comparison gcc/config/crx/crx.c @ 0:a06113de4d67

first commit
author kent <kent@cr.ie.u-ryukyu.ac.jp>
date Fri, 17 Jul 2009 14:47:48 +0900
parents
children 77e2b8dfacca
comparison
equal deleted inserted replaced
-1:000000000000 0:a06113de4d67
1 /* Output routines for GCC for CRX.
2 Copyright (C) 1991, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
3 2002, 2003, 2004, 2005, 2006, 2007, 2008 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published
9 by the Free Software Foundation; either version 3, or (at your
10 option) any later version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
15 License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 /*****************************************************************************/
22 /* HEADER INCLUDES */
23 /*****************************************************************************/
24
25 #include "config.h"
26 #include "system.h"
27 #include "coretypes.h"
28 #include "tm.h"
29 #include "rtl.h"
30 #include "tree.h"
31 #include "tm_p.h"
32 #include "regs.h"
33 #include "hard-reg-set.h"
34 #include "real.h"
35 #include "insn-config.h"
36 #include "conditions.h"
37 #include "output.h"
38 #include "insn-codes.h"
39 #include "insn-attr.h"
40 #include "flags.h"
41 #include "except.h"
42 #include "function.h"
43 #include "recog.h"
44 #include "expr.h"
45 #include "optabs.h"
46 #include "toplev.h"
47 #include "basic-block.h"
48 #include "target.h"
49 #include "target-def.h"
50
51 /*****************************************************************************/
52 /* DEFINITIONS */
53 /*****************************************************************************/
54
55 /* Maximum number of register used for passing parameters. */
56 #define MAX_REG_FOR_PASSING_ARGS 6
57
58 /* Minimum number register used for passing parameters. */
59 #define MIN_REG_FOR_PASSING_ARGS 2
60
61 /* The maximum count of words supported in the assembly of the architecture in
62 * a push/pop instruction. */
63 #define MAX_COUNT 8
64
65 /* Predicate is true if the current function is a 'noreturn' function, i.e. it
66 * is qualified as volatile. */
67 #define FUNC_IS_NORETURN_P(decl) (TREE_THIS_VOLATILE (decl))
68
69 /* The following macros are used in crx_decompose_address () */
70
71 /* Returns the factor of a scaled index address or -1 if invalid. */
72 #define SCALE_FOR_INDEX_P(X) \
73 (GET_CODE (X) == CONST_INT ? \
74 (INTVAL (X) == 1 ? 1 : \
75 INTVAL (X) == 2 ? 2 : \
76 INTVAL (X) == 4 ? 4 : \
77 INTVAL (X) == 8 ? 8 : \
78 -1) : \
79 -1)
80
81 /* Nonzero if the rtx X is a signed const int of n bits */
82 #define RTX_SIGNED_INT_FITS_N_BITS(X,n) \
83 ((GET_CODE (X) == CONST_INT \
84 && SIGNED_INT_FITS_N_BITS (INTVAL (X), n)) ? 1 : 0)
85
86 /* Nonzero if the rtx X is an unsigned const int of n bits. */
87 #define RTX_UNSIGNED_INT_FITS_N_BITS(X, n) \
88 ((GET_CODE (X) == CONST_INT \
89 && UNSIGNED_INT_FITS_N_BITS (INTVAL (X), n)) ? 1 : 0)
90
91 /*****************************************************************************/
92 /* STATIC VARIABLES */
93 /*****************************************************************************/
94
95 /* Nonzero if the last param processed is passed in a register. */
96 static int last_parm_in_reg;
97
98 /* Will hold the number of the last register the prologue saves, -1 if no
99 * register is saved. */
100 static int last_reg_to_save;
101
102 /* Each object in the array is a register number. Mark 1 for registers that
103 * need to be saved. */
104 static int save_regs[FIRST_PSEUDO_REGISTER];
105
106 /* Number of bytes saved on the stack for non-scratch registers */
107 static int sum_regs = 0;
108
109 /* Number of bytes saved on the stack for local variables. */
110 static int local_vars_size;
111
112 /* The sum of 2 sizes: locals vars and padding byte for saving the registers.
113 * Used in expand_prologue () and expand_epilogue (). */
114 static int size_for_adjusting_sp;
115
116 /* In case of a POST_INC or POST_DEC memory reference, we must report the mode
117 * of the memory reference from PRINT_OPERAND to PRINT_OPERAND_ADDRESS. */
118 static enum machine_mode output_memory_reference_mode;
119
120 /*****************************************************************************/
121 /* GLOBAL VARIABLES */
122 /*****************************************************************************/
123
124 /* Table of machine attributes. */
125 const struct attribute_spec crx_attribute_table[];
126
127 /* Test and compare insns use these globals to generate branch insns. */
128 rtx crx_compare_op0 = NULL_RTX;
129 rtx crx_compare_op1 = NULL_RTX;
130
131 /*****************************************************************************/
132 /* TARGETM FUNCTION PROTOTYPES */
133 /*****************************************************************************/
134
135 static bool crx_fixed_condition_code_regs (unsigned int *, unsigned int *);
136 static rtx crx_struct_value_rtx (tree fntype ATTRIBUTE_UNUSED,
137 int incoming ATTRIBUTE_UNUSED);
138 static bool crx_return_in_memory (const_tree type, const_tree fntype ATTRIBUTE_UNUSED);
139 static int crx_address_cost (rtx, bool);
140
141 /*****************************************************************************/
142 /* STACK LAYOUT AND CALLING CONVENTIONS */
143 /*****************************************************************************/
144
145 #undef TARGET_FIXED_CONDITION_CODE_REGS
146 #define TARGET_FIXED_CONDITION_CODE_REGS crx_fixed_condition_code_regs
147
148 #undef TARGET_STRUCT_VALUE_RTX
149 #define TARGET_STRUCT_VALUE_RTX crx_struct_value_rtx
150
151 #undef TARGET_RETURN_IN_MEMORY
152 #define TARGET_RETURN_IN_MEMORY crx_return_in_memory
153
154 /*****************************************************************************/
155 /* RELATIVE COSTS OF OPERATIONS */
156 /*****************************************************************************/
157
158 #undef TARGET_ADDRESS_COST
159 #define TARGET_ADDRESS_COST crx_address_cost
