comparison gcc/config/m32r/m32r.c @ 0:a06113de4d67

first commit
author kent <kent@cr.ie.u-ryukyu.ac.jp>
date Fri, 17 Jul 2009 14:47:48 +0900
parents
children 77e2b8dfacca
comparison
equal deleted inserted replaced
-1:000000000000 0:a06113de4d67
1 /* Subroutines used for code generation on the Renesas M32R cpu.
2 Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004,
3 2005, 2007, 2008 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published
9 by the Free Software Foundation; either version 3, or (at your
10 option) any later version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
15 License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "tree.h"
26 #include "rtl.h"
27 #include "regs.h"
28 #include "hard-reg-set.h"
29 #include "real.h"
30 #include "insn-config.h"
31 #include "conditions.h"
32 #include "output.h"
33 #include "insn-attr.h"
34 #include "flags.h"
35 #include "expr.h"
36 #include "function.h"
37 #include "recog.h"
38 #include "toplev.h"
39 #include "ggc.h"
40 #include "integrate.h"
41 #include "tm_p.h"
42 #include "target.h"
43 #include "target-def.h"
44 #include "tm-constrs.h"
45
46 /* Save the operands last given to a compare for use when we
47 generate a scc or bcc insn. */
48 rtx m32r_compare_op0, m32r_compare_op1;
49
50 /* Array of valid operand punctuation characters. */
51 char m32r_punct_chars[256];
52
53 /* Selected code model. */
54 enum m32r_model m32r_model = M32R_MODEL_DEFAULT;
55
56 /* Selected SDA support. */
57 enum m32r_sdata m32r_sdata = M32R_SDATA_DEFAULT;
58
59 /* Machine-specific symbol_ref flags. */
60 #define SYMBOL_FLAG_MODEL_SHIFT SYMBOL_FLAG_MACH_DEP_SHIFT
61 #define SYMBOL_REF_MODEL(X) \
62 ((enum m32r_model) ((SYMBOL_REF_FLAGS (X) >> SYMBOL_FLAG_MODEL_SHIFT) & 3))
63
64 /* For string literals, etc. */
65 #define LIT_NAME_P(NAME) ((NAME)[0] == '*' && (NAME)[1] == '.')
66
67 /* Forward declaration. */
68 static bool m32r_handle_option (size_t, const char *, int);
69 static void init_reg_tables (void);
70 static void block_move_call (rtx, rtx, rtx);
71 static int m32r_is_insn (rtx);
72 const struct attribute_spec m32r_attribute_table[];
73 static tree m32r_handle_model_attribute (tree *, tree, tree, int, bool *);
74 static void m32r_output_function_prologue (FILE *, HOST_WIDE_INT);
75 static void m32r_output_function_epilogue (FILE *, HOST_WIDE_INT);
76
77 static void m32r_file_start (void);
78
79 static int m32r_adjust_priority (rtx, int);
80 static int m32r_issue_rate (void);
81
82 static void m32r_encode_section_info (tree, rtx, int);
83 static bool m32r_in_small_data_p (const_tree);
84 static bool m32r_return_in_memory (const_tree, const_tree);
85 static void m32r_setup_incoming_varargs (CUMULATIVE_ARGS *, enum machine_mode,
86 tree, int *, int);
87 static void init_idents (void);
88 static bool m32r_rtx_costs (rtx, int, int, int *, bool speed);
89 static bool m32r_pass_by_reference (CUMULATIVE_ARGS *, enum machine_mode,
90 const_tree, bool);
91 static int m32r_arg_partial_bytes (CUMULATIVE_ARGS *, enum machine_mode,
92 tree, bool);
93
94 /* Initialize the GCC target structure. */
95 #undef TARGET_ATTRIBUTE_TABLE
96 #define TARGET_ATTRIBUTE_TABLE m32r_attribute_table
97
98 #undef TARGET_ASM_ALIGNED_HI_OP
99 #define TARGET_ASM_ALIGNED_HI_OP "\t.hword\t"
100 #undef TARGET_ASM_ALIGNED_SI_OP
101 #define TARGET_ASM_ALIGNED_SI_OP "\t.word\t"
102
103 #undef TARGET_ASM_FUNCTION_PROLOGUE
104 #define TARGET_ASM_FUNCTION_PROLOGUE m32r_output_function_prologue
105 #undef TARGET_ASM_FUNCTION_EPILOGUE
106 #define TARGET_ASM_FUNCTION_EPILOGUE m32r_output_function_epilogue
107
108 #undef TARGET_ASM_FILE_START
109 #define TARGET_ASM_FILE_START m32r_file_start
110
111 #undef TARGET_SCHED_ADJUST_PRIORITY
112 #define TARGET_SCHED_ADJUST_PRIORITY m32r_adjust_priority
113 #undef TARGET_SCHED_ISSUE_RATE
114 #define TARGET_SCHED_ISSUE_RATE m32r_issue_rate
115
116 #undef TARGET_DEFAULT_TARGET_FLAGS
117 #define TARGET_DEFAULT_TARGET_FLAGS TARGET_CPU_DEFAULT
118 #undef TARGET_HANDLE_OPTION
119 #define TARGET_HANDLE_OPTION m32r_handle_option
120
121 #undef TARGET_ENCODE_SECTION_INFO
122 #define TARGET_ENCODE_SECTION_INFO m32r_encode_section_info
123 #undef TARGET_IN_SMALL_DATA_P
124 #define TARGET_IN_SMALL_DATA_P m32r_in_small_data_p
125
126 #undef TARGET_RTX_COSTS
127 #define TARGET_RTX_COSTS m32r_rtx_costs
128 #undef TARGET_ADDRESS_COST
129 #define TARGET_ADDRESS_COST hook_int_rtx_bool_0
130
131 #undef TARGET_PROMOTE_PROTOTYPES
132 #define TARGET_PROMOTE_PROTOTYPES hook_bool_const_tree_true
133 #undef TARGET_RETURN_IN_MEMORY
134 #define TARGET_RETURN_IN_MEMORY m32r_return_in_memory
135 #undef TARGET_SETUP_INCOMING_VARARGS
136 #define TARGET_SETUP_INCOMING_VARARGS m32r_setup_incoming_varargs
137 #undef TARGET_MUST_PASS_IN_STACK
138 #define TARGET_MUST_PASS_IN_STACK must_pass_in_stack_var_size
139 #undef TARGET_PASS_BY_REFERENCE
140 #define TARGET_PASS_BY_REFERENCE m32r_pass_by_reference
141 #undef TARGET_ARG_PARTIAL_BYTES
142 #define TARGET_ARG_PARTIAL_BYTES m32r_arg_partial_bytes
143
144 struct gcc_target targetm = TARGET_INITIALIZER;
145
146 /* Implement TARGET_HANDLE_OPTION. */
147
148 static bool
149 m32r_handle_option (size_t code, const char *arg, int value)
150 {
151 switch (code)
152 {
153 case OPT_m32r:
154 target_flags &= ~(MASK_M32R2 | MASK_M32RX);
155 return true;
156
157 case OPT_mmodel_:
158 if (strcmp (arg, "small") == 0)
159 m32r_model = M32R_MODEL_SMALL;
160 else if (strcmp (arg, "medium") == 0)
161 m32r_model = M32R_MODEL_MEDIUM;
162 else if (strcmp (arg, "large") == 0)
163 m32r_model = M32R_MODEL_LARGE;
164 else
165 return false;
166 return true;
167
168 case OPT_msdata_:
169 if (strcmp (arg, "none") == 0)
170 m32r_sdata = M32R_SDATA_NONE;
171 else if (strcmp (arg, "sdata") == 0)
172 m32r_sdata = M32R_SDATA_SDATA;
173 else if (strcmp (arg, "use") == 0)
174 m32r_sdata = M32R_SDATA_USE;
175 else
176 return false;
177 return true;
178
179 case OPT_mno_flush_func:
180 m32r_cache_flush_func = NULL;
181 return true;
182
183 case OPT_mflush_trap_:
184 return value <= 15;
185
186 case OPT_mno_flush_trap:
187 m32r_cache_flush_trap = -1;
188 return true;
189
190 default:
191 return true;
192 }
193 }
194
195 /* Called by OVERRIDE_OPTIONS to initialize various things. */
196
197 void
198 m32r_init (void)
199 {
200 init_reg_tables ();
201
202 /* Initialize array for PRINT_OPERAND_PUNCT_VALID_P. */
203 memset (m32r_punct_chars, 0, sizeof (m32r_punct_chars));
204 m32r_punct_chars['#'] = 1;
205 m32r_punct_chars['@'] = 1; /* ??? no longer used */
206
207 /* Provide default value if not specified. */
208 if (!g_switch_set)
209 g_switch_value = SDATA_DEFAULT_SIZE;
210 }
211
212 /* Vectors to keep interesting information about registers where it can easily
213 be got. We use to use the actual mode value as the bit number, but there
214 is (or may be) more than 32 modes now. Instead we use two tables: one
215 indexed by hard register number, and one indexed by mode. */
216
217 /* The purpose of m32r_mode_class is to shrink the range of modes so that
218 they all fit (as bit numbers) in a 32-bit word (again). Each real mode is
219 mapped into one m32r_mode_class mode. */
220
221 enum m32r_mode_class
222 {
223 C_MODE,
224 S_MODE, D_MODE, T_MODE, O_MODE,
225 SF_MODE, DF_MODE, TF_MODE, OF_MODE, A_MODE
226 };
227
228 /* Modes for condition codes. */
229 #define C_MODES (1 << (int) C_MODE)
230
231 /* Modes for single-word and smaller quantities. */
232 #define S_MODES ((1 << (int) S_MODE) | (1 << (int) SF_MODE))
233
234 /* Modes for double-word and smaller quantities. */
235 #define D_MODES (S_MODES | (1 << (int) D_MODE) | (1 << DF_MODE))
236
237 /* Modes for quad-word and smaller quantities. */
238 #define T_MODES (D_MODES | (1 << (int) T_MODE) | (1 << (int) TF_MODE))
239
240 /* Modes for accumulators. */
241 #define A_MODES (1 << (int) A_MODE)
242
243 /* Value is 1 if register/mode pair is acceptable on arc. */
244
245 const unsigned int m32r_hard_regno_mode_ok[FIRST_PSEUDO_REGISTER] =
246 {
247 T_MODES, T_MODES, T_MODES, T_MODES, T_MODES, T_MODES, T_MODES, T_MODES,
248 T_MODES, T_MODES, T_MODES, T_MODES, T_MODES, S_MODES, S_MODES, S_MODES,
249 S_MODES, C_MODES, A_MODES, A_MODES
250 };
251
252 unsigned int m32r_mode_class [NUM_MACHINE_MODES];
253
254 enum reg_class m32r_regno_reg_class[FIRST_PSEUDO_REGISTER];
255
256 static void
257 init_reg_tables (void)
258 {
259 int i;
260
261 for (i = 0; i < NUM_MACHINE_MODES; i++)
262 {
263 switch (GET_MODE_CLASS (i))
264 {
265 case MODE_INT:
266 case MODE_PARTIAL_INT:
267 case MODE_COMPLEX_INT:
268 if (GET_MODE_SIZE (i) <= 4)
269 m32r_mode_class[i] = 1 << (int) S_MODE;
270 else if (GET_MODE_SIZE (i) == 8)
271 m32r_mode_class[i] = 1 << (int) D_MODE;
272 else if (GET_MODE_SIZE (i) == 16)
273 m32r_mode_class[i] = 1 << (int) T_MODE;
274 else if (GET_MODE_SIZE (i) == 32)
275 m32r_mode_class[i] = 1 << (int) O_MODE;
276 else
277 m32r_mode_class[i] = 0;
278 break;
279 case MODE_FLOAT:
280 case MODE_COMPLEX_FLOAT:
281 if (GET_MODE_SIZE (i) <= 4)
282 m32r_mode_class[i] = 1 << (int) SF_MODE;
283 else if (GET_MODE_SIZE (i) == 8)
284 m32r_mode_class[i] = 1 << (int) DF_MODE;
285 else if (GET_MODE_SIZE (i) == 16)
286 m32r_mode_class[i] = 1 << (int) TF_MODE;
287 else if (GET_MODE_SIZE (i) == 32)
288 m32r_mode_class[i] = 1 << (int) OF_MODE;
289 else
290 m32r_mode_class[i] = 0;
291 break;
292 case MODE_CC:
293 m32r_mode_class[i] = 1 << (int) C_MODE;
294 break;
295 default:
296 m32r_mode_class[i] = 0;
297 break;
298 }
299 }
300
301 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
302 {
303 if (GPR_P (i))
304 m32r_regno_reg_class[i] = GENERAL_REGS;
305 else if (i == ARG_POINTER_REGNUM)
306 m32r_regno_reg_class[i] = GENERAL_REGS;
307 else
308 m32r_regno_reg_class[i] = NO_REGS;
309 }
310 }
311
312 /* M32R specific attribute support.
