comparison gcc/config/frv/frv.h @ 0:a06113de4d67

first commit
author kent <kent@cr.ie.u-ryukyu.ac.jp>
date Fri, 17 Jul 2009 14:47:48 +0900
parents
children 77e2b8dfacca
comparison
equal deleted inserted replaced
-1:000000000000 0:a06113de4d67
1 /* Target macros for the FRV port of GCC.
2 Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2007, 2008
3 Free Software Foundation, Inc.
4 Contributed by Red Hat Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it
9 under the terms of the GNU General Public License as published
10 by the Free Software Foundation; either version 3, or (at your
11 option) any later version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT
14 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
16 License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 #ifndef __FRV_H__
23 #define __FRV_H__
24
25 /* Frv general purpose macros. */
26 /* Align an address. */
27 #define ADDR_ALIGN(addr,align) (((addr) + (align) - 1) & ~((align) - 1))
28
29 /* Return true if a value is inside a range. */
30 #define IN_RANGE_P(VALUE, LOW, HIGH) \
31 ( (((HOST_WIDE_INT)(VALUE)) >= (HOST_WIDE_INT)(LOW)) \
32 && (((HOST_WIDE_INT)(VALUE)) <= ((HOST_WIDE_INT)(HIGH))))
33
34
35 /* Driver configuration. */
36
37 /* A C expression which determines whether the option `-CHAR' takes arguments.
38 The value should be the number of arguments that option takes-zero, for many
39 options.
40
41 By default, this macro is defined to handle the standard options properly.
42 You need not define it unless you wish to add additional options which take
43 arguments.
44
45 Defined in svr4.h. */
46 #undef SWITCH_TAKES_ARG
47 #define SWITCH_TAKES_ARG(CHAR) \
48 (DEFAULT_SWITCH_TAKES_ARG (CHAR) || (CHAR) == 'G')
49
50 /* A C expression which determines whether the option `-NAME' takes arguments.
51 The value should be the number of arguments that option takes-zero, for many
52 options. This macro rather than `SWITCH_TAKES_ARG' is used for
53 multi-character option names.
54
55 By default, this macro is defined as `DEFAULT_WORD_SWITCH_TAKES_ARG', which
56 handles the standard options properly. You need not define
57 `WORD_SWITCH_TAKES_ARG' unless you wish to add additional options which take
58 arguments. Any redefinition should call `DEFAULT_WORD_SWITCH_TAKES_ARG' and
59 then check for additional options.
60
61 Defined in svr4.h. */
62 #undef WORD_SWITCH_TAKES_ARG
63
64 /* -fpic and -fPIC used to imply the -mlibrary-pic multilib, but with
65 FDPIC which multilib to use depends on whether FDPIC is in use or
66 not. The trick we use is to introduce -multilib-library-pic as a
67 pseudo-flag that selects the library-pic multilib, and map fpic
68 and fPIC to it only if fdpic is not selected. Also, if fdpic is
69 selected and no PIC/PIE options are present, we imply -fPIE.
70 Otherwise, if -fpic or -fPIC are enabled and we're optimizing for
71 speed, or if we have -On with n>=3, enable inlining of PLTs. As
72 for -mgprel-ro, we want to enable it by default, but not for -fpic or
73 -fpie. */
74
75 #define DRIVER_SELF_SPECS SUBTARGET_DRIVER_SELF_SPECS \
76 "%{mno-pack:\
77 %{!mhard-float:-msoft-float}\
78 %{!mmedia:-mno-media}}\
79 %{!mfdpic:%{fpic|fPIC: -multilib-library-pic}}\
80 %{mfdpic:%{!fpic:%{!fpie:%{!fPIC:%{!fPIE:\
81 %{!fno-pic:%{!fno-pie:%{!fno-PIC:%{!fno-PIE:-fPIE}}}}}}}} \
82 %{!mno-inline-plt:%{O*:%{!O0:%{!Os:%{fpic|fPIC:-minline-plt} \
83 %{!fpic:%{!fPIC:%{!O:%{!O1:%{!O2:-minline-plt}}}}}}}}} \
84 %{!mno-gprel-ro:%{!fpic:%{!fpie:-mgprel-ro}}}} \
85 "
86 #ifndef SUBTARGET_DRIVER_SELF_SPECS
87 # define SUBTARGET_DRIVER_SELF_SPECS
88 #endif
89
90 /* A C string constant that tells the GCC driver program options to pass to
91 the assembler. It can also specify how to translate options you give to GNU
92 CC into options for GCC to pass to the assembler. See the file `sun3.h'
93 for an example of this.
94
95 Do not define this macro if it does not need to do anything.
96
97 Defined in svr4.h. */
98 #undef ASM_SPEC
99 #define ASM_SPEC "\
100 %{G*} %{v} %{n} %{T} %{Ym,*} %{Yd,*} %{Wa,*:%*} \
101 %{mtomcat-stats} \
102 %{!mno-eflags: \
103 %{mcpu=*} \
104 %{mgpr-*} %{mfpr-*} \
105 %{msoft-float} %{mhard-float} \
106 %{mdword} %{mno-dword} \
107 %{mdouble} %{mno-double} \
108 %{mmedia} %{mno-media} \
109 %{mmuladd} %{mno-muladd} \
110 %{mpack} %{mno-pack} \
111 %{mno-fdpic:-mnopic} %{mfdpic} \
112 %{fpic|fpie: -mpic} %{fPIC|fPIE: -mPIC} %{mlibrary-pic}}"
113
114 /* Another C string constant used much like `LINK_SPEC'. The difference
115 between the two is that `STARTFILE_SPEC' is used at the very beginning of
116 the command given to the linker.
117
118 If this macro is not defined, a default is provided that loads the standard
119 C startup file from the usual place. See `gcc.c'.
120
121 Defined in svr4.h. */
122 #undef STARTFILE_SPEC
123 #define STARTFILE_SPEC "crt0%O%s frvbegin%O%s"
124
125 /* Another C string constant used much like `LINK_SPEC'. The difference
126 between the two is that `ENDFILE_SPEC' is used at the very end of the
127 command given to the linker.
128
129 Do not define this macro if it does not need to do anything.
130
131 Defined in svr4.h. */
132 #undef ENDFILE_SPEC
133 #define ENDFILE_SPEC "frvend%O%s"
134
135
136 #define MASK_DEFAULT_FRV \
137 (MASK_MEDIA \
138 | MASK_DOUBLE \
139 | MASK_MULADD \
140 | MASK_DWORD \
141 | MASK_PACK)
142
143 #define MASK_DEFAULT_FR500 \
144 (MASK_MEDIA | MASK_DWORD | MASK_PACK)
145
146 #define MASK_DEFAULT_FR550 \
147 (MASK_MEDIA | MASK_DWORD | MASK_PACK)
148
149 #define MASK_DEFAULT_FR450 \
150 (MASK_GPR_32 \
151 | MASK_FPR_32 \
152 | MASK_MEDIA \
153 | MASK_SOFT_FLOAT \
154 | MASK_DWORD \
155 | MASK_PACK)
156
157 #define MASK_DEFAULT_FR400 \
158 (MASK_GPR_32 \
159 | MASK_FPR_32 \
160 | MASK_MEDIA \
161 | MASK_ACC_4 \
162 | MASK_SOFT_FLOAT \
163 | MASK_DWORD \
164 | MASK_PACK)
165
166 #define MASK_DEFAULT_SIMPLE \
167 (MASK_GPR_32 | MASK_SOFT_FLOAT)
168
169 /* A C string constant that tells the GCC driver program options to pass to
170 `cc1'. It can also specify how to translate options you give to GCC into
171 options for GCC to pass to the `cc1'.
172
173 Do not define this macro if it does not need to do anything. */
174 /* For ABI compliance, we need to put bss data into the normal data section. */
175 #define CC1_SPEC "%{G*}"
176
177 /* A C string constant that tells the GCC driver program options to pass to
178 the linker. It can also specify how to translate options you give to GCC
179 into options for GCC to pass to the linker.
180
181 Do not define this macro if it does not need to do anything.
182
183 Defined in svr4.h. */
184 /* Override the svr4.h version with one that dispenses without the svr4
185 shared library options, notably -G. */
186 #undef LINK_SPEC
187 #define LINK_SPEC "\
188 %{h*} %{v:-V} \
189 %{b} \
190 %{mfdpic:-melf32frvfd -z text} \
191 %{static:-dn -Bstatic} \
192 %{shared:-Bdynamic} \
193 %{symbolic:-Bsymbolic} \
194 %{G*} \
195 %{YP,*} \
196 %{Qy:} %{!Qn:-Qy}"
197
198 /* Another C string constant used much like `LINK_SPEC'. The difference
199 between the two is that `LIB_SPEC' is used at the end of the command given
200 to the linker.
201
202 If this macro is not defined, a default is provided that loads the standard
203 C library from the usual place. See `gcc.c'.
204
205 Defined in svr4.h. */
206
207 #undef LIB_SPEC
208 #define LIB_SPEC "--start-group -lc -lsim --end-group"
209
210 #ifndef CPU_TYPE
211 #define CPU_TYPE FRV_CPU_FR500
212 #endif
213
214 /* Run-time target specifications */
215
216 #define TARGET_CPU_CPP_BUILTINS() \
217 do \
218 { \
219 int issue_rate; \
220 \
221 builtin_define ("__frv__"); \
222 builtin_assert ("machine=frv"); \
223 \
224 issue_rate = frv_issue_rate (); \
225 if (issue_rate > 1) \
226 builtin_define_with_int_value ("__FRV_VLIW__", issue_rate); \
227 builtin_define_with_int_value ("__FRV_GPR__", NUM_GPRS); \
228 builtin_define_with_int_value ("__FRV_FPR__", NUM_FPRS); \
229 builtin_define_with_int_value ("__FRV_ACC__", NUM_ACCS); \
230 \
231 switch (frv_cpu_type) \
232 { \
233 case FRV_CPU_GENERIC: \
234 builtin_define ("__CPU_GENERIC__"); \
235 break; \
236 case FRV_CPU_FR550: \
237 builtin_define ("__CPU_FR550__"); \
238 break; \
239 case FRV_CPU_FR500: \
240 case FRV_CPU_TOMCAT: \
241 builtin_define ("__CPU_FR500__"); \
242 break; \
243 case FRV_CPU_FR450: \
244 builtin_define ("__CPU_FR450__"); \
245 break; \
246 case FRV_CPU_FR405: \
247 builtin_define ("__CPU_FR405__"); \
248 break; \
249 case FRV_CPU_FR400: \
250 builtin_define ("__CPU_FR400__"); \
251 break; \
252 case FRV_CPU_FR300: \
253 case FRV_CPU_SIMPLE: \
254 builtin_define ("__CPU_FR300__"); \
255 break; \
256 } \
257 \
258 if (TARGET_HARD_FLOAT) \
259 builtin_define ("__FRV_HARD_FLOAT__"); \
260 if (TARGET_DWORD) \
261 builtin_define ("__FRV_DWORD__"); \
262 if (TARGET_FDPIC) \
263 builtin_define ("__FRV_FDPIC__"); \
264 if (flag_leading_underscore > 0) \
265 builtin_define ("__FRV_UNDERSCORE__"); \
266 } \
267 while (0)
268
269
270 #define TARGET_HAS_FPRS (TARGET_HARD_FLOAT || TARGET_MEDIA)
271
272 #define NUM_GPRS (TARGET_GPR_32? 32 : 64)
273 #define NUM_FPRS (!TARGET_HAS_FPRS? 0 : TARGET_FPR_32? 32 : 64)
274 #define NUM_ACCS (!TARGET_MEDIA? 0 : TARGET_ACC_4? 4 : 8)
275
276 /* X is a valid accumulator number if (X & ACC_MASK) == X. */
277 #define ACC_MASK \
278 (!TARGET_MEDIA ? 0 \
279 : TARGET_ACC_4 ? 3 \
280 : frv_cpu_type == FRV_CPU_FR450 ? 11 \
281 : 7)
282
283 /* Macros to identify the blend of media instructions available. Revision 1
284 is the one found on the FR500. Revision 2 includes the changes made for
285 the FR400.
286
287 Treat the generic processor as a revision 1 machine for now, for
288 compatibility with earlier releases. */
289
290 #define TARGET_MEDIA_REV1 \
291 (TARGET_MEDIA \
292 && (frv_cpu_type == FRV_CPU_GENERIC \
293 || frv_cpu_type == FRV_CPU_FR500))
294
295 #define TARGET_MEDIA_REV2 \
296 (TARGET_MEDIA \
297 && (frv_cpu_type == FRV_CPU_FR400 \
298 || frv_cpu_type == FRV_CPU_FR405 \
299 || frv_cpu_type == FRV_CPU_FR450 \
300 || frv_cpu_type == FRV_CPU_FR550))
301
302 #define TARGET_MEDIA_FR450 \
303 (frv_cpu_type == FRV_CPU_FR450)
304
305 #define TARGET_FR500_FR550_BUILTINS \
306 (frv_cpu_type == FRV_CPU_FR500 \
307 || frv_cpu_type == FRV_CPU_FR550)
308
309 #define TARGET_FR405_BUILTINS \
310 (frv_cpu_type == FRV_CPU_FR405 \
311 || frv_cpu_type == FRV_CPU_FR450)
312
313 #ifndef HAVE_AS_TLS
314 #define HAVE_AS_TLS 0
315 #endif
316
317 /* This macro is a C statement to print on `stderr' a string describing the
318 particular machine description choice. Every machine description should
319 define `TARGET_VERSION'. For example:
320
321 #ifdef MOTOROLA
322 #define TARGET_VERSION \
323 fprintf (stderr, " (68k, Motorola syntax)");
324 #else
325 #define TARGET_VERSION \
326 fprintf (stderr, " (68k, MIT syntax)");
327 #endif */
328 #define TARGET_VERSION fprintf (stderr, _(" (frv)"))
329
330 /* Sometimes certain combinations of command options do not make sense on a
331 particular target machine. You can define a macro `OVERRIDE_OPTIONS' to
332 take account of this. This macro, if defined, is executed once just after
333 all the command options have been parsed.
334
335 Don't use this macro to turn on various extra optimizations for `-O'. That
336 is what `OPTIMIZATION_OPTIONS' is for. */
337
338 #define OVERRIDE_OPTIONS frv_override_options ()
339
340 /* Some machines may desire to change what optimizations are performed for
341 various optimization levels. This macro, if defined, is executed once just
342 after the optimization level is determined and before the remainder of the
343 command options have been parsed. Values set in this macro are used as the
344 default values for the other command line options.
345
346 LEVEL is the optimization level specified; 2 if `-O2' is specified, 1 if
347 `-O' is specified, and 0 if neither is specified.
348
349 SIZE is nonzero if `-Os' is specified, 0 otherwise.
350
351 You should not use this macro to change options that are not
352 machine-specific. These should uniformly selected by the same optimization
353 level on all supported machines. Use this macro to enable machine-specific
354 optimizations.
355
356 *Do not examine `write_symbols' in this macro!* The debugging options are
357 *not supposed to alter the generated code. */
358 #define OPTIMIZATION_OPTIONS(LEVEL,SIZE) frv_optimization_options (LEVEL, SIZE)
359
360
361 /* Define this macro if debugging can be performed even without a frame
362 pointer. If this macro is defined, GCC will turn on the
363 `-fomit-frame-pointer' option whenever `-O' is specified. */
364 /* Frv needs a specific frame layout that includes the frame pointer. */
365
366 #define CAN_DEBUG_WITHOUT_FP
367
368 #define LABEL_ALIGN_AFTER_BARRIER(LABEL) (TARGET_ALIGN_LABELS ? 3 : 0)
369
370 /* Small Data Area Support. */
371 /* Maximum size of variables that go in .sdata/.sbss.
372 The -msdata=foo switch also controls how small variables are handled. */
373 #ifndef SDATA_DEFAULT_SIZE
374 #define SDATA_DEFAULT_SIZE 8
375 #endif
376
377
378 /* Storage Layout */
379
380 /* Define this macro to have the value 1 if the most significant bit in a byte
381 has the lowest number; otherwise define it to have the value zero. This
382 means that bit-field instructions count from the most significant bit. If
383 the machine has no bit-field instructions, then this must still be defined,
384 but it doesn't matter which value it is defined to. This macro need not be
385 a constant.
386
387 This macro does not affect the way structure fields are packed into bytes or
388 words; that is controlled by `BYTES_BIG_ENDIAN'. */
389 #define BITS_BIG_ENDIAN 1
390
391 /* Define this macro to have the value 1 if the most significant byte in a word
392 has the lowest number. This macro need not be a constant. */
393 #define BYTES_BIG_ENDIAN 1
394
395 /* Define this macro to have the value 1 if, in a multiword object, the most
396 significant word has the lowest number. This applies to both memory
397 locations and registers; GCC fundamentally assumes that the order of
398 words in memory is the same as the order in registers. This macro need not
399 be a constant. */
400 #define WORDS_BIG_ENDIAN 1
401
402 /* Number of storage units in a word; normally 4. */
403 #define UNITS_PER_WORD 4
404
405 /* A macro to update MODE and UNSIGNEDP when an object whose type is TYPE and
406 which has the specified mode and signedness is to be stored in a register.
407 This macro is only called when TYPE is a scalar type.
408
409 On most RISC machines, which only have operations that operate on a full
410 register, define this macro to set M to `word_mode' if M is an integer mode
411 narrower than `BITS_PER_WORD'. In most cases, only integer modes should be
412 widened because wider-precision floating-point operations are usually more
413 expensive than their narrower counterparts.
414
415 For most machines, the macro definition does not change UNSIGNEDP. However,
416 some machines, have instructions that preferentially handle either signed or
417 unsigned quantities of certain modes. For example, on the DEC Alpha, 32-bit
418 loads from memory and 32-bit add instructions sign-extend the result to 64
419 bits. On such machines, set UNSIGNEDP according to which kind of extension
420 is more efficient.
421
422 Do not define this macro if it would never modify MODE. */
423 #define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
424 do \
425 { \
426 if (GET_MODE_CLASS (MODE) == MODE_INT \
427 && GET_MODE_SIZE (MODE) < 4) \
428 (MODE) = SImode; \
429 } \
430 while (0)
431
432 /* Normal alignment required for function parameters on the stack, in bits.
433 All stack parameters receive at least this much alignment regardless of data
434 type. On most machines, this is the same as the size of an integer. */
435 #define PARM_BOUNDARY 32
436
437 /* Define this macro if you wish to preserve a certain alignment for the stack
438 pointer. The definition is a C expression for the desired alignment
439 (measured in bits).
