comparison gcc/config/pdp11/pdp11.h @ 0:a06113de4d67

first commit
author kent <kent@cr.ie.u-ryukyu.ac.jp>
date Fri, 17 Jul 2009 14:47:48 +0900
parents
children 77e2b8dfacca
comparison
equal deleted inserted replaced
-1:000000000000 0:a06113de4d67
1 /* Definitions of target machine for GNU compiler, for the pdp-11
2 Copyright (C) 1994, 1995, 1996, 1998, 1999, 2000, 2001, 2002, 2004, 2005,
3 2006, 2007, 2008 Free Software Foundation, Inc.
4 Contributed by Michael K. Gschwind (mike@vlsivie.tuwien.ac.at).
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
12
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 #define CONSTANT_POOL_BEFORE_FUNCTION 0
23
24 /* check whether load_fpu_reg or not */
25 #define LOAD_FPU_REG_P(x) ((x)>=8 && (x)<=11)
26 #define NO_LOAD_FPU_REG_P(x) ((x)==12 || (x)==13)
27 #define FPU_REG_P(x) (LOAD_FPU_REG_P(x) || NO_LOAD_FPU_REG_P(x))
28 #define CPU_REG_P(x) ((x)<8)
29
30 /* Names to predefine in the preprocessor for this target machine. */
31
32 #define TARGET_CPU_CPP_BUILTINS() \
33 do \
34 { \
35 builtin_define_std ("pdp11"); \
36 } \
37 while (0)
38
39 /* Print subsidiary information on the compiler version in use. */
40 #define TARGET_VERSION fprintf (stderr, " (pdp11)");
41
42
43 /* Generate DBX debugging information. */
44
45 /* #define DBX_DEBUGGING_INFO */
46
47 #define TARGET_40_PLUS (TARGET_40 || TARGET_45)
48 #define TARGET_10 (! TARGET_40_PLUS)
49
50 #define TARGET_UNIX_ASM_DEFAULT 0
51
52 #define ASSEMBLER_DIALECT (TARGET_UNIX_ASM ? 1 : 0)
53
54
55
56 /* TYPE SIZES */
57 #define SHORT_TYPE_SIZE 16
58 #define INT_TYPE_SIZE (TARGET_INT16 ? 16 : 32)
59 #define LONG_TYPE_SIZE 32
60 #define LONG_LONG_TYPE_SIZE 64
61
62 /* if we set FLOAT_TYPE_SIZE to 32, we could have the benefit
63 of saving core for huge arrays - the definitions are
64 already in md - but floats can never reside in
65 an FPU register - we keep the FPU in double float mode
66 all the time !! */
67 #define FLOAT_TYPE_SIZE (TARGET_FLOAT32 ? 32 : 64)
68 #define DOUBLE_TYPE_SIZE 64
69 #define LONG_DOUBLE_TYPE_SIZE 64
70
71 /* machine types from ansi */
72 #define SIZE_TYPE "unsigned int" /* definition of size_t */
73 #define WCHAR_TYPE "int" /* or long int???? */
74 #define WCHAR_TYPE_SIZE 16
75
76 #define PTRDIFF_TYPE "int"
77
78 /* target machine storage layout */
79
80 /* Define this if most significant bit is lowest numbered
81 in instructions that operate on numbered bit-fields. */
82 #define BITS_BIG_ENDIAN 0
83
84 /* Define this if most significant byte of a word is the lowest numbered. */
85 #define BYTES_BIG_ENDIAN 0
86
87 /* Define this if most significant word of a multiword number is first. */
88 #define WORDS_BIG_ENDIAN 1
89
90 /* Define that floats are in VAX order, not high word first as for ints. */
91 #define FLOAT_WORDS_BIG_ENDIAN 0
92
93 /* Width of a word, in units (bytes).
94
95 UNITS OR BYTES - seems like units */
96 #define UNITS_PER_WORD 2
97
98 /* This machine doesn't use IEEE floats. */
99 /* Because the pdp11 (at least Unix) convention for 32-bit ints is
100 big endian, opposite for what you need for float, the vax float
101 conversion routines aren't actually used directly. But the underlying
102 format is indeed the vax/pdp11 float format. */
103 extern const struct real_format pdp11_f_format;
104 extern const struct real_format pdp11_d_format;
105
106 /* Maximum sized of reasonable data type
107 DImode or Dfmode ...*/
108 #define MAX_FIXED_MODE_SIZE 64
109
110 /* Allocation boundary (in *bits*) for storing pointers in memory. */
111 #define POINTER_BOUNDARY 16
112
113 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
114 #define PARM_BOUNDARY 16
115
116 /* Boundary (in *bits*) on which stack pointer should be aligned. */
117 #define STACK_BOUNDARY 16
118
119 /* Allocation boundary (in *bits*) for the code of a function. */
120 #define FUNCTION_BOUNDARY 16
121
122 /* Alignment of field after `int : 0' in a structure. */
123 #define EMPTY_FIELD_BOUNDARY 16
124
125 /* No data type wants to be aligned rounder than this. */
126 #define BIGGEST_ALIGNMENT 16
127
128 /* Define this if move instructions will actually fail to work
129 when given unaligned data. */
130 #define STRICT_ALIGNMENT 1
131
132 /* Standard register usage. */
133
134 /* Number of actual hardware registers.
135 The hardware registers are assigned numbers for the compiler
136 from 0 to just below FIRST_PSEUDO_REGISTER.
