (XEXP (XEXP (op0, 0), 0), 1)
10999 && (tmode = mode_for_size (mode_width - INTVAL (XEXP (op0, 1)),
11000 MODE_INT, 1)) != BLKmode
11001 && (((unsigned HOST_WIDE_INT) const_op
11002 + (GET_MODE_MASK (tmode) >> 1) + 1)
11003 <= GET_MODE_MASK (tmode)))
11004 {
11005 rtx inner = XEXP (XEXP (XEXP (op0, 0), 0), 0);
11006 rtx add_const = XEXP (XEXP (op0, 0), 1);
11007 rtx new_const = simplify_gen_binary (ASHIFTRT, GET_MODE (op0),
11008 add_const, XEXP (op0, 1));
11009
11010 op0 = simplify_gen_binary (PLUS, tmode,
11011 gen_lowpart (tmode, inner),
11012 new_const);
11013 continue;
11014 }
11015
11016 /* ... fall through ... */
11017 case LSHIFTRT:
11018 /* If we have (compare (xshiftrt FOO N) (const_int C)) and
11019 the low order N bits of FOO are known to be zero, we can do this
11020 by comparing FOO with C shifted left N bits so long as no
11021 overflow occurs. */
11022 if (GET_CODE (XEXP (op0, 1)) == CONST_INT
11023 && INTVAL (XEXP (op0, 1)) >= 0
11024 && INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
11025 && mode_width <= HOST_BITS_PER_WIDE_INT
11026 && (nonzero_bits (XEXP (op0, 0), mode)
11027 & (((HOST_WIDE_INT) 1 << INTVAL (XEXP (op0, 1))) - 1)) == 0
11028 && (((unsigned HOST_WIDE_INT) const_op
11029 + (GET_CODE (op0) != LSHIFTRT
11030 ? ((GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1)) >> 1)
11031 + 1)
11032 : 0))
11033 <= GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1))))
11034 {
11035 /* If the shift was logical, then we must make the condition
11036 unsigned. */
11037 if (GET_CODE (op0) == LSHIFTRT)
11038 code = unsigned_condition (code);
11039
11040 const_op <<= INTVAL (XEXP (op0, 1));
11041 op1 = GEN_INT (const_op);
11042 op0 = XEXP (op0, 0);
11043 continue;
11044 }
11045
11046 /* If we are using this shift to extract just the sign bit, we
11047 can replace this with an LT or GE comparison. */
11048 if (const_op == 0
11049 && (equality_comparison_p || sign_bit_comparison_p)
11050 && GET_CODE (XEXP (op0, 1)) == CONST_INT
11051 && (unsigned HOST_WIDE_INT) INTVAL (XEXP (op0, 1))
11052 == mode_width - 1)
11053 {
11054 op0 = XEXP (op0, 0);
11055 code = (code == NE || code == GT ? LT : GE);
11056 continue;
11057 }
11058 break;
11059
11060 default:
11061 break;
11062 }
11063
11064 break;
11065 }
11066
11067 /* Now make any compound operations involved in this comparison. Then,
11068 check for an outmost SUBREG on OP0 that is not doing anything or is
11069 paradoxical. The latter transformation must only be performed when
11070 it is known that the "extra" bits will be the same in op0 and op1 or
11071 that they don't matter. There are three cases to consider:
11072
11073 1. SUBREG_REG (op0) is a register. In this case the bits are don't
11074 care bits and we can assume they have any convenient value. So
11075 making the transformation is safe.
11076
11077 2. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is not defined.
11078 In this case the upper bits of op0 are undefined. We should not make
11079 the simplification in that case as we do not know the contents of
11080 those bits.
11081
11082 3. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is defined and not
11083 UNKNOWN. In that case we know those bits are zeros or ones. We must
11084 also be sure that they are the same as the upper bits of op1.
11085
11086 We can never remove a SUBREG for a non-equality comparison because
11087 the sign bit is in a different place in the underlying object. */
11088
11089 op0 = make_compound_operation (op0, op1 == const0_rtx ? COMPARE : SET);
11090 op1 = make_compound_operation (op1, SET);
11091
11092 if (GET_CODE (op0) == SUBREG && subreg_lowpart_p (op0)
11093 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
11094 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (op0))) == MODE_INT
11095 && (code == NE || code == EQ))
11096 {
11097 if (GET_MODE_SIZE (GET_MODE (op0))
11098 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0))))
11099 {
11100 /* For paradoxical subregs, allow case 1 as above. Case 3 isn't
11101 implemented. */
11102 if (REG_P (SUBREG_REG (op0)))
11103 {
11104 op0 = SUBREG_REG (op0);
11105 op1 = gen_lowpart (GET_MODE (op0), op1);
11106 }
11107 }
11108 else if ((GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (op0)))
11109 <= HOST_BITS_PER_WIDE_INT)
11110 && (nonzero_bits (SUBREG_REG (op0),
11111 GET_MODE (SUBREG_REG (op0)))
11112 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
11113 {
11114 tem = gen_lowpart (GET_MODE (SUBREG_REG (op0)), op1);
11115
11116 if ((nonzero_bits (tem, GET_MODE (SUBREG_REG (op0)))
11117 & ~GET_MODE_MASK (GET_MODE (op0))) == 0)
11118 op0 = SUBREG_REG (op0), op1 = tem;
11119 }
11120 }
11121
11122 /* We now do the opposite procedure: Some machines don't have compare
11123 insns in all modes. If OP0's mode is an integer mode smaller than a
11124 word and we can't do a compare in that mode, see if there is a larger
11125 mode for which we can do the compare. There are a number of cases in
11126 which we can use the wider mode. */
11127
11128 mode = GET_MODE (op0);
11129 if (mode != VOIDmode && GET_MODE_CLASS (mode) == MODE_INT
11130 && GET_MODE_SIZE (mode) < UNITS_PER_WORD
11131 && ! have_insn_for (COMPARE, mode))
11132 for (tmode = GET_MODE_WIDER_MODE (mode);
11133 (tmode != VOIDmode
11134 && GET_MODE_BITSIZE (tmode) <= HOST_BITS_PER_WIDE_INT);
11135 tmode = GET_MODE_WIDER_MODE (tmode))
11136 if (have_insn_for (COMPARE, tmode))
11137 {
11138 int zero_extended;
11139
11140 /* If the only nonzero bits in OP0 and OP1 are those in the
11141 narrower mode and this is an equality or unsigned comparison,
11142 we can use the wider mode. Similarly for sign-extended
11143 values, in which case it is true for all comparisons. */
11144 zero_extended = ((code == EQ || code == NE
11145 || code == GEU || code == GTU
11146 || code == LEU || code == LTU)
11147 && (nonzero_bits (op0, tmode)
11148 & ~GET_MODE_MASK (mode)) == 0
11149 && ((GET_CODE (op1) == CONST_INT
11150 || (nonzero_bits (op1, tmode)
11151 & ~GET_MODE_MASK (mode)) == 0)));
11152
11153 if (zero_extended
11154 || ((num_sign_bit_copies (op0, tmode)
11155 > (unsigned int) (GET_MODE_BITSIZE (tmode)
11156 - GET_MODE_BITSIZE (mode)))
11157 && (num_sign_bit_copies (op1, tmode)
11158 > (unsigned int) (GET_MODE_BITSIZE (tmode)
11159 - GET_MODE_BITSIZE (mode)))))
11160 {
11161 /* If OP0 is an AND and we don't have an AND in MODE either,
11162 make a new AND in the proper mode. */
11163 if (GET_CODE (op0) == AND
11164 && !have_insn_for (AND, mode))
11165 op0 = simplify_gen_binary (AND, tmode,
11166 gen_lowpart (tmode,
11167 XEXP (op0, 0)),
11168 gen_lowpart (tmode,
11169 XEXP (op0, 1)));
11170
11171 op0 = gen_lowpart (tmode, op0);
11172 if (zero_extended && GET_CODE (op1) == CONST_INT)
11173 op1 = GEN_INT (INTVAL (op1) & GET_MODE_MASK (mode));
11174 op1 = gen_lowpart (tmode, op1);
11175 break;
11176 }
11177
11178 /* If this is a test for negative, we can make an explicit
11179 test of the sign bit. */
11180
11181 if (op1 == const0_rtx && (code == LT || code == GE)
11182 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
11183 {
11184 op0 = simplify_gen_binary (AND, tmode,
11185 gen_lowpart (tmode, op0),
11186 GEN_INT ((HOST_WIDE_INT) 1
11187 << (GET_MODE_BITSIZE (mode)
11188 - 1)));
11189 code = (code == LT) ? NE : EQ;
11190 break;
11191 }
11192 }
11193
11194 #ifdef CANONICALIZE_COMPARISON
11195 /* If this machine only supports a subset of valid comparisons, see if we
11196 can convert an unsupported one into a supported one. */
11197 CANONICALIZE_COMPARISON (code, op0, op1);
11198 #endif
11199
11200 *pop0 = op0;
11201 *pop1 = op1;
11202
11203 return code;
11204 }
11205
11206 /* Utility function for record_value_for_reg. Count number of
11207 rtxs in X. */
11208 static int
11209 count_rtxs (rtx x)
11210 {
11211 enum rtx_code code = GET_CODE (x);
11212 const char *fmt;
11213 int i, j, ret = 1;
11214
11215 if (GET_RTX_CLASS (code) == '2'
11216 || GET_RTX_CLASS (code) == 'c')
11217 {
11218 rtx x0 = XEXP (x, 0);
11219 rtx x1 = XEXP (x, 1);
11220
11221 if (x0 == x1)
11222 return 1 + 2 * count_rtxs (x0);
11223
11224 if ((GET_RTX_CLASS (GET_CODE (x1)) == '2'
11225 || GET_RTX_CLASS (GET_CODE (x1)) == 'c')
11226 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
11227 return 2 + 2 * count_rtxs (x0)
11228 + count_rtxs (x == XEXP (x1, 0)
11229 ? XEXP (x1, 1) : XEXP (x1, 0));