440
441 If `PUSH_ROUNDING' is not defined, the stack will always be aligned to the
442 specified boundary. If `PUSH_ROUNDING' is defined and specifies a less
443 strict alignment than `STACK_BOUNDARY', the stack may be momentarily
444 unaligned while pushing arguments. */
445 #define STACK_BOUNDARY 64
446
447 /* Alignment required for a function entry point, in bits. */
448 #define FUNCTION_BOUNDARY 128
449
450 /* Biggest alignment that any data type can require on this machine,
451 in bits. */
452 #define BIGGEST_ALIGNMENT 64
453
454 /* @@@ A hack, needed because libobjc wants to use ADJUST_FIELD_ALIGN for
455 some reason. */
456 #ifdef IN_TARGET_LIBS
457 #define BIGGEST_FIELD_ALIGNMENT 64
458 #else
459 /* An expression for the alignment of a structure field FIELD if the
460 alignment computed in the usual way is COMPUTED. GCC uses this
461 value instead of the value in `BIGGEST_ALIGNMENT' or
462 `BIGGEST_FIELD_ALIGNMENT', if defined, for structure fields only. */
463 #define ADJUST_FIELD_ALIGN(FIELD, COMPUTED) \
464 frv_adjust_field_align (FIELD, COMPUTED)
465 #endif
466
467 /* If defined, a C expression to compute the alignment for a static variable.
468 TYPE is the data type, and ALIGN is the alignment that the object
469 would ordinarily have. The value of this macro is used instead of that
470 alignment to align the object.
471
472 If this macro is not defined, then ALIGN is used.
473
474 One use of this macro is to increase alignment of medium-size data to make
475 it all fit in fewer cache lines. Another is to cause character arrays to be
476 word-aligned so that `strcpy' calls that copy constants to character arrays
477 can be done inline. */
478 #define DATA_ALIGNMENT(TYPE, ALIGN) \
479 (TREE_CODE (TYPE) == ARRAY_TYPE \
480 && TYPE_MODE (TREE_TYPE (TYPE)) == QImode \
481 && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
482
483 /* If defined, a C expression to compute the alignment given to a constant that
484 is being placed in memory. CONSTANT is the constant and ALIGN is the
485 alignment that the object would ordinarily have. The value of this macro is
486 used instead of that alignment to align the object.
487
488 If this macro is not defined, then ALIGN is used.
489
490 The typical use of this macro is to increase alignment for string constants
491 to be word aligned so that `strcpy' calls that copy constants can be done
492 inline. */
493 #define CONSTANT_ALIGNMENT(EXP, ALIGN) \
494 (TREE_CODE (EXP) == STRING_CST \
495 && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
496
497 /* Define this macro to be the value 1 if instructions will fail to work if
498 given data not on the nominal alignment. If instructions will merely go
499 slower in that case, define this macro as 0. */
500 #define STRICT_ALIGNMENT 1
501
502 /* Define this if you wish to imitate the way many other C compilers handle
503 alignment of bitfields and the structures that contain them.
504
505 The behavior is that the type written for a bit-field (`int', `short', or
506 other integer type) imposes an alignment for the entire structure, as if the
507 structure really did contain an ordinary field of that type. In addition,
508 the bit-field is placed within the structure so that it would fit within such
509 a field, not crossing a boundary for it.
510
511 Thus, on most machines, a bit-field whose type is written as `int' would not
512 cross a four-byte boundary, and would force four-byte alignment for the
513 whole structure. (The alignment used may not be four bytes; it is
514 controlled by the other alignment parameters.)
515
516 If the macro is defined, its definition should be a C expression; a nonzero
517 value for the expression enables this behavior.
518
519 Note that if this macro is not defined, or its value is zero, some bitfields
520 may cross more than one alignment boundary. The compiler can support such
521 references if there are `insv', `extv', and `extzv' insns that can directly
522 reference memory.
523
524 The other known way of making bitfields work is to define
525 `STRUCTURE_SIZE_BOUNDARY' as large as `BIGGEST_ALIGNMENT'. Then every
526 structure can be accessed with fullwords.
527
528 Unless the machine has bit-field instructions or you define
529 `STRUCTURE_SIZE_BOUNDARY' that way, you must define
530 `PCC_BITFIELD_TYPE_MATTERS' to have a nonzero value.
531
532 If your aim is to make GCC use the same conventions for laying out
533 bitfields as are used by another compiler, here is how to investigate what
534 the other compiler does. Compile and run this program:
535
536 struct foo1
537 {
538 char x;
539 char :0;
540 char y;
541 };
542
543 struct foo2
544 {
545 char x;
546 int :0;
547 char y;
548 };
549
550 main ()
551 {
552 printf ("Size of foo1 is %d\n",
553 sizeof (struct foo1));
554 printf ("Size of foo2 is %d\n",
555 sizeof (struct foo2));
556 exit (0);
557 }
558
559 If this prints 2 and 5, then the compiler's behavior is what you would get
560 from `PCC_BITFIELD_TYPE_MATTERS'.
561
562 Defined in svr4.h. */
563 #define PCC_BITFIELD_TYPE_MATTERS 1
564
565
566 /* Layout of Source Language Data Types. */
567
568 #define CHAR_TYPE_SIZE 8
569 #define SHORT_TYPE_SIZE 16
570 #define INT_TYPE_SIZE 32
571 #define LONG_TYPE_SIZE 32
572 #define LONG_LONG_TYPE_SIZE 64
573 #define FLOAT_TYPE_SIZE 32
574 #define DOUBLE_TYPE_SIZE 64
575 #define LONG_DOUBLE_TYPE_SIZE 64
576
577 /* An expression whose value is 1 or 0, according to whether the type `char'
578 should be signed or unsigned by default. The user can always override this
579 default with the options `-fsigned-char' and `-funsigned-char'. */
580 #define DEFAULT_SIGNED_CHAR 1
581
582
583 /* General purpose registers. */
584 #define GPR_FIRST 0 /* First gpr */
585 #define GPR_LAST (GPR_FIRST + 63) /* Last gpr */
586 #define GPR_R0 GPR_FIRST /* R0, constant 0 */
587 #define GPR_FP (GPR_FIRST + 2) /* Frame pointer */
588 #define GPR_SP (GPR_FIRST + 1) /* Stack pointer */
589 /* small data register */
590 #define SDA_BASE_REG ((unsigned)(TARGET_FDPIC ? -1 : flag_pic ? PIC_REGNO : (GPR_FIRST + 16)))
591 #define PIC_REGNO (GPR_FIRST + (TARGET_FDPIC?15:17)) /* PIC register. */
592 #define FDPIC_FPTR_REGNO (GPR_FIRST + 14) /* uClinux PIC function pointer register. */
593 #define FDPIC_REGNO (GPR_FIRST + 15) /* uClinux PIC register. */
594
595 #define HARD_REGNO_RENAME_OK(from,to) (TARGET_FDPIC ? ((to) != FDPIC_REG) : 1)
596
597 #define OUR_FDPIC_REG get_hard_reg_initial_val (SImode, FDPIC_REGNO)
598
599 #define FPR_FIRST 64 /* First FP reg */
600 #define FPR_LAST 127 /* Last FP reg */
601
602 #define GPR_TEMP_NUM frv_condexec_temps /* # gprs to reserve for temps */
603
604 /* We reserve the last CR and CCR in each category to be used as a reload
605 register to reload the CR/CCR registers. This is a kludge. */
606 #define CC_FIRST 128 /* First ICC/FCC reg */
607 #define CC_LAST 135 /* Last ICC/FCC reg */
608 #define ICC_FIRST (CC_FIRST + 4) /* First ICC reg */
609 #define ICC_LAST (CC_FIRST + 7) /* Last ICC reg */
610 #define ICC_TEMP (CC_FIRST + 7) /* Temporary ICC reg */
611 #define FCC_FIRST (CC_FIRST) /* First FCC reg */
612 #define FCC_LAST (CC_FIRST + 3) /* Last FCC reg */
613
614 /* Amount to shift a value to locate a ICC or FCC register in the CCR
615 register and shift it to the bottom 4 bits. */
616 #define CC_SHIFT_RIGHT(REGNO) (((REGNO) - CC_FIRST) << 2)
617
618 /* Mask to isolate a single ICC/FCC value. */
619 #define CC_MASK 0xf
620
621 /* Masks to isolate the various bits in an ICC field. */
622 #define ICC_MASK_N 0x8 /* negative */
623 #define ICC_MASK_Z 0x4 /* zero */
624 #define ICC_MASK_V 0x2 /* overflow */
625 #define ICC_MASK_C 0x1 /* carry */
626
627 /* Mask to isolate the N/Z flags in an ICC. */
628 #define ICC_MASK_NZ (ICC_MASK_N | ICC_MASK_Z)
629
630 /* Mask to isolate the Z/C flags in an ICC. */
631 #define ICC_MASK_ZC (ICC_MASK_Z | ICC_MASK_C)
632
633 /* Masks to isolate the various bits in a FCC field. */
634 #define FCC_MASK_E 0x8 /* equal */
635 #define FCC_MASK_L 0x4 /* less than */
636 #define FCC_MASK_G 0x2 /* greater than */
637 #define FCC_MASK_U 0x1 /* unordered */
638
639 /* For CCR registers, the machine wants CR4..CR7 to be used for integer
640 code and CR0..CR3 to be used for floating point. */
641 #define CR_FIRST 136 /* First CCR */
642 #define CR_LAST 143 /* Last CCR */
643 #define CR_NUM (CR_LAST-CR_FIRST+1) /* # of CCRs (8) */
644 #define ICR_FIRST (CR_FIRST + 4) /* First integer CCR */
645 #define ICR_LAST (CR_FIRST + 7) /* Last integer CCR */
646 #define ICR_TEMP ICR_LAST /* Temp integer CCR */
647 #define FCR_FIRST (CR_FIRST + 0) /* First float CCR */
648 #define FCR_LAST (CR_FIRST + 3) /* Last float CCR */
649
650 /* Amount to shift a value to locate a CR register in the CCCR special purpose
651 register and shift it to the bottom 2 bits. */
652 #define CR_SHIFT_RIGHT(REGNO) (((REGNO) - CR_FIRST) << 1)
653
654 /* Mask to isolate a single CR value. */
655 #define CR_MASK 0x3
656
657 #define ACC_FIRST 144 /* First acc register */
658 #define ACC_LAST 155 /* Last acc register */
659
660 #define ACCG_FIRST 156 /* First accg register */
661 #define ACCG_LAST 167 /* Last accg register */
662
663 #define AP_FIRST 168 /* fake argument pointer */
664
665 #define SPR_FIRST 169
666 #define SPR_LAST 172
667 #define LR_REGNO (SPR_FIRST)
668 #define LCR_REGNO (SPR_FIRST + 1)
669 #define IACC_FIRST (SPR_FIRST + 2)
670 #define IACC_LAST (SPR_FIRST + 3)
671
672 #define GPR_P(R) IN_RANGE_P (R, GPR_FIRST, GPR_LAST)
673 #define GPR_OR_AP_P(R) (GPR_P (R) || (R) == ARG_POINTER_REGNUM)
674 #define FPR_P(R) IN_RANGE_P (R, FPR_FIRST, FPR_LAST)
675 #define CC_P(R) IN_RANGE_P (R, CC_FIRST, CC_LAST)
676 #define ICC_P(R) IN_RANGE_P (R, ICC_FIRST, ICC_LAST)
677 #define FCC_P(R) IN_RANGE_P (R, FCC_FIRST, FCC_LAST)
678 #define CR_P(R) IN_RANGE_P (R, CR_FIRST, CR_LAST)
679 #define ICR_P(R) IN_RANGE_P (R, ICR_FIRST, ICR_LAST)
680 #define FCR_P(R) IN_RANGE_P (R, FCR_FIRST, FCR_LAST)
681 #define ACC_P(R) IN_RANGE_P (R, ACC_FIRST, ACC_LAST)
682 #define ACCG_P(R) IN_RANGE_P (R, ACCG_FIRST, ACCG_LAST)
683 #define SPR_P(R) IN_RANGE_P (R, SPR_FIRST, SPR_LAST)
684
685 #define GPR_OR_PSEUDO_P(R) (GPR_P (R) || (R) >= FIRST_PSEUDO_REGISTER)
686 #define FPR_OR_PSEUDO_P(R) (FPR_P (R) || (R) >= FIRST_PSEUDO_REGISTER)
687 #define GPR_AP_OR_PSEUDO_P(R) (GPR_OR_AP_P (R) || (R) >= FIRST_PSEUDO_REGISTER)
688 #define CC_OR_PSEUDO_P(R) (CC_P (R) || (R) >= FIRST_PSEUDO_REGISTER)
689 #define ICC_OR_PSEUDO_P(R) (ICC_P (R) || (R) >= FIRST_PSEUDO_REGISTER)
690 #define FCC_OR_PSEUDO_P(R) (FCC_P (R) || (R) >= FIRST_PSEUDO_REGISTER)
691 #define CR_OR_PSEUDO_P(R) (CR_P (R) || (R) >= FIRST_PSEUDO_REGISTER)
692 #define ICR_OR_PSEUDO_P(R) (ICR_P (R) || (R) >= FIRST_PSEUDO_REGISTER)
693 #define FCR_OR_PSEUDO_P(R) (FCR_P (R) || (R) >= FIRST_PSEUDO_REGISTER)
694 #define ACC_OR_PSEUDO_P(R) (ACC_P (R) || (R) >= FIRST_PSEUDO_REGISTER)
695 #define ACCG_OR_PSEUDO_P(R) (ACCG_P (R) || (R) >= FIRST_PSEUDO_REGISTER)
696
697 #define MAX_STACK_IMMEDIATE_OFFSET 2047
698
699
700 /* Register Basics. */
701
702 /* Number of hardware registers known to the compiler. They receive numbers 0
703 through `FIRST_PSEUDO_REGISTER-1'; thus, the first pseudo register's number
704 really is assigned the number `FIRST_PSEUDO_REGISTER'. */
705 #define FIRST_PSEUDO_REGISTER (SPR_LAST + 1)
706
707 /* The first/last register that can contain the arguments to a function. */
708 #define FIRST_ARG_REGNUM (GPR_FIRST + 8)
709 #define LAST_ARG_REGNUM (FIRST_ARG_REGNUM + FRV_NUM_ARG_REGS - 1)
710
711 /* Registers used by the exception handling functions. These should be
712 registers that are not otherwise used by the calling sequence. */
713 #define FIRST_EH_REGNUM 14
714 #define LAST_EH_REGNUM 15
715
716 /* Scratch registers used in the prologue, epilogue and thunks.
717 OFFSET_REGNO is for loading constant addends that are too big for a
718 single instruction. TEMP_REGNO is used for transferring SPRs to and from
719 the stack, and various other activities. */
720 #define OFFSET_REGNO 4
721 #define TEMP_REGNO 5
722
723 /* Registers used in the prologue. OLD_SP_REGNO is the old stack pointer,
724 which is sometimes used to set up the frame pointer. */
725 #define OLD_SP_REGNO 6
726
727 /* Registers used in the epilogue. STACKADJ_REGNO stores the exception
728 handler's stack adjustment. */
729 #define STACKADJ_REGNO 6
730
731 /* Registers used in thunks. JMP_REGNO is used for loading the target
732 address. */
733 #define JUMP_REGNO 6
734
735 #define EH_RETURN_DATA_REGNO(N) ((N) <= (LAST_EH_REGNUM - FIRST_EH_REGNUM)? \
736 (N) + FIRST_EH_REGNUM : INVALID_REGNUM)
737 #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (SImode, STACKADJ_REGNO)
738 #define EH_RETURN_HANDLER_RTX RETURN_ADDR_RTX (0, frame_pointer_rtx)
739
740 #define EPILOGUE_USES(REGNO) ((REGNO) == LR_REGNO)
741
742 /* An initializer that says which registers are used for fixed purposes all
743 throughout the compiled code and are therefore not available for general
744 allocation. These would include the stack pointer, the frame pointer
745 (except on machines where that can be used as a general register when no
746 frame pointer is needed), the program counter on machines where that is
747 considered one of the addressable registers, and any other numbered register
748 with a standard use.
749
750 This information is expressed as a sequence of numbers, separated by commas
751 and surrounded by braces. The Nth number is 1 if register N is fixed, 0
752 otherwise.
753
754 The table initialized from this macro, and the table initialized by the
755 following one, may be overridden at run time either automatically, by the
756 actions of the macro `CONDITIONAL_REGISTER_USAGE', or by the user with the
757 command options `-ffixed-REG', `-fcall-used-REG' and `-fcall-saved-REG'. */
758
759 /* gr0 -- Hard Zero
760 gr1 -- Stack Pointer
761 gr2 -- Frame Pointer
762 gr3 -- Hidden Parameter
763 gr16 -- Small Data reserved
764 gr17 -- Pic reserved
765 gr28 -- OS reserved
766 gr29 -- OS reserved
767 gr30 -- OS reserved
768 gr31 -- OS reserved
769 cr3 -- reserved to reload FCC registers.
770 cr7 -- reserved to reload ICC registers. */
771 #define FIXED_REGISTERS \
772 { /* Integer Registers */ \
773 1, 1, 1, 1, 0, 0, 0, 0, /* 000-007, gr0 - gr7 */ \
774 0, 0, 0, 0, 0, 0, 0, 0, /* 008-015, gr8 - gr15 */ \
775 1, 1, 0, 0, 0, 0, 0, 0, /* 016-023, gr16 - gr23 */ \
776 0, 0, 0, 0, 1, 1, 1, 1, /* 024-031, gr24 - gr31 */ \
777 0, 0, 0, 0, 0, 0, 0, 0, /* 032-039, gr32 - gr39 */ \
778 0, 0, 0, 0, 0, 0, 0, 0, /* 040-040, gr48 - gr47 */ \
779 0, 0, 0, 0, 0, 0, 0, 0, /* 048-055, gr48 - gr55 */ \
780 0, 0, 0, 0, 0, 0, 0, 0, /* 056-063, gr56 - gr63 */ \
781 /* Float Registers */ \
782 0, 0, 0, 0, 0, 0, 0, 0, /* 064-071, fr0 - fr7 */ \
783 0, 0, 0, 0, 0, 0, 0, 0, /* 072-079, fr8 - fr15 */ \
784 0, 0, 0, 0, 0, 0, 0, 0, /* 080-087, fr16 - fr23 */ \
785 0, 0, 0, 0, 0, 0, 0, 0, /* 088-095, fr24 - fr31 */ \
786 0, 0, 0, 0, 0, 0, 0, 0, /* 096-103, fr32 - fr39 */ \
787 0, 0, 0, 0, 0, 0, 0, 0, /* 104-111, fr48 - fr47 */ \
788 0, 0, 0, 0, 0, 0, 0, 0, /* 112-119, fr48 - fr55 */ \
789 0, 0, 0, 0, 0, 0, 0, 0, /* 120-127, fr56 - fr63 */ \
790 /* Condition Code Registers */ \
791 0, 0, 0, 0, /* 128-131, fcc0 - fcc3 */ \
792 0, 0, 0, 1, /* 132-135, icc0 - icc3 */ \
793 /* Conditional execution Registers (CCR) */ \
794 0, 0, 0, 0, 0, 0, 0, 1, /* 136-143, cr0 - cr7 */ \
795 /* Accumulators */ \
796 1, 1, 1, 1, 1, 1, 1, 1, /* 144-151, acc0 - acc7 */ \
797 1, 1, 1, 1, /* 152-155, acc8 - acc11 */ \
798 1, 1, 1, 1, 1, 1, 1, 1, /* 156-163, accg0 - accg7 */ \
799 1, 1, 1, 1, /* 164-167, accg8 - accg11 */ \
800 /* Other registers */ \
801 1, /* 168, AP - fake arg ptr */ \
802 0, /* 169, LR - Link register*/ \
803 0, /* 170, LCR - Loop count reg*/ \
804 1, 1 /* 171-172, iacc0 */ \
805 }
806
807 /* Like `FIXED_REGISTERS' but has 1 for each register that is clobbered (in
808 general) by function calls as well as for fixed registers. This macro
809 therefore identifies the registers that are not available for general
810 allocation of values that must live across function calls.