137 All registers that the compiler knows about must be given numbers,
138 even those that are not normally considered general registers.
139
140 we have 8 integer registers, plus 6 float
141 (don't use scratch float !) */
142
143 #define FIRST_PSEUDO_REGISTER 14
144
145 /* 1 for registers that have pervasive standard uses
146 and are not available for the register allocator.
147
148 On the pdp, these are:
149 Reg 7 = pc;
150 reg 6 = sp;
151 reg 5 = fp; not necessarily!
152 */
153
154 /* don't let them touch fp regs for the time being !*/
155
156 #define FIXED_REGISTERS \
157 {0, 0, 0, 0, 0, 0, 1, 1, \
158 0, 0, 0, 0, 0, 0 }
159
160
161
162 /* 1 for registers not available across function calls.
163 These must include the FIXED_REGISTERS and also any
164 registers that can be used without being saved.
165 The latter must include the registers where values are returned
166 and the register where structure-value addresses are passed.
167 Aside from that, you can include as many other registers as you like. */
168
169 /* don't know about fp */
170 #define CALL_USED_REGISTERS \
171 {1, 1, 0, 0, 0, 0, 1, 1, \
172 0, 0, 0, 0, 0, 0 }
173
174
175 /* Make sure everything's fine if we *don't* have an FPU.
176 This assumes that putting a register in fixed_regs will keep the
177 compiler's mitts completely off it. We don't bother to zero it out
178 of register classes. Also fix incompatible register naming with
179 the UNIX assembler.
180 */
181 #define CONDITIONAL_REGISTER_USAGE \
182 { \
183 int i; \
184 HARD_REG_SET x; \
185 if (!TARGET_FPU) \
186 { \
187 COPY_HARD_REG_SET (x, reg_class_contents[(int)FPU_REGS]); \
188 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++ ) \
189 if (TEST_HARD_REG_BIT (x, i)) \
190 fixed_regs[i] = call_used_regs[i] = 1; \
191 } \
192 \
193 if (TARGET_AC0) \
194 call_used_regs[8] = 1; \
195 if (TARGET_UNIX_ASM) \
196 { \
197 /* Change names of FPU registers for the UNIX assembler. */ \
198 reg_names[8] = "fr0"; \
199 reg_names[9] = "fr1"; \
200 reg_names[10] = "fr2"; \
201 reg_names[11] = "fr3"; \
202 reg_names[12] = "fr4"; \
203 reg_names[13] = "fr5"; \
204 } \
205 }
206
207 /* Return number of consecutive hard regs needed starting at reg REGNO
208 to hold something of mode MODE.
209 This is ordinarily the length in words of a value of mode MODE
210 but can be less for certain modes in special long registers.
211 */
212
213 #define HARD_REGNO_NREGS(REGNO, MODE) \
214 ((REGNO < 8)? \
215 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD) \
216 :1)
217
218
219 /* Value is 1 if hard register REGNO can hold a value of machine-mode MODE.
220 On the pdp, the cpu registers can hold any mode - check alignment
221
222 FPU can only hold DF - simplifies life!
223 */
224 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
225 (((REGNO) < 8)? \
226 ((GET_MODE_BITSIZE(MODE) <= 16) \
227 || (GET_MODE_BITSIZE(MODE) == 32 && !((REGNO) & 1))) \
228 :(MODE) == DFmode)
229
230
231 /* Value is 1 if it is a good idea to tie two pseudo registers
232 when one has mode MODE1 and one has mode MODE2.
233 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
234 for any hard reg, then this must be 0 for correct output. */
235 #define MODES_TIEABLE_P(MODE1, MODE2) 0
236
237 /* Specify the registers used for certain standard purposes.
238 The values of these macros are register numbers. */
239
240 /* the pdp11 pc overloaded on a register that the compiler knows about. */
241 #define PC_REGNUM 7
242
243 /* Register to use for pushing function arguments. */
244 #define STACK_POINTER_REGNUM 6
245
246 /* Base register for access to local variables of the function. */
247 #define FRAME_POINTER_REGNUM 5
248
249 /* Value should be nonzero if functions must have frame pointers.
250 Zero means the frame pointer need not be set up (and parms
251 may be accessed via the stack pointer) in functions that seem suitable.
252 This is computed in `reload', in reload1.c.
253 */
254
255 #define FRAME_POINTER_REQUIRED 0
256
257 /* Base register for access to arguments of the function. */
258 #define ARG_POINTER_REGNUM 5
259
260 /* Register in which static-chain is passed to a function. */
261 /* ??? - i don't want to give up a reg for this! */
262 #define STATIC_CHAIN_REGNUM 4
263
264 /* Define the classes of registers for register constraints in the
265 machine description. Also define ranges of constants.
266
267 One of the classes must always be named ALL_REGS and include all hard regs.
268 If there is more than one class, another class must be named NO_REGS
269 and contain no registers.
270
271 The name GENERAL_REGS must be the name of a class (or an alias for
272 another name such as ALL_REGS). This is the class of registers
273 that is allowed by "g" or "r" in a register constraint.
274 Also, registers outside this class are allocated only when
275 instructions express preferences for them.
276
277 The classes must be numbered in nondecreasing order; that is,
278 a larger-numbered class must never be contained completely
279 in a smaller-numbered class.
280
281 For any two classes, it is very desirable that there be another
282 class that represents their union. */
283
284 /* The pdp has a couple of classes:
285
286 MUL_REGS are used for odd numbered regs, to use in 16-bit multiplication
287 (even numbered do 32-bit multiply)
288 LMUL_REGS long multiply registers (even numbered regs )
289 (don't need them, all 32-bit regs are even numbered!)