11230
11231 if ((GET_RTX_CLASS (GET_CODE (x0)) == '2'
11232 || GET_RTX_CLASS (GET_CODE (x0)) == 'c')
11233 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
11234 return 2 + 2 * count_rtxs (x1)
11235 + count_rtxs (x == XEXP (x0, 0)
11236 ? XEXP (x0, 1) : XEXP (x0, 0));
11237 }
11238
11239 fmt = GET_RTX_FORMAT (code);
11240 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
11241 if (fmt[i] == 'e')
11242 ret += count_rtxs (XEXP (x, i));
11243 else if (fmt[i] == 'E')
11244 for (j = 0; j < XVECLEN (x, i); j++)
11245 ret += count_rtxs (XVECEXP (x, i, j));
11246
11247 return ret;
11248 }
11249
11250 /* Utility function for following routine. Called when X is part of a value
11251 being stored into last_set_value. Sets last_set_table_tick
11252 for each register mentioned. Similar to mention_regs in cse.c */
11253
11254 static void
11255 update_table_tick (rtx x)
11256 {
11257 enum rtx_code code = GET_CODE (x);
11258 const char *fmt = GET_RTX_FORMAT (code);
11259 int i, j;
11260
11261 if (code == REG)
11262 {
11263 unsigned int regno = REGNO (x);
11264 unsigned int endregno = END_REGNO (x);
11265 unsigned int r;
11266
11267 for (r = regno; r < endregno; r++)
11268 {
11269 reg_stat_type *rsp = VEC_index (reg_stat_type, reg_stat, r);
11270 rsp->last_set_table_tick = label_tick;
11271 }
11272
11273 return;
11274 }
11275
11276 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
11277 if (fmt[i] == 'e')
11278 {
11279 /* Check for identical subexpressions. If x contains
11280 identical subexpression we only have to traverse one of
11281 them. */
11282 if (i == 0 && ARITHMETIC_P (x))
11283 {
11284 /* Note that at this point x1 has already been
11285 processed. */
11286 rtx x0 = XEXP (x, 0);
11287 rtx x1 = XEXP (x, 1);
11288
11289 /* If x0 and x1 are identical then there is no need to
11290 process x0. */
11291 if (x0 == x1)
11292 break;
11293
11294 /* If x0 is identical to a subexpression of x1 then while
11295 processing x1, x0 has already been processed. Thus we
11296 are done with x. */
11297 if (ARITHMETIC_P (x1)
11298 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
11299 break;
11300
11301 /* If x1 is identical to a subexpression of x0 then we
11302 still have to process the rest of x0. */
11303 if (ARITHMETIC_P (x0)
11304 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
11305 {
11306 update_table_tick (XEXP (x0, x1 == XEXP (x0, 0) ? 1 : 0));
11307 break;
11308 }
11309 }
11310
11311 update_table_tick (XEXP (x, i));
11312 }
11313 else if (fmt[i] == 'E')
11314 for (j = 0; j < XVECLEN (x, i); j++)
11315 update_table_tick (XVECEXP (x, i, j));
11316 }
11317
11318 /* Record that REG is set to VALUE in insn INSN. If VALUE is zero, we
11319 are saying that the register is clobbered and we no longer know its
11320 value. If INSN is zero, don't update reg_stat[].last_set; this is
11321 only permitted with VALUE also zero and is used to invalidate the
11322 register. */
11323
11324 static void
11325 record_value_for_reg (rtx reg, rtx insn, rtx value)
11326 {
11327 unsigned int regno = REGNO (reg);
11328 unsigned int endregno = END_REGNO (reg);
11329 unsigned int i;
11330 reg_stat_type *rsp;
11331
11332 /* If VALUE contains REG and we have a previous value for REG, substitute
11333 the previous value. */
11334 if (value && insn && reg_overlap_mentioned_p (reg, value))
11335 {
11336 rtx tem;
11337
11338 /* Set things up so get_last_value is allowed to see anything set up to
11339 our insn. */
11340 subst_low_luid = DF_INSN_LUID (insn);
11341 tem = get_last_value (reg);
11342
11343 /* If TEM is simply a binary operation with two CLOBBERs as operands,
11344 it isn't going to be useful and will take a lot of time to process,
11345 so just use the CLOBBER. */
11346
11347 if (tem)
11348 {
11349 if (ARITHMETIC_P (tem)
11350 && GET_CODE (XEXP (tem, 0)) == CLOBBER
11351 && GET_CODE (XEXP (tem, 1)) == CLOBBER)
11352 tem = XEXP (tem, 0);
11353 else if (count_occurrences (value, reg, 1) >= 2)
11354 {
11355 /* If there are two or more occurrences of REG in VALUE,
11356 prevent the value from growing too much. */
11357 if (count_rtxs (tem) > MAX_LAST_VALUE_RTL)
11358 tem = gen_rtx_CLOBBER (GET_MODE (tem), const0_rtx);
11359 }
11360
11361 value = replace_rtx (copy_rtx (value), reg, tem);
11362 }
11363 }
11364
11365 /* For each register modified, show we don't know its value, that
11366 we don't know about its bitwise content, that its value has been
11367 updated, and that we don't know the location of the death of the
11368 register. */
11369 for (i = regno; i < endregno; i++)
11370 {
11371 rsp = VEC_index (reg_stat_type, reg_stat, i);
11372
11373 if (insn)
11374 rsp->last_set = insn;
11375
11376 rsp->last_set_value = 0;
11377 rsp->last_set_mode = 0;
11378 rsp->last_set_nonzero_bits = 0;
11379 rsp->last_set_sign_bit_copies = 0;
11380 rsp->last_death = 0;
11381 rsp->truncated_to_mode = 0;
11382 }
11383
11384 /* Mark registers that are being referenced in this value. */
11385 if (value)
11386 update_table_tick (value);
11387
11388 /* Now update the status of each register being set.
11389 If someone is using this register in this block, set this register
11390 to invalid since we will get confused between the two lives in this
11391 basic block. This makes using this register always invalid. In cse, we
11392 scan the table to invalidate all entries using this register, but this
11393 is too much work for us. */
11394
11395 for (i = regno; i < endregno; i++)
11396 {
11397 rsp = VEC_index (reg_stat_type, reg_stat, i);
11398 rsp->last_set_label = label_tick;
11399 if (!insn
11400 || (value && rsp->last_set_table_tick >= label_tick_ebb_start))
11401 rsp->last_set_invalid = 1;
11402 else
11403 rsp->last_set_invalid = 0;
11404 }
11405
11406 /* The value being assigned might refer to X (like in "x++;"). In that
11407 case, we must replace it with (clobber (const_int 0)) to prevent
11408 infinite loops. */
11409 rsp = VEC_index (reg_stat_type, reg_stat, regno);
11410 if (value && ! get_last_value_validate (&value, insn,
11411 rsp->last_set_label, 0))
11412 {
11413 value = copy_rtx (value);
11414 if (! get_last_value_validate (&value, insn,
11415 rsp->last_set_label, 1))
11416 value = 0;
11417 }
11418
11419 /* For the main register being modified, update the value, the mode, the
11420 nonzero bits, and the number of sign bit copies. */
11421
11422 rsp->last_set_value = value;
11423
11424 if (value)
11425 {
11426 enum machine_mode mode = GET_MODE (reg);
11427 subst_low_luid = DF_INSN_LUID (insn);
11428 rsp->last_set_mode = mode;
11429 if (GET_MODE_CLASS (mode) == MODE_INT
11430 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
11431 mode = nonzero_bits_mode;
11432 rsp->last_set_nonzero_bits = nonzero_bits (value, mode);
11433 rsp->last_set_sign_bit_copies
11434 = num_sign_bit_copies (value, GET_MODE (reg));
11435 }
11436 }
11437
11438 /* Called via note_stores from record_dead_and_set_regs to handle one
11439 SET or CLOBBER in an insn. DATA is the instruction in which the
11440 set is occurring. */
11441
11442 static void
11443 record_dead_and_set_regs_1 (rtx dest, const_rtx setter, void *data)
11444 {
11445 rtx record_dead_insn = (rtx) data;
11446
11447 if (GET_CODE (dest) == SUBREG)
11448 dest = SUBREG_REG (dest);
11449
11450 if (!record_dead_insn)
11451 {
11452 if (REG_P (dest))
11453 record_value_for_reg (dest, NULL_RTX, NULL_RTX);
11454 return;
11455 }
11456
11457 if (REG_P (dest))
11458 {
11459 /* If we are setting the whole register, we know its value. Otherwise
11460 show that we don't know the value. We can handle SUBREG in
11461 some cases. */
11462 if (GET_CODE (setter) == SET && dest == SET_DEST (setter))
11463 record_value_for_reg (dest, record_dead_insn, SET_SRC (setter));
11464 else if (GET_CODE (setter) == SET
11465 && GET_CODE (SET_DEST (setter)) == SUBREG
11466 && SUBREG_REG (SET_DEST (setter)) == dest
11467 && GET_MODE_BITSIZE (GET_MODE (dest)) <= BITS_PER_WORD
11468 && subreg_lowpart_p (SET_DEST (setter)))
11469 record_value_for_reg (dest, record_dead_insn,
11470 gen_lowpart (GET_MODE (dest),
11471 SET_SRC (setter)));
11472 else
11473 record_value_for_reg (dest, record_dead_insn, NULL_RTX);
11474 }
11475 else if (MEM_P (dest)
11476 /* Ignore pushes, they clobber nothing. */
11477 && ! push_operand (dest, GET_MODE (dest)))
11478 mem_last_set = DF_INSN_LUID (record_dead_insn);