160
161 /*****************************************************************************/
162 /* TARGET-SPECIFIC USES OF `__attribute__' */
163 /*****************************************************************************/
164
165 #undef TARGET_ATTRIBUTE_TABLE
166 #define TARGET_ATTRIBUTE_TABLE crx_attribute_table
167
168 const struct attribute_spec crx_attribute_table[] = {
169 /* ISRs have special prologue and epilogue requirements. */
170 {"interrupt", 0, 0, false, true, true, NULL},
171 {NULL, 0, 0, false, false, false, NULL}
172 };
173
174
175 /* Initialize 'targetm' variable which contains pointers to functions and data
176 * relating to the target machine. */
177
178 struct gcc_target targetm = TARGET_INITIALIZER;
179
180
181 /*****************************************************************************/
182 /* TARGET HOOK IMPLEMENTATIONS */
183 /*****************************************************************************/
184
185 /* Return the fixed registers used for condition codes. */
186
187 static bool
188 crx_fixed_condition_code_regs (unsigned int *p1, unsigned int *p2)
189 {
190 *p1 = CC_REGNUM;
191 *p2 = INVALID_REGNUM;
192 return true;
193 }
194
195 /* Implements hook TARGET_STRUCT_VALUE_RTX. */
196
197 static rtx
198 crx_struct_value_rtx (tree fntype ATTRIBUTE_UNUSED,
199 int incoming ATTRIBUTE_UNUSED)
200 {
201 return gen_rtx_REG (Pmode, CRX_STRUCT_VALUE_REGNUM);
202 }
203
204 /* Implements hook TARGET_RETURN_IN_MEMORY. */
205
206 static bool
207 crx_return_in_memory (const_tree type, const_tree fntype ATTRIBUTE_UNUSED)
208 {
209 if (TYPE_MODE (type) == BLKmode)
210 {
211 HOST_WIDE_INT size = int_size_in_bytes (type);
212 return (size == -1 || size > 8);
213 }
214 else
215 return false;
216 }
217
218
219 /*****************************************************************************/
220 /* MACRO IMPLEMENTATIONS */
221 /*****************************************************************************/
222
223 /* STACK LAYOUT AND CALLING CONVENTIONS ROUTINES */
224 /* --------------------------------------------- */
225
226 /* Return nonzero if the current function being compiled is an interrupt
227 * function as specified by the "interrupt" attribute. */
228
229 int
230 crx_interrupt_function_p (void)
231 {
232 tree attributes;
233
234 attributes = TYPE_ATTRIBUTES (TREE_TYPE (current_function_decl));
235 return lookup_attribute ("interrupt", attributes) != NULL_TREE;
236 }
237
238 /* Compute values for the array save_regs and the variable sum_regs. The index
239 * of save_regs is numbers of register, each will get 1 if we need to save it
240 * in the current function, 0 if not. sum_regs is the total sum of the
241 * registers being saved. */
242
243 static void
244 crx_compute_save_regs (void)
245 {
246 unsigned int regno;
247
248 /* initialize here so in case the function is no-return it will be -1. */
249 last_reg_to_save = -1;
250
251 /* No need to save any registers if the function never returns. */
252 if (FUNC_IS_NORETURN_P (current_function_decl))
253 return;
254
255 /* Initialize the number of bytes to be saved. */
256 sum_regs = 0;
257
258 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
259 {
260 if (fixed_regs[regno])
261 {
262 save_regs[regno] = 0;
263 continue;
264 }
265
266 /* If this reg is used and not call-used (except RA), save it. */
267 if (crx_interrupt_function_p ())
268 {
269 if (!current_function_is_leaf && call_used_regs[regno])
270 /* this is a volatile reg in a non-leaf interrupt routine - save it
271 * for the sake of its sons. */
272 save_regs[regno] = 1;
273
274 else if (df_regs_ever_live_p (regno))
275 /* This reg is used - save it. */
276 save_regs[regno] = 1;
277 else
278 /* This reg is not used, and is not a volatile - don't save. */
279 save_regs[regno] = 0;
280 }
281 else
282 {
283 /* If this reg is used and not call-used (except RA), save it. */
284 if (df_regs_ever_live_p (regno)
285 && (!call_used_regs[regno] || regno == RETURN_ADDRESS_REGNUM))
286 save_regs[regno] = 1;
287 else
288 save_regs[regno] = 0;
289 }
290 }
291
292 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
293 if (save_regs[regno] == 1)
294 {
295 last_reg_to_save = regno;
296 sum_regs += UNITS_PER_WORD;
297 }
298 }
299
300 /* Compute the size of the local area and the size to be adjusted by the
301 * prologue and epilogue. */
302
303 static void
304 crx_compute_frame (void)
305 {
306 /* For aligning the local variables. */
307 int stack_alignment = STACK_BOUNDARY / BITS_PER_UNIT;
308 int padding_locals;
309
310 /* Padding needed for each element of the frame. */
311 local_vars_size = get_frame_size ();
312
313 /* Align to the stack alignment. */
314 padding_locals = local_vars_size % stack_alignment;
315 if (padding_locals)
316 padding_locals = stack_alignment - padding_locals;
317
318 local_vars_size += padding_locals;
319
320 size_for_adjusting_sp = local_vars_size + (ACCUMULATE_OUTGOING_ARGS ?
321 crtl->outgoing_args_size : 0);
322 }
323
324 /* Implements the macro INITIAL_ELIMINATION_OFFSET, return the OFFSET. */
325
326 int
327 crx_initial_elimination_offset (int from, int to)
328 {
329 /* Compute this since we need to use sum_regs. */
330 crx_compute_save_regs ();
331
332 /* Compute this since we need to use local_vars_size. */
333 crx_compute_frame ();
334
335 if ((from) == FRAME_POINTER_REGNUM && (to) == STACK_POINTER_REGNUM)
336 return (ACCUMULATE_OUTGOING_ARGS ?
337 crtl->outgoing_args_size : 0);
338 else if ((from) == ARG_POINTER_REGNUM && (to) == FRAME_POINTER_REGNUM)
339 return (sum_regs + local_vars_size);
340 else if ((from) == ARG_POINTER_REGNUM && (to) == STACK_POINTER_REGNUM)
341 return (sum_regs + local_vars_size +
342 (ACCUMULATE_OUTGOING_ARGS ?
343 crtl->outgoing_args_size : 0));
344 else
345 abort ();
346 }
347
348 /* REGISTER USAGE */
349 /* -------------- */
350
351 /* Return the class number of the smallest class containing reg number REGNO.