290 GENERAL_REGS is all cpu
291 LOAD_FPU_REGS is the first four cpu regs, they are easier to load
292 NO_LOAD_FPU_REGS is ac4 and ac5, currently - difficult to load them
293 FPU_REGS is all fpu regs
294 */
295
296 enum reg_class { NO_REGS, MUL_REGS, GENERAL_REGS, LOAD_FPU_REGS, NO_LOAD_FPU_REGS, FPU_REGS, ALL_REGS, LIM_REG_CLASSES };
297
298 #define N_REG_CLASSES (int) LIM_REG_CLASSES
299
300 /* have to allow this till cmpsi/tstsi are fixed in a better way !! */
301 #define SMALL_REGISTER_CLASSES 1
302
303 /* Since GENERAL_REGS is the same class as ALL_REGS,
304 don't give it a different class number; just make it an alias. */
305
306 /* #define GENERAL_REGS ALL_REGS */
307
308 /* Give names of register classes as strings for dump file. */
309
310 #define REG_CLASS_NAMES {"NO_REGS", "MUL_REGS", "GENERAL_REGS", "LOAD_FPU_REGS", "NO_LOAD_FPU_REGS", "FPU_REGS", "ALL_REGS" }
311
312 /* Define which registers fit in which classes.
313 This is an initializer for a vector of HARD_REG_SET
314 of length N_REG_CLASSES. */
315
316 #define REG_CLASS_CONTENTS {{0}, {0x00aa}, {0x00ff}, {0x0f00}, {0x3000}, {0x3f00}, {0x3fff}}
317
318 /* The same information, inverted:
319 Return the class number of the smallest class containing
320 reg number REGNO. This could be a conditional expression
321 or could index an array. */
322
323 #define REGNO_REG_CLASS(REGNO) \
324 ((REGNO)>=8?((REGNO)<=11?LOAD_FPU_REGS:NO_LOAD_FPU_REGS):(((REGNO)&1)?MUL_REGS:GENERAL_REGS))
325
326
327 /* The class value for index registers, and the one for base regs. */
328 #define INDEX_REG_CLASS GENERAL_REGS
329 #define BASE_REG_CLASS GENERAL_REGS
330
331 /* Get reg_class from a letter such as appears in the machine description. */
332
333 #define REG_CLASS_FROM_LETTER(C) \
334 ((C) == 'f' ? FPU_REGS : \
335 ((C) == 'd' ? MUL_REGS : \
336 ((C) == 'a' ? LOAD_FPU_REGS : NO_REGS)))
337
338
339 /* The letters I, J, K, L and M in a register constraint string
340 can be used to stand for particular ranges of immediate operands.
341 This macro defines what the ranges are.
342 C is the letter, and VALUE is a constant value.
343 Return 1 if VALUE is in the range specified by C.
344
345 I bits 31-16 0000
346 J bits 15-00 0000
347 K completely random 32 bit
348 L,M,N -1,1,0 respectively
349 O where doing shifts in sequence is faster than
350 one big shift
351 */
352
353 #define CONST_OK_FOR_LETTER_P(VALUE, C) \
354 ((C) == 'I' ? ((VALUE) & 0xffff0000) == 0 \
355 : (C) == 'J' ? ((VALUE) & 0x0000ffff) == 0 \
356 : (C) == 'K' ? (((VALUE) & 0xffff0000) != 0 \
357 && ((VALUE) & 0x0000ffff) != 0) \
358 : (C) == 'L' ? ((VALUE) == 1) \
359 : (C) == 'M' ? ((VALUE) == -1) \
360 : (C) == 'N' ? ((VALUE) == 0) \
361 : (C) == 'O' ? (abs(VALUE) >1 && abs(VALUE) <= 4) \
362 : 0)
363
364 /* Similar, but for floating constants, and defining letters G and H.
365 Here VALUE is the CONST_DOUBLE rtx itself. */
366
367 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
368 ((C) == 'G' && XINT (VALUE, 0) == 0 && XINT (VALUE, 1) == 0)
369
370
371 /* Letters in the range `Q' through `U' may be defined in a
372 machine-dependent fashion to stand for arbitrary operand types.
373 The machine description macro `EXTRA_CONSTRAINT' is passed the
374 operand as its first argument and the constraint letter as its
375 second operand.
376
377 `Q' is for memory references that require an extra word after the opcode.
378 `R' is for memory references which are encoded within the opcode. */
379
380 #define EXTRA_CONSTRAINT(OP,CODE) \
381 ((GET_CODE (OP) != MEM) ? 0 \
382 : !legitimate_address_p (GET_MODE (OP), XEXP (OP, 0)) ? 0 \
383 : ((CODE) == 'Q') ? !simple_memory_operand (OP, GET_MODE (OP)) \
384 : ((CODE) == 'R') ? simple_memory_operand (OP, GET_MODE (OP)) \
385 : 0)
386
387 /* Given an rtx X being reloaded into a reg required to be
388 in class CLASS, return the class of reg to actually use.
389 In general this is just CLASS; but on some machines
390 in some cases it is preferable to use a more restrictive class.