11479 }
11480
11481 /* Update the records of when each REG was most recently set or killed
11482 for the things done by INSN. This is the last thing done in processing
11483 INSN in the combiner loop.
11484
11485 We update reg_stat[], in particular fields last_set, last_set_value,
11486 last_set_mode, last_set_nonzero_bits, last_set_sign_bit_copies,
11487 last_death, and also the similar information mem_last_set (which insn
11488 most recently modified memory) and last_call_luid (which insn was the
11489 most recent subroutine call). */
11490
11491 static void
11492 record_dead_and_set_regs (rtx insn)
11493 {
11494 rtx link;
11495 unsigned int i;
11496
11497 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
11498 {
11499 if (REG_NOTE_KIND (link) == REG_DEAD
11500 && REG_P (XEXP (link, 0)))
11501 {
11502 unsigned int regno = REGNO (XEXP (link, 0));
11503 unsigned int endregno = END_REGNO (XEXP (link, 0));
11504
11505 for (i = regno; i < endregno; i++)
11506 {
11507 reg_stat_type *rsp;
11508
11509 rsp = VEC_index (reg_stat_type, reg_stat, i);
11510 rsp->last_death = insn;
11511 }
11512 }
11513 else if (REG_NOTE_KIND (link) == REG_INC)
11514 record_value_for_reg (XEXP (link, 0), insn, NULL_RTX);
11515 }
11516
11517 if (CALL_P (insn))
11518 {
11519 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
11520 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
11521 {
11522 reg_stat_type *rsp;
11523
11524 rsp = VEC_index (reg_stat_type, reg_stat, i);
11525 rsp->last_set_invalid = 1;
11526 rsp->last_set = insn;
11527 rsp->last_set_value = 0;
11528 rsp->last_set_mode = 0;
11529 rsp->last_set_nonzero_bits = 0;
11530 rsp->last_set_sign_bit_copies = 0;
11531 rsp->last_death = 0;
11532 rsp->truncated_to_mode = 0;
11533 }
11534
11535 last_call_luid = mem_last_set = DF_INSN_LUID (insn);
11536
11537 /* We can't combine into a call pattern. Remember, though, that
11538 the return value register is set at this LUID. We could
11539 still replace a register with the return value from the
11540 wrong subroutine call! */
11541 note_stores (PATTERN (insn), record_dead_and_set_regs_1, NULL_RTX);
11542 }
11543 else
11544 note_stores (PATTERN (insn), record_dead_and_set_regs_1, insn);
11545 }
11546
11547 /* If a SUBREG has the promoted bit set, it is in fact a property of the
11548 register present in the SUBREG, so for each such SUBREG go back and
11549 adjust nonzero and sign bit information of the registers that are
11550 known to have some zero/sign bits set.
11551
11552 This is needed because when combine blows the SUBREGs away, the
11553 information on zero/sign bits is lost and further combines can be
11554 missed because of that. */
11555
11556 static void
11557 record_promoted_value (rtx insn, rtx subreg)
11558 {
11559 rtx links, set;
11560 unsigned int regno = REGNO (SUBREG_REG (subreg));
11561 enum machine_mode mode = GET_MODE (subreg);
11562
11563 if (GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT)
11564 return;
11565
11566 for (links = LOG_LINKS (insn); links;)
11567 {
11568 reg_stat_type *rsp;
11569
11570 insn = XEXP (links, 0);
11571 set = single_set (insn);
11572
11573 if (! set || !REG_P (SET_DEST (set))
11574 || REGNO (SET_DEST (set)) != regno
11575 || GET_MODE (SET_DEST (set)) != GET_MODE (SUBREG_REG (subreg)))
11576 {
11577 links = XEXP (links, 1);
11578 continue;
11579 }
11580
11581 rsp = VEC_index (reg_stat_type, reg_stat, regno);
11582 if (rsp->last_set == insn)
11583 {
11584 if (SUBREG_PROMOTED_UNSIGNED_P (subreg) > 0)
11585 rsp->last_set_nonzero_bits &= GET_MODE_MASK (mode);
11586 }
11587
11588 if (REG_P (SET_SRC (set)))
11589 {
11590 regno = REGNO (SET_SRC (set));
11591 links = LOG_LINKS (insn);
11592 }
11593 else
11594 break;
11595 }
11596 }
11597
11598 /* Check if X, a register, is known to contain a value already
11599 truncated to MODE. In this case we can use a subreg to refer to
11600 the truncated value even though in the generic case we would need
11601 an explicit truncation. */
11602
11603 static bool
11604 reg_truncated_to_mode (enum machine_mode mode, const_rtx x)
11605 {
11606 reg_stat_type *rsp = VEC_index (reg_stat_type, reg_stat, REGNO (x));
11607 enum machine_mode truncated = rsp->truncated_to_mode;
11608
11609 if (truncated == 0
11610 || rsp->truncation_label < label_tick_ebb_start)
11611 return false;
11612 if (GET_MODE_SIZE (truncated) <= GET_MODE_SIZE (mode))
11613 return true;
11614 if (TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
11615 GET_MODE_BITSIZE (truncated)))
11616 return true;
11617 return false;
11618 }
11619
11620 /* Callback for for_each_rtx. If *P is a hard reg or a subreg record the mode
11621 that the register is accessed in. For non-TRULY_NOOP_TRUNCATION targets we
11622 might be able to turn a truncate into a subreg using this information.
11623 Return -1 if traversing *P is complete or 0 otherwise. */
11624
11625 static int
11626 record_truncated_value (rtx *p, void *data ATTRIBUTE_UNUSED)
11627 {
11628 rtx x = *p;
11629 enum machine_mode truncated_mode;
11630 reg_stat_type *rsp;
11631
11632 if (GET_CODE (x) == SUBREG && REG_P (SUBREG_REG (x)))
11633 {
11634 enum machine_mode original_mode = GET_MODE (SUBREG_REG (x));
11635 truncated_mode = GET_MODE (x);
11636
11637 if (GET_MODE_SIZE (original_mode) <= GET_MODE_SIZE (truncated_mode))
11638 return -1;
11639
11640 if (TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (truncated_mode),
11641 GET_MODE_BITSIZE (original_mode)))
11642 return -1;
11643
11644 x = SUBREG_REG (x);
11645 }
11646 /* ??? For hard-regs we now record everything. We might be able to
11647 optimize this using last_set_mode. */
11648 else if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
11649 truncated_mode = GET_MODE (x);
11650 else
11651 return 0;
11652
11653 rsp = VEC_index (reg_stat_type, reg_stat, REGNO (x));
11654 if (rsp->truncated_to_mode == 0
11655 || rsp->truncation_label < label_tick_ebb_start
11656 || (GET_MODE_SIZE (truncated_mode)
11657 < GET_MODE_SIZE (rsp->truncated_to_mode)))
11658 {
11659 rsp->truncated_to_mode = truncated_mode;
11660 rsp->truncation_label = label_tick;
11661 }
11662
11663 return -1;
11664 }
11665
11666 /* Callback for note_uses. Find hardregs and subregs of pseudos and
11667 the modes they are used in. This can help truning TRUNCATEs into
11668 SUBREGs. */
11669
11670 static void
11671 record_truncated_values (rtx *x, void *data ATTRIBUTE_UNUSED)
11672 {
11673 for_each_rtx (x, record_truncated_value, NULL);
11674 }
11675
11676 /* Scan X for promoted SUBREGs. For each one found,
11677 note what it implies to the registers used in it. */
11678
11679 static void
11680 check_promoted_subreg (rtx insn, rtx x)
11681 {
11682 if (GET_CODE (x) == SUBREG
11683 && SUBREG_PROMOTED_VAR_P (x)
11684 && REG_P (SUBREG_REG (x)))
11685 record_promoted_value (insn, x);
11686 else
11687 {
11688 const char *format = GET_RTX_FORMAT (GET_CODE (x));
11689 int i, j;
11690
11691 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (x)); i++)
11692 switch (format[i])
11693 {
11694 case 'e':
11695 check_promoted_subreg (insn, XEXP (x, i));
11696 break;
11697 case 'V':
11698 case 'E':
11699 if (XVEC (x, i) != 0)
11700 for (j = 0; j < XVECLEN (x, i); j++)
11701 check_promoted_subreg (insn, XVECEXP (x, i, j));
11702 break;
11703 }
11704 }
11705 }
11706
11707 /* Utility routine for the following function. Verify that all the registers
11708 mentioned in *LOC are valid when *LOC was part of a value set when
11709 label_tick == TICK. Return 0 if some are not.