352 * This could be a conditional expression or could index an array. */
353
354 enum reg_class
355 crx_regno_reg_class (int regno)
356 {
357 if (regno >= 0 && regno < SP_REGNUM)
358 return NOSP_REGS;
359
360 if (regno == SP_REGNUM)
361 return GENERAL_REGS;
362
363 if (regno == LO_REGNUM)
364 return LO_REGS;
365 if (regno == HI_REGNUM)
366 return HI_REGS;
367
368 return NO_REGS;
369 }
370
371 /* Transfer between HILO_REGS and memory via secondary reloading. */
372
373 enum reg_class
374 crx_secondary_reload_class (enum reg_class rclass,
375 enum machine_mode mode ATTRIBUTE_UNUSED,
376 rtx x ATTRIBUTE_UNUSED)
377 {
378 if (reg_classes_intersect_p (rclass, HILO_REGS)
379 && true_regnum (x) == -1)
380 return GENERAL_REGS;
381
382 return NO_REGS;
383 }
384
385 /* Return 1 if hard register REGNO can hold a value of machine-mode MODE. */
386
387 int
388 crx_hard_regno_mode_ok (int regno, enum machine_mode mode)
389 {
390 /* CC can only hold CCmode values. */
391 if (regno == CC_REGNUM)
392 return GET_MODE_CLASS (mode) == MODE_CC;
393 if (GET_MODE_CLASS (mode) == MODE_CC)
394 return 0;
395 /* HILO registers can only hold SImode and DImode */
396 if (HILO_REGNO_P (regno))
397 return mode == SImode || mode == DImode;
398 return 1;
399 }
400
401 /* PASSING FUNCTION ARGUMENTS */
402 /* -------------------------- */
403
404 /* If enough param regs are available for passing the param of type TYPE return
405 * the number of registers needed else 0. */
406
407 static int
408 enough_regs_for_param (CUMULATIVE_ARGS * cum, tree type,
409 enum machine_mode mode)
410 {
411 int type_size;
412 int remaining_size;
413
414 if (mode != BLKmode)
415 type_size = GET_MODE_BITSIZE (mode);
416 else
417 type_size = int_size_in_bytes (type) * BITS_PER_UNIT;
418
419 remaining_size =
420 BITS_PER_WORD * (MAX_REG_FOR_PASSING_ARGS -
421 (MIN_REG_FOR_PASSING_ARGS + cum->ints) + 1);
422
423 /* Any variable which is too big to pass in two registers, will pass on
424 * stack. */
425 if ((remaining_size >= type_size) && (type_size <= 2 * BITS_PER_WORD))
426 return (type_size + BITS_PER_WORD - 1) / BITS_PER_WORD;
427
428 return 0;
429 }
430
431 /* Implements the macro FUNCTION_ARG defined in crx.h. */
432
433 rtx
434 crx_function_arg (CUMULATIVE_ARGS * cum, enum machine_mode mode, tree type,
435 int named ATTRIBUTE_UNUSED)
436 {
437 last_parm_in_reg = 0;
438
439 /* Function_arg () is called with this type just after all the args have had
440 * their registers assigned. The rtx that function_arg returns from this type
441 * is supposed to pass to 'gen_call' but currently it is not implemented (see
442 * macro GEN_CALL). */
443 if (type == void_type_node)
444 return NULL_RTX;
445
446 if (targetm.calls.must_pass_in_stack (mode, type) || (cum->ints < 0))
447 return NULL_RTX;
448
449 if (mode == BLKmode)
450 {
451 /* Enable structures that need padding bytes at the end to pass to a
452 * function in registers. */
453 if (enough_regs_for_param (cum, type, mode) != 0)
454 {
455 last_parm_in_reg = 1;
456 return gen_rtx_REG (mode, MIN_REG_FOR_PASSING_ARGS + cum->ints);
457 }
458 }
459
460 if (MIN_REG_FOR_PASSING_ARGS + cum->ints > MAX_REG_FOR_PASSING_ARGS)
461 return NULL_RTX;
462 else
463 {
464 if (enough_regs_for_param (cum, type, mode) != 0)
465 {
466 last_parm_in_reg = 1;
467 return gen_rtx_REG (mode, MIN_REG_FOR_PASSING_ARGS + cum->ints);
468 }
469 }
470
471 return NULL_RTX;
472 }
473
474 /* Implements the macro INIT_CUMULATIVE_ARGS defined in crx.h. */
475
476 void
477 crx_init_cumulative_args (CUMULATIVE_ARGS * cum, tree fntype,
478 rtx libfunc ATTRIBUTE_UNUSED)
479 {
480 tree param, next_param;
481
482 cum->ints = 0;
483
484 /* Determine if this function has variable arguments. This is indicated by
485 * the last argument being 'void_type_mode' if there are no variable
486 * arguments. Change here for a different vararg. */
487 for (param = (fntype) ? TYPE_ARG_TYPES (fntype) : 0;
488 param != (tree) 0; param = next_param)
489 {
490 next_param = TREE_CHAIN (param);
491 if (next_param == (tree) 0 && TREE_VALUE (param) != void_type_node)
492 {
493 cum->ints = -1;
494 return;
495 }
496 }
497 }
498
499 /* Implements the macro FUNCTION_ARG_ADVANCE defined in crx.h. */
500
501 void
502 crx_function_arg_advance (CUMULATIVE_ARGS * cum, enum machine_mode mode,
503 tree type, int named ATTRIBUTE_UNUSED)
504 {
505 /* l holds the number of registers required */
506 int l = GET_MODE_BITSIZE (mode) / BITS_PER_WORD;
507
508 /* If the parameter isn't passed on a register don't advance cum. */
509 if (!last_parm_in_reg)
510 return;
511
512 if (targetm.calls.must_pass_in_stack (mode, type) || (cum->ints < 0))
513 return;
514
515 if (mode == SImode || mode == HImode || mode == QImode || mode == DImode)
516 {
517 if (l <= 1)
518 cum->ints += 1;
519 else
520 cum->ints += l;
521 }
522 else if (mode == SFmode || mode == DFmode)
523 cum->ints += l;
524 else if ((mode) == BLKmode)
525 {
526 if ((l = enough_regs_for_param (cum, type, mode)) != 0)
527 cum->ints += l;
528 }
529
530 }
531
532 /* Implements the macro FUNCTION_ARG_REGNO_P defined in crx.h. Return nonzero
533 * if N is a register used for passing parameters. */
534
535 int
536 crx_function_arg_regno_p (int n)
537 {
538 return (n <= MAX_REG_FOR_PASSING_ARGS && n >= MIN_REG_FOR_PASSING_ARGS);
539 }
540
541 /* ADDRESSING MODES */
542 /* ---------------- */
543
544 /* Implements the macro GO_IF_LEGITIMATE_ADDRESS defined in crx.h.