391
392 loading is easier into LOAD_FPU_REGS than FPU_REGS! */
393
394 #define PREFERRED_RELOAD_CLASS(X,CLASS) \
395 (((CLASS) != FPU_REGS)?(CLASS):LOAD_FPU_REGS)
396
397 #define SECONDARY_RELOAD_CLASS(CLASS,MODE,x) \
398 (((CLASS) == NO_LOAD_FPU_REGS && !(REG_P(x) && LOAD_FPU_REG_P(REGNO(x))))?LOAD_FPU_REGS:NO_REGS)
399
400 /* Return the maximum number of consecutive registers
401 needed to represent mode MODE in a register of class CLASS. */
402 #define CLASS_MAX_NREGS(CLASS, MODE) \
403 ((CLASS == GENERAL_REGS || CLASS == MUL_REGS)? \
404 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD): \
405 1 \
406 )
407
408
409 /* Stack layout; function entry, exit and calling. */
410
411 /* Define this if pushing a word on the stack
412 makes the stack pointer a smaller address. */
413 #define STACK_GROWS_DOWNWARD
414
415 /* Define this to nonzero if the nominal address of the stack frame
416 is at the high-address end of the local variables;
417 that is, each additional local variable allocated
418 goes at a more negative offset in the frame.
419 */
420 #define FRAME_GROWS_DOWNWARD 1
421
422 /* Offset within stack frame to start allocating local variables at.
423 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
424 first local allocated. Otherwise, it is the offset to the BEGINNING
425 of the first local allocated. */
426 #define STARTING_FRAME_OFFSET 0
427
428 /* If we generate an insn to push BYTES bytes,
429 this says how many the stack pointer really advances by.
430 On the pdp11, the stack is on an even boundary */
431 #define PUSH_ROUNDING(BYTES) ((BYTES + 1) & ~1)
432
433 /* current_first_parm_offset stores the # of registers pushed on the
434 stack */
435 extern int current_first_parm_offset;
436
437 /* Offset of first parameter from the argument pointer register value.
438 For the pdp11, this is nonzero to account for the return address.
439 1 - return address
440 2 - frame pointer (always saved, even when not used!!!!)
441 -- change some day !!!:q!
442
443 */
444 #define FIRST_PARM_OFFSET(FNDECL) 4
445
446 /* Value is 1 if returning from a function call automatically
447 pops the arguments described by the number-of-args field in the call.
448 FUNDECL is the declaration node of the function (as a tree),
449 FUNTYPE is the data type of the function (as a tree),
450 or for a library call it is an identifier node for the subroutine name. */
451
452 #define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
453
454 /* Define how to find the value returned by a function.
455 VALTYPE is the data type of the value (as a tree).
456 If the precise function being called is known, FUNC is its FUNCTION_DECL;
457 otherwise, FUNC is 0. */
458 #define BASE_RETURN_VALUE_REG(MODE) \
459 ((MODE) == DFmode ? 8 : 0)
460
461 /* On the pdp11 the value is found in R0 (or ac0???
462 not without FPU!!!! ) */
463
464 #define FUNCTION_VALUE(VALTYPE, FUNC) \
465 gen_rtx_REG (TYPE_MODE (VALTYPE), BASE_RETURN_VALUE_REG(TYPE_MODE(VALTYPE)))
466
467 /* and the called function leaves it in the first register.
468 Difference only on machines with register windows. */
469
470 #define FUNCTION_OUTGOING_VALUE(VALTYPE, FUNC) \
471 gen_rtx_REG (TYPE_MODE (VALTYPE), BASE_RETURN_VALUE_REG(TYPE_MODE(VALTYPE)))
472
473 /* Define how to find the value returned by a library function
474 assuming the value has mode MODE. */
475
476 #define LIBCALL_VALUE(MODE) gen_rtx_REG (MODE, BASE_RETURN_VALUE_REG(MODE))
477
478 /* 1 if N is a possible register number for a function value
479 as seen by the caller.
480 On the pdp, the first "output" reg is the only register thus used.
481
482 maybe ac0 ? - as option someday! */
483
484 #define FUNCTION_VALUE_REGNO_P(N) (((N) == 0) || (TARGET_AC0 && (N) == 8))
485
486 /* 1 if N is a possible register number for function argument passing.
487 - not used on pdp */
488
489 #define FUNCTION_ARG_REGNO_P(N) 0
490
491 /* Define a data type for recording info about an argument list
492 during the scan of that argument list. This data type should
493 hold all necessary information about the function itself
494 and about the args processed so far, enough to enable macros
495 such as FUNCTION_ARG to determine where the next arg should go.
496
497 */
498
499 #define CUMULATIVE_ARGS int
500
501 /* Initialize a variable CUM of type CUMULATIVE_ARGS
502 for a call to a function whose data type is FNTYPE.
503 For a library call, FNTYPE is 0.
504
505 ...., the offset normally starts at 0, but starts at 1 word
506 when the function gets a structure-value-address as an
507 invisible first argument. */
508
509 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT, N_NAMED_ARGS) \
510 ((CUM) = 0)
511
512 /* Update the data in CUM to advance over an argument
513 of mode MODE and data type TYPE.
514 (TYPE is null for libcalls where that information may not be available.)
515
516 */
517
518
519 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
520 ((CUM) += ((MODE) != BLKmode \
521 ? (GET_MODE_SIZE (MODE)) \
522 : (int_size_in_bytes (TYPE))))
523
524 /* Determine where to put an argument to a function.
525 Value is zero to push the argument on the stack,
526 or a hard register in which to store the argument.
527
528 MODE is the argument's machine mode.
529 TYPE is the data type of the argument (as a tree).
530 This is null for libcalls where that information may
531 not be available.
