comparison gcc/config/rs6000/rs6000.h @ 0:a06113de4d67

first commit
author kent <kent@cr.ie.u-ryukyu.ac.jp>
date Fri, 17 Jul 2009 14:47:48 +0900
parents
children 77e2b8dfacca
comparison
equal deleted inserted replaced
-1:000000000000 0:a06113de4d67
1 /* Definitions of target machine for GNU compiler, for IBM RS/6000.
2 Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
4 Free Software Foundation, Inc.
5 Contributed by Richard Kenner (kenner@vlsi1.ultra.nyu.edu)
6
7 This file is part of GCC.
8
9 GCC is free software; you can redistribute it and/or modify it
10 under the terms of the GNU General Public License as published
11 by the Free Software Foundation; either version 3, or (at your
12 option) any later version.
13
14 GCC is distributed in the hope that it will be useful, but WITHOUT
15 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
16 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
17 License for more details.
18
19 Under Section 7 of GPL version 3, you are granted additional
20 permissions described in the GCC Runtime Library Exception, version
21 3.1, as published by the Free Software Foundation.
22
23 You should have received a copy of the GNU General Public License and
24 a copy of the GCC Runtime Library Exception along with this program;
25 see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
26 <http://www.gnu.org/licenses/>. */
27
28 /* Note that some other tm.h files include this one and then override
29 many of the definitions. */
30
31 /* Definitions for the object file format. These are set at
32 compile-time. */
33
34 #define OBJECT_XCOFF 1
35 #define OBJECT_ELF 2
36 #define OBJECT_PEF 3
37 #define OBJECT_MACHO 4
38
39 #define TARGET_ELF (TARGET_OBJECT_FORMAT == OBJECT_ELF)
40 #define TARGET_XCOFF (TARGET_OBJECT_FORMAT == OBJECT_XCOFF)
41 #define TARGET_MACOS (TARGET_OBJECT_FORMAT == OBJECT_PEF)
42 #define TARGET_MACHO (TARGET_OBJECT_FORMAT == OBJECT_MACHO)
43
44 #ifndef TARGET_AIX
45 #define TARGET_AIX 0
46 #endif
47
48 /* Control whether function entry points use a "dot" symbol when
49 ABI_AIX. */
50 #define DOT_SYMBOLS 1
51
52 /* Default string to use for cpu if not specified. */
53 #ifndef TARGET_CPU_DEFAULT
54 #define TARGET_CPU_DEFAULT ((char *)0)
55 #endif
56
57 /* If configured for PPC405, support PPC405CR Erratum77. */
58 #ifdef CONFIG_PPC405CR
59 #define PPC405_ERRATUM77 (rs6000_cpu == PROCESSOR_PPC405)
60 #else
61 #define PPC405_ERRATUM77 0
62 #endif
63
64 #ifndef TARGET_PAIRED_FLOAT
65 #define TARGET_PAIRED_FLOAT 0
66 #endif
67
68 #ifdef HAVE_AS_POPCNTB
69 #define ASM_CPU_POWER5_SPEC "-mpower5"
70 #else
71 #define ASM_CPU_POWER5_SPEC "-mpower4"
72 #endif
73
74 #ifdef HAVE_AS_DFP
75 #define ASM_CPU_POWER6_SPEC "-mpower6 -maltivec"
76 #else
77 #define ASM_CPU_POWER6_SPEC "-mpower4 -maltivec"
78 #endif
79
80 #ifdef HAVE_AS_VSX
81 #define ASM_CPU_POWER7_SPEC "-mpower7"
82 #else
83 #define ASM_CPU_POWER7_SPEC "-mpower4 -maltivec"
84 #endif
85
86 /* Common ASM definitions used by ASM_SPEC among the various targets
87 for handling -mcpu=xxx switches. */
88 #define ASM_CPU_SPEC \
89 "%{!mcpu*: \
90 %{mpower: %{!mpower2: -mpwr}} \
91 %{mpower2: -mpwrx} \
92 %{mpowerpc64*: -mppc64} \
93 %{!mpowerpc64*: %{mpowerpc*: -mppc}} \
94 %{mno-power: %{!mpowerpc*: -mcom}} \
95 %{!mno-power: %{!mpower*: %(asm_default)}}} \
96 %{mcpu=common: -mcom} \
97 %{mcpu=cell: -mcell} \
98 %{mcpu=power: -mpwr} \
99 %{mcpu=power2: -mpwrx} \
100 %{mcpu=power3: -mppc64} \
101 %{mcpu=power4: -mpower4} \
102 %{mcpu=power5: %(asm_cpu_power5)} \
103 %{mcpu=power5+: %(asm_cpu_power5)} \
104 %{mcpu=power6: %(asm_cpu_power6) -maltivec} \
105 %{mcpu=power6x: %(asm_cpu_power6) -maltivec} \
106 %{mcpu=power7: %(asm_cpu_power7)} \
107 %{mcpu=powerpc: -mppc} \
108 %{mcpu=rios: -mpwr} \
109 %{mcpu=rios1: -mpwr} \
110 %{mcpu=rios2: -mpwrx} \
111 %{mcpu=rsc: -mpwr} \
112 %{mcpu=rsc1: -mpwr} \
113 %{mcpu=rs64a: -mppc64} \
114 %{mcpu=401: -mppc} \
115 %{mcpu=403: -m403} \
116 %{mcpu=405: -m405} \
117 %{mcpu=405fp: -m405} \
118 %{mcpu=440: -m440} \
119 %{mcpu=440fp: -m440} \
120 %{mcpu=464: -m440} \
121 %{mcpu=464fp: -m440} \
122 %{mcpu=505: -mppc} \
123 %{mcpu=601: -m601} \
124 %{mcpu=602: -mppc} \
125 %{mcpu=603: -mppc} \
126 %{mcpu=603e: -mppc} \
127 %{mcpu=ec603e: -mppc} \
128 %{mcpu=604: -mppc} \
129 %{mcpu=604e: -mppc} \
130 %{mcpu=620: -mppc64} \
131 %{mcpu=630: -mppc64} \
132 %{mcpu=740: -mppc} \
133 %{mcpu=750: -mppc} \
134 %{mcpu=G3: -mppc} \
135 %{mcpu=7400: -mppc -maltivec} \
136 %{mcpu=7450: -mppc -maltivec} \
137 %{mcpu=G4: -mppc -maltivec} \
138 %{mcpu=801: -mppc} \
139 %{mcpu=821: -mppc} \
140 %{mcpu=823: -mppc} \
141 %{mcpu=860: -mppc} \
142 %{mcpu=970: -mpower4 -maltivec} \
143 %{mcpu=G5: -mpower4 -maltivec} \
144 %{mcpu=8540: -me500} \
145 %{mcpu=8548: -me500} \
146 %{mcpu=e300c2: -me300} \
147 %{mcpu=e300c3: -me300} \
148 %{mcpu=e500mc: -me500mc} \
149 %{maltivec: -maltivec} \
150 -many"
151
152 #define CPP_DEFAULT_SPEC ""
153
154 #define ASM_DEFAULT_SPEC ""
155
156 /* This macro defines names of additional specifications to put in the specs
157 that can be used in various specifications like CC1_SPEC. Its definition
158 is an initializer with a subgrouping for each command option.
159
160 Each subgrouping contains a string constant, that defines the
161 specification name, and a string constant that used by the GCC driver
162 program.
163
164 Do not define this macro if it does not need to do anything. */
165
166 #define SUBTARGET_EXTRA_SPECS
167
168 #define EXTRA_SPECS \
169 { "cpp_default", CPP_DEFAULT_SPEC }, \
170 { "asm_cpu", ASM_CPU_SPEC }, \
171 { "asm_default", ASM_DEFAULT_SPEC }, \
172 { "cc1_cpu", CC1_CPU_SPEC }, \
173 { "asm_cpu_power5", ASM_CPU_POWER5_SPEC }, \
174 { "asm_cpu_power6", ASM_CPU_POWER6_SPEC }, \
175 { "asm_cpu_power7", ASM_CPU_POWER7_SPEC }, \
176 SUBTARGET_EXTRA_SPECS
177
178 /* -mcpu=native handling only makes sense with compiler running on
179 an PowerPC chip. If changing this condition, also change
180 the condition in driver-rs6000.c. */
181 #if defined(__powerpc__) || defined(__POWERPC__) || defined(_AIX)
182 /* In driver-rs6000.c. */
183 extern const char *host_detect_local_cpu (int argc, const char **argv);
184 #define EXTRA_SPEC_FUNCTIONS \
185 { "local_cpu_detect", host_detect_local_cpu },
186 #define HAVE_LOCAL_CPU_DETECT
187 #endif
188
189 #ifndef CC1_CPU_SPEC
190 #ifdef HAVE_LOCAL_CPU_DETECT
191 #define CC1_CPU_SPEC \
192 "%{mcpu=native:%<mcpu=native %:local_cpu_detect(cpu)} \
193 %{mtune=native:%<mtune=native %:local_cpu_detect(tune)}"
194 #else
195 #define CC1_CPU_SPEC ""
196 #endif
197 #endif
198
199 /* Architecture type. */
200
201 /* Define TARGET_MFCRF if the target assembler does not support the
202 optional field operand for mfcr. */
203
204 #ifndef HAVE_AS_MFCRF
205 #undef TARGET_MFCRF
206 #define TARGET_MFCRF 0
207 #endif
208
209 /* Define TARGET_POPCNTB if the target assembler does not support the
210 popcount byte instruction. */
211
212 #ifndef HAVE_AS_POPCNTB
213 #undef TARGET_POPCNTB
214 #define TARGET_POPCNTB 0
215 #endif
216
217 /* Define TARGET_FPRND if the target assembler does not support the
218 fp rounding instructions. */
219
220 #ifndef HAVE_AS_FPRND
221 #undef TARGET_FPRND
222 #define TARGET_FPRND 0
223 #endif
224
225 /* Define TARGET_CMPB if the target assembler does not support the
226 cmpb instruction. */
227
228 #ifndef HAVE_AS_CMPB
229 #undef TARGET_CMPB
230 #define TARGET_CMPB 0
231 #endif
232
233 /* Define TARGET_MFPGPR if the target assembler does not support the
234 mffpr and mftgpr instructions. */
235
236 #ifndef HAVE_AS_MFPGPR
237 #undef TARGET_MFPGPR
238 #define TARGET_MFPGPR 0
239 #endif
240
241 /* Define TARGET_DFP if the target assembler does not support decimal
242 floating point instructions. */
243 #ifndef HAVE_AS_DFP
244 #undef TARGET_DFP
245 #define TARGET_DFP 0
246 #endif
247
248 #ifndef TARGET_SECURE_PLT
249 #define TARGET_SECURE_PLT 0
250 #endif
251
252 #define TARGET_32BIT (! TARGET_64BIT)
253
254 #ifndef HAVE_AS_TLS
255 #define HAVE_AS_TLS 0
256 #endif
257
258 /* Return 1 for a symbol ref for a thread-local storage symbol. */
259 #define RS6000_SYMBOL_REF_TLS_P(RTX) \
260 (GET_CODE (RTX) == SYMBOL_REF && SYMBOL_REF_TLS_MODEL (RTX) != 0)
261
262 #ifdef IN_LIBGCC2
263 /* For libgcc2 we make sure this is a compile time constant */
264 #if defined (__64BIT__) || defined (__powerpc64__) || defined (__ppc64__)
265 #undef TARGET_POWERPC64
266 #define TARGET_POWERPC64 1
267 #else
268 #undef TARGET_POWERPC64
269 #define TARGET_POWERPC64 0
270 #endif
271 #else
272 /* The option machinery will define this. */
273 #endif
274
275 #define TARGET_DEFAULT (MASK_POWER | MASK_MULTIPLE | MASK_STRING)
276
277 /* Processor type. Order must match cpu attribute in MD file. */
278 enum processor_type
279 {
280 PROCESSOR_RIOS1,
281 PROCESSOR_RIOS2,
282 PROCESSOR_RS64A,
283 PROCESSOR_MPCCORE,
284 PROCESSOR_PPC403,
285 PROCESSOR_PPC405,
286 PROCESSOR_PPC440,
287 PROCESSOR_PPC601,
288 PROCESSOR_PPC603,
289 PROCESSOR_PPC604,
290 PROCESSOR_PPC604e,
291 PROCESSOR_PPC620,
292 PROCESSOR_PPC630,
293 PROCESSOR_PPC750,
294 PROCESSOR_PPC7400,
295 PROCESSOR_PPC7450,
296 PROCESSOR_PPC8540,
297 PROCESSOR_PPCE300C2,
298 PROCESSOR_PPCE300C3,
299 PROCESSOR_PPCE500MC,
300 PROCESSOR_POWER4,
301 PROCESSOR_POWER5,
302 PROCESSOR_POWER6,
303 PROCESSOR_CELL
304 };
305
306 /* FPU operations supported.
307 Each use of TARGET_SINGLE_FLOAT or TARGET_DOUBLE_FLOAT must
308 also test TARGET_HARD_FLOAT. */
309 #define TARGET_SINGLE_FLOAT 1
310 #define TARGET_DOUBLE_FLOAT 1
311 #define TARGET_SINGLE_FPU 0
312 #define TARGET_SIMPLE_FPU 0
313 #define TARGET_XILINX_FPU 0
314
315 extern enum processor_type rs6000_cpu;
316
317 /* Recast the processor type to the cpu attribute. */
318 #define rs6000_cpu_attr ((enum attr_cpu)rs6000_cpu)
319
320 /* Define generic processor types based upon current deployment. */
321 #define PROCESSOR_COMMON PROCESSOR_PPC601
322 #define PROCESSOR_POWER PROCESSOR_RIOS1
323 #define PROCESSOR_POWERPC PROCESSOR_PPC604
324 #define PROCESSOR_POWERPC64 PROCESSOR_RS64A
325
326 /* Define the default processor. This is overridden by other tm.h files. */
327 #define PROCESSOR_DEFAULT PROCESSOR_RIOS1
328 #define PROCESSOR_DEFAULT64 PROCESSOR_RS64A
329
330 /* FP processor type. */
331 enum fpu_type_t
332 {
333 FPU_NONE, /* No FPU */
334 FPU_SF_LITE, /* Limited Single Precision FPU */
335 FPU_DF_LITE, /* Limited Double Precision FPU */
336 FPU_SF_FULL, /* Full Single Precision FPU */
337 FPU_DF_FULL /* Full Double Single Precision FPU */
338 };
339
340 extern enum fpu_type_t fpu_type;
341
342 /* Specify the dialect of assembler to use. New mnemonics is dialect one
343 and the old mnemonics are dialect zero. */
344 #define ASSEMBLER_DIALECT (TARGET_NEW_MNEMONICS ? 1 : 0)
345
346 /* Types of costly dependences. */
347 enum rs6000_dependence_cost
348 {
349 max_dep_latency = 1000,
350 no_dep_costly,
351 all_deps_costly,
352 true_store_to_load_dep_costly,
353 store_to_load_dep_costly
354 };
355
356 /* Types of nop insertion schemes in sched target hook sched_finish. */
357 enum rs6000_nop_insertion
358 {
359 sched_finish_regroup_exact = 1000,
360 sched_finish_pad_groups,
361 sched_finish_none
362 };
363
364 /* Dispatch group termination caused by an insn. */
365 enum group_termination
366 {
367 current_group,
368 previous_group
369 };
370
371 /* Support for a compile-time default CPU, et cetera. The rules are:
372 --with-cpu is ignored if -mcpu is specified.
373 --with-tune is ignored if -mtune is specified.
374 --with-float is ignored if -mhard-float or -msoft-float are
375 specified. */
376 #define OPTION_DEFAULT_SPECS \
377 {"cpu", "%{!mcpu=*:-mcpu=%(VALUE)}" }, \
378 {"tune", "%{!mtune=*:-mtune=%(VALUE)}" }, \
379 {"float", "%{!msoft-float:%{!mhard-float:-m%(VALUE)-float}}" }
380
381 /* rs6000_select[0] is reserved for the default cpu defined via --with-cpu */
382 struct rs6000_cpu_select
383 {
384 const char *string;
385 const char *name;
386 int set_tune_p;
387 int set_arch_p;
388 };
389
390 extern struct rs6000_cpu_select rs6000_select[];
391
392 /* Debug support */
393 extern const char *rs6000_debug_name; /* Name for -mdebug-xxxx option */
394 extern int rs6000_debug_stack; /* debug stack applications */
395 extern int rs6000_debug_arg; /* debug argument handling */
396
397 #define TARGET_DEBUG_STACK rs6000_debug_stack
398 #define TARGET_DEBUG_ARG rs6000_debug_arg
399
400 extern const char *rs6000_traceback_name; /* Type of traceback table. */
401
402 /* These are separate from target_flags because we've run out of bits
403 there. */
404 extern int rs6000_long_double_type_size;
405 extern int rs6000_ieeequad;
406 extern int rs6000_altivec_abi;
407 extern int rs6000_spe_abi;
408 extern int rs6000_spe;
409 extern int rs6000_isel;
410 extern int rs6000_float_gprs;
411 extern int rs6000_alignment_flags;
412 extern const char *rs6000_sched_insert_nops_str;
413 extern enum rs6000_nop_insertion rs6000_sched_insert_nops;
414 extern int rs6000_xilinx_fpu;
415
416 /* Alignment options for fields in structures for sub-targets following
417 AIX-like ABI.
418 ALIGN_POWER word-aligns FP doubles (default AIX ABI).
419 ALIGN_NATURAL doubleword-aligns FP doubles (align to object size).
420
421 Override the macro definitions when compiling libobjc to avoid undefined
422 reference to rs6000_alignment_flags due to library's use of GCC alignment
423 macros which use the macros below. */
424
425 #ifndef IN_TARGET_LIBS
426 #define MASK_ALIGN_POWER 0x00000000
427 #define MASK_ALIGN_NATURAL 0x00000001
428 #define TARGET_ALIGN_NATURAL (rs6000_alignment_flags & MASK_ALIGN_NATURAL)
429 #else
430 #define TARGET_ALIGN_NATURAL 0
431 #endif
432
433 #define TARGET_LONG_DOUBLE_128 (rs6000_long_double_type_size == 128)
434 #define TARGET_IEEEQUAD rs6000_ieeequad
435 #define TARGET_ALTIVEC_ABI rs6000_altivec_abi
436
437 #define TARGET_SPE_ABI 0
438 #define TARGET_SPE 0
439 #define TARGET_E500 0
440 #define TARGET_ISEL rs6000_isel
441 #define TARGET_FPRS 1
442 #define TARGET_E500_SINGLE 0
443 #define TARGET_E500_DOUBLE 0
444 #define CHECK_E500_OPTIONS do { } while (0)
445
446 /* E500 processors only support plain "sync", not lwsync. */
447 #define TARGET_NO_LWSYNC TARGET_E500
448
449 /* Sometimes certain combinations of command options do not make sense
450 on a particular target machine. You can define a macro
451 `OVERRIDE_OPTIONS' to take account of this. This macro, if
452 defined, is executed once just after all the command options have
453 been parsed.
454
455 Do not use this macro to turn on various extra optimizations for
456 `-O'. That is what `OPTIMIZATION_OPTIONS' is for.
457
458 On the RS/6000 this is used to define the target cpu type. */
459
460 #define OVERRIDE_OPTIONS rs6000_override_options (TARGET_CPU_DEFAULT)
461
462 /* Define this to change the optimizations performed by default. */
463 #define OPTIMIZATION_OPTIONS(LEVEL,SIZE) optimization_options(LEVEL,SIZE)
464
465 /* Show we can debug even without a frame pointer. */
466 #define CAN_DEBUG_WITHOUT_FP
467
468 /* Target pragma. */
469 #define REGISTER_TARGET_PRAGMAS() do { \
470 c_register_pragma (0, "longcall", rs6000_pragma_longcall); \
471 targetm.resolve_overloaded_builtin = altivec_resolve_overloaded_builtin; \
472 } while (0)
473
474 /* Target #defines. */
475 #define TARGET_CPU_CPP_BUILTINS() \
476 rs6000_cpu_cpp_builtins (pfile)
477
478 /* This is used by rs6000_cpu_cpp_builtins to indicate the byte order
479 we're compiling for. Some configurations may need to override it. */
480 #define RS6000_CPU_CPP_ENDIAN_BUILTINS() \
481 do \
482 { \
483 if (BYTES_BIG_ENDIAN) \
484 { \
485 builtin_define ("__BIG_ENDIAN__"); \
486 builtin_define ("_BIG_ENDIAN"); \
487 builtin_assert ("machine=bigendian"); \
488 } \
489 else \
490 { \
491 builtin_define ("__LITTLE_ENDIAN__"); \
492 builtin_define ("_LITTLE_ENDIAN"); \
493 builtin_assert ("machine=littleendian"); \
494 } \
495 } \
496 while (0)
497
498 /* Target machine storage layout. */
499
500 /* Define this macro if it is advisable to hold scalars in registers
501 in a wider mode than that declared by the program. In such cases,
502 the value is constrained to be within the bounds of the declared
503 type, but kept valid in the wider mode. The signedness of the
504 extension may differ from that of the type. */
505
506 #define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE) \
507 if (GET_MODE_CLASS (MODE) == MODE_INT \
508 && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
509 (MODE) = TARGET_32BIT ? SImode : DImode;
510
511 /* Define this if most significant bit is lowest numbered
512 in instructions that operate on numbered bit-fields. */
513 /* That is true on RS/6000. */
514 #define BITS_BIG_ENDIAN 1
515
516 /* Define this if most significant byte of a word is the lowest numbered. */
517 /* That is true on RS/6000. */
518 #define BYTES_BIG_ENDIAN 1
519
520 /* Define this if most significant word of a multiword number is lowest
521 numbered.