545 * The following addressing modes are supported on CRX:
546 *
547 * Relocations --> const | symbol_ref | label_ref
548 * Absolute address --> 32-bit absolute
549 * Post increment --> reg + 12-bit disp.
550 * Post modify --> reg + 12-bit disp.
551 * Register relative --> reg | 32-bit disp. + reg | 4 bit + reg
552 * Scaled index --> reg + reg | 22-bit disp. + reg + reg |
553 * 22-disp. + reg + reg + (2 | 4 | 8) */
554
555 static int crx_addr_reg_p (rtx addr_reg)
556 {
557 rtx reg;
558
559 if (REG_P (addr_reg))
560 {
561 reg = addr_reg;
562 }
563 else if ((GET_CODE (addr_reg) == SUBREG
564 && REG_P (SUBREG_REG (addr_reg))
565 && GET_MODE_SIZE (GET_MODE (SUBREG_REG (addr_reg)))
566 <= UNITS_PER_WORD))
567 {
568 reg = SUBREG_REG (addr_reg);
569 }
570 else
571 return FALSE;
572
573 if (GET_MODE (addr_reg) != Pmode)
574 {
575 return FALSE;
576 }
577
578 return TRUE;
579 }
580
581 enum crx_addrtype
582 crx_decompose_address (rtx addr, struct crx_address *out)
583 {
584 rtx base = NULL_RTX, index = NULL_RTX, disp = NULL_RTX;
585 rtx scale_rtx = NULL_RTX, side_effect = NULL_RTX;
586 int scale = -1;
587
588 enum crx_addrtype retval = CRX_INVALID;
589
590 switch (GET_CODE (addr))
591 {
592 case CONST_INT:
593 /* Absolute address (known at compile time) */
594 retval = CRX_ABSOLUTE;
595 disp = addr;
596 if (!UNSIGNED_INT_FITS_N_BITS (INTVAL (disp), GET_MODE_BITSIZE (Pmode)))
597 return CRX_INVALID;
598 break;
599
600 case CONST:
601 case SYMBOL_REF:
602 case LABEL_REF:
603 /* Absolute address (known at link time) */
604 retval = CRX_ABSOLUTE;
605 disp = addr;
606 break;
607
608 case REG:
609 case SUBREG:
610 /* Register relative address */
611 retval = CRX_REG_REL;
612 base = addr;
613 break;
614
615 case PLUS:
616 switch (GET_CODE (XEXP (addr, 0)))
617 {
618 case REG:
619 case SUBREG:
620 if (REG_P (XEXP (addr, 1)))
621 {
622 /* Scaled index with scale = 1 and disp. = 0 */
623 retval = CRX_SCALED_INDX;
624 base = XEXP (addr, 1);
625 index = XEXP (addr, 0);
626 scale = 1;
627 }
628 else if (RTX_SIGNED_INT_FITS_N_BITS (XEXP (addr, 1), 28))
629 {
630 /* Register relative address and <= 28-bit disp. */
631 retval = CRX_REG_REL;
632 base = XEXP (addr, 0);
633 disp = XEXP (addr, 1);
634 }
635 else
636 return CRX_INVALID;
637 break;
638
639 case PLUS:
640 /* Scaled index and <= 22-bit disp. */
641 retval = CRX_SCALED_INDX;
642 base = XEXP (XEXP (addr, 0), 1);
643 disp = XEXP (addr, 1);
644 if (!RTX_SIGNED_INT_FITS_N_BITS (disp, 22))
645 return CRX_INVALID;
646 switch (GET_CODE (XEXP (XEXP (addr, 0), 0)))
647 {
648 case REG:
649 /* Scaled index with scale = 0 and <= 22-bit disp. */
650 index = XEXP (XEXP (addr, 0), 0);
651 scale = 1;
652 break;
653
654 case MULT:
655 /* Scaled index with scale >= 0 and <= 22-bit disp. */
656 index = XEXP (XEXP (XEXP (addr, 0), 0), 0);
657 scale_rtx = XEXP (XEXP (XEXP (addr, 0), 0), 1);
658 if ((scale = SCALE_FOR_INDEX_P (scale_rtx)) == -1)
659 return CRX_INVALID;
660 break;
661
662 default:
663 return CRX_INVALID;
664 }
665 break;
666
667 case MULT:
668 /* Scaled index with scale >= 0 */
669 retval = CRX_SCALED_INDX;
670 base = XEXP (addr, 1);
671 index = XEXP (XEXP (addr, 0), 0);
672 scale_rtx = XEXP (XEXP (addr, 0), 1);
673 /* Scaled index with scale >= 0 and <= 22-bit disp. */
674 if ((scale = SCALE_FOR_INDEX_P (scale_rtx)) == -1)
675 return CRX_INVALID;
676 break;
677
678 default:
679 return CRX_INVALID;
680 }
681 break;
682
683 case POST_INC:
684 case POST_DEC:
685 /* Simple post-increment */
686 retval = CRX_POST_INC;
687 base = XEXP (addr, 0);
688 side_effect = addr;
689 break;
690
691 case POST_MODIFY:
692 /* Generic post-increment with <= 12-bit disp. */
693 retval = CRX_POST_INC;
694 base = XEXP (addr, 0);
695 side_effect = XEXP (addr, 1);
696 if (base != XEXP (side_effect, 0))
697 return CRX_INVALID;
698 switch (GET_CODE (side_effect))
699 {
700 case PLUS:
701 case MINUS:
702 disp = XEXP (side_effect, 1);
703 if (!RTX_SIGNED_INT_FITS_N_BITS (disp, 12))
704 return CRX_INVALID;
705 break;
706
707 default:
708 /* CRX only supports PLUS and MINUS */
709 return CRX_INVALID;
710 }
711 break;
712
713 default:
714 return CRX_INVALID;
715 }
716
717 if (base && !crx_addr_reg_p (base)) return CRX_INVALID;
718 if (index && !crx_addr_reg_p (index)) return CRX_INVALID;
719
720 out->base = base;
721 out->index = index;
722 out->disp = disp;
723 out->scale = scale;
724 out->side_effect = side_effect;
725
726 return retval;
727 }
728
729 int
730 crx_legitimate_address_p (enum machine_mode mode ATTRIBUTE_UNUSED,
731 rtx addr, int strict)
732 {
733 enum crx_addrtype addrtype;
734 struct crx_address address;