811
812 If a register has 0 in `CALL_USED_REGISTERS', the compiler automatically
813 saves it on function entry and restores it on function exit, if the register
814 is used within the function. */
815 #define CALL_USED_REGISTERS \
816 { /* Integer Registers */ \
817 1, 1, 1, 1, 1, 1, 1, 1, /* 000-007, gr0 - gr7 */ \
818 1, 1, 1, 1, 1, 1, 1, 1, /* 008-015, gr8 - gr15 */ \
819 1, 1, 0, 0, 0, 0, 0, 0, /* 016-023, gr16 - gr23 */ \
820 0, 0, 0, 0, 1, 1, 1, 1, /* 024-031, gr24 - gr31 */ \
821 1, 1, 1, 1, 1, 1, 1, 1, /* 032-039, gr32 - gr39 */ \
822 1, 1, 1, 1, 1, 1, 1, 1, /* 040-040, gr48 - gr47 */ \
823 0, 0, 0, 0, 0, 0, 0, 0, /* 048-055, gr48 - gr55 */ \
824 0, 0, 0, 0, 0, 0, 0, 0, /* 056-063, gr56 - gr63 */ \
825 /* Float Registers */ \
826 1, 1, 1, 1, 1, 1, 1, 1, /* 064-071, fr0 - fr7 */ \
827 1, 1, 1, 1, 1, 1, 1, 1, /* 072-079, fr8 - fr15 */ \
828 0, 0, 0, 0, 0, 0, 0, 0, /* 080-087, fr16 - fr23 */ \
829 0, 0, 0, 0, 0, 0, 0, 0, /* 088-095, fr24 - fr31 */ \
830 1, 1, 1, 1, 1, 1, 1, 1, /* 096-103, fr32 - fr39 */ \
831 1, 1, 1, 1, 1, 1, 1, 1, /* 104-111, fr48 - fr47 */ \
832 0, 0, 0, 0, 0, 0, 0, 0, /* 112-119, fr48 - fr55 */ \
833 0, 0, 0, 0, 0, 0, 0, 0, /* 120-127, fr56 - fr63 */ \
834 /* Condition Code Registers */ \
835 1, 1, 1, 1, /* 128-131, fcc0 - fcc3 */ \
836 1, 1, 1, 1, /* 132-135, icc0 - icc3 */ \
837 /* Conditional execution Registers (CCR) */ \
838 1, 1, 1, 1, 1, 1, 1, 1, /* 136-143, cr0 - cr7 */ \
839 /* Accumulators */ \
840 1, 1, 1, 1, 1, 1, 1, 1, /* 144-151, acc0 - acc7 */ \
841 1, 1, 1, 1, /* 152-155, acc8 - acc11 */ \
842 1, 1, 1, 1, 1, 1, 1, 1, /* 156-163, accg0 - accg7 */ \
843 1, 1, 1, 1, /* 164-167, accg8 - accg11 */ \
844 /* Other registers */ \
845 1, /* 168, AP - fake arg ptr */ \
846 1, /* 169, LR - Link register*/ \
847 1, /* 170, LCR - Loop count reg */ \
848 1, 1 /* 171-172, iacc0 */ \
849 }
850
851 /* Zero or more C statements that may conditionally modify two variables
852 `fixed_regs' and `call_used_regs' (both of type `char []') after they have
853 been initialized from the two preceding macros.
854
855 This is necessary in case the fixed or call-clobbered registers depend on
856 target flags.
857
858 You need not define this macro if it has no work to do.
859
860 If the usage of an entire class of registers depends on the target flags,
861 you may indicate this to GCC by using this macro to modify `fixed_regs' and
862 `call_used_regs' to 1 for each of the registers in the classes which should
863 not be used by GCC. Also define the macro `REG_CLASS_FROM_LETTER' to return
864 `NO_REGS' if it is called with a letter for a class that shouldn't be used.
865
866 (However, if this class is not included in `GENERAL_REGS' and all of the
867 insn patterns whose constraints permit this class are controlled by target
868 switches, then GCC will automatically avoid using these registers when the
869 target switches are opposed to them.) */
870
871 #define CONDITIONAL_REGISTER_USAGE frv_conditional_register_usage ()
872
873
874 /* Order of allocation of registers. */
875
876 /* If defined, an initializer for a vector of integers, containing the numbers
877 of hard registers in the order in which GCC should prefer to use them
878 (from most preferred to least).
879
880 If this macro is not defined, registers are used lowest numbered first (all
881 else being equal).
882
883 One use of this macro is on machines where the highest numbered registers
884 must always be saved and the save-multiple-registers instruction supports
885 only sequences of consecutive registers. On such machines, define
886 `REG_ALLOC_ORDER' to be an initializer that lists the highest numbered
887 allocatable register first. */
888
889 /* On the FRV, allocate GR16 and GR17 after other saved registers so that we
890 have a better chance of allocating 2 registers at a time and can use the
891 double word load/store instructions in the prologue. */
892 #define REG_ALLOC_ORDER \
893 { \
894 /* volatile registers */ \
895 GPR_FIRST + 4, GPR_FIRST + 5, GPR_FIRST + 6, GPR_FIRST + 7, \
896 GPR_FIRST + 8, GPR_FIRST + 9, GPR_FIRST + 10, GPR_FIRST + 11, \
897 GPR_FIRST + 12, GPR_FIRST + 13, GPR_FIRST + 14, GPR_FIRST + 15, \
898 GPR_FIRST + 32, GPR_FIRST + 33, GPR_FIRST + 34, GPR_FIRST + 35, \
899 GPR_FIRST + 36, GPR_FIRST + 37, GPR_FIRST + 38, GPR_FIRST + 39, \
900 GPR_FIRST + 40, GPR_FIRST + 41, GPR_FIRST + 42, GPR_FIRST + 43, \
901 GPR_FIRST + 44, GPR_FIRST + 45, GPR_FIRST + 46, GPR_FIRST + 47, \
902 \
903 FPR_FIRST + 0, FPR_FIRST + 1, FPR_FIRST + 2, FPR_FIRST + 3, \
904 FPR_FIRST + 4, FPR_FIRST + 5, FPR_FIRST + 6, FPR_FIRST + 7, \
905 FPR_FIRST + 8, FPR_FIRST + 9, FPR_FIRST + 10, FPR_FIRST + 11, \
906 FPR_FIRST + 12, FPR_FIRST + 13, FPR_FIRST + 14, FPR_FIRST + 15, \
907 FPR_FIRST + 32, FPR_FIRST + 33, FPR_FIRST + 34, FPR_FIRST + 35, \
908 FPR_FIRST + 36, FPR_FIRST + 37, FPR_FIRST + 38, FPR_FIRST + 39, \
909 FPR_FIRST + 40, FPR_FIRST + 41, FPR_FIRST + 42, FPR_FIRST + 43, \
910 FPR_FIRST + 44, FPR_FIRST + 45, FPR_FIRST + 46, FPR_FIRST + 47, \
911 \
912 ICC_FIRST + 0, ICC_FIRST + 1, ICC_FIRST + 2, ICC_FIRST + 3, \
913 FCC_FIRST + 0, FCC_FIRST + 1, FCC_FIRST + 2, FCC_FIRST + 3, \
914 CR_FIRST + 0, CR_FIRST + 1, CR_FIRST + 2, CR_FIRST + 3, \
915 CR_FIRST + 4, CR_FIRST + 5, CR_FIRST + 6, CR_FIRST + 7, \
916 \
917 /* saved registers */ \
918 GPR_FIRST + 18, GPR_FIRST + 19, \
919 GPR_FIRST + 20, GPR_FIRST + 21, GPR_FIRST + 22, GPR_FIRST + 23, \
920 GPR_FIRST + 24, GPR_FIRST + 25, GPR_FIRST + 26, GPR_FIRST + 27, \
921 GPR_FIRST + 48, GPR_FIRST + 49, GPR_FIRST + 50, GPR_FIRST + 51, \
922 GPR_FIRST + 52, GPR_FIRST + 53, GPR_FIRST + 54, GPR_FIRST + 55, \
923 GPR_FIRST + 56, GPR_FIRST + 57, GPR_FIRST + 58, GPR_FIRST + 59, \
924 GPR_FIRST + 60, GPR_FIRST + 61, GPR_FIRST + 62, GPR_FIRST + 63, \
925 GPR_FIRST + 16, GPR_FIRST + 17, \
926 \
927 FPR_FIRST + 16, FPR_FIRST + 17, FPR_FIRST + 18, FPR_FIRST + 19, \
928 FPR_FIRST + 20, FPR_FIRST + 21, FPR_FIRST + 22, FPR_FIRST + 23, \
929 FPR_FIRST + 24, FPR_FIRST + 25, FPR_FIRST + 26, FPR_FIRST + 27, \
930 FPR_FIRST + 28, FPR_FIRST + 29, FPR_FIRST + 30, FPR_FIRST + 31, \
931 FPR_FIRST + 48, FPR_FIRST + 49, FPR_FIRST + 50, FPR_FIRST + 51, \
932 FPR_FIRST + 52, FPR_FIRST + 53, FPR_FIRST + 54, FPR_FIRST + 55, \
933 FPR_FIRST + 56, FPR_FIRST + 57, FPR_FIRST + 58, FPR_FIRST + 59, \
934 FPR_FIRST + 60, FPR_FIRST + 61, FPR_FIRST + 62, FPR_FIRST + 63, \
935 \
936 /* special or fixed registers */ \
937 GPR_FIRST + 0, GPR_FIRST + 1, GPR_FIRST + 2, GPR_FIRST + 3, \
938 GPR_FIRST + 28, GPR_FIRST + 29, GPR_FIRST + 30, GPR_FIRST + 31, \
939 ACC_FIRST + 0, ACC_FIRST + 1, ACC_FIRST + 2, ACC_FIRST + 3, \
940 ACC_FIRST + 4, ACC_FIRST + 5, ACC_FIRST + 6, ACC_FIRST + 7, \
941 ACC_FIRST + 8, ACC_FIRST + 9, ACC_FIRST + 10, ACC_FIRST + 11, \
942 ACCG_FIRST + 0, ACCG_FIRST + 1, ACCG_FIRST + 2, ACCG_FIRST + 3, \
943 ACCG_FIRST + 4, ACCG_FIRST + 5, ACCG_FIRST + 6, ACCG_FIRST + 7, \
944 ACCG_FIRST + 8, ACCG_FIRST + 9, ACCG_FIRST + 10, ACCG_FIRST + 11, \
945 AP_FIRST, LR_REGNO, LCR_REGNO, \
946 IACC_FIRST + 0, IACC_FIRST + 1 \
947 }
948
949
950 /* How Values Fit in Registers. */
951
952 /* A C expression for the number of consecutive hard registers, starting at
953 register number REGNO, required to hold a value of mode MODE.
954
955 On a machine where all registers are exactly one word, a suitable definition
956 of this macro is
957
958 #define HARD_REGNO_NREGS(REGNO, MODE) \
959 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) \
960 / UNITS_PER_WORD)) */
961
962 /* On the FRV, make the CC modes take 3 words in the integer registers, so that
963 we can build the appropriate instructions to properly reload the values. */
964 #define HARD_REGNO_NREGS(REGNO, MODE) frv_hard_regno_nregs (REGNO, MODE)
965
966 /* A C expression that is nonzero if it is permissible to store a value of mode
967 MODE in hard register number REGNO (or in several registers starting with
968 that one). For a machine where all registers are equivalent, a suitable
969 definition is
970
971 #define HARD_REGNO_MODE_OK(REGNO, MODE) 1
972
973 It is not necessary for this macro to check for the numbers of fixed
974 registers, because the allocation mechanism considers them to be always
975 occupied.
976
977 On some machines, double-precision values must be kept in even/odd register
978 pairs. The way to implement that is to define this macro to reject odd
979 register numbers for such modes.
980
981 The minimum requirement for a mode to be OK in a register is that the
982 `movMODE' instruction pattern support moves between the register and any
983 other hard register for which the mode is OK; and that moving a value into
984 the register and back out not alter it.
985
986 Since the same instruction used to move `SImode' will work for all narrower
987 integer modes, it is not necessary on any machine for `HARD_REGNO_MODE_OK'
988 to distinguish between these modes, provided you define patterns `movhi',
989 etc., to take advantage of this. This is useful because of the interaction
990 between `HARD_REGNO_MODE_OK' and `MODES_TIEABLE_P'; it is very desirable for
991 all integer modes to be tieable.
992
993 Many machines have special registers for floating point arithmetic. Often
994 people assume that floating point machine modes are allowed only in floating
995 point registers. This is not true. Any registers that can hold integers
996 can safely *hold* a floating point machine mode, whether or not floating
997 arithmetic can be done on it in those registers. Integer move instructions
998 can be used to move the values.
999
1000 On some machines, though, the converse is true: fixed-point machine modes
1001 may not go in floating registers. This is true if the floating registers
1002 normalize any value stored in them, because storing a non-floating value
1003 there would garble it. In this case, `HARD_REGNO_MODE_OK' should reject
1004 fixed-point machine modes in floating registers. But if the floating
1005 registers do not automatically normalize, if you can store any bit pattern
1006 in one and retrieve it unchanged without a trap, then any machine mode may
1007 go in a floating register, so you can define this macro to say so.
1008
1009 The primary significance of special floating registers is rather that they
1010 are the registers acceptable in floating point arithmetic instructions.
1011 However, this is of no concern to `HARD_REGNO_MODE_OK'. You handle it by
1012 writing the proper constraints for those instructions.
1013
1014 On some machines, the floating registers are especially slow to access, so
1015 that it is better to store a value in a stack frame than in such a register
1016 if floating point arithmetic is not being done. As long as the floating
1017 registers are not in class `GENERAL_REGS', they will not be used unless some
1018 pattern's constraint asks for one. */
1019 #define HARD_REGNO_MODE_OK(REGNO, MODE) frv_hard_regno_mode_ok (REGNO, MODE)
1020
1021 /* A C expression that is nonzero if it is desirable to choose register
1022 allocation so as to avoid move instructions between a value of mode MODE1
1023 and a value of mode MODE2.
1024
1025 If `HARD_REGNO_MODE_OK (R, MODE1)' and `HARD_REGNO_MODE_OK (R, MODE2)' are
1026 ever different for any R, then `MODES_TIEABLE_P (MODE1, MODE2)' must be
1027 zero. */
1028 #define MODES_TIEABLE_P(MODE1, MODE2) (MODE1 == MODE2)
1029
1030 /* Define this macro if the compiler should avoid copies to/from CCmode
1031 registers. You should only define this macro if support fo copying to/from
1032 CCmode is incomplete. */
1033 #define AVOID_CCMODE_COPIES
1034
1035
1036 /* Register Classes. */
1037
1038 /* An enumeral type that must be defined with all the register class names as
1039 enumeral values. `NO_REGS' must be first. `ALL_REGS' must be the last
1040 register class, followed by one more enumeral value, `LIM_REG_CLASSES',
1041 which is not a register class but rather tells how many classes there are.
1042
1043 Each register class has a number, which is the value of casting the class
1044 name to type `int'. The number serves as an index in many of the tables
1045 described below. */
1046 enum reg_class
1047 {
1048 NO_REGS,
1049 ICC_REGS,
1050 FCC_REGS,
1051 CC_REGS,
1052 ICR_REGS,
1053 FCR_REGS,
1054 CR_REGS,
1055 LCR_REG,
1056 LR_REG,
1057 GR8_REGS,
1058 GR9_REGS,
1059 GR89_REGS,
1060 FDPIC_REGS,
1061 FDPIC_FPTR_REGS,
1062 FDPIC_CALL_REGS,
1063 SPR_REGS,
1064 QUAD_ACC_REGS,
1065 EVEN_ACC_REGS,
1066 ACC_REGS,
1067 ACCG_REGS,
1068 QUAD_FPR_REGS,
1069 FEVEN_REGS,
1070 FPR_REGS,
1071 QUAD_REGS,
1072 EVEN_REGS,
1073 GPR_REGS,
1074 ALL_REGS,
1075 LIM_REG_CLASSES
1076 };
1077
1078 #define GENERAL_REGS GPR_REGS
1079
1080 /* The number of distinct register classes, defined as follows:
1081
1082 #define N_REG_CLASSES (int) LIM_REG_CLASSES */
1083 #define N_REG_CLASSES ((int) LIM_REG_CLASSES)
1084
1085 /* An initializer containing the names of the register classes as C string
1086 constants. These names are used in writing some of the debugging dumps. */
1087 #define REG_CLASS_NAMES { \
1088 "NO_REGS", \
1089 "ICC_REGS", \
1090 "FCC_REGS", \
1091 "CC_REGS", \
1092 "ICR_REGS", \
1093 "FCR_REGS", \
1094 "CR_REGS", \
1095 "LCR_REG", \
1096 "LR_REG", \
1097 "GR8_REGS", \
1098 "GR9_REGS", \
1099 "GR89_REGS", \
1100 "FDPIC_REGS", \
1101 "FDPIC_FPTR_REGS", \
1102 "FDPIC_CALL_REGS", \
1103 "SPR_REGS", \
1104 "QUAD_ACC_REGS", \
1105 "EVEN_ACC_REGS", \
1106 "ACC_REGS", \
1107 "ACCG_REGS", \
1108 "QUAD_FPR_REGS", \
1109 "FEVEN_REGS", \
1110 "FPR_REGS", \
1111 "QUAD_REGS", \
1112 "EVEN_REGS", \
1113 "GPR_REGS", \
1114 "ALL_REGS" \
1115 }
1116
1117 /* An initializer containing the contents of the register classes, as integers
1118 which are bit masks. The Nth integer specifies the contents of class N.
1119 The way the integer MASK is interpreted is that register R is in the class
1120 if `MASK & (1 << R)' is 1.