11710
11711 If REPLACE is nonzero, replace the invalid reference with
11712 (clobber (const_int 0)) and return 1. This replacement is useful because
11713 we often can get useful information about the form of a value (e.g., if
11714 it was produced by a shift that always produces -1 or 0) even though
11715 we don't know exactly what registers it was produced from. */
11716
11717 static int
11718 get_last_value_validate (rtx *loc, rtx insn, int tick, int replace)
11719 {
11720 rtx x = *loc;
11721 const char *fmt = GET_RTX_FORMAT (GET_CODE (x));
11722 int len = GET_RTX_LENGTH (GET_CODE (x));
11723 int i, j;
11724
11725 if (REG_P (x))
11726 {
11727 unsigned int regno = REGNO (x);
11728 unsigned int endregno = END_REGNO (x);
11729 unsigned int j;
11730
11731 for (j = regno; j < endregno; j++)
11732 {
11733 reg_stat_type *rsp = VEC_index (reg_stat_type, reg_stat, j);
11734 if (rsp->last_set_invalid
11735 /* If this is a pseudo-register that was only set once and not
11736 live at the beginning of the function, it is always valid. */
11737 || (! (regno >= FIRST_PSEUDO_REGISTER
11738 && REG_N_SETS (regno) == 1
11739 && (!REGNO_REG_SET_P
11740 (DF_LR_IN (ENTRY_BLOCK_PTR->next_bb), regno)))
11741 && rsp->last_set_label > tick))
11742 {
11743 if (replace)
11744 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
11745 return replace;
11746 }
11747 }
11748
11749 return 1;
11750 }
11751 /* If this is a memory reference, make sure that there were
11752 no stores after it that might have clobbered the value. We don't
11753 have alias info, so we assume any store invalidates it. */
11754 else if (MEM_P (x) && !MEM_READONLY_P (x)
11755 && DF_INSN_LUID (insn) <= mem_last_set)
11756 {
11757 if (replace)
11758 *loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
11759 return replace;
11760 }
11761
11762 for (i = 0; i < len; i++)
11763 {
11764 if (fmt[i] == 'e')
11765 {
11766 /* Check for identical subexpressions. If x contains
11767 identical subexpression we only have to traverse one of
11768 them. */
11769 if (i == 1 && ARITHMETIC_P (x))
11770 {
11771 /* Note that at this point x0 has already been checked
11772 and found valid. */
11773 rtx x0 = XEXP (x, 0);
11774 rtx x1 = XEXP (x, 1);
11775
11776 /* If x0 and x1 are identical then x is also valid. */
11777 if (x0 == x1)
11778 return 1;
11779
11780 /* If x1 is identical to a subexpression of x0 then
11781 while checking x0, x1 has already been checked. Thus
11782 it is valid and so as x. */
11783 if (ARITHMETIC_P (x0)
11784 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
11785 return 1;
11786
11787 /* If x0 is identical to a subexpression of x1 then x is
11788 valid iff the rest of x1 is valid. */
11789 if (ARITHMETIC_P (x1)
11790 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
11791 return
11792 get_last_value_validate (&XEXP (x1,
11793 x0 == XEXP (x1, 0) ? 1 : 0),
11794 insn, tick, replace);
11795 }
11796
11797 if (get_last_value_validate (&XEXP (x, i), insn, tick,
11798 replace) == 0)
11799 return 0;
11800 }
11801 else if (fmt[i] == 'E')
11802 for (j = 0; j < XVECLEN (x, i); j++)
11803 if (get_last_value_validate (&XVECEXP (x, i, j),
11804 insn, tick, replace) == 0)
11805 return 0;
11806 }
11807
11808 /* If we haven't found a reason for it to be invalid, it is valid. */
11809 return 1;
11810 }
11811
11812 /* Get the last value assigned to X, if known. Some registers
11813 in the value may be replaced with (clobber (const_int 0)) if their value
11814 is known longer known reliably. */
11815
11816 static rtx
11817 get_last_value (const_rtx x)
11818 {
11819 unsigned int regno;
11820 rtx value;
11821 reg_stat_type *rsp;
11822
11823 /* If this is a non-paradoxical SUBREG, get the value of its operand and
11824 then convert it to the desired mode. If this is a paradoxical SUBREG,
11825 we cannot predict what values the "extra" bits might have. */
11826 if (GET_CODE (x) == SUBREG
11827 && subreg_lowpart_p (x)
11828 && (GET_MODE_SIZE (GET_MODE (x))
11829 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
11830 && (value = get_last_value (SUBREG_REG (x))) != 0)
11831 return gen_lowpart (GET_MODE (x), value);
11832
11833 if (!REG_P (x))
11834 return 0;
11835
11836 regno = REGNO (x);
11837 rsp = VEC_index (reg_stat_type, reg_stat, regno);
11838 value = rsp->last_set_value;
11839
11840 /* If we don't have a value, or if it isn't for this basic block and
11841 it's either a hard register, set more than once, or it's a live
11842 at the beginning of the function, return 0.
11843
11844 Because if it's not live at the beginning of the function then the reg
11845 is always set before being used (is never used without being set).
11846 And, if it's set only once, and it's always set before use, then all
11847 uses must have the same last value, even if it's not from this basic
11848 block. */
11849
11850 if (value == 0
11851 || (rsp->last_set_label < label_tick_ebb_start
11852 && (regno < FIRST_PSEUDO_REGISTER
11853 || REG_N_SETS (regno) != 1
11854 || REGNO_REG_SET_P
11855 (DF_LR_IN (ENTRY_BLOCK_PTR->next_bb), regno))))
11856 return 0;
11857
11858 /* If the value was set in a later insn than the ones we are processing,
11859 we can't use it even if the register was only set once. */
11860 if (rsp->last_set_label == label_tick
11861 && DF_INSN_LUID (rsp->last_set) >= subst_low_luid)
11862 return 0;
11863
11864 /* If the value has all its registers valid, return it. */
11865 if (get_last_value_validate (&value, rsp->last_set,
11866 rsp->last_set_label, 0))
11867 return value;
11868
11869 /* Otherwise, make a copy and replace any invalid register with
11870 (clobber (const_int 0)). If that fails for some reason, return 0. */
11871
11872 value = copy_rtx (value);
11873 if (get_last_value_validate (&value, rsp->last_set,
11874 rsp->last_set_label, 1))
11875 return value;
11876
11877 return 0;
11878 }
11879
11880 /* Return nonzero if expression X refers to a REG or to memory
11881 that is set in an instruction more recent than FROM_LUID. */
11882
11883 static int
11884 use_crosses_set_p (const_rtx x, int from_luid)
11885 {
11886 const char *fmt;
11887 int i;
11888 enum rtx_code code = GET_CODE (x);
11889
11890 if (code == REG)
11891 {
11892 unsigned int regno = REGNO (x);
11893 unsigned endreg = END_REGNO (x);
11894
11895 #ifdef PUSH_ROUNDING
11896 /* Don't allow uses of the stack pointer to be moved,
11897 because we don't know whether the move crosses a push insn. */
11898 if (regno == STACK_POINTER_REGNUM && PUSH_ARGS)
11899 return 1;
11900 #endif
11901 for (; regno < endreg; regno++)
11902 {
11903 reg_stat_type *rsp = VEC_index (reg_stat_type, reg_stat, regno);
11904 if (rsp->last_set
11905 && rsp->last_set_label == label_tick
11906 && DF_INSN_LUID (rsp->last_set) > from_luid)
11907 return 1;
11908 }
11909 return 0;
11910 }
11911
11912 if (code == MEM && mem_last_set > from_luid)
11913 return 1;
11914
11915 fmt = GET_RTX_FORMAT (code);
11916
11917 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
11918 {
11919 if (fmt[i] == 'E')
11920 {
11921 int j;
11922 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
11923 if (use_crosses_set_p (XVECEXP (x, i, j), from_luid))
11924 return 1;
11925 }
11926 else if (fmt[i] == 'e'
11927 && use_crosses_set_p (XEXP (x, i), from_luid))
11928 return 1;
11929 }
11930 return 0;
11931 }
11932
11933 /* Define three variables used for communication between the following
11934 routines. */
11935
11936 static unsigned int reg_dead_regno, reg_dead_endregno;
11937 static int reg_dead_flag;
11938
11939 /* Function called via note_stores from reg_dead_at_p.
11940
11941 If DEST is within [reg_dead_regno, reg_dead_endregno), set
11942 reg_dead_flag to 1 if X is a CLOBBER and to -1 it is a SET. */
11943
11944 static void
11945 reg_dead_at_p_1 (rtx dest, const_rtx x, void *data ATTRIBUTE_UNUSED)
11946 {
11947 unsigned int regno, endregno;
11948
11949 if (!REG_P (dest))
11950 return;
11951
11952 regno = REGNO (dest);
11953 endregno = END_REGNO (dest);
11954 if (reg_dead_endregno > regno && reg_dead_regno < endregno)
11955 reg_dead_flag = (GET_CODE (x) == CLOBBER) ? 1 : -1;
11956 }
11957
11958 /* Return nonzero if REG is known to be dead at INSN.