735
736 if (TARGET_DEBUG_ADDR)
737 {
738 fprintf (stderr,
739 "\n======\nGO_IF_LEGITIMATE_ADDRESS, mode = %s, strict = %d\n",
740 GET_MODE_NAME (mode), strict);
741 debug_rtx (addr);
742 }
743
744 addrtype = crx_decompose_address (addr, &address);
745
746 if (addrtype == CRX_POST_INC && GET_MODE_SIZE (mode) > UNITS_PER_WORD)
747 return FALSE;
748
749 if (TARGET_DEBUG_ADDR)
750 {
751 const char *typestr;
752 switch (addrtype)
753 {
754 case CRX_INVALID:
755 typestr = "Invalid";
756 break;
757 case CRX_REG_REL:
758 typestr = "Register relative";
759 break;
760 case CRX_POST_INC:
761 typestr = "Post-increment";
762 break;
763 case CRX_SCALED_INDX:
764 typestr = "Scaled index";
765 break;
766 case CRX_ABSOLUTE:
767 typestr = "Absolute";
768 break;
769 default:
770 abort ();
771 }
772 fprintf (stderr, "CRX Address type: %s\n", typestr);
773 }
774
775 if (addrtype == CRX_INVALID)
776 return FALSE;
777
778 if (strict)
779 {
780 if (address.base && !REGNO_OK_FOR_BASE_P (REGNO (address.base)))
781 {
782 if (TARGET_DEBUG_ADDR)
783 fprintf (stderr, "Base register not strict\n");
784 return FALSE;
785 }
786 if (address.index && !REGNO_OK_FOR_INDEX_P (REGNO (address.index)))
787 {
788 if (TARGET_DEBUG_ADDR)
789 fprintf (stderr, "Index register not strict\n");
790 return FALSE;
791 }
792 }
793
794 return TRUE;
795 }
796
797 /* ROUTINES TO COMPUTE COSTS */
798 /* ------------------------- */
799
800 /* Return cost of the memory address x. */
801
802 static int
803 crx_address_cost (rtx addr, bool speed ATTRIBUTE_UNUSED)
804 {
805 enum crx_addrtype addrtype;
806 struct crx_address address;
807
808 int cost = 2;
809
810 addrtype = crx_decompose_address (addr, &address);
811
812 gcc_assert (addrtype != CRX_INVALID);
813
814 /* An absolute address causes a 3-word instruction */
815 if (addrtype == CRX_ABSOLUTE)
816 cost+=2;
817
818 /* Post-modifying addresses are more powerful. */
819 if (addrtype == CRX_POST_INC)
820 cost-=2;
821
822 /* Attempt to minimize number of registers in the address. */
823 if (address.base)
824 cost++;
825
826 if (address.index && address.scale == 1)
827 cost+=5;
828
829 if (address.disp && !INT_CST4 (INTVAL (address.disp)))
830 cost+=2;
831
832 if (TARGET_DEBUG_ADDR)
833 {
834 fprintf (stderr, "\n======\nTARGET_ADDRESS_COST = %d\n", cost);
835 debug_rtx (addr);
836 }
837
838 return cost;
839 }
840
841 /* Return the cost of moving data of mode MODE between a register of class
842 * RCLASS and memory; IN is zero if the value is to be written to memory,
843 * nonzero if it is to be read in. This cost is relative to those in
844 * REGISTER_MOVE_COST. */
845
846 int
847 crx_memory_move_cost (enum machine_mode mode,
848 enum reg_class rclass ATTRIBUTE_UNUSED,
849 int in ATTRIBUTE_UNUSED)
850 {
851 /* One LD or ST takes twice the time of a simple reg-reg move */
852 if (reg_classes_intersect_p (rclass, GENERAL_REGS))
853 {
854 /* printf ("GENERAL_REGS LD/ST = %d\n", 4 * HARD_REGNO_NREGS (0, mode));*/
855 return 4 * HARD_REGNO_NREGS (0, mode);
856 }
857 else if (reg_classes_intersect_p (rclass, HILO_REGS))
858 {
859 /* HILO to memory and vice versa */
860 /* printf ("HILO_REGS %s = %d\n", in ? "LD" : "ST",
861 (REGISTER_MOVE_COST (mode,
862 in ? GENERAL_REGS : HILO_REGS,
863 in ? HILO_REGS : GENERAL_REGS) + 4)
864 * HARD_REGNO_NREGS (0, mode)); */
865 return (REGISTER_MOVE_COST (mode,
866 in ? GENERAL_REGS : HILO_REGS,
867 in ? HILO_REGS : GENERAL_REGS) + 4)
868 * HARD_REGNO_NREGS (0, mode);
869 }
870 else /* default (like in i386) */
871 {
872 /* printf ("ANYREGS = 100\n"); */
873 return 100;
874 }
875 }
876
877 /* INSTRUCTION OUTPUT */
878 /* ------------------ */
879
880 /* Check if a const_double is ok for crx store-immediate instructions */
881
882 int
883 crx_const_double_ok (rtx op)
884 {
885 if (GET_MODE (op) == DFmode)
886 {
887 REAL_VALUE_TYPE r;
888 long l[2];
889 REAL_VALUE_FROM_CONST_DOUBLE (r, op);
890 REAL_VALUE_TO_TARGET_DOUBLE (r, l);
891 return (UNSIGNED_INT_FITS_N_BITS (l[0], 4) &&
892 UNSIGNED_INT_FITS_N_BITS (l[1], 4)) ? 1 : 0;
893 }
894
895 if (GET_MODE (op) == SFmode)
896 {
897 REAL_VALUE_TYPE r;
898 long l;
899 REAL_VALUE_FROM_CONST_DOUBLE (r, op);
900 REAL_VALUE_TO_TARGET_SINGLE (r, l);
901 return UNSIGNED_INT_FITS_N_BITS (l, 4) ? 1 : 0;
902 }
903
904 return (UNSIGNED_INT_FITS_N_BITS (CONST_DOUBLE_LOW (op), 4) &&
905 UNSIGNED_INT_FITS_N_BITS (CONST_DOUBLE_HIGH (op), 4)) ? 1 : 0;
906 }
907
908 /* Implements the macro PRINT_OPERAND defined in crx.h. */
909
910 void
911 crx_print_operand (FILE * file, rtx x, int code)
912 {
913 switch (code)
914 {
915 case 'p' :