522
523 For RS/6000 we can decide arbitrarily since there are no machine
524 instructions for them. Might as well be consistent with bits and bytes. */
525 #define WORDS_BIG_ENDIAN 1
526
527 #define MAX_BITS_PER_WORD 64
528
529 /* Width of a word, in units (bytes). */
530 #define UNITS_PER_WORD (! TARGET_POWERPC64 ? 4 : 8)
531 #ifdef IN_LIBGCC2
532 #define MIN_UNITS_PER_WORD UNITS_PER_WORD
533 #else
534 #define MIN_UNITS_PER_WORD 4
535 #endif
536 #define UNITS_PER_FP_WORD 8
537 #define UNITS_PER_ALTIVEC_WORD 16
538 #define UNITS_PER_SPE_WORD 8
539 #define UNITS_PER_PAIRED_WORD 8
540
541 /* Type used for ptrdiff_t, as a string used in a declaration. */
542 #define PTRDIFF_TYPE "int"
543
544 /* Type used for size_t, as a string used in a declaration. */
545 #define SIZE_TYPE "long unsigned int"
546
547 /* Type used for wchar_t, as a string used in a declaration. */
548 #define WCHAR_TYPE "short unsigned int"
549
550 /* Width of wchar_t in bits. */
551 #define WCHAR_TYPE_SIZE 16
552
553 /* A C expression for the size in bits of the type `short' on the
554 target machine. If you don't define this, the default is half a
555 word. (If this would be less than one storage unit, it is
556 rounded up to one unit.) */
557 #define SHORT_TYPE_SIZE 16
558
559 /* A C expression for the size in bits of the type `int' on the
560 target machine. If you don't define this, the default is one
561 word. */
562 #define INT_TYPE_SIZE 32
563
564 /* A C expression for the size in bits of the type `long' on the
565 target machine. If you don't define this, the default is one
566 word. */
567 #define LONG_TYPE_SIZE (TARGET_32BIT ? 32 : 64)
568
569 /* A C expression for the size in bits of the type `long long' on the
570 target machine. If you don't define this, the default is two
571 words. */
572 #define LONG_LONG_TYPE_SIZE 64
573
574 /* A C expression for the size in bits of the type `float' on the
575 target machine. If you don't define this, the default is one
576 word. */
577 #define FLOAT_TYPE_SIZE 32
578
579 /* A C expression for the size in bits of the type `double' on the
580 target machine. If you don't define this, the default is two
581 words. */
582 #define DOUBLE_TYPE_SIZE 64
583
584 /* A C expression for the size in bits of the type `long double' on
585 the target machine. If you don't define this, the default is two
586 words. */
587 #define LONG_DOUBLE_TYPE_SIZE rs6000_long_double_type_size
588
589 /* Define this to set long double type size to use in libgcc2.c, which can
590 not depend on target_flags. */
591 #ifdef __LONG_DOUBLE_128__
592 #define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 128
593 #else
594 #define LIBGCC2_LONG_DOUBLE_TYPE_SIZE 64
595 #endif
596
597 /* Work around rs6000_long_double_type_size dependency in ada/targtyps.c. */
598 #define WIDEST_HARDWARE_FP_SIZE 64
599
600 /* Width in bits of a pointer.
601 See also the macro `Pmode' defined below. */
602 #define POINTER_SIZE (TARGET_32BIT ? 32 : 64)
603
604 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
605 #define PARM_BOUNDARY (TARGET_32BIT ? 32 : 64)
606
607 /* Boundary (in *bits*) on which stack pointer should be aligned. */
608 #define STACK_BOUNDARY \
609 ((TARGET_32BIT && !TARGET_ALTIVEC && !TARGET_ALTIVEC_ABI) ? 64 : 128)
610
611 /* Allocation boundary (in *bits*) for the code of a function. */
612 #define FUNCTION_BOUNDARY 32
613
614 /* No data type wants to be aligned rounder than this. */
615 #define BIGGEST_ALIGNMENT 128
616
617 /* A C expression to compute the alignment for a variables in the
618 local store. TYPE is the data type, and ALIGN is the alignment
619 that the object would ordinarily have. */
620 #define LOCAL_ALIGNMENT(TYPE, ALIGN) \
621 ((TARGET_ALTIVEC && TREE_CODE (TYPE) == VECTOR_TYPE) ? 128 : \
622 (TARGET_E500_DOUBLE \
623 && TYPE_MODE (TYPE) == DFmode) ? 64 : \
624 ((TARGET_SPE && TREE_CODE (TYPE) == VECTOR_TYPE \
625 && SPE_VECTOR_MODE (TYPE_MODE (TYPE))) || (TARGET_PAIRED_FLOAT \
626 && TREE_CODE (TYPE) == VECTOR_TYPE \
627 && PAIRED_VECTOR_MODE (TYPE_MODE (TYPE)))) ? 64 : ALIGN)
628
629 /* Alignment of field after `int : 0' in a structure. */
630 #define EMPTY_FIELD_BOUNDARY 32
631
632 /* Every structure's size must be a multiple of this. */
633 #define STRUCTURE_SIZE_BOUNDARY 8
634
635 /* Return 1 if a structure or array containing FIELD should be
636 accessed using `BLKMODE'.
637
638 For the SPE, simd types are V2SI, and gcc can be tempted to put the
639 entire thing in a DI and use subregs to access the internals.
640 store_bit_field() will force (subreg:DI (reg:V2SI x))'s to the
641 back-end. Because a single GPR can hold a V2SI, but not a DI, the
642 best thing to do is set structs to BLKmode and avoid Severe Tire
643 Damage.
644
645 On e500 v2, DF and DI modes suffer from the same anomaly. DF can
646 fit into 1, whereas DI still needs two. */
647 #define MEMBER_TYPE_FORCES_BLK(FIELD, MODE) \
648 ((TARGET_SPE && TREE_CODE (TREE_TYPE (FIELD)) == VECTOR_TYPE) \
649 || (TARGET_E500_DOUBLE && (MODE) == DFmode))
650
651 /* A bit-field declared as `int' forces `int' alignment for the struct. */
652 #define PCC_BITFIELD_TYPE_MATTERS 1
653
654 /* Make strings word-aligned so strcpy from constants will be faster.
655 Make vector constants quadword aligned. */
656 #define CONSTANT_ALIGNMENT(EXP, ALIGN) \
657 (TREE_CODE (EXP) == STRING_CST \
658 && (STRICT_ALIGNMENT || !optimize_size) \
659 && (ALIGN) < BITS_PER_WORD \
660 ? BITS_PER_WORD \
661 : (ALIGN))
662
663 /* Make arrays of chars word-aligned for the same reasons.
664 Align vectors to 128 bits. Align SPE vectors and E500 v2 doubles to
665 64 bits. */
666 #define DATA_ALIGNMENT(TYPE, ALIGN) \
667 (TREE_CODE (TYPE) == VECTOR_TYPE ? ((TARGET_SPE_ABI \
668 || TARGET_PAIRED_FLOAT) ? 64 : 128) \
669 : (TARGET_E500_DOUBLE \
670 && TYPE_MODE (TYPE) == DFmode) ? 64 \
671 : TREE_CODE (TYPE) == ARRAY_TYPE \
672 && TYPE_MODE (TREE_TYPE (TYPE)) == QImode \
673 && (ALIGN) < BITS_PER_WORD ? BITS_PER_WORD : (ALIGN))
674
675 /* Nonzero if move instructions will actually fail to work
676 when given unaligned data. */
677 #define STRICT_ALIGNMENT 0
678
679 /* Define this macro to be the value 1 if unaligned accesses have a cost
680 many times greater than aligned accesses, for example if they are
681 emulated in a trap handler. */
682 /* Altivec vector memory instructions simply ignore the low bits; SPE
683 vector memory instructions trap on unaligned accesses. */
684 #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) \
685 (STRICT_ALIGNMENT \
686 || (((MODE) == SFmode || (MODE) == DFmode || (MODE) == TFmode \
687 || (MODE) == SDmode || (MODE) == DDmode || (MODE) == TDmode \
688 || (MODE) == DImode) \
689 && (ALIGN) < 32) \
690 || (VECTOR_MODE_P ((MODE)) && (ALIGN) < GET_MODE_BITSIZE ((MODE))))
691
692 /* Standard register usage. */
693
694 /* Number of actual hardware registers.
695 The hardware registers are assigned numbers for the compiler
696 from 0 to just below FIRST_PSEUDO_REGISTER.
697 All registers that the compiler knows about must be given numbers,
698 even those that are not normally considered general registers.
699
700 RS/6000 has 32 fixed-point registers, 32 floating-point registers,
701 an MQ register, a count register, a link register, and 8 condition
702 register fields, which we view here as separate registers. AltiVec
703 adds 32 vector registers and a VRsave register.
704
705 In addition, the difference between the frame and argument pointers is
706 a function of the number of registers saved, so we need to have a
707 register for AP that will later be eliminated in favor of SP or FP.
708 This is a normal register, but it is fixed.
709
710 We also create a pseudo register for float/int conversions, that will
711 really represent the memory location used. It is represented here as
712 a register, in order to work around problems in allocating stack storage
713 in inline functions.
714
715 Another pseudo (not included in DWARF_FRAME_REGISTERS) is soft frame
716 pointer, which is eventually eliminated in favor of SP or FP. */
717
718 #define FIRST_PSEUDO_REGISTER 114
719
720 /* This must be included for pre gcc 3.0 glibc compatibility. */
721 #define PRE_GCC3_DWARF_FRAME_REGISTERS 77
722
723 /* Add 32 dwarf columns for synthetic SPE registers. */
724 #define DWARF_FRAME_REGISTERS ((FIRST_PSEUDO_REGISTER - 1) + 32)
725
726 /* The SPE has an additional 32 synthetic registers, with DWARF debug
727 info numbering for these registers starting at 1200. While eh_frame
728 register numbering need not be the same as the debug info numbering,
729 we choose to number these regs for eh_frame at 1200 too. This allows
730 future versions of the rs6000 backend to add hard registers and
731 continue to use the gcc hard register numbering for eh_frame. If the
732 extra SPE registers in eh_frame were numbered starting from the
733 current value of FIRST_PSEUDO_REGISTER, then if FIRST_PSEUDO_REGISTER
734 changed we'd need to introduce a mapping in DWARF_FRAME_REGNUM to
735 avoid invalidating older SPE eh_frame info.
736
737 We must map them here to avoid huge unwinder tables mostly consisting
738 of unused space. */
739 #define DWARF_REG_TO_UNWIND_COLUMN(r) \
740 ((r) > 1200 ? ((r) - 1200 + FIRST_PSEUDO_REGISTER - 1) : (r))
741
742 /* Use standard DWARF numbering for DWARF debugging information. */
743 #define DBX_REGISTER_NUMBER(REGNO) rs6000_dbx_register_number (REGNO)
744
745 /* Use gcc hard register numbering for eh_frame. */
746 #define DWARF_FRAME_REGNUM(REGNO) (REGNO)
747
748 /* Map register numbers held in the call frame info that gcc has
749 collected using DWARF_FRAME_REGNUM to those that should be output in
750 .debug_frame and .eh_frame. We continue to use gcc hard reg numbers
751 for .eh_frame, but use the numbers mandated by the various ABIs for
752 .debug_frame. rs6000_emit_prologue has translated any combination of
753 CR2, CR3, CR4 saves to a save of CR2. The actual code emitted saves
754 the whole of CR, so we map CR2_REGNO to the DWARF reg for CR. */
755 #define DWARF2_FRAME_REG_OUT(REGNO, FOR_EH) \
756 ((FOR_EH) ? (REGNO) \
757 : (REGNO) == CR2_REGNO ? 64 \
758 : DBX_REGISTER_NUMBER (REGNO))
759
760 /* 1 for registers that have pervasive standard uses
761 and are not available for the register allocator.
762
763 On RS/6000, r1 is used for the stack. On Darwin, r2 is available
764 as a local register; for all other OS's r2 is the TOC pointer.
765
766 cr5 is not supposed to be used.
767
768 On System V implementations, r13 is fixed and not available for use. */
769
770 #define FIXED_REGISTERS \
771 {0, 1, FIXED_R2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, FIXED_R13, 0, 0, \
772 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
773 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
774 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
775 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, \
776 /* AltiVec registers. */ \
777 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
778 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
779 1, 1 \
780 , 1, 1, 1 \
781 }
782
783 /* 1 for registers not available across function calls.
784 These must include the FIXED_REGISTERS and also any
785 registers that can be used without being saved.
786 The latter must include the registers where values are returned
787 and the register where structure-value addresses are passed.
788 Aside from that, you can include as many other registers as you like. */
789
790 #define CALL_USED_REGISTERS \
791 {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, FIXED_R13, 0, 0, \
792 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
793 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, \
794 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
795 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, \
796 /* AltiVec registers. */ \
797 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
798 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
799 1, 1 \
800 , 1, 1, 1 \
801 }
802
803 /* Like `CALL_USED_REGISTERS' except this macro doesn't require that
804 the entire set of `FIXED_REGISTERS' be included.
805 (`CALL_USED_REGISTERS' must be a superset of `FIXED_REGISTERS').
806 This macro is optional. If not specified, it defaults to the value
807 of `CALL_USED_REGISTERS'. */
808
809 #define CALL_REALLY_USED_REGISTERS \
810 {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, FIXED_R13, 0, 0, \
811 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
812 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, \
813 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
814 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, \
815 /* AltiVec registers. */ \
816 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
817 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
818 0, 0 \
819 , 0, 0, 0 \
820 }
821
822 #define TOTAL_ALTIVEC_REGS (LAST_ALTIVEC_REGNO - FIRST_ALTIVEC_REGNO + 1)
823
824 #define FIRST_SAVED_ALTIVEC_REGNO (FIRST_ALTIVEC_REGNO+20)
825 #define FIRST_SAVED_FP_REGNO (14+32)
826 #define FIRST_SAVED_GP_REGNO 13
827
828 /* List the order in which to allocate registers. Each register must be
829 listed once, even those in FIXED_REGISTERS.
830
831 We allocate in the following order:
832 fp0 (not saved or used for anything)
833 fp13 - fp2 (not saved; incoming fp arg registers)
834 fp1 (not saved; return value)
835 fp31 - fp14 (saved; order given to save least number)
836 cr7, cr6 (not saved or special)
837 cr1 (not saved, but used for FP operations)
838 cr0 (not saved, but used for arithmetic operations)
839 cr4, cr3, cr2 (saved)
840 r0 (not saved; cannot be base reg)
841 r9 (not saved; best for TImode)
842 r11, r10, r8-r4 (not saved; highest used first to make less conflict)
843 r3 (not saved; return value register)
844 r31 - r13 (saved; order given to save least number)
845 r12 (not saved; if used for DImode or DFmode would use r13)
846 mq (not saved; best to use it if we can)
847 ctr (not saved; when we have the choice ctr is better)
848 lr (saved)
849 cr5, r1, r2, ap, xer (fixed)
850 v0 - v1 (not saved or used for anything)
851 v13 - v3 (not saved; incoming vector arg registers)
852 v2 (not saved; incoming vector arg reg; return value)
853 v19 - v14 (not saved or used for anything)
854 v31 - v20 (saved; order given to save least number)
855 vrsave, vscr (fixed)
856 spe_acc, spefscr (fixed)
857 sfp (fixed)
858 */
859
860 #if FIXED_R2 == 1
861 #define MAYBE_R2_AVAILABLE
862 #define MAYBE_R2_FIXED 2,
863 #else
864 #define MAYBE_R2_AVAILABLE 2,
865 #define MAYBE_R2_FIXED
866 #endif
867
868 #define REG_ALLOC_ORDER \
869 {32, \
870 45, 44, 43, 42, 41, 40, 39, 38, 37, 36, 35, 34, \
871 33, \
872 63, 62, 61, 60, 59, 58, 57, 56, 55, 54, 53, 52, 51, \
873 50, 49, 48, 47, 46, \
874 75, 74, 69, 68, 72, 71, 70, \
875 0, MAYBE_R2_AVAILABLE \
876 9, 11, 10, 8, 7, 6, 5, 4, \
877 3, \
878 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, \
879 18, 17, 16, 15, 14, 13, 12, \
880 64, 66, 65, \
881 73, 1, MAYBE_R2_FIXED 67, 76, \
882 /* AltiVec registers. */ \
883 77, 78, \
884 90, 89, 88, 87, 86, 85, 84, 83, 82, 81, 80, \
885 79, \
886 96, 95, 94, 93, 92, 91, \
887 108, 107, 106, 105, 104, 103, 102, 101, 100, 99, 98, 97, \
888 109, 110, \
889 111, 112, 113 \
890 }
891
892 /* True if register is floating-point. */
893 #define FP_REGNO_P(N) ((N) >= 32 && (N) <= 63)
894
895 /* True if register is a condition register. */
896 #define CR_REGNO_P(N) ((N) >= CR0_REGNO && (N) <= CR7_REGNO)
897
898 /* True if register is a condition register, but not cr0. */
899 #define CR_REGNO_NOT_CR0_P(N) ((N) >= CR1_REGNO && (N) <= CR7_REGNO)
900
901 /* True if register is an integer register. */
902 #define INT_REGNO_P(N) \
903 ((N) <= 31 || (N) == ARG_POINTER_REGNUM || (N) == FRAME_POINTER_REGNUM)
904
905 /* SPE SIMD registers are just the GPRs. */
906 #define SPE_SIMD_REGNO_P(N) ((N) <= 31)
907
908 /* PAIRED SIMD registers are just the FPRs. */
909 #define PAIRED_SIMD_REGNO_P(N) ((N) >= 32 && (N) <= 63)
910
911 /* True if register is the XER register. */
912 #define XER_REGNO_P(N) ((N) == XER_REGNO)
913
914 /* True if register is an AltiVec register. */
915 #define ALTIVEC_REGNO_P(N) ((N) >= FIRST_ALTIVEC_REGNO && (N) <= LAST_ALTIVEC_REGNO)
916
917 /* Return number of consecutive hard regs needed starting at reg REGNO
918 to hold something of mode MODE. */
919
920 #define HARD_REGNO_NREGS(REGNO, MODE) rs6000_hard_regno_nregs ((REGNO), (MODE))
921
922 #define HARD_REGNO_CALL_PART_CLOBBERED(REGNO, MODE) \
923 ((TARGET_32BIT && TARGET_POWERPC64 \
924 && (GET_MODE_SIZE (MODE) > 4) \
925 && INT_REGNO_P (REGNO)) ? 1 : 0)
926
927 #define ALTIVEC_VECTOR_MODE(MODE) \
928 ((MODE) == V16QImode \
929 || (MODE) == V8HImode \
930 || (MODE) == V4SFmode \
931 || (MODE) == V4SImode)
932
933 #define SPE_VECTOR_MODE(MODE) \
934 ((MODE) == V4HImode \
935 || (MODE) == V2SFmode \
936 || (MODE) == V1DImode \
937 || (MODE) == V2SImode)
938
939 #define PAIRED_VECTOR_MODE(MODE) \
940 ((MODE) == V2SFmode)
941
942 #define UNITS_PER_SIMD_WORD(MODE) \
943 (TARGET_ALTIVEC ? UNITS_PER_ALTIVEC_WORD \
944 : (TARGET_SPE ? UNITS_PER_SPE_WORD : (TARGET_PAIRED_FLOAT ? \
945 UNITS_PER_PAIRED_WORD : UNITS_PER_WORD)))
946
947 /* Value is TRUE if hard register REGNO can hold a value of
948 machine-mode MODE. */
949 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
950 rs6000_hard_regno_mode_ok_p[(int)(MODE)][REGNO]
951
952 /* Value is 1 if it is a good idea to tie two pseudo registers
953 when one has mode MODE1 and one has mode MODE2.
