comparison gcc/config/v850/v850.h @ 0:a06113de4d67

first commit
author kent <kent@cr.ie.u-ryukyu.ac.jp>
date Fri, 17 Jul 2009 14:47:48 +0900
parents
children 77e2b8dfacca
comparison
equal deleted inserted replaced
-1:000000000000 0:a06113de4d67
1 /* Definitions of target machine for GNU compiler. NEC V850 series
2 Copyright (C) 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005,
3 2007, 2008 Free Software Foundation, Inc.
4 Contributed by Jeff Law (law@cygnus.com).
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
12
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 #ifndef GCC_V850_H
23 #define GCC_V850_H
24
25 /* These are defined in svr4.h but we want to override them. */
26 #undef LIB_SPEC
27 #undef ENDFILE_SPEC
28 #undef LINK_SPEC
29 #undef STARTFILE_SPEC
30 #undef ASM_SPEC
31
32 #define TARGET_CPU_generic 1
33 #define TARGET_CPU_v850e 2
34 #define TARGET_CPU_v850e1 3
35
36 #ifndef TARGET_CPU_DEFAULT
37 #define TARGET_CPU_DEFAULT TARGET_CPU_generic
38 #endif
39
40 #define MASK_DEFAULT MASK_V850
41 #define SUBTARGET_ASM_SPEC "%{!mv*:-mv850}"
42 #define SUBTARGET_CPP_SPEC "%{!mv*:-D__v850__}"
43 #define TARGET_VERSION fprintf (stderr, " (NEC V850)");
44
45 /* Choose which processor will be the default.
46 We must pass a -mv850xx option to the assembler if no explicit -mv* option
47 is given, because the assembler's processor default may not be correct. */
48 #if TARGET_CPU_DEFAULT == TARGET_CPU_v850e
49 #undef MASK_DEFAULT
50 #define MASK_DEFAULT MASK_V850E
51 #undef SUBTARGET_ASM_SPEC
52 #define SUBTARGET_ASM_SPEC "%{!mv*:-mv850e}"
53 #undef SUBTARGET_CPP_SPEC
54 #define SUBTARGET_CPP_SPEC "%{!mv*:-D__v850e__}"
55 #undef TARGET_VERSION
56 #define TARGET_VERSION fprintf (stderr, " (NEC V850E)");
57 #endif
58
59 #if TARGET_CPU_DEFAULT == TARGET_CPU_v850e1
60 #undef MASK_DEFAULT
61 #define MASK_DEFAULT MASK_V850E /* No practical difference. */
62 #undef SUBTARGET_ASM_SPEC
63 #define SUBTARGET_ASM_SPEC "%{!mv*:-mv850e1}"
64 #undef SUBTARGET_CPP_SPEC
65 #define SUBTARGET_CPP_SPEC "%{!mv*:-D__v850e1__} %{mv850e1:-D__v850e1__}"
66 #undef TARGET_VERSION
67 #define TARGET_VERSION fprintf (stderr, " (NEC V850E1)");
68 #endif
69
70 #define ASM_SPEC "%{mv*:-mv%*}"
71 #define CPP_SPEC "%{mv850e:-D__v850e__} %{mv850:-D__v850__} %(subtarget_cpp_spec)"
72
73 #define EXTRA_SPECS \
74 { "subtarget_asm_spec", SUBTARGET_ASM_SPEC }, \
75 { "subtarget_cpp_spec", SUBTARGET_CPP_SPEC }
76
77 /* Names to predefine in the preprocessor for this target machine. */
78 #define TARGET_CPU_CPP_BUILTINS() do { \
79 builtin_define( "__v851__" ); \
80 builtin_define( "__v850" ); \
81 builtin_assert( "machine=v850" ); \
82 builtin_assert( "cpu=v850" ); \
83 if (TARGET_EP) \
84 builtin_define ("__EP__"); \
85 } while(0)
86
87 #define MASK_CPU (MASK_V850 | MASK_V850E)
88
89 /* Information about the various small memory areas. */
90 struct small_memory_info {
91 const char *name;
92 long max;
93 long physical_max;
94 };
95
96 enum small_memory_type {
97 /* tiny data area, using EP as base register */
98 SMALL_MEMORY_TDA = 0,
99 /* small data area using dp as base register */
100 SMALL_MEMORY_SDA,
101 /* zero data area using r0 as base register */
102 SMALL_MEMORY_ZDA,
103 SMALL_MEMORY_max
104 };
105
106 extern struct small_memory_info small_memory[(int)SMALL_MEMORY_max];
107
108 /* Show we can debug even without a frame pointer. */
109 #define CAN_DEBUG_WITHOUT_FP
110
111 /* Some machines may desire to change what optimizations are
112 performed for various optimization levels. This macro, if
113 defined, is executed once just after the optimization level is
114 determined and before the remainder of the command options have
115 been parsed. Values set in this macro are used as the default
116 values for the other command line options.
117
118 LEVEL is the optimization level specified; 2 if `-O2' is
119 specified, 1 if `-O' is specified, and 0 if neither is specified.
120
121 SIZE is nonzero if `-Os' is specified, 0 otherwise.
122
123 You should not use this macro to change options that are not
124 machine-specific. These should uniformly selected by the same
125 optimization level on all supported machines. Use this macro to
126 enable machine-specific optimizations.
127
128 *Do not examine `write_symbols' in this macro!* The debugging
129 options are not supposed to alter the generated code. */
130
131 #define OPTIMIZATION_OPTIONS(LEVEL,SIZE) \
132 { \
133 target_flags |= MASK_STRICT_ALIGN; \
134 if (LEVEL) \
135 /* Note - we no longer enable MASK_EP when optimizing. This is \
136 because of a hardware bug which stops the SLD and SST instructions\
137 from correctly detecting some hazards. If the user is sure that \
138 their hardware is fixed or that their program will not encounter \
139 the conditions that trigger the bug then they can enable -mep by \
140 hand. */ \
141 target_flags |= MASK_PROLOG_FUNCTION; \
142 }
143
144
145 /* Target machine storage layout */
146
147 /* Define this if most significant bit is lowest numbered
148 in instructions that operate on numbered bit-fields.
149 This is not true on the NEC V850. */
150 #define BITS_BIG_ENDIAN 0
151
152 /* Define this if most significant byte of a word is the lowest numbered. */
153 /* This is not true on the NEC V850. */
154 #define BYTES_BIG_ENDIAN 0
155
156 /* Define this if most significant word of a multiword number is lowest
157 numbered.