11959
11960 We scan backwards from INSN. If we hit a REG_DEAD note or a CLOBBER
11961 referencing REG, it is dead. If we hit a SET referencing REG, it is
11962 live. Otherwise, see if it is live or dead at the start of the basic
11963 block we are in. Hard regs marked as being live in NEWPAT_USED_REGS
11964 must be assumed to be always live. */
11965
11966 static int
11967 reg_dead_at_p (rtx reg, rtx insn)
11968 {
11969 basic_block block;
11970 unsigned int i;
11971
11972 /* Set variables for reg_dead_at_p_1. */
11973 reg_dead_regno = REGNO (reg);
11974 reg_dead_endregno = END_REGNO (reg);
11975
11976 reg_dead_flag = 0;
11977
11978 /* Check that reg isn't mentioned in NEWPAT_USED_REGS. For fixed registers
11979 we allow the machine description to decide whether use-and-clobber
11980 patterns are OK. */
11981 if (reg_dead_regno < FIRST_PSEUDO_REGISTER)
11982 {
11983 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
11984 if (!fixed_regs[i] && TEST_HARD_REG_BIT (newpat_used_regs, i))
11985 return 0;
11986 }
11987
11988 /* Scan backwards until we find a REG_DEAD note, SET, CLOBBER, label, or
11989 beginning of function. */
11990 for (; insn && !LABEL_P (insn) && !BARRIER_P (insn);
11991 insn = prev_nonnote_insn (insn))
11992 {
11993 note_stores (PATTERN (insn), reg_dead_at_p_1, NULL);
11994 if (reg_dead_flag)
11995 return reg_dead_flag == 1 ? 1 : 0;
11996
11997 if (find_regno_note (insn, REG_DEAD, reg_dead_regno))
11998 return 1;
11999 }
12000
12001 /* Get the basic block that we were in. */
12002 if (insn == 0)
12003 block = ENTRY_BLOCK_PTR->next_bb;
12004 else
12005 {
12006 FOR_EACH_BB (block)
12007 if (insn == BB_HEAD (block))
12008 break;
12009
12010 if (block == EXIT_BLOCK_PTR)
12011 return 0;
12012 }
12013
12014 for (i = reg_dead_regno; i < reg_dead_endregno; i++)
12015 if (REGNO_REG_SET_P (df_get_live_in (block), i))
12016 return 0;
12017
12018 return 1;
12019 }
12020
12021 /* Note hard registers in X that are used. */
12022
12023 static void
12024 mark_used_regs_combine (rtx x)
12025 {
12026 RTX_CODE code = GET_CODE (x);
12027 unsigned int regno;
12028 int i;
12029
12030 switch (code)
12031 {
12032 case LABEL_REF:
12033 case SYMBOL_REF:
12034 case CONST_INT:
12035 case CONST:
12036 case CONST_DOUBLE:
12037 case CONST_VECTOR:
12038 case PC:
12039 case ADDR_VEC:
12040 case ADDR_DIFF_VEC:
12041 case ASM_INPUT:
12042 #ifdef HAVE_cc0
12043 /* CC0 must die in the insn after it is set, so we don't need to take
12044 special note of it here. */
12045 case CC0:
12046 #endif
12047 return;
12048
12049 case CLOBBER:
12050 /* If we are clobbering a MEM, mark any hard registers inside the
12051 address as used. */
12052 if (MEM_P (XEXP (x, 0)))
12053 mark_used_regs_combine (XEXP (XEXP (x, 0), 0));
12054 return;
12055
12056 case REG:
12057 regno = REGNO (x);
12058 /* A hard reg in a wide mode may really be multiple registers.
12059 If so, mark all of them just like the first. */
12060 if (regno < FIRST_PSEUDO_REGISTER)
12061 {
12062 /* None of this applies to the stack, frame or arg pointers. */
12063 if (regno == STACK_POINTER_REGNUM
12064 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
12065 || regno == HARD_FRAME_POINTER_REGNUM
12066 #endif
12067 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
12068 || (regno == ARG_POINTER_REGNUM && fixed_regs[regno])
12069 #endif
12070 || regno == FRAME_POINTER_REGNUM)
12071 return;
12072
12073 add_to_hard_reg_set (&newpat_used_regs, GET_MODE (x), regno);
12074 }
12075 return;
12076
12077 case SET:
12078 {
12079 /* If setting a MEM, or a SUBREG of a MEM, then note any hard regs in
12080 the address. */
12081 rtx testreg = SET_DEST (x);
12082
12083 while (GET_CODE (testreg) == SUBREG
12084 || GET_CODE (testreg) == ZERO_EXTRACT
12085 || GET_CODE (testreg) == STRICT_LOW_PART)
12086 testreg = XEXP (testreg, 0);
12087
12088 if (MEM_P (testreg))
12089 mark_used_regs_combine (XEXP (testreg, 0));
12090
12091 mark_used_regs_combine (SET_SRC (x));
12092 }
12093 return;
12094
12095 default:
12096 break;
12097 }
12098
12099 /* Recursively scan the operands of this expression. */
12100
12101 {
12102 const char *fmt = GET_RTX_FORMAT (code);
12103
12104 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
12105 {
12106 if (fmt[i] == 'e')
12107 mark_used_regs_combine (XEXP (x, i));
12108 else if (fmt[i] == 'E')
12109 {
12110 int j;
12111
12112 for (j = 0; j < XVECLEN (x, i); j++)
12113 mark_used_regs_combine (XVECEXP (x, i, j));
12114 }
12115 }
12116 }
12117 }
12118
12119 /* Remove register number REGNO from the dead registers list of INSN.
12120
12121 Return the note used to record the death, if there was one. */
12122
12123 rtx
12124 remove_death (unsigned int regno, rtx insn)
12125 {
12126 rtx note = find_regno_note (insn, REG_DEAD, regno);
12127
12128 if (note)
12129 remove_note (insn, note);
12130
12131 return note;
12132 }
12133
12134 /* For each register (hardware or pseudo) used within expression X, if its
12135 death is in an instruction with luid between FROM_LUID (inclusive) and
12136 TO_INSN (exclusive), put a REG_DEAD note for that register in the
12137 list headed by PNOTES.
12138
12139 That said, don't move registers killed by maybe_kill_insn.
12140
12141 This is done when X is being merged by combination into TO_INSN. These
12142 notes will then be distributed as needed. */
12143
12144 static void
12145 move_deaths (rtx x, rtx maybe_kill_insn, int from_luid, rtx to_insn,
12146 rtx *pnotes)
12147 {
12148 const char *fmt;
12149 int len, i;
12150 enum rtx_code code = GET_CODE (x);
12151
12152 if (code == REG)
12153 {
12154 unsigned int regno = REGNO (x);
12155 rtx where_dead = VEC_index (reg_stat_type, reg_stat, regno)->last_death;
12156
12157 /* Don't move the register if it gets killed in between from and to. */
12158 if (maybe_kill_insn && reg_set_p (x, maybe_kill_insn)
12159 && ! reg_referenced_p (x, maybe_kill_insn))
12160 return;
12161
12162 if (where_dead
12163 && DF_INSN_LUID (where_dead) >= from_luid
12164 && DF_INSN_LUID (where_dead) < DF_INSN_LUID (to_insn))
12165 {
12166 rtx note = remove_death (regno, where_dead);
12167
12168 /* It is possible for the call above to return 0. This can occur
12169 when last_death points to I2 or I1 that we combined with.
12170 In that case make a new note.
12171
12172 We must also check for the case where X is a hard register
12173 and NOTE is a death note for a range of hard registers
12174 including X. In that case, we must put REG_DEAD notes for
12175 the remaining registers in place of NOTE. */
12176
12177 if (note != 0 && regno < FIRST_PSEUDO_REGISTER
12178 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
12179 > GET_MODE_SIZE (GET_MODE (x))))
12180 {
12181 unsigned int deadregno = REGNO (XEXP (note, 0));
12182 unsigned int deadend = END_HARD_REGNO (XEXP (note, 0));
12183 unsigned int ourend = END_HARD_REGNO (x);
12184 unsigned int i;
12185
12186 for (i = deadregno; i < deadend; i++)
12187 if (i < regno || i >= ourend)
12188 add_reg_note (where_dead, REG_DEAD, regno_reg_rtx[i]);
12189 }
12190
12191 /* If we didn't find any note, or if we found a REG_DEAD note that
12192 covers only part of the given reg, and we have a multi-reg hard
12193 register, then to be safe we must check for REG_DEAD notes
12194 for each register other than the first. They could have
12195 their own REG_DEAD notes lying around. */
12196 else if ((note == 0
12197 || (note != 0
12198 && (GET_MODE_SIZE (GET_MODE (XEXP (note, 0)))
12199 < GET_MODE_SIZE (GET_MODE (x)))))
12200 && regno < FIRST_PSEUDO_REGISTER
12201 && hard_regno_nregs[regno][GET_MODE (x)] > 1)
12202 {
12203 unsigned int ourend = END_HARD_REGNO (x);
12204 unsigned int i, offset;
12205 rtx oldnotes = 0;
12206
12207 if (note)
12208 offset = hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))];
12209 else
12210 offset = 1;
12211
12212 for (i = regno + offset; i < ourend; i++)
12213 move_deaths (regno_reg_rtx[i],
12214 maybe_kill_insn, from_luid, to_insn, &oldnotes);
12215 }
12216
12217 if (note != 0 && GET_MODE (XEXP (note, 0)) == GET_MODE (x))
12218 {
12219 XEXP (note, 1) = *pnotes;
12220 *pnotes = note;
12221 }
12222 else
12223 *pnotes = gen_rtx_EXPR_LIST (REG_DEAD, x, *pnotes);
12224 }
12225
12226 return;
12227 }
12228
12229 else if (GET_CODE (x) == SET)
12230 {
12231 rtx dest = SET_DEST (x);
12232
12233 move_deaths (SET_SRC (x), maybe_kill_insn, from_luid, to_insn, pnotes);
12234
12235 /* In the case of a ZERO_EXTRACT, a STRICT_LOW_PART, or a SUBREG
12236 that accesses one word of a multi-word item, some
12237 piece of everything register in the expression is used by
12238 this insn, so remove any old death. */
12239 /* ??? So why do we test for equality of the sizes? */
12240
12241 if (GET_CODE (dest) == ZERO_EXTRACT
12242 || GET_CODE (dest) == STRICT_LOW_PART
12243 || (GET_CODE (dest) == SUBREG
12244 && (((GET_MODE_SIZE (GET_MODE (dest))
12245 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
12246 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
12247 + UNITS_PER_WORD - 1) / UNITS_PER_WORD))))
12248 {
12249 move_deaths (dest, maybe_kill_insn, from_luid, to_insn, pnotes);
12250 return;
12251 }
12252
12253 /* If this is some other SUBREG, we know it replaces the entire
12254 value, so use that as the destination. */
12255 if (GET_CODE (dest) == SUBREG)
12256 dest = SUBREG_REG (dest);
12257
12258 /* If this is a MEM, adjust deaths of anything used in the address.