954 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
955 for any hard reg, then this must be 0 for correct output. */
956 #define MODES_TIEABLE_P(MODE1, MODE2) \
957 (SCALAR_FLOAT_MODE_P (MODE1) \
958 ? SCALAR_FLOAT_MODE_P (MODE2) \
959 : SCALAR_FLOAT_MODE_P (MODE2) \
960 ? SCALAR_FLOAT_MODE_P (MODE1) \
961 : GET_MODE_CLASS (MODE1) == MODE_CC \
962 ? GET_MODE_CLASS (MODE2) == MODE_CC \
963 : GET_MODE_CLASS (MODE2) == MODE_CC \
964 ? GET_MODE_CLASS (MODE1) == MODE_CC \
965 : SPE_VECTOR_MODE (MODE1) \
966 ? SPE_VECTOR_MODE (MODE2) \
967 : SPE_VECTOR_MODE (MODE2) \
968 ? SPE_VECTOR_MODE (MODE1) \
969 : ALTIVEC_VECTOR_MODE (MODE1) \
970 ? ALTIVEC_VECTOR_MODE (MODE2) \
971 : ALTIVEC_VECTOR_MODE (MODE2) \
972 ? ALTIVEC_VECTOR_MODE (MODE1) \
973 : 1)
974
975 /* Post-reload, we can't use any new AltiVec registers, as we already
976 emitted the vrsave mask. */
977
978 #define HARD_REGNO_RENAME_OK(SRC, DST) \
979 (! ALTIVEC_REGNO_P (DST) || df_regs_ever_live_p (DST))
980
981 /* A C expression returning the cost of moving data from a register of class
982 CLASS1 to one of CLASS2. */
983
984 #define REGISTER_MOVE_COST rs6000_register_move_cost
985
986 /* A C expressions returning the cost of moving data of MODE from a register to
987 or from memory. */
988
989 #define MEMORY_MOVE_COST rs6000_memory_move_cost
990
991 /* Specify the cost of a branch insn; roughly the number of extra insns that
992 should be added to avoid a branch.
993
994 Set this to 3 on the RS/6000 since that is roughly the average cost of an
995 unscheduled conditional branch. */
996
997 #define BRANCH_COST(speed_p, predictable_p) 3
998
999 /* Override BRANCH_COST heuristic which empirically produces worse
1000 performance for removing short circuiting from the logical ops. */
1001
1002 #define LOGICAL_OP_NON_SHORT_CIRCUIT 0
1003
1004 /* A fixed register used at epilogue generation to address SPE registers
1005 with negative offsets. The 64-bit load/store instructions on the SPE
1006 only take positive offsets (and small ones at that), so we need to
1007 reserve a register for consing up negative offsets. */
1008
1009 #define FIXED_SCRATCH 0
1010
1011 /* Define this macro to change register usage conditional on target
1012 flags. */
1013
1014 #define CONDITIONAL_REGISTER_USAGE rs6000_conditional_register_usage ()
1015
1016 /* Specify the registers used for certain standard purposes.
1017 The values of these macros are register numbers. */
1018
1019 /* RS/6000 pc isn't overloaded on a register that the compiler knows about. */
1020 /* #define PC_REGNUM */
1021
1022 /* Register to use for pushing function arguments. */
1023 #define STACK_POINTER_REGNUM 1
1024
1025 /* Base register for access to local variables of the function. */
1026 #define HARD_FRAME_POINTER_REGNUM 31
1027
1028 /* Base register for access to local variables of the function. */
1029 #define FRAME_POINTER_REGNUM 113
1030
1031 /* Value should be nonzero if functions must have frame pointers.
1032 Zero means the frame pointer need not be set up (and parms
1033 may be accessed via the stack pointer) in functions that seem suitable.
1034 This is computed in `reload', in reload1.c. */
1035 #define FRAME_POINTER_REQUIRED 0
1036
1037 /* Base register for access to arguments of the function. */
1038 #define ARG_POINTER_REGNUM 67
1039
1040 /* Place to put static chain when calling a function that requires it. */
1041 #define STATIC_CHAIN_REGNUM 11
1042
1043
1044 /* Define the classes of registers for register constraints in the
1045 machine description. Also define ranges of constants.
1046
1047 One of the classes must always be named ALL_REGS and include all hard regs.
1048 If there is more than one class, another class must be named NO_REGS
1049 and contain no registers.
1050
1051 The name GENERAL_REGS must be the name of a class (or an alias for
1052 another name such as ALL_REGS). This is the class of registers
1053 that is allowed by "g" or "r" in a register constraint.
1054 Also, registers outside this class are allocated only when
1055 instructions express preferences for them.
1056
1057 The classes must be numbered in nondecreasing order; that is,
1058 a larger-numbered class must never be contained completely
1059 in a smaller-numbered class.
1060
1061 For any two classes, it is very desirable that there be another
1062 class that represents their union. */
1063
1064 /* The RS/6000 has three types of registers, fixed-point, floating-point,
1065 and condition registers, plus three special registers, MQ, CTR, and the
1066 link register. AltiVec adds a vector register class.
1067
1068 However, r0 is special in that it cannot be used as a base register.
1069 So make a class for registers valid as base registers.
1070
1071 Also, cr0 is the only condition code register that can be used in
1072 arithmetic insns, so make a separate class for it. */
1073
1074 enum reg_class
1075 {
1076 NO_REGS,
1077 BASE_REGS,
1078 GENERAL_REGS,
1079 FLOAT_REGS,
1080 ALTIVEC_REGS,
1081 VRSAVE_REGS,
1082 VSCR_REGS,
1083 SPE_ACC_REGS,
1084 SPEFSCR_REGS,
1085 NON_SPECIAL_REGS,
1086 MQ_REGS,
1087 LINK_REGS,
1088 CTR_REGS,
1089 LINK_OR_CTR_REGS,
1090 SPECIAL_REGS,
1091 SPEC_OR_GEN_REGS,
1092 CR0_REGS,
1093 CR_REGS,
1094 NON_FLOAT_REGS,
1095 XER_REGS,
1096 ALL_REGS,
1097 LIM_REG_CLASSES
1098 };
1099
1100 #define N_REG_CLASSES (int) LIM_REG_CLASSES
1101
1102 /* Give names of register classes as strings for dump file. */
1103
1104 #define REG_CLASS_NAMES \
1105 { \
1106 "NO_REGS", \
1107 "BASE_REGS", \
1108 "GENERAL_REGS", \
1109 "FLOAT_REGS", \
1110 "ALTIVEC_REGS", \
1111 "VRSAVE_REGS", \
1112 "VSCR_REGS", \
1113 "SPE_ACC_REGS", \
1114 "SPEFSCR_REGS", \
1115 "NON_SPECIAL_REGS", \
1116 "MQ_REGS", \
1117 "LINK_REGS", \
1118 "CTR_REGS", \
1119 "LINK_OR_CTR_REGS", \
1120 "SPECIAL_REGS", \
1121 "SPEC_OR_GEN_REGS", \
1122 "CR0_REGS", \
1123 "CR_REGS", \
1124 "NON_FLOAT_REGS", \
1125 "XER_REGS", \
1126 "ALL_REGS" \
1127 }
1128
1129 /* Define which registers fit in which classes.
1130 This is an initializer for a vector of HARD_REG_SET
1131 of length N_REG_CLASSES. */
1132
1133 #define REG_CLASS_CONTENTS \
1134 { \
1135 { 0x00000000, 0x00000000, 0x00000000, 0x00000000 }, /* NO_REGS */ \
1136 { 0xfffffffe, 0x00000000, 0x00000008, 0x00020000 }, /* BASE_REGS */ \
1137 { 0xffffffff, 0x00000000, 0x00000008, 0x00020000 }, /* GENERAL_REGS */ \
1138 { 0x00000000, 0xffffffff, 0x00000000, 0x00000000 }, /* FLOAT_REGS */ \
1139 { 0x00000000, 0x00000000, 0xffffe000, 0x00001fff }, /* ALTIVEC_REGS */ \
1140 { 0x00000000, 0x00000000, 0x00000000, 0x00002000 }, /* VRSAVE_REGS */ \
1141 { 0x00000000, 0x00000000, 0x00000000, 0x00004000 }, /* VSCR_REGS */ \
1142 { 0x00000000, 0x00000000, 0x00000000, 0x00008000 }, /* SPE_ACC_REGS */ \
1143 { 0x00000000, 0x00000000, 0x00000000, 0x00010000 }, /* SPEFSCR_REGS */ \
1144 { 0xffffffff, 0xffffffff, 0x00000008, 0x00020000 }, /* NON_SPECIAL_REGS */ \
1145 { 0x00000000, 0x00000000, 0x00000001, 0x00000000 }, /* MQ_REGS */ \
1146 { 0x00000000, 0x00000000, 0x00000002, 0x00000000 }, /* LINK_REGS */ \
1147 { 0x00000000, 0x00000000, 0x00000004, 0x00000000 }, /* CTR_REGS */ \
1148 { 0x00000000, 0x00000000, 0x00000006, 0x00000000 }, /* LINK_OR_CTR_REGS */ \
1149 { 0x00000000, 0x00000000, 0x00000007, 0x00002000 }, /* SPECIAL_REGS */ \
1150 { 0xffffffff, 0x00000000, 0x0000000f, 0x00022000 }, /* SPEC_OR_GEN_REGS */ \
1151 { 0x00000000, 0x00000000, 0x00000010, 0x00000000 }, /* CR0_REGS */ \
1152 { 0x00000000, 0x00000000, 0x00000ff0, 0x00000000 }, /* CR_REGS */ \
1153 { 0xffffffff, 0x00000000, 0x0000efff, 0x00020000 }, /* NON_FLOAT_REGS */ \
1154 { 0x00000000, 0x00000000, 0x00001000, 0x00000000 }, /* XER_REGS */ \
1155 { 0xffffffff, 0xffffffff, 0xffffffff, 0x0003ffff } /* ALL_REGS */ \
1156 }
1157
1158 /* The following macro defines cover classes for Integrated Register
1159 Allocator. Cover classes is a set of non-intersected register
1160 classes covering all hard registers used for register allocation
1161 purpose. Any move between two registers of a cover class should be
1162 cheaper than load or store of the registers. The macro value is
1163 array of register classes with LIM_REG_CLASSES used as the end
1164 marker. */
1165
1166 #define IRA_COVER_CLASSES \
1167 { \
1168 GENERAL_REGS, SPECIAL_REGS, FLOAT_REGS, ALTIVEC_REGS, \
1169 /*VRSAVE_REGS,*/ VSCR_REGS, SPE_ACC_REGS, SPEFSCR_REGS, \
1170 /* MQ_REGS, LINK_REGS, CTR_REGS, */ \
1171 CR_REGS, XER_REGS, LIM_REG_CLASSES \
1172 }
1173
1174 /* The same information, inverted:
1175 Return the class number of the smallest class containing
1176 reg number REGNO. This could be a conditional expression
1177 or could index an array. */
1178
1179 #define REGNO_REG_CLASS(REGNO) \
1180 ((REGNO) == 0 ? GENERAL_REGS \
1181 : (REGNO) < 32 ? BASE_REGS \
1182 : FP_REGNO_P (REGNO) ? FLOAT_REGS \
1183 : ALTIVEC_REGNO_P (REGNO) ? ALTIVEC_REGS \
1184 : (REGNO) == CR0_REGNO ? CR0_REGS \
1185 : CR_REGNO_P (REGNO) ? CR_REGS \
1186 : (REGNO) == MQ_REGNO ? MQ_REGS \
1187 : (REGNO) == LR_REGNO ? LINK_REGS \
1188 : (REGNO) == CTR_REGNO ? CTR_REGS \
1189 : (REGNO) == ARG_POINTER_REGNUM ? BASE_REGS \
1190 : (REGNO) == XER_REGNO ? XER_REGS \
1191 : (REGNO) == VRSAVE_REGNO ? VRSAVE_REGS \
1192 : (REGNO) == VSCR_REGNO ? VRSAVE_REGS \
1193 : (REGNO) == SPE_ACC_REGNO ? SPE_ACC_REGS \
1194 : (REGNO) == SPEFSCR_REGNO ? SPEFSCR_REGS \
1195 : (REGNO) == FRAME_POINTER_REGNUM ? BASE_REGS \
1196 : NO_REGS)
1197
1198 /* The class value for index registers, and the one for base regs. */
1199 #define INDEX_REG_CLASS GENERAL_REGS
1200 #define BASE_REG_CLASS BASE_REGS
1201
1202 /* Given an rtx X being reloaded into a reg required to be
1203 in class CLASS, return the class of reg to actually use.
1204 In general this is just CLASS; but on some machines
1205 in some cases it is preferable to use a more restrictive class.
1206
1207 On the RS/6000, we have to return NO_REGS when we want to reload a
1208 floating-point CONST_DOUBLE to force it to be copied to memory.
1209
1210 We also don't want to reload integer values into floating-point
1211 registers if we can at all help it. In fact, this can
1212 cause reload to die, if it tries to generate a reload of CTR
1213 into a FP register and discovers it doesn't have the memory location
1214 required.
1215
1216 ??? Would it be a good idea to have reload do the converse, that is
1217 try to reload floating modes into FP registers if possible?
1218 */
1219
1220 #define PREFERRED_RELOAD_CLASS(X,CLASS) \
1221 ((CONSTANT_P (X) \
1222 && reg_classes_intersect_p ((CLASS), FLOAT_REGS)) \
1223 ? NO_REGS \
1224 : (GET_MODE_CLASS (GET_MODE (X)) == MODE_INT \
1225 && (CLASS) == NON_SPECIAL_REGS) \
1226 ? GENERAL_REGS \
1227 : (CLASS))
1228
1229 /* Return the register class of a scratch register needed to copy IN into
1230 or out of a register in CLASS in MODE. If it can be done directly,
1231 NO_REGS is returned. */
1232
1233 #define SECONDARY_RELOAD_CLASS(CLASS,MODE,IN) \
1234 rs6000_secondary_reload_class (CLASS, MODE, IN)
1235
1236 /* If we are copying between FP or AltiVec registers and anything
1237 else, we need a memory location. The exception is when we are
1238 targeting ppc64 and the move to/from fpr to gpr instructions
1239 are available.*/
1240
1241 #define SECONDARY_MEMORY_NEEDED(CLASS1,CLASS2,MODE) \
1242 ((CLASS1) != (CLASS2) && (((CLASS1) == FLOAT_REGS \
1243 && (!TARGET_MFPGPR || !TARGET_POWERPC64 \
1244 || ((MODE != DFmode) \
1245 && (MODE != DDmode) \
1246 && (MODE != DImode)))) \
1247 || ((CLASS2) == FLOAT_REGS \
1248 && (!TARGET_MFPGPR || !TARGET_POWERPC64 \
1249 || ((MODE != DFmode) \
1250 && (MODE != DDmode) \
1251 && (MODE != DImode)))) \
1252 || (CLASS1) == ALTIVEC_REGS \
1253 || (CLASS2) == ALTIVEC_REGS))
1254
1255 /* For cpus that cannot load/store SDmode values from the 64-bit
1256 FP registers without using a full 64-bit load/store, we need
1257 to allocate a full 64-bit stack slot for them. */
1258
1259 #define SECONDARY_MEMORY_NEEDED_RTX(MODE) \
1260 rs6000_secondary_memory_needed_rtx (MODE)
1261
1262 /* Return the maximum number of consecutive registers
1263 needed to represent mode MODE in a register of class CLASS.
1264
1265 On RS/6000, this is the size of MODE in words,
1266 except in the FP regs, where a single reg is enough for two words. */
1267 #define CLASS_MAX_NREGS(CLASS, MODE) \
1268 (((CLASS) == FLOAT_REGS) \
1269 ? ((GET_MODE_SIZE (MODE) + UNITS_PER_FP_WORD - 1) / UNITS_PER_FP_WORD) \
1270 : (TARGET_E500_DOUBLE && (CLASS) == GENERAL_REGS \
1271 && (MODE) == DFmode) \
1272 ? 1 \
1273 : ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
1274
1275 /* Return nonzero if for CLASS a mode change from FROM to TO is invalid. */
1276
1277 #define CANNOT_CHANGE_MODE_CLASS(FROM, TO, CLASS) \
1278 (GET_MODE_SIZE (FROM) != GET_MODE_SIZE (TO) \
1279 ? ((GET_MODE_SIZE (FROM) < 8 || GET_MODE_SIZE (TO) < 8 \
1280 || TARGET_IEEEQUAD) \
1281 && reg_classes_intersect_p (FLOAT_REGS, CLASS)) \
1282 : (((TARGET_E500_DOUBLE \
1283 && ((((TO) == DFmode) + ((FROM) == DFmode)) == 1 \
1284 || (((TO) == TFmode) + ((FROM) == TFmode)) == 1 \
1285 || (((TO) == DDmode) + ((FROM) == DDmode)) == 1 \
1286 || (((TO) == TDmode) + ((FROM) == TDmode)) == 1 \
1287 || (((TO) == DImode) + ((FROM) == DImode)) == 1)) \
1288 || (TARGET_SPE \
1289 && (SPE_VECTOR_MODE (FROM) + SPE_VECTOR_MODE (TO)) == 1)) \
1290 && reg_classes_intersect_p (GENERAL_REGS, CLASS)))
1291
1292 /* Stack layout; function entry, exit and calling. */
1293
1294 /* Enumeration to give which calling sequence to use. */
1295 enum rs6000_abi {
1296 ABI_NONE,
1297 ABI_AIX, /* IBM's AIX */
1298 ABI_V4, /* System V.4/eabi */
1299 ABI_DARWIN /* Apple's Darwin (OS X kernel) */
1300 };
1301
1302 extern enum rs6000_abi rs6000_current_abi; /* available for use by subtarget */
1303
1304 /* Define this if pushing a word on the stack
1305 makes the stack pointer a smaller address. */
1306 #define STACK_GROWS_DOWNWARD
1307
1308 /* Offsets recorded in opcodes are a multiple of this alignment factor. */
1309 #define DWARF_CIE_DATA_ALIGNMENT (-((int) (TARGET_32BIT ? 4 : 8)))
1310
1311 /* Define this to nonzero if the nominal address of the stack frame
1312 is at the high-address end of the local variables;
1313 that is, each additional local variable allocated
1314 goes at a more negative offset in the frame.
1315
1316 On the RS/6000, we grow upwards, from the area after the outgoing
1317 arguments. */
1318 #define FRAME_GROWS_DOWNWARD (flag_stack_protect != 0)
1319
1320 /* Size of the outgoing register save area */
1321 #define RS6000_REG_SAVE ((DEFAULT_ABI == ABI_AIX \
1322 || DEFAULT_ABI == ABI_DARWIN) \
1323 ? (TARGET_64BIT ? 64 : 32) \
1324 : 0)
1325
1326 /* Size of the fixed area on the stack */
1327 #define RS6000_SAVE_AREA \
1328 (((DEFAULT_ABI == ABI_AIX || DEFAULT_ABI == ABI_DARWIN) ? 24 : 8) \
1329 << (TARGET_64BIT ? 1 : 0))
1330
1331 /* MEM representing address to save the TOC register */
1332 #define RS6000_SAVE_TOC gen_rtx_MEM (Pmode, \
1333 plus_constant (stack_pointer_rtx, \
1334 (TARGET_32BIT ? 20 : 40)))
1335
1336 /* Align an address */
1337 #define RS6000_ALIGN(n,a) (((n) + (a) - 1) & ~((a) - 1))
1338
1339 /* Offset within stack frame to start allocating local variables at.
1340 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
1341 first local allocated. Otherwise, it is the offset to the BEGINNING
1342 of the first local allocated.
1343
1344 On the RS/6000, the frame pointer is the same as the stack pointer,
1345 except for dynamic allocations. So we start after the fixed area and
1346 outgoing parameter area. */
1347
1348 #define STARTING_FRAME_OFFSET \
1349 (FRAME_GROWS_DOWNWARD \
1350 ? 0 \
1351 : (RS6000_ALIGN (crtl->outgoing_args_size, \
1352 TARGET_ALTIVEC ? 16 : 8) \
1353 + RS6000_SAVE_AREA))
1354
1355 /* Offset from the stack pointer register to an item dynamically
1356 allocated on the stack, e.g., by `alloca'.
1357
1358 The default value for this macro is `STACK_POINTER_OFFSET' plus the
1359 length of the outgoing arguments. The default is correct for most
1360 machines. See `function.c' for details. */
1361 #define STACK_DYNAMIC_OFFSET(FUNDECL) \
1362 (RS6000_ALIGN (crtl->outgoing_args_size, \
1363 TARGET_ALTIVEC ? 16 : 8) \
1364 + (STACK_POINTER_OFFSET))
1365
1366 /* If we generate an insn to push BYTES bytes,
1367 this says how many the stack pointer really advances by.
1368 On RS/6000, don't define this because there are no push insns. */
1369 /* #define PUSH_ROUNDING(BYTES) */
1370
1371 /* Offset of first parameter from the argument pointer register value.