1121
1122 When the machine has more than 32 registers, an integer does not suffice.
1123 Then the integers are replaced by sub-initializers, braced groupings
1124 containing several integers. Each sub-initializer must be suitable as an
1125 initializer for the type `HARD_REG_SET' which is defined in
1126 `hard-reg-set.h'. */
1127 #define REG_CLASS_CONTENTS \
1128 { /* gr0-gr31 gr32-gr63 fr0-fr31 fr32-fr-63 cc/ccr/acc ap/spr */ \
1129 { 0x00000000,0x00000000,0x00000000,0x00000000,0x00000000,0x0}, /* NO_REGS */\
1130 { 0x00000000,0x00000000,0x00000000,0x00000000,0x000000f0,0x0}, /* ICC_REGS */\
1131 { 0x00000000,0x00000000,0x00000000,0x00000000,0x0000000f,0x0}, /* FCC_REGS */\
1132 { 0x00000000,0x00000000,0x00000000,0x00000000,0x000000ff,0x0}, /* CC_REGS */\
1133 { 0x00000000,0x00000000,0x00000000,0x00000000,0x0000f000,0x0}, /* ICR_REGS */\
1134 { 0x00000000,0x00000000,0x00000000,0x00000000,0x00000f00,0x0}, /* FCR_REGS */\
1135 { 0x00000000,0x00000000,0x00000000,0x00000000,0x0000ff00,0x0}, /* CR_REGS */\
1136 { 0x00000000,0x00000000,0x00000000,0x00000000,0x00000000,0x400}, /* LCR_REGS */\
1137 { 0x00000000,0x00000000,0x00000000,0x00000000,0x00000000,0x200}, /* LR_REGS */\
1138 { 0x00000100,0x00000000,0x00000000,0x00000000,0x00000000,0x0}, /* GR8_REGS */\
1139 { 0x00000200,0x00000000,0x00000000,0x00000000,0x00000000,0x0}, /* GR9_REGS */\
1140 { 0x00000300,0x00000000,0x00000000,0x00000000,0x00000000,0x0}, /* GR89_REGS */\
1141 { 0x00008000,0x00000000,0x00000000,0x00000000,0x00000000,0x0}, /* FDPIC_REGS */\
1142 { 0x00004000,0x00000000,0x00000000,0x00000000,0x00000000,0x0}, /* FDPIC_FPTR_REGS */\
1143 { 0x0000c000,0x00000000,0x00000000,0x00000000,0x00000000,0x0}, /* FDPIC_CALL_REGS */\
1144 { 0x00000000,0x00000000,0x00000000,0x00000000,0x00000000,0x1e00}, /* SPR_REGS */\
1145 { 0x00000000,0x00000000,0x00000000,0x00000000,0x0fff0000,0x0}, /* QUAD_ACC */\
1146 { 0x00000000,0x00000000,0x00000000,0x00000000,0x0fff0000,0x0}, /* EVEN_ACC */\
1147 { 0x00000000,0x00000000,0x00000000,0x00000000,0x0fff0000,0x0}, /* ACC_REGS */\
1148 { 0x00000000,0x00000000,0x00000000,0x00000000,0xf0000000,0xff}, /* ACCG_REGS*/\
1149 { 0x00000000,0x00000000,0xffffffff,0xffffffff,0x00000000,0x0}, /* QUAD_FPR */\
1150 { 0x00000000,0x00000000,0xffffffff,0xffffffff,0x00000000,0x0}, /* FEVEN_REG*/\
1151 { 0x00000000,0x00000000,0xffffffff,0xffffffff,0x00000000,0x0}, /* FPR_REGS */\
1152 { 0x0ffffffc,0xffffffff,0x00000000,0x00000000,0x00000000,0x0}, /* QUAD_REGS*/\
1153 { 0xfffffffc,0xffffffff,0x00000000,0x00000000,0x00000000,0x0}, /* EVEN_REGS*/\
1154 { 0xffffffff,0xffffffff,0x00000000,0x00000000,0x00000000,0x100}, /* GPR_REGS */\
1155 { 0xffffffff,0xffffffff,0xffffffff,0xffffffff,0xffffffff,0x1fff}, /* ALL_REGS */\
1156 }
1157
1158 /* The following macro defines cover classes for Integrated Register
1159 Allocator. Cover classes is a set of non-intersected register
1160 classes covering all hard registers used for register allocation
1161 purpose. Any move between two registers of a cover class should be
1162 cheaper than load or store of the registers. The macro value is
1163 array of register classes with LIM_REG_CLASSES used as the end
1164 marker. */
1165
1166 #define IRA_COVER_CLASSES \
1167 { \
1168 GPR_REGS, FPR_REGS, ACC_REGS, ICR_REGS, FCR_REGS, ICC_REGS, FCC_REGS, \
1169 ACCG_REGS, SPR_REGS, \
1170 LIM_REG_CLASSES \
1171 }
1172
1173 /* A C expression whose value is a register class containing hard register
1174 REGNO. In general there is more than one such class; choose a class which
1175 is "minimal", meaning that no smaller class also contains the register. */
1176
1177 extern enum reg_class regno_reg_class[];
1178 #define REGNO_REG_CLASS(REGNO) regno_reg_class [REGNO]
1179
1180 /* A macro whose definition is the name of the class to which a valid base
1181 register must belong. A base register is one used in an address which is
1182 the register value plus a displacement. */
1183 #define BASE_REG_CLASS GPR_REGS
1184
1185 /* A macro whose definition is the name of the class to which a valid index
1186 register must belong. An index register is one used in an address where its
1187 value is either multiplied by a scale factor or added to another register
1188 (as well as added to a displacement). */
1189 #define INDEX_REG_CLASS GPR_REGS
1190
1191 /* A C expression which defines the machine-dependent operand constraint
1192 letters for register classes. If CHAR is such a letter, the value should be
1193 the register class corresponding to it. Otherwise, the value should be
1194 `NO_REGS'. The register letter `r', corresponding to class `GENERAL_REGS',
1195 will not be passed to this macro; you do not need to handle it.
1196
1197 The following letters are unavailable, due to being used as
1198 constraints:
1199 '0'..'9'
1200 '<', '>'
1201 'E', 'F', 'G', 'H'
1202 'I', 'J', 'K', 'L', 'M', 'N', 'O', 'P'
1203 'Q', 'R', 'S', 'T', 'U'
1204 'V', 'X'
1205 'g', 'i', 'm', 'n', 'o', 'p', 'r', 's' */
1206
1207 extern enum reg_class reg_class_from_letter[];
1208 #define REG_CLASS_FROM_LETTER(CHAR) reg_class_from_letter [(unsigned char)(CHAR)]
1209
1210 /* A C expression which is nonzero if register number NUM is suitable for use
1211 as a base register in operand addresses. It may be either a suitable hard
1212 register or a pseudo register that has been allocated such a hard register. */
1213 #define REGNO_OK_FOR_BASE_P(NUM) \
1214 ((NUM) < FIRST_PSEUDO_REGISTER \
1215 ? GPR_P (NUM) \
1216 : (reg_renumber [NUM] >= 0 && GPR_P (reg_renumber [NUM])))
1217
1218 /* A C expression which is nonzero if register number NUM is suitable for use
1219 as an index register in operand addresses. It may be either a suitable hard
1220 register or a pseudo register that has been allocated such a hard register.
1221
1222 The difference between an index register and a base register is that the
1223 index register may be scaled. If an address involves the sum of two
1224 registers, neither one of them scaled, then either one may be labeled the
1225 "base" and the other the "index"; but whichever labeling is used must fit
1226 the machine's constraints of which registers may serve in each capacity.
1227 The compiler will try both labelings, looking for one that is valid, and
1228 will reload one or both registers only if neither labeling works. */
1229 #define REGNO_OK_FOR_INDEX_P(NUM) \
1230 ((NUM) < FIRST_PSEUDO_REGISTER \
1231 ? GPR_P (NUM) \
1232 : (reg_renumber [NUM] >= 0 && GPR_P (reg_renumber [NUM])))
1233
1234 /* A C expression that places additional restrictions on the register class to
1235 use when it is necessary to copy value X into a register in class CLASS.
1236 The value is a register class; perhaps CLASS, or perhaps another, smaller
1237 class. On many machines, the following definition is safe:
1238
1239 #define PREFERRED_RELOAD_CLASS(X,CLASS) CLASS
1240
1241 Sometimes returning a more restrictive class makes better code. For
1242 example, on the 68000, when X is an integer constant that is in range for a
1243 `moveq' instruction, the value of this macro is always `DATA_REGS' as long
1244 as CLASS includes the data registers. Requiring a data register guarantees
1245 that a `moveq' will be used.
1246
1247 If X is a `const_double', by returning `NO_REGS' you can force X into a
1248 memory constant. This is useful on certain machines where immediate
1249 floating values cannot be loaded into certain kinds of registers.
1250
1251 This declaration must be present. */
1252 #define PREFERRED_RELOAD_CLASS(X, CLASS) CLASS
1253
1254 #define SECONDARY_INPUT_RELOAD_CLASS(CLASS, MODE, X) \
1255 frv_secondary_reload_class (CLASS, MODE, X)
1256
1257 #define SECONDARY_OUTPUT_RELOAD_CLASS(CLASS, MODE, X) \
1258 frv_secondary_reload_class (CLASS, MODE, X)
1259
1260 /* A C expression whose value is nonzero if pseudos that have been assigned to
1261 registers of class CLASS would likely be spilled because registers of CLASS
1262 are needed for spill registers.
1263
1264 The default value of this macro returns 1 if CLASS has exactly one register
1265 and zero otherwise. On most machines, this default should be used. Only
1266 define this macro to some other expression if pseudo allocated by
1267 `local-alloc.c' end up in memory because their hard registers were needed
1268 for spill registers. If this macro returns nonzero for those classes, those
1269 pseudos will only be allocated by `global.c', which knows how to reallocate
1270 the pseudo to another register. If there would not be another register
1271 available for reallocation, you should not change the definition of this
1272 macro since the only effect of such a definition would be to slow down
1273 register allocation. */
1274 #define CLASS_LIKELY_SPILLED_P(CLASS) frv_class_likely_spilled_p (CLASS)
1275
1276 /* A C expression for the maximum number of consecutive registers of
1277 class CLASS needed to hold a value of mode MODE.
1278
1279 This is closely related to the macro `HARD_REGNO_NREGS'. In fact, the value
1280 of the macro `CLASS_MAX_NREGS (CLASS, MODE)' should be the maximum value of
1281 `HARD_REGNO_NREGS (REGNO, MODE)' for all REGNO values in the class CLASS.
1282
1283 This macro helps control the handling of multiple-word values in
1284 the reload pass.
1285
1286 This declaration is required. */
1287 #define CLASS_MAX_NREGS(CLASS, MODE) frv_class_max_nregs (CLASS, MODE)
1288
1289 #define ZERO_P(x) (x == CONST0_RTX (GET_MODE (x)))
1290
1291 /* 6-bit signed immediate. */
1292 #define CONST_OK_FOR_I(VALUE) IN_RANGE_P(VALUE, -32, 31)
1293 /* 10-bit signed immediate. */
1294 #define CONST_OK_FOR_J(VALUE) IN_RANGE_P(VALUE, -512, 511)
1295 /* Unused */
1296 #define CONST_OK_FOR_K(VALUE) 0
1297 /* 16-bit signed immediate. */
1298 #define CONST_OK_FOR_L(VALUE) IN_RANGE_P(VALUE, -32768, 32767)
1299 /* 16-bit unsigned immediate. */
1300 #define CONST_OK_FOR_M(VALUE) IN_RANGE_P (VALUE, 0, 65535)
1301 /* 12-bit signed immediate that is negative. */
1302 #define CONST_OK_FOR_N(VALUE) IN_RANGE_P(VALUE, -2048, -1)
1303 /* Zero */
1304 #define CONST_OK_FOR_O(VALUE) ((VALUE) == 0)
1305 /* 12-bit signed immediate that is negative. */
1306 #define CONST_OK_FOR_P(VALUE) IN_RANGE_P(VALUE, 1, 2047)
1307
1308 /* A C expression that defines the machine-dependent operand constraint letters
1309 (`I', `J', `K', .. 'P') that specify particular ranges of integer values.
1310 If C is one of those letters, the expression should check that VALUE, an
1311 integer, is in the appropriate range and return 1 if so, 0 otherwise. If C
1312 is not one of those letters, the value should be 0 regardless of VALUE. */
1313 #define CONST_OK_FOR_LETTER_P(VALUE, C) \
1314 ( (C) == 'I' ? CONST_OK_FOR_I (VALUE) \
1315 : (C) == 'J' ? CONST_OK_FOR_J (VALUE) \
1316 : (C) == 'K' ? CONST_OK_FOR_K (VALUE) \
1317 : (C) == 'L' ? CONST_OK_FOR_L (VALUE) \
1318 : (C) == 'M' ? CONST_OK_FOR_M (VALUE) \
1319 : (C) == 'N' ? CONST_OK_FOR_N (VALUE) \
1320 : (C) == 'O' ? CONST_OK_FOR_O (VALUE) \
1321 : (C) == 'P' ? CONST_OK_FOR_P (VALUE) \
1322 : 0)
1323
1324
1325 /* A C expression that defines the machine-dependent operand constraint letters
1326 (`G', `H') that specify particular ranges of `const_double' values.
1327
1328 If C is one of those letters, the expression should check that VALUE, an RTX
1329 of code `const_double', is in the appropriate range and return 1 if so, 0
1330 otherwise. If C is not one of those letters, the value should be 0
1331 regardless of VALUE.
1332
1333 `const_double' is used for all floating-point constants and for `DImode'
1334 fixed-point constants. A given letter can accept either or both kinds of
1335 values. It can use `GET_MODE' to distinguish between these kinds. */
1336
1337 #define CONST_DOUBLE_OK_FOR_G(VALUE) \
1338 ((GET_MODE (VALUE) == VOIDmode \
1339 && CONST_DOUBLE_LOW (VALUE) == 0 \
1340 && CONST_DOUBLE_HIGH (VALUE) == 0) \
1341 || ((GET_MODE (VALUE) == SFmode \
1342 || GET_MODE (VALUE) == DFmode) \
1343 && (VALUE) == CONST0_RTX (GET_MODE (VALUE))))
1344
1345 #define CONST_DOUBLE_OK_FOR_H(VALUE) 0
1346
1347 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
1348 ( (C) == 'G' ? CONST_DOUBLE_OK_FOR_G (VALUE) \
1349 : (C) == 'H' ? CONST_DOUBLE_OK_FOR_H (VALUE) \
1350 : 0)
1351
1352 /* A C expression that defines the optional machine-dependent constraint
1353 letters (`Q', `R', `S', `T', `U') that can be used to segregate specific
1354 types of operands, usually memory references, for the target machine.
1355 Normally this macro will not be defined. If it is required for a particular
1356 target machine, it should return 1 if VALUE corresponds to the operand type
1357 represented by the constraint letter C. If C is not defined as an extra
1358 constraint, the value returned should be 0 regardless of VALUE.
1359
1360 For example, on the ROMP, load instructions cannot have their output in r0
1361 if the memory reference contains a symbolic address. Constraint letter `Q'
1362 is defined as representing a memory address that does *not* contain a
1363 symbolic address. An alternative is specified with a `Q' constraint on the
1364 input and `r' on the output. The next alternative specifies `m' on the
1365 input and a register class that does not include r0 on the output. */
1366
1367 /* 12-bit relocations. */
1368 #define EXTRA_CONSTRAINT_FOR_Q(VALUE) \
1369 (got12_operand (VALUE, GET_MODE (VALUE)))
1370
1371 /* Double word memory ops that take one instruction. */
1372 #define EXTRA_CONSTRAINT_FOR_R(VALUE) \
1373 (dbl_memory_one_insn_operand (VALUE, GET_MODE (VALUE)))
1374
1375 /* SYMBOL_REF */
1376 #define EXTRA_CONSTRAINT_FOR_S(VALUE) \
1377 (CONSTANT_P (VALUE) && call_operand (VALUE, VOIDmode))
1378
1379 /* Double word memory ops that take two instructions. */
1380 #define EXTRA_CONSTRAINT_FOR_T(VALUE) \
1381 (dbl_memory_two_insn_operand (VALUE, GET_MODE (VALUE)))
1382
1383 /* Memory operand for conditional execution. */
1384 #define EXTRA_CONSTRAINT_FOR_U(VALUE) \
1385 (condexec_memory_operand (VALUE, GET_MODE (VALUE)))
1386
1387 #define EXTRA_CONSTRAINT(VALUE, C) \
1388 ( (C) == 'Q' ? EXTRA_CONSTRAINT_FOR_Q (VALUE) \
1389 : (C) == 'R' ? EXTRA_CONSTRAINT_FOR_R (VALUE) \
1390 : (C) == 'S' ? EXTRA_CONSTRAINT_FOR_S (VALUE) \
1391 : (C) == 'T' ? EXTRA_CONSTRAINT_FOR_T (VALUE) \
1392 : (C) == 'U' ? EXTRA_CONSTRAINT_FOR_U (VALUE) \
1393 : 0)
1394
1395 #define EXTRA_MEMORY_CONSTRAINT(C,STR) \
1396 ((C) == 'U' || (C) == 'R' || (C) == 'T')
1397
1398 #define CONSTRAINT_LEN(C, STR) \
1399 ((C) == 'D' ? 3 : DEFAULT_CONSTRAINT_LEN ((C), (STR)))
1400
1401 #define REG_CLASS_FROM_CONSTRAINT(C, STR) \
1402 (((C) == 'D' && (STR)[1] == '8' && (STR)[2] == '9') ? GR89_REGS : \
1403 ((C) == 'D' && (STR)[1] == '0' && (STR)[2] == '9') ? GR9_REGS : \
1404 ((C) == 'D' && (STR)[1] == '0' && (STR)[2] == '8') ? GR8_REGS : \
1405 ((C) == 'D' && (STR)[1] == '1' && (STR)[2] == '4') ? FDPIC_FPTR_REGS : \
1406 ((C) == 'D' && (STR)[1] == '1' && (STR)[2] == '5') ? FDPIC_REGS : \
1407 REG_CLASS_FROM_LETTER ((C)))
1408
1409
1410 /* Basic Stack Layout. */
1411
1412 /* Structure to describe information about a saved range of registers */
1413
1414 typedef struct frv_stack_regs {
1415 const char * name; /* name of the register ranges */
1416 int first; /* first register in the range */
1417 int last; /* last register in the range */
1418 int size_1word; /* # of bytes to be stored via 1 word stores */
1419 int size_2words; /* # of bytes to be stored via 2 word stores */
1420 unsigned char field_p; /* true if the registers are a single SPR */
1421 unsigned char dword_p; /* true if we can do dword stores */
1422 unsigned char special_p; /* true if the regs have a fixed save loc. */
1423 } frv_stack_regs_t;
1424
1425 /* Register ranges to look into saving. */
1426 #define STACK_REGS_GPR 0 /* Gprs (normally gr16..gr31, gr48..gr63) */
1427 #define STACK_REGS_FPR 1 /* Fprs (normally fr16..fr31, fr48..fr63) */
1428 #define STACK_REGS_LR 2 /* LR register */
1429 #define STACK_REGS_CC 3 /* CCrs (normally not saved) */
1430 #define STACK_REGS_LCR 5 /* lcr register */
1431 #define STACK_REGS_STDARG 6 /* stdarg registers */
1432 #define STACK_REGS_STRUCT 7 /* structure return (gr3) */
1433 #define STACK_REGS_FP 8 /* FP register */
1434 #define STACK_REGS_MAX 9 /* # of register ranges */
1435
1436 /* Values for save_p field. */
1437 #define REG_SAVE_NO_SAVE 0 /* register not saved */
1438 #define REG_SAVE_1WORD 1 /* save the register */
1439 #define REG_SAVE_2WORDS 2 /* save register and register+1 */
1440
1441 /* Structure used to define the frv stack. */
1442
1443 typedef struct frv_stack {
1444 int total_size; /* total bytes allocated for stack */
1445 int vars_size; /* variable save area size */
1446 int parameter_size; /* outgoing parameter size */
1447 int stdarg_size; /* size of regs needed to be saved for stdarg */
1448 int regs_size; /* size of the saved registers */
1449 int regs_size_1word; /* # of bytes to be stored via 1 word stores */
1450 int regs_size_2words; /* # of bytes to be stored via 2 word stores */
1451 int header_size; /* size of the old FP, struct ret., LR save */
1452 int pretend_size; /* size of pretend args */
1453 int vars_offset; /* offset to save local variables from new SP*/
1454 int regs_offset; /* offset to save registers from new SP */
1455 /* register range information */
1456 frv_stack_regs_t regs[STACK_REGS_MAX];
1457 /* offset to store each register */
1458 int reg_offset[FIRST_PSEUDO_REGISTER];
1459 /* whether to save register (& reg+1) */
1460 unsigned char save_p[FIRST_PSEUDO_REGISTER];
1461 } frv_stack_t;
1462
1463 /* Define this macro if pushing a word onto the stack moves the stack pointer
1464 to a smaller address. */
1465 #define STACK_GROWS_DOWNWARD 1
1466
1467 /* Define this macro to nonzero if the addresses of local variable slots
1468 are at negative offsets from the frame pointer. */
1469 #define FRAME_GROWS_DOWNWARD 1
1470
1471 /* Offset from the frame pointer to the first local variable slot to be
1472 allocated.