532 CUM is a variable of type CUMULATIVE_ARGS which gives info about
533 the preceding args and about the function being called.
534 NAMED is nonzero if this argument is a named parameter
535 (otherwise it is an extra parameter matching an ellipsis). */
536
537 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) 0
538
539 /* Define where a function finds its arguments.
540 This would be different from FUNCTION_ARG if we had register windows. */
541 /*
542 #define FUNCTION_INCOMING_ARG(CUM, MODE, TYPE, NAMED) \
543 FUNCTION_ARG (CUM, MODE, TYPE, NAMED)
544 */
545
546 /* Output assembler code to FILE to increment profiler label # LABELNO
547 for profiling a function entry. */
548
549 #define FUNCTION_PROFILER(FILE, LABELNO) \
550 gcc_unreachable ();
551
552 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
553 the stack pointer does not matter. The value is tested only in
554 functions that have frame pointers.
555 No definition is equivalent to always zero. */
556
557 extern int may_call_alloca;
558
559 #define EXIT_IGNORE_STACK 1
560
561 #define INITIAL_FRAME_POINTER_OFFSET(DEPTH_VAR) \
562 { \
563 int offset, regno; \
564 offset = get_frame_size(); \
565 for (regno = 0; regno < 8; regno++) \
566 if (df_regs_ever_live_p (regno) && ! call_used_regs[regno]) \
567 offset += 2; \
568 for (regno = 8; regno < 14; regno++) \
569 if (df_regs_ever_live_p (regno) && ! call_used_regs[regno]) \
570 offset += 8; \
571 /* offset -= 2; no fp on stack frame */ \
572 (DEPTH_VAR) = offset; \
573 }
574
575
576 /* Addressing modes, and classification of registers for them. */
577
578 #define HAVE_POST_INCREMENT 1
579
580 #define HAVE_PRE_DECREMENT 1
581
582 /* Macros to check register numbers against specific register classes. */
583
584 /* These assume that REGNO is a hard or pseudo reg number.
585 They give nonzero only if REGNO is a hard reg of the suitable class
586 or a pseudo reg currently allocated to a suitable hard reg.
587 Since they use reg_renumber, they are safe only once reg_renumber
588 has been allocated, which happens in local-alloc.c. */
589
590 #define REGNO_OK_FOR_INDEX_P(REGNO) \
591 ((REGNO) < 8 || (unsigned) reg_renumber[REGNO] < 8)
592 #define REGNO_OK_FOR_BASE_P(REGNO) \
593 ((REGNO) < 8 || (unsigned) reg_renumber[REGNO] < 8)
594
595 /* Now macros that check whether X is a register and also,
596 strictly, whether it is in a specified class.
597 */
598
599
600
601 /* Maximum number of registers that can appear in a valid memory address. */
602
603 #define MAX_REGS_PER_ADDRESS 1
604
605 /* Recognize any constant value that is a valid address. */
606
607 #define CONSTANT_ADDRESS_P(X) CONSTANT_P (X)
608
609 /* Nonzero if the constant value X is a legitimate general operand.
610 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
611
612 #define LEGITIMATE_CONSTANT_P(X) \
613 (GET_CODE (X) != CONST_DOUBLE || legitimate_const_double_p (X))
614
615 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
616 and check its validity for a certain class.
617 We have two alternate definitions for each of them.
618 The usual definition accepts all pseudo regs; the other rejects
619 them unless they have been allocated suitable hard regs.
620 The symbol REG_OK_STRICT causes the latter definition to be used.
621
622 Most source files want to accept pseudo regs in the hope that
623 they will get allocated to the class that the insn wants them to be in.
624 Source files for reload pass need to be strict.
625 After reload, it makes no difference, since pseudo regs have
626 been eliminated by then. */
627
628 #ifndef REG_OK_STRICT
629
630 /* Nonzero if X is a hard reg that can be used as an index
631 or if it is a pseudo reg. */
632 #define REG_OK_FOR_INDEX_P(X) (1)
633 /* Nonzero if X is a hard reg that can be used as a base reg
634 or if it is a pseudo reg. */
635 #define REG_OK_FOR_BASE_P(X) (1)
636
637 #else
638
639 /* Nonzero if X is a hard reg that can be used as an index. */
640 #define REG_OK_FOR_INDEX_P(X) REGNO_OK_FOR_INDEX_P (REGNO (X))
641 /* Nonzero if X is a hard reg that can be used as a base reg. */
642 #define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
643
644 #endif
645
646 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
647 that is a valid memory address for an instruction.
648 The MODE argument is the machine mode for the MEM expression
649 that wants to use this address.