1372 On the RS/6000, we define the argument pointer to the start of the fixed
1373 area. */
1374 #define FIRST_PARM_OFFSET(FNDECL) RS6000_SAVE_AREA
1375
1376 /* Offset from the argument pointer register value to the top of
1377 stack. This is different from FIRST_PARM_OFFSET because of the
1378 register save area. */
1379 #define ARG_POINTER_CFA_OFFSET(FNDECL) 0
1380
1381 /* Define this if stack space is still allocated for a parameter passed
1382 in a register. The value is the number of bytes allocated to this
1383 area. */
1384 #define REG_PARM_STACK_SPACE(FNDECL) RS6000_REG_SAVE
1385
1386 /* Define this if the above stack space is to be considered part of the
1387 space allocated by the caller. */
1388 #define OUTGOING_REG_PARM_STACK_SPACE(FNTYPE) 1
1389
1390 /* This is the difference between the logical top of stack and the actual sp.
1391
1392 For the RS/6000, sp points past the fixed area. */
1393 #define STACK_POINTER_OFFSET RS6000_SAVE_AREA
1394
1395 /* Define this if the maximum size of all the outgoing args is to be
1396 accumulated and pushed during the prologue. The amount can be
1397 found in the variable crtl->outgoing_args_size. */
1398 #define ACCUMULATE_OUTGOING_ARGS 1
1399
1400 /* Value is the number of bytes of arguments automatically
1401 popped when returning from a subroutine call.
1402 FUNDECL is the declaration node of the function (as a tree),
1403 FUNTYPE is the data type of the function (as a tree),
1404 or for a library call it is an identifier node for the subroutine name.
1405 SIZE is the number of bytes of arguments passed on the stack. */
1406
1407 #define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
1408
1409 /* Define how to find the value returned by a function.
1410 VALTYPE is the data type of the value (as a tree).
1411 If the precise function being called is known, FUNC is its FUNCTION_DECL;
1412 otherwise, FUNC is 0. */
1413
1414 #define FUNCTION_VALUE(VALTYPE, FUNC) rs6000_function_value ((VALTYPE), (FUNC))
1415
1416 /* Define how to find the value returned by a library function
1417 assuming the value has mode MODE. */
1418
1419 #define LIBCALL_VALUE(MODE) rs6000_libcall_value ((MODE))
1420
1421 /* DRAFT_V4_STRUCT_RET defaults off. */
1422 #define DRAFT_V4_STRUCT_RET 0
1423
1424 /* Let TARGET_RETURN_IN_MEMORY control what happens. */
1425 #define DEFAULT_PCC_STRUCT_RETURN 0
1426
1427 /* Mode of stack savearea.
1428 FUNCTION is VOIDmode because calling convention maintains SP.
1429 BLOCK needs Pmode for SP.
1430 NONLOCAL needs twice Pmode to maintain both backchain and SP. */
1431 #define STACK_SAVEAREA_MODE(LEVEL) \
1432 (LEVEL == SAVE_FUNCTION ? VOIDmode \
1433 : LEVEL == SAVE_NONLOCAL ? (TARGET_32BIT ? DImode : TImode) : Pmode)
1434
1435 /* Minimum and maximum general purpose registers used to hold arguments. */
1436 #define GP_ARG_MIN_REG 3
1437 #define GP_ARG_MAX_REG 10
1438 #define GP_ARG_NUM_REG (GP_ARG_MAX_REG - GP_ARG_MIN_REG + 1)
1439
1440 /* Minimum and maximum floating point registers used to hold arguments. */
1441 #define FP_ARG_MIN_REG 33
1442 #define FP_ARG_AIX_MAX_REG 45
1443 #define FP_ARG_V4_MAX_REG 40
1444 #define FP_ARG_MAX_REG ((DEFAULT_ABI == ABI_AIX \
1445 || DEFAULT_ABI == ABI_DARWIN) \
1446 ? FP_ARG_AIX_MAX_REG : FP_ARG_V4_MAX_REG)
1447 #define FP_ARG_NUM_REG (FP_ARG_MAX_REG - FP_ARG_MIN_REG + 1)
1448
1449 /* Minimum and maximum AltiVec registers used to hold arguments. */
1450 #define ALTIVEC_ARG_MIN_REG (FIRST_ALTIVEC_REGNO + 2)
1451 #define ALTIVEC_ARG_MAX_REG (ALTIVEC_ARG_MIN_REG + 11)
1452 #define ALTIVEC_ARG_NUM_REG (ALTIVEC_ARG_MAX_REG - ALTIVEC_ARG_MIN_REG + 1)
1453
1454 /* Return registers */
1455 #define GP_ARG_RETURN GP_ARG_MIN_REG
1456 #define FP_ARG_RETURN FP_ARG_MIN_REG
1457 #define ALTIVEC_ARG_RETURN (FIRST_ALTIVEC_REGNO + 2)
1458
1459 /* Flags for the call/call_value rtl operations set up by function_arg */
1460 #define CALL_NORMAL 0x00000000 /* no special processing */
1461 /* Bits in 0x00000001 are unused. */
1462 #define CALL_V4_CLEAR_FP_ARGS 0x00000002 /* V.4, no FP args passed */
1463 #define CALL_V4_SET_FP_ARGS 0x00000004 /* V.4, FP args were passed */
1464 #define CALL_LONG 0x00000008 /* always call indirect */
1465 #define CALL_LIBCALL 0x00000010 /* libcall */
1466
1467 /* We don't have prologue and epilogue functions to save/restore
1468 everything for most ABIs. */
1469 #define WORLD_SAVE_P(INFO) 0
1470
1471 /* 1 if N is a possible register number for a function value
1472 as seen by the caller.
1473
1474 On RS/6000, this is r3, fp1, and v2 (for AltiVec). */
1475 #define FUNCTION_VALUE_REGNO_P(N) \
1476 ((N) == GP_ARG_RETURN \
1477 || ((N) == FP_ARG_RETURN && TARGET_HARD_FLOAT && TARGET_FPRS) \
1478 || ((N) == ALTIVEC_ARG_RETURN && TARGET_ALTIVEC && TARGET_ALTIVEC_ABI))
1479
1480 /* 1 if N is a possible register number for function argument passing.
1481 On RS/6000, these are r3-r10 and fp1-fp13.
1482 On AltiVec, v2 - v13 are used for passing vectors. */
1483 #define FUNCTION_ARG_REGNO_P(N) \
1484 ((unsigned) (N) - GP_ARG_MIN_REG < GP_ARG_NUM_REG \
1485 || ((unsigned) (N) - ALTIVEC_ARG_MIN_REG < ALTIVEC_ARG_NUM_REG \
1486 && TARGET_ALTIVEC && TARGET_ALTIVEC_ABI) \
1487 || ((unsigned) (N) - FP_ARG_MIN_REG < FP_ARG_NUM_REG \
1488 && TARGET_HARD_FLOAT && TARGET_FPRS))
1489
1490 /* Define a data type for recording info about an argument list
1491 during the scan of that argument list. This data type should
1492 hold all necessary information about the function itself
1493 and about the args processed so far, enough to enable macros
1494 such as FUNCTION_ARG to determine where the next arg should go.
1495
1496 On the RS/6000, this is a structure. The first element is the number of
1497 total argument words, the second is used to store the next
1498 floating-point register number, and the third says how many more args we
1499 have prototype types for.
1500
1501 For ABI_V4, we treat these slightly differently -- `sysv_gregno' is
1502 the next available GP register, `fregno' is the next available FP
1503 register, and `words' is the number of words used on the stack.
1504
1505 The varargs/stdarg support requires that this structure's size
1506 be a multiple of sizeof(int). */
1507
1508 typedef struct rs6000_args
1509 {
1510 int words; /* # words used for passing GP registers */
1511 int fregno; /* next available FP register */
1512 int vregno; /* next available AltiVec register */
1513 int nargs_prototype; /* # args left in the current prototype */
1514 int prototype; /* Whether a prototype was defined */
1515 int stdarg; /* Whether function is a stdarg function. */
1516 int call_cookie; /* Do special things for this call */
1517 int sysv_gregno; /* next available GP register */
1518 int intoffset; /* running offset in struct (darwin64) */
1519 int use_stack; /* any part of struct on stack (darwin64) */
1520 int named; /* false for varargs params */
1521 } CUMULATIVE_ARGS;
1522
1523 /* Initialize a variable CUM of type CUMULATIVE_ARGS
1524 for a call to a function whose data type is FNTYPE.
1525 For a library call, FNTYPE is 0. */
1526
1527 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT, N_NAMED_ARGS) \
1528 init_cumulative_args (&CUM, FNTYPE, LIBNAME, FALSE, FALSE, N_NAMED_ARGS)
1529
1530 /* Similar, but when scanning the definition of a procedure. We always
1531 set NARGS_PROTOTYPE large so we never return an EXPR_LIST. */
1532
1533 #define INIT_CUMULATIVE_INCOMING_ARGS(CUM, FNTYPE, LIBNAME) \
1534 init_cumulative_args (&CUM, FNTYPE, LIBNAME, TRUE, FALSE, 1000)
1535
1536 /* Like INIT_CUMULATIVE_ARGS' but only used for outgoing libcalls. */
1537
1538 #define INIT_CUMULATIVE_LIBCALL_ARGS(CUM, MODE, LIBNAME) \
1539 init_cumulative_args (&CUM, NULL_TREE, LIBNAME, FALSE, TRUE, 0)
1540
1541 /* Update the data in CUM to advance over an argument
1542 of mode MODE and data type TYPE.
1543 (TYPE is null for libcalls where that information may not be available.) */
1544
1545 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
1546 function_arg_advance (&CUM, MODE, TYPE, NAMED, 0)
1547
1548 /* Determine where to put an argument to a function.
1549 Value is zero to push the argument on the stack,
1550 or a hard register in which to store the argument.
1551
1552 MODE is the argument's machine mode.
1553 TYPE is the data type of the argument (as a tree).
1554 This is null for libcalls where that information may
1555 not be available.
1556 CUM is a variable of type CUMULATIVE_ARGS which gives info about
1557 the preceding args and about the function being called.
1558 NAMED is nonzero if this argument is a named parameter
1559 (otherwise it is an extra parameter matching an ellipsis).
1560
1561 On RS/6000 the first eight words of non-FP are normally in registers
1562 and the rest are pushed. The first 13 FP args are in registers.
1563
1564 If this is floating-point and no prototype is specified, we use
1565 both an FP and integer register (or possibly FP reg and stack). Library
1566 functions (when TYPE is zero) always have the proper types for args,
1567 so we can pass the FP value just in one register. emit_library_function
1568 doesn't support EXPR_LIST anyway. */
1569
1570 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
1571 function_arg (&CUM, MODE, TYPE, NAMED)
1572
1573 /* If defined, a C expression which determines whether, and in which
1574 direction, to pad out an argument with extra space. The value
1575 should be of type `enum direction': either `upward' to pad above
1576 the argument, `downward' to pad below, or `none' to inhibit
1577 padding. */
1578
1579 #define FUNCTION_ARG_PADDING(MODE, TYPE) function_arg_padding (MODE, TYPE)
1580
1581 /* If defined, a C expression that gives the alignment boundary, in bits,
1582 of an argument with the specified mode and type. If it is not defined,
1583 PARM_BOUNDARY is used for all arguments. */
1584
1585 #define FUNCTION_ARG_BOUNDARY(MODE, TYPE) \
1586 function_arg_boundary (MODE, TYPE)
1587
1588 #define PAD_VARARGS_DOWN \
1589 (FUNCTION_ARG_PADDING (TYPE_MODE (type), type) == downward)
1590
1591 /* Output assembler code to FILE to increment profiler label # LABELNO
1592 for profiling a function entry. */
1593
1594 #define FUNCTION_PROFILER(FILE, LABELNO) \
1595 output_function_profiler ((FILE), (LABELNO));
1596
1597 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
1598 the stack pointer does not matter. No definition is equivalent to
1599 always zero.
1600
1601 On the RS/6000, this is nonzero because we can restore the stack from
1602 its backpointer, which we maintain. */
1603 #define EXIT_IGNORE_STACK 1
1604
1605 /* Define this macro as a C expression that is nonzero for registers
1606 that are used by the epilogue or the return' pattern. The stack
1607 and frame pointer registers are already be assumed to be used as
1608 needed. */
1609
1610 #define EPILOGUE_USES(REGNO) \
1611 ((reload_completed && (REGNO) == LR_REGNO) \
1612 || (TARGET_ALTIVEC && (REGNO) == VRSAVE_REGNO) \
1613 || (crtl->calls_eh_return \
1614 && TARGET_AIX \
1615 && (REGNO) == 2))
1616
1617
1618 /* TRAMPOLINE_TEMPLATE deleted */
1619
1620 /* Length in units of the trampoline for entering a nested function. */
1621
1622 #define TRAMPOLINE_SIZE rs6000_trampoline_size ()
1623
1624 /* Emit RTL insns to initialize the variable parts of a trampoline.
1625 FNADDR is an RTX for the address of the function's pure code.
1626 CXT is an RTX for the static chain value for the function. */
1627
1628 #define INITIALIZE_TRAMPOLINE(ADDR, FNADDR, CXT) \
1629 rs6000_initialize_trampoline (ADDR, FNADDR, CXT)
1630
1631 /* Definitions for __builtin_return_address and __builtin_frame_address.
1632 __builtin_return_address (0) should give link register (65), enable
1633 this. */
1634 /* This should be uncommented, so that the link register is used, but
1635 currently this would result in unmatched insns and spilling fixed
1636 registers so we'll leave it for another day. When these problems are
1637 taken care of one additional fetch will be necessary in RETURN_ADDR_RTX.
1638 (mrs) */
1639 /* #define RETURN_ADDR_IN_PREVIOUS_FRAME */
1640
1641 /* Number of bytes into the frame return addresses can be found. See
1642 rs6000_stack_info in rs6000.c for more information on how the different
1643 abi's store the return address. */
1644 #define RETURN_ADDRESS_OFFSET \
1645 ((DEFAULT_ABI == ABI_AIX \
1646 || DEFAULT_ABI == ABI_DARWIN) ? (TARGET_32BIT ? 8 : 16) : \
1647 (DEFAULT_ABI == ABI_V4) ? 4 : \
1648 (internal_error ("RETURN_ADDRESS_OFFSET not supported"), 0))
1649
1650 /* The current return address is in link register (65). The return address
1651 of anything farther back is accessed normally at an offset of 8 from the
1652 frame pointer. */
1653 #define RETURN_ADDR_RTX(COUNT, FRAME) \
1654 (rs6000_return_addr (COUNT, FRAME))
1655
1656
1657 /* Definitions for register eliminations.
1658
1659 We have two registers that can be eliminated on the RS/6000. First, the
1660 frame pointer register can often be eliminated in favor of the stack
1661 pointer register. Secondly, the argument pointer register can always be
1662 eliminated; it is replaced with either the stack or frame pointer.
1663
1664 In addition, we use the elimination mechanism to see if r30 is needed
1665 Initially we assume that it isn't. If it is, we spill it. This is done
1666 by making it an eliminable register. We replace it with itself so that
1667 if it isn't needed, then existing uses won't be modified. */
1668
1669 /* This is an array of structures. Each structure initializes one pair
1670 of eliminable registers. The "from" register number is given first,
1671 followed by "to". Eliminations of the same "from" register are listed
1672 in order of preference. */
1673 #define ELIMINABLE_REGS \
1674 {{ HARD_FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1675 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1676 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
1677 { ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
1678 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
1679 { RS6000_PIC_OFFSET_TABLE_REGNUM, RS6000_PIC_OFFSET_TABLE_REGNUM } }
1680
1681 /* Given FROM and TO register numbers, say whether this elimination is allowed.
1682 Frame pointer elimination is automatically handled.
1683
1684 For the RS/6000, if frame pointer elimination is being done, we would like
1685 to convert ap into fp, not sp.
1686
1687 We need r30 if -mminimal-toc was specified, and there are constant pool
1688 references. */
1689
1690 #define CAN_ELIMINATE(FROM, TO) \
1691 ((FROM) == ARG_POINTER_REGNUM && (TO) == STACK_POINTER_REGNUM \
1692 ? ! frame_pointer_needed \
1693 : (FROM) == RS6000_PIC_OFFSET_TABLE_REGNUM \
1694 ? ! TARGET_MINIMAL_TOC || TARGET_NO_TOC || get_pool_size () == 0 \
1695 : 1)
1696
1697 /* Define the offset between two registers, one to be eliminated, and the other
1698 its replacement, at the start of a routine. */
1699 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
1700 ((OFFSET) = rs6000_initial_elimination_offset(FROM, TO))
1701
1702 /* Addressing modes, and classification of registers for them. */
1703
1704 #define HAVE_PRE_DECREMENT 1
1705 #define HAVE_PRE_INCREMENT 1
1706 #define HAVE_PRE_MODIFY_DISP 1
1707 #define HAVE_PRE_MODIFY_REG 1
1708
1709 /* Macros to check register numbers against specific register classes. */
1710
1711 /* These assume that REGNO is a hard or pseudo reg number.
1712 They give nonzero only if REGNO is a hard reg of the suitable class
1713 or a pseudo reg currently allocated to a suitable hard reg.
1714 Since they use reg_renumber, they are safe only once reg_renumber
1715 has been allocated, which happens in local-alloc.c. */
1716
1717 #define REGNO_OK_FOR_INDEX_P(REGNO) \
1718 ((REGNO) < FIRST_PSEUDO_REGISTER \
1719 ? (REGNO) <= 31 || (REGNO) == 67 \
1720 || (REGNO) == FRAME_POINTER_REGNUM \
1721 : (reg_renumber[REGNO] >= 0 \
1722 && (reg_renumber[REGNO] <= 31 || reg_renumber[REGNO] == 67 \
1723 || reg_renumber[REGNO] == FRAME_POINTER_REGNUM)))
1724
1725 #define REGNO_OK_FOR_BASE_P(REGNO) \
1726 ((REGNO) < FIRST_PSEUDO_REGISTER \
1727 ? ((REGNO) > 0 && (REGNO) <= 31) || (REGNO) == 67 \
1728 || (REGNO) == FRAME_POINTER_REGNUM \
1729 : (reg_renumber[REGNO] > 0 \
1730 && (reg_renumber[REGNO] <= 31 || reg_renumber[REGNO] == 67 \
1731 || reg_renumber[REGNO] == FRAME_POINTER_REGNUM)))
1732
1733 /* Maximum number of registers that can appear in a valid memory address. */
1734
1735 #define MAX_REGS_PER_ADDRESS 2
1736
1737 /* Recognize any constant value that is a valid address. */
1738
1739 #define CONSTANT_ADDRESS_P(X) \
1740 (GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
1741 || GET_CODE (X) == CONST_INT || GET_CODE (X) == CONST \
1742 || GET_CODE (X) == HIGH)
1743
1744 /* Nonzero if the constant value X is a legitimate general operand.
1745 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE.
1746
1747 On the RS/6000, all integer constants are acceptable, most won't be valid
1748 for particular insns, though. Only easy FP constants are
1749 acceptable. */
1750
1751 #define LEGITIMATE_CONSTANT_P(X) \
1752 (((GET_CODE (X) != CONST_DOUBLE \
1753 && GET_CODE (X) != CONST_VECTOR) \
1754 || GET_MODE (X) == VOIDmode \
1755 || (TARGET_POWERPC64 && GET_MODE (X) == DImode) \
1756 || easy_fp_constant (X, GET_MODE (X)) \
1757 || easy_vector_constant (X, GET_MODE (X))) \
1758 && !rs6000_tls_referenced_p (X))
1759
1760 #define EASY_VECTOR_15(n) ((n) >= -16 && (n) <= 15)
1761 #define EASY_VECTOR_15_ADD_SELF(n) (!EASY_VECTOR_15((n)) \
1762 && EASY_VECTOR_15((n) >> 1) \
1763 && ((n) & 1) == 0)
1764
1765 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
1766 and check its validity for a certain class.
1767 We have two alternate definitions for each of them.
1768 The usual definition accepts all pseudo regs; the other rejects
1769 them unless they have been allocated suitable hard regs.
1770 The symbol REG_OK_STRICT causes the latter definition to be used.
1771
1772 Most source files want to accept pseudo regs in the hope that
1773 they will get allocated to the class that the insn wants them to be in.