1473
1474 If `FRAME_GROWS_DOWNWARD', find the next slot's offset by subtracting the
1475 first slot's length from `STARTING_FRAME_OFFSET'. Otherwise, it is found by
1476 adding the length of the first slot to the value `STARTING_FRAME_OFFSET'. */
1477 #define STARTING_FRAME_OFFSET 0
1478
1479 /* Offset from the stack pointer register to the first location at which
1480 outgoing arguments are placed. If not specified, the default value of zero
1481 is used. This is the proper value for most machines.
1482
1483 If `ARGS_GROW_DOWNWARD', this is the offset to the location above the first
1484 location at which outgoing arguments are placed. */
1485 #define STACK_POINTER_OFFSET 0
1486
1487 /* Offset from the argument pointer register to the first argument's address.
1488 On some machines it may depend on the data type of the function.
1489
1490 If `ARGS_GROW_DOWNWARD', this is the offset to the location above the first
1491 argument's address. */
1492 #define FIRST_PARM_OFFSET(FUNDECL) 0
1493
1494 /* A C expression whose value is RTL representing the address in a stack frame
1495 where the pointer to the caller's frame is stored. Assume that FRAMEADDR is
1496 an RTL expression for the address of the stack frame itself.
1497
1498 If you don't define this macro, the default is to return the value of
1499 FRAMEADDR--that is, the stack frame address is also the address of the stack
1500 word that points to the previous frame. */
1501 #define DYNAMIC_CHAIN_ADDRESS(FRAMEADDR) frv_dynamic_chain_address (FRAMEADDR)
1502
1503 /* A C expression whose value is RTL representing the value of the return
1504 address for the frame COUNT steps up from the current frame, after the
1505 prologue. FRAMEADDR is the frame pointer of the COUNT frame, or the frame
1506 pointer of the COUNT - 1 frame if `RETURN_ADDR_IN_PREVIOUS_FRAME' is
1507 defined.
1508
1509 The value of the expression must always be the correct address when COUNT is
1510 zero, but may be `NULL_RTX' if there is not way to determine the return
1511 address of other frames. */
1512 #define RETURN_ADDR_RTX(COUNT, FRAMEADDR) frv_return_addr_rtx (COUNT, FRAMEADDR)
1513
1514 #define RETURN_POINTER_REGNUM LR_REGNO
1515
1516 /* A C expression whose value is RTL representing the location of the incoming
1517 return address at the beginning of any function, before the prologue. This
1518 RTL is either a `REG', indicating that the return value is saved in `REG',
1519 or a `MEM' representing a location in the stack.
1520
1521 You only need to define this macro if you want to support call frame
1522 debugging information like that provided by DWARF 2. */
1523 #define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (SImode, RETURN_POINTER_REGNUM)
1524
1525
1526 /* Register That Address the Stack Frame. */
1527
1528 /* The register number of the stack pointer register, which must also be a
1529 fixed register according to `FIXED_REGISTERS'. On most machines, the
1530 hardware determines which register this is. */
1531 #define STACK_POINTER_REGNUM (GPR_FIRST + 1)
1532
1533 /* The register number of the frame pointer register, which is used to access
1534 automatic variables in the stack frame. On some machines, the hardware
1535 determines which register this is. On other machines, you can choose any
1536 register you wish for this purpose. */
1537 #define FRAME_POINTER_REGNUM (GPR_FIRST + 2)
1538
1539 /* The register number of the arg pointer register, which is used to access the
1540 function's argument list. On some machines, this is the same as the frame
1541 pointer register. On some machines, the hardware determines which register
1542 this is. On other machines, you can choose any register you wish for this
1543 purpose. If this is not the same register as the frame pointer register,
1544 then you must mark it as a fixed register according to `FIXED_REGISTERS', or
1545 arrange to be able to eliminate it. */
1546
1547 /* On frv this is a fake register that is eliminated in
1548 terms of either the frame pointer or stack pointer. */
1549 #define ARG_POINTER_REGNUM AP_FIRST
1550
1551 /* Register numbers used for passing a function's static chain pointer. If
1552 register windows are used, the register number as seen by the called
1553 function is `STATIC_CHAIN_INCOMING_REGNUM', while the register number as
1554 seen by the calling function is `STATIC_CHAIN_REGNUM'. If these registers
1555 are the same, `STATIC_CHAIN_INCOMING_REGNUM' need not be defined.
1556
1557 The static chain register need not be a fixed register.
1558
1559 If the static chain is passed in memory, these macros should not be defined;
1560 instead, the next two macros should be defined. */
1561 #define STATIC_CHAIN_REGNUM (GPR_FIRST + 7)
1562 #define STATIC_CHAIN_INCOMING_REGNUM (GPR_FIRST + 7)
1563
1564
1565 /* Eliminating the Frame Pointer and the Arg Pointer. */
1566
1567 /* A C expression which is nonzero if a function must have and use a frame
1568 pointer. This expression is evaluated in the reload pass. If its value is
1569 nonzero the function will have a frame pointer.
1570
1571 The expression can in principle examine the current function and decide
1572 according to the facts, but on most machines the constant 0 or the constant
1573 1 suffices. Use 0 when the machine allows code to be generated with no
1574 frame pointer, and doing so saves some time or space. Use 1 when there is
1575 no possible advantage to avoiding a frame pointer.
1576
1577 In certain cases, the compiler does not know how to produce valid code
1578 without a frame pointer. The compiler recognizes those cases and
1579 automatically gives the function a frame pointer regardless of what
1580 `FRAME_POINTER_REQUIRED' says. You don't need to worry about them.
1581
1582 In a function that does not require a frame pointer, the frame pointer
1583 register can be allocated for ordinary usage, unless you mark it as a fixed
1584 register. See `FIXED_REGISTERS' for more information. */
1585 #define FRAME_POINTER_REQUIRED frv_frame_pointer_required ()
1586
1587 /* If defined, this macro specifies a table of register pairs used to eliminate
1588 unneeded registers that point into the stack frame. If it is not defined,
1589 the only elimination attempted by the compiler is to replace references to
1590 the frame pointer with references to the stack pointer.
1591
1592 The definition of this macro is a list of structure initializations, each of
1593 which specifies an original and replacement register.
1594
1595 On some machines, the position of the argument pointer is not known until
1596 the compilation is completed. In such a case, a separate hard register must
1597 be used for the argument pointer. This register can be eliminated by
1598 replacing it with either the frame pointer or the argument pointer,
1599 depending on whether or not the frame pointer has been eliminated.
1600
1601 In this case, you might specify:
1602 #define ELIMINABLE_REGS \
1603 {{ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1604 {ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \
1605 {FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}}
1606
1607 Note that the elimination of the argument pointer with the stack pointer is
1608 specified first since that is the preferred elimination. */
1609
1610 #define ELIMINABLE_REGS \
1611 { \
1612 {ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1613 {ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \
1614 {FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM} \
1615 }
1616
1617 /* A C expression that returns nonzero if the compiler is allowed to try to
1618 replace register number FROM with register number TO. This macro need only
1619 be defined if `ELIMINABLE_REGS' is defined, and will usually be the constant
1620 1, since most of the cases preventing register elimination are things that
1621 the compiler already knows about. */
1622
1623 #define CAN_ELIMINATE(FROM, TO) \
1624 ((FROM) == ARG_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM \
1625 ? ! frame_pointer_needed \
1626 : 1)
1627
1628 /* This macro is similar to `INITIAL_FRAME_POINTER_OFFSET'. It specifies the
1629 initial difference between the specified pair of registers. This macro must
1630 be defined if `ELIMINABLE_REGS' is defined. */
1631
1632 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1633 (OFFSET) = frv_initial_elimination_offset (FROM, TO)
1634
1635
1636 /* Passing Function Arguments on the Stack. */
1637
1638 /* If defined, the maximum amount of space required for outgoing arguments will
1639 be computed and placed into the variable
1640 `crtl->outgoing_args_size'. No space will be pushed onto the
1641 stack for each call; instead, the function prologue should increase the
1642 stack frame size by this amount.
1643
1644 Defining both `PUSH_ROUNDING' and `ACCUMULATE_OUTGOING_ARGS' is not
1645 proper. */
1646 #define ACCUMULATE_OUTGOING_ARGS 1
1647
1648 /* A C expression that should indicate the number of bytes of its own arguments
1649 that a function pops on returning, or 0 if the function pops no arguments
1650 and the caller must therefore pop them all after the function returns.
1651
1652 FUNDECL is a C variable whose value is a tree node that describes the
1653 function in question. Normally it is a node of type `FUNCTION_DECL' that
1654 describes the declaration of the function. From this it is possible to
1655 obtain the DECL_ATTRIBUTES of the function.
1656
1657 FUNTYPE is a C variable whose value is a tree node that describes the
1658 function in question. Normally it is a node of type `FUNCTION_TYPE' that
1659 describes the data type of the function. From this it is possible to obtain
1660 the data types of the value and arguments (if known).
1661
1662 When a call to a library function is being considered, FUNTYPE will contain
1663 an identifier node for the library function. Thus, if you need to
1664 distinguish among various library functions, you can do so by their names.
1665 Note that "library function" in this context means a function used to
1666 perform arithmetic, whose name is known specially in the compiler and was
1667 not mentioned in the C code being compiled.
1668
1669 STACK-SIZE is the number of bytes of arguments passed on the stack. If a
1670 variable number of bytes is passed, it is zero, and argument popping will
1671 always be the responsibility of the calling function.
1672
1673 On the VAX, all functions always pop their arguments, so the definition of
1674 this macro is STACK-SIZE. On the 68000, using the standard calling
1675 convention, no functions pop their arguments, so the value of the macro is
1676 always 0 in this case. But an alternative calling convention is available
1677 in which functions that take a fixed number of arguments pop them but other
1678 functions (such as `printf') pop nothing (the caller pops all). When this
1679 convention is in use, FUNTYPE is examined to determine whether a function
1680 takes a fixed number of arguments. */
1681 #define RETURN_POPS_ARGS(FUNDECL, FUNTYPE, STACK_SIZE) 0
1682
1683
1684 /* The number of register assigned to holding function arguments. */
1685
1686 #define FRV_NUM_ARG_REGS 6
1687
1688 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
1689 frv_function_arg (&CUM, MODE, TYPE, NAMED, FALSE)
1690
1691 /* Define this macro if the target machine has "register windows", so that the
1692 register in which a function sees an arguments is not necessarily the same
1693 as the one in which the caller passed the argument.
1694
1695 For such machines, `FUNCTION_ARG' computes the register in which the caller
1696 passes the value, and `FUNCTION_INCOMING_ARG' should be defined in a similar
1697 fashion to tell the function being called where the arguments will arrive.
1698
1699 If `FUNCTION_INCOMING_ARG' is not defined, `FUNCTION_ARG' serves both
1700 purposes. */
1701
1702 #define FUNCTION_INCOMING_ARG(CUM, MODE, TYPE, NAMED) \
1703 frv_function_arg (&CUM, MODE, TYPE, NAMED, TRUE)
1704
1705 /* A C type for declaring a variable that is used as the first argument of
1706 `FUNCTION_ARG' and other related values. For some target machines, the type
1707 `int' suffices and can hold the number of bytes of argument so far.
1708
1709 There is no need to record in `CUMULATIVE_ARGS' anything about the arguments
1710 that have been passed on the stack. The compiler has other variables to
1711 keep track of that. For target machines on which all arguments are passed
1712 on the stack, there is no need to store anything in `CUMULATIVE_ARGS';
1713 however, the data structure must exist and should not be empty, so use
1714 `int'. */
1715 #define CUMULATIVE_ARGS int
1716
1717 /* A C statement (sans semicolon) for initializing the variable CUM for the
1718 state at the beginning of the argument list. The variable has type
1719 `CUMULATIVE_ARGS'. The value of FNTYPE is the tree node for the data type
1720 of the function which will receive the args, or 0 if the args are to a
1721 compiler support library function. The value of INDIRECT is nonzero when
1722 processing an indirect call, for example a call through a function pointer.
1723 The value of INDIRECT is zero for a call to an explicitly named function, a
1724 library function call, or when `INIT_CUMULATIVE_ARGS' is used to find
1725 arguments for the function being compiled.
1726
1727 When processing a call to a compiler support library function, LIBNAME
1728 identifies which one. It is a `symbol_ref' rtx which contains the name of
1729 the function, as a string. LIBNAME is 0 when an ordinary C function call is
1730 being processed. Thus, each time this macro is called, either LIBNAME or
1731 FNTYPE is nonzero, but never both of them at once. */
1732
1733 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, FNDECL, N_NAMED_ARGS) \
1734 frv_init_cumulative_args (&CUM, FNTYPE, LIBNAME, FNDECL, FALSE)
1735
1736 /* Like `INIT_CUMULATIVE_ARGS' but overrides it for the purposes of finding the
1737 arguments for the function being compiled. If this macro is undefined,
1738 `INIT_CUMULATIVE_ARGS' is used instead.
1739
1740 The value passed for LIBNAME is always 0, since library routines with
1741 special calling conventions are never compiled with GCC. The argument
1742 LIBNAME exists for symmetry with `INIT_CUMULATIVE_ARGS'. */
1743
1744 #define INIT_CUMULATIVE_INCOMING_ARGS(CUM, FNTYPE, LIBNAME) \
1745 frv_init_cumulative_args (&CUM, FNTYPE, LIBNAME, NULL, TRUE)
1746
1747 /* A C statement (sans semicolon) to update the summarizer variable CUM to
1748 advance past an argument in the argument list. The values MODE, TYPE and
1749 NAMED describe that argument. Once this is done, the variable CUM is
1750 suitable for analyzing the *following* argument with `FUNCTION_ARG', etc.
1751
1752 This macro need not do anything if the argument in question was passed on
1753 the stack. The compiler knows how to track the amount of stack space used
1754 for arguments without any special help. */
1755 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
1756 frv_function_arg_advance (&CUM, MODE, TYPE, NAMED)
1757
1758 /* If defined, a C expression that gives the alignment boundary, in bits, of an
1759 argument with the specified mode and type. If it is not defined,
1760 `PARM_BOUNDARY' is used for all arguments. */
1761
1762 #define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
1763 frv_function_arg_boundary (MODE, TYPE)
1764
1765 /* A C expression that is nonzero if REGNO is the number of a hard register in
1766 which function arguments are sometimes passed. This does *not* include
1767 implicit arguments such as the static chain and the structure-value address.
1768 On many machines, no registers can be used for this purpose since all
1769 function arguments are pushed on the stack. */
1770 #define FUNCTION_ARG_REGNO_P(REGNO) \
1771 ((REGNO) >= FIRST_ARG_REGNUM && ((REGNO) <= LAST_ARG_REGNUM))
1772
1773
1774 /* How Scalar Function Values are Returned. */
1775
1776 /* The number of the hard register that is used to return a scalar value from a
1777 function call. */
1778 #define RETURN_VALUE_REGNUM (GPR_FIRST + 8)
1779
1780 /* A C expression to create an RTX representing the place where a function
1781 returns a value of data type VALTYPE. VALTYPE is a tree node representing a
1782 data type. Write `TYPE_MODE (VALTYPE)' to get the machine mode used to
1783 represent that type. On many machines, only the mode is relevant.
1784 (Actually, on most machines, scalar values are returned in the same place
1785 regardless of mode).
1786
1787 If `TARGET_PROMOTE_FUNCTION_RETURN' is defined to return true, you
1788 must apply the same promotion rules specified in `PROMOTE_MODE' if
1789 VALTYPE is a scalar type.
1790
1791 If the precise function being called is known, FUNC is a tree node
1792 (`FUNCTION_DECL') for it; otherwise, FUNC is a null pointer. This makes it
1793 possible to use a different value-returning convention for specific
1794 functions when all their calls are known.
1795
1796 `FUNCTION_VALUE' is not used for return vales with aggregate data types,
1797 because these are returned in another way. See
1798 `TARGET_STRUCT_VALUE_RTX' and related macros, below. */
1799 #define FUNCTION_VALUE(VALTYPE, FUNC) \
1800 gen_rtx_REG (TYPE_MODE (VALTYPE), RETURN_VALUE_REGNUM)
1801
1802 /* A C expression to create an RTX representing the place where a library
1803 function returns a value of mode MODE.
1804
1805 Note that "library function" in this context means a compiler support
1806 routine, used to perform arithmetic, whose name is known specially by the
1807 compiler and was not mentioned in the C code being compiled.