313
314 interrupt - for interrupt functions
315
316 model - select code model used to access object
317
318 small: addresses use 24 bits, use bl to make calls
319 medium: addresses use 32 bits, use bl to make calls
320 large: addresses use 32 bits, use seth/add3/jl to make calls
321
322 Grep for MODEL in m32r.h for more info. */
323
324 static tree small_ident1;
325 static tree small_ident2;
326 static tree medium_ident1;
327 static tree medium_ident2;
328 static tree large_ident1;
329 static tree large_ident2;
330
331 static void
332 init_idents (void)
333 {
334 if (small_ident1 == 0)
335 {
336 small_ident1 = get_identifier ("small");
337 small_ident2 = get_identifier ("__small__");
338 medium_ident1 = get_identifier ("medium");
339 medium_ident2 = get_identifier ("__medium__");
340 large_ident1 = get_identifier ("large");
341 large_ident2 = get_identifier ("__large__");
342 }
343 }
344
345 const struct attribute_spec m32r_attribute_table[] =
346 {
347 /* { name, min_len, max_len, decl_req, type_req, fn_type_req, handler } */
348 { "interrupt", 0, 0, true, false, false, NULL },
349 { "model", 1, 1, true, false, false, m32r_handle_model_attribute },
350 { NULL, 0, 0, false, false, false, NULL }
351 };
352
353
354 /* Handle an "model" attribute; arguments as in
355 struct attribute_spec.handler. */
356 static tree
357 m32r_handle_model_attribute (tree *node ATTRIBUTE_UNUSED, tree name,
358 tree args, int flags ATTRIBUTE_UNUSED,
359 bool *no_add_attrs)
360 {
361 tree arg;
362
363 init_idents ();
364 arg = TREE_VALUE (args);
365
366 if (arg != small_ident1
367 && arg != small_ident2
368 && arg != medium_ident1
369 && arg != medium_ident2
370 && arg != large_ident1
371 && arg != large_ident2)
372 {
373 warning (OPT_Wattributes, "invalid argument of %qs attribute",
374 IDENTIFIER_POINTER (name));
375 *no_add_attrs = true;
376 }
377
378 return NULL_TREE;
379 }
380
381 /* Encode section information of DECL, which is either a VAR_DECL,
382 FUNCTION_DECL, STRING_CST, CONSTRUCTOR, or ???.
383
384 For the M32R we want to record:
385
386 - whether the object lives in .sdata/.sbss.
387 - what code model should be used to access the object
388 */
389
390 static void
391 m32r_encode_section_info (tree decl, rtx rtl, int first)
392 {
393 int extra_flags = 0;
394 tree model_attr;
395 enum m32r_model model;
396
397 default_encode_section_info (decl, rtl, first);
398
399 if (!DECL_P (decl))
400 return;
401
402 model_attr = lookup_attribute ("model", DECL_ATTRIBUTES (decl));
403 if (model_attr)
404 {
405 tree id;
406
407 init_idents ();
408
409 id = TREE_VALUE (TREE_VALUE (model_attr));
410
411 if (id == small_ident1 || id == small_ident2)
412 model = M32R_MODEL_SMALL;
413 else if (id == medium_ident1 || id == medium_ident2)
414 model = M32R_MODEL_MEDIUM;
415 else if (id == large_ident1 || id == large_ident2)
416 model = M32R_MODEL_LARGE;
417 else
418 gcc_unreachable (); /* shouldn't happen */
419 }
420 else
421 {
422 if (TARGET_MODEL_SMALL)
423 model = M32R_MODEL_SMALL;
424 else if (TARGET_MODEL_MEDIUM)
425 model = M32R_MODEL_MEDIUM;
426 else if (TARGET_MODEL_LARGE)
427 model = M32R_MODEL_LARGE;
428 else
429 gcc_unreachable (); /* shouldn't happen */
430 }
431 extra_flags |= model << SYMBOL_FLAG_MODEL_SHIFT;
432
433 if (extra_flags)
434 SYMBOL_REF_FLAGS (XEXP (rtl, 0)) |= extra_flags;
435 }
436
437 /* Only mark the object as being small data area addressable if
438 it hasn't been explicitly marked with a code model.
439
440 The user can explicitly put an object in the small data area with the
441 section attribute. If the object is in sdata/sbss and marked with a
442 code model do both [put the object in .sdata and mark it as being
443 addressed with a specific code model - don't mark it as being addressed
444 with an SDA reloc though]. This is ok and might be useful at times. If
445 the object doesn't fit the linker will give an error. */
446
447 static bool
448 m32r_in_small_data_p (const_tree decl)
449 {
450 const_tree section;
451
452 if (TREE_CODE (decl) != VAR_DECL)
453 return false;
454
455 if (lookup_attribute ("model", DECL_ATTRIBUTES (decl)))
456 return false;
457
458 section = DECL_SECTION_NAME (decl);
459 if (section)
460 {
461 const char *const name = TREE_STRING_POINTER (section);
462 if (strcmp (name, ".sdata") == 0 || strcmp (name, ".sbss") == 0)
463 return true;
464 }
465 else
466 {
467 if (! TREE_READONLY (decl) && ! TARGET_SDATA_NONE)
468 {
469 int size = int_size_in_bytes (TREE_TYPE (decl));
470
471 if (size > 0 && (unsigned HOST_WIDE_INT) size <= g_switch_value)
472 return true;
473 }
474 }
475
476 return false;
477 }
478
479 /* Do anything needed before RTL is emitted for each function. */
480
481 void
482 m32r_init_expanders (void)
483 {
484 /* ??? At one point there was code here. The function is left in
485 to make it easy to experiment. */
486 }
487
488 int
489 call_operand (rtx op, enum machine_mode mode)
490 {
491 if (GET_CODE (op) != MEM)
492 return 0;
493 op = XEXP (op, 0);
494 return call_address_operand (op, mode);
495 }
496
497 /* Return 1 if OP is a reference to an object in .sdata/.sbss. */
498
499 int
500 small_data_operand (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
501 {
502 if (! TARGET_SDATA_USE)
503 return 0;
504
505 if (GET_CODE (op) == SYMBOL_REF)
506 return SYMBOL_REF_SMALL_P (op);
507
508 if (GET_CODE (op) == CONST
509 && GET_CODE (XEXP (op, 0)) == PLUS
510 && GET_CODE (XEXP (XEXP (op, 0), 0)) == SYMBOL_REF
511 && satisfies_constraint_J (XEXP (XEXP (op, 0), 1)))
512 return SYMBOL_REF_SMALL_P (XEXP (XEXP (op, 0), 0));
513
514 return 0;
515 }
516
517 /* Return 1 if OP is a symbol that can use 24-bit addressing. */
518
519 int
520 addr24_operand (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
521 {
522 rtx sym;
523
524 if (flag_pic)
525 return 0;
526
527 if (GET_CODE (op) == LABEL_REF)
528 return TARGET_ADDR24;
529
530 if (GET_CODE (op) == SYMBOL_REF)
531 sym = op;
532 else if (GET_CODE (op) == CONST
533 && GET_CODE (XEXP (op, 0)) == PLUS
534 && GET_CODE (XEXP (XEXP (op, 0), 0)) == SYMBOL_REF
535 && satisfies_constraint_M (XEXP (XEXP (op, 0), 1)))
536 sym = XEXP (XEXP (op, 0), 0);
537 else
538 return 0;
539
540 if (SYMBOL_REF_MODEL (sym) == M32R_MODEL_SMALL)
541 return 1;
542
543 if (TARGET_ADDR24
544 && (CONSTANT_POOL_ADDRESS_P (sym)
545 || LIT_NAME_P (XSTR (sym, 0))))
546 return 1;
547
548 return 0;
549 }
550
551 /* Return 1 if OP is a symbol that needs 32-bit addressing. */
552
553 int
554 addr32_operand (rtx op, enum machine_mode mode)
555 {
556 rtx sym;
557
558 if (GET_CODE (op) == LABEL_REF)
559 return TARGET_ADDR32;
560
561 if (GET_CODE (op) == SYMBOL_REF)
562 sym = op;
563 else if (GET_CODE (op) == CONST
564 && GET_CODE (XEXP (op, 0)) == PLUS
565 && GET_CODE (XEXP (XEXP (op, 0), 0)) == SYMBOL_REF
566 && GET_CODE (XEXP (XEXP (op, 0), 1)) == CONST_INT
567 && ! flag_pic)
568 sym = XEXP (XEXP (op, 0), 0);
569 else
570 return 0;
571
572 return (! addr24_operand (sym, mode)
573 && ! small_data_operand (sym, mode));
574 }
575
576 /* Return 1 if OP is a function that can be called with the `bl' insn. */
577
578 int
579 call26_operand (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
580 {
581 if (flag_pic)
582 return 1;
583
584 if (GET_CODE (op) == SYMBOL_REF)
585 return SYMBOL_REF_MODEL (op) != M32R_MODEL_LARGE;
586
587 return TARGET_CALL26;
588 }
589
590 /* Return 1 if OP is a DImode const we want to handle inline.
591 This must match the code in the movdi pattern.
592 It is used by the 'G' CONST_DOUBLE_OK_FOR_LETTER. */
593
594 int
595 easy_di_const (rtx op)
596 {
597 rtx high_rtx, low_rtx;
598 HOST_WIDE_INT high, low;
599
600 split_double (op, &high_rtx, &low_rtx);
601 high = INTVAL (high_rtx);
602 low = INTVAL (low_rtx);
603 /* Pick constants loadable with 2 16-bit `ldi' insns. */
604 if (high >= -128 && high <= 127
605 && low >= -128 && low <= 127)
606 return 1;
607 return 0;
608 }
609
610 /* Return 1 if OP is a DFmode const we want to handle inline.
611 This must match the code in the movdf pattern.
612 It is used by the 'H' CONST_DOUBLE_OK_FOR_LETTER. */
613
614 int
615 easy_df_const (rtx op)
616 {
617 REAL_VALUE_TYPE r;
618 long l[2];
619
620 REAL_VALUE_FROM_CONST_DOUBLE (r, op);
621 REAL_VALUE_TO_TARGET_DOUBLE (r, l);
622 if (l[0] == 0 && l[1] == 0)
623 return 1;
624 if ((l[0] & 0xffff) == 0 && l[1] == 0)
625 return 1;
626 return 0;
627 }
628
629 /* Return 1 if OP is (mem (reg ...)).
630 This is used in insn length calcs. */
631
632 int
633 memreg_operand (rtx op, enum machine_mode mode ATTRIBUTE_UNUSED)
634 {
635 return GET_CODE (op) == MEM && GET_CODE (XEXP (op, 0)) == REG;
636 }
637
638 /* Return nonzero if TYPE must be passed by indirect reference. */
639
640 static bool
641 m32r_pass_by_reference (CUMULATIVE_ARGS *ca ATTRIBUTE_UNUSED,
642 enum machine_mode mode, const_tree type,
643 bool named ATTRIBUTE_UNUSED)
644 {
645 int size;
646
647 if (type)
648 size = int_size_in_bytes (type);
649 else
650 size = GET_MODE_SIZE (mode);
651
652 return (size < 0 || size > 8);
653 }
654
655 /* Comparisons. */
656
657 /* X and Y are two things to compare using CODE. Emit the compare insn and
658 return the rtx for compare [arg0 of the if_then_else].
659 If need_compare is true then the comparison insn must be generated, rather
660 than being subsumed into the following branch instruction. */
661
662 rtx
663 gen_compare (enum rtx_code code, rtx x, rtx y, int need_compare)
664 {
665 enum rtx_code compare_code;
666 enum rtx_code branch_code;
667 rtx cc_reg = gen_rtx_REG (CCmode, CARRY_REGNUM);
668 int must_swap = 0;
669
670 switch (code)
671 {
672 case EQ: compare_code = EQ; branch_code = NE; break;
673 case NE: compare_code = EQ; branch_code = EQ; break;
674 case LT: compare_code = LT; branch_code = NE; break;
675 case LE: compare_code = LT; branch_code = EQ; must_swap = 1; break;
676 case GT: compare_code = LT; branch_code = NE; must_swap = 1; break;
677 case GE: compare_code = LT; branch_code = EQ; break;
678 case LTU: compare_code = LTU; branch_code = NE; break;
679 case LEU: compare_code = LTU; branch_code = EQ; must_swap = 1; break;
680 case GTU: compare_code = LTU; branch_code = NE; must_swap = 1; break;
681 case GEU: compare_code = LTU; branch_code = EQ; break;
682
683 default:
684 gcc_unreachable ();
685 }
686
687 if (need_compare)
688 {
689 switch (compare_code)
690 {
691 case EQ:
692 if (satisfies_constraint_P (y) /* Reg equal to small const. */
693 && y != const0_rtx)
694 {
695 rtx tmp = gen_reg_rtx (SImode);
696
697 emit_insn (gen_addsi3 (tmp, x, GEN_INT (-INTVAL (y))));
698 x = tmp;
699 y = const0_rtx;
700 }
701 else if (CONSTANT_P (y)) /* Reg equal to const. */
702 {
703 rtx tmp = force_reg (GET_MODE (x), y);
704 y = tmp;
705 }
706
707 if (register_operand (y, SImode) /* Reg equal to reg. */
708 || y == const0_rtx) /* Reg equal to zero. */
709 {
710 emit_insn (gen_cmp_eqsi_insn (x, y));
711
712 return gen_rtx_fmt_ee (code, CCmode, cc_reg, const0_rtx);
713 }
714 break;
715
716 case LT:
717 if (register_operand (y, SImode)
718 || satisfies_constraint_P (y))
719 {
720 rtx tmp = gen_reg_rtx (SImode); /* Reg compared to reg. */
721
722 switch (code)
723 {
724 case LT:
725 emit_insn (gen_cmp_ltsi_insn (x, y));
726 code = EQ;
727 break;
728 case LE:
729 if (y == const0_rtx)
730 tmp = const1_rtx;
731 else
732 emit_insn (gen_addsi3 (tmp, y, constm1_rtx));
733 emit_insn (gen_cmp_ltsi_insn (x, tmp));
734 code = EQ;
735 break;
736 case GT:
737 if (GET_CODE (y) == CONST_INT)
738 tmp = gen_rtx_PLUS (SImode, y, const1_rtx);
739 else
740 emit_insn (gen_addsi3 (tmp, y, constm1_rtx));
741 emit_insn (gen_cmp_ltsi_insn (x, tmp));
742 code = NE;
743 break;
744 case GE:
745 emit_insn (gen_cmp_ltsi_insn (x, y));
746 code = NE;
747 break;
748 default:
749 gcc_unreachable ();
750 }
751
752 return gen_rtx_fmt_ee (code, CCmode, cc_reg, const0_rtx);
753 }
754 break;
755
756 case LTU:
757 if (register_operand (y, SImode)
758 || satisfies_constraint_P (y))
759 {
760 rtx tmp = gen_reg_rtx (SImode); /* Reg (unsigned) compared to reg. */
761
762 switch (code)
763 {
764 case LTU:
765 emit_insn (gen_cmp_ltusi_insn (x, y));
766 code = EQ;
767 break;
768 case LEU:
769 if (y == const0_rtx)
770 tmp = const1_rtx;
771 else
772 emit_insn (gen_addsi3 (tmp, y, constm1_rtx));
773 emit_insn (gen_cmp_ltusi_insn (x, tmp));
774 code = EQ;
775 break;
776 case GTU:
777 if (GET_CODE (y) == CONST_INT)
778 tmp = gen_rtx_PLUS (SImode, y, const1_rtx);
779 else
780 emit_insn (gen_addsi3 (tmp, y, constm1_rtx));
781 emit_insn (gen_cmp_ltusi_insn (x, tmp));
782 code = NE;
783 break;
784 case GEU:
785 emit_insn (gen_cmp_ltusi_insn (x, y));
786 code = NE;
787 break;
788 default:
789 gcc_unreachable ();
790 }
791
792 return gen_rtx_fmt_ee (code, CCmode, cc_reg, const0_rtx);
793 }
794 break;
795
796 default:
797 gcc_unreachable ();
798 }
799 }
800 else
801 {
802 /* Reg/reg equal comparison. */
803 if (compare_code == EQ
804 && register_operand (y, SImode))
805 return gen_rtx_fmt_ee (code, CCmode, x, y);
806
807 /* Reg/zero signed comparison. */
808 if ((compare_code == EQ || compare_code == LT)
809 && y == const0_rtx)
810 return gen_rtx_fmt_ee (code, CCmode, x, y);
811
812 /* Reg/smallconst equal comparison. */
813 if (compare_code == EQ
814 && satisfies_constraint_P (y))
815 {
816 rtx tmp = gen_reg_rtx (SImode);
817
818 emit_insn (gen_addsi3 (tmp, x, GEN_INT (-INTVAL (y))));
819 return gen_rtx_fmt_ee (code, CCmode, tmp, const0_rtx);
820 }
821
822 /* Reg/const equal comparison. */
823 if (compare_code == EQ
824 && CONSTANT_P (y))
825 {
826 rtx tmp = force_reg (GET_MODE (x), y);
827
828 return gen_rtx_fmt_ee (code, CCmode, x, tmp);
829 }
830 }
831
832 if (CONSTANT_P (y))
833 {
834 if (must_swap)
835 y = force_reg (GET_MODE (x), y);
836 else
837 {
838 int ok_const = reg_or_int16_operand (y, GET_MODE (y));
839
840 if (! ok_const)
841 y = force_reg (GET_MODE (x), y);
842 }
843 }
844
845 switch (compare_code)
846 {
847 case EQ :
848 emit_insn (gen_cmp_eqsi_insn (must_swap ? y : x, must_swap ? x : y));
849 break;
850 case LT :
851 emit_insn (gen_cmp_ltsi_insn (must_swap ? y : x, must_swap ? x : y));
852 break;
853 case LTU :
854 emit_insn (gen_cmp_ltusi_insn (must_swap ? y : x, must_swap ? x : y));
855 break;
856
857 default:
858 gcc_unreachable ();
859 }
860
861 return gen_rtx_fmt_ee (branch_code, VOIDmode, cc_reg, CONST0_RTX (CCmode));
862 }
863
864 /* Split a 2 word move (DI or DF) into component parts. */
865
866 rtx
867 gen_split_move_double (rtx operands[])
868 {
869 enum machine_mode mode = GET_MODE (operands[0]);
870 rtx dest = operands[0];
871 rtx src = operands[1];
872 rtx val;
873
874 /* We might have (SUBREG (MEM)) here, so just get rid of the
875 subregs to make this code simpler. It is safe to call
876 alter_subreg any time after reload. */
877 if (GET_CODE (dest) == SUBREG)
878 alter_subreg (&dest);
879 if (GET_CODE (src) == SUBREG)
880 alter_subreg (&src);
881
882 start_sequence ();
883 if (GET_CODE (dest) == REG)
884 {
885 int dregno = REGNO (dest);
886
887 /* Reg = reg. */
888 if (GET_CODE (src) == REG)
889 {
890 int sregno = REGNO (src);
891
892 int reverse = (dregno == sregno + 1);
893
894 /* We normally copy the low-numbered register first. However, if
895 the first register operand 0 is the same as the second register of
896 operand 1, we must copy in the opposite order. */
897 emit_insn (gen_rtx_SET (VOIDmode,
898 operand_subword (dest, reverse, TRUE, mode),
899 operand_subword (src, reverse, TRUE, mode)));
900
901 emit_insn (gen_rtx_SET (VOIDmode,
902 operand_subword (dest, !reverse, TRUE, mode),
903 operand_subword (src, !reverse, TRUE, mode)));
904 }
905
906 /* Reg = constant. */
907 else if (GET_CODE (src) == CONST_INT || GET_CODE (src) == CONST_DOUBLE)
908 {
909 rtx words[2];
910 split_double (src, &words[0], &words[1]);
911 emit_insn (gen_rtx_SET (VOIDmode,
912 operand_subword (dest, 0, TRUE, mode),
913 words[0]));
914
915 emit_insn (gen_rtx_SET (VOIDmode,
916 operand_subword (dest, 1, TRUE, mode),
917 words[1]));
918 }
919
920 /* Reg = mem. */
921 else if (GET_CODE (src) == MEM)
922 {
923 /* If the high-address word is used in the address, we must load it
924 last. Otherwise, load it first. */
925 int reverse
926 = (refers_to_regno_p (dregno, dregno + 1, XEXP (src, 0), 0) != 0);
927
928 /* We used to optimize loads from single registers as
929
930 ld r1,r3+; ld r2,r3
931
932 if r3 were not used subsequently. However, the REG_NOTES aren't
933 propagated correctly by the reload phase, and it can cause bad
934 code to be generated. We could still try:
935
936 ld r1,r3+; ld r2,r3; addi r3,-4
937
938 which saves 2 bytes and doesn't force longword alignment. */
939 emit_insn (gen_rtx_SET (VOIDmode,
940 operand_subword (dest, reverse, TRUE, mode),
941 adjust_address (src, SImode,
942 reverse * UNITS_PER_WORD)));
943
944 emit_insn (gen_rtx_SET (VOIDmode,
945 operand_subword (dest, !reverse, TRUE, mode),
946 adjust_address (src, SImode,
947 !reverse * UNITS_PER_WORD)));
948 }
949 else
950 gcc_unreachable ();
951 }
952
953 /* Mem = reg. */
954 /* We used to optimize loads from single registers as
955
956 st r1,r3; st r2,+r3
957
958 if r3 were not used subsequently. However, the REG_NOTES aren't
959 propagated correctly by the reload phase, and it can cause bad
960 code to be generated. We could still try:
961
962 st r1,r3; st r2,+r3; addi r3,-4
963
964 which saves 2 bytes and doesn't force longword alignment. */
965 else if (GET_CODE (dest) == MEM && GET_CODE (src) == REG)
966 {
967 emit_insn (gen_rtx_SET (VOIDmode,
968 adjust_address (dest, SImode, 0),
969 operand_subword (src, 0, TRUE, mode)));
970
971 emit_insn (gen_rtx_SET (VOIDmode,
972 adjust_address (dest, SImode, UNITS_PER_WORD),
973 operand_subword (src, 1, TRUE, mode)));
974 }
975
976 else
977 gcc_unreachable ();
978
979 val = get_insns ();
980 end_sequence ();
981 return val;
982 }
983
984
985 static int
986 m32r_arg_partial_bytes (CUMULATIVE_ARGS *cum, enum machine_mode mode,
987 tree type, bool named ATTRIBUTE_UNUSED)
988 {
989 int words;
990 unsigned int size =
991 (((mode == BLKmode && type)
992 ? (unsigned int) int_size_in_bytes (type)
993 : GET_MODE_SIZE (mode)) + UNITS_PER_WORD - 1)
994 / UNITS_PER_WORD;
995
996 if (*cum >= M32R_MAX_PARM_REGS)
997 words = 0;
998 else if (*cum + size > M32R_MAX_PARM_REGS)
999 words = (*cum + size) - M32R_MAX_PARM_REGS;
1000 else
1001 words = 0;
1002
1003 return words * UNITS_PER_WORD;
1004 }
1005
1006 /* Worker function for TARGET_RETURN_IN_MEMORY. */
1007
1008 static bool
1009 m32r_return_in_memory (const_tree type, const_tree fntype ATTRIBUTE_UNUSED)
1010 {
1011 return m32r_pass_by_reference (NULL, TYPE_MODE (type), type, false);
1012 }
1013
1014 /* Do any needed setup for a variadic function. For the M32R, we must
1015 create a register parameter block, and then copy any anonymous arguments
1016 in registers to memory.
1017
1018 CUM has not been updated for the last named argument which has type TYPE
1019 and mode MODE, and we rely on this fact. */
1020
1021 static void
1022 m32r_setup_incoming_varargs (CUMULATIVE_ARGS *cum, enum machine_mode mode,
1023 tree type, int *pretend_size, int no_rtl)
1024 {
1025 int first_anon_arg;
1026
1027 if (no_rtl)
1028 return;
1029
1030 /* All BLKmode values are passed by reference. */
1031 gcc_assert (mode != BLKmode);
1032
1033 first_anon_arg = (ROUND_ADVANCE_CUM (*cum, mode, type)
1034 + ROUND_ADVANCE_ARG (mode, type));
1035
1036 if (first_anon_arg < M32R_MAX_PARM_REGS)
1037 {
1038 /* Note that first_reg_offset < M32R_MAX_PARM_REGS. */
1039 int first_reg_offset = first_anon_arg;
1040 /* Size in words to "pretend" allocate. */
1041 int size = M32R_MAX_PARM_REGS - first_reg_offset;
1042 rtx regblock;
1043
1044 regblock = gen_frame_mem (BLKmode,
1045 plus_constant (arg_pointer_rtx,
1046 FIRST_PARM_OFFSET (0)));
1047 set_mem_alias_set (regblock, get_varargs_alias_set ());
1048 move_block_from_reg (first_reg_offset, regblock, size);
1049
1050 *pretend_size = (size * UNITS_PER_WORD);
1051 }
1052 }
1053
1054
1055 /* Return true if INSN is real instruction bearing insn. */
1056
1057 static int
1058 m32r_is_insn (rtx insn)
1059 {
1060 return (INSN_P (insn)
1061 && GET_CODE (PATTERN (insn)) != USE
1062 && GET_CODE (PATTERN (insn)) != CLOBBER
1063 && GET_CODE (PATTERN (insn)) != ADDR_VEC);
1064 }
1065
1066 /* Increase the priority of long instructions so that the
1067 short instructions are scheduled ahead of the long ones. */
1068
1069 static int
1070 m32r_adjust_priority (rtx insn, int priority)
1071 {
1072 if (m32r_is_insn (insn)
1073 && get_attr_insn_size (insn) != INSN_SIZE_SHORT)
1074 priority <<= 3;
1075
1076 return priority;
1077 }
1078
1079
1080 /* Indicate how many instructions can be issued at the same time.
1081 This is sort of a lie. The m32r can issue only 1 long insn at
1082 once, but it can issue 2 short insns. The default therefore is
1083 set at 2, but this can be overridden by the command line option
1084 -missue-rate=1. */
1085
1086 static int
1087 m32r_issue_rate (void)
1088 {
1089 return ((TARGET_LOW_ISSUE_RATE) ? 1 : 2);
1090 }
1091
1092 /* Cost functions. */
1093
1094 static bool
1095 m32r_rtx_costs (rtx x, int code, int outer_code ATTRIBUTE_UNUSED, int *total,
1096 bool speed ATTRIBUTE_UNUSED)
1097 {
1098 switch (code)
1099 {
1100 /* Small integers are as cheap as registers. 4 byte values can be
1101 fetched as immediate constants - let's give that the cost of an
1102 extra insn. */
1103 case CONST_INT:
1104 if (INT16_P (INTVAL (x)))
1105 {
1106 *total = 0;
1107 return true;
1108 }
1109 /* FALLTHRU */
1110
1111 case CONST:
1112 case LABEL_REF:
1113 case SYMBOL_REF:
1114 *total = COSTS_N_INSNS (1);
1115 return true;
1116
1117 case CONST_DOUBLE:
1118 {
1119 rtx high, low;
1120
1121 split_double (x, &high, &low);
1122 *total = COSTS_N_INSNS (!INT16_P (INTVAL (high))
1123 + !INT16_P (INTVAL (low)));
1124 return true;
1125 }
1126
1127 case MULT:
1128 *total = COSTS_N_INSNS (3);
1129 return true;
1130
1131 case DIV:
1132 case UDIV:
1133 case MOD:
1134 case UMOD:
1135 *total = COSTS_N_INSNS (10);
1136 return true;
1137
1138 default:
1139 return false;
1140 }
1141 }
1142
1143 /* Type of function DECL.
1144
1145 The result is cached. To reset the cache at the end of a function,
1146 call with DECL = NULL_TREE. */
1147
1148 enum m32r_function_type
1149 m32r_compute_function_type (tree decl)
1150 {
1151 /* Cached value. */
1152 static enum m32r_function_type fn_type = M32R_FUNCTION_UNKNOWN;
1153 /* Last function we were called for. */
1154 static tree last_fn = NULL_TREE;
1155
1156 /* Resetting the cached value? */
1157 if (decl == NULL_TREE)
1158 {
1159 fn_type = M32R_FUNCTION_UNKNOWN;
1160 last_fn = NULL_TREE;
1161 return fn_type;
1162 }
1163
1164 if (decl == last_fn && fn_type != M32R_FUNCTION_UNKNOWN)
1165 return fn_type;
1166
1167 /* Compute function type. */
1168 fn_type = (lookup_attribute ("interrupt", DECL_ATTRIBUTES (current_function_decl)) != NULL_TREE
1169 ? M32R_FUNCTION_INTERRUPT
1170 : M32R_FUNCTION_NORMAL);
1171
1172 last_fn = decl;
1173 return fn_type;
1174 }
1175 /* Function prologue/epilogue handlers. */
1176
1177 /* M32R stack frames look like:
1178
1179 Before call After call
1180 +-----------------------+ +-----------------------+
1181 | | | |
1182 high | local variables, | | local variables, |
1183 mem | reg save area, etc. | | reg save area, etc. |
1184 | | | |
1185 +-----------------------+ +-----------------------+
1186 | | | |
1187 | arguments on stack. | | arguments on stack. |
1188 | | | |
1189 SP+0->+-----------------------+ +-----------------------+
1190 | reg parm save area, |
1191 | only created for |
1192 | variable argument |
1193 | functions |
1194 +-----------------------+
1195 | previous frame ptr |
1196 +-----------------------+
1197 | |
1198 | register save area |
1199 | |
1200 +-----------------------+
1201 | return address |
1202 +-----------------------+
1203 | |
1204 | local variables |
1205 | |
1206 +-----------------------+
1207 | |
1208 | alloca allocations |
1209 | |
1210 +-----------------------+
1211 | |
1212 low | arguments on stack |
1213 memory | |
1214 SP+0->+-----------------------+
1215
1216 Notes:
1217 1) The "reg parm save area" does not exist for non variable argument fns.
1218 2) The "reg parm save area" can be eliminated completely if we saved regs
1219 containing anonymous args separately but that complicates things too
1220 much (so it's not done).
1221 3) The return address is saved after the register save area so as to have as
1222 many insns as possible between the restoration of `lr' and the `jmp lr'. */
1223
1224 /* Structure to be filled in by m32r_compute_frame_size with register
1225 save masks, and offsets for the current function. */
1226 struct m32r_frame_info
1227 {
1228 unsigned int total_size; /* # bytes that the entire frame takes up. */
1229 unsigned int extra_size; /* # bytes of extra stuff. */
1230 unsigned int pretend_size; /* # bytes we push and pretend caller did. */
1231 unsigned int args_size; /* # bytes that outgoing arguments take up. */
1232 unsigned int reg_size; /* # bytes needed to store regs. */
1233 unsigned int var_size; /* # bytes that variables take up. */
1234 unsigned int gmask; /* Mask of saved gp registers. */
1235 unsigned int save_fp; /* Nonzero if fp must be saved. */
1236 unsigned int save_lr; /* Nonzero if lr (return addr) must be saved. */
1237 int initialized; /* Nonzero if frame size already calculated. */
1238 };
1239
1240 /* Current frame information calculated by m32r_compute_frame_size. */
1241 static struct m32r_frame_info current_frame_info;
1242
1243 /* Zero structure to initialize current_frame_info. */
1244 static struct m32r_frame_info zero_frame_info;
1245
1246 #define FRAME_POINTER_MASK (1 << (FRAME_POINTER_REGNUM))
1247 #define RETURN_ADDR_MASK (1 << (RETURN_ADDR_REGNUM))
1248
1249 /* Tell prologue and epilogue if register REGNO should be saved / restored.
1250 The return address and frame pointer are treated separately.
1251 Don't consider them here. */
1252 #define MUST_SAVE_REGISTER(regno, interrupt_p) \
1253 ((regno) != RETURN_ADDR_REGNUM && (regno) != FRAME_POINTER_REGNUM \
1254 && (df_regs_ever_live_p (regno) && (!call_really_used_regs[regno] || interrupt_p)))
1255
1256 #define MUST_SAVE_FRAME_POINTER (df_regs_ever_live_p (FRAME_POINTER_REGNUM))
1257 #define MUST_SAVE_RETURN_ADDR (df_regs_ever_live_p (RETURN_ADDR_REGNUM) || crtl->profile)
1258
1259 #define SHORT_INSN_SIZE 2 /* Size of small instructions. */
1260 #define LONG_INSN_SIZE 4 /* Size of long instructions. */
1261
1262 /* Return the bytes needed to compute the frame pointer from the current
1263 stack pointer.
1264
1265 SIZE is the size needed for local variables. */
1266
1267 unsigned int
1268 m32r_compute_frame_size (int size) /* # of var. bytes allocated. */
1269 {
1270 unsigned int regno;
1271 unsigned int total_size, var_size, args_size, pretend_size, extra_size;
1272 unsigned int reg_size, frame_size;
1273 unsigned int gmask;
1274 enum m32r_function_type fn_type;
1275 int interrupt_p;
1276 int pic_reg_used = flag_pic && (crtl->uses_pic_offset_table
1277 | crtl->profile);
1278
1279 var_size = M32R_STACK_ALIGN (size);
1280 args_size = M32R_STACK_ALIGN (crtl->outgoing_args_size);
1281 pretend_size = crtl->args.pretend_args_size;
1282 extra_size = FIRST_PARM_OFFSET (0);
1283 total_size = extra_size + pretend_size + args_size + var_size;
1284 reg_size = 0;
1285 gmask = 0;
1286
1287 /* See if this is an interrupt handler. Call used registers must be saved
1288 for them too. */
1289 fn_type = m32r_compute_function_type (current_function_decl);
1290 interrupt_p = M32R_INTERRUPT_P (fn_type);
1291
1292 /* Calculate space needed for registers. */
1293 for (regno = 0; regno < M32R_MAX_INT_REGS; regno++)
1294 {
1295 if (MUST_SAVE_REGISTER (regno, interrupt_p)
1296 || (regno == PIC_OFFSET_TABLE_REGNUM && pic_reg_used))
1297 {
1298 reg_size += UNITS_PER_WORD;
1299 gmask |= 1 << regno;
1300 }
1301 }
1302
1303 current_frame_info.save_fp = MUST_SAVE_FRAME_POINTER;
1304 current_frame_info.save_lr = MUST_SAVE_RETURN_ADDR || pic_reg_used;
1305
1306 reg_size += ((current_frame_info.save_fp + current_frame_info.save_lr)
1307 * UNITS_PER_WORD);
1308 total_size += reg_size;
1309
1310 /* ??? Not sure this is necessary, and I don't think the epilogue
1311 handler will do the right thing if this changes total_size. */
1312 total_size = M32R_STACK_ALIGN (total_size);
1313
1314 frame_size = total_size - (pretend_size + reg_size);
1315
1316 /* Save computed information. */
1317 current_frame_info.total_size = total_size;
1318 current_frame_info.extra_size = extra_size;
1319 current_frame_info.pretend_size = pretend_size;
1320 current_frame_info.var_size = var_size;
1321 current_frame_info.args_size = args_size;
1322 current_frame_info.reg_size = reg_size;
1323 current_frame_info.gmask = gmask;
1324 current_frame_info.initialized = reload_completed;
1325
1326 /* Ok, we're done. */
1327 return total_size;
1328 }
1329
1330 /* The table we use to reference PIC data. */
1331 static rtx global_offset_table;
1332
1333 static void
1334 m32r_reload_lr (rtx sp, int size)
1335 {
1336 rtx lr = gen_rtx_REG (Pmode, RETURN_ADDR_REGNUM);
1337
1338 if (size == 0)
1339 emit_insn (gen_movsi (lr, gen_frame_mem (Pmode, sp)));
1340 else if (size < 32768)
1341 emit_insn (gen_movsi (lr, gen_frame_mem (Pmode,
1342 gen_rtx_PLUS (Pmode, sp,
1343 GEN_INT (size)))));
1344 else
1345 {
1346 rtx tmp = gen_rtx_REG (Pmode, PROLOGUE_TMP_REGNUM);
1347
1348 emit_insn (gen_movsi (tmp, GEN_INT (size)));
1349 emit_insn (gen_addsi3 (tmp, tmp, sp));
1350 emit_insn (gen_movsi (lr, gen_frame_mem (Pmode, tmp)));
1351 }
1352
1353 emit_use (lr);
1354 }
1355
1356 void
1357 m32r_load_pic_register (void)
1358 {
1359 global_offset_table = gen_rtx_SYMBOL_REF (Pmode, "_GLOBAL_OFFSET_TABLE_");
1360 emit_insn (gen_get_pc (pic_offset_table_rtx, global_offset_table,
1361 GEN_INT (TARGET_MODEL_SMALL)));
1362
1363 /* Need to emit this whether or not we obey regdecls,
1364 since setjmp/longjmp can cause life info to screw up. */
1365 emit_use (pic_offset_table_rtx);
1366 }
1367
1368 /* Expand the m32r prologue as a series of insns. */
1369
1370 void
1371 m32r_expand_prologue (void)
1372 {
1373 int regno;
1374 int frame_size;
1375 unsigned int gmask;
1376 int pic_reg_used = flag_pic && (crtl->uses_pic_offset_table
1377 | crtl->profile);
1378
1379 if (! current_frame_info.initialized)
1380 m32r_compute_frame_size (get_frame_size ());
1381
1382 gmask = current_frame_info.gmask;
1383
1384 /* These cases shouldn't happen. Catch them now. */
1385 gcc_assert (current_frame_info.total_size || !gmask);
1386
1387 /* Allocate space for register arguments if this is a variadic function. */
1388 if (current_frame_info.pretend_size != 0)
1389 {
1390 /* Use a HOST_WIDE_INT temporary, since negating an unsigned int gives
1391 the wrong result on a 64-bit host. */
1392 HOST_WIDE_INT pretend_size = current_frame_info.pretend_size;
1393 emit_insn (gen_addsi3 (stack_pointer_rtx,
1394 stack_pointer_rtx,
1395 GEN_INT (-pretend_size)));
1396 }
1397
1398 /* Save any registers we need to and set up fp. */
1399 if (current_frame_info.save_fp)
1400 emit_insn (gen_movsi_push (stack_pointer_rtx, frame_pointer_rtx));
1401
1402 gmask &= ~(FRAME_POINTER_MASK | RETURN_ADDR_MASK);
1403
1404 /* Save any needed call-saved regs (and call-used if this is an
1405 interrupt handler). */
1406 for (regno = 0; regno <= M32R_MAX_INT_REGS; ++regno)
1407 {
1408 if ((gmask & (1 << regno)) != 0)
1409 emit_insn (gen_movsi_push (stack_pointer_rtx,
1410 gen_rtx_REG (Pmode, regno)));
1411 }
1412
1413 if (current_frame_info.save_lr)
1414 emit_insn (gen_movsi_push (stack_pointer_rtx,
1415 gen_rtx_REG (Pmode, RETURN_ADDR_REGNUM)));
1416
1417 /* Allocate the stack frame. */
1418 frame_size = (current_frame_info.total_size
1419 - (current_frame_info.pretend_size
1420 + current_frame_info.reg_size));
1421
1422 if (frame_size == 0)
1423 ; /* Nothing to do. */
1424 else if (frame_size <= 32768)
1425 emit_insn (gen_addsi3 (stack_pointer_rtx, stack_pointer_rtx,
1426 GEN_INT (-frame_size)));
1427 else
1428 {
1429 rtx tmp = gen_rtx_REG (Pmode, PROLOGUE_TMP_REGNUM);
1430
1431 emit_insn (gen_movsi (tmp, GEN_INT (frame_size)));
1432 emit_insn (gen_subsi3 (stack_pointer_rtx, stack_pointer_rtx, tmp));
1433 }
1434
1435 if (frame_pointer_needed)
1436 emit_insn (gen_movsi (frame_pointer_rtx, stack_pointer_rtx));
1437
1438 if (crtl->profile)
1439 /* Push lr for mcount (form_pc, x). */
1440 emit_insn (gen_movsi_push (stack_pointer_rtx,
1441 gen_rtx_REG (Pmode, RETURN_ADDR_REGNUM)));
1442
1443 if (pic_reg_used)
1444 {
1445 m32r_load_pic_register ();
1446 m32r_reload_lr (stack_pointer_rtx,
1447 (crtl->profile ? 0 : frame_size));
1448 }
1449
1450 if (crtl->profile && !pic_reg_used)
1451 emit_insn (gen_blockage ());
1452 }
1453
1454
1455 /* Set up the stack and frame pointer (if desired) for the function.
1456 Note, if this is changed, you need to mirror the changes in
1457 m32r_compute_frame_size which calculates the prolog size. */
1458
1459 static void
1460 m32r_output_function_prologue (FILE * file, HOST_WIDE_INT size)
1461 {
1462 enum m32r_function_type fn_type = m32r_compute_function_type (current_function_decl);
1463
1464 /* If this is an interrupt handler, mark it as such. */
1465 if (M32R_INTERRUPT_P (fn_type))
1466 fprintf (file, "\t%s interrupt handler\n", ASM_COMMENT_START);
1467
1468 if (! current_frame_info.initialized)
1469 m32r_compute_frame_size (size);
1470
1471 /* This is only for the human reader. */
1472 fprintf (file,
1473 "\t%s PROLOGUE, vars= %d, regs= %d, args= %d, extra= %d\n",
1474 ASM_COMMENT_START,
1475 current_frame_info.var_size,
1476 current_frame_info.reg_size / 4,
1477 current_frame_info.args_size,
1478 current_frame_info.extra_size);
1479 }
1480
1481 /* Output RTL to pop register REGNO from the stack. */
1482
1483 static void
1484 pop (int regno)
1485 {
1486 rtx x;
1487
1488 x = emit_insn (gen_movsi_pop (gen_rtx_REG (Pmode, regno),
1489 stack_pointer_rtx));
1490 REG_NOTES (x)
1491 = gen_rtx_EXPR_LIST (REG_INC, stack_pointer_rtx, 0);
1492 }
1493
1494 /* Expand the m32r epilogue as a series of insns. */
1495
1496 void
1497 m32r_expand_epilogue (void)
1498 {
1499 int regno;
1500 int noepilogue = FALSE;
1501 int total_size;
1502
1503 gcc_assert (current_frame_info.initialized);
1504 total_size = current_frame_info.total_size;
1505
1506 if (total_size == 0)
1507 {
1508 rtx insn = get_last_insn ();
1509
1510 /* If the last insn was a BARRIER, we don't have to write any code
1511 because a jump (aka return) was put there. */
1512 if (insn && GET_CODE (insn) == NOTE)
1513 insn = prev_nonnote_insn (insn);
1514 if (insn && GET_CODE (insn) == BARRIER)
1515 noepilogue = TRUE;
1516 }
1517
1518 if (!noepilogue)
1519 {
1520 unsigned int var_size = current_frame_info.var_size;
1521 unsigned int args_size = current_frame_info.args_size;
1522 unsigned int gmask = current_frame_info.gmask;
1523 int can_trust_sp_p = !cfun->calls_alloca;
1524
1525 if (flag_exceptions)
1526 emit_insn (gen_blockage ());
1527
1528 /* The first thing to do is point the sp at the bottom of the register
1529 save area. */
1530 if (can_trust_sp_p)
1531 {
1532 unsigned int reg_offset = var_size + args_size;
1533
1534 if (reg_offset == 0)
1535 ; /* Nothing to do. */
1536 else if (reg_offset < 32768)
1537 emit_insn (gen_addsi3 (stack_pointer_rtx, stack_pointer_rtx,
1538 GEN_INT (reg_offset)));
1539 else
1540 {
1541 rtx tmp = gen_rtx_REG (Pmode, PROLOGUE_TMP_REGNUM);
1542
1543 emit_insn (gen_movsi (tmp, GEN_INT (reg_offset)));
1544 emit_insn (gen_addsi3 (stack_pointer_rtx, stack_pointer_rtx,
1545 tmp));
1546 }
1547 }
1548 else if (frame_pointer_needed)
1549 {
1550 unsigned int reg_offset = var_size + args_size;
1551
1552 if (reg_offset == 0)
1553 emit_insn (gen_movsi (stack_pointer_rtx, frame_pointer_rtx));
1554 else if (reg_offset < 32768)
1555 emit_insn (gen_addsi3 (stack_pointer_rtx, frame_pointer_rtx,
1556 GEN_INT (reg_offset)));
1557 else
1558 {
1559 rtx tmp = gen_rtx_REG (Pmode, PROLOGUE_TMP_REGNUM);
1560
1561 emit_insn (gen_movsi (tmp, GEN_INT (reg_offset)));
1562 emit_insn (gen_movsi (stack_pointer_rtx, frame_pointer_rtx));
1563 emit_insn (gen_addsi3 (stack_pointer_rtx, stack_pointer_rtx,
1564 tmp));
1565 }
1566 }
1567 else
1568 gcc_unreachable ();
1569
1570 if (current_frame_info.save_lr)
1571 pop (RETURN_ADDR_REGNUM);
1572
1573 /* Restore any saved registers, in reverse order of course. */
1574 gmask &= ~(FRAME_POINTER_MASK | RETURN_ADDR_MASK);
1575 for (regno = M32R_MAX_INT_REGS - 1; regno >= 0; --regno)
1576 {
1577 if ((gmask & (1L << regno)) != 0)
1578 pop (regno);
1579 }
1580
1581 if (current_frame_info.save_fp)
1582 pop (FRAME_POINTER_REGNUM);
1583
1584 /* Remove varargs area if present. */
1585 if (current_frame_info.pretend_size != 0)
1586 emit_insn (gen_addsi3 (stack_pointer_rtx, stack_pointer_rtx,
1587 GEN_INT (current_frame_info.pretend_size)));
1588
1589 emit_insn (gen_blockage ());
1590 }
1591 }
1592
1593 /* Do any necessary cleanup after a function to restore stack, frame,
1594 and regs. */
1595
1596 static void
1597 m32r_output_function_epilogue (FILE * file ATTRIBUTE_UNUSED,
1598 HOST_WIDE_INT size ATTRIBUTE_UNUSED)
1599 {
1600 /* Reset state info for each function. */
1601 current_frame_info = zero_frame_info;
1602 m32r_compute_function_type (NULL_TREE);
1603 }
1604
1605 /* Return nonzero if this function is known to have a null or 1 instruction
1606 epilogue. */
1607
1608 int
1609 direct_return (void)
1610 {
1611 if (!reload_completed)
1612 return FALSE;
1613
1614 if (M32R_INTERRUPT_P (m32r_compute_function_type (current_function_decl)))
1615 return FALSE;
1616
1617 if (! current_frame_info.initialized)
1618 m32r_compute_frame_size (get_frame_size ());
1619
1620 return current_frame_info.total_size == 0;
1621 }
1622
1623
1624 /* PIC. */
1625
1626 int
1627 m32r_legitimate_pic_operand_p (rtx x)
1628 {
1629 if (GET_CODE (x) == SYMBOL_REF || GET_CODE (x) == LABEL_REF)
1630 return 0;
1631
1632 if (GET_CODE (x) == CONST
1633 && GET_CODE (XEXP (x, 0)) == PLUS
1634 && (GET_CODE (XEXP (XEXP (x, 0), 0)) == SYMBOL_REF
1635 || GET_CODE (XEXP (XEXP (x, 0), 0)) == LABEL_REF)
1636 && (GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT))
1637 return 0;
1638
1639 return 1;
1640 }
1641
1642 rtx
1643 m32r_legitimize_pic_address (rtx orig, rtx reg)
1644 {
1645 #ifdef DEBUG_PIC
1646 printf("m32r_legitimize_pic_address()\n");
1647 #endif
1648
1649 if (GET_CODE (orig) == SYMBOL_REF || GET_CODE (orig) == LABEL_REF)
1650 {
1651 rtx pic_ref, address;
1652 rtx insn;
1653 int subregs = 0;
1654
1655 if (reg == 0)
1656 {
1657 gcc_assert (!reload_in_progress && !reload_completed);
1658 reg = gen_reg_rtx (Pmode);
1659
1660 subregs = 1;
1661 }
1662
1663 if (subregs)
1664 address = gen_reg_rtx (Pmode);
1665 else
1666 address = reg;
1667
1668 crtl->uses_pic_offset_table = 1;
1669
1670 if (GET_CODE (orig) == LABEL_REF
1671 || (GET_CODE (orig) == SYMBOL_REF && SYMBOL_REF_LOCAL_P (orig)))
1672 {
1673 emit_insn (gen_gotoff_load_addr (reg, orig));
1674 emit_insn (gen_addsi3 (reg, reg, pic_offset_table_rtx));
1675 return reg;
1676 }
1677
1678 emit_insn (gen_pic_load_addr (address, orig));
1679
1680 emit_insn (gen_addsi3 (address, address, pic_offset_table_rtx));
1681 pic_ref = gen_const_mem (Pmode, address);
1682 insn = emit_move_insn (reg, pic_ref);
1683 #if 0
1684 /* Put a REG_EQUAL note on this insn, so that it can be optimized
1685 by loop. */
1686 set_unique_reg_note (insn, REG_EQUAL, orig);
1687 #endif
1688 return reg;
1689 }
1690 else if (GET_CODE (orig) == CONST)
1691 {
1692 rtx base, offset;
1693
1694 if (GET_CODE (XEXP (orig, 0)) == PLUS
1695 && XEXP (XEXP (orig, 0), 1) == pic_offset_table_rtx)
1696 return orig;
1697
1698 if (reg == 0)
1699 {
1700 gcc_assert (!reload_in_progress && !reload_completed);
1701 reg = gen_reg_rtx (Pmode);
1702 }
1703
1704 if (GET_CODE (XEXP (orig, 0)) == PLUS)
1705 {
1706 base = m32r_legitimize_pic_address (XEXP (XEXP (orig, 0), 0), reg);
1707 if (base == reg)
1708 offset = m32r_legitimize_pic_address (XEXP (XEXP (orig, 0), 1), NULL_RTX);
1709 else
1710 offset = m32r_legitimize_pic_address (XEXP (XEXP (orig, 0), 1), reg);
1711 }
1712 else
1713 return orig;
1714
1715 if (GET_CODE (offset) == CONST_INT)
1716 {
1717 if (INT16_P (INTVAL (offset)))
1718 return plus_constant (base, INTVAL (offset));
1719 else
1720 {
1721 gcc_assert (! reload_in_progress && ! reload_completed);
1722 offset = force_reg (Pmode, offset);
1723 }
1724 }
1725
1726 return gen_rtx_PLUS (Pmode, base, offset);
1727 }
1728
1729 return orig;
1730 }
1731
1732 /* Nested function support. */
1733
1734 /* Emit RTL insns to initialize the variable parts of a trampoline.
1735 FNADDR is an RTX for the address of the function's pure code.
1736 CXT is an RTX for the static chain value for the function. */
1737
1738 void
1739 m32r_initialize_trampoline (rtx tramp ATTRIBUTE_UNUSED,
1740 rtx fnaddr ATTRIBUTE_UNUSED,
1741 rtx cxt ATTRIBUTE_UNUSED)
1742 {
1743 }
1744
1745 static void
1746 m32r_file_start (void)
1747 {
1748 default_file_start ();
1749
1750 if (flag_verbose_asm)
1751 fprintf (asm_out_file,
1752 "%s M32R/D special options: -G " HOST_WIDE_INT_PRINT_UNSIGNED "\n",
1753 ASM_COMMENT_START, g_switch_value);
1754
1755 if (TARGET_LITTLE_ENDIAN)
1756 fprintf (asm_out_file, "\t.little\n");
1757 }
1758
1759 /* Print operand X (an rtx) in assembler syntax to file FILE.
1760 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
1761 For `%' followed by punctuation, CODE is the punctuation and X is null. */
1762
1763 void
1764 m32r_print_operand (FILE * file, rtx x, int code)
1765 {
1766 rtx addr;
1767
1768 switch (code)
1769 {
1770 /* The 's' and 'p' codes are used by output_block_move() to
1771 indicate post-increment 's'tores and 'p're-increment loads. */
1772 case 's':
1773 if (GET_CODE (x) == REG)
1774 fprintf (file, "@+%s", reg_names [REGNO (x)]);
1775 else
1776 output_operand_lossage ("invalid operand to %%s code");
1777 return;
1778
1779 case 'p':
1780 if (GET_CODE (x) == REG)
1781 fprintf (file, "@%s+", reg_names [REGNO (x)]);
1782 else
1783 output_operand_lossage ("invalid operand to %%p code");
1784 return;
1785
1786 case 'R' :
1787 /* Write second word of DImode or DFmode reference,
1788 register or memory. */
1789 if (GET_CODE (x) == REG)
1790 fputs (reg_names[REGNO (x)+1], file);
1791 else if (GET_CODE (x) == MEM)
1792 {
1793 fprintf (file, "@(");
1794 /* Handle possible auto-increment. Since it is pre-increment and
1795 we have already done it, we can just use an offset of four. */
1796 /* ??? This is taken from rs6000.c I think. I don't think it is
1797 currently necessary, but keep it around. */
1798 if (GET_CODE (XEXP (x, 0)) == PRE_INC
1799 || GET_CODE (XEXP (x, 0)) == PRE_DEC)
1800 output_address (plus_constant (XEXP (XEXP (x, 0), 0), 4));
1801 else
1802 output_address (plus_constant (XEXP (x, 0), 4));
1803 fputc (')', file);
1804 }
1805 else
1806 output_operand_lossage ("invalid operand to %%R code");
1807 return;
1808
1809 case 'H' : /* High word. */
1810 case 'L' : /* Low word. */
1811 if (GET_CODE (x) == REG)
1812 {
1813 /* L = least significant word, H = most significant word. */
1814 if ((WORDS_BIG_ENDIAN != 0) ^ (code == 'L'))
1815 fputs (reg_names[REGNO (x)], file);
1816 else
1817 fputs (reg_names[REGNO (x)+1], file);
1818 }
1819 else if (GET_CODE (x) == CONST_INT
1820 || GET_CODE (x) == CONST_DOUBLE)
1821 {
1822 rtx first, second;
1823
1824 split_double (x, &first, &second);
1825 fprintf (file, HOST_WIDE_INT_PRINT_HEX,
1826 code == 'L' ? INTVAL (first) : INTVAL (second));
1827 }
1828 else
1829 output_operand_lossage ("invalid operand to %%H/%%L code");
1830 return;
1831
1832 case 'A' :
1833 {
1834 char str[30];
1835
1836 if (GET_CODE (x) != CONST_DOUBLE
1837 || GET_MODE_CLASS (GET_MODE (x)) != MODE_FLOAT)
1838 fatal_insn ("bad insn for 'A'", x);
1839
1840 real_to_decimal (str, CONST_DOUBLE_REAL_VALUE (x), sizeof (str), 0, 1);
1841 fprintf (file, "%s", str);
1842 return;
1843 }
1844
1845 case 'B' : /* Bottom half. */
1846 case 'T' : /* Top half. */
1847 /* Output the argument to a `seth' insn (sets the Top half-word).
1848 For constants output arguments to a seth/or3 pair to set Top and
1849 Bottom halves. For symbols output arguments to a seth/add3 pair to
1850 set Top and Bottom halves. The difference exists because for
1851 constants seth/or3 is more readable but for symbols we need to use
1852 the same scheme as `ld' and `st' insns (16-bit addend is signed). */
1853 switch (GET_CODE (x))
1854 {
1855 case CONST_INT :
1856 case CONST_DOUBLE :
1857 {
1858 rtx first, second;
1859
1860 split_double (x, &first, &second);
1861 x = WORDS_BIG_ENDIAN ? second : first;
1862 fprintf (file, HOST_WIDE_INT_PRINT_HEX,
1863 (code == 'B'
1864 ? INTVAL (x) & 0xffff
1865 : (INTVAL (x) >> 16) & 0xffff));
1866 }
1867 return;
1868 case CONST :
1869 case SYMBOL_REF :
1870 if (code == 'B'
1871 && small_data_operand (x, VOIDmode))
1872 {
1873 fputs ("sda(", file);
1874 output_addr_const (file, x);
1875 fputc (')', file);
1876 return;
1877 }
1878 /* fall through */
1879 case LABEL_REF :
1880 fputs (code == 'T' ? "shigh(" : "low(", file);
1881 output_addr_const (file, x);
1882 fputc (')', file);
1883 return;
1884 default :
1885 output_operand_lossage ("invalid operand to %%T/%%B code");
1886 return;
1887 }
1888 break;
1889
1890 case 'U' :
1891 /* ??? wip */
1892 /* Output a load/store with update indicator if appropriate. */
1893 if (GET_CODE (x) == MEM)
1894 {
1895 if (GET_CODE (XEXP (x, 0)) == PRE_INC
1896 || GET_CODE (XEXP (x, 0)) == PRE_DEC)
1897 fputs (".a", file);
1898 }
1899 else
1900 output_operand_lossage ("invalid operand to %%U code");
1901 return;
1902
1903 case 'N' :
1904 /* Print a constant value negated. */
1905 if (GET_CODE (x) == CONST_INT)
1906 output_addr_const (file, GEN_INT (- INTVAL (x)));
1907 else
1908 output_operand_lossage ("invalid operand to %%N code");
1909 return;
1910
1911 case 'X' :
1912 /* Print a const_int in hex. Used in comments. */
1913 if (GET_CODE (x) == CONST_INT)
1914 fprintf (file, HOST_WIDE_INT_PRINT_HEX, INTVAL (x));
1915 return;
1916
1917 case '#' :
1918 fputs (IMMEDIATE_PREFIX, file);
1919 return;
1920
1921 case 0 :
1922 /* Do nothing special. */
1923 break;
1924
1925 default :
1926 /* Unknown flag. */
1927 output_operand_lossage ("invalid operand output code");
1928 }
1929
1930 switch (GET_CODE (x))
1931 {
1932 case REG :
1933 fputs (reg_names[REGNO (x)], file);
1934 break;
1935
1936 case MEM :
1937 addr = XEXP (x, 0);
1938 if (GET_CODE (addr) == PRE_INC)
1939 {
1940 if (GET_CODE (XEXP (addr, 0)) != REG)
1941 fatal_insn ("pre-increment address is not a register", x);
1942
1943 fprintf (file, "@+%s", reg_names[REGNO (XEXP (addr, 0))]);
1944 }
1945 else if (GET_CODE (addr) == PRE_DEC)
1946 {
1947 if (GET_CODE (XEXP (addr, 0)) != REG)
1948 fatal_insn ("pre-decrement address is not a register", x);
1949
1950 fprintf (file, "@-%s", reg_names[REGNO (XEXP (addr, 0))]);
1951 }
1952 else if (GET_CODE (addr) == POST_INC)
1953 {
1954 if (GET_CODE (XEXP (addr, 0)) != REG)
1955 fatal_insn ("post-increment address is not a register", x);
1956
1957 fprintf (file, "@%s+", reg_names[REGNO (XEXP (addr, 0))]);
1958 }
1959 else
1960 {
1961 fputs ("@(", file);
1962 output_address (XEXP (x, 0));
1963 fputc (')', file);
1964 }
1965 break;
1966
1967 case CONST_DOUBLE :
1968 /* We handle SFmode constants here as output_addr_const doesn't. */
1969 if (GET_MODE (x) == SFmode)
1970 {
1971 REAL_VALUE_TYPE d;
1972 long l;
1973
1974 REAL_VALUE_FROM_CONST_DOUBLE (d, x);
1975 REAL_VALUE_TO_TARGET_SINGLE (d, l);
1976 fprintf (file, "0x%08lx", l);
1977 break;
1978 }
1979
1980 /* Fall through. Let output_addr_const deal with it. */
1981
1982 default :
1983 output_addr_const (file, x);
1984 break;
1985 }
1986 }
1987
1988 /* Print a memory address as an operand to reference that memory location. */
1989
1990 void
1991 m32r_print_operand_address (FILE * file, rtx addr)
1992 {
1993 rtx base;
1994 rtx index = 0;
1995 int offset = 0;
1996
1997 switch (GET_CODE (addr))
1998 {
1999 case REG :
2000 fputs (reg_names[REGNO (addr)], file);
2001 break;
2002
2003 case PLUS :
2004 if (GET_CODE (XEXP (addr, 0)) == CONST_INT)
2005 offset = INTVAL (XEXP (addr, 0)), base = XEXP (addr, 1);
2006 else if (GET_CODE (XEXP (addr, 1)) == CONST_INT)
2007 offset = INTVAL (XEXP (addr, 1)), base = XEXP (addr, 0);
2008 else
2009 base = XEXP (addr, 0), index = XEXP (addr, 1);
2010 if (GET_CODE (base) == REG)
2011 {
2012 /* Print the offset first (if present) to conform to the manual. */
2013 if (index == 0)
2014 {
2015 if (offset != 0)
2016 fprintf (file, "%d,", offset);
2017 fputs (reg_names[REGNO (base)], file);
2018 }
2019 /* The chip doesn't support this, but left in for generality. */
2020 else if (GET_CODE (index) == REG)
2021 fprintf (file, "%s,%s",
2022 reg_names[REGNO (base)], reg_names[REGNO (index)]);
2023 /* Not sure this can happen, but leave in for now. */
2024 else if (GET_CODE (index) == SYMBOL_REF)
2025 {
2026 output_addr_const (file, index);
2027 fputc (',', file);
2028 fputs (reg_names[REGNO (base)], file);
2029 }
2030 else
2031 fatal_insn ("bad address", addr);
2032 }
2033 else if (GET_CODE (base) == LO_SUM)
2034 {
2035 gcc_assert (!index && GET_CODE (XEXP (base, 0)) == REG);
2036 if (small_data_operand (XEXP (base, 1), VOIDmode))
2037 fputs ("sda(", file);
2038 else
2039 fputs ("low(", file);
2040 output_addr_const (file, plus_constant (XEXP (base, 1), offset));
2041 fputs ("),", file);
2042 fputs (reg_names[REGNO (XEXP (base, 0))], file);
2043 }
2044 else
2045 fatal_insn ("bad address", addr);
2046 break;
2047
2048 case LO_SUM :
2049 if (GET_CODE (XEXP (addr, 0)) != REG)
2050 fatal_insn ("lo_sum not of register", addr);
2051 if (small_data_operand (XEXP (addr, 1), VOIDmode))
2052 fputs ("sda(", file);
2053 else
2054 fputs ("low(", file);
2055 output_addr_const (file, XEXP (addr, 1));
2056 fputs ("),", file);
2057 fputs (reg_names[REGNO (XEXP (addr, 0))], file);
2058 break;
2059
2060 case PRE_INC : /* Assume SImode. */
2061 fprintf (file, "+%s", reg_names[REGNO (XEXP (addr, 0))]);
2062 break;
2063
2064 case PRE_DEC : /* Assume SImode. */
2065 fprintf (file, "-%s", reg_names[REGNO (XEXP (addr, 0))]);
2066 break;
2067
2068 case POST_INC : /* Assume SImode. */
2069 fprintf (file, "%s+", reg_names[REGNO (XEXP (addr, 0))]);
2070 break;
2071
2072 default :
2073 output_addr_const (file, addr);
2074 break;
2075 }
2076 }
2077
2078 /* Return true if the operands are the constants 0 and 1. */
2079
2080 int
2081 zero_and_one (rtx operand1, rtx operand2)
2082 {
2083 return
2084 GET_CODE (operand1) == CONST_INT
2085 && GET_CODE (operand2) == CONST_INT
2086 && ( ((INTVAL (operand1) == 0) && (INTVAL (operand2) == 1))
2087 ||((INTVAL (operand1) == 1) && (INTVAL (operand2) == 0)));
2088 }
2089
2090 /* Generate the correct assembler code to handle the conditional loading of a
2091 value into a register. It is known that the operands satisfy the
2092 conditional_move_operand() function above. The destination is operand[0].
2093 The condition is operand [1]. The 'true' value is operand [2] and the
2094 'false' value is operand [3]. */
2095
2096 char *
2097 emit_cond_move (rtx * operands, rtx insn ATTRIBUTE_UNUSED)
2098 {
2099 static char buffer [100];
2100 const char * dest = reg_names [REGNO (operands [0])];
2101
2102 buffer [0] = 0;
2103
2104 /* Destination must be a register. */
2105 gcc_assert (GET_CODE (operands [0]) == REG);
2106 gcc_assert (conditional_move_operand (operands [2], SImode));
2107 gcc_assert (conditional_move_operand (operands [3], SImode));
2108
2109 /* Check to see if the test is reversed. */
2110 if (GET_CODE (operands [1]) == NE)
2111 {
2112 rtx tmp = operands [2];
2113 operands [2] = operands [3];
2114 operands [3] = tmp;
2115 }
2116
2117 sprintf (buffer, "mvfc %s, cbr", dest);
2118
2119 /* If the true value was '0' then we need to invert the results of the move. */
2120 if (INTVAL (operands [2]) == 0)
2121 sprintf (buffer + strlen (buffer), "\n\txor3 %s, %s, #1",
2122 dest, dest);
2123
2124 return buffer;
2125 }
2126
2127 /* Returns true if the registers contained in the two
2128 rtl expressions are different. */
2129
2130 int
2131 m32r_not_same_reg (rtx a, rtx b)
2132 {
2133 int reg_a = -1;
2134 int reg_b = -2;
2135
2136 while (GET_CODE (a) == SUBREG)
2137 a = SUBREG_REG (a);
2138
2139 if (GET_CODE (a) == REG)
2140 reg_a = REGNO (a);
2141
2142 while (GET_CODE (b) == SUBREG)
2143 b = SUBREG_REG (b);
2144
2145 if (GET_CODE (b) == REG)
2146 reg_b = REGNO (b);
2147
2148 return reg_a != reg_b;
2149 }
2150
2151
2152 rtx
2153 m32r_function_symbol (const char *name)
2154 {
2155 int extra_flags = 0;
2156 enum m32r_model model;
2157 rtx sym = gen_rtx_SYMBOL_REF (Pmode, name);
2158
2159 if (TARGET_MODEL_SMALL)
2160 model = M32R_MODEL_SMALL;
2161 else if (TARGET_MODEL_MEDIUM)
2162 model = M32R_MODEL_MEDIUM;
2163 else if (TARGET_MODEL_LARGE)
2164 model = M32R_MODEL_LARGE;
2165 else
2166 gcc_unreachable (); /* Shouldn't happen. */
2167 extra_flags |= model << SYMBOL_FLAG_MODEL_SHIFT;
2168
2169 if (extra_flags)
2170 SYMBOL_REF_FLAGS (sym) |= extra_flags;
2171
2172 return sym;
2173 }
2174
2175 /* Use a library function to move some bytes. */
2176
2177 static void
2178 block_move_call (rtx dest_reg, rtx src_reg, rtx bytes_rtx)
2179 {
2180 /* We want to pass the size as Pmode, which will normally be SImode
2181 but will be DImode if we are using 64-bit longs and pointers. */
2182 if (GET_MODE (bytes_rtx) != VOIDmode
2183 && GET_MODE (bytes_rtx) != Pmode)
2184 bytes_rtx = convert_to_mode (Pmode, bytes_rtx, 1);
2185
2186 emit_library_call (m32r_function_symbol ("memcpy"), 0,
2187 VOIDmode, 3, dest_reg, Pmode, src_reg, Pmode,
2188 convert_to_mode (TYPE_MODE (sizetype), bytes_rtx,
2189 TYPE_UNSIGNED (sizetype)),
2190 TYPE_MODE (sizetype));
2191 }
2192
2193 /* Expand string/block move operations.
2194
2195 operands[0] is the pointer to the destination.
2196 operands[1] is the pointer to the source.
2197 operands[2] is the number of bytes to move.
2198 operands[3] is the alignment.
2199
2200 Returns 1 upon success, 0 otherwise. */
2201
2202 int
2203 m32r_expand_block_move (rtx operands[])
2204 {
2205 rtx orig_dst = operands[0];
2206 rtx orig_src = operands[1];
2207 rtx bytes_rtx = operands[2];
2208 rtx align_rtx = operands[3];
2209 int constp = GET_CODE (bytes_rtx) == CONST_INT;
2210 HOST_WIDE_INT bytes = constp ? INTVAL (bytes_rtx) : 0;
2211 int align = INTVAL (align_rtx);
2212 int leftover;
2213 rtx src_reg;
2214 rtx dst_reg;
2215
2216 if (constp && bytes <= 0)
2217 return 1;
2218
2219 /* Move the address into scratch registers. */
2220 dst_reg = copy_addr_to_reg (XEXP (orig_dst, 0));
2221 src_reg = copy_addr_to_reg (XEXP (orig_src, 0));
2222
2223 if (align > UNITS_PER_WORD)
2224 align = UNITS_PER_WORD;
2225
2226 /* If we prefer size over speed, always use a function call.
2227 If we do not know the size, use a function call.
2228 If the blocks are not word aligned, use a function call. */
2229 if (optimize_size || ! constp || align != UNITS_PER_WORD)
2230 {
2231 block_move_call (dst_reg, src_reg, bytes_rtx);
2232 return 0;
2233 }
2234
2235 leftover = bytes % MAX_MOVE_BYTES;
2236 bytes -= leftover;
2237
2238 /* If necessary, generate a loop to handle the bulk of the copy. */
2239 if (bytes)
2240 {
2241 rtx label = NULL_RTX;
2242 rtx final_src = NULL_RTX;
2243 rtx at_a_time = GEN_INT (MAX_MOVE_BYTES);
2244 rtx rounded_total = GEN_INT (bytes);
2245 rtx new_dst_reg = gen_reg_rtx (SImode);
2246 rtx new_src_reg = gen_reg_rtx (SImode);
2247
2248 /* If we are going to have to perform this loop more than
2249 once, then generate a label and compute the address the
2250 source register will contain upon completion of the final
2251 iteration. */
2252 if (bytes > MAX_MOVE_BYTES)
2253 {
2254 final_src = gen_reg_rtx (Pmode);
2255
2256 if (INT16_P(bytes))
2257 emit_insn (gen_addsi3 (final_src, src_reg, rounded_total));
2258 else
2259 {
2260 emit_insn (gen_movsi (final_src, rounded_total));
2261 emit_insn (gen_addsi3 (final_src, final_src, src_reg));
2262 }
2263
2264 label = gen_label_rtx ();
2265 emit_label (label);
2266 }
2267
2268 /* It is known that output_block_move() will update src_reg to point
2269 to the word after the end of the source block, and dst_reg to point
2270 to the last word of the destination block, provided that the block
2271 is MAX_MOVE_BYTES long. */
2272 emit_insn (gen_movmemsi_internal (dst_reg, src_reg, at_a_time,
2273 new_dst_reg, new_src_reg));
2274 emit_move_insn (dst_reg, new_dst_reg);
2275 emit_move_insn (src_reg, new_src_reg);
2276 emit_insn (gen_addsi3 (dst_reg, dst_reg, GEN_INT (4)));
2277
2278 if (bytes > MAX_MOVE_BYTES)
2279 {
2280 emit_insn (gen_cmpsi (src_reg, final_src));
2281 emit_jump_insn (gen_bne (label));
2282 }
2283 }
2284
2285 if (leftover)
2286 emit_insn (gen_movmemsi_internal (dst_reg, src_reg, GEN_INT (leftover),
2287 gen_reg_rtx (SImode),
2288 gen_reg_rtx (SImode)));
2289 return 1;
2290 }
2291
2292
2293 /* Emit load/stores for a small constant word aligned block_move.
2294
2295 operands[0] is the memory address of the destination.
2296 operands[1] is the memory address of the source.
2297 operands[2] is the number of bytes to move.
2298 operands[3] is a temp register.
2299 operands[4] is a temp register. */
2300
2301 void
2302 m32r_output_block_move (rtx insn ATTRIBUTE_UNUSED, rtx operands[])
2303 {
2304 HOST_WIDE_INT bytes = INTVAL (operands[2]);
2305 int first_time;
2306 int got_extra = 0;
2307
2308 gcc_assert (bytes >= 1 && bytes <= MAX_MOVE_BYTES);
2309
2310 /* We do not have a post-increment store available, so the first set of
2311 stores are done without any increment, then the remaining ones can use
2312 the pre-increment addressing mode.
2313
2314 Note: expand_block_move() also relies upon this behavior when building
2315 loops to copy large blocks. */
2316 first_time = 1;
2317
2318 while (bytes > 0)
2319 {
2320 if (bytes >= 8)
2321 {
2322 if (first_time)
2323 {
2324 output_asm_insn ("ld\t%5, %p1", operands);
2325 output_asm_insn ("ld\t%6, %p1", operands);
2326 output_asm_insn ("st\t%5, @%0", operands);
2327 output_asm_insn ("st\t%6, %s0", operands);
2328 }
2329 else
2330 {
2331 output_asm_insn ("ld\t%5, %p1", operands);
2332 output_asm_insn ("ld\t%6, %p1", operands);
2333 output_asm_insn ("st\t%5, %s0", operands);
2334 output_asm_insn ("st\t%6, %s0", operands);
2335 }
2336
2337 bytes -= 8;
2338 }
2339 else if (bytes >= 4)
2340 {
2341 if (bytes > 4)
2342 got_extra = 1;
2343
2344 output_asm_insn ("ld\t%5, %p1", operands);
2345
2346 if (got_extra)
2347 output_asm_insn ("ld\t%6, %p1", operands);
2348
2349 if (first_time)
2350 output_asm_insn ("st\t%5, @%0", operands);
2351 else
2352 output_asm_insn ("st\t%5, %s0", operands);
2353
2354 bytes -= 4;
2355 }
2356 else
2357 {
2358 /* Get the entire next word, even though we do not want all of it.
2359 The saves us from doing several smaller loads, and we assume that
2360 we cannot cause a page fault when at least part of the word is in
2361 valid memory [since we don't get called if things aren't properly
2362 aligned]. */
2363 int dst_offset = first_time ? 0 : 4;
2364 /* The amount of increment we have to make to the
2365 destination pointer. */
2366 int dst_inc_amount = dst_offset + bytes - 4;
2367 /* The same for the source pointer. */
2368 int src_inc_amount = bytes;
2369 int last_shift;
2370 rtx my_operands[3];
2371
2372 /* If got_extra is true then we have already loaded
2373 the next word as part of loading and storing the previous word. */
2374 if (! got_extra)
2375 output_asm_insn ("ld\t%6, @%1", operands);
2376
2377 if (bytes >= 2)
2378 {
2379 bytes -= 2;
2380
2381 output_asm_insn ("sra3\t%5, %6, #16", operands);
2382 my_operands[0] = operands[5];
2383 my_operands[1] = GEN_INT (dst_offset);
2384 my_operands[2] = operands[0];
2385 output_asm_insn ("sth\t%0, @(%1,%2)", my_operands);
2386
2387 /* If there is a byte left to store then increment the
2388 destination address and shift the contents of the source
2389 register down by 8 bits. We could not do the address
2390 increment in the store half word instruction, because it does
2391 not have an auto increment mode. */
2392 if (bytes > 0) /* assert (bytes == 1) */
2393 {
2394 dst_offset += 2;
2395 last_shift = 8;
2396 }
2397 }
2398 else
2399 last_shift = 24;
2400
2401 if (bytes > 0)
2402 {
2403 my_operands[0] = operands[6];
2404 my_operands[1] = GEN_INT (last_shift);
2405 output_asm_insn ("srai\t%0, #%1", my_operands);
2406 my_operands[0] = operands[6];
2407 my_operands[1] = GEN_INT (dst_offset);
2408 my_operands[2] = operands[0];
2409 output_asm_insn ("stb\t%0, @(%1,%2)", my_operands);
2410 }
2411
2412 /* Update the destination pointer if needed. We have to do
2413 this so that the patterns matches what we output in this
2414 function. */
2415 if (dst_inc_amount
2416 && !find_reg_note (insn, REG_UNUSED, operands[0]))
2417 {
2418 my_operands[0] = operands[0];
2419 my_operands[1] = GEN_INT (dst_inc_amount);
2420 output_asm_insn ("addi\t%0, #%1", my_operands);
2421 }
2422
2423 /* Update the source pointer if needed. We have to do this
2424 so that the patterns matches what we output in this
2425 function. */
2426 if (src_inc_amount
2427 && !find_reg_note (insn, REG_UNUSED, operands[1]))
2428 {
2429 my_operands[0] = operands[1];
2430 my_operands[1] = GEN_INT (src_inc_amount);
2431 output_asm_insn ("addi\t%0, #%1", my_operands);
2432 }
2433
2434 bytes = 0;
2435 }
2436
2437 first_time = 0;
2438 }
2439 }
2440
2441 /* Return true if using NEW_REG in place of OLD_REG is ok. */
2442
2443 int
2444 m32r_hard_regno_rename_ok (unsigned int old_reg ATTRIBUTE_UNUSED,
2445 unsigned int new_reg)
2446 {
2447 /* Interrupt routines can't clobber any register that isn't already used. */
2448 if (lookup_attribute ("interrupt", DECL_ATTRIBUTES (current_function_decl))
2449 && !df_regs_ever_live_p (new_reg))
2450 return 0;
2451
2452 return 1;
2453 }
2454
2455 rtx
2456 m32r_return_addr (int count)
2457 {
2458 if (count != 0)
2459 return const0_rtx;
2460
2461 return get_hard_reg_initial_val (Pmode, RETURN_ADDR_REGNUM);
2462 }