1774 Source files for reload pass need to be strict.
1775 After reload, it makes no difference, since pseudo regs have
1776 been eliminated by then. */
1777
1778 #ifdef REG_OK_STRICT
1779 # define REG_OK_STRICT_FLAG 1
1780 #else
1781 # define REG_OK_STRICT_FLAG 0
1782 #endif
1783
1784 /* Nonzero if X is a hard reg that can be used as an index
1785 or if it is a pseudo reg in the non-strict case. */
1786 #define INT_REG_OK_FOR_INDEX_P(X, STRICT) \
1787 ((!(STRICT) && REGNO (X) >= FIRST_PSEUDO_REGISTER) \
1788 || REGNO_OK_FOR_INDEX_P (REGNO (X)))
1789
1790 /* Nonzero if X is a hard reg that can be used as a base reg
1791 or if it is a pseudo reg in the non-strict case. */
1792 #define INT_REG_OK_FOR_BASE_P(X, STRICT) \
1793 ((!(STRICT) && REGNO (X) >= FIRST_PSEUDO_REGISTER) \
1794 || REGNO_OK_FOR_BASE_P (REGNO (X)))
1795
1796 #define REG_OK_FOR_INDEX_P(X) INT_REG_OK_FOR_INDEX_P (X, REG_OK_STRICT_FLAG)
1797 #define REG_OK_FOR_BASE_P(X) INT_REG_OK_FOR_BASE_P (X, REG_OK_STRICT_FLAG)
1798
1799 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
1800 that is a valid memory address for an instruction.
1801 The MODE argument is the machine mode for the MEM expression
1802 that wants to use this address.
1803
1804 On the RS/6000, there are four valid addresses: a SYMBOL_REF that
1805 refers to a constant pool entry of an address (or the sum of it
1806 plus a constant), a short (16-bit signed) constant plus a register,
1807 the sum of two registers, or a register indirect, possibly with an
1808 auto-increment. For DFmode, DDmode and DImode with a constant plus
1809 register, we must ensure that both words are addressable or PowerPC64
1810 with offset word aligned.
1811
1812 For modes spanning multiple registers (DFmode and DDmode in 32-bit GPRs,
1813 32-bit DImode, TImode), indexed addressing cannot be used because
1814 adjacent memory cells are accessed by adding word-sized offsets
1815 during assembly output. */
1816
1817 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
1818 { if (rs6000_legitimate_address (MODE, X, REG_OK_STRICT_FLAG)) \
1819 goto ADDR; \
1820 }
1821
1822 /* Try machine-dependent ways of modifying an illegitimate address
1823 to be legitimate. If we find one, return the new, valid address.
1824 This macro is used in only one place: `memory_address' in explow.c.
1825
1826 OLDX is the address as it was before break_out_memory_refs was called.
1827 In some cases it is useful to look at this to decide what needs to be done.
1828
1829 MODE and WIN are passed so that this macro can use
1830 GO_IF_LEGITIMATE_ADDRESS.
1831
1832 It is always safe for this macro to do nothing. It exists to recognize
1833 opportunities to optimize the output.
1834
1835 On RS/6000, first check for the sum of a register with a constant
1836 integer that is out of range. If so, generate code to add the
1837 constant with the low-order 16 bits masked to the register and force
1838 this result into another register (this can be done with `cau').
1839 Then generate an address of REG+(CONST&0xffff), allowing for the
1840 possibility of bit 16 being a one.
1841
1842 Then check for the sum of a register and something not constant, try to
1843 load the other things into a register and return the sum. */
1844
1845 #define LEGITIMIZE_ADDRESS(X,OLDX,MODE,WIN) \
1846 { rtx result = rs6000_legitimize_address (X, OLDX, MODE); \
1847 if (result != NULL_RTX) \
1848 { \
1849 (X) = result; \
1850 goto WIN; \
1851 } \
1852 }
1853
1854 /* Try a machine-dependent way of reloading an illegitimate address
1855 operand. If we find one, push the reload and jump to WIN. This
1856 macro is used in only one place: `find_reloads_address' in reload.c.
1857
1858 Implemented on rs6000 by rs6000_legitimize_reload_address.
1859 Note that (X) is evaluated twice; this is safe in current usage. */
1860
1861 #define LEGITIMIZE_RELOAD_ADDRESS(X,MODE,OPNUM,TYPE,IND_LEVELS,WIN) \
1862 do { \
1863 int win; \
1864 (X) = rs6000_legitimize_reload_address ((X), (MODE), (OPNUM), \
1865 (int)(TYPE), (IND_LEVELS), &win); \
1866 if ( win ) \
1867 goto WIN; \
1868 } while (0)
1869
1870 /* Go to LABEL if ADDR (a legitimate address expression)
1871 has an effect that depends on the machine mode it is used for. */
1872
1873 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) \
1874 do { \
1875 if (rs6000_mode_dependent_address (ADDR)) \
1876 goto LABEL; \
1877 } while (0)
1878
1879 #define FIND_BASE_TERM rs6000_find_base_term
1880
1881 /* The register number of the register used to address a table of
1882 static data addresses in memory. In some cases this register is
1883 defined by a processor's "application binary interface" (ABI).
1884 When this macro is defined, RTL is generated for this register
1885 once, as with the stack pointer and frame pointer registers. If
1886 this macro is not defined, it is up to the machine-dependent files
1887 to allocate such a register (if necessary). */
1888
1889 #define RS6000_PIC_OFFSET_TABLE_REGNUM 30
1890 #define PIC_OFFSET_TABLE_REGNUM (flag_pic ? RS6000_PIC_OFFSET_TABLE_REGNUM : INVALID_REGNUM)
1891
1892 #define TOC_REGISTER (TARGET_MINIMAL_TOC ? RS6000_PIC_OFFSET_TABLE_REGNUM : 2)
1893
1894 /* Define this macro if the register defined by
1895 `PIC_OFFSET_TABLE_REGNUM' is clobbered by calls. Do not define
1896 this macro if `PIC_OFFSET_TABLE_REGNUM' is not defined. */
1897
1898 /* #define PIC_OFFSET_TABLE_REG_CALL_CLOBBERED */
1899
1900 /* A C expression that is nonzero if X is a legitimate immediate
1901 operand on the target machine when generating position independent
1902 code. You can assume that X satisfies `CONSTANT_P', so you need
1903 not check this. You can also assume FLAG_PIC is true, so you need
1904 not check it either. You need not define this macro if all
1905 constants (including `SYMBOL_REF') can be immediate operands when
1906 generating position independent code. */
1907
1908 /* #define LEGITIMATE_PIC_OPERAND_P (X) */
1909
1910 /* Define this if some processing needs to be done immediately before
1911 emitting code for an insn. */
1912
1913 #define FINAL_PRESCAN_INSN(INSN,OPERANDS,NOPERANDS) \
1914 rs6000_final_prescan_insn (INSN, OPERANDS, NOPERANDS)
1915
1916 /* Specify the machine mode that this machine uses
1917 for the index in the tablejump instruction. */
1918 #define CASE_VECTOR_MODE SImode
1919
1920 /* Define as C expression which evaluates to nonzero if the tablejump
1921 instruction expects the table to contain offsets from the address of the
1922 table.
1923 Do not define this if the table should contain absolute addresses. */
1924 #define CASE_VECTOR_PC_RELATIVE 1
1925
1926 /* Define this as 1 if `char' should by default be signed; else as 0. */
1927 #define DEFAULT_SIGNED_CHAR 0
1928
1929 /* This flag, if defined, says the same insns that convert to a signed fixnum
1930 also convert validly to an unsigned one. */
1931
1932 /* #define FIXUNS_TRUNC_LIKE_FIX_TRUNC */
1933
1934 /* An integer expression for the size in bits of the largest integer machine
1935 mode that should actually be used. */
1936
1937 /* Allow pairs of registers to be used, which is the intent of the default. */
1938 #define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (TARGET_POWERPC64 ? TImode : DImode)
1939
1940 /* Max number of bytes we can move from memory to memory
1941 in one reasonably fast instruction. */
1942 #define MOVE_MAX (! TARGET_POWERPC64 ? 4 : 8)
1943 #define MAX_MOVE_MAX 8
1944
1945 /* Nonzero if access to memory by bytes is no faster than for words.
1946 Also nonzero if doing byte operations (specifically shifts) in registers
1947 is undesirable. */
1948 #define SLOW_BYTE_ACCESS 1
1949
1950 /* Define if operations between registers always perform the operation
1951 on the full register even if a narrower mode is specified. */
1952 #define WORD_REGISTER_OPERATIONS
1953
1954 /* Define if loading in MODE, an integral mode narrower than BITS_PER_WORD
1955 will either zero-extend or sign-extend. The value of this macro should
1956 be the code that says which one of the two operations is implicitly
1957 done, UNKNOWN if none. */
1958 #define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
1959
1960 /* Define if loading short immediate values into registers sign extends. */
1961 #define SHORT_IMMEDIATES_SIGN_EXTEND
1962
1963 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1964 is done just by pretending it is already truncated. */
1965 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1966
1967 /* The cntlzw and cntlzd instructions return 32 and 64 for input of zero. */
1968 #define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) \
1969 ((VALUE) = ((MODE) == SImode ? 32 : 64), 1)
1970
1971 /* The CTZ patterns return -1 for input of zero. */
1972 #define CTZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) ((VALUE) = -1, 1)
1973
1974 /* Specify the machine mode that pointers have.
1975 After generation of rtl, the compiler makes no further distinction
1976 between pointers and any other objects of this machine mode. */
1977 #define Pmode (TARGET_32BIT ? SImode : DImode)
1978
1979 /* Supply definition of STACK_SIZE_MODE for allocate_dynamic_stack_space. */
1980 #define STACK_SIZE_MODE (TARGET_32BIT ? SImode : DImode)
1981
1982 /* Mode of a function address in a call instruction (for indexing purposes).
1983 Doesn't matter on RS/6000. */
1984 #define FUNCTION_MODE SImode
1985
1986 /* Define this if addresses of constant functions
1987 shouldn't be put through pseudo regs where they can be cse'd.
1988 Desirable on machines where ordinary constants are expensive
1989 but a CALL with constant address is cheap. */
1990 #define NO_FUNCTION_CSE
1991
1992 /* Define this to be nonzero if shift instructions ignore all but the low-order
1993 few bits.
1994
1995 The sle and sre instructions which allow SHIFT_COUNT_TRUNCATED
1996 have been dropped from the PowerPC architecture. */
1997
1998 #define SHIFT_COUNT_TRUNCATED (TARGET_POWER ? 1 : 0)
1999
2000 /* Adjust the length of an INSN. LENGTH is the currently-computed length and
2001 should be adjusted to reflect any required changes. This macro is used when
2002 there is some systematic length adjustment required that would be difficult
2003 to express in the length attribute. */
2004
2005 /* #define ADJUST_INSN_LENGTH(X,LENGTH) */
2006
2007 /* Given a comparison code (EQ, NE, etc.) and the first operand of a
2008 COMPARE, return the mode to be used for the comparison. For
2009 floating-point, CCFPmode should be used. CCUNSmode should be used
2010 for unsigned comparisons. CCEQmode should be used when we are
2011 doing an inequality comparison on the result of a
2012 comparison. CCmode should be used in all other cases. */
2013
2014 #define SELECT_CC_MODE(OP,X,Y) \
2015 (SCALAR_FLOAT_MODE_P (GET_MODE (X)) ? CCFPmode \
2016 : (OP) == GTU || (OP) == LTU || (OP) == GEU || (OP) == LEU ? CCUNSmode \
2017 : (((OP) == EQ || (OP) == NE) && COMPARISON_P (X) \
2018 ? CCEQmode : CCmode))
2019
2020 /* Can the condition code MODE be safely reversed? This is safe in
2021 all cases on this port, because at present it doesn't use the
2022 trapping FP comparisons (fcmpo). */
2023 #define REVERSIBLE_CC_MODE(MODE) 1
2024
2025 /* Given a condition code and a mode, return the inverse condition. */
2026 #define REVERSE_CONDITION(CODE, MODE) rs6000_reverse_condition (MODE, CODE)
2027
2028 /* Define the information needed to generate branch and scc insns. This is
2029 stored from the compare operation. */
2030
2031 extern GTY(()) rtx rs6000_compare_op0;
2032 extern GTY(()) rtx rs6000_compare_op1;
2033 extern int rs6000_compare_fp_p;
2034
2035 /* Control the assembler format that we output. */
2036
2037 /* A C string constant describing how to begin a comment in the target
2038 assembler language. The compiler assumes that the comment will end at
2039 the end of the line. */
2040 #define ASM_COMMENT_START " #"
2041
2042 /* Flag to say the TOC is initialized */
2043 extern int toc_initialized;
2044
2045 /* Macro to output a special constant pool entry. Go to WIN if we output
2046 it. Otherwise, it is written the usual way.
2047
2048 On the RS/6000, toc entries are handled this way. */
2049
2050 #define ASM_OUTPUT_SPECIAL_POOL_ENTRY(FILE, X, MODE, ALIGN, LABELNO, WIN) \
2051 { if (ASM_OUTPUT_SPECIAL_POOL_ENTRY_P (X, MODE)) \
2052 { \
2053 output_toc (FILE, X, LABELNO, MODE); \
2054 goto WIN; \
2055 } \
2056 }
2057
2058 #ifdef HAVE_GAS_WEAK
2059 #define RS6000_WEAK 1
2060 #else
2061 #define RS6000_WEAK 0
2062 #endif
2063
2064 #if RS6000_WEAK
2065 /* Used in lieu of ASM_WEAKEN_LABEL. */
2066 #define ASM_WEAKEN_DECL(FILE, DECL, NAME, VAL) \
2067 do \
2068 { \
2069 fputs ("\t.weak\t", (FILE)); \
2070 RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \
2071 if ((DECL) && TREE_CODE (DECL) == FUNCTION_DECL \
2072 && DEFAULT_ABI == ABI_AIX && DOT_SYMBOLS) \
2073 { \
2074 if (TARGET_XCOFF) \
2075 fputs ("[DS]", (FILE)); \
2076 fputs ("\n\t.weak\t.", (FILE)); \
2077 RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \
2078 } \
2079 fputc ('\n', (FILE)); \
2080 if (VAL) \
2081 { \
2082 ASM_OUTPUT_DEF ((FILE), (NAME), (VAL)); \
2083 if ((DECL) && TREE_CODE (DECL) == FUNCTION_DECL \
2084 && DEFAULT_ABI == ABI_AIX && DOT_SYMBOLS) \
2085 { \
2086 fputs ("\t.set\t.", (FILE)); \
2087 RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \
2088 fputs (",.", (FILE)); \
2089 RS6000_OUTPUT_BASENAME ((FILE), (VAL)); \
2090 fputc ('\n', (FILE)); \
2091 } \
2092 } \
2093 } \
2094 while (0)
2095 #endif
2096
2097 #if HAVE_GAS_WEAKREF
2098 #define ASM_OUTPUT_WEAKREF(FILE, DECL, NAME, VALUE) \
2099 do \
2100 { \
2101 fputs ("\t.weakref\t", (FILE)); \
2102 RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \
2103 fputs (", ", (FILE)); \
2104 RS6000_OUTPUT_BASENAME ((FILE), (VALUE)); \
2105 if ((DECL) && TREE_CODE (DECL) == FUNCTION_DECL \
2106 && DEFAULT_ABI == ABI_AIX && DOT_SYMBOLS) \
2107 { \
2108 fputs ("\n\t.weakref\t.", (FILE)); \
2109 RS6000_OUTPUT_BASENAME ((FILE), (NAME)); \
2110 fputs (", .", (FILE)); \
2111 RS6000_OUTPUT_BASENAME ((FILE), (VALUE)); \
2112 } \
2113 fputc ('\n', (FILE)); \
2114 } while (0)
2115 #endif
2116
2117 /* This implements the `alias' attribute. */
2118 #undef ASM_OUTPUT_DEF_FROM_DECLS
2119 #define ASM_OUTPUT_DEF_FROM_DECLS(FILE, DECL, TARGET) \
2120 do \
2121 { \
2122 const char *alias = XSTR (XEXP (DECL_RTL (DECL), 0), 0); \
2123 const char *name = IDENTIFIER_POINTER (TARGET); \
2124 if (TREE_CODE (DECL) == FUNCTION_DECL \
2125 && DEFAULT_ABI == ABI_AIX && DOT_SYMBOLS) \
2126 { \
2127 if (TREE_PUBLIC (DECL)) \
2128 { \
2129 if (!RS6000_WEAK || !DECL_WEAK (DECL)) \
2130 { \
2131 fputs ("\t.globl\t.", FILE); \
2132 RS6000_OUTPUT_BASENAME (FILE, alias); \
2133 putc ('\n', FILE); \
2134 } \
2135 } \
2136 else if (TARGET_XCOFF) \
2137 { \
2138 fputs ("\t.lglobl\t.", FILE); \
2139 RS6000_OUTPUT_BASENAME (FILE, alias); \
2140 putc ('\n', FILE); \
2141 } \
2142 fputs ("\t.set\t.", FILE); \
2143 RS6000_OUTPUT_BASENAME (FILE, alias); \
2144 fputs (",.", FILE); \
2145 RS6000_OUTPUT_BASENAME (FILE, name); \
2146 fputc ('\n', FILE); \
2147 } \
2148 ASM_OUTPUT_DEF (FILE, alias, name); \
2149 } \
2150 while (0)
2151
2152 #define TARGET_ASM_FILE_START rs6000_file_start
2153
2154 /* Output to assembler file text saying following lines
2155 may contain character constants, extra white space, comments, etc. */
2156
2157 #define ASM_APP_ON ""
2158
2159 /* Output to assembler file text saying following lines
2160 no longer contain unusual constructs. */
2161
2162 #define ASM_APP_OFF ""
2163
2164 /* How to refer to registers in assembler output.