12259 For a REG (the only other possibility), the entire value is
12260 being replaced so the old value is not used in this insn. */
12261
12262 if (MEM_P (dest))
12263 move_deaths (XEXP (dest, 0), maybe_kill_insn, from_luid,
12264 to_insn, pnotes);
12265 return;
12266 }
12267
12268 else if (GET_CODE (x) == CLOBBER)
12269 return;
12270
12271 len = GET_RTX_LENGTH (code);
12272 fmt = GET_RTX_FORMAT (code);
12273
12274 for (i = 0; i < len; i++)
12275 {
12276 if (fmt[i] == 'E')
12277 {
12278 int j;
12279 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
12280 move_deaths (XVECEXP (x, i, j), maybe_kill_insn, from_luid,
12281 to_insn, pnotes);
12282 }
12283 else if (fmt[i] == 'e')
12284 move_deaths (XEXP (x, i), maybe_kill_insn, from_luid, to_insn, pnotes);
12285 }
12286 }
12287
12288 /* Return 1 if X is the target of a bit-field assignment in BODY, the
12289 pattern of an insn. X must be a REG. */
12290
12291 static int
12292 reg_bitfield_target_p (rtx x, rtx body)
12293 {
12294 int i;
12295
12296 if (GET_CODE (body) == SET)
12297 {
12298 rtx dest = SET_DEST (body);
12299 rtx target;
12300 unsigned int regno, tregno, endregno, endtregno;
12301
12302 if (GET_CODE (dest) == ZERO_EXTRACT)
12303 target = XEXP (dest, 0);
12304 else if (GET_CODE (dest) == STRICT_LOW_PART)
12305 target = SUBREG_REG (XEXP (dest, 0));
12306 else
12307 return 0;
12308
12309 if (GET_CODE (target) == SUBREG)
12310 target = SUBREG_REG (target);
12311
12312 if (!REG_P (target))
12313 return 0;
12314
12315 tregno = REGNO (target), regno = REGNO (x);
12316 if (tregno >= FIRST_PSEUDO_REGISTER || regno >= FIRST_PSEUDO_REGISTER)
12317 return target == x;
12318
12319 endtregno = end_hard_regno (GET_MODE (target), tregno);
12320 endregno = end_hard_regno (GET_MODE (x), regno);
12321
12322 return endregno > tregno && regno < endtregno;
12323 }
12324
12325 else if (GET_CODE (body) == PARALLEL)
12326 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
12327 if (reg_bitfield_target_p (x, XVECEXP (body, 0, i)))
12328 return 1;
12329
12330 return 0;
12331 }
12332
12333 /* Given a chain of REG_NOTES originally from FROM_INSN, try to place them
12334 as appropriate. I3 and I2 are the insns resulting from the combination
12335 insns including FROM (I2 may be zero).
12336
12337 ELIM_I2 and ELIM_I1 are either zero or registers that we know will
12338 not need REG_DEAD notes because they are being substituted for. This
12339 saves searching in the most common cases.
12340
12341 Each note in the list is either ignored or placed on some insns, depending
12342 on the type of note. */
12343
12344 static void
12345 distribute_notes (rtx notes, rtx from_insn, rtx i3, rtx i2, rtx elim_i2,
12346 rtx elim_i1)
12347 {
12348 rtx note, next_note;
12349 rtx tem;
12350
12351 for (note = notes; note; note = next_note)
12352 {
12353 rtx place = 0, place2 = 0;
12354
12355 next_note = XEXP (note, 1);
12356 switch (REG_NOTE_KIND (note))
12357 {
12358 case REG_BR_PROB:
12359 case REG_BR_PRED:
12360 /* Doesn't matter much where we put this, as long as it's somewhere.
12361 It is preferable to keep these notes on branches, which is most
12362 likely to be i3. */
12363 place = i3;
12364 break;
12365
12366 case REG_VALUE_PROFILE:
12367 /* Just get rid of this note, as it is unused later anyway. */
12368 break;
12369
12370 case REG_NON_LOCAL_GOTO:
12371 if (JUMP_P (i3))
12372 place = i3;
12373 else
12374 {
12375 gcc_assert (i2 && JUMP_P (i2));
12376 place = i2;
12377 }
12378 break;
12379
12380 case REG_EH_REGION:
12381 /* These notes must remain with the call or trapping instruction. */
12382 if (CALL_P (i3))
12383 place = i3;
12384 else if (i2 && CALL_P (i2))
12385 place = i2;
12386 else
12387 {
12388 gcc_assert (flag_non_call_exceptions);
12389 if (may_trap_p (i3))
12390 place = i3;
12391 else if (i2 && may_trap_p (i2))
12392 place = i2;
12393 /* ??? Otherwise assume we've combined things such that we
12394 can now prove that the instructions can't trap. Drop the
12395 note in this case. */
12396 }
12397 break;
12398
12399 case REG_NORETURN:
12400 case REG_SETJMP:
12401 /* These notes must remain with the call. It should not be
12402 possible for both I2 and I3 to be a call. */
12403 if (CALL_P (i3))
12404 place = i3;
12405 else
12406 {
12407 gcc_assert (i2 && CALL_P (i2));
12408 place = i2;
12409 }
12410 break;
12411
12412 case REG_UNUSED:
12413 /* Any clobbers for i3 may still exist, and so we must process
12414 REG_UNUSED notes from that insn.
12415
12416 Any clobbers from i2 or i1 can only exist if they were added by
12417 recog_for_combine. In that case, recog_for_combine created the
12418 necessary REG_UNUSED notes. Trying to keep any original
12419 REG_UNUSED notes from these insns can cause incorrect output
12420 if it is for the same register as the original i3 dest.
12421 In that case, we will notice that the register is set in i3,
12422 and then add a REG_UNUSED note for the destination of i3, which
12423 is wrong. However, it is possible to have REG_UNUSED notes from
12424 i2 or i1 for register which were both used and clobbered, so
12425 we keep notes from i2 or i1 if they will turn into REG_DEAD
12426 notes. */
12427
12428 /* If this register is set or clobbered in I3, put the note there
12429 unless there is one already. */
12430 if (reg_set_p (XEXP (note, 0), PATTERN (i3)))
12431 {
12432 if (from_insn != i3)
12433 break;
12434
12435 if (! (REG_P (XEXP (note, 0))
12436 ? find_regno_note (i3, REG_UNUSED, REGNO (XEXP (note, 0)))
12437 : find_reg_note (i3, REG_UNUSED, XEXP (note, 0))))
12438 place = i3;
12439 }
12440 /* Otherwise, if this register is used by I3, then this register
12441 now dies here, so we must put a REG_DEAD note here unless there
12442 is one already. */
12443 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3))
12444 && ! (REG_P (XEXP (note, 0))
12445 ? find_regno_note (i3, REG_DEAD,
12446 REGNO (XEXP (note, 0)))
12447 : find_reg_note (i3, REG_DEAD, XEXP (note, 0))))
12448 {
12449 PUT_REG_NOTE_KIND (note, REG_DEAD);
12450 place = i3;
12451 }
12452 break;
12453
12454 case REG_EQUAL:
12455 case REG_EQUIV:
12456 case REG_NOALIAS:
12457 /* These notes say something about results of an insn. We can
12458 only support them if they used to be on I3 in which case they
12459 remain on I3. Otherwise they are ignored.
12460
12461 If the note refers to an expression that is not a constant, we
12462 must also ignore the note since we cannot tell whether the
12463 equivalence is still true. It might be possible to do
12464 slightly better than this (we only have a problem if I2DEST
12465 or I1DEST is present in the expression), but it doesn't
12466 seem worth the trouble. */
12467
12468 if (from_insn == i3
12469 && (XEXP (note, 0) == 0 || CONSTANT_P (XEXP (note, 0))))
12470 place = i3;
12471 break;
12472
12473 case REG_INC:
12474 /* These notes say something about how a register is used. They must
12475 be present on any use of the register in I2 or I3. */
12476 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3)))
12477 place = i3;
12478
12479 if (i2 && reg_mentioned_p (XEXP (note, 0), PATTERN (i2)))
12480 {
12481 if (place)
12482 place2 = i2;
12483 else
12484 place = i2;
12485 }
12486 break;
12487
12488 case REG_LABEL_TARGET:
12489 case REG_LABEL_OPERAND:
12490 /* This can show up in several ways -- either directly in the
12491 pattern, or hidden off in the constant pool with (or without?)