916 if (GET_CODE (x) == REG) {
917 if (GET_MODE (x) == DImode || GET_MODE (x) == DFmode)
918 {
919 int regno = REGNO (x);
920 if (regno + 1 >= SP_REGNUM) abort ();
921 fprintf (file, "{%s, %s}", reg_names[regno], reg_names[regno + 1]);
922 return;
923 }
924 else
925 {
926 if (REGNO (x) >= SP_REGNUM) abort ();
927 fprintf (file, "%s", reg_names[REGNO (x)]);
928 return;
929 }
930 }
931
932 case 'd' :
933 {
934 const char *crx_cmp_str;
935 switch (GET_CODE (x))
936 { /* MD: compare (reg, reg or imm) but CRX: cmp (reg or imm, reg)
937 * -> swap all non symmetric ops */
938 case EQ : crx_cmp_str = "eq"; break;
939 case NE : crx_cmp_str = "ne"; break;
940 case GT : crx_cmp_str = "lt"; break;
941 case GTU : crx_cmp_str = "lo"; break;
942 case LT : crx_cmp_str = "gt"; break;
943 case LTU : crx_cmp_str = "hi"; break;
944 case GE : crx_cmp_str = "le"; break;
945 case GEU : crx_cmp_str = "ls"; break;
946 case LE : crx_cmp_str = "ge"; break;
947 case LEU : crx_cmp_str = "hs"; break;
948 default : abort ();
949 }
950 fprintf (file, "%s", crx_cmp_str);
951 return;
952 }
953
954 case 'H':
955 /* Print high part of a double precision value. */
956 switch (GET_CODE (x))
957 {
958 case CONST_DOUBLE:
959 if (GET_MODE (x) == SFmode) abort ();
960 if (GET_MODE (x) == DFmode)
961 {
962 /* High part of a DF const. */
963 REAL_VALUE_TYPE r;
964 long l[2];
965
966 REAL_VALUE_FROM_CONST_DOUBLE (r, x);
967 REAL_VALUE_TO_TARGET_DOUBLE (r, l);
968
969 fprintf (file, "$0x%lx", l[1]);
970 return;
971 }
972
973 /* -- Fallthrough to handle DI consts -- */
974
975 case CONST_INT:
976 {
977 rtx high, low;
978 split_double (x, &low, &high);
979 putc ('$', file);
980 output_addr_const (file, high);
981 return;
982 }
983
984 case REG:
985 if (REGNO (x) + 1 >= FIRST_PSEUDO_REGISTER) abort ();
986 fprintf (file, "%s", reg_names[REGNO (x) + 1]);
987 return;
988
989 case MEM:
990 /* Adjust memory address to high part. */
991 {
992 rtx adj_mem = x;
993 adj_mem = adjust_address (adj_mem, GET_MODE (adj_mem), 4);
994
995 output_memory_reference_mode = GET_MODE (adj_mem);
996 output_address (XEXP (adj_mem, 0));
997 return;
998 }
999
1000 default:
1001 abort ();
1002 }
1003
1004 case 'L':
1005 /* Print low part of a double precision value. */
1006 switch (GET_CODE (x))
1007 {
1008 case CONST_DOUBLE:
1009 if (GET_MODE (x) == SFmode) abort ();
1010 if (GET_MODE (x) == DFmode)
1011 {
1012 /* High part of a DF const. */
1013 REAL_VALUE_TYPE r;
1014 long l[2];
1015
1016 REAL_VALUE_FROM_CONST_DOUBLE (r, x);
1017 REAL_VALUE_TO_TARGET_DOUBLE (r, l);
1018
1019 fprintf (file, "$0x%lx", l[0]);
1020 return;
1021 }
1022
1023 /* -- Fallthrough to handle DI consts -- */
1024
1025 case CONST_INT:
1026 {
1027 rtx high, low;
1028 split_double (x, &low, &high);
1029 putc ('$', file);
1030 output_addr_const (file, low);
1031 return;
1032 }
1033
1034 case REG:
1035 fprintf (file, "%s", reg_names[REGNO (x)]);
1036 return;
1037
1038 case MEM:
1039 output_memory_reference_mode = GET_MODE (x);
1040 output_address (XEXP (x, 0));
1041 return;
1042
1043 default:
1044 abort ();
1045 }
1046
1047 case 0 : /* default */
1048 switch (GET_CODE (x))
1049 {
1050 case REG:
1051 fprintf (file, "%s", reg_names[REGNO (x)]);
1052 return;
1053
1054 case MEM:
1055 output_memory_reference_mode = GET_MODE (x);
1056 output_address (XEXP (x, 0));
1057 return;
1058
1059 case CONST_DOUBLE:
1060 {
1061 REAL_VALUE_TYPE r;
1062 long l;
1063
1064 /* Always use H and L for double precision - see above */
1065 gcc_assert (GET_MODE (x) == SFmode);
1066
1067 REAL_VALUE_FROM_CONST_DOUBLE (r, x);
1068 REAL_VALUE_TO_TARGET_SINGLE (r, l);
1069
1070 fprintf (file, "$0x%lx", l);
1071 return;
1072 }
1073
1074 default:
1075 putc ('$', file);
1076 output_addr_const (file, x);
1077 return;
1078 }
1079
1080 default:
1081 output_operand_lossage ("invalid %%xn code");
1082 }
1083
1084 abort ();
1085 }
1086
1087 /* Implements the macro PRINT_OPERAND_ADDRESS defined in crx.h. */
1088
1089 void
1090 crx_print_operand_address (FILE * file, rtx addr)
1091 {
1092 enum crx_addrtype addrtype;
1093 struct crx_address address;
1094
1095 int offset;
1096
1097 addrtype = crx_decompose_address (addr, &address);
1098
1099 if (address.disp)
1100 offset = INTVAL (address.disp);
1101 else
1102 offset = 0;
1103
1104 switch (addrtype)
1105 {
1106 case CRX_REG_REL:
1107 fprintf (file, "%d(%s)", offset, reg_names[REGNO (address.base)]);
1108 return;
1109
1110 case CRX_POST_INC:
1111 switch (GET_CODE (address.side_effect))
1112 {
1113 case PLUS:
1114 break;
1115 case MINUS:
1116 offset = -offset;
1117 break;
1118 case POST_INC:
1119 offset = GET_MODE_SIZE (output_memory_reference_mode);
1120 break;
1121 case POST_DEC:
1122 offset = -GET_MODE_SIZE (output_memory_reference_mode);
1123 break;
1124 default:
1125 abort ();
1126 }
1127 fprintf (file, "%d(%s)+", offset, reg_names[REGNO (address.base)]);
1128 return;
1129
1130 case CRX_SCALED_INDX:
1131 fprintf (file, "%d(%s, %s, %d)", offset, reg_names[REGNO (address.base)],
1132 reg_names[REGNO (address.index)], address.scale);
1133 return;
1134
1135 case CRX_ABSOLUTE:
1136 output_addr_const (file, address.disp);
1137 return;
1138
1139 default:
1140 abort ();
1141 }
1142 }
1143
1144
1145 /*****************************************************************************/
1146 /* MACHINE DESCRIPTION HELPER-FUNCTIONS */
1147 /*****************************************************************************/
1148
1149 void crx_expand_movmem_single (rtx src, rtx srcbase, rtx dst, rtx dstbase,
1150 rtx tmp_reg, unsigned HOST_WIDE_INT *offset_p)
1151 {
1152 rtx addr, mem;
1153 unsigned HOST_WIDE_INT offset = *offset_p;
1154
1155 /* Load */
1156 addr = plus_constant (src, offset);
1157 mem = adjust_automodify_address (srcbase, SImode, addr, offset);
1158 emit_move_insn (tmp_reg, mem);
1159
1160 /* Store */
1161 addr = plus_constant (dst, offset);
1162 mem = adjust_automodify_address (dstbase, SImode, addr, offset);
1163 emit_move_insn (mem, tmp_reg);
1164
1165 *offset_p = offset + 4;
1166 }
1167
1168 int
1169 crx_expand_movmem (rtx dstbase, rtx srcbase, rtx count_exp, rtx align_exp)
1170 {
1171 unsigned HOST_WIDE_INT count = 0, offset, si_moves, i;
1172 HOST_WIDE_INT align = 0;
1173
1174 rtx src, dst;
1175 rtx tmp_reg;
1176
1177 if (GET_CODE (align_exp) == CONST_INT)
1178 { /* Only if aligned */
1179 align = INTVAL (align_exp);
1180 if (align & 3)
1181 return 0;
1182 }
1183
1184 if (GET_CODE (count_exp) == CONST_INT)
1185 { /* No more than 16 SImode moves */
1186 count = INTVAL (count_exp);
1187 if (count > 64)
1188 return 0;
1189 }
1190
1191 tmp_reg = gen_reg_rtx (SImode);
1192
1193 /* Create psrs for the src and dest pointers */
1194 dst = copy_to_mode_reg (Pmode, XEXP (dstbase, 0));
1195 if (dst != XEXP (dstbase, 0))
1196 dstbase = replace_equiv_address_nv (dstbase, dst);
1197 src = copy_to_mode_reg (Pmode, XEXP (srcbase, 0));
1198 if (src != XEXP (srcbase, 0))
1199 srcbase = replace_equiv_address_nv (srcbase, src);
1200
1201 offset = 0;
1202
1203 /* Emit SImode moves */
1204 si_moves = count >> 2;
1205 for (i = 0; i < si_moves; i++)
1206 crx_expand_movmem_single (src, srcbase, dst, dstbase, tmp_reg, &offset);
1207
1208 /* Special cases */
1209 if (count & 3)
1210 {
1211 offset = count - 4;
1212 crx_expand_movmem_single (src, srcbase, dst, dstbase, tmp_reg, &offset);
1213 }
1214
1215 gcc_assert (offset == count);
1216
1217 return 1;
1218 }
1219
1220 rtx
1221 crx_expand_compare (enum rtx_code code, enum machine_mode mode)
1222 {
1223 rtx op0, op1, cc_reg, ret;
1224
1225 op0 = crx_compare_op0;
1226 op1 = crx_compare_op1;
1227
1228 /* Emit the compare that writes into CC_REGNUM) */
1229 cc_reg = gen_rtx_REG (CCmode, CC_REGNUM);
1230 ret = gen_rtx_COMPARE (CCmode, op0, op1);
1231 emit_insn (gen_rtx_SET (VOIDmode, cc_reg, ret));
1232 /* debug_rtx (get_last_insn ()); */
1233
1234 /* Return the rtx for using the result in CC_REGNUM */
1235 return gen_rtx_fmt_ee (code, mode, cc_reg, const0_rtx);
1236 }
1237
1238 void
1239 crx_expand_branch (enum rtx_code code, rtx label)
1240 {
1241 rtx tmp = crx_expand_compare (code, VOIDmode);
1242 tmp = gen_rtx_IF_THEN_ELSE (VOIDmode, tmp,
1243 gen_rtx_LABEL_REF (VOIDmode, label),
1244 pc_rtx);
1245 emit_jump_insn (gen_rtx_SET (VOIDmode, pc_rtx, tmp));
1246 /* debug_rtx (get_last_insn ()); */
1247 }
1248
1249 void
1250 crx_expand_scond (enum rtx_code code, rtx dest)
1251 {
1252 rtx tmp = crx_expand_compare (code, GET_MODE (dest));
1253 emit_move_insn (dest, tmp);
1254 /* debug_rtx (get_last_insn ()); */
1255 }
1256
1257 static void
1258 mpushpop_str (char *stringbuffer, const char *mnemonic, char *mask)
1259 {
1260 if (strlen (mask) > 2 || crx_interrupt_function_p ()) /* needs 2-word instr. */
1261 sprintf (stringbuffer, "\n\t%s\tsp, {%s}", mnemonic, mask);
1262 else /* single word instruction */
1263 sprintf (stringbuffer, "\n\t%s\t%s", mnemonic, mask);
1264 }
1265
1266 /* Called from crx.md. The return value depends on the parameter push_or_pop:
1267 * When push_or_pop is zero -> string for push instructions of prologue.
1268 * When push_or_pop is nonzero -> string for pop/popret/retx in epilogue.
1269 * Relies on the assumptions:
1270 * 1. RA is the last register to be saved.