650
651 */
652
653 #define GO_IF_LEGITIMATE_ADDRESS(mode, operand, ADDR) \
654 { \
655 rtx xfoob; \
656 \
657 /* accept (R0) */ \
658 if (GET_CODE (operand) == REG \
659 && REG_OK_FOR_BASE_P(operand)) \
660 goto ADDR; \
661 \
662 /* accept @#address */ \
663 if (CONSTANT_ADDRESS_P (operand)) \
664 goto ADDR; \
665 \
666 /* accept X(R0) */ \
667 if (GET_CODE (operand) == PLUS \
668 && GET_CODE (XEXP (operand, 0)) == REG \
669 && REG_OK_FOR_BASE_P (XEXP (operand, 0)) \
670 && CONSTANT_ADDRESS_P (XEXP (operand, 1))) \
671 goto ADDR; \
672 \
673 /* accept -(R0) */ \
674 if (GET_CODE (operand) == PRE_DEC \
675 && GET_CODE (XEXP (operand, 0)) == REG \
676 && REG_OK_FOR_BASE_P (XEXP (operand, 0))) \
677 goto ADDR; \
678 \
679 /* accept (R0)+ */ \
680 if (GET_CODE (operand) == POST_INC \
681 && GET_CODE (XEXP (operand, 0)) == REG \
682 && REG_OK_FOR_BASE_P (XEXP (operand, 0))) \
683 goto ADDR; \
684 \
685 /* accept -(SP) -- which uses PRE_MODIFY for byte mode */ \
686 if (GET_CODE (operand) == PRE_MODIFY \
687 && GET_CODE (XEXP (operand, 0)) == REG \
688 && REGNO (XEXP (operand, 0)) == 6 \
689 && GET_CODE ((xfoob = XEXP (operand, 1))) == PLUS \
690 && GET_CODE (XEXP (xfoob, 0)) == REG \
691 && REGNO (XEXP (xfoob, 0)) == 6 \
692 && CONSTANT_P (XEXP (xfoob, 1)) \
693 && INTVAL (XEXP (xfoob,1)) == -2) \
694 goto ADDR; \
695 \
696 /* accept (SP)+ -- which uses POST_MODIFY for byte mode */ \
697 if (GET_CODE (operand) == POST_MODIFY \
698 && GET_CODE (XEXP (operand, 0)) == REG \
699 && REGNO (XEXP (operand, 0)) == 6 \
700 && GET_CODE ((xfoob = XEXP (operand, 1))) == PLUS \
701 && GET_CODE (XEXP (xfoob, 0)) == REG \
702 && REGNO (XEXP (xfoob, 0)) == 6 \
703 && CONSTANT_P (XEXP (xfoob, 1)) \
704 && INTVAL (XEXP (xfoob,1)) == 2) \
705 goto ADDR; \
706 \
707 \
708 /* handle another level of indirection ! */ \
709 if (GET_CODE(operand) != MEM) \
710 goto fail; \
711 \
712 xfoob = XEXP (operand, 0); \
713 \
714 /* (MEM:xx (MEM:xx ())) is not valid for SI, DI and currently */ \
715 /* also forbidden for float, because we have to handle this */ \
716 /* in output_move_double and/or output_move_quad() - we could */ \
717 /* do it, but currently it's not worth it!!! */ \
718 /* now that DFmode cannot go into CPU register file, */ \
719 /* maybe I should allow float ... */ \
720 /* but then I have to handle memory-to-memory moves in movdf ?? */ \
721 \
722 if (GET_MODE_BITSIZE(mode) > 16) \
723 goto fail; \
724 \
725 /* accept @(R0) - which is @0(R0) */ \
726 if (GET_CODE (xfoob) == REG \
727 && REG_OK_FOR_BASE_P(xfoob)) \
728 goto ADDR; \
729 \
730 /* accept @address */ \
731 if (CONSTANT_ADDRESS_P (xfoob)) \
732 goto ADDR; \
733 \
734 /* accept @X(R0) */ \
735 if (GET_CODE (xfoob) == PLUS \
736 && GET_CODE (XEXP (xfoob, 0)) == REG \
737 && REG_OK_FOR_BASE_P (XEXP (xfoob, 0)) \
738 && CONSTANT_ADDRESS_P (XEXP (xfoob, 1))) \
739 goto ADDR; \
740 \
741 /* accept @-(R0) */ \
742 if (GET_CODE (xfoob) == PRE_DEC \
743 && GET_CODE (XEXP (xfoob, 0)) == REG \
744 && REG_OK_FOR_BASE_P (XEXP (xfoob, 0))) \
745 goto ADDR; \
746 \
747 /* accept @(R0)+ */ \
748 if (GET_CODE (xfoob) == POST_INC \
749 && GET_CODE (XEXP (xfoob, 0)) == REG \
750 && REG_OK_FOR_BASE_P (XEXP (xfoob, 0))) \
751 goto ADDR; \
752 \
753 /* anything else is invalid */ \
754 fail: ; \
755 }
756
757
758 /* Go to LABEL if ADDR (a legitimate address expression)
759 has an effect that depends on the machine mode it is used for.
760 On the pdp this is for predec/postinc, and this is now treated
761 generically in recog.c. */
762
763 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL)
764
765
766 /* Specify the machine mode that this machine uses
767 for the index in the tablejump instruction. */
768 #define CASE_VECTOR_MODE HImode
769
770 /* Define this if a raw index is all that is needed for a
771 `tablejump' insn. */
772 #define CASE_TAKES_INDEX_RAW
773
774 /* Define this as 1 if `char' should by default be signed; else as 0. */
775 #define DEFAULT_SIGNED_CHAR 1
776
777 /* Max number of bytes we can move from memory to memory
778 in one reasonably fast instruction.
779 */
780
781 #define MOVE_MAX 2
782
783 /* Nonzero if access to memory by byte is slow and undesirable. -
784 */
785 #define SLOW_BYTE_ACCESS 0
786
787 /* Do not break .stabs pseudos into continuations. */
788 #define DBX_CONTIN_LENGTH 0
789
790 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
791 is done just by pretending it is already truncated. */
792 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
793
794 /* Give a comparison code (EQ, NE etc) and the first operand of a COMPARE,
795 return the mode to be used for the comparison. For floating-point, CCFPmode
796 should be used. */
797
798 #define SELECT_CC_MODE(OP,X,Y) \
799 (GET_MODE_CLASS(GET_MODE(X)) == MODE_FLOAT? CCFPmode : CCmode)
800
801 /* Specify the machine mode that pointers have.