2165 This sequence is indexed by compiler's hard-register-number (see above). */
2166
2167 extern char rs6000_reg_names[][8]; /* register names (0 vs. %r0). */
2168
2169 #define REGISTER_NAMES \
2170 { \
2171 &rs6000_reg_names[ 0][0], /* r0 */ \
2172 &rs6000_reg_names[ 1][0], /* r1 */ \
2173 &rs6000_reg_names[ 2][0], /* r2 */ \
2174 &rs6000_reg_names[ 3][0], /* r3 */ \
2175 &rs6000_reg_names[ 4][0], /* r4 */ \
2176 &rs6000_reg_names[ 5][0], /* r5 */ \
2177 &rs6000_reg_names[ 6][0], /* r6 */ \
2178 &rs6000_reg_names[ 7][0], /* r7 */ \
2179 &rs6000_reg_names[ 8][0], /* r8 */ \
2180 &rs6000_reg_names[ 9][0], /* r9 */ \
2181 &rs6000_reg_names[10][0], /* r10 */ \
2182 &rs6000_reg_names[11][0], /* r11 */ \
2183 &rs6000_reg_names[12][0], /* r12 */ \
2184 &rs6000_reg_names[13][0], /* r13 */ \
2185 &rs6000_reg_names[14][0], /* r14 */ \
2186 &rs6000_reg_names[15][0], /* r15 */ \
2187 &rs6000_reg_names[16][0], /* r16 */ \
2188 &rs6000_reg_names[17][0], /* r17 */ \
2189 &rs6000_reg_names[18][0], /* r18 */ \
2190 &rs6000_reg_names[19][0], /* r19 */ \
2191 &rs6000_reg_names[20][0], /* r20 */ \
2192 &rs6000_reg_names[21][0], /* r21 */ \
2193 &rs6000_reg_names[22][0], /* r22 */ \
2194 &rs6000_reg_names[23][0], /* r23 */ \
2195 &rs6000_reg_names[24][0], /* r24 */ \
2196 &rs6000_reg_names[25][0], /* r25 */ \
2197 &rs6000_reg_names[26][0], /* r26 */ \
2198 &rs6000_reg_names[27][0], /* r27 */ \
2199 &rs6000_reg_names[28][0], /* r28 */ \
2200 &rs6000_reg_names[29][0], /* r29 */ \
2201 &rs6000_reg_names[30][0], /* r30 */ \
2202 &rs6000_reg_names[31][0], /* r31 */ \
2203 \
2204 &rs6000_reg_names[32][0], /* fr0 */ \
2205 &rs6000_reg_names[33][0], /* fr1 */ \
2206 &rs6000_reg_names[34][0], /* fr2 */ \
2207 &rs6000_reg_names[35][0], /* fr3 */ \
2208 &rs6000_reg_names[36][0], /* fr4 */ \
2209 &rs6000_reg_names[37][0], /* fr5 */ \
2210 &rs6000_reg_names[38][0], /* fr6 */ \
2211 &rs6000_reg_names[39][0], /* fr7 */ \
2212 &rs6000_reg_names[40][0], /* fr8 */ \
2213 &rs6000_reg_names[41][0], /* fr9 */ \
2214 &rs6000_reg_names[42][0], /* fr10 */ \
2215 &rs6000_reg_names[43][0], /* fr11 */ \
2216 &rs6000_reg_names[44][0], /* fr12 */ \
2217 &rs6000_reg_names[45][0], /* fr13 */ \
2218 &rs6000_reg_names[46][0], /* fr14 */ \
2219 &rs6000_reg_names[47][0], /* fr15 */ \
2220 &rs6000_reg_names[48][0], /* fr16 */ \
2221 &rs6000_reg_names[49][0], /* fr17 */ \
2222 &rs6000_reg_names[50][0], /* fr18 */ \
2223 &rs6000_reg_names[51][0], /* fr19 */ \
2224 &rs6000_reg_names[52][0], /* fr20 */ \
2225 &rs6000_reg_names[53][0], /* fr21 */ \
2226 &rs6000_reg_names[54][0], /* fr22 */ \
2227 &rs6000_reg_names[55][0], /* fr23 */ \
2228 &rs6000_reg_names[56][0], /* fr24 */ \
2229 &rs6000_reg_names[57][0], /* fr25 */ \
2230 &rs6000_reg_names[58][0], /* fr26 */ \
2231 &rs6000_reg_names[59][0], /* fr27 */ \
2232 &rs6000_reg_names[60][0], /* fr28 */ \
2233 &rs6000_reg_names[61][0], /* fr29 */ \
2234 &rs6000_reg_names[62][0], /* fr30 */ \
2235 &rs6000_reg_names[63][0], /* fr31 */ \
2236 \
2237 &rs6000_reg_names[64][0], /* mq */ \
2238 &rs6000_reg_names[65][0], /* lr */ \
2239 &rs6000_reg_names[66][0], /* ctr */ \
2240 &rs6000_reg_names[67][0], /* ap */ \
2241 \
2242 &rs6000_reg_names[68][0], /* cr0 */ \
2243 &rs6000_reg_names[69][0], /* cr1 */ \
2244 &rs6000_reg_names[70][0], /* cr2 */ \
2245 &rs6000_reg_names[71][0], /* cr3 */ \
2246 &rs6000_reg_names[72][0], /* cr4 */ \
2247 &rs6000_reg_names[73][0], /* cr5 */ \
2248 &rs6000_reg_names[74][0], /* cr6 */ \
2249 &rs6000_reg_names[75][0], /* cr7 */ \
2250 \
2251 &rs6000_reg_names[76][0], /* xer */ \
2252 \
2253 &rs6000_reg_names[77][0], /* v0 */ \
2254 &rs6000_reg_names[78][0], /* v1 */ \
2255 &rs6000_reg_names[79][0], /* v2 */ \
2256 &rs6000_reg_names[80][0], /* v3 */ \
2257 &rs6000_reg_names[81][0], /* v4 */ \
2258 &rs6000_reg_names[82][0], /* v5 */ \
2259 &rs6000_reg_names[83][0], /* v6 */ \
2260 &rs6000_reg_names[84][0], /* v7 */ \
2261 &rs6000_reg_names[85][0], /* v8 */ \
2262 &rs6000_reg_names[86][0], /* v9 */ \
2263 &rs6000_reg_names[87][0], /* v10 */ \
2264 &rs6000_reg_names[88][0], /* v11 */ \
2265 &rs6000_reg_names[89][0], /* v12 */ \
2266 &rs6000_reg_names[90][0], /* v13 */ \
2267 &rs6000_reg_names[91][0], /* v14 */ \
2268 &rs6000_reg_names[92][0], /* v15 */ \
2269 &rs6000_reg_names[93][0], /* v16 */ \
2270 &rs6000_reg_names[94][0], /* v17 */ \
2271 &rs6000_reg_names[95][0], /* v18 */ \
2272 &rs6000_reg_names[96][0], /* v19 */ \
2273 &rs6000_reg_names[97][0], /* v20 */ \
2274 &rs6000_reg_names[98][0], /* v21 */ \
2275 &rs6000_reg_names[99][0], /* v22 */ \
2276 &rs6000_reg_names[100][0], /* v23 */ \
2277 &rs6000_reg_names[101][0], /* v24 */ \
2278 &rs6000_reg_names[102][0], /* v25 */ \
2279 &rs6000_reg_names[103][0], /* v26 */ \
2280 &rs6000_reg_names[104][0], /* v27 */ \
2281 &rs6000_reg_names[105][0], /* v28 */ \
2282 &rs6000_reg_names[106][0], /* v29 */ \
2283 &rs6000_reg_names[107][0], /* v30 */ \
2284 &rs6000_reg_names[108][0], /* v31 */ \
2285 &rs6000_reg_names[109][0], /* vrsave */ \
2286 &rs6000_reg_names[110][0], /* vscr */ \
2287 &rs6000_reg_names[111][0], /* spe_acc */ \
2288 &rs6000_reg_names[112][0], /* spefscr */ \
2289 &rs6000_reg_names[113][0], /* sfp */ \
2290 }
2291
2292 /* Table of additional register names to use in user input. */
2293
2294 #define ADDITIONAL_REGISTER_NAMES \
2295 {{"r0", 0}, {"r1", 1}, {"r2", 2}, {"r3", 3}, \
2296 {"r4", 4}, {"r5", 5}, {"r6", 6}, {"r7", 7}, \
2297 {"r8", 8}, {"r9", 9}, {"r10", 10}, {"r11", 11}, \
2298 {"r12", 12}, {"r13", 13}, {"r14", 14}, {"r15", 15}, \
2299 {"r16", 16}, {"r17", 17}, {"r18", 18}, {"r19", 19}, \
2300 {"r20", 20}, {"r21", 21}, {"r22", 22}, {"r23", 23}, \
2301 {"r24", 24}, {"r25", 25}, {"r26", 26}, {"r27", 27}, \
2302 {"r28", 28}, {"r29", 29}, {"r30", 30}, {"r31", 31}, \
2303 {"fr0", 32}, {"fr1", 33}, {"fr2", 34}, {"fr3", 35}, \
2304 {"fr4", 36}, {"fr5", 37}, {"fr6", 38}, {"fr7", 39}, \
2305 {"fr8", 40}, {"fr9", 41}, {"fr10", 42}, {"fr11", 43}, \
2306 {"fr12", 44}, {"fr13", 45}, {"fr14", 46}, {"fr15", 47}, \
2307 {"fr16", 48}, {"fr17", 49}, {"fr18", 50}, {"fr19", 51}, \
2308 {"fr20", 52}, {"fr21", 53}, {"fr22", 54}, {"fr23", 55}, \
2309 {"fr24", 56}, {"fr25", 57}, {"fr26", 58}, {"fr27", 59}, \
2310 {"fr28", 60}, {"fr29", 61}, {"fr30", 62}, {"fr31", 63}, \
2311 {"v0", 77}, {"v1", 78}, {"v2", 79}, {"v3", 80}, \
2312 {"v4", 81}, {"v5", 82}, {"v6", 83}, {"v7", 84}, \
2313 {"v8", 85}, {"v9", 86}, {"v10", 87}, {"v11", 88}, \
2314 {"v12", 89}, {"v13", 90}, {"v14", 91}, {"v15", 92}, \
2315 {"v16", 93}, {"v17", 94}, {"v18", 95}, {"v19", 96}, \
2316 {"v20", 97}, {"v21", 98}, {"v22", 99}, {"v23", 100}, \
2317 {"v24", 101},{"v25", 102},{"v26", 103},{"v27", 104}, \
2318 {"v28", 105},{"v29", 106},{"v30", 107},{"v31", 108}, \
2319 {"vrsave", 109}, {"vscr", 110}, \
2320 {"spe_acc", 111}, {"spefscr", 112}, \
2321 /* no additional names for: mq, lr, ctr, ap */ \
2322 {"cr0", 68}, {"cr1", 69}, {"cr2", 70}, {"cr3", 71}, \
2323 {"cr4", 72}, {"cr5", 73}, {"cr6", 74}, {"cr7", 75}, \
2324 {"cc", 68}, {"sp", 1}, {"toc", 2} }
2325
2326 /* Text to write out after a CALL that may be replaced by glue code by
2327 the loader. This depends on the AIX version. */
2328 #define RS6000_CALL_GLUE "cror 31,31,31"
2329
2330 /* This is how to output an element of a case-vector that is relative. */
2331
2332 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
2333 do { char buf[100]; \
2334 fputs ("\t.long ", FILE); \
2335 ASM_GENERATE_INTERNAL_LABEL (buf, "L", VALUE); \
2336 assemble_name (FILE, buf); \
2337 putc ('-', FILE); \
2338 ASM_GENERATE_INTERNAL_LABEL (buf, "L", REL); \
2339 assemble_name (FILE, buf); \
2340 putc ('\n', FILE); \
2341 } while (0)
2342
2343 /* This is how to output an assembler line
2344 that says to advance the location counter
2345 to a multiple of 2**LOG bytes. */
2346
2347 #define ASM_OUTPUT_ALIGN(FILE,LOG) \
2348 if ((LOG) != 0) \
2349 fprintf (FILE, "\t.align %d\n", (LOG))
2350
2351 /* Pick up the return address upon entry to a procedure. Used for
2352 dwarf2 unwind information. This also enables the table driven
2353 mechanism. */
2354
2355 #define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, LR_REGNO)
2356 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (LR_REGNO)
2357
2358 /* Describe how we implement __builtin_eh_return. */
2359 #define EH_RETURN_DATA_REGNO(N) ((N) < 4 ? (N) + 3 : INVALID_REGNUM)
2360 #define EH_RETURN_STACKADJ_RTX gen_rtx_REG (Pmode, 10)
2361
2362 /* Print operand X (an rtx) in assembler syntax to file FILE.
2363 CODE is a letter or dot (`z' in `%z0') or 0 if no letter was specified.
2364 For `%' followed by punctuation, CODE is the punctuation and X is null. */
2365
2366 #define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
2367
2368 /* Define which CODE values are valid. */
2369
2370 #define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
2371 ((CODE) == '.' || (CODE) == '&')
2372
2373 /* Print a memory address as an operand to reference that memory location. */
2374
2375 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
2376
2377 #define OUTPUT_ADDR_CONST_EXTRA(STREAM, X, FAIL) \
2378 do \
2379 if (!rs6000_output_addr_const_extra (STREAM, X)) \
2380 goto FAIL; \
2381 while (0)
2382
2383 /* uncomment for disabling the corresponding default options */
2384 /* #define MACHINE_no_sched_interblock */
2385 /* #define MACHINE_no_sched_speculative */
2386 /* #define MACHINE_no_sched_speculative_load */
2387
2388 /* General flags. */
2389 extern int flag_pic;
2390 extern int optimize;
2391 extern int flag_expensive_optimizations;
2392 extern int frame_pointer_needed;
2393
2394 enum rs6000_builtins
2395 {
2396 /* AltiVec builtins. */
2397 ALTIVEC_BUILTIN_ST_INTERNAL_4si,
2398 ALTIVEC_BUILTIN_LD_INTERNAL_4si,
2399 ALTIVEC_BUILTIN_ST_INTERNAL_8hi,
2400 ALTIVEC_BUILTIN_LD_INTERNAL_8hi,
2401 ALTIVEC_BUILTIN_ST_INTERNAL_16qi,
2402 ALTIVEC_BUILTIN_LD_INTERNAL_16qi,
2403 ALTIVEC_BUILTIN_ST_INTERNAL_4sf,
2404 ALTIVEC_BUILTIN_LD_INTERNAL_4sf,
2405 ALTIVEC_BUILTIN_VADDUBM,
2406 ALTIVEC_BUILTIN_VADDUHM,
2407 ALTIVEC_BUILTIN_VADDUWM,
2408 ALTIVEC_BUILTIN_VADDFP,
2409 ALTIVEC_BUILTIN_VADDCUW,
2410 ALTIVEC_BUILTIN_VADDUBS,
2411 ALTIVEC_BUILTIN_VADDSBS,
2412 ALTIVEC_BUILTIN_VADDUHS,
2413 ALTIVEC_BUILTIN_VADDSHS,
2414 ALTIVEC_BUILTIN_VADDUWS,
2415 ALTIVEC_BUILTIN_VADDSWS,
2416 ALTIVEC_BUILTIN_VAND,
2417 ALTIVEC_BUILTIN_VANDC,
2418 ALTIVEC_BUILTIN_VAVGUB,
2419 ALTIVEC_BUILTIN_VAVGSB,
2420 ALTIVEC_BUILTIN_VAVGUH,
2421 ALTIVEC_BUILTIN_VAVGSH,
2422 ALTIVEC_BUILTIN_VAVGUW,
2423 ALTIVEC_BUILTIN_VAVGSW,
2424 ALTIVEC_BUILTIN_VCFUX,
2425 ALTIVEC_BUILTIN_VCFSX,
2426 ALTIVEC_BUILTIN_VCTSXS,
2427 ALTIVEC_BUILTIN_VCTUXS,
2428 ALTIVEC_BUILTIN_VCMPBFP,
2429 ALTIVEC_BUILTIN_VCMPEQUB,
2430 ALTIVEC_BUILTIN_VCMPEQUH,
2431 ALTIVEC_BUILTIN_VCMPEQUW,
2432 ALTIVEC_BUILTIN_VCMPEQFP,
2433 ALTIVEC_BUILTIN_VCMPGEFP,
2434 ALTIVEC_BUILTIN_VCMPGTUB,
2435 ALTIVEC_BUILTIN_VCMPGTSB,
2436 ALTIVEC_BUILTIN_VCMPGTUH,
2437 ALTIVEC_BUILTIN_VCMPGTSH,
2438 ALTIVEC_BUILTIN_VCMPGTUW,
2439 ALTIVEC_BUILTIN_VCMPGTSW,
2440 ALTIVEC_BUILTIN_VCMPGTFP,
2441 ALTIVEC_BUILTIN_VEXPTEFP,
2442 ALTIVEC_BUILTIN_VLOGEFP,
2443 ALTIVEC_BUILTIN_VMADDFP,
2444 ALTIVEC_BUILTIN_VMAXUB,
2445 ALTIVEC_BUILTIN_VMAXSB,
2446 ALTIVEC_BUILTIN_VMAXUH,
2447 ALTIVEC_BUILTIN_VMAXSH,
2448 ALTIVEC_BUILTIN_VMAXUW,
2449 ALTIVEC_BUILTIN_VMAXSW,
2450 ALTIVEC_BUILTIN_VMAXFP,
2451 ALTIVEC_BUILTIN_VMHADDSHS,
2452 ALTIVEC_BUILTIN_VMHRADDSHS,
2453 ALTIVEC_BUILTIN_VMLADDUHM,
2454 ALTIVEC_BUILTIN_VMRGHB,
2455 ALTIVEC_BUILTIN_VMRGHH,
2456 ALTIVEC_BUILTIN_VMRGHW,
2457 ALTIVEC_BUILTIN_VMRGLB,
2458 ALTIVEC_BUILTIN_VMRGLH,
2459 ALTIVEC_BUILTIN_VMRGLW,
2460 ALTIVEC_BUILTIN_VMSUMUBM,
2461 ALTIVEC_BUILTIN_VMSUMMBM,
2462 ALTIVEC_BUILTIN_VMSUMUHM,
2463 ALTIVEC_BUILTIN_VMSUMSHM,
2464 ALTIVEC_BUILTIN_VMSUMUHS,
2465 ALTIVEC_BUILTIN_VMSUMSHS,
2466 ALTIVEC_BUILTIN_VMINUB,