12492 a REG_EQUAL note. */
12493 /* ??? Ignore the without-reg_equal-note problem for now. */
12494 if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3))
12495 || ((tem = find_reg_note (i3, REG_EQUAL, NULL_RTX))
12496 && GET_CODE (XEXP (tem, 0)) == LABEL_REF
12497 && XEXP (XEXP (tem, 0), 0) == XEXP (note, 0)))
12498 place = i3;
12499
12500 if (i2
12501 && (reg_mentioned_p (XEXP (note, 0), PATTERN (i2))
12502 || ((tem = find_reg_note (i2, REG_EQUAL, NULL_RTX))
12503 && GET_CODE (XEXP (tem, 0)) == LABEL_REF
12504 && XEXP (XEXP (tem, 0), 0) == XEXP (note, 0))))
12505 {
12506 if (place)
12507 place2 = i2;
12508 else
12509 place = i2;
12510 }
12511
12512 /* For REG_LABEL_TARGET on a JUMP_P, we prefer to put the note
12513 as a JUMP_LABEL or decrement LABEL_NUSES if it's already
12514 there. */
12515 if (place && JUMP_P (place)
12516 && REG_NOTE_KIND (note) == REG_LABEL_TARGET
12517 && (JUMP_LABEL (place) == NULL
12518 || JUMP_LABEL (place) == XEXP (note, 0)))
12519 {
12520 rtx label = JUMP_LABEL (place);
12521
12522 if (!label)
12523 JUMP_LABEL (place) = XEXP (note, 0);
12524 else if (LABEL_P (label))
12525 LABEL_NUSES (label)--;
12526 }
12527
12528 if (place2 && JUMP_P (place2)
12529 && REG_NOTE_KIND (note) == REG_LABEL_TARGET
12530 && (JUMP_LABEL (place2) == NULL
12531 || JUMP_LABEL (place2) == XEXP (note, 0)))
12532 {
12533 rtx label = JUMP_LABEL (place2);
12534
12535 if (!label)
12536 JUMP_LABEL (place2) = XEXP (note, 0);
12537 else if (LABEL_P (label))
12538 LABEL_NUSES (label)--;
12539 place2 = 0;
12540 }
12541 break;
12542
12543 case REG_NONNEG:
12544 /* This note says something about the value of a register prior
12545 to the execution of an insn. It is too much trouble to see
12546 if the note is still correct in all situations. It is better
12547 to simply delete it. */
12548 break;
12549
12550 case REG_DEAD:
12551 /* If we replaced the right hand side of FROM_INSN with a
12552 REG_EQUAL note, the original use of the dying register
12553 will not have been combined into I3 and I2. In such cases,
12554 FROM_INSN is guaranteed to be the first of the combined
12555 instructions, so we simply need to search back before
12556 FROM_INSN for the previous use or set of this register,
12557 then alter the notes there appropriately.
12558
12559 If the register is used as an input in I3, it dies there.
12560 Similarly for I2, if it is nonzero and adjacent to I3.
12561
12562 If the register is not used as an input in either I3 or I2
12563 and it is not one of the registers we were supposed to eliminate,
12564 there are two possibilities. We might have a non-adjacent I2
12565 or we might have somehow eliminated an additional register
12566 from a computation. For example, we might have had A & B where
12567 we discover that B will always be zero. In this case we will
12568 eliminate the reference to A.
12569
12570 In both cases, we must search to see if we can find a previous
12571 use of A and put the death note there. */
12572
12573 if (from_insn
12574 && from_insn == i2mod
12575 && !reg_overlap_mentioned_p (XEXP (note, 0), i2mod_new_rhs))
12576 tem = from_insn;
12577 else
12578 {
12579 if (from_insn
12580 && CALL_P (from_insn)
12581 && find_reg_fusage (from_insn, USE, XEXP (note, 0)))
12582 place = from_insn;
12583 else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3)))
12584 place = i3;
12585 else if (i2 != 0 && next_nonnote_insn (i2) == i3
12586 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
12587 place = i2;
12588 else if ((rtx_equal_p (XEXP (note, 0), elim_i2)
12589 && !(i2mod
12590 && reg_overlap_mentioned_p (XEXP (note, 0),
12591 i2mod_old_rhs)))
12592 || rtx_equal_p (XEXP (note, 0), elim_i1))
12593 break;
12594 tem = i3;
12595 }
12596
12597 if (place == 0)
12598 {
12599 basic_block bb = this_basic_block;
12600
12601 for (tem = PREV_INSN (tem); place == 0; tem = PREV_INSN (tem))
12602 {
12603 if (! INSN_P (tem))
12604 {
12605 if (tem == BB_HEAD (bb))
12606 break;
12607 continue;
12608 }
12609
12610 /* If the register is being set at TEM, see if that is all
12611 TEM is doing. If so, delete TEM. Otherwise, make this
12612 into a REG_UNUSED note instead. Don't delete sets to
12613 global register vars. */
12614 if ((REGNO (XEXP (note, 0)) >= FIRST_PSEUDO_REGISTER
12615 || !global_regs[REGNO (XEXP (note, 0))])
12616 && reg_set_p (XEXP (note, 0), PATTERN (tem)))
12617 {
12618 rtx set = single_set (tem);
12619 rtx inner_dest = 0;
12620 #ifdef HAVE_cc0
12621 rtx cc0_setter = NULL_RTX;
12622 #endif
12623
12624 if (set != 0)
12625 for (inner_dest = SET_DEST (set);
12626 (GET_CODE (inner_dest) == STRICT_LOW_PART
12627 || GET_CODE (inner_dest) == SUBREG
12628 || GET_CODE (inner_dest) == ZERO_EXTRACT);
12629 inner_dest = XEXP (inner_dest, 0))
12630 ;
12631
12632 /* Verify that it was the set, and not a clobber that
12633 modified the register.
12634
12635 CC0 targets must be careful to maintain setter/user
12636 pairs. If we cannot delete the setter due to side
12637 effects, mark the user with an UNUSED note instead
12638 of deleting it. */
12639
12640 if (set != 0 && ! side_effects_p (SET_SRC (set))
12641 && rtx_equal_p (XEXP (note, 0), inner_dest)
12642 #ifdef HAVE_cc0
12643 && (! reg_mentioned_p (cc0_rtx, SET_SRC (set))
12644 || ((cc0_setter = prev_cc0_setter (tem)) != NULL
12645 && sets_cc0_p (PATTERN (cc0_setter)) > 0))
12646 #endif
12647 )
12648 {
12649 /* Move the notes and links of TEM elsewhere.
12650 This might delete other dead insns recursively.
12651 First set the pattern to something that won't use
12652 any register. */
12653 rtx old_notes = REG_NOTES (tem);
12654
12655 PATTERN (tem) = pc_rtx;
12656 REG_NOTES (tem) = NULL;
12657
12658 distribute_notes (old_notes, tem, tem, NULL_RTX,
12659 NULL_RTX, NULL_RTX);
12660 distribute_links (LOG_LINKS (tem));
12661
12662 SET_INSN_DELETED (tem);
12663 if (tem == i2)
12664 i2 = NULL_RTX;
12665
12666 #ifdef HAVE_cc0
12667 /* Delete the setter too. */
12668 if (cc0_setter)
12669 {
12670 PATTERN (cc0_setter) = pc_rtx;
12671 old_notes = REG_NOTES (cc0_setter);
12672 REG_NOTES (cc0_setter) = NULL;
12673
12674 distribute_notes (old_notes, cc0_setter,
12675 cc0_setter, NULL_RTX,
12676 NULL_RTX, NULL_RTX);
12677 distribute_links (LOG_LINKS (cc0_setter));
12678
12679 SET_INSN_DELETED (cc0_setter);
12680 if (cc0_setter == i2)
12681 i2 = NULL_RTX;
12682 }
12683 #endif
12684 }
12685 else
12686 {
12687 PUT_REG_NOTE_KIND (note, REG_UNUSED);
12688
12689 /* If there isn't already a REG_UNUSED note, put one
12690 here. Do not place a REG_DEAD note, even if
12691 the register is also used here; that would not
12692 match the algorithm used in lifetime analysis
12693 and can cause the consistency check in the
12694 scheduler to fail. */
12695 if (! find_regno_note (tem, REG_UNUSED,
12696 REGNO (XEXP (note, 0))))
12697 place = tem;
12698 break;
12699 }
12700 }
12701 else if (reg_referenced_p (XEXP (note, 0), PATTERN (tem))
12702 || (CALL_P (tem)
12703 && find_reg_fusage (tem, USE, XEXP (note, 0))))
12704 {
12705 place = tem;
12706
12707 /* If we are doing a 3->2 combination, and we have a
12708 register which formerly died in i3 and was not used
12709 by i2, which now no longer dies in i3 and is used in
12710 i2 but does not die in i2, and place is between i2
12711 and i3, then we may need to move a link from place to
12712 i2. */
12713 if (i2 && DF_INSN_LUID (place) > DF_INSN_LUID (i2)
12714 && from_insn
12715 && DF_INSN_LUID (from_insn) > DF_INSN_LUID (i2)
12716 && reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
12717 {
12718 rtx links = LOG_LINKS (place);
12719 LOG_LINKS (place) = 0;
12720 distribute_links (links);
12721 }
12722 break;
12723 }
12724
12725 if (tem == BB_HEAD (bb))
12726 break;
12727 }
12728
12729 }
12730
12731 /* If the register is set or already dead at PLACE, we needn't do
12732 anything with this note if it is still a REG_DEAD note.