158 This is not true on the NEC V850. */
159 #define WORDS_BIG_ENDIAN 0
160
161 /* Width of a word, in units (bytes). */
162 #define UNITS_PER_WORD 4
163
164 /* Define this macro if it is advisable to hold scalars in registers
165 in a wider mode than that declared by the program. In such cases,
166 the value is constrained to be within the bounds of the declared
167 type, but kept valid in the wider mode. The signedness of the
168 extension may differ from that of the type.
169
170 Some simple experiments have shown that leaving UNSIGNEDP alone
171 generates the best overall code. */
172
173 #define PROMOTE_MODE(MODE,UNSIGNEDP,TYPE) \
174 if (GET_MODE_CLASS (MODE) == MODE_INT \
175 && GET_MODE_SIZE (MODE) < 4) \
176 { (MODE) = SImode; }
177
178 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
179 #define PARM_BOUNDARY 32
180
181 /* The stack goes in 32-bit lumps. */
182 #define STACK_BOUNDARY 32
183
184 /* Allocation boundary (in *bits*) for the code of a function.
185 16 is the minimum boundary; 32 would give better performance. */
186 #define FUNCTION_BOUNDARY 16
187
188 /* No data type wants to be aligned rounder than this. */
189 #define BIGGEST_ALIGNMENT 32
190
191 /* Alignment of field after `int : 0' in a structure. */
192 #define EMPTY_FIELD_BOUNDARY 32
193
194 /* No structure field wants to be aligned rounder than this. */
195 #define BIGGEST_FIELD_ALIGNMENT 32
196
197 /* Define this if move instructions will actually fail to work
198 when given unaligned data. */
199 #define STRICT_ALIGNMENT TARGET_STRICT_ALIGN
200
201 /* Define this as 1 if `char' should by default be signed; else as 0.
202
203 On the NEC V850, loads do sign extension, so make this default. */
204 #define DEFAULT_SIGNED_CHAR 1
205
206 /* Standard register usage. */
207
208 /* Number of actual hardware registers.
209 The hardware registers are assigned numbers for the compiler
210 from 0 to just below FIRST_PSEUDO_REGISTER.
211
212 All registers that the compiler knows about must be given numbers,
213 even those that are not normally considered general registers. */
214
215 #define FIRST_PSEUDO_REGISTER 34
216
217 /* 1 for registers that have pervasive standard uses
218 and are not available for the register allocator. */
219
220 #define FIXED_REGISTERS \
221 { 1, 1, 0, 1, 1, 0, 0, 0, \
222 0, 0, 0, 0, 0, 0, 0, 0, \
223 0, 0, 0, 0, 0, 0, 0, 0, \
224 0, 0, 0, 0, 0, 0, 1, 0, \
225 1, 1}
226
227 /* 1 for registers not available across function calls.
228 These must include the FIXED_REGISTERS and also any
229 registers that can be used without being saved.
230 The latter must include the registers where values are returned
231 and the register where structure-value addresses are passed.
232 Aside from that, you can include as many other registers as you
233 like. */
234
235 #define CALL_USED_REGISTERS \
236 { 1, 1, 0, 1, 1, 1, 1, 1, \
237 1, 1, 1, 1, 1, 1, 1, 1, \
238 1, 1, 1, 1, 0, 0, 0, 0, \
239 0, 0, 0, 0, 0, 0, 1, 1, \
240 1, 1}
241
242 /* List the order in which to allocate registers. Each register must be
243 listed once, even those in FIXED_REGISTERS.
244
245 On the 850, we make the return registers first, then all of the volatile
246 registers, then the saved registers in reverse order to better save the
247 registers with an out of line function, and finally the fixed
248 registers. */
249
250 #define REG_ALLOC_ORDER \
251 { \
252 10, 11, /* return registers */ \
253 12, 13, 14, 15, 16, 17, 18, 19, /* scratch registers */ \
254 6, 7, 8, 9, 31, /* argument registers */ \
255 29, 28, 27, 26, 25, 24, 23, 22, /* saved registers */ \
256 21, 20, 2, \
257 0, 1, 3, 4, 5, 30, 32, 33 /* fixed registers */ \
258 }
259
260 /* If TARGET_APP_REGS is not defined then add r2 and r5 to
261 the pool of fixed registers. See PR 14505. */
262 #define CONDITIONAL_REGISTER_USAGE \
263 { \
264 if (!TARGET_APP_REGS) \
265 { \
266 fixed_regs[2] = 1; call_used_regs[2] = 1; \
267 fixed_regs[5] = 1; call_used_regs[5] = 1; \
268 } \
269 }
270
271 /* Return number of consecutive hard regs needed starting at reg REGNO
272 to hold something of mode MODE.
273
274 This is ordinarily the length in words of a value of mode MODE
275 but can be less for certain modes in special long registers. */
276
277 #define HARD_REGNO_NREGS(REGNO, MODE) \
278 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
279
280 /* Value is 1 if hard register REGNO can hold a value of machine-mode
281 MODE. */
282
283 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
284 ((((REGNO) & 1) == 0) || (GET_MODE_SIZE (MODE) <= 4))
285
286 /* Value is 1 if it is a good idea to tie two pseudo registers
287 when one has mode MODE1 and one has mode MODE2.
288 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
289 for any hard reg, then this must be 0 for correct output. */
290 #define MODES_TIEABLE_P(MODE1, MODE2) \
291 (MODE1 == MODE2 || (GET_MODE_SIZE (MODE1) <= 4 && GET_MODE_SIZE (MODE2) <= 4))
292
293
294 /* Define the classes of registers for register constraints in the
295 machine description. Also define ranges of constants.
296
297 One of the classes must always be named ALL_REGS and include all hard regs.
298 If there is more than one class, another class must be named NO_REGS
299 and contain no registers.
300
301 The name GENERAL_REGS must be the name of a class (or an alias for
302 another name such as ALL_REGS). This is the class of registers
303 that is allowed by "g" or "r" in a register constraint.
304 Also, registers outside this class are allocated only when
305 instructions express preferences for them.
306
307 The classes must be numbered in nondecreasing order; that is,
308 a larger-numbered class must never be contained completely
309 in a smaller-numbered class.
310
311 For any two classes, it is very desirable that there be another
312 class that represents their union. */
313
314 enum reg_class
315 {
316 NO_REGS, GENERAL_REGS, ALL_REGS, LIM_REG_CLASSES
317 };
318
319 #define N_REG_CLASSES (int) LIM_REG_CLASSES
320
321 #define IRA_COVER_CLASSES \
322 { \
323 GENERAL_REGS, LIM_REG_CLASSES \
324 }
325
326 /* Give names of register classes as strings for dump file. */
327
328 #define REG_CLASS_NAMES \
329 { "NO_REGS", "GENERAL_REGS", "ALL_REGS", "LIM_REGS" }
330
331 /* Define which registers fit in which classes.
332 This is an initializer for a vector of HARD_REG_SET
333 of length N_REG_CLASSES. */
334
335 #define REG_CLASS_CONTENTS \
336 { \
337 { 0x00000000 }, /* NO_REGS */ \
338 { 0xffffffff }, /* GENERAL_REGS */ \
339 { 0xffffffff }, /* ALL_REGS */ \
340 }
341
342 /* The same information, inverted:
343 Return the class number of the smallest class containing
344 reg number REGNO. This could be a conditional expression
345 or could index an array. */
346
347 #define REGNO_REG_CLASS(REGNO) GENERAL_REGS
348
349 /* The class value for index registers, and the one for base regs. */
350
351 #define INDEX_REG_CLASS NO_REGS
352 #define BASE_REG_CLASS GENERAL_REGS
353
354 /* Get reg_class from a letter such as appears in the machine description. */
355
356 #define REG_CLASS_FROM_LETTER(C) (NO_REGS)
357
358 /* Macros to check register numbers against specific register classes. */
359
360 /* These assume that REGNO is a hard or pseudo reg number.
361 They give nonzero only if REGNO is a hard reg of the suitable class
362 or a pseudo reg currently allocated to a suitable hard reg.
363 Since they use reg_renumber, they are safe only once reg_renumber
364 has been allocated, which happens in local-alloc.c. */
365
366 #define REGNO_OK_FOR_BASE_P(regno) \
367 ((regno) < FIRST_PSEUDO_REGISTER || reg_renumber[regno] >= 0)
368
369 #define REGNO_OK_FOR_INDEX_P(regno) 0
370
371 /* Given an rtx X being reloaded into a reg required to be
372 in class CLASS, return the class of reg to actually use.
373 In general this is just CLASS; but on some machines
374 in some cases it is preferable to use a more restrictive class. */
375
376 #define PREFERRED_RELOAD_CLASS(X,CLASS) (CLASS)
377
378 /* Return the maximum number of consecutive registers
379 needed to represent mode MODE in a register of class CLASS. */
380
381 #define CLASS_MAX_NREGS(CLASS, MODE) \
382 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
383
384 /* The letters I, J, K, L, M, N, O, P in a register constraint string
385 can be used to stand for particular ranges of immediate operands.
386 This macro defines what the ranges are.
387 C is the letter, and VALUE is a constant value.
388 Return 1 if VALUE is in the range specified by C. */
389
390 #define INT_7_BITS(VALUE) ((unsigned) (VALUE) + 0x40 < 0x80)
391 #define INT_8_BITS(VALUE) ((unsigned) (VALUE) + 0x80 < 0x100)
392 /* zero */
393 #define CONST_OK_FOR_I(VALUE) ((VALUE) == 0)
394 /* 5-bit signed immediate */
395 #define CONST_OK_FOR_J(VALUE) ((unsigned) (VALUE) + 0x10 < 0x20)
396 /* 16-bit signed immediate */
397 #define CONST_OK_FOR_K(VALUE) ((unsigned) (VALUE) + 0x8000 < 0x10000)
398 /* valid constant for movhi instruction. */
399 #define CONST_OK_FOR_L(VALUE) \
400 (((unsigned) ((int) (VALUE) >> 16) + 0x8000 < 0x10000) \
401 && CONST_OK_FOR_I ((VALUE & 0xffff)))
402 /* 16-bit unsigned immediate */
403 #define CONST_OK_FOR_M(VALUE) ((unsigned)(VALUE) < 0x10000)
404 /* 5-bit unsigned immediate in shift instructions */
405 #define CONST_OK_FOR_N(VALUE) ((unsigned) (VALUE) <= 31)
406 /* 9-bit signed immediate for word multiply instruction. */
407 #define CONST_OK_FOR_O(VALUE) ((unsigned) (VALUE) + 0x100 < 0x200)
408
409 #define CONST_OK_FOR_P(VALUE) 0
410
411 #define CONST_OK_FOR_LETTER_P(VALUE, C) \
412 ((C) == 'I' ? CONST_OK_FOR_I (VALUE) : \
413 (C) == 'J' ? CONST_OK_FOR_J (VALUE) : \
414 (C) == 'K' ? CONST_OK_FOR_K (VALUE) : \
415 (C) == 'L' ? CONST_OK_FOR_L (VALUE) : \
416 (C) == 'M' ? CONST_OK_FOR_M (VALUE) : \
417 (C) == 'N' ? CONST_OK_FOR_N (VALUE) : \
418 (C) == 'O' ? CONST_OK_FOR_O (VALUE) : \
419 (C) == 'P' ? CONST_OK_FOR_P (VALUE) : \
420 0)
421
422 /* Similar, but for floating constants, and defining letters G and H.
423 Here VALUE is the CONST_DOUBLE rtx itself.
424
425 `G' is a zero of some form. */
426
427 #define CONST_DOUBLE_OK_FOR_G(VALUE) \
428 ((GET_MODE_CLASS (GET_MODE (VALUE)) == MODE_FLOAT \
429 && (VALUE) == CONST0_RTX (GET_MODE (VALUE))) \
430 || (GET_MODE_CLASS (GET_MODE (VALUE)) == MODE_INT \
431 && CONST_DOUBLE_LOW (VALUE) == 0 \
432 && CONST_DOUBLE_HIGH (VALUE) == 0))
433
434 #define CONST_DOUBLE_OK_FOR_H(VALUE) 0
435
436 #define CONST_DOUBLE_OK_FOR_LETTER_P(VALUE, C) \
437 ((C) == 'G' ? CONST_DOUBLE_OK_FOR_G (VALUE) \
438 : (C) == 'H' ? CONST_DOUBLE_OK_FOR_H (VALUE) \
439 : 0)
440
441
442 /* Stack layout; function entry, exit and calling. */
443
444 /* Define this if pushing a word on the stack
445 makes the stack pointer a smaller address. */
446
447 #define STACK_GROWS_DOWNWARD
448
449 /* Define this to nonzero if the nominal address of the stack frame
450 is at the high-address end of the local variables;
451 that is, each additional local variable allocated
452 goes at a more negative offset in the frame. */
453
454 #define FRAME_GROWS_DOWNWARD 1
455
456 /* Offset within stack frame to start allocating local variables at.
457 If FRAME_GROWS_DOWNWARD, this is the offset to the END of the
458 first local allocated. Otherwise, it is the offset to the BEGINNING
459 of the first local allocated. */
460
461 #define STARTING_FRAME_OFFSET 0
462
463 /* Offset of first parameter from the argument pointer register value. */
464 /* Is equal to the size of the saved fp + pc, even if an fp isn't
465 saved since the value is used before we know. */
466
467 #define FIRST_PARM_OFFSET(FNDECL) 0
468
469 /* Specify the registers used for certain standard purposes.
470 The values of these macros are register numbers. */
471
472 /* Register to use for pushing function arguments. */
473 #define STACK_POINTER_REGNUM 3
474
475 /* Base register for access to local variables of the function. */
476 #define FRAME_POINTER_REGNUM 32
477
478 /* Register containing return address from latest function call. */
479 #define LINK_POINTER_REGNUM 31
480
481 /* On some machines the offset between the frame pointer and starting
482 offset of the automatic variables is not known until after register
483 allocation has been done (for example, because the saved registers
484 are between these two locations). On those machines, define
485 `FRAME_POINTER_REGNUM' the number of a special, fixed register to
486 be used internally until the offset is known, and define
487 `HARD_FRAME_POINTER_REGNUM' to be actual the hard register number
488 used for the frame pointer.
489
490 You should define this macro only in the very rare circumstances
491 when it is not possible to calculate the offset between the frame
492 pointer and the automatic variables until after register
493 allocation has been completed. When this macro is defined, you
494 must also indicate in your definition of `ELIMINABLE_REGS' how to
495 eliminate `FRAME_POINTER_REGNUM' into either
496 `HARD_FRAME_POINTER_REGNUM' or `STACK_POINTER_REGNUM'.
497
498 Do not define this macro if it would be the same as
499 `FRAME_POINTER_REGNUM'. */
500 #undef HARD_FRAME_POINTER_REGNUM
501 #define HARD_FRAME_POINTER_REGNUM 29
502
503 /* Base register for access to arguments of the function. */
504 #define ARG_POINTER_REGNUM 33
505
506 /* Register in which static-chain is passed to a function. */
507 #define STATIC_CHAIN_REGNUM 20
508
509 /* Value should be nonzero if functions must have frame pointers.
510 Zero means the frame pointer need not be set up (and parms
511 may be accessed via the stack pointer) in functions that seem suitable.
512 This is computed in `reload', in reload1.c. */
513 #define FRAME_POINTER_REQUIRED 0
514
515 /* If defined, this macro specifies a table of register pairs used to
516 eliminate unneeded registers that point into the stack frame. If
517 it is not defined, the only elimination attempted by the compiler
518 is to replace references to the frame pointer with references to
519 the stack pointer.
520
521 The definition of this macro is a list of structure
522 initializations, each of which specifies an original and
523 replacement register.
524
525 On some machines, the position of the argument pointer is not
526 known until the compilation is completed. In such a case, a
527 separate hard register must be used for the argument pointer.
528 This register can be eliminated by replacing it with either the
529 frame pointer or the argument pointer, depending on whether or not
530 the frame pointer has been eliminated.
531
532 In this case, you might specify:
533 #define ELIMINABLE_REGS \
534 {{ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
535 {ARG_POINTER_REGNUM, FRAME_POINTER_REGNUM}, \
536 {FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}}
537
538 Note that the elimination of the argument pointer with the stack
539 pointer is specified first since that is the preferred elimination. */
540
541 #define ELIMINABLE_REGS \
542 {{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM }, \
543 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM }, \
544 { ARG_POINTER_REGNUM, STACK_POINTER_REGNUM }, \
545 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM }} \
546
547 /* A C expression that returns nonzero if the compiler is allowed to
548 try to replace register number FROM-REG with register number
549 TO-REG. This macro need only be defined if `ELIMINABLE_REGS' is
550 defined, and will usually be the constant 1, since most of the
551 cases preventing register elimination are things that the compiler
552 already knows about. */
553
554 #define CAN_ELIMINATE(FROM, TO) \
555 ((TO) == STACK_POINTER_REGNUM ? ! frame_pointer_needed : 1)
556
557 /* This macro is similar to `INITIAL_FRAME_POINTER_OFFSET'. It
558 specifies the initial difference between the specified pair of
559 registers. This macro must be defined if `ELIMINABLE_REGS' is
560 defined. */
561
562 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
563 { \
564 if ((FROM) == FRAME_POINTER_REGNUM) \
565 (OFFSET) = get_frame_size () + crtl->outgoing_args_size; \
566 else if ((FROM) == ARG_POINTER_REGNUM) \
567 (OFFSET) = compute_frame_size (get_frame_size (), (long *)0); \
568 else \
569 gcc_unreachable (); \
570 }
571
572 /* Keep the stack pointer constant throughout the function. */
573 #define ACCUMULATE_OUTGOING_ARGS 1
574
575 /* Value is the number of bytes of arguments automatically
576 popped when returning from a subroutine call.
577 FUNDECL is the declaration node of the function (as a tree),
578 FUNTYPE is the data type of the function (as a tree),
579 or for a library call it is an identifier node for the subroutine name.
580 SIZE is the number of bytes of arguments passed on the stack. */
581
582 #define RETURN_POPS_ARGS(FUNDECL,FUNTYPE,SIZE) 0
583
584 #define RETURN_ADDR_RTX(COUNT, FP) v850_return_addr (COUNT)
585
586 /* Define a data type for recording info about an argument list
587 during the scan of that argument list. This data type should
588 hold all necessary information about the function itself
589 and about the args processed so far, enough to enable macros
590 such as FUNCTION_ARG to determine where the next arg should go. */
591
592 #define CUMULATIVE_ARGS struct cum_arg
593 struct cum_arg { int nbytes; int anonymous_args; };
594
595 /* Define where to put the arguments to a function.
596 Value is zero to push the argument on the stack,
597 or a hard register in which to store the argument.
598
599 MODE is the argument's machine mode.
600 TYPE is the data type of the argument (as a tree).
601 This is null for libcalls where that information may
602 not be available.
603 CUM is a variable of type CUMULATIVE_ARGS which gives info about
604 the preceding args and about the function being called.
605 NAMED is nonzero if this argument is a named parameter
606 (otherwise it is an extra parameter matching an ellipsis). */
607
608 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
609 function_arg (&CUM, MODE, TYPE, NAMED)
610
611 /* Initialize a variable CUM of type CUMULATIVE_ARGS
612 for a call to a function whose data type is FNTYPE.
613 For a library call, FNTYPE is 0. */
614
615 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT, N_NAMED_ARGS) \
616 ((CUM).nbytes = 0, (CUM).anonymous_args = 0)
617
618 /* Update the data in CUM to advance over an argument
619 of mode MODE and data type TYPE.
620 (TYPE is null for libcalls where that information may not be available.) */
621
622 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
623 ((CUM).nbytes += ((MODE) != BLKmode \
624 ? (GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) & -UNITS_PER_WORD \
625 : (int_size_in_bytes (TYPE) + UNITS_PER_WORD - 1) & -UNITS_PER_WORD))
626
627 /* When a parameter is passed in a register, stack space is still
628 allocated for it. */
629 #define REG_PARM_STACK_SPACE(DECL) (!TARGET_GHS ? 16 : 0)
630
631 /* Define this if the above stack space is to be considered part of the
632 space allocated by the caller. */
633 #define OUTGOING_REG_PARM_STACK_SPACE(FNTYPE) 1
634
635 /* 1 if N is a possible register number for function argument passing. */
636
637 #define FUNCTION_ARG_REGNO_P(N) (N >= 6 && N <= 9)
638
639 /* Define how to find the value returned by a function.
640 VALTYPE is the data type of the value (as a tree).
641 If the precise function being called is known, FUNC is its FUNCTION_DECL;
642 otherwise, FUNC is 0. */
643
644 #define FUNCTION_VALUE(VALTYPE, FUNC) \
645 gen_rtx_REG (TYPE_MODE (VALTYPE), 10)
646
647 /* Define how to find the value returned by a library function
648 assuming the value has mode MODE. */
649
650 #define LIBCALL_VALUE(MODE) \
651 gen_rtx_REG (MODE, 10)
652
653 /* 1 if N is a possible register number for a function value. */
654
655 #define FUNCTION_VALUE_REGNO_P(N) ((N) == 10)
656
657 #define DEFAULT_PCC_STRUCT_RETURN 0
658
659 /* EXIT_IGNORE_STACK should be nonzero if, when returning from a function,
660 the stack pointer does not matter. The value is tested only in
661 functions that have frame pointers.
662 No definition is equivalent to always zero. */
663
664 #define EXIT_IGNORE_STACK 1
665
666 /* Define this macro as a C expression that is nonzero for registers
667 used by the epilogue or the `return' pattern. */
668
669 #define EPILOGUE_USES(REGNO) \
670 (reload_completed && (REGNO) == LINK_POINTER_REGNUM)
671
672 /* Output assembler code to FILE to increment profiler label # LABELNO
673 for profiling a function entry. */
674
675 #define FUNCTION_PROFILER(FILE, LABELNO) ;
676
677 #define TRAMPOLINE_TEMPLATE(FILE) \
678 do { \
679 fprintf (FILE, "\tjarl .+4,r12\n"); \
680 fprintf (FILE, "\tld.w 12[r12],r20\n"); \
681 fprintf (FILE, "\tld.w 16[r12],r12\n"); \
682 fprintf (FILE, "\tjmp [r12]\n"); \
683 fprintf (FILE, "\tnop\n"); \
684 fprintf (FILE, "\t.long 0\n"); \
685 fprintf (FILE, "\t.long 0\n"); \
686 } while (0)
687
688 /* Length in units of the trampoline for entering a nested function. */
689
690 #define TRAMPOLINE_SIZE 24
691
692 /* Emit RTL insns to initialize the variable parts of a trampoline.
693 FNADDR is an RTX for the address of the function's pure code.
694 CXT is an RTX for the static chain value for the function. */
695
696 #define INITIALIZE_TRAMPOLINE(TRAMP, FNADDR, CXT) \
697 { \
698 emit_move_insn (gen_rtx_MEM (SImode, plus_constant ((TRAMP), 16)), \
699 (CXT)); \
700 emit_move_insn (gen_rtx_MEM (SImode, plus_constant ((TRAMP), 20)), \
701 (FNADDR)); \
702 }
703
704 /* Addressing modes, and classification of registers for them. */
705
706
707 /* 1 if X is an rtx for a constant that is a valid address. */
708
709 /* ??? This seems too exclusive. May get better code by accepting more
710 possibilities here, in particular, should accept ZDA_NAME SYMBOL_REFs. */
711
712 #define CONSTANT_ADDRESS_P(X) \
713 (GET_CODE (X) == CONST_INT \
714 && CONST_OK_FOR_K (INTVAL (X)))
715
716 /* Maximum number of registers that can appear in a valid memory address. */
717
718 #define MAX_REGS_PER_ADDRESS 1
719
720 /* The macros REG_OK_FOR..._P assume that the arg is a REG rtx
721 and check its validity for a certain class.
722 We have two alternate definitions for each of them.
723 The usual definition accepts all pseudo regs; the other rejects
724 them unless they have been allocated suitable hard regs.
725 The symbol REG_OK_STRICT causes the latter definition to be used.
726
727 Most source files want to accept pseudo regs in the hope that
728 they will get allocated to the class that the insn wants them to be in.
729 Source files for reload pass need to be strict.
730 After reload, it makes no difference, since pseudo regs have
731 been eliminated by then. */
732
733 #ifndef REG_OK_STRICT
734
735 /* Nonzero if X is a hard reg that can be used as an index
736 or if it is a pseudo reg. */
737 #define REG_OK_FOR_INDEX_P(X) 0
738 /* Nonzero if X is a hard reg that can be used as a base reg
739 or if it is a pseudo reg. */
740 #define REG_OK_FOR_BASE_P(X) 1
741 #define REG_OK_FOR_INDEX_P_STRICT(X) 0
742 #define REG_OK_FOR_BASE_P_STRICT(X) REGNO_OK_FOR_BASE_P (REGNO (X))
743 #define STRICT 0
744
745 #else
746
747 /* Nonzero if X is a hard reg that can be used as an index. */
748 #define REG_OK_FOR_INDEX_P(X) 0
749 /* Nonzero if X is a hard reg that can be used as a base reg. */
750 #define REG_OK_FOR_BASE_P(X) REGNO_OK_FOR_BASE_P (REGNO (X))
751 #define STRICT 1
752
753 #endif
754
755 /* A C expression that defines the optional machine-dependent
756 constraint letters that can be used to segregate specific types of
757 operands, usually memory references, for the target machine.
758 Normally this macro will not be defined. If it is required for a
759 particular target machine, it should return 1 if VALUE corresponds
760 to the operand type represented by the constraint letter C. If C
761 is not defined as an extra constraint, the value returned should
762 be 0 regardless of VALUE.
763
764 For example, on the ROMP, load instructions cannot have their
765 output in r0 if the memory reference contains a symbolic address.
766 Constraint letter `Q' is defined as representing a memory address
767 that does *not* contain a symbolic address. An alternative is
768 specified with a `Q' constraint on the input and `r' on the
769 output. The next alternative specifies `m' on the input and a
770 register class that does not include r0 on the output. */
771
772 #define EXTRA_CONSTRAINT(OP, C) \
773 ((C) == 'Q' ? ep_memory_operand (OP, GET_MODE (OP), FALSE) \
774 : (C) == 'R' ? special_symbolref_operand (OP, VOIDmode) \
775 : (C) == 'S' ? (GET_CODE (OP) == SYMBOL_REF \
776 && !SYMBOL_REF_ZDA_P (OP)) \
777 : (C) == 'T' ? ep_memory_operand (OP, GET_MODE (OP), TRUE) \
778 : (C) == 'U' ? ((GET_CODE (OP) == SYMBOL_REF \
779 && SYMBOL_REF_ZDA_P (OP)) \
780 || (GET_CODE (OP) == CONST \
781 && GET_CODE (XEXP (OP, 0)) == PLUS \
782 && GET_CODE (XEXP (XEXP (OP, 0), 0)) == SYMBOL_REF \
783 && SYMBOL_REF_ZDA_P (XEXP (XEXP (OP, 0), 0)))) \
784 : 0)
785
786 /* GO_IF_LEGITIMATE_ADDRESS recognizes an RTL expression
787 that is a valid memory address for an instruction.
788 The MODE argument is the machine mode for the MEM expression
789 that wants to use this address.
790
791 The other macros defined here are used only in GO_IF_LEGITIMATE_ADDRESS,
792 except for CONSTANT_ADDRESS_P which is actually
793 machine-independent. */
794
795 /* Accept either REG or SUBREG where a register is valid. */
796
797 #define RTX_OK_FOR_BASE_P(X) \
798 ((REG_P (X) && REG_OK_FOR_BASE_P (X)) \
799 || (GET_CODE (X) == SUBREG && REG_P (SUBREG_REG (X)) \
800 && REG_OK_FOR_BASE_P (SUBREG_REG (X))))
801
802 #define GO_IF_LEGITIMATE_ADDRESS(MODE, X, ADDR) \
803 do { \
804 if (RTX_OK_FOR_BASE_P (X)) \
805 goto ADDR; \
806 if (CONSTANT_ADDRESS_P (X) \
807 && (MODE == QImode || INTVAL (X) % 2 == 0) \
808 && (GET_MODE_SIZE (MODE) <= 4 || INTVAL (X) % 4 == 0)) \
809 goto ADDR; \
810 if (GET_CODE (X) == LO_SUM \
811 && REG_P (XEXP (X, 0)) \
812 && REG_OK_FOR_BASE_P (XEXP (X, 0)) \
813 && CONSTANT_P (XEXP (X, 1)) \
814 && (GET_CODE (XEXP (X, 1)) != CONST_INT \
815 || ((MODE == QImode || INTVAL (XEXP (X, 1)) % 2 == 0) \
816 && CONST_OK_FOR_K (INTVAL (XEXP (X, 1))))) \
817 && GET_MODE_SIZE (MODE) <= GET_MODE_SIZE (word_mode)) \
818 goto ADDR; \
819 if (special_symbolref_operand (X, MODE) \
820 && (GET_MODE_SIZE (MODE) <= GET_MODE_SIZE (word_mode))) \
821 goto ADDR; \
822 if (GET_CODE (X) == PLUS \
823 && RTX_OK_FOR_BASE_P (XEXP (X, 0)) \
824 && CONSTANT_ADDRESS_P (XEXP (X, 1)) \
825 && ((MODE == QImode || INTVAL (XEXP (X, 1)) % 2 == 0) \
826 && CONST_OK_FOR_K (INTVAL (XEXP (X, 1)) \
827 + (GET_MODE_NUNITS (MODE) * UNITS_PER_WORD)))) \
828 goto ADDR; \
829 } while (0)
830
831
832 /* Go to LABEL if ADDR (a legitimate address expression)
833 has an effect that depends on the machine mode it is used for. */
834
835 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR,LABEL) {}
836
837 /* Nonzero if the constant value X is a legitimate general operand.
838 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
839
840 #define LEGITIMATE_CONSTANT_P(X) \
841 (GET_CODE (X) == CONST_DOUBLE \
842 || !(GET_CODE (X) == CONST \
843 && GET_CODE (XEXP (X, 0)) == PLUS \
844 && GET_CODE (XEXP (XEXP (X, 0), 0)) == SYMBOL_REF \
845 && GET_CODE (XEXP (XEXP (X, 0), 1)) == CONST_INT \
846 && ! CONST_OK_FOR_K (INTVAL (XEXP (XEXP (X, 0), 1)))))
847
848 /* Tell final.c how to eliminate redundant test instructions. */
849
850 /* Here we define machine-dependent flags and fields in cc_status
851 (see `conditions.h'). No extra ones are needed for the VAX. */
852
853 /* Store in cc_status the expressions
854 that the condition codes will describe
855 after execution of an instruction whose pattern is EXP.
856 Do not alter them if the instruction would not alter the cc's. */
857
858 #define CC_OVERFLOW_UNUSABLE 0x200
859 #define CC_NO_CARRY CC_NO_OVERFLOW
860 #define NOTICE_UPDATE_CC(EXP, INSN) notice_update_cc(EXP, INSN)
861
862 /* Nonzero if access to memory by bytes or half words is no faster
863 than accessing full words. */
864 #define SLOW_BYTE_ACCESS 1
865
866 /* According expr.c, a value of around 6 should minimize code size, and
867 for the V850 series, that's our primary concern. */
868 #define MOVE_RATIO(speed) 6
869
870 /* Indirect calls are expensive, never turn a direct call
871 into an indirect call. */
872 #define NO_FUNCTION_CSE
873
874 /* The four different data regions on the v850. */
875 typedef enum
876 {
877 DATA_AREA_NORMAL,
878 DATA_AREA_SDA,
879 DATA_AREA_TDA,
880 DATA_AREA_ZDA
881 } v850_data_area;
882
883 #define TEXT_SECTION_ASM_OP "\t.section .text"
884 #define DATA_SECTION_ASM_OP "\t.section .data"
885 #define BSS_SECTION_ASM_OP "\t.section .bss"
886 #define SDATA_SECTION_ASM_OP "\t.section .sdata,\"aw\""
887 #define SBSS_SECTION_ASM_OP "\t.section .sbss,\"aw\""
888
889 #define SCOMMON_ASM_OP "\t.scomm\t"
890 #define ZCOMMON_ASM_OP "\t.zcomm\t"
891 #define TCOMMON_ASM_OP "\t.tcomm\t"
892
893 #define ASM_COMMENT_START "#"
894
895 /* Output to assembler file text saying following lines
896 may contain character constants, extra white space, comments, etc. */
897
898 #define ASM_APP_ON "#APP\n"
899
900 /* Output to assembler file text saying following lines
901 no longer contain unusual constructs. */
902
903 #define ASM_APP_OFF "#NO_APP\n"
904
905 #undef USER_LABEL_PREFIX
906 #define USER_LABEL_PREFIX "_"
907
908 #define OUTPUT_ADDR_CONST_EXTRA(FILE, X, FAIL) \
909 if (! v850_output_addr_const_extra (FILE, X)) \
910 goto FAIL
911
912 /* This says how to output the assembler to define a global
913 uninitialized but not common symbol. */
914
915 #define ASM_OUTPUT_ALIGNED_BSS(FILE, DECL, NAME, SIZE, ALIGN) \
916 asm_output_aligned_bss ((FILE), (DECL), (NAME), (SIZE), (ALIGN))
917
918 #undef ASM_OUTPUT_ALIGNED_BSS
919 #define ASM_OUTPUT_ALIGNED_BSS(FILE, DECL, NAME, SIZE, ALIGN) \
920 v850_output_aligned_bss (FILE, DECL, NAME, SIZE, ALIGN)
921
922 /* This says how to output the assembler to define a global
923 uninitialized, common symbol. */
924 #undef ASM_OUTPUT_ALIGNED_COMMON
925 #undef ASM_OUTPUT_COMMON
926 #define ASM_OUTPUT_ALIGNED_DECL_COMMON(FILE, DECL, NAME, SIZE, ALIGN) \
927 v850_output_common (FILE, DECL, NAME, SIZE, ALIGN)
928
929 /* This says how to output the assembler to define a local
930 uninitialized symbol. */
931 #undef ASM_OUTPUT_ALIGNED_LOCAL
932 #undef ASM_OUTPUT_LOCAL
933 #define ASM_OUTPUT_ALIGNED_DECL_LOCAL(FILE, DECL, NAME, SIZE, ALIGN) \
934 v850_output_local (FILE, DECL, NAME, SIZE, ALIGN)
935
936 /* Globalizing directive for a label. */
937 #define GLOBAL_ASM_OP "\t.global "
938
939 #define ASM_PN_FORMAT "%s___%lu"
940
941 /* This is how we tell the assembler that two symbols have the same value. */
942
943 #define ASM_OUTPUT_DEF(FILE,NAME1,NAME2) \
944 do { assemble_name(FILE, NAME1); \
945 fputs(" = ", FILE); \
946 assemble_name(FILE, NAME2); \
947 fputc('\n', FILE); } while (0)
948
949
950 /* How to refer to registers in assembler output.
951 This sequence is indexed by compiler's hard-register-number (see above). */
952
953 #define REGISTER_NAMES \
954 { "r0", "r1", "r2", "sp", "gp", "r5", "r6" , "r7", \
955 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", \
956 "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23", \
957 "r24", "r25", "r26", "r27", "r28", "r29", "ep", "r31", \
958 ".fp", ".ap"}
959
960 #define ADDITIONAL_REGISTER_NAMES \
961 { { "zero", 0 }, \
962 { "hp", 2 }, \
963 { "r3", 3 }, \
964 { "r4", 4 }, \
965 { "tp", 5 }, \
966 { "fp", 29 }, \
967 { "r30", 30 }, \
968 { "lp", 31} }
969
970 /* Print an instruction operand X on file FILE.
971 look in v850.c for details */
972
973 #define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
974
975 #define PRINT_OPERAND_PUNCT_VALID_P(CODE) \
976 ((CODE) == '.')
977
978 /* Print a memory operand whose address is X, on file FILE.
979 This uses a function in output-vax.c. */
980
981 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
982
983 #define ASM_OUTPUT_REG_PUSH(FILE,REGNO)
984 #define ASM_OUTPUT_REG_POP(FILE,REGNO)
985
986 /* This is how to output an element of a case-vector that is absolute. */
987
988 #define ASM_OUTPUT_ADDR_VEC_ELT(FILE, VALUE) \
989 fprintf (FILE, "\t%s .L%d\n", \
990 (TARGET_BIG_SWITCH ? ".long" : ".short"), VALUE)
991
992 /* This is how to output an element of a case-vector that is relative. */
993
994 /* Disable the shift, which is for the currently disabled "switch"
995 opcode. Se casesi in v850.md. */
996 #define ASM_OUTPUT_ADDR_DIFF_ELT(FILE, BODY, VALUE, REL) \
997 fprintf (FILE, "\t%s %s.L%d-.L%d%s\n", \
998 (TARGET_BIG_SWITCH ? ".long" : ".short"), \
999 (0 && ! TARGET_BIG_SWITCH && TARGET_V850E ? "(" : ""), \
1000 VALUE, REL, \
1001 (0 && ! TARGET_BIG_SWITCH && TARGET_V850E ? ")>>1" : ""))
1002
1003 #define ASM_OUTPUT_ALIGN(FILE, LOG) \
1004 if ((LOG) != 0) \
1005 fprintf (FILE, "\t.align %d\n", (LOG))
1006
1007 /* We don't have to worry about dbx compatibility for the v850. */
1008 #define DEFAULT_GDB_EXTENSIONS 1
1009
1010 /* Use stabs debugging info by default. */
1011 #undef PREFERRED_DEBUGGING_TYPE
1012 #define PREFERRED_DEBUGGING_TYPE DBX_DEBUG
1013
1014 /* Specify the machine mode that this machine uses
1015 for the index in the tablejump instruction. */
1016 #define CASE_VECTOR_MODE (TARGET_BIG_SWITCH ? SImode : HImode)
1017
1018 /* Define as C expression which evaluates to nonzero if the tablejump
1019 instruction expects the table to contain offsets from the address of the
1020 table.
1021 Do not define this if the table should contain absolute addresses. */
1022 #define CASE_VECTOR_PC_RELATIVE 1
1023
1024 /* The switch instruction requires that the jump table immediately follow
1025 it. */
1026 #define JUMP_TABLES_IN_TEXT_SECTION 1
1027
1028 /* svr4.h defines this assuming that 4 byte alignment is required. */
1029 #undef ASM_OUTPUT_BEFORE_CASE_LABEL
1030 #define ASM_OUTPUT_BEFORE_CASE_LABEL(FILE,PREFIX,NUM,TABLE) \
1031 ASM_OUTPUT_ALIGN ((FILE), (TARGET_BIG_SWITCH ? 2 : 1));
1032
1033 #define WORD_REGISTER_OPERATIONS
1034
1035 /* Byte and short loads sign extend the value to a word. */
1036 #define LOAD_EXTEND_OP(MODE) SIGN_EXTEND
1037
1038 /* This flag, if defined, says the same insns that convert to a signed fixnum
1039 also convert validly to an unsigned one. */
1040 #define FIXUNS_TRUNC_LIKE_FIX_TRUNC
1041
1042 /* Max number of bytes we can move from memory to memory
1043 in one reasonably fast instruction. */
1044 #define MOVE_MAX 4
1045
1046 /* Define if shifts truncate the shift count
1047 which implies one can omit a sign-extension or zero-extension
1048 of a shift count. */
1049 #define SHIFT_COUNT_TRUNCATED 1
1050
1051 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
1052 is done just by pretending it is already truncated. */
1053 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
1054
1055 /* Specify the machine mode that pointers have.
1056 After generation of rtl, the compiler makes no further distinction
1057 between pointers and any other objects of this machine mode. */
1058 #define Pmode SImode
1059
1060 /* A function address in a call instruction
1061 is a byte address (for indexing purposes)
1062 so give the MEM rtx a byte's mode. */
1063 #define FUNCTION_MODE QImode
1064
1065 /* Tell compiler we want to support GHS pragmas */
1066 #define REGISTER_TARGET_PRAGMAS() do { \
1067 c_register_pragma ("ghs", "interrupt", ghs_pragma_interrupt); \
1068 c_register_pragma ("ghs", "section", ghs_pragma_section); \
1069 c_register_pragma ("ghs", "starttda", ghs_pragma_starttda); \
1070 c_register_pragma ("ghs", "startsda", ghs_pragma_startsda); \
1071 c_register_pragma ("ghs", "startzda", ghs_pragma_startzda); \
1072 c_register_pragma ("ghs", "endtda", ghs_pragma_endtda); \
1073 c_register_pragma ("ghs", "endsda", ghs_pragma_endsda); \
1074 c_register_pragma ("ghs", "endzda", ghs_pragma_endzda); \
1075 } while (0)
1076
1077 /* enum GHS_SECTION_KIND is an enumeration of the kinds of sections that
1078 can appear in the "ghs section" pragma. These names are used to index
1079 into the GHS_default_section_names[] and GHS_current_section_names[]
1080 that are defined in v850.c, and so the ordering of each must remain
1081 consistent.
1082
1083 These arrays give the default and current names for each kind of
1084 section defined by the GHS pragmas. The current names can be changed
1085 by the "ghs section" pragma. If the current names are null, use
1086 the default names. Note that the two arrays have different types.
1087
1088 For the *normal* section kinds (like .data, .text, etc.) we do not
1089 want to explicitly force the name of these sections, but would rather
1090 let the linker (or at least the back end) choose the name of the
1091 section, UNLESS the user has force a specific name for these section
1092 kinds. To accomplish this set the name in ghs_default_section_names
1093 to null. */
1094
1095 enum GHS_section_kind
1096 {
1097 GHS_SECTION_KIND_DEFAULT,
1098
1099 GHS_SECTION_KIND_TEXT,
1100 GHS_SECTION_KIND_DATA,
1101 GHS_SECTION_KIND_RODATA,
1102 GHS_SECTION_KIND_BSS,
1103 GHS_SECTION_KIND_SDATA,
1104 GHS_SECTION_KIND_ROSDATA,
1105 GHS_SECTION_KIND_TDATA,
1106 GHS_SECTION_KIND_ZDATA,
1107 GHS_SECTION_KIND_ROZDATA,
1108
1109 COUNT_OF_GHS_SECTION_KINDS /* must be last */
1110 };
1111
1112 /* The following code is for handling pragmas supported by the
1113 v850 compiler produced by Green Hills Software. This is at
1114 the specific request of a customer. */
1115
1116 typedef struct data_area_stack_element
1117 {
1118 struct data_area_stack_element * prev;
1119 v850_data_area data_area; /* Current default data area. */
1120 } data_area_stack_element;
1121
1122 /* Track the current data area set by the
1123 data area pragma (which can be nested). */
1124 extern data_area_stack_element * data_area_stack;
1125
1126 /* Names of the various data areas used on the v850. */
1127 extern union tree_node * GHS_default_section_names [(int) COUNT_OF_GHS_SECTION_KINDS];
1128 extern union tree_node * GHS_current_section_names [(int) COUNT_OF_GHS_SECTION_KINDS];
1129
1130 /* The assembler op to start the file. */
1131
1132 #define FILE_ASM_OP "\t.file\n"
1133
1134 /* Enable the register move pass to improve code. */
1135 #define ENABLE_REGMOVE_PASS
1136
1137
1138 /* Implement ZDA, TDA, and SDA */
1139
1140 #define EP_REGNUM 30 /* ep register number */
1141
1142 #define SYMBOL_FLAG_ZDA (SYMBOL_FLAG_MACH_DEP << 0)
1143 #define SYMBOL_FLAG_TDA (SYMBOL_FLAG_MACH_DEP << 1)
1144 #define SYMBOL_FLAG_SDA (SYMBOL_FLAG_MACH_DEP << 2)
1145 #define SYMBOL_REF_ZDA_P(X) ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_ZDA) != 0)
1146 #define SYMBOL_REF_TDA_P(X) ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_TDA) != 0)
1147 #define SYMBOL_REF_SDA_P(X) ((SYMBOL_REF_FLAGS (X) & SYMBOL_FLAG_SDA) != 0)
1148
1149 #define TARGET_ASM_INIT_SECTIONS v850_asm_init_sections
1150
1151 #endif /* ! GCC_V850_H */