1808
1809 The definition of `LIBRARY_VALUE' need not be concerned aggregate data
1810 types, because none of the library functions returns such types. */
1811 #define LIBCALL_VALUE(MODE) gen_rtx_REG (MODE, RETURN_VALUE_REGNUM)
1812
1813 /* A C expression that is nonzero if REGNO is the number of a hard register in
1814 which the values of called function may come back.
1815
1816 A register whose use for returning values is limited to serving as the
1817 second of a pair (for a value of type `double', say) need not be recognized
1818 by this macro. So for most machines, this definition suffices:
1819
1820 #define FUNCTION_VALUE_REGNO_P(N) ((N) == RETURN)
1821
1822 If the machine has register windows, so that the caller and the called
1823 function use different registers for the return value, this macro should
1824 recognize only the caller's register numbers. */
1825 #define FUNCTION_VALUE_REGNO_P(REGNO) ((REGNO) == RETURN_VALUE_REGNUM)
1826
1827
1828 /* How Large Values are Returned. */
1829
1830 /* The number of the register that is used to pass the structure
1831 value address. */
1832 #define FRV_STRUCT_VALUE_REGNUM (GPR_FIRST + 3)
1833
1834
1835 /* Function Entry and Exit. */
1836
1837 /* Define this macro as a C expression that is nonzero if the return
1838 instruction or the function epilogue ignores the value of the stack pointer;
1839 in other words, if it is safe to delete an instruction to adjust the stack
1840 pointer before a return from the function.
1841
1842 Note that this macro's value is relevant only for functions for which frame
1843 pointers are maintained. It is never safe to delete a final stack
1844 adjustment in a function that has no frame pointer, and the compiler knows
1845 this regardless of `EXIT_IGNORE_STACK'. */
1846 #define EXIT_IGNORE_STACK 1
1847
1848 /* Generating Code for Profiling. */
1849
1850 /* A C statement or compound statement to output to FILE some assembler code to
1851 call the profiling subroutine `mcount'. Before calling, the assembler code
1852 must load the address of a counter variable into a register where `mcount'
1853 expects to find the address. The name of this variable is `LP' followed by
1854 the number LABELNO, so you would generate the name using `LP%d' in a
1855 `fprintf'.
1856
1857 The details of how the address should be passed to `mcount' are determined
1858 by your operating system environment, not by GCC. To figure them out,
1859 compile a small program for profiling using the system's installed C
1860 compiler and look at the assembler code that results.
1861
1862 This declaration must be present, but it can be an abort if profiling is
1863 not implemented. */
1864
1865 #define FUNCTION_PROFILER(FILE, LABELNO)
1866
1867 /* Trampolines for Nested Functions. */
1868
1869 /* A C expression for the size in bytes of the trampoline, as an integer. */
1870 #define TRAMPOLINE_SIZE frv_trampoline_size ()
1871
1872 /* Alignment required for trampolines, in bits.
1873
1874 If you don't define this macro, the value of `BIGGEST_ALIGNMENT' is used for
1875 aligning trampolines. */
1876 #define TRAMPOLINE_ALIGNMENT (TARGET_FDPIC ? 64 : 32)
1877
1878 /* A C statement to initialize the variable parts of a trampoline. ADDR is an
1879 RTX for the address of the trampoline; FNADDR is an RTX for the address of
1880 the nested function; STATIC_CHAIN is an RTX for the static chain value that
1881 should be passed to the function when it is called. */
1882 #define INITIALIZE_TRAMPOLINE(ADDR, FNADDR, STATIC_CHAIN) \
1883 frv_initialize_trampoline (ADDR, FNADDR, STATIC_CHAIN)
1884
1885 /* Define this macro if trampolines need a special subroutine to do their work.
1886 The macro should expand to a series of `asm' statements which will be
1887 compiled with GCC. They go in a library function named
1888 `__transfer_from_trampoline'.
1889
1890 If you need to avoid executing the ordinary prologue code of a compiled C
1891 function when you jump to the subroutine, you can do so by placing a special
1892 label of your own in the assembler code. Use one `asm' statement to
1893 generate an assembler label, and another to make the label global. Then
1894 trampolines can use that label to jump directly to your special assembler
1895 code. */
1896
1897 #ifdef __FRV_UNDERSCORE__
1898 #define TRAMPOLINE_TEMPLATE_NAME "___trampoline_template"
1899 #else
1900 #define TRAMPOLINE_TEMPLATE_NAME "__trampoline_template"
1901 #endif
1902
1903 #define Twrite _write
1904
1905 #if ! __FRV_FDPIC__
1906 #define TRANSFER_FROM_TRAMPOLINE \
1907 extern int Twrite (int, const void *, unsigned); \
1908 \
1909 void \
1910 __trampoline_setup (short * addr, int size, int fnaddr, int sc) \
1911 { \
1912 extern short __trampoline_template[]; \
1913 short * to = addr; \
1914 short * from = &__trampoline_template[0]; \
1915 int i; \
1916 \
1917 if (size < 20) \
1918 { \
1919 Twrite (2, "__trampoline_setup bad size\n", \
1920 sizeof ("__trampoline_setup bad size\n") - 1); \
1921 exit (-1); \
1922 } \
1923 \
1924 to[0] = from[0]; \
1925 to[1] = (short)(fnaddr); \
1926 to[2] = from[2]; \
1927 to[3] = (short)(sc); \
1928 to[4] = from[4]; \
1929 to[5] = (short)(fnaddr >> 16); \
1930 to[6] = from[6]; \
1931 to[7] = (short)(sc >> 16); \
1932 to[8] = from[8]; \
1933 to[9] = from[9]; \
1934 \
1935 for (i = 0; i < 20; i++) \
1936 __asm__ volatile ("dcf @(%0,%1)\n\tici @(%0,%1)" :: "r" (to), "r" (i)); \
1937 } \
1938 \
1939 __asm__("\n" \
1940 "\t.globl " TRAMPOLINE_TEMPLATE_NAME "\n" \
1941 "\t.text\n" \
1942 TRAMPOLINE_TEMPLATE_NAME ":\n" \
1943 "\tsetlos #0, gr6\n" /* jump register */ \
1944 "\tsetlos #0, gr7\n" /* static chain */ \
1945 "\tsethi #0, gr6\n" \
1946 "\tsethi #0, gr7\n" \
1947 "\tjmpl @(gr0,gr6)\n");
1948 #else
1949 #define TRANSFER_FROM_TRAMPOLINE \
1950 extern int Twrite (int, const void *, unsigned); \
1951 \
1952 void \
1953 __trampoline_setup (addr, size, fnaddr, sc) \
1954 short * addr; \
1955 int size; \
1956 int fnaddr; \
1957 int sc; \
1958 { \
1959 extern short __trampoline_template[]; \
1960 short * from = &__trampoline_template[0]; \
1961 int i; \
1962 short **desc = (short **)addr; \
1963 short * to = addr + 4; \
1964 \
1965 if (size != 32) \
1966 { \
1967 Twrite (2, "__trampoline_setup bad size\n", \
1968 sizeof ("__trampoline_setup bad size\n") - 1); \
1969 exit (-1); \
1970 } \
1971 \
1972 /* Create a function descriptor with the address of the code below
1973 and NULL as the FDPIC value. We don't need the real GOT value
1974 here, since we don't use it, so we use NULL, that is just as
1975 good. */ \
1976 desc[0] = to; \
1977 desc[1] = NULL; \
1978 size -= 8; \
1979 \
1980 to[0] = from[0]; \
1981 to[1] = (short)(fnaddr); \
1982 to[2] = from[2]; \
1983 to[3] = (short)(sc); \
1984 to[4] = from[4]; \
1985 to[5] = (short)(fnaddr >> 16); \
1986 to[6] = from[6]; \
1987 to[7] = (short)(sc >> 16); \
1988 to[8] = from[8]; \
1989 to[9] = from[9]; \
1990 to[10] = from[10]; \
1991 to[11] = from[11]; \
1992 \
1993 for (i = 0; i < size; i++) \
1994 __asm__ volatile ("dcf @(%0,%1)\n\tici @(%0,%1)" :: "r" (to), "r" (i)); \
1995 } \
1996 \
1997 __asm__("\n" \
1998 "\t.globl " TRAMPOLINE_TEMPLATE_NAME "\n" \
1999 "\t.text\n" \
2000 TRAMPOLINE_TEMPLATE_NAME ":\n" \
2001 "\tsetlos #0, gr6\n" /* Jump register. */ \
2002 "\tsetlos #0, gr7\n" /* Static chain. */ \
2003 "\tsethi #0, gr6\n" \
2004 "\tsethi #0, gr7\n" \
2005 "\tldd @(gr6,gr0),gr14\n" \
2006 "\tjmpl @(gr14,gr0)\n" \
2007 );
2008 #endif
2009
2010
2011 /* Addressing Modes. */
2012
2013 /* A C expression that is 1 if the RTX X is a constant which is a valid
2014 address. On most machines, this can be defined as `CONSTANT_P (X)', but a
2015 few machines are more restrictive in which constant addresses are supported.
2016
2017 `CONSTANT_P' accepts integer-values expressions whose values are not
2018 explicitly known, such as `symbol_ref', `label_ref', and `high' expressions
2019 and `const' arithmetic expressions, in addition to `const_int' and
2020 `const_double' expressions. */
2021 #define CONSTANT_ADDRESS_P(X) CONSTANT_P (X)
2022
2023 /* A number, the maximum number of registers that can appear in a valid memory
2024 address. Note that it is up to you to specify a value equal to the maximum
2025 number that `GO_IF_LEGITIMATE_ADDRESS' would ever accept. */
2026 #define MAX_REGS_PER_ADDRESS 2
2027
2028 /* A C compound statement with a conditional `goto LABEL;' executed if X (an
2029 RTX) is a legitimate memory address on the target machine for a memory
2030 operand of mode MODE.
2031
2032 It usually pays to define several simpler macros to serve as subroutines for
2033 this one. Otherwise it may be too complicated to understand.
2034
2035 This macro must exist in two variants: a strict variant and a non-strict
2036 one. The strict variant is used in the reload pass. It must be defined so
2037 that any pseudo-register that has not been allocated a hard register is
2038 considered a memory reference. In contexts where some kind of register is
2039 required, a pseudo-register with no hard register must be rejected.
2040
2041 The non-strict variant is used in other passes. It must be defined to
2042 accept all pseudo-registers in every context where some kind of register is
2043 required.
2044
2045 Compiler source files that want to use the strict variant of this macro
2046 define the macro `REG_OK_STRICT'. You should use an `#ifdef REG_OK_STRICT'
2047 conditional to define the strict variant in that case and the non-strict
2048 variant otherwise.
2049
2050 Subroutines to check for acceptable registers for various purposes (one for
2051 base registers, one for index registers, and so on) are typically among the
2052 subroutines used to define `GO_IF_LEGITIMATE_ADDRESS'. Then only these
2053 subroutine macros need have two variants; the higher levels of macros may be
2054 the same whether strict or not.
2055
2056 Normally, constant addresses which are the sum of a `symbol_ref' and an
2057 integer are stored inside a `const' RTX to mark them as constant.
2058 Therefore, there is no need to recognize such sums specifically as
2059 legitimate addresses. Normally you would simply recognize any `const' as
2060 legitimate.
2061
2062 Usually `PRINT_OPERAND_ADDRESS' is not prepared to handle constant sums that
2063 are not marked with `const'. It assumes that a naked `plus' indicates
2064 indexing. If so, then you *must* reject such naked constant sums as
2065 illegitimate addresses, so that none of them will be given to
2066 `PRINT_OPERAND_ADDRESS'.
2067
2068 On some machines, whether a symbolic address is legitimate depends on the
2069 section that the address refers to. On these machines, define the macro
2070 `ENCODE_SECTION_INFO' to store the information into the `symbol_ref', and
2071 then check for it here. When you see a `const', you will have to look
2072 inside it to find the `symbol_ref' in order to determine the section.
2073
2074 The best way to modify the name string is by adding text to the beginning,
2075 with suitable punctuation to prevent any ambiguity. Allocate the new name
2076 in `saveable_obstack'. You will have to modify `ASM_OUTPUT_LABELREF' to
2077 remove and decode the added text and output the name accordingly, and define
2078 `(* targetm.strip_name_encoding)' to access the original name string.
2079
2080 You can check the information stored here into the `symbol_ref' in the
2081 definitions of the macros `GO_IF_LEGITIMATE_ADDRESS' and
2082 `PRINT_OPERAND_ADDRESS'. */
2083
2084 #ifdef REG_OK_STRICT
2085 #define REG_OK_STRICT_P 1
2086 #else
2087 #define REG_OK_STRICT_P 0
2088 #endif
2089
2090 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, LABEL) \
2091 do \
2092 { \
2093 if (frv_legitimate_address_p (MODE, X, REG_OK_STRICT_P, \
2094 FALSE, FALSE)) \
2095 goto LABEL; \
2096 } \
2097 while (0)
2098
2099 /* A C expression that is nonzero if X (assumed to be a `reg' RTX) is valid for
2100 use as a base register. For hard registers, it should always accept those
2101 which the hardware permits and reject the others. Whether the macro accepts
2102 or rejects pseudo registers must be controlled by `REG_OK_STRICT' as
2103 described above. This usually requires two variant definitions, of which
2104 `REG_OK_STRICT' controls the one actually used. */
2105 #ifdef REG_OK_STRICT
2106 #define REG_OK_FOR_BASE_P(X) GPR_P (REGNO (X))
2107 #else
2108 #define REG_OK_FOR_BASE_P(X) GPR_AP_OR_PSEUDO_P (REGNO (X))
2109 #endif
2110
2111 /* A C expression that is nonzero if X (assumed to be a `reg' RTX) is valid for
2112 use as an index register.
2113
2114 The difference between an index register and a base register is that the
2115 index register may be scaled. If an address involves the sum of two
2116 registers, neither one of them scaled, then either one may be labeled the
2117 "base" and the other the "index"; but whichever labeling is used must fit
2118 the machine's constraints of which registers may serve in each capacity.
2119 The compiler will try both labelings, looking for one that is valid, and
2120 will reload one or both registers only if neither labeling works. */
2121 #define REG_OK_FOR_INDEX_P(X) REG_OK_FOR_BASE_P (X)
2122
2123 #define LEGITIMIZE_ADDRESS(X, OLDX, MODE, WIN) \
2124 do { \
2125 rtx new_x = frv_legitimize_address (X, OLDX, MODE); \
2126 if (new_x) \
2127 { \
2128 (X) = new_x; \
2129 goto WIN; \
2130 } \
2131 } while (0)
2132
2133 #define FIND_BASE_TERM frv_find_base_term
2134
2135 /* A C statement or compound statement with a conditional `goto LABEL;'
2136 executed if memory address X (an RTX) can have different meanings depending
2137 on the machine mode of the memory reference it is used for or if the address
2138 is valid for some modes but not others.
2139
2140 Autoincrement and autodecrement addresses typically have mode-dependent
2141 effects because the amount of the increment or decrement is the size of the
2142 operand being addressed. Some machines have other mode-dependent addresses.
2143 Many RISC machines have no mode-dependent addresses.
2144
2145 You may assume that ADDR is a valid address for the machine. */
2146 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR, LABEL)
2147
2148 /* A C expression that is nonzero if X is a legitimate constant for an
2149 immediate operand on the target machine. You can assume that X satisfies
2150 `CONSTANT_P', so you need not check this. In fact, `1' is a suitable
2151 definition for this macro on machines where anything `CONSTANT_P' is valid. */
2152 #define LEGITIMATE_CONSTANT_P(X) frv_legitimate_constant_p (X)
2153
2154 /* The load-and-update commands allow pre-modification in addresses.
2155 The index has to be in a register. */
2156 #define HAVE_PRE_MODIFY_REG 1
2157
2158
2159 /* We define extra CC modes in frv-modes.def so we need a selector. */
2160
2161 #define SELECT_CC_MODE frv_select_cc_mode
2162
2163 /* A C expression whose value is one if it is always safe to reverse a
2164 comparison whose mode is MODE. If `SELECT_CC_MODE' can ever return MODE for
2165 a floating-point inequality comparison, then `REVERSIBLE_CC_MODE (MODE)'
2166 must be zero.
2167
2168 You need not define this macro if it would always returns zero or if the
2169 floating-point format is anything other than `IEEE_FLOAT_FORMAT'. For
2170 example, here is the definition used on the SPARC, where floating-point
2171 inequality comparisons are always given `CCFPEmode':
2172
2173 #define REVERSIBLE_CC_MODE(MODE) ((MODE) != CCFPEmode) */
2174
2175 /* On frv, don't consider floating point comparisons to be reversible. In
2176 theory, fp equality comparisons can be reversible. */
2177 #define REVERSIBLE_CC_MODE(MODE) \
2178 ((MODE) == CCmode || (MODE) == CC_UNSmode || (MODE) == CC_NZmode)
2179
2180 /* Frv CCR_MODE's are not reversible. */
2181 #define REVERSE_CONDEXEC_PREDICATES_P(x,y) 0
2182
2183
2184 /* Describing Relative Costs of Operations. */
2185
2186 /* A C expression for the cost of moving data from a register in class FROM to
2187 one in class TO. The classes are expressed using the enumeration values
2188 such as `GENERAL_REGS'. A value of 4 is the default; other values are
2189 interpreted relative to that.
2190
2191 It is not required that the cost always equal 2 when FROM is the same as TO;
2192 on some machines it is expensive to move between registers if they are not
2193 general registers.
2194
2195 If reload sees an insn consisting of a single `set' between two hard
2196 registers, and if `REGISTER_MOVE_COST' applied to their classes returns a
2197 value of 2, reload does not check to ensure that the constraints of the insn
2198 are met. Setting a cost of other than 2 will allow reload to verify that
2199 the constraints are met. You should do this if the `movM' pattern's
2200 constraints do not allow such copying. */
2201 #define REGISTER_MOVE_COST(MODE, FROM, TO) frv_register_move_cost (FROM, TO)
2202
2203 /* A C expression for the cost of moving data of mode M between a register and
2204 memory. A value of 2 is the default; this cost is relative to those in
2205 `REGISTER_MOVE_COST'.
2206
2207 If moving between registers and memory is more expensive than between two
2208 registers, you should define this macro to express the relative cost. */
2209 #define MEMORY_MOVE_COST(M,C,I) 4
2210
2211 /* A C expression for the cost of a branch instruction. A value of 1 is the
2212 default; other values are interpreted relative to that. */
2213 #define BRANCH_COST(speed_p, predictable_p) frv_branch_cost_int
2214
2215 /* Define this macro as a C expression which is nonzero if accessing less than
2216 a word of memory (i.e. a `char' or a `short') is no faster than accessing a
2217 word of memory, i.e., if such access require more than one instruction or if
2218 there is no difference in cost between byte and (aligned) word loads.