2467 ALTIVEC_BUILTIN_VMINSB,
2468 ALTIVEC_BUILTIN_VMINUH,
2469 ALTIVEC_BUILTIN_VMINSH,
2470 ALTIVEC_BUILTIN_VMINUW,
2471 ALTIVEC_BUILTIN_VMINSW,
2472 ALTIVEC_BUILTIN_VMINFP,
2473 ALTIVEC_BUILTIN_VMULEUB,
2474 ALTIVEC_BUILTIN_VMULESB,
2475 ALTIVEC_BUILTIN_VMULEUH,
2476 ALTIVEC_BUILTIN_VMULESH,
2477 ALTIVEC_BUILTIN_VMULOUB,
2478 ALTIVEC_BUILTIN_VMULOSB,
2479 ALTIVEC_BUILTIN_VMULOUH,
2480 ALTIVEC_BUILTIN_VMULOSH,
2481 ALTIVEC_BUILTIN_VNMSUBFP,
2482 ALTIVEC_BUILTIN_VNOR,
2483 ALTIVEC_BUILTIN_VOR,
2484 ALTIVEC_BUILTIN_VSEL_4SI,
2485 ALTIVEC_BUILTIN_VSEL_4SF,
2486 ALTIVEC_BUILTIN_VSEL_8HI,
2487 ALTIVEC_BUILTIN_VSEL_16QI,
2488 ALTIVEC_BUILTIN_VPERM_4SI,
2489 ALTIVEC_BUILTIN_VPERM_4SF,
2490 ALTIVEC_BUILTIN_VPERM_8HI,
2491 ALTIVEC_BUILTIN_VPERM_16QI,
2492 ALTIVEC_BUILTIN_VPKUHUM,
2493 ALTIVEC_BUILTIN_VPKUWUM,
2494 ALTIVEC_BUILTIN_VPKPX,
2495 ALTIVEC_BUILTIN_VPKUHSS,
2496 ALTIVEC_BUILTIN_VPKSHSS,
2497 ALTIVEC_BUILTIN_VPKUWSS,
2498 ALTIVEC_BUILTIN_VPKSWSS,
2499 ALTIVEC_BUILTIN_VPKUHUS,
2500 ALTIVEC_BUILTIN_VPKSHUS,
2501 ALTIVEC_BUILTIN_VPKUWUS,
2502 ALTIVEC_BUILTIN_VPKSWUS,
2503 ALTIVEC_BUILTIN_VREFP,
2504 ALTIVEC_BUILTIN_VRFIM,
2505 ALTIVEC_BUILTIN_VRFIN,
2506 ALTIVEC_BUILTIN_VRFIP,
2507 ALTIVEC_BUILTIN_VRFIZ,
2508 ALTIVEC_BUILTIN_VRLB,
2509 ALTIVEC_BUILTIN_VRLH,
2510 ALTIVEC_BUILTIN_VRLW,
2511 ALTIVEC_BUILTIN_VRSQRTEFP,
2512 ALTIVEC_BUILTIN_VSLB,
2513 ALTIVEC_BUILTIN_VSLH,
2514 ALTIVEC_BUILTIN_VSLW,
2515 ALTIVEC_BUILTIN_VSL,
2516 ALTIVEC_BUILTIN_VSLO,
2517 ALTIVEC_BUILTIN_VSPLTB,
2518 ALTIVEC_BUILTIN_VSPLTH,
2519 ALTIVEC_BUILTIN_VSPLTW,
2520 ALTIVEC_BUILTIN_VSPLTISB,
2521 ALTIVEC_BUILTIN_VSPLTISH,
2522 ALTIVEC_BUILTIN_VSPLTISW,
2523 ALTIVEC_BUILTIN_VSRB,
2524 ALTIVEC_BUILTIN_VSRH,
2525 ALTIVEC_BUILTIN_VSRW,
2526 ALTIVEC_BUILTIN_VSRAB,
2527 ALTIVEC_BUILTIN_VSRAH,
2528 ALTIVEC_BUILTIN_VSRAW,
2529 ALTIVEC_BUILTIN_VSR,
2530 ALTIVEC_BUILTIN_VSRO,
2531 ALTIVEC_BUILTIN_VSUBUBM,
2532 ALTIVEC_BUILTIN_VSUBUHM,
2533 ALTIVEC_BUILTIN_VSUBUWM,
2534 ALTIVEC_BUILTIN_VSUBFP,
2535 ALTIVEC_BUILTIN_VSUBCUW,
2536 ALTIVEC_BUILTIN_VSUBUBS,
2537 ALTIVEC_BUILTIN_VSUBSBS,
2538 ALTIVEC_BUILTIN_VSUBUHS,
2539 ALTIVEC_BUILTIN_VSUBSHS,
2540 ALTIVEC_BUILTIN_VSUBUWS,
2541 ALTIVEC_BUILTIN_VSUBSWS,
2542 ALTIVEC_BUILTIN_VSUM4UBS,
2543 ALTIVEC_BUILTIN_VSUM4SBS,
2544 ALTIVEC_BUILTIN_VSUM4SHS,
2545 ALTIVEC_BUILTIN_VSUM2SWS,
2546 ALTIVEC_BUILTIN_VSUMSWS,
2547 ALTIVEC_BUILTIN_VXOR,
2548 ALTIVEC_BUILTIN_VSLDOI_16QI,
2549 ALTIVEC_BUILTIN_VSLDOI_8HI,
2550 ALTIVEC_BUILTIN_VSLDOI_4SI,
2551 ALTIVEC_BUILTIN_VSLDOI_4SF,
2552 ALTIVEC_BUILTIN_VUPKHSB,
2553 ALTIVEC_BUILTIN_VUPKHPX,
2554 ALTIVEC_BUILTIN_VUPKHSH,
2555 ALTIVEC_BUILTIN_VUPKLSB,
2556 ALTIVEC_BUILTIN_VUPKLPX,
2557 ALTIVEC_BUILTIN_VUPKLSH,
2558 ALTIVEC_BUILTIN_MTVSCR,
2559 ALTIVEC_BUILTIN_MFVSCR,
2560 ALTIVEC_BUILTIN_DSSALL,
2561 ALTIVEC_BUILTIN_DSS,
2562 ALTIVEC_BUILTIN_LVSL,
2563 ALTIVEC_BUILTIN_LVSR,
2564 ALTIVEC_BUILTIN_DSTT,
2565 ALTIVEC_BUILTIN_DSTST,
2566 ALTIVEC_BUILTIN_DSTSTT,
2567 ALTIVEC_BUILTIN_DST,
2568 ALTIVEC_BUILTIN_LVEBX,
2569 ALTIVEC_BUILTIN_LVEHX,
2570 ALTIVEC_BUILTIN_LVEWX,
2571 ALTIVEC_BUILTIN_LVXL,
2572 ALTIVEC_BUILTIN_LVX,
2573 ALTIVEC_BUILTIN_STVX,
2574 ALTIVEC_BUILTIN_LVLX,
2575 ALTIVEC_BUILTIN_LVLXL,
2576 ALTIVEC_BUILTIN_LVRX,
2577 ALTIVEC_BUILTIN_LVRXL,
2578 ALTIVEC_BUILTIN_STVEBX,
2579 ALTIVEC_BUILTIN_STVEHX,
2580 ALTIVEC_BUILTIN_STVEWX,
2581 ALTIVEC_BUILTIN_STVXL,
2582 ALTIVEC_BUILTIN_STVLX,
2583 ALTIVEC_BUILTIN_STVLXL,
2584 ALTIVEC_BUILTIN_STVRX,
2585 ALTIVEC_BUILTIN_STVRXL,
2586 ALTIVEC_BUILTIN_VCMPBFP_P,
2587 ALTIVEC_BUILTIN_VCMPEQFP_P,
2588 ALTIVEC_BUILTIN_VCMPEQUB_P,
2589 ALTIVEC_BUILTIN_VCMPEQUH_P,
2590 ALTIVEC_BUILTIN_VCMPEQUW_P,
2591 ALTIVEC_BUILTIN_VCMPGEFP_P,
2592 ALTIVEC_BUILTIN_VCMPGTFP_P,
2593 ALTIVEC_BUILTIN_VCMPGTSB_P,
2594 ALTIVEC_BUILTIN_VCMPGTSH_P,
2595 ALTIVEC_BUILTIN_VCMPGTSW_P,
2596 ALTIVEC_BUILTIN_VCMPGTUB_P,
2597 ALTIVEC_BUILTIN_VCMPGTUH_P,
2598 ALTIVEC_BUILTIN_VCMPGTUW_P,
2599 ALTIVEC_BUILTIN_ABSS_V4SI,
2600 ALTIVEC_BUILTIN_ABSS_V8HI,
2601 ALTIVEC_BUILTIN_ABSS_V16QI,
2602 ALTIVEC_BUILTIN_ABS_V4SI,
2603 ALTIVEC_BUILTIN_ABS_V4SF,
2604 ALTIVEC_BUILTIN_ABS_V8HI,
2605 ALTIVEC_BUILTIN_ABS_V16QI,
2606 ALTIVEC_BUILTIN_MASK_FOR_LOAD,
2607 ALTIVEC_BUILTIN_MASK_FOR_STORE,
2608 ALTIVEC_BUILTIN_VEC_INIT_V4SI,
2609 ALTIVEC_BUILTIN_VEC_INIT_V8HI,
2610 ALTIVEC_BUILTIN_VEC_INIT_V16QI,
2611 ALTIVEC_BUILTIN_VEC_INIT_V4SF,
2612 ALTIVEC_BUILTIN_VEC_SET_V4SI,
2613 ALTIVEC_BUILTIN_VEC_SET_V8HI,
2614 ALTIVEC_BUILTIN_VEC_SET_V16QI,
2615 ALTIVEC_BUILTIN_VEC_SET_V4SF,
2616 ALTIVEC_BUILTIN_VEC_EXT_V4SI,
2617 ALTIVEC_BUILTIN_VEC_EXT_V8HI,
2618 ALTIVEC_BUILTIN_VEC_EXT_V16QI,
2619 ALTIVEC_BUILTIN_VEC_EXT_V4SF,
2620
2621 /* Altivec overloaded builtins. */
2622 ALTIVEC_BUILTIN_VCMPEQ_P,
2623 ALTIVEC_BUILTIN_OVERLOADED_FIRST = ALTIVEC_BUILTIN_VCMPEQ_P,
2624 ALTIVEC_BUILTIN_VCMPGT_P,
2625 ALTIVEC_BUILTIN_VCMPGE_P,
2626 ALTIVEC_BUILTIN_VEC_ABS,
2627 ALTIVEC_BUILTIN_VEC_ABSS,
2628 ALTIVEC_BUILTIN_VEC_ADD,
2629 ALTIVEC_BUILTIN_VEC_ADDC,
2630 ALTIVEC_BUILTIN_VEC_ADDS,
2631 ALTIVEC_BUILTIN_VEC_AND,
2632 ALTIVEC_BUILTIN_VEC_ANDC,
2633 ALTIVEC_BUILTIN_VEC_AVG,
2634 ALTIVEC_BUILTIN_VEC_EXTRACT,
2635 ALTIVEC_BUILTIN_VEC_CEIL,
2636 ALTIVEC_BUILTIN_VEC_CMPB,
2637 ALTIVEC_BUILTIN_VEC_CMPEQ,
2638 ALTIVEC_BUILTIN_VEC_CMPEQUB,
2639 ALTIVEC_BUILTIN_VEC_CMPEQUH,
2640 ALTIVEC_BUILTIN_VEC_CMPEQUW,
2641 ALTIVEC_BUILTIN_VEC_CMPGE,
2642 ALTIVEC_BUILTIN_VEC_CMPGT,
2643 ALTIVEC_BUILTIN_VEC_CMPLE,
2644 ALTIVEC_BUILTIN_VEC_CMPLT,
2645 ALTIVEC_BUILTIN_VEC_CTF,
2646 ALTIVEC_BUILTIN_VEC_CTS,
2647 ALTIVEC_BUILTIN_VEC_CTU,
2648 ALTIVEC_BUILTIN_VEC_DST,
2649 ALTIVEC_BUILTIN_VEC_DSTST,
2650 ALTIVEC_BUILTIN_VEC_DSTSTT,
2651 ALTIVEC_BUILTIN_VEC_DSTT,
2652 ALTIVEC_BUILTIN_VEC_EXPTE,
2653 ALTIVEC_BUILTIN_VEC_FLOOR,
2654 ALTIVEC_BUILTIN_VEC_LD,
2655 ALTIVEC_BUILTIN_VEC_LDE,
2656 ALTIVEC_BUILTIN_VEC_LDL,
2657 ALTIVEC_BUILTIN_VEC_LOGE,
2658 ALTIVEC_BUILTIN_VEC_LVEBX,
2659 ALTIVEC_BUILTIN_VEC_LVEHX,
2660 ALTIVEC_BUILTIN_VEC_LVEWX,
2661 ALTIVEC_BUILTIN_VEC_LVLX,
2662 ALTIVEC_BUILTIN_VEC_LVLXL,
2663 ALTIVEC_BUILTIN_VEC_LVRX,
2664 ALTIVEC_BUILTIN_VEC_LVRXL,
2665 ALTIVEC_BUILTIN_VEC_LVSL,
2666 ALTIVEC_BUILTIN_VEC_LVSR,
2667 ALTIVEC_BUILTIN_VEC_MADD,
2668 ALTIVEC_BUILTIN_VEC_MADDS,
2669 ALTIVEC_BUILTIN_VEC_MAX,
2670 ALTIVEC_BUILTIN_VEC_MERGEH,
2671 ALTIVEC_BUILTIN_VEC_MERGEL,
2672 ALTIVEC_BUILTIN_VEC_MIN,
2673 ALTIVEC_BUILTIN_VEC_MLADD,
2674 ALTIVEC_BUILTIN_VEC_MPERM,
2675 ALTIVEC_BUILTIN_VEC_MRADDS,
2676 ALTIVEC_BUILTIN_VEC_MRGHB,
2677 ALTIVEC_BUILTIN_VEC_MRGHH,
2678 ALTIVEC_BUILTIN_VEC_MRGHW,
2679 ALTIVEC_BUILTIN_VEC_MRGLB,
2680 ALTIVEC_BUILTIN_VEC_MRGLH,
2681 ALTIVEC_BUILTIN_VEC_MRGLW,
2682 ALTIVEC_BUILTIN_VEC_MSUM,
2683 ALTIVEC_BUILTIN_VEC_MSUMS,
2684 ALTIVEC_BUILTIN_VEC_MTVSCR,
2685 ALTIVEC_BUILTIN_VEC_MULE,
2686 ALTIVEC_BUILTIN_VEC_MULO,
2687 ALTIVEC_BUILTIN_VEC_NMSUB,
2688 ALTIVEC_BUILTIN_VEC_NOR,
2689 ALTIVEC_BUILTIN_VEC_OR,
2690 ALTIVEC_BUILTIN_VEC_PACK,
2691 ALTIVEC_BUILTIN_VEC_PACKPX,
2692 ALTIVEC_BUILTIN_VEC_PACKS,
2693 ALTIVEC_BUILTIN_VEC_PACKSU,
2694 ALTIVEC_BUILTIN_VEC_PERM,
2695 ALTIVEC_BUILTIN_VEC_RE,
2696 ALTIVEC_BUILTIN_VEC_RL,
2697 ALTIVEC_BUILTIN_VEC_ROUND,
2698 ALTIVEC_BUILTIN_VEC_RSQRTE,
2699 ALTIVEC_BUILTIN_VEC_SEL,
2700 ALTIVEC_BUILTIN_VEC_SL,
2701 ALTIVEC_BUILTIN_VEC_SLD,
2702 ALTIVEC_BUILTIN_VEC_SLL,
2703 ALTIVEC_BUILTIN_VEC_SLO,
2704 ALTIVEC_BUILTIN_VEC_SPLAT,
2705 ALTIVEC_BUILTIN_VEC_SPLAT_S16,
2706 ALTIVEC_BUILTIN_VEC_SPLAT_S32,
2707 ALTIVEC_BUILTIN_VEC_SPLAT_S8,
2708 ALTIVEC_BUILTIN_VEC_SPLAT_U16,
2709 ALTIVEC_BUILTIN_VEC_SPLAT_U32,
2710 ALTIVEC_BUILTIN_VEC_SPLAT_U8,
2711 ALTIVEC_BUILTIN_VEC_SPLTB,
2712 ALTIVEC_BUILTIN_VEC_SPLTH,
2713 ALTIVEC_BUILTIN_VEC_SPLTW,
2714 ALTIVEC_BUILTIN_VEC_SR,
2715 ALTIVEC_BUILTIN_VEC_SRA,
2716 ALTIVEC_BUILTIN_VEC_SRL,
2717 ALTIVEC_BUILTIN_VEC_SRO,
2718 ALTIVEC_BUILTIN_VEC_ST,
2719 ALTIVEC_BUILTIN_VEC_STE,
2720 ALTIVEC_BUILTIN_VEC_STL,
2721 ALTIVEC_BUILTIN_VEC_STVEBX,
2722 ALTIVEC_BUILTIN_VEC_STVEHX,
2723 ALTIVEC_BUILTIN_VEC_STVEWX,
2724 ALTIVEC_BUILTIN_VEC_STVLX,
2725 ALTIVEC_BUILTIN_VEC_STVLXL,
2726 ALTIVEC_BUILTIN_VEC_STVRX,
2727 ALTIVEC_BUILTIN_VEC_STVRXL,
2728 ALTIVEC_BUILTIN_VEC_SUB,
2729 ALTIVEC_BUILTIN_VEC_SUBC,
2730 ALTIVEC_BUILTIN_VEC_SUBS,
2731 ALTIVEC_BUILTIN_VEC_SUM2S,
2732 ALTIVEC_BUILTIN_VEC_SUM4S,
2733 ALTIVEC_BUILTIN_VEC_SUMS,
2734 ALTIVEC_BUILTIN_VEC_TRUNC,
2735 ALTIVEC_BUILTIN_VEC_UNPACKH,
2736 ALTIVEC_BUILTIN_VEC_UNPACKL,
2737 ALTIVEC_BUILTIN_VEC_VADDFP,
2738 ALTIVEC_BUILTIN_VEC_VADDSBS,
2739 ALTIVEC_BUILTIN_VEC_VADDSHS,
2740 ALTIVEC_BUILTIN_VEC_VADDSWS,
2741 ALTIVEC_BUILTIN_VEC_VADDUBM,
2742 ALTIVEC_BUILTIN_VEC_VADDUBS,
2743 ALTIVEC_BUILTIN_VEC_VADDUHM,
2744 ALTIVEC_BUILTIN_VEC_VADDUHS,
2745 ALTIVEC_BUILTIN_VEC_VADDUWM,
2746 ALTIVEC_BUILTIN_VEC_VADDUWS,
2747 ALTIVEC_BUILTIN_VEC_VAVGSB,
2748 ALTIVEC_BUILTIN_VEC_VAVGSH,
2749 ALTIVEC_BUILTIN_VEC_VAVGSW,
2750 ALTIVEC_BUILTIN_VEC_VAVGUB,
2751 ALTIVEC_BUILTIN_VEC_VAVGUH,
2752 ALTIVEC_BUILTIN_VEC_VAVGUW,
2753 ALTIVEC_BUILTIN_VEC_VCFSX,
2754 ALTIVEC_BUILTIN_VEC_VCFUX,
2755 ALTIVEC_BUILTIN_VEC_VCMPEQFP,
2756 ALTIVEC_BUILTIN_VEC_VCMPEQUB,
2757 ALTIVEC_BUILTIN_VEC_VCMPEQUH,
2758 ALTIVEC_BUILTIN_VEC_VCMPEQUW,
2759 ALTIVEC_BUILTIN_VEC_VCMPGTFP,
2760 ALTIVEC_BUILTIN_VEC_VCMPGTSB,
2761 ALTIVEC_BUILTIN_VEC_VCMPGTSH,
2762 ALTIVEC_BUILTIN_VEC_VCMPGTSW,
2763 ALTIVEC_BUILTIN_VEC_VCMPGTUB,
2764 ALTIVEC_BUILTIN_VEC_VCMPGTUH,
2765 ALTIVEC_BUILTIN_VEC_VCMPGTUW,
2766 ALTIVEC_BUILTIN_VEC_VMAXFP,
2767 ALTIVEC_BUILTIN_VEC_VMAXSB,
2768 ALTIVEC_BUILTIN_VEC_VMAXSH,
2769 ALTIVEC_BUILTIN_VEC_VMAXSW,
2770 ALTIVEC_BUILTIN_VEC_VMAXUB,
2771 ALTIVEC_BUILTIN_VEC_VMAXUH,
2772 ALTIVEC_BUILTIN_VEC_VMAXUW,
2773 ALTIVEC_BUILTIN_VEC_VMINFP,
2774 ALTIVEC_BUILTIN_VEC_VMINSB,
2775 ALTIVEC_BUILTIN_VEC_VMINSH,
2776 ALTIVEC_BUILTIN_VEC_VMINSW,
2777 ALTIVEC_BUILTIN_VEC_VMINUB,
2778 ALTIVEC_BUILTIN_VEC_VMINUH,
2779 ALTIVEC_BUILTIN_VEC_VMINUW,
2780 ALTIVEC_BUILTIN_VEC_VMRGHB,
2781 ALTIVEC_BUILTIN_VEC_VMRGHH,
2782 ALTIVEC_BUILTIN_VEC_VMRGHW,
2783 ALTIVEC_BUILTIN_VEC_VMRGLB,
2784 ALTIVEC_BUILTIN_VEC_VMRGLH,
2785 ALTIVEC_BUILTIN_VEC_VMRGLW,
2786 ALTIVEC_BUILTIN_VEC_VMSUMMBM,
2787 ALTIVEC_BUILTIN_VEC_VMSUMSHM,
2788 ALTIVEC_BUILTIN_VEC_VMSUMSHS,
2789 ALTIVEC_BUILTIN_VEC_VMSUMUBM,
2790 ALTIVEC_BUILTIN_VEC_VMSUMUHM,
2791 ALTIVEC_BUILTIN_VEC_VMSUMUHS,
2792 ALTIVEC_BUILTIN_VEC_VMULESB,
2793 ALTIVEC_BUILTIN_VEC_VMULESH,
2794 ALTIVEC_BUILTIN_VEC_VMULEUB,
2795 ALTIVEC_BUILTIN_VEC_VMULEUH,
2796 ALTIVEC_BUILTIN_VEC_VMULOSB,
2797 ALTIVEC_BUILTIN_VEC_VMULOSH,
2798 ALTIVEC_BUILTIN_VEC_VMULOUB,
2799 ALTIVEC_BUILTIN_VEC_VMULOUH,
2800 ALTIVEC_BUILTIN_VEC_VPKSHSS,
2801 ALTIVEC_BUILTIN_VEC_VPKSHUS,
2802 ALTIVEC_BUILTIN_VEC_VPKSWSS,
2803 ALTIVEC_BUILTIN_VEC_VPKSWUS,
2804 ALTIVEC_BUILTIN_VEC_VPKUHUM,
2805 ALTIVEC_BUILTIN_VEC_VPKUHUS,
2806 ALTIVEC_BUILTIN_VEC_VPKUWUM,
2807 ALTIVEC_BUILTIN_VEC_VPKUWUS,
2808 ALTIVEC_BUILTIN_VEC_VRLB,
2809 ALTIVEC_BUILTIN_VEC_VRLH,
2810 ALTIVEC_BUILTIN_VEC_VRLW,
2811 ALTIVEC_BUILTIN_VEC_VSLB,
2812 ALTIVEC_BUILTIN_VEC_VSLH,
2813 ALTIVEC_BUILTIN_VEC_VSLW,
2814 ALTIVEC_BUILTIN_VEC_VSPLTB,
2815 ALTIVEC_BUILTIN_VEC_VSPLTH,
2816 ALTIVEC_BUILTIN_VEC_VSPLTW,
2817 ALTIVEC_BUILTIN_VEC_VSRAB,
2818 ALTIVEC_BUILTIN_VEC_VSRAH,
2819 ALTIVEC_BUILTIN_VEC_VSRAW,
2820 ALTIVEC_BUILTIN_VEC_VSRB,
2821 ALTIVEC_BUILTIN_VEC_VSRH,
2822 ALTIVEC_BUILTIN_VEC_VSRW,
2823 ALTIVEC_BUILTIN_VEC_VSUBFP,
2824 ALTIVEC_BUILTIN_VEC_VSUBSBS,
2825 ALTIVEC_BUILTIN_VEC_VSUBSHS,
2826 ALTIVEC_BUILTIN_VEC_VSUBSWS,
2827 ALTIVEC_BUILTIN_VEC_VSUBUBM,
2828 ALTIVEC_BUILTIN_VEC_VSUBUBS,
2829 ALTIVEC_BUILTIN_VEC_VSUBUHM,
2830 ALTIVEC_BUILTIN_VEC_VSUBUHS,
2831 ALTIVEC_BUILTIN_VEC_VSUBUWM,
2832 ALTIVEC_BUILTIN_VEC_VSUBUWS,
2833 ALTIVEC_BUILTIN_VEC_VSUM4SBS,
2834 ALTIVEC_BUILTIN_VEC_VSUM4SHS,
2835 ALTIVEC_BUILTIN_VEC_VSUM4UBS,
2836 ALTIVEC_BUILTIN_VEC_VUPKHPX,
2837 ALTIVEC_BUILTIN_VEC_VUPKHSB,
2838 ALTIVEC_BUILTIN_VEC_VUPKHSH,
