comparison gcc/config/xtensa/xtensa.h @ 0:a06113de4d67

first commit
author kent <kent@cr.ie.u-ryukyu.ac.jp>
date Fri, 17 Jul 2009 14:47:48 +0900
parents
children 77e2b8dfacca
comparison
equal deleted inserted replaced
-1:000000000000 0:a06113de4d67
1 /* Definitions of Tensilica's Xtensa target machine for GNU compiler.
2 Copyright 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
3 Free Software Foundation, Inc.
4 Contributed by Bob Wilson (bwilson@tensilica.com) at Tensilica.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 /* Get Xtensa configuration settings */
23 #include "xtensa-config.h"
24
25 /* Standard GCC variables that we reference. */
26 extern int optimize;
27
28 /* External variables defined in xtensa.c. */
29
30 /* comparison type */
31 enum cmp_type {
32 CMP_SI, /* four byte integers */
33 CMP_DI, /* eight byte integers */
34 CMP_SF, /* single precision floats */
35 CMP_DF, /* double precision floats */
36 CMP_MAX /* max comparison type */
37 };
38
39 extern struct rtx_def * branch_cmp[2]; /* operands for compare */
40 extern enum cmp_type branch_type; /* what type of branch to use */
41 extern unsigned xtensa_current_frame_size;
42
43 /* Macros used in the machine description to select various Xtensa
44 configuration options. */
45 #ifndef XCHAL_HAVE_MUL32_HIGH
46 #define XCHAL_HAVE_MUL32_HIGH 0
47 #endif
48 #ifndef XCHAL_HAVE_RELEASE_SYNC
49 #define XCHAL_HAVE_RELEASE_SYNC 0
50 #endif
51 #ifndef XCHAL_HAVE_S32C1I
52 #define XCHAL_HAVE_S32C1I 0
53 #endif
54 #ifndef XCHAL_HAVE_THREADPTR
55 #define XCHAL_HAVE_THREADPTR 0
56 #endif
57 #define TARGET_BIG_ENDIAN XCHAL_HAVE_BE
58 #define TARGET_DENSITY XCHAL_HAVE_DENSITY
59 #define TARGET_MAC16 XCHAL_HAVE_MAC16
60 #define TARGET_MUL16 XCHAL_HAVE_MUL16
61 #define TARGET_MUL32 XCHAL_HAVE_MUL32
62 #define TARGET_MUL32_HIGH XCHAL_HAVE_MUL32_HIGH
63 #define TARGET_DIV32 XCHAL_HAVE_DIV32
64 #define TARGET_NSA XCHAL_HAVE_NSA
65 #define TARGET_MINMAX XCHAL_HAVE_MINMAX
66 #define TARGET_SEXT XCHAL_HAVE_SEXT
67 #define TARGET_BOOLEANS XCHAL_HAVE_BOOLEANS
68 #define TARGET_HARD_FLOAT XCHAL_HAVE_FP
69 #define TARGET_HARD_FLOAT_DIV XCHAL_HAVE_FP_DIV
70 #define TARGET_HARD_FLOAT_RECIP XCHAL_HAVE_FP_RECIP
71 #define TARGET_HARD_FLOAT_SQRT XCHAL_HAVE_FP_SQRT
72 #define TARGET_HARD_FLOAT_RSQRT XCHAL_HAVE_FP_RSQRT
73 #define TARGET_ABS XCHAL_HAVE_ABS
74 #define TARGET_ADDX XCHAL_HAVE_ADDX
75 #define TARGET_RELEASE_SYNC XCHAL_HAVE_RELEASE_SYNC
76 #define TARGET_S32C1I XCHAL_HAVE_S32C1I
77 #define TARGET_ABSOLUTE_LITERALS XSHAL_USE_ABSOLUTE_LITERALS
78 #define TARGET_THREADPTR XCHAL_HAVE_THREADPTR
79
80 #define TARGET_DEFAULT \
81 ((XCHAL_HAVE_L32R ? 0 : MASK_CONST16) | \
82 MASK_SERIALIZE_VOLATILE)
83
84 #ifndef HAVE_AS_TLS
85 #define HAVE_AS_TLS 0
86 #endif
87
88 #define OVERRIDE_OPTIONS override_options ()
89
90 /* Reordering blocks for Xtensa is not a good idea unless the compiler
91 understands the range of conditional branches. Currently all branch
92 relaxation for Xtensa is handled in the assembler, so GCC cannot do a
93 good job of reordering blocks. Do not enable reordering unless it is
94 explicitly requested. */
95 #define OPTIMIZATION_OPTIONS(LEVEL, SIZE) \
96 do \
97 { \
98 flag_reorder_blocks = 0; \
99 } \
100 while (0)
101
102
103 /* Target CPU builtins. */
104 #define TARGET_CPU_CPP_BUILTINS() \
105 do { \
106 builtin_assert ("cpu=xtensa"); \
107 builtin_assert ("machine=xtensa"); \
108 builtin_define ("__xtensa__"); \
109 builtin_define ("__XTENSA__"); \
110 builtin_define ("__XTENSA_WINDOWED_ABI__"); \
111 builtin_define (TARGET_BIG_ENDIAN ? "__XTENSA_EB__" : "__XTENSA_EL__"); \
112 if (!TARGET_HARD_FLOAT) \
113 builtin_define ("__XTENSA_SOFT_FLOAT__"); \
114 } while (0)
115
116 #define CPP_SPEC " %(subtarget_cpp_spec) "
117
118 #ifndef SUBTARGET_CPP_SPEC
119 #define SUBTARGET_CPP_SPEC ""
120 #endif
121
122 #define EXTRA_SPECS \
123 { "subtarget_cpp_spec", SUBTARGET_CPP_SPEC },
124
125 #ifdef __XTENSA_EB__
126 #define LIBGCC2_WORDS_BIG_ENDIAN 1
127 #else
128 #define LIBGCC2_WORDS_BIG_ENDIAN 0
129 #endif
130
131 /* Show we can debug even without a frame pointer. */
132 #define CAN_DEBUG_WITHOUT_FP
133
134
135 /* Target machine storage layout */
136
137 /* Define this if most significant bit is lowest numbered
138 in instructions that operate on numbered bit-fields. */
139 #define BITS_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
140
141 /* Define this if most significant byte of a word is the lowest numbered. */
142 #define BYTES_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
143
144 /* Define this if most significant word of a multiword number is the lowest. */
145 #define WORDS_BIG_ENDIAN (TARGET_BIG_ENDIAN != 0)
146
147 #define MAX_BITS_PER_WORD 32
148
149 /* Width of a word, in units (bytes). */
150 #define UNITS_PER_WORD 4
151 #define MIN_UNITS_PER_WORD 4
152
153 /* Width of a floating point register. */
154 #define UNITS_PER_FPREG 4
155
156 /* Size in bits of various types on the target machine. */
157 #define INT_TYPE_SIZE 32
158 #define SHORT_TYPE_SIZE 16
159 #define LONG_TYPE_SIZE 32
160 #define LONG_LONG_TYPE_SIZE 64
161 #define FLOAT_TYPE_SIZE 32
162 #define DOUBLE_TYPE_SIZE 64
163 #define LONG_DOUBLE_TYPE_SIZE 64
164
165 /* Allocation boundary (in *bits*) for storing pointers in memory. */
166 #define POINTER_BOUNDARY 32
167
168 /* Allocation boundary (in *bits*) for storing arguments in argument list. */
169 #define PARM_BOUNDARY 32
170
171 /* Allocation boundary (in *bits*) for the code of a function. */
172 #define FUNCTION_BOUNDARY 32
173
174 /* Alignment of field after 'int : 0' in a structure. */
175 #define EMPTY_FIELD_BOUNDARY 32
176
177 /* Every structure's size must be a multiple of this. */
178 #define STRUCTURE_SIZE_BOUNDARY 8
179
180 /* There is no point aligning anything to a rounder boundary than this. */
181 #define BIGGEST_ALIGNMENT 128
182
183 /* Set this nonzero if move instructions will actually fail to work
184 when given unaligned data. */
185 #define STRICT_ALIGNMENT 1
186
187 /* Promote integer modes smaller than a word to SImode. Set UNSIGNEDP
188 for QImode, because there is no 8-bit load from memory with sign
189 extension. Otherwise, leave UNSIGNEDP alone, since Xtensa has 16-bit
190 loads both with and without sign extension. */
191 #define PROMOTE_MODE(MODE, UNSIGNEDP, TYPE) \
192 do { \
193 if (GET_MODE_CLASS (MODE) == MODE_INT \
194 && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
195 { \
196 if ((MODE) == QImode) \
197 (UNSIGNEDP) = 1; \
198 (MODE) = SImode; \
199 } \
200 } while (0)
201
202 /* Imitate the way many other C compilers handle alignment of
203 bitfields and the structures that contain them. */
204 #define PCC_BITFIELD_TYPE_MATTERS 1
205
206 /* Disable the use of word-sized or smaller complex modes for structures,
207 and for function arguments in particular, where they cause problems with
208 register a7. The xtensa_copy_incoming_a7 function assumes that there is
209 a single reference to an argument in a7, but with small complex modes the
210 real and imaginary components may be extracted separately, leading to two
211 uses of the register, only one of which would be replaced. */
212 #define MEMBER_TYPE_FORCES_BLK(FIELD, MODE) \
213 ((MODE) == CQImode || (MODE) == CHImode)
214
215 /* Align string constants and constructors to at least a word boundary.
216 The typical use of this macro is to increase alignment for string
217 constants to be word aligned so that 'strcpy' calls that copy
218 constants can be done inline. */
219 #define CONSTANT_ALIGNMENT(EXP, ALIGN) \
220 ((TREE_CODE (EXP) == STRING_CST || TREE_CODE (EXP) == CONSTRUCTOR) \
221 && (ALIGN) < BITS_PER_WORD \
222 ? BITS_PER_WORD \
223 : (ALIGN))
224
225 /* Align arrays, unions and records to at least a word boundary.
226 One use of this macro is to increase alignment of medium-size
227 data to make it all fit in fewer cache lines. Another is to
228 cause character arrays to be word-aligned so that 'strcpy' calls
229 that copy constants to character arrays can be done inline. */
230 #undef DATA_ALIGNMENT
231 #define DATA_ALIGNMENT(TYPE, ALIGN) \
232 ((((ALIGN) < BITS_PER_WORD) \
233 && (TREE_CODE (TYPE) == ARRAY_TYPE \
234 || TREE_CODE (TYPE) == UNION_TYPE \
235 || TREE_CODE (TYPE) == RECORD_TYPE)) ? BITS_PER_WORD : (ALIGN))
236
237 /* Operations between registers always perform the operation
238 on the full register even if a narrower mode is specified. */
239 #define WORD_REGISTER_OPERATIONS
240
241 /* Xtensa loads are zero-extended by default. */
242 #define LOAD_EXTEND_OP(MODE) ZERO_EXTEND
243
244 