2219
2220 When this macro is not defined, the compiler will access a field by finding
2221 the smallest containing object; when it is defined, a fullword load will be
2222 used if alignment permits. Unless bytes accesses are faster than word
2223 accesses, using word accesses is preferable since it may eliminate
2224 subsequent memory access if subsequent accesses occur to other fields in the
2225 same word of the structure, but to different bytes. */
2226 #define SLOW_BYTE_ACCESS 1
2227
2228 /* Define this macro if it is as good or better to call a constant function
2229 address than to call an address kept in a register. */
2230 #define NO_FUNCTION_CSE
2231
2232
2233 /* Dividing the output into sections. */
2234
2235 /* A C expression whose value is a string containing the assembler operation
2236 that should precede instructions and read-only data. Normally `".text"' is
2237 right. */
2238 #define TEXT_SECTION_ASM_OP "\t.text"
2239
2240 /* A C expression whose value is a string containing the assembler operation to
2241 identify the following data as writable initialized data. Normally
2242 `".data"' is right. */
2243 #define DATA_SECTION_ASM_OP "\t.data"
2244
2245 /* If defined, a C expression whose value is a string containing the
2246 assembler operation to identify the following data as
2247 uninitialized global data. If not defined, and neither
2248 `ASM_OUTPUT_BSS' nor `ASM_OUTPUT_ALIGNED_BSS' are defined,
2249 uninitialized global data will be output in the data section if
2250 `-fno-common' is passed, otherwise `ASM_OUTPUT_COMMON' will be
2251 used. */
2252 #define BSS_SECTION_ASM_OP "\t.section .bss,\"aw\""
2253
2254 /* Short Data Support */
2255 #define SDATA_SECTION_ASM_OP "\t.section .sdata,\"aw\""
2256
2257 /* On svr4, we *do* have support for the .init and .fini sections, and we
2258 can put stuff in there to be executed before and after `main'. We let
2259 crtstuff.c and other files know this by defining the following symbols.
2260 The definitions say how to change sections to the .init and .fini
2261 sections. This is the same for all known svr4 assemblers.
2262
2263 The standard System V.4 macros will work, but they look ugly in the
2264 assembly output, so redefine them. */
2265
2266 #undef INIT_SECTION_ASM_OP
2267 #undef FINI_SECTION_ASM_OP
2268 #define INIT_SECTION_ASM_OP "\t.section .init,\"ax\""
2269 #define FINI_SECTION_ASM_OP "\t.section .fini,\"ax\""
2270
2271 #undef CTORS_SECTION_ASM_OP
2272 #undef DTORS_SECTION_ASM_OP
2273 #define CTORS_SECTION_ASM_OP "\t.section\t.ctors,\"a\""
2274 #define DTORS_SECTION_ASM_OP "\t.section\t.dtors,\"a\""
2275
2276 /* A C expression whose value is a string containing the assembler operation to
2277 switch to the fixup section that records all initialized pointers in a -fpic
2278 program so they can be changed program startup time if the program is loaded
2279 at a different address than linked for. */
2280 #define FIXUP_SECTION_ASM_OP "\t.section .rofixup,\"a\""
2281
2282 /* Position Independent Code. */
2283
2284 /* A C expression that is nonzero if X is a legitimate immediate operand on the
2285 target machine when generating position independent code. You can assume
2286 that X satisfies `CONSTANT_P', so you need not check this. You can also
2287 assume FLAG_PIC is true, so you need not check it either. You need not
2288 define this macro if all constants (including `SYMBOL_REF') can be immediate
2289 operands when generating position independent code. */
2290 #define LEGITIMATE_PIC_OPERAND_P(X) \
2291 ( GET_CODE (X) == CONST_INT \
2292 || GET_CODE (X) == CONST_DOUBLE \
2293 || (GET_CODE (X) == HIGH && GET_CODE (XEXP (X, 0)) == CONST_INT) \
2294 || got12_operand (X, VOIDmode)) \
2295
2296
2297 /* The Overall Framework of an Assembler File. */
2298
2299 /* A C string constant describing how to begin a comment in the target
2300 assembler language. The compiler assumes that the comment will end at the
2301 end of the line. */
2302 #define ASM_COMMENT_START ";"
2303
2304 /* A C string constant for text to be output before each `asm' statement or
2305 group of consecutive ones. Normally this is `"#APP"', which is a comment
2306 that has no effect on most assemblers but tells the GNU assembler that it
2307 must check the lines that follow for all valid assembler constructs. */
2308 #define ASM_APP_ON "#APP\n"
2309
2310 /* A C string constant for text to be output after each `asm' statement or
2311 group of consecutive ones. Normally this is `"#NO_APP"', which tells the
2312 GNU assembler to resume making the time-saving assumptions that are valid
2313 for ordinary compiler output. */
2314 #define ASM_APP_OFF "#NO_APP\n"
2315
2316
2317 /* Output of Data. */
2318
2319 /* This is how to output a label to dwarf/dwarf2. */
2320 #define ASM_OUTPUT_DWARF_ADDR(STREAM, LABEL) \
2321 do { \
2322 fprintf (STREAM, "\t.picptr\t"); \
2323 assemble_name (STREAM, LABEL); \
2324 } while (0)
2325
2326 /* Whether to emit the gas specific dwarf2 line number support. */
2327 #define DWARF2_ASM_LINE_DEBUG_INFO (TARGET_DEBUG_LOC)
2328
2329 /* Output of Uninitialized Variables. */
2330
2331 /* A C statement (sans semicolon) to output to the stdio stream STREAM the
2332 assembler definition of a local-common-label named NAME whose size is SIZE
2333 bytes. The variable ROUNDED is the size rounded up to whatever alignment
2334 the caller wants.
2335
2336 Use the expression `assemble_name (STREAM, NAME)' to output the name itself;
2337 before and after that, output the additional assembler syntax for defining
2338 the name, and a newline.
2339
2340 This macro controls how the assembler definitions of uninitialized static
2341 variables are output. */
2342 #undef ASM_OUTPUT_LOCAL
2343
2344 /* Like `ASM_OUTPUT_LOCAL' except takes the required alignment as a separate,
2345 explicit argument. If you define this macro, it is used in place of
2346 `ASM_OUTPUT_LOCAL', and gives you more flexibility in handling the required
2347 alignment of the variable. The alignment is specified as the number of
2348 bits.
2349
2350 Defined in svr4.h. */
2351 #undef ASM_OUTPUT_ALIGNED_LOCAL
2352
2353 /* This is for final.c, because it is used by ASM_DECLARE_OBJECT_NAME. */
2354 extern int size_directive_output;
2355
2356 /* Like `ASM_OUTPUT_ALIGNED_LOCAL' except that it takes an additional
2357 parameter - the DECL of variable to be output, if there is one.
2358 This macro can be called with DECL == NULL_TREE. If you define
2359 this macro, it is used in place of `ASM_OUTPUT_LOCAL' and
2360 `ASM_OUTPUT_ALIGNED_LOCAL', and gives you more flexibility in
2361 handling the destination of the variable. */
2362 #undef ASM_OUTPUT_ALIGNED_DECL_LOCAL
2363 #define ASM_OUTPUT_ALIGNED_DECL_LOCAL(STREAM, DECL, NAME, SIZE, ALIGN) \
2364 do { \
2365 if ((SIZE) > 0 && (SIZE) <= g_switch_value) \
2366 switch_to_section (get_named_section (NULL, ".sbss", 0)); \
2367 else \
2368 switch_to_section (bss_section); \
2369 ASM_OUTPUT_ALIGN (STREAM, floor_log2 ((ALIGN) / BITS_PER_UNIT)); \
2370 ASM_DECLARE_OBJECT_NAME (STREAM, NAME, DECL); \
2371 ASM_OUTPUT_SKIP (STREAM, (SIZE) ? (SIZE) : 1); \
2372 } while (0)
2373
2374
2375 /* Output and Generation of Labels. */
2376
2377 /* A C statement (sans semicolon) to output to the stdio stream STREAM the
2378 assembler definition of a label named NAME. Use the expression
2379 `assemble_name (STREAM, NAME)' to output the name itself; before and after
2380 that, output the additional assembler syntax for defining the name, and a
2381 newline. */
2382 #define ASM_OUTPUT_LABEL(STREAM, NAME) \
2383 do { \
2384 assemble_name (STREAM, NAME); \
2385 fputs (":\n", STREAM); \
2386 } while (0)
2387
2388 /* Globalizing directive for a label. */
2389 #define GLOBAL_ASM_OP "\t.globl "
2390
2391 /* A C statement to store into the string STRING a label whose name is made
2392 from the string PREFIX and the number NUM.
2393
2394 This string, when output subsequently by `assemble_name', should produce the
2395 output that `(*targetm.asm_out.internal_label)' would produce with the same PREFIX
2396 and NUM.
2397
2398 If the string begins with `*', then `assemble_name' will output the rest of
2399 the string unchanged. It is often convenient for
2400 `ASM_GENERATE_INTERNAL_LABEL' to use `*' in this way. If the string doesn't
2401 start with `*', then `ASM_OUTPUT_LABELREF' gets to output the string, and
2402 may change it. (Of course, `ASM_OUTPUT_LABELREF' is also part of your
2403 machine description, so you should know what it does on your machine.)
2404
2405 Defined in svr4.h. */
2406 #undef ASM_GENERATE_INTERNAL_LABEL
2407 #define ASM_GENERATE_INTERNAL_LABEL(LABEL, PREFIX, NUM) \
2408 do { \
2409 sprintf (LABEL, "*.%s%ld", PREFIX, (long)NUM); \
2410 } while (0)
2411
2412
2413 /* Macros Controlling Initialization Routines. */
2414
2415 /* If defined, a C string constant for the assembler operation to identify the
2416 following data as initialization code. If not defined, GCC will assume
2417 such a section does not exist. When you are using special sections for
2418 initialization and termination functions, this macro also controls how
2419 `crtstuff.c' and `libgcc2.c' arrange to run the initialization functions.
2420
2421 Defined in svr4.h. */
2422 #undef INIT_SECTION_ASM_OP
2423
2424 /* If defined, `main' will call `__main' despite the presence of
2425 `INIT_SECTION_ASM_OP'. This macro should be defined for systems where the
2426 init section is not actually run automatically, but is still useful for
2427 collecting the lists of constructors and destructors. */
2428 #define INVOKE__main
2429
2430 /* Output of Assembler Instructions. */
2431
2432 /* A C initializer containing the assembler's names for the machine registers,
2433 each one as a C string constant. This is what translates register numbers
2434 in the compiler into assembler language. */
2435 #define REGISTER_NAMES \
2436 { \
2437 "gr0", "sp", "fp", "gr3", "gr4", "gr5", "gr6", "gr7", \
2438 "gr8", "gr9", "gr10", "gr11", "gr12", "gr13", "gr14", "gr15", \
2439 "gr16", "gr17", "gr18", "gr19", "gr20", "gr21", "gr22", "gr23", \
2440 "gr24", "gr25", "gr26", "gr27", "gr28", "gr29", "gr30", "gr31", \
2441 "gr32", "gr33", "gr34", "gr35", "gr36", "gr37", "gr38", "gr39", \
2442 "gr40", "gr41", "gr42", "gr43", "gr44", "gr45", "gr46", "gr47", \
2443 "gr48", "gr49", "gr50", "gr51", "gr52", "gr53", "gr54", "gr55", \
2444 "gr56", "gr57", "gr58", "gr59", "gr60", "gr61", "gr62", "gr63", \
2445 \
2446 "fr0", "fr1", "fr2", "fr3", "fr4", "fr5", "fr6", "fr7", \
2447 "fr8", "fr9", "fr10", "fr11", "fr12", "fr13", "fr14", "fr15", \
2448 "fr16", "fr17", "fr18", "fr19", "fr20", "fr21", "fr22", "fr23", \
2449 "fr24", "fr25", "fr26", "fr27", "fr28", "fr29", "fr30", "fr31", \
2450 "fr32", "fr33", "fr34", "fr35", "fr36", "fr37", "fr38", "fr39", \
2451 "fr40", "fr41", "fr42", "fr43", "fr44", "fr45", "fr46", "fr47", \
2452 "fr48", "fr49", "fr50", "fr51", "fr52", "fr53", "fr54", "fr55", \
2453 "fr56", "fr57", "fr58", "fr59", "fr60", "fr61", "fr62", "fr63", \
2454 \
2455 "fcc0", "fcc1", "fcc2", "fcc3", "icc0", "icc1", "icc2", "icc3", \
2456 "cc0", "cc1", "cc2", "cc3", "cc4", "cc5", "cc6", "cc7", \
2457 "acc0", "acc1", "acc2", "acc3", "acc4", "acc5", "acc6", "acc7", \
2458 "acc8", "acc9", "acc10", "acc11", \
2459 "accg0","accg1","accg2","accg3","accg4","accg5","accg6","accg7", \
2460 "accg8", "accg9", "accg10", "accg11", \
2461 "ap", "lr", "lcr", "iacc0h", "iacc0l" \
2462 }
2463
2464 /* Define this macro if you are using an unusual assembler that
2465 requires different names for the machine instructions.
2466
2467 The definition is a C statement or statements which output an
2468 assembler instruction opcode to the stdio stream STREAM. The
2469 macro-operand PTR is a variable of type `char *' which points to
2470 the opcode name in its "internal" form--the form that is written
2471 in the machine description. The definition should output the
2472 opcode name to STREAM, performing any translation you desire, and
2473 increment the variable PTR to point at the end of the opcode so
2474 that it will not be output twice.
2475
2476 In fact, your macro definition may process less than the entire
2477 opcode name, or more than the opcode name; but if you want to
2478 process text that includes `%'-sequences to substitute operands,
2479 you must take care of the substitution yourself. Just be sure to
2480 increment PTR over whatever text should not be output normally.
2481
2482 If you need to look at the operand values, they can be found as the
2483 elements of `recog_operand'.
2484
2485 If the macro definition does nothing, the instruction is output in
2486 the usual way. */
2487
2488 #define ASM_OUTPUT_OPCODE(STREAM, PTR)\
2489 (PTR) = frv_asm_output_opcode (STREAM, PTR)
2490
2491 /* If defined, a C statement to be executed just prior to the output
2492 of assembler code for INSN, to modify the extracted operands so
2493 they will be output differently.
2494
2495 Here the argument OPVEC is the vector containing the operands
2496 extracted from INSN, and NOPERANDS is the number of elements of
2497 the vector which contain meaningful data for this insn. The
2498 contents of this vector are what will be used to convert the insn
2499 template into assembler code, so you can change the assembler
2500 output by changing the contents of the vector.
2501
2502 This macro is useful when various assembler syntaxes share a single
2503 file of instruction patterns; by defining this macro differently,
2504 you can cause a large class of instructions to be output
2505 differently (such as with rearranged operands). Naturally,
2506 variations in assembler syntax affecting individual insn patterns
2507 ought to be handled by writing conditional output routines in
2508 those patterns.
2509
2510 If this macro is not defined, it is equivalent to a null statement. */
2511
2512 #define FINAL_PRESCAN_INSN(INSN, OPVEC, NOPERANDS)\
2513 frv_final_prescan_insn (INSN, OPVEC, NOPERANDS)
2514
2515
2516 /* A C compound statement to output to stdio stream STREAM the assembler syntax
2517 for an instruction operand X. X is an RTL expression.
2518
2519 CODE is a value that can be used to specify one of several ways of printing
2520 the operand. It is used when identical operands must be printed differently
2521 depending on the context. CODE comes from the `%' specification that was
2522 used to request printing of the operand. If the specification was just
2523 `%DIGIT' then CODE is 0; if the specification was `%LTR DIGIT' then CODE is
2524 the ASCII code for LTR.
2525
2526 If X is a register, this macro should print the register's name. The names
2527 can be found in an array `reg_names' whose type is `char *[]'. `reg_names'
2528 is initialized from `REGISTER_NAMES'.
2529
2530 When the machine description has a specification `%PUNCT' (a `%' followed by
2531 a punctuation character), this macro is called with a null pointer for X and
2532 the punctuation character for CODE. */
2533 #define PRINT_OPERAND(STREAM, X, CODE) frv_print_operand (STREAM, X, CODE)
2534
2535 /* A C expression which evaluates to true if CODE is a valid punctuation
2536 character for use in the `PRINT_OPERAND' macro. If
2537 `PRINT_OPERAND_PUNCT_VALID_P' is not defined, it means that no punctuation
2538 characters (except for the standard one, `%') are used in this way. */
2539 /* . == gr0
2540 # == hint operand -- always zero for now
2541 @ == small data base register (gr16)
2542 ~ == pic register (gr17)
2543 * == temporary integer CCR register (cr3)
2544 & == temporary integer ICC register (icc3) */
2545 #define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
2546 ((CODE) == '.' || (CODE) == '#' || (CODE) == '@' || (CODE) == '~' \
2547 || (CODE) == '*' || (CODE) == '&')
2548
2549 /* A C compound statement to output to stdio stream STREAM the assembler syntax
2550 for an instruction operand that is a memory reference whose address is X. X
2551 is an RTL expression.
2552
2553 On some machines, the syntax for a symbolic address depends on the section
2554 that the address refers to. On these machines, define the macro
2555 `ENCODE_SECTION_INFO' to store the information into the `symbol_ref', and
2556 then check for it here.
2557
2558 This declaration must be present. */
2559 #define PRINT_OPERAND_ADDRESS(STREAM, X) frv_print_operand_address (STREAM, X)
2560
2561 /* If defined, C string expressions to be used for the `%R', `%L', `%U', and
2562 `%I' options of `asm_fprintf' (see `final.c'). These are useful when a
2563 single `md' file must support multiple assembler formats. In that case, the
2564 various `tm.h' files can define these macros differently.
2565
2566 USER_LABEL_PREFIX is defined in svr4.h. */
2567 #undef USER_LABEL_PREFIX
2568 #define USER_LABEL_PREFIX ""
2569 #define REGISTER_PREFIX ""
2570 #define LOCAL_LABEL_PREFIX "."
2571 #define IMMEDIATE_PREFIX "#"
2572
2573
2574 /* Output of dispatch tables. */
2575
2576 /* This macro should be provided on machines where the addresses in a dispatch
2577 table are relative to the table's own address.
2578
2579 The definition should be a C statement to output to the stdio stream STREAM
2580 an assembler pseudo-instruction to generate a difference between two labels.
2581 VALUE and REL are the numbers of two internal labels. The definitions of
2582 these labels are output using `(*targetm.asm_out.internal_label)', and they must be
2583 printed in the same way here. For example,
2584
2585 fprintf (STREAM, "\t.word L%d-L%d\n", VALUE, REL) */
2586 #define ASM_OUTPUT_ADDR_DIFF_ELT(STREAM, BODY, VALUE, REL) \
2587 fprintf (STREAM, "\t.word .L%d-.L%d\n", VALUE, REL)
2588
2589 /* This macro should be provided on machines where the addresses in a dispatch
2590 table are absolute.