2839 ALTIVEC_BUILTIN_VEC_VUPKLPX,
2840 ALTIVEC_BUILTIN_VEC_VUPKLSB,
2841 ALTIVEC_BUILTIN_VEC_VUPKLSH,
2842 ALTIVEC_BUILTIN_VEC_XOR,
2843 ALTIVEC_BUILTIN_VEC_STEP,
2844 ALTIVEC_BUILTIN_VEC_PROMOTE,
2845 ALTIVEC_BUILTIN_VEC_INSERT,
2846 ALTIVEC_BUILTIN_VEC_SPLATS,
2847 ALTIVEC_BUILTIN_OVERLOADED_LAST = ALTIVEC_BUILTIN_VEC_SPLATS,
2848
2849 /* SPE builtins. */
2850 SPE_BUILTIN_EVADDW,
2851 SPE_BUILTIN_EVAND,
2852 SPE_BUILTIN_EVANDC,
2853 SPE_BUILTIN_EVDIVWS,
2854 SPE_BUILTIN_EVDIVWU,
2855 SPE_BUILTIN_EVEQV,
2856 SPE_BUILTIN_EVFSADD,
2857 SPE_BUILTIN_EVFSDIV,
2858 SPE_BUILTIN_EVFSMUL,
2859 SPE_BUILTIN_EVFSSUB,
2860 SPE_BUILTIN_EVLDDX,
2861 SPE_BUILTIN_EVLDHX,
2862 SPE_BUILTIN_EVLDWX,
2863 SPE_BUILTIN_EVLHHESPLATX,
2864 SPE_BUILTIN_EVLHHOSSPLATX,
2865 SPE_BUILTIN_EVLHHOUSPLATX,
2866 SPE_BUILTIN_EVLWHEX,
2867 SPE_BUILTIN_EVLWHOSX,
2868 SPE_BUILTIN_EVLWHOUX,
2869 SPE_BUILTIN_EVLWHSPLATX,
2870 SPE_BUILTIN_EVLWWSPLATX,
2871 SPE_BUILTIN_EVMERGEHI,
2872 SPE_BUILTIN_EVMERGEHILO,
2873 SPE_BUILTIN_EVMERGELO,
2874 SPE_BUILTIN_EVMERGELOHI,
2875 SPE_BUILTIN_EVMHEGSMFAA,
2876 SPE_BUILTIN_EVMHEGSMFAN,
2877 SPE_BUILTIN_EVMHEGSMIAA,
2878 SPE_BUILTIN_EVMHEGSMIAN,
2879 SPE_BUILTIN_EVMHEGUMIAA,
2880 SPE_BUILTIN_EVMHEGUMIAN,
2881 SPE_BUILTIN_EVMHESMF,
2882 SPE_BUILTIN_EVMHESMFA,
2883 SPE_BUILTIN_EVMHESMFAAW,
2884 SPE_BUILTIN_EVMHESMFANW,
2885 SPE_BUILTIN_EVMHESMI,
2886 SPE_BUILTIN_EVMHESMIA,
2887 SPE_BUILTIN_EVMHESMIAAW,
2888 SPE_BUILTIN_EVMHESMIANW,
2889 SPE_BUILTIN_EVMHESSF,
2890 SPE_BUILTIN_EVMHESSFA,
2891 SPE_BUILTIN_EVMHESSFAAW,
2892 SPE_BUILTIN_EVMHESSFANW,
2893 SPE_BUILTIN_EVMHESSIAAW,
2894 SPE_BUILTIN_EVMHESSIANW,
2895 SPE_BUILTIN_EVMHEUMI,
2896 SPE_BUILTIN_EVMHEUMIA,
2897 SPE_BUILTIN_EVMHEUMIAAW,
2898 SPE_BUILTIN_EVMHEUMIANW,
2899 SPE_BUILTIN_EVMHEUSIAAW,
2900 SPE_BUILTIN_EVMHEUSIANW,
2901 SPE_BUILTIN_EVMHOGSMFAA,
2902 SPE_BUILTIN_EVMHOGSMFAN,
2903 SPE_BUILTIN_EVMHOGSMIAA,
2904 SPE_BUILTIN_EVMHOGSMIAN,
2905 SPE_BUILTIN_EVMHOGUMIAA,
2906 SPE_BUILTIN_EVMHOGUMIAN,
2907 SPE_BUILTIN_EVMHOSMF,
2908 SPE_BUILTIN_EVMHOSMFA,
2909 SPE_BUILTIN_EVMHOSMFAAW,
2910 SPE_BUILTIN_EVMHOSMFANW,
2911 SPE_BUILTIN_EVMHOSMI,
2912 SPE_BUILTIN_EVMHOSMIA,
2913 SPE_BUILTIN_EVMHOSMIAAW,
2914 SPE_BUILTIN_EVMHOSMIANW,
2915 SPE_BUILTIN_EVMHOSSF,
2916 SPE_BUILTIN_EVMHOSSFA,
2917 SPE_BUILTIN_EVMHOSSFAAW,
2918 SPE_BUILTIN_EVMHOSSFANW,
2919 SPE_BUILTIN_EVMHOSSIAAW,
2920 SPE_BUILTIN_EVMHOSSIANW,
2921 SPE_BUILTIN_EVMHOUMI,
2922 SPE_BUILTIN_EVMHOUMIA,
2923 SPE_BUILTIN_EVMHOUMIAAW,
2924 SPE_BUILTIN_EVMHOUMIANW,
2925 SPE_BUILTIN_EVMHOUSIAAW,
2926 SPE_BUILTIN_EVMHOUSIANW,
2927 SPE_BUILTIN_EVMWHSMF,
2928 SPE_BUILTIN_EVMWHSMFA,
2929 SPE_BUILTIN_EVMWHSMI,
2930 SPE_BUILTIN_EVMWHSMIA,
2931 SPE_BUILTIN_EVMWHSSF,
2932 SPE_BUILTIN_EVMWHSSFA,
2933 SPE_BUILTIN_EVMWHUMI,
2934 SPE_BUILTIN_EVMWHUMIA,
2935 SPE_BUILTIN_EVMWLSMIAAW,
2936 SPE_BUILTIN_EVMWLSMIANW,
2937 SPE_BUILTIN_EVMWLSSIAAW,
2938 SPE_BUILTIN_EVMWLSSIANW,
2939 SPE_BUILTIN_EVMWLUMI,
2940 SPE_BUILTIN_EVMWLUMIA,
2941 SPE_BUILTIN_EVMWLUMIAAW,
2942 SPE_BUILTIN_EVMWLUMIANW,
2943 SPE_BUILTIN_EVMWLUSIAAW,
2944 SPE_BUILTIN_EVMWLUSIANW,
2945 SPE_BUILTIN_EVMWSMF,
2946 SPE_BUILTIN_EVMWSMFA,
2947 SPE_BUILTIN_EVMWSMFAA,
2948 SPE_BUILTIN_EVMWSMFAN,
2949 SPE_BUILTIN_EVMWSMI,
2950 SPE_BUILTIN_EVMWSMIA,
2951 SPE_BUILTIN_EVMWSMIAA,
2952 SPE_BUILTIN_EVMWSMIAN,
2953 SPE_BUILTIN_EVMWHSSFAA,
2954 SPE_BUILTIN_EVMWSSF,
2955 SPE_BUILTIN_EVMWSSFA,
2956 SPE_BUILTIN_EVMWSSFAA,
2957 SPE_BUILTIN_EVMWSSFAN,
2958 SPE_BUILTIN_EVMWUMI,
2959 SPE_BUILTIN_EVMWUMIA,
2960 SPE_BUILTIN_EVMWUMIAA,
2961 SPE_BUILTIN_EVMWUMIAN,
2962 SPE_BUILTIN_EVNAND,
2963 SPE_BUILTIN_EVNOR,
2964 SPE_BUILTIN_EVOR,
2965 SPE_BUILTIN_EVORC,
2966 SPE_BUILTIN_EVRLW,
2967 SPE_BUILTIN_EVSLW,
2968 SPE_BUILTIN_EVSRWS,
2969 SPE_BUILTIN_EVSRWU,
2970 SPE_BUILTIN_EVSTDDX,
2971 SPE_BUILTIN_EVSTDHX,
2972 SPE_BUILTIN_EVSTDWX,
2973 SPE_BUILTIN_EVSTWHEX,
2974 SPE_BUILTIN_EVSTWHOX,
2975 SPE_BUILTIN_EVSTWWEX,
2976 SPE_BUILTIN_EVSTWWOX,
2977 SPE_BUILTIN_EVSUBFW,
2978 SPE_BUILTIN_EVXOR,
2979 SPE_BUILTIN_EVABS,
2980 SPE_BUILTIN_EVADDSMIAAW,
2981 SPE_BUILTIN_EVADDSSIAAW,
2982 SPE_BUILTIN_EVADDUMIAAW,
2983 SPE_BUILTIN_EVADDUSIAAW,
2984 SPE_BUILTIN_EVCNTLSW,
2985 SPE_BUILTIN_EVCNTLZW,
2986 SPE_BUILTIN_EVEXTSB,
2987 SPE_BUILTIN_EVEXTSH,
2988 SPE_BUILTIN_EVFSABS,
2989 SPE_BUILTIN_EVFSCFSF,
2990 SPE_BUILTIN_EVFSCFSI,
2991 SPE_BUILTIN_EVFSCFUF,
2992 SPE_BUILTIN_EVFSCFUI,
2993 SPE_BUILTIN_EVFSCTSF,
2994 SPE_BUILTIN_EVFSCTSI,
2995 SPE_BUILTIN_EVFSCTSIZ,
2996 SPE_BUILTIN_EVFSCTUF,
2997 SPE_BUILTIN_EVFSCTUI,
2998 SPE_BUILTIN_EVFSCTUIZ,
2999 SPE_BUILTIN_EVFSNABS,
3000 SPE_BUILTIN_EVFSNEG,
3001 SPE_BUILTIN_EVMRA,
3002 SPE_BUILTIN_EVNEG,
3003 SPE_BUILTIN_EVRNDW,
3004 SPE_BUILTIN_EVSUBFSMIAAW,
3005 SPE_BUILTIN_EVSUBFSSIAAW,
3006 SPE_BUILTIN_EVSUBFUMIAAW,
3007 SPE_BUILTIN_EVSUBFUSIAAW,
3008 SPE_BUILTIN_EVADDIW,
3009 SPE_BUILTIN_EVLDD,
3010 SPE_BUILTIN_EVLDH,
3011 SPE_BUILTIN_EVLDW,
3012 SPE_BUILTIN_EVLHHESPLAT,
3013 SPE_BUILTIN_EVLHHOSSPLAT,
3014 SPE_BUILTIN_EVLHHOUSPLAT,
3015 SPE_BUILTIN_EVLWHE,
3016 SPE_BUILTIN_EVLWHOS,
3017 SPE_BUILTIN_EVLWHOU,
3018 SPE_BUILTIN_EVLWHSPLAT,
3019 SPE_BUILTIN_EVLWWSPLAT,
3020 SPE_BUILTIN_EVRLWI,
3021 SPE_BUILTIN_EVSLWI,
3022 SPE_BUILTIN_EVSRWIS,
3023 SPE_BUILTIN_EVSRWIU,
3024 SPE_BUILTIN_EVSTDD,
3025 SPE_BUILTIN_EVSTDH,
3026 SPE_BUILTIN_EVSTDW,
3027 SPE_BUILTIN_EVSTWHE,
3028 SPE_BUILTIN_EVSTWHO,
3029 SPE_BUILTIN_EVSTWWE,
3030 SPE_BUILTIN_EVSTWWO,
3031 SPE_BUILTIN_EVSUBIFW,
3032
3033 /* Compares. */
3034 SPE_BUILTIN_EVCMPEQ,
3035 SPE_BUILTIN_EVCMPGTS,
3036 SPE_BUILTIN_EVCMPGTU,
3037 SPE_BUILTIN_EVCMPLTS,
3038 SPE_BUILTIN_EVCMPLTU,
3039 SPE_BUILTIN_EVFSCMPEQ,
3040 SPE_BUILTIN_EVFSCMPGT,
3041 SPE_BUILTIN_EVFSCMPLT,
3042 SPE_BUILTIN_EVFSTSTEQ,
3043 SPE_BUILTIN_EVFSTSTGT,
3044 SPE_BUILTIN_EVFSTSTLT,
3045
3046 /* EVSEL compares. */
3047 SPE_BUILTIN_EVSEL_CMPEQ,
3048 SPE_BUILTIN_EVSEL_CMPGTS,
3049 SPE_BUILTIN_EVSEL_CMPGTU,
3050 SPE_BUILTIN_EVSEL_CMPLTS,
3051 SPE_BUILTIN_EVSEL_CMPLTU,
3052 SPE_BUILTIN_EVSEL_FSCMPEQ,
3053 SPE_BUILTIN_EVSEL_FSCMPGT,
3054 SPE_BUILTIN_EVSEL_FSCMPLT,
3055 SPE_BUILTIN_EVSEL_FSTSTEQ,
3056 SPE_BUILTIN_EVSEL_FSTSTGT,
3057 SPE_BUILTIN_EVSEL_FSTSTLT,
3058
3059 SPE_BUILTIN_EVSPLATFI,
3060 SPE_BUILTIN_EVSPLATI,
3061 SPE_BUILTIN_EVMWHSSMAA,
3062 SPE_BUILTIN_EVMWHSMFAA,
3063 SPE_BUILTIN_EVMWHSMIAA,
3064 SPE_BUILTIN_EVMWHUSIAA,
3065 SPE_BUILTIN_EVMWHUMIAA,
3066 SPE_BUILTIN_EVMWHSSFAN,
3067 SPE_BUILTIN_EVMWHSSIAN,
3068 SPE_BUILTIN_EVMWHSMFAN,
3069 SPE_BUILTIN_EVMWHSMIAN,
3070 SPE_BUILTIN_EVMWHUSIAN,
3071 SPE_BUILTIN_EVMWHUMIAN,
3072 SPE_BUILTIN_EVMWHGSSFAA,
3073 SPE_BUILTIN_EVMWHGSMFAA,
3074 SPE_BUILTIN_EVMWHGSMIAA,
3075 SPE_BUILTIN_EVMWHGUMIAA,
3076 SPE_BUILTIN_EVMWHGSSFAN,
3077 SPE_BUILTIN_EVMWHGSMFAN,
3078 SPE_BUILTIN_EVMWHGSMIAN,
3079 SPE_BUILTIN_EVMWHGUMIAN,
3080 SPE_BUILTIN_MTSPEFSCR,
3081 SPE_BUILTIN_MFSPEFSCR,
3082 SPE_BUILTIN_BRINC,
3083
3084 /* PAIRED builtins. */
3085 PAIRED_BUILTIN_DIVV2SF3,
3086 PAIRED_BUILTIN_ABSV2SF2,
3087 PAIRED_BUILTIN_NEGV2SF2,
3088 PAIRED_BUILTIN_SQRTV2SF2,
3089 PAIRED_BUILTIN_ADDV2SF3,
3090 PAIRED_BUILTIN_SUBV2SF3,
3091 PAIRED_BUILTIN_RESV2SF2,
3092 PAIRED_BUILTIN_MULV2SF3,
3093 PAIRED_BUILTIN_MSUB,
3094 PAIRED_BUILTIN_MADD,
3095 PAIRED_BUILTIN_NMSUB,
3096 PAIRED_BUILTIN_NMADD,
3097 PAIRED_BUILTIN_NABSV2SF2,
3098 PAIRED_BUILTIN_SUM0,
3099 PAIRED_BUILTIN_SUM1,
3100 PAIRED_BUILTIN_MULS0,
3101 PAIRED_BUILTIN_MULS1,
3102 PAIRED_BUILTIN_MERGE00,
3103 PAIRED_BUILTIN_MERGE01,
3104 PAIRED_BUILTIN_MERGE10,
3105 PAIRED_BUILTIN_MERGE11,
3106 PAIRED_BUILTIN_MADDS0,
3107 PAIRED_BUILTIN_MADDS1,
3108 PAIRED_BUILTIN_STX,
3109 PAIRED_BUILTIN_LX,
3110 PAIRED_BUILTIN_SELV2SF4,
3111 PAIRED_BUILTIN_CMPU0,
3112 PAIRED_BUILTIN_CMPU1,
3113
3114 RS6000_BUILTIN_RECIP,
3115 RS6000_BUILTIN_RECIPF,
3116 RS6000_BUILTIN_RSQRTF,
3117
3118 RS6000_BUILTIN_COUNT
3119 };
3120
3121 enum rs6000_builtin_type_index
3122 {
3123 RS6000_BTI_NOT_OPAQUE,
3124 RS6000_BTI_opaque_V2SI,
3125 RS6000_BTI_opaque_V2SF,
3126 RS6000_BTI_opaque_p_V2SI,
3127 RS6000_BTI_opaque_V4SI,
3128 RS6000_BTI_V16QI,
3129 RS6000_BTI_V2SI,
3130 RS6000_BTI_V2SF,
3131 RS6000_BTI_V4HI,
3132 RS6000_BTI_V4SI,
3133 RS6000_BTI_V4SF,
3134 RS6000_BTI_V8HI,
3135 RS6000_BTI_unsigned_V16QI,
3136 RS6000_BTI_unsigned_V8HI,
3137 RS6000_BTI_unsigned_V4SI,
3138 RS6000_BTI_bool_char, /* __bool char */
3139 RS6000_BTI_bool_short, /* __bool short */
3140 RS6000_BTI_bool_int, /* __bool int */
3141 RS6000_BTI_pixel, /* __pixel */
3142 RS6000_BTI_bool_V16QI, /* __vector __bool char */
3143 RS6000_BTI_bool_V8HI, /* __vector __bool short */
3144 RS6000_BTI_bool_V4SI, /* __vector __bool int */
3145 RS6000_BTI_pixel_V8HI, /* __vector __pixel */
3146 RS6000_BTI_long, /* long_integer_type_node */
3147 RS6000_BTI_unsigned_long, /* long_unsigned_type_node */
3148 RS6000_BTI_INTQI, /* intQI_type_node */
3149 RS6000_BTI_UINTQI, /* unsigned_intQI_type_node */
3150 RS6000_BTI_INTHI, /* intHI_type_node */
3151 RS6000_BTI_UINTHI, /* unsigned_intHI_type_node */
3152 RS6000_BTI_INTSI, /* intSI_type_node */
3153 RS6000_BTI_UINTSI, /* unsigned_intSI_type_node */
3154 RS6000_BTI_float, /* float_type_node */
3155 RS6000_BTI_void, /* void_type_node */
3156 RS6000_BTI_MAX
3157 };
3158
3159
3160 #define opaque_V2SI_type_node (rs6000_builtin_types[RS6000_BTI_opaque_V2SI])
3161 #define opaque_V2SF_type_node (rs6000_builtin_types[RS6000_BTI_opaque_V2SF])
3162 #define opaque_p_V2SI_type_node (rs6000_builtin_types[RS6000_BTI_opaque_p_V2SI])
3163 #define opaque_V4SI_type_node (rs6000_builtin_types[RS6000_BTI_opaque_V4SI])
3164 #define V16QI_type_node (rs6000_builtin_types[RS6000_BTI_V16QI])
3165 #define V2SI_type_node (rs6000_builtin_types[RS6000_BTI_V2SI])
3166 #define V2SF_type_node (rs6000_builtin_types[RS6000_BTI_V2SF])
3167 #define V4HI_type_node (rs6000_builtin_types[RS6000_BTI_V4HI])
3168 #define V4SI_type_node (rs6000_builtin_types[RS6000_BTI_V4SI])
3169 #define V4SF_type_node (rs6000_builtin_types[RS6000_BTI_V4SF])
3170 #define V8HI_type_node (rs6000_builtin_types[RS6000_BTI_V8HI])
3171 #define unsigned_V16QI_type_node (rs6000_builtin_types[RS6000_BTI_unsigned_V16QI])
3172 #define unsigned_V8HI_type_node (rs6000_builtin_types[RS6000_BTI_unsigned_V8HI])
3173 #define unsigned_V4SI_type_node (rs6000_builtin_types[RS6000_BTI_unsigned_V4SI])
3174 #define bool_char_type_node (rs6000_builtin_types[RS6000_BTI_bool_char])
3175 #define bool_short_type_node (rs6000_builtin_types[RS6000_BTI_bool_short])
3176 #define bool_int_type_node (rs6000_builtin_types[RS6000_BTI_bool_int])
3177 #define pixel_type_node (rs6000_builtin_types[RS6000_BTI_pixel])
3178 #define bool_V16QI_type_node (rs6000_builtin_types[RS6000_BTI_bool_V16QI])
3179 #define bool_V8HI_type_node (rs6000_builtin_types[RS6000_BTI_bool_V8HI])
3180 #define bool_V4SI_type_node (rs6000_builtin_types[RS6000_BTI_bool_V4SI])
3181 #define pixel_V8HI_type_node (rs6000_builtin_types[RS6000_BTI_pixel_V8HI])
3182
3183 #define long_integer_type_internal_node (rs6000_builtin_types[RS6000_BTI_long])
3184 #define long_unsigned_type_internal_node (rs6000_builtin_types[RS6000_BTI_unsigned_long])
3185 #define intQI_type_internal_node (rs6000_builtin_types[RS6000_BTI_INTQI])
3186 #define uintQI_type_internal_node (rs6000_builtin_types[RS6000_BTI_UINTQI])
3187 #define intHI_type_internal_node (rs6000_builtin_types[RS6000_BTI_INTHI])
3188 #define uintHI_type_internal_node (rs6000_builtin_types[RS6000_BTI_UINTHI])
3189 #define intSI_type_internal_node (rs6000_builtin_types[RS6000_BTI_INTSI])
3190 #define uintSI_type_internal_node (rs6000_builtin_types[RS6000_BTI_UINTSI])
3191 #define float_type_internal_node (rs6000_builtin_types[RS6000_BTI_float])
3192 #define void_type_internal_node (rs6000_builtin_types[RS6000_BTI_void])
3193
3194 extern GTY(()) tree rs6000_builtin_types[RS6000_BTI_MAX];
3195 extern GTY(()) tree rs6000_builtin_decls[RS6000_BUILTIN_COUNT];
3196