802 After generation of rtl, the compiler makes no further distinction
803 between pointers and any other objects of this machine mode. */
804 #define Pmode HImode
805
806 /* A function address in a call instruction
807 is a word address (for indexing purposes)
808 so give the MEM rtx a word's mode. */
809 #define FUNCTION_MODE HImode
810
811 /* Define this if addresses of constant functions
812 shouldn't be put through pseudo regs where they can be cse'd.
813 Desirable on machines where ordinary constants are expensive
814 but a CALL with constant address is cheap. */
815 /* #define NO_FUNCTION_CSE */
816
817
818 /* cost of moving one register class to another */
819 #define REGISTER_MOVE_COST(MODE, CLASS1, CLASS2) \
820 register_move_cost (CLASS1, CLASS2)
821
822 /* Tell emit-rtl.c how to initialize special values on a per-function base. */
823 extern int optimize;
824 extern struct rtx_def *cc0_reg_rtx;
825
826 #define CC_STATUS_MDEP rtx
827
828 #define CC_STATUS_MDEP_INIT (cc_status.mdep = 0)
829
830 /* Tell final.c how to eliminate redundant test instructions. */
831
832 /* Here we define machine-dependent flags and fields in cc_status
833 (see `conditions.h'). */
834
835 #define CC_IN_FPU 04000
836
837 /* Do UPDATE_CC if EXP is a set, used in
838 NOTICE_UPDATE_CC
839
840 floats only do compare correctly, else nullify ...
841
842 get cc0 out soon ...
843 */
844
845 /* Store in cc_status the expressions
846 that the condition codes will describe
847 after execution of an instruction whose pattern is EXP.
848 Do not alter them if the instruction would not alter the cc's. */
849
850 #define NOTICE_UPDATE_CC(EXP, INSN) \
851 { if (GET_CODE (EXP) == SET) \
852 { \
853 notice_update_cc_on_set(EXP, INSN); \
854 } \
855 else if (GET_CODE (EXP) == PARALLEL \
856 && GET_CODE (XVECEXP (EXP, 0, 0)) == SET) \
857 { \
858 notice_update_cc_on_set(XVECEXP (EXP, 0, 0), INSN); \
859 } \
860 else if (GET_CODE (EXP) == CALL) \
861 { /* all bets are off */ CC_STATUS_INIT; } \
862 if (cc_status.value1 && GET_CODE (cc_status.value1) == REG \
863 && cc_status.value2 \
864 && reg_overlap_mentioned_p (cc_status.value1, cc_status.value2)) \
865 { \
866 printf ("here!\n"); \
867 cc_status.value2 = 0; \
868 } \
869 }
870
871 /* Control the assembler format that we output. */
872
873 /* Output to assembler file text saying following lines
874 may contain character constants, extra white space, comments, etc. */
875
876 #define ASM_APP_ON ""
877
878 /* Output to assembler file text saying following lines
879 no longer contain unusual constructs. */
880
881 #define ASM_APP_OFF ""
882
883 /* Output before read-only data. */
884
885 #define TEXT_SECTION_ASM_OP "\t.text\n"
886
887 /* Output before writable data. */
888
889 #define DATA_SECTION_ASM_OP "\t.data\n"
890
891 /* How to refer to registers in assembler output.
892 This sequence is indexed by compiler's hard-register-number (see above). */
893
894 #define REGISTER_NAMES \
895 {"r0", "r1", "r2", "r3", "r4", "r5", "sp", "pc", \
896 "ac0", "ac1", "ac2", "ac3", "ac4", "ac5" }
897
898 /* Globalizing directive for a label. */
899 #define GLOBAL_ASM_OP "\t.globl "
900
901 /* The prefix to add to user-visible assembler symbols. */
902
903 #define USER_LABEL_PREFIX "_"
904
905 /* This is how to store into the string LABEL
906 the symbol_ref name of an internal numbered label where
907 PREFIX is the class of label and NUM is the number within the class.
908 This is suitable for output with `assemble_name'. */
909
910 #define ASM_GENERATE_INTERNAL_LABEL(LABEL,PREFIX,NUM) \
911 sprintf (LABEL, "*%s_%lu", PREFIX, (unsigned long)(NUM))
912
913 #define ASM_OUTPUT_ASCII(FILE, P, SIZE) \
914 output_ascii (FILE, P, SIZE)
915
916 /* This is how to output an element of a case-vector that is absolute. */
917
918 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
919 fprintf (FILE, "\t%sL_%d\n", TARGET_UNIX_ASM ? "" : ".word ", VALUE)
920
921 /* This is how to output an element of a case-vector that is relative.
922 Don't define this if it is not supported. */
923
924 /* #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, VALUE, REL) */
925
926 /* This is how to output an assembler line
927 that says to advance the location counter
928 to a multiple of 2**LOG bytes.
929
930 who needs this????