2591
2592 The definition should be a C statement to output to the stdio stream STREAM
2593 an assembler pseudo-instruction to generate a reference to a label. VALUE
2594 is the number of an internal label whose definition is output using
2595 `(*targetm.asm_out.internal_label)'. For example,
2596
2597 fprintf (STREAM, "\t.word L%d\n", VALUE) */
2598 #define ASM_OUTPUT_ADDR_VEC_ELT(STREAM, VALUE) \
2599 fprintf (STREAM, "\t.word .L%d\n", VALUE)
2600
2601 #define JUMP_TABLES_IN_TEXT_SECTION (flag_pic)
2602
2603 /* Assembler Commands for Exception Regions. */
2604
2605 /* Define this macro to 0 if your target supports DWARF 2 frame unwind
2606 information, but it does not yet work with exception handling. Otherwise,
2607 if your target supports this information (if it defines
2608 `INCOMING_RETURN_ADDR_RTX' and either `UNALIGNED_INT_ASM_OP' or
2609 `OBJECT_FORMAT_ELF'), GCC will provide a default definition of 1.
2610
2611 If this macro is defined to 1, the DWARF 2 unwinder will be the default
2612 exception handling mechanism; otherwise, setjmp/longjmp will be used by
2613 default.
2614
2615 If this macro is defined to anything, the DWARF 2 unwinder will be used
2616 instead of inline unwinders and __unwind_function in the non-setjmp case. */
2617 #define DWARF2_UNWIND_INFO 1
2618
2619 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (LR_REGNO)
2620
2621 /* Assembler Commands for Alignment. */
2622
2623 /* A C statement to output to the stdio stream STREAM an assembler instruction
2624 to advance the location counter by NBYTES bytes. Those bytes should be zero
2625 when loaded. NBYTES will be a C expression of type `int'.
2626
2627 Defined in svr4.h. */
2628 #undef ASM_OUTPUT_SKIP
2629 #define ASM_OUTPUT_SKIP(STREAM, NBYTES) \
2630 fprintf (STREAM, "\t.zero\t%u\n", (int)(NBYTES))
2631
2632 /* A C statement to output to the stdio stream STREAM an assembler command to
2633 advance the location counter to a multiple of 2 to the POWER bytes. POWER
2634 will be a C expression of type `int'. */
2635 #define ASM_OUTPUT_ALIGN(STREAM, POWER) \
2636 fprintf ((STREAM), "\t.p2align %d\n", (POWER))
2637
2638 /* Inside the text section, align with unpacked nops rather than zeros. */
2639 #define ASM_OUTPUT_ALIGN_WITH_NOP(STREAM, POWER) \
2640 fprintf ((STREAM), "\t.p2alignl %d,0x80880000\n", (POWER))
2641
2642 /* Macros Affecting all Debug Formats. */
2643
2644 /* A C expression that returns the DBX register number for the compiler
2645 register number REGNO. In simple cases, the value of this expression may be
2646 REGNO itself. But sometimes there are some registers that the compiler
2647 knows about and DBX does not, or vice versa. In such cases, some register
2648 may need to have one number in the compiler and another for DBX.
2649
2650 If two registers have consecutive numbers inside GCC, and they can be
2651 used as a pair to hold a multiword value, then they *must* have consecutive
2652 numbers after renumbering with `DBX_REGISTER_NUMBER'. Otherwise, debuggers
2653 will be unable to access such a pair, because they expect register pairs to
2654 be consecutive in their own numbering scheme.
2655
2656 If you find yourself defining `DBX_REGISTER_NUMBER' in way that does not
2657 preserve register pairs, then what you must do instead is redefine the
2658 actual register numbering scheme.
2659
2660 This declaration is required. */
2661 #define DBX_REGISTER_NUMBER(REGNO) (REGNO)
2662
2663 /* A C expression that returns the type of debugging output GCC produces
2664 when the user specifies `-g' or `-ggdb'. Define this if you have arranged
2665 for GCC to support more than one format of debugging output. Currently,
2666 the allowable values are `DBX_DEBUG', `SDB_DEBUG', `DWARF_DEBUG',
2667 `DWARF2_DEBUG', and `XCOFF_DEBUG'.
2668
2669 The value of this macro only affects the default debugging output; the user
2670 can always get a specific type of output by using `-gstabs', `-gcoff',
2671 `-gdwarf-1', `-gdwarf-2', or `-gxcoff'.
2672
2673 Defined in svr4.h. */
2674 #undef PREFERRED_DEBUGGING_TYPE
2675 #define PREFERRED_DEBUGGING_TYPE DWARF2_DEBUG
2676
2677 /* Miscellaneous Parameters. */
2678
2679 /* An alias for a machine mode name. This is the machine mode that elements of
2680 a jump-table should have. */
2681 #define CASE_VECTOR_MODE SImode
2682
2683 /* Define this macro if operations between registers with integral mode smaller
2684 than a word are always performed on the entire register. Most RISC machines
2685 have this property and most CISC machines do not. */
2686 #define WORD_REGISTER_OPERATIONS
2687
2688 /* Define this macro to be a C expression indicating when insns that read
2689 memory in MODE, an integral mode narrower than a word, set the bits outside
2690 of MODE to be either the sign-extension or the zero-extension of the data
2691 read. Return `SIGN_EXTEND' for values of MODE for which the insn
2692 sign-extends, `ZERO_EXTEND' for which it zero-extends, and `UNKNOWN' for other
2693 modes.
2694
2695 This macro is not called with MODE non-integral or with a width greater than
2696 or equal to `BITS_PER_WORD', so you may return any value in this case. Do
2697 not define this macro if it would always return `UNKNOWN'. On machines where
2698 this macro is defined, you will normally define it as the constant
2699 `SIGN_EXTEND' or `ZERO_EXTEND'. */
2700 #define LOAD_EXTEND_OP(MODE) SIGN_EXTEND
2701
2702 /* Define if loading short immediate values into registers sign extends. */
2703 #define SHORT_IMMEDIATES_SIGN_EXTEND
2704
2705 /* The maximum number of bytes that a single instruction can move quickly from
2706 memory to memory. */
2707 #define MOVE_MAX 8
2708
2709 /* A C expression which is nonzero if on this machine it is safe to "convert"
2710 an integer of INPREC bits to one of OUTPREC bits (where OUTPREC is smaller
2711 than INPREC) by merely operating on it as if it had only OUTPREC bits.
2712
2713 On many machines, this expression can be 1.
2714
2715 When `TRULY_NOOP_TRUNCATION' returns 1 for a pair of sizes for modes for
2716 which `MODES_TIEABLE_P' is 0, suboptimal code can result. If this is the
2717 case, making `TRULY_NOOP_TRUNCATION' return 0 in such cases may improve
2718 things. */
2719 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
2720
2721 /* An alias for the machine mode for pointers. On most machines, define this
2722 to be the integer mode corresponding to the width of a hardware pointer;
2723 `SImode' on 32-bit machine or `DImode' on 64-bit machines. On some machines
2724 you must define this to be one of the partial integer modes, such as
2725 `PSImode'.
2726
2727 The width of `Pmode' must be at least as large as the value of
2728 `POINTER_SIZE'. If it is not equal, you must define the macro
2729 `POINTERS_EXTEND_UNSIGNED' to specify how pointers are extended to `Pmode'. */
2730 #define Pmode SImode
2731
2732 /* An alias for the machine mode used for memory references to functions being
2733 called, in `call' RTL expressions. On most machines this should be
2734 `QImode'. */
2735 #define FUNCTION_MODE QImode
2736
2737 /* Define this macro to handle System V style pragmas: #pragma pack and
2738 #pragma weak. Note, #pragma weak will only be supported if SUPPORT_WEAK is
2739 defined.
2740
2741 Defined in svr4.h. */
2742 #define HANDLE_SYSV_PRAGMA 1
2743
2744 /* A C expression for the maximum number of instructions to execute via
2745 conditional execution instructions instead of a branch. A value of
2746 BRANCH_COST+1 is the default if the machine does not use
2747 cc0, and 1 if it does use cc0. */
2748 #define MAX_CONDITIONAL_EXECUTE frv_condexec_insns
2749
2750 /* A C expression to modify the code described by the conditional if
2751 information CE_INFO, possibly updating the tests in TRUE_EXPR, and
2752 FALSE_EXPR for converting if-then and if-then-else code to conditional
2753 instructions. Set either TRUE_EXPR or FALSE_EXPR to a null pointer if the
2754 tests cannot be converted. */
2755 #define IFCVT_MODIFY_TESTS(CE_INFO, TRUE_EXPR, FALSE_EXPR) \
2756 frv_ifcvt_modify_tests (CE_INFO, &TRUE_EXPR, &FALSE_EXPR)
2757
2758 /* A C expression to modify the code described by the conditional if
2759 information CE_INFO, for the basic block BB, possibly updating the tests in
2760 TRUE_EXPR, and FALSE_EXPR for converting the && and || parts of if-then or
2761 if-then-else code to conditional instructions. OLD_TRUE and OLD_FALSE are
2762 the previous tests. Set either TRUE_EXPR or FALSE_EXPR to a null pointer if
2763 the tests cannot be converted. */
2764 #define IFCVT_MODIFY_MULTIPLE_TESTS(CE_INFO, BB, TRUE_EXPR, FALSE_EXPR) \
2765 frv_ifcvt_modify_multiple_tests (CE_INFO, BB, &TRUE_EXPR, &FALSE_EXPR)
2766
2767 /* A C expression to modify the code described by the conditional if
2768 information CE_INFO with the new PATTERN in INSN. If PATTERN is a null
2769 pointer after the IFCVT_MODIFY_INSN macro executes, it is assumed that that
2770 insn cannot be converted to be executed conditionally. */
2771 #define IFCVT_MODIFY_INSN(CE_INFO, PATTERN, INSN) \
2772 (PATTERN) = frv_ifcvt_modify_insn (CE_INFO, PATTERN, INSN)
2773
2774 /* A C expression to perform any final machine dependent modifications in
2775 converting code to conditional execution in the code described by the
2776 conditional if information CE_INFO. */
2777 #define IFCVT_MODIFY_FINAL(CE_INFO) frv_ifcvt_modify_final (CE_INFO)
2778
2779 /* A C expression to cancel any machine dependent modifications in converting
2780 code to conditional execution in the code described by the conditional if
2781 information CE_INFO. */
2782 #define IFCVT_MODIFY_CANCEL(CE_INFO) frv_ifcvt_modify_cancel (CE_INFO)
2783
2784 /* Initialize the extra fields provided by IFCVT_EXTRA_FIELDS. */
2785 #define IFCVT_INIT_EXTRA_FIELDS(CE_INFO) frv_ifcvt_init_extra_fields (CE_INFO)
2786
2787 /* The definition of the following macro results in that the 2nd jump
2788 optimization (after the 2nd insn scheduling) is minimal. It is
2789 necessary to define when start cycle marks of insns (TImode is used
2790 for this) is used for VLIW insn packing. Some jump optimizations
2791 make such marks invalid. These marks are corrected for some
2792 (minimal) optimizations. ??? Probably the macro is temporary.
2793 Final solution could making the 2nd jump optimizations before the
2794 2nd instruction scheduling or corrections of the marks for all jump
2795 optimizations. Although some jump optimizations are actually
2796 deoptimizations for VLIW (super-scalar) processors. */
2797
2798 #define MINIMAL_SECOND_JUMP_OPTIMIZATION
2799
2800
2801 /* If the following macro is defined and nonzero and deterministic
2802 finite state automata are used for pipeline hazard recognition, the
2803 code making resource-constrained software pipelining is on. */
2804 #define RCSP_SOFTWARE_PIPELINING 1
2805
2806 /* If the following macro is defined and nonzero and deterministic
2807 finite state automata are used for pipeline hazard recognition, we
2808 will try to exchange insns in queue ready to improve the schedule.
2809 The more macro value, the more tries will be made. */
2810 #define FIRST_CYCLE_MULTIPASS_SCHEDULING 1
2811
2812 /* The following macro is used only when value of
2813 FIRST_CYCLE_MULTIPASS_SCHEDULING is nonzero. The more macro value,
2814 the more tries will be made to choose better schedule. If the
2815 macro value is zero or negative there will be no multi-pass
2816 scheduling. */
2817 #define FIRST_CYCLE_MULTIPASS_SCHEDULING_LOOKAHEAD frv_sched_lookahead
2818
2819 enum frv_builtins
2820 {
2821 FRV_BUILTIN_MAND,
2822 FRV_BUILTIN_MOR,
2823 FRV_BUILTIN_MXOR,
2824 FRV_BUILTIN_MNOT,
2825 FRV_BUILTIN_MAVEH,
2826 FRV_BUILTIN_MSATHS,
2827 FRV_BUILTIN_MSATHU,
2828 FRV_BUILTIN_MADDHSS,
2829 FRV_BUILTIN_MADDHUS,
2830 FRV_BUILTIN_MSUBHSS,
2831 FRV_BUILTIN_MSUBHUS,
2832 FRV_BUILTIN_MPACKH,
2833 FRV_BUILTIN_MQADDHSS,
2834 FRV_BUILTIN_MQADDHUS,
2835 FRV_BUILTIN_MQSUBHSS,
2836 FRV_BUILTIN_MQSUBHUS,
2837 FRV_BUILTIN_MUNPACKH,
2838 FRV_BUILTIN_MDPACKH,
2839 FRV_BUILTIN_MBTOH,
2840 FRV_BUILTIN_MHTOB,
2841 FRV_BUILTIN_MCOP1,
2842 FRV_BUILTIN_MCOP2,
2843 FRV_BUILTIN_MROTLI,
2844 FRV_BUILTIN_MROTRI,
2845 FRV_BUILTIN_MWCUT,
2846 FRV_BUILTIN_MSLLHI,
2847 FRV_BUILTIN_MSRLHI,
2848 FRV_BUILTIN_MSRAHI,
2849 FRV_BUILTIN_MEXPDHW,
2850 FRV_BUILTIN_MEXPDHD,
2851 FRV_BUILTIN_MMULHS,
2852 FRV_BUILTIN_MMULHU,
2853 FRV_BUILTIN_MMULXHS,
2854 FRV_BUILTIN_MMULXHU,
2855 FRV_BUILTIN_MMACHS,
2856 FRV_BUILTIN_MMACHU,
2857 FRV_BUILTIN_MMRDHS,
2858 FRV_BUILTIN_MMRDHU,
2859 FRV_BUILTIN_MQMULHS,
2860 FRV_BUILTIN_MQMULHU,
2861 FRV_BUILTIN_MQMULXHU,
2862 FRV_BUILTIN_MQMULXHS,
2863 FRV_BUILTIN_MQMACHS,
2864 FRV_BUILTIN_MQMACHU,
2865 FRV_BUILTIN_MCPXRS,
2866 FRV_BUILTIN_MCPXRU,
2867 FRV_BUILTIN_MCPXIS,
2868 FRV_BUILTIN_MCPXIU,
2869 FRV_BUILTIN_MQCPXRS,
2870 FRV_BUILTIN_MQCPXRU,
2871 FRV_BUILTIN_MQCPXIS,
2872 FRV_BUILTIN_MQCPXIU,
2873 FRV_BUILTIN_MCUT,
2874 FRV_BUILTIN_MCUTSS,
2875 FRV_BUILTIN_MWTACC,
2876 FRV_BUILTIN_MWTACCG,
2877 FRV_BUILTIN_MRDACC,
2878 FRV_BUILTIN_MRDACCG,
2879 FRV_BUILTIN_MTRAP,
2880 FRV_BUILTIN_MCLRACC,
2881 FRV_BUILTIN_MCLRACCA,
2882 FRV_BUILTIN_MDUNPACKH,
2883 FRV_BUILTIN_MBTOHE,
2884 FRV_BUILTIN_MQXMACHS,
2885 FRV_BUILTIN_MQXMACXHS,
2886 FRV_BUILTIN_MQMACXHS,
2887 FRV_BUILTIN_MADDACCS,
2888 FRV_BUILTIN_MSUBACCS,
2889 FRV_BUILTIN_MASACCS,
2890 FRV_BUILTIN_MDADDACCS,
2891 FRV_BUILTIN_MDSUBACCS,
2892 FRV_BUILTIN_MDASACCS,
2893 FRV_BUILTIN_MABSHS,
2894 FRV_BUILTIN_MDROTLI,
2895 FRV_BUILTIN_MCPLHI,
2896 FRV_BUILTIN_MCPLI,
2897 FRV_BUILTIN_MDCUTSSI,
2898 FRV_BUILTIN_MQSATHS,
2899 FRV_BUILTIN_MQLCLRHS,
2900 FRV_BUILTIN_MQLMTHS,
2901 FRV_BUILTIN_MQSLLHI,
2902 FRV_BUILTIN_MQSRAHI,
2903 FRV_BUILTIN_MHSETLOS,
2904 FRV_BUILTIN_MHSETLOH,
2905 FRV_BUILTIN_MHSETHIS,
2906 FRV_BUILTIN_MHSETHIH,
2907 FRV_BUILTIN_MHDSETS,
2908 FRV_BUILTIN_MHDSETH,
2909 FRV_BUILTIN_SMUL,
2910 FRV_BUILTIN_UMUL,
2911 FRV_BUILTIN_PREFETCH0,
2912 FRV_BUILTIN_PREFETCH,
2913 FRV_BUILTIN_SMASS,
2914 FRV_BUILTIN_SMSSS,
2915 FRV_BUILTIN_SMU,
2916 FRV_BUILTIN_SCUTSS,
2917 FRV_BUILTIN_ADDSS,
2918 FRV_BUILTIN_SUBSS,
2919 FRV_BUILTIN_SLASS,
2920 FRV_BUILTIN_IACCreadll,
2921 FRV_BUILTIN_IACCreadl,
2922 FRV_BUILTIN_IACCsetll,
2923 FRV_BUILTIN_IACCsetl,
2924 FRV_BUILTIN_SCAN,
2925 FRV_BUILTIN_READ8,
2926 FRV_BUILTIN_READ16,
2927 FRV_BUILTIN_READ32,
2928 FRV_BUILTIN_READ64,
2929 FRV_BUILTIN_WRITE8,
2930 FRV_BUILTIN_WRITE16,
2931 FRV_BUILTIN_WRITE32,
2932 FRV_BUILTIN_WRITE64
2933 };
2934 #define FRV_BUILTIN_FIRST_NONMEDIA FRV_BUILTIN_SMUL
2935
2936 /* Enable prototypes on the call rtl functions. */
2937 #define MD_CALL_PROTOTYPES 1
2938
2939 extern GTY(()) rtx frv_compare_op0; /* operand save for */
2940 extern GTY(()) rtx frv_compare_op1; /* comparison generation */
2941
2942 #define CPU_UNITS_QUERY 1
2943
2944 #ifdef __FRV_FDPIC__
2945 #define CRT_GET_RFIB_DATA(dbase) \
2946 ({ extern void *_GLOBAL_OFFSET_TABLE_; (dbase) = &_GLOBAL_OFFSET_TABLE_; })
2947 #endif
2948
2949 #endif /* __FRV_H__ */