1271 * 2. The maximal value of the counter is MAX_COUNT. */
1272
1273 char *
1274 crx_prepare_push_pop_string (int push_or_pop)
1275 {
1276 /* j is the number of registers being saved, takes care that there won't be
1277 * more than 8 in one push/pop instruction */
1278
1279 /* For the register mask string */
1280 static char mask_str[50];
1281
1282 /* i is the index of save_regs[], going from 0 until last_reg_to_save */
1283 int i = 0;
1284
1285 int ra_in_bitmask = 0;
1286
1287 char *return_str;
1288
1289 /* For reversing on the push instructions if there are more than one. */
1290 char *temp_str;
1291
1292 return_str = (char *) xmalloc (120);
1293 temp_str = (char *) xmalloc (120);
1294
1295 /* Initialize */
1296 memset (return_str, 0, 3);
1297
1298 while (i <= last_reg_to_save)
1299 {
1300 /* Prepare mask for one instruction. */
1301 mask_str[0] = 0;
1302
1303 if (i <= SP_REGNUM)
1304 { /* Add regs unit full or SP register reached */
1305 int j = 0;
1306 while (j < MAX_COUNT && i <= SP_REGNUM)
1307 {
1308 if (save_regs[i])
1309 {
1310 /* TODO to use ra_in_bitmask for detecting last pop is not
1311 * smart it prevents things like: popret r5 */
1312 if (i == RETURN_ADDRESS_REGNUM) ra_in_bitmask = 1;
1313 if (j > 0) strcat (mask_str, ", ");
1314 strcat (mask_str, reg_names[i]);
1315 ++j;
1316 }
1317 ++i;
1318 }
1319 }
1320 else
1321 {
1322 /* Handle hi/lo savings */
1323 while (i <= last_reg_to_save)
1324 {
1325 if (save_regs[i])
1326 {
1327 strcat (mask_str, "lo, hi");
1328 i = last_reg_to_save + 1;
1329 break;
1330 }
1331 ++i;
1332 }
1333 }
1334
1335 if (strlen (mask_str) == 0) continue;
1336
1337 if (push_or_pop == 1)
1338 {
1339 if (crx_interrupt_function_p ())
1340 mpushpop_str (temp_str, "popx", mask_str);
1341 else
1342 {
1343 if (ra_in_bitmask)
1344 {
1345 mpushpop_str (temp_str, "popret", mask_str);
1346 ra_in_bitmask = 0;
1347 }
1348 else mpushpop_str (temp_str, "pop", mask_str);
1349 }
1350
1351 strcat (return_str, temp_str);
1352 }
1353 else
1354 {
1355 /* push - We need to reverse the order of the instructions if there
1356 * are more than one. (since the pop will not be reversed in the
1357 * epilogue */
1358 if (crx_interrupt_function_p ())
1359 mpushpop_str (temp_str, "pushx", mask_str);
1360 else
1361 mpushpop_str (temp_str, "push", mask_str);
1362 strcat (temp_str, return_str);
1363 strcpy (strcat (return_str, "\t"), temp_str);
1364 }
1365
1366 }
1367
1368 if (push_or_pop == 1)
1369 {
1370 /* pop */
1371 if (crx_interrupt_function_p ())
1372 strcat (return_str, "\n\tretx\n");
1373
1374 else if (!FUNC_IS_NORETURN_P (current_function_decl)
1375 && !save_regs[RETURN_ADDRESS_REGNUM])
1376 strcat (return_str, "\n\tjump\tra\n");
1377 }
1378
1379 /* Skip the newline and the tab in the start of return_str. */
1380 return_str += 2;
1381 return return_str;
1382 }
1383
1384 /* CompactRISC CRX Architecture stack layout:
1385
1386 0 +---------------------
1387 |
1388 .
1389 .
1390 |
1391 +==================== Sp(x)=Ap(x+1)
1392 A | Args for functions
1393 | | called by X and Dynamically
1394 | | Dynamic allocations allocated and
1395 | | (alloca, variable deallocated
1396 Stack | length arrays).
1397 grows +-------------------- Fp(x)
1398 down| | Local variables of X
1399 ward| +--------------------
1400 | | Regs saved for X-1
1401 | +==================== Sp(x-1)=Ap(x)
1402 | Args for func X
1403 | pushed by X-1
1404 +-------------------- Fp(x-1)
1405 |
1406 |
1407 V
1408
1409 */
1410
1411 void
1412 crx_expand_prologue (void)
1413 {
1414 crx_compute_frame ();
1415 crx_compute_save_regs ();
1416
1417 /* If there is no need in push and adjustment to sp, return. */
1418 if (size_for_adjusting_sp + sum_regs == 0)
1419 return;
1420
1421 if (last_reg_to_save != -1)
1422 /* If there are registers to push. */
1423 emit_insn (gen_push_for_prologue (GEN_INT (sum_regs)));
1424
1425 if (size_for_adjusting_sp > 0)
1426 emit_insn (gen_addsi3 (stack_pointer_rtx, stack_pointer_rtx,
1427 GEN_INT (-size_for_adjusting_sp)));
1428
1429 if (frame_pointer_needed)
1430 /* Initialize the frame pointer with the value of the stack pointer
1431 * pointing now to the locals. */
1432 emit_move_insn (frame_pointer_rtx, stack_pointer_rtx);
1433 }
1434
1435 /* Generate insn that updates the stack for local variables and padding for
1436 * registers we save. - Generate the appropriate return insn. */
1437
1438 void
1439 crx_expand_epilogue (void)
1440 {
1441 rtx return_reg;
1442
1443 /* Nonzero if we need to return and pop only RA. This will generate a
1444 * different insn. This differentiate is for the peepholes for call as last
1445 * statement in function. */
1446 int only_popret_RA = (save_regs[RETURN_ADDRESS_REGNUM]
1447 && (sum_regs == UNITS_PER_WORD));
1448
1449 /* Return register. */
1450 return_reg = gen_rtx_REG (Pmode, RETURN_ADDRESS_REGNUM);
1451
1452 if (frame_pointer_needed)
1453 /* Restore the stack pointer with the frame pointers value */
1454 emit_move_insn (stack_pointer_rtx, frame_pointer_rtx);
1455
1456 if (size_for_adjusting_sp > 0)
1457 emit_insn (gen_addsi3 (stack_pointer_rtx, stack_pointer_rtx,
1458 GEN_INT (size_for_adjusting_sp)));
1459
1460 if (crx_interrupt_function_p ())
1461 emit_jump_insn (gen_interrupt_return ());
1462 else if (last_reg_to_save == -1)
1463 /* Nothing to pop */
1464 /* Don't output jump for interrupt routine, only retx. */
1465 emit_jump_insn (gen_indirect_jump_return ());
1466 else if (only_popret_RA)
1467 emit_jump_insn (gen_popret_RA_return ());
1468 else
1469 emit_jump_insn (gen_pop_and_popret_return (GEN_INT (sum_regs)));
1470 }
1471