12733 We check here if it is set at all, not if is it totally replaced,
12734 which is what `dead_or_set_p' checks, so also check for it being
12735 set partially. */
12736
12737 if (place && REG_NOTE_KIND (note) == REG_DEAD)
12738 {
12739 unsigned int regno = REGNO (XEXP (note, 0));
12740 reg_stat_type *rsp = VEC_index (reg_stat_type, reg_stat, regno);
12741
12742 if (dead_or_set_p (place, XEXP (note, 0))
12743 || reg_bitfield_target_p (XEXP (note, 0), PATTERN (place)))
12744 {
12745 /* Unless the register previously died in PLACE, clear
12746 last_death. [I no longer understand why this is
12747 being done.] */
12748 if (rsp->last_death != place)
12749 rsp->last_death = 0;
12750 place = 0;
12751 }
12752 else
12753 rsp->last_death = place;
12754
12755 /* If this is a death note for a hard reg that is occupying
12756 multiple registers, ensure that we are still using all
12757 parts of the object. If we find a piece of the object
12758 that is unused, we must arrange for an appropriate REG_DEAD
12759 note to be added for it. However, we can't just emit a USE
12760 and tag the note to it, since the register might actually
12761 be dead; so we recourse, and the recursive call then finds
12762 the previous insn that used this register. */
12763
12764 if (place && regno < FIRST_PSEUDO_REGISTER
12765 && hard_regno_nregs[regno][GET_MODE (XEXP (note, 0))] > 1)
12766 {
12767 unsigned int endregno = END_HARD_REGNO (XEXP (note, 0));
12768 int all_used = 1;
12769 unsigned int i;
12770
12771 for (i = regno; i < endregno; i++)
12772 if ((! refers_to_regno_p (i, i + 1, PATTERN (place), 0)
12773 && ! find_regno_fusage (place, USE, i))
12774 || dead_or_set_regno_p (place, i))
12775 all_used = 0;
12776
12777 if (! all_used)
12778 {
12779 /* Put only REG_DEAD notes for pieces that are
12780 not already dead or set. */
12781
12782 for (i = regno; i < endregno;
12783 i += hard_regno_nregs[i][reg_raw_mode[i]])
12784 {
12785 rtx piece = regno_reg_rtx[i];
12786 basic_block bb = this_basic_block;
12787
12788 if (! dead_or_set_p (place, piece)
12789 && ! reg_bitfield_target_p (piece,
12790 PATTERN (place)))
12791 {
12792 rtx new_note
12793 = gen_rtx_EXPR_LIST (REG_DEAD, piece, NULL_RTX);
12794
12795 distribute_notes (new_note, place, place,
12796 NULL_RTX, NULL_RTX, NULL_RTX);
12797 }
12798 else if (! refers_to_regno_p (i, i + 1,
12799 PATTERN (place), 0)
12800 && ! find_regno_fusage (place, USE, i))
12801 for (tem = PREV_INSN (place); ;
12802 tem = PREV_INSN (tem))
12803 {
12804 if (! INSN_P (tem))
12805 {
12806 if (tem == BB_HEAD (bb))
12807 break;
12808 continue;
12809 }
12810 if (dead_or_set_p (tem, piece)
12811 || reg_bitfield_target_p (piece,
12812 PATTERN (tem)))
12813 {
12814 add_reg_note (tem, REG_UNUSED, piece);
12815 break;
12816 }
12817 }
12818
12819 }
12820
12821 place = 0;
12822 }
12823 }
12824 }
12825 break;
12826
12827 default:
12828 /* Any other notes should not be present at this point in the
12829 compilation. */
12830 gcc_unreachable ();
12831 }
12832
12833 if (place)
12834 {
12835 XEXP (note, 1) = REG_NOTES (place);
12836 REG_NOTES (place) = note;
12837 }
12838
12839 if (place2)
12840 REG_NOTES (place2)
12841 = gen_rtx_fmt_ee (GET_CODE (note), REG_NOTE_KIND (note),
12842 XEXP (note, 0), REG_NOTES (place2));
12843 }
12844 }
12845
12846 /* Similarly to above, distribute the LOG_LINKS that used to be present on
12847 I3, I2, and I1 to new locations. This is also called to add a link
12848 pointing at I3 when I3's destination is changed. */
12849
12850 static void
12851 distribute_links (rtx links)
12852 {
12853 rtx link, next_link;
12854
12855 for (link = links; link; link = next_link)
12856 {
12857 rtx place = 0;
12858 rtx insn;
12859 rtx set, reg;
12860
12861 next_link = XEXP (link, 1);
12862
12863 /* If the insn that this link points to is a NOTE or isn't a single
12864 set, ignore it. In the latter case, it isn't clear what we
12865 can do other than ignore the link, since we can't tell which
12866 register it was for. Such links wouldn't be used by combine
12867 anyway.
12868
12869 It is not possible for the destination of the target of the link to
12870 have been changed by combine. The only potential of this is if we
12871 replace I3, I2, and I1 by I3 and I2. But in that case the
12872 destination of I2 also remains unchanged. */
12873
12874 if (NOTE_P (XEXP (link, 0))
12875 || (set = single_set (XEXP (link, 0))) == 0)
12876 continue;
12877
12878 reg = SET_DEST (set);
12879 while (GET_CODE (reg) == SUBREG || GET_CODE (reg) == ZERO_EXTRACT
12880 || GET_CODE (reg) == STRICT_LOW_PART)
12881 reg = XEXP (reg, 0);
12882
12883 /* A LOG_LINK is defined as being placed on the first insn that uses
12884 a register and points to the insn that sets the register. Start
12885 searching at the next insn after the target of the link and stop
12886 when we reach a set of the register or the end of the basic block.
12887
12888 Note that this correctly handles the link that used to point from
12889 I3 to I2. Also note that not much searching is typically done here
12890 since most links don't point very far away. */
12891
12892 for (insn = NEXT_INSN (XEXP (link, 0));
12893 (insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR
12894 || BB_HEAD (this_basic_block->next_bb) != insn));
12895 insn = NEXT_INSN (insn))
12896 if (INSN_P (insn) && reg_overlap_mentioned_p (reg, PATTERN (insn)))
12897 {
12898 if (reg_referenced_p (reg, PATTERN (insn)))
12899 place = insn;
12900 break;
12901 }
12902 else if (CALL_P (insn)
12903 && find_reg_fusage (insn, USE, reg))
12904 {
12905 place = insn;
12906 break;
12907 }
12908 else if (INSN_P (insn) && reg_set_p (reg, insn))
12909 break;
12910
12911 /* If we found a place to put the link, place it there unless there
12912 is already a link to the same insn as LINK at that point. */
12913
12914 if (place)
12915 {
12916 rtx link2;
12917
12918 for (link2 = LOG_LINKS (place); link2; link2 = XEXP (link2, 1))
12919 if (XEXP (link2, 0) == XEXP (link, 0))
12920 break;
12921
12922 if (link2 == 0)
12923 {
12924 XEXP (link, 1) = LOG_LINKS (place);
12925 LOG_LINKS (place) = link;
12926
12927 /* Set added_links_insn to the earliest insn we added a
12928 link to. */
12929 if (added_links_insn == 0
12930 || DF_INSN_LUID (added_links_insn) > DF_INSN_LUID (place))
12931 added_links_insn = place;
12932 }
12933 }
12934 }
12935 }
12936
12937 /* Subroutine of unmentioned_reg_p and callback from for_each_rtx.
12938 Check whether the expression pointer to by LOC is a register or
12939 memory, and if so return 1 if it isn't mentioned in the rtx EXPR.
12940 Otherwise return zero. */
12941
12942 static int
12943 unmentioned_reg_p_1 (rtx *loc, void *expr)
12944 {
12945 rtx x = *loc;
12946
12947 if (x != NULL_RTX
12948 && (REG_P (x) || MEM_P (x))
12949 && ! reg_mentioned_p (x, (rtx) expr))
12950 return 1;
12951 return 0;
12952 }
12953
12954 /* Check for any register or memory mentioned in EQUIV that is not
12955 mentioned in EXPR. This is used to restrict EQUIV to "specializations"
12956 of EXPR where some registers may have been replaced by constants. */
12957
12958 static bool
12959 unmentioned_reg_p (rtx equiv, rtx expr)
12960 {
12961 return for_each_rtx (&equiv, unmentioned_reg_p_1, expr);
12962 }
12963
12964 void
12965 dump_combine_stats (FILE *file)
12966 {
12967 fprintf
12968 (file,
12969 ";; Combiner statistics: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n\n",
12970 combine_attempts, combine_merges, combine_extras, combine_successes);
12971 }
12972
12973 void
12974 dump_combine_total_stats (FILE *file)
12975 {
12976 fprintf
12977 (file,
12978 "\n;; Combiner totals: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n",
12979 total_attempts, total_merges, total_extras, total_successes);
12980 }
12981
12982 static bool
12983 gate_handle_combine (void)
12984 {
12985 return (optimize > 0);
12986 }
12987
12988 /* Try combining insns through substitution. */
12989 static unsigned int
12990 rest_of_handle_combine (void)
12991 {
12992 int rebuild_jump_labels_after_combine;
12993
12994 df_set_flags (DF_LR_RUN_DCE + DF_DEFER_INSN_RESCAN);
12995 df_note_add_problem ();
12996 df_analyze ();
12997
12998 regstat_init_n_sets_and_refs ();
12999
13000 rebuild_jump_labels_after_combine
13001 = combine_instructions (get_insns (), max_reg_num ());
13002
13003 /* Combining insns may have turned an indirect jump into a
13004 direct jump. Rebuild the JUMP_LABEL fields of jumping
13005 instructions. */
13006 if (rebuild_jump_labels_after_combine)
13007 {
13008 timevar_push (TV_JUMP);
13009 rebuild_jump_labels (get_insns ());
13010 cleanup_cfg (0);
13011 timevar_pop (TV_JUMP);
13012 }
13013
13014 regstat_free_n_sets_and_refs ();
13015 return 0;
13016 }
13017
13018 struct rtl_opt_pass pass_combine =
13019 {
13020 {
13021 RTL_PASS,
13022 "combine", /* name */
13023 gate_handle_combine, /* gate */
13024 rest_of_handle_combine, /* execute */
13025 NULL, /* sub */
13026 NULL, /* next */
13027 0, /* static_pass_number */
13028 TV_COMBINE, /* tv_id */
13029 0, /* properties_required */
13030 0, /* properties_provided */
13031 0, /* properties_destroyed */
13032 0, /* todo_flags_start */
13033 TODO_dump_func |
13034 TODO_df_finish | TODO_verify_rtl_sharing |
13035 TODO_ggc_collect, /* todo_flags_finish */
13036 }
13037 };
13038