931 */
932
933 #define ASM_OUTPUT_ALIGN(FILE,LOG) \
934 switch (LOG) \
935 { \
936 case 0: \
937 break; \
938 case 1: \
939 fprintf (FILE, "\t.even\n"); \
940 break; \
941 default: \
942 gcc_unreachable (); \
943 }
944
945 #define ASM_OUTPUT_SKIP(FILE,SIZE) \
946 fprintf (FILE, "\t.=.+ %#ho\n", (unsigned short)(SIZE))
947
948 /* This says how to output an assembler line
949 to define a global common symbol. */
950
951 #define ASM_OUTPUT_COMMON(FILE, NAME, SIZE, ROUNDED) \
952 ( fprintf ((FILE), ".globl "), \
953 assemble_name ((FILE), (NAME)), \
954 fprintf ((FILE), "\n"), \
955 assemble_name ((FILE), (NAME)), \
956 fprintf ((FILE), ": .=.+ %#ho\n", (unsigned short)(ROUNDED)) \
957 )
958
959 /* This says how to output an assembler line
960 to define a local common symbol. */
961
962 #define ASM_OUTPUT_LOCAL(FILE, NAME, SIZE, ROUNDED) \
963 ( assemble_name ((FILE), (NAME)), \
964 fprintf ((FILE), ":\t.=.+ %#ho\n", (unsigned short)(ROUNDED)))
965
966 /* Print operand X (an rtx) in assembler syntax to file FILE.
967 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
968 For `%' followed by punctuation, CODE is the punctuation and X is null.
969
970 */
971
972
973 #define PRINT_OPERAND(FILE, X, CODE) \
974 { if (CODE == '#') fprintf (FILE, "#"); \
975 else if (GET_CODE (X) == REG) \
976 fprintf (FILE, "%s", reg_names[REGNO (X)]); \
977 else if (GET_CODE (X) == MEM) \
978 output_address (XEXP (X, 0)); \
979 else if (GET_CODE (X) == CONST_DOUBLE && GET_MODE (X) != SImode) \
980 { REAL_VALUE_TYPE r; \
981 long sval[2]; \
982 REAL_VALUE_FROM_CONST_DOUBLE (r, X); \
983 REAL_VALUE_TO_TARGET_DOUBLE (r, sval); \
984 fprintf (FILE, "$%#lo", sval[0] >> 16); } \
985 else { putc ('$', FILE); output_addr_const_pdp11 (FILE, X); }}
986
987 /* Print a memory address as an operand to reference that memory location. */
988
989 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) \
990 print_operand_address (FILE, ADDR)
991
992 #define ASM_OUTPUT_REG_PUSH(FILE,REGNO) \
993 ( \
994 fprintf (FILE, "\tmov %s, -(sp)\n", reg_names[REGNO]) \
995 )
996
997 #define ASM_OUTPUT_REG_POP(FILE,REGNO) \
998 ( \
999 fprintf (FILE, "\tmov (sp)+, %s\n", reg_names[REGNO]) \
1000 )
1001
1002 /* trampoline - how should i do it in separate i+d ?
1003 have some allocate_trampoline magic???
1004
1005 the following should work for shared I/D: */
1006
1007 /* lets see whether this works as trampoline:
1008 MV #STATIC, $4 0x940Y 0x0000 <- STATIC; Y = STATIC_CHAIN_REGNUM
1009 JMP FUNCTION 0x0058 0x0000 <- FUNCTION
1010 */
1011
1012 #define TRAMPOLINE_TEMPLATE(FILE) \
1013 { \
1014 gcc_assert (!TARGET_SPLIT); \
1015 \
1016 assemble_aligned_integer (2, GEN_INT (0x9400+STATIC_CHAIN_REGNUM)); \
1017 assemble_aligned_integer (2, const0_rtx); \
1018 assemble_aligned_integer (2, GEN_INT(0x0058)); \
1019 assemble_aligned_integer (2, const0_rtx); \
1020 }
1021
1022 #define TRAMPOLINE_SIZE 8
1023 #define TRAMPOLINE_ALIGNMENT 16
1024
1025 /* Emit RTL insns to initialize the variable parts of a trampoline.
1026 FNADDR is an RTX for the address of the function's pure code.
1027 CXT is an RTX for the static chain value for the function. */
1028
1029 #define INITIALIZE_TRAMPOLINE(TRAMP,FNADDR,CXT) \
1030 { \
1031 gcc_assert (!TARGET_SPLIT); \
1032 \
1033 emit_move_insn (gen_rtx_MEM (HImode, plus_constant (TRAMP, 2)), CXT); \
1034 emit_move_insn (gen_rtx_MEM (HImode, plus_constant (TRAMP, 6)), FNADDR); \
1035 }
1036
1037
1038 /* Some machines may desire to change what optimizations are
1039 performed for various optimization levels. This macro, if
1040 defined, is executed once just after the optimization level is
1041 determined and before the remainder of the command options have
1042 been parsed. Values set in this macro are used as the default
1043 values for the other command line options.
1044
1045 LEVEL is the optimization level specified; 2 if -O2 is
1046 specified, 1 if -O is specified, and 0 if neither is specified. */
1047
1048 #define OPTIMIZATION_OPTIONS(LEVEL,SIZE) \
1049 { \
1050 if (LEVEL >= 3) \
1051 { \
1052 flag_omit_frame_pointer = 1; \
1053 /* flag_unroll_loops = 1; */ \
1054 } \
1055 }
1056
1057 /* there is no point in avoiding branches on a pdp,
1058 since branches are really cheap - I just want to find out
1059 how much difference the BRANCH_COST macro makes in code */
1060 #define BRANCH_COST(speed_p, predictable_p) (TARGET_BRANCH_CHEAP ? 0 : 1)
1061
1062
1063 #define COMPARE_FLAG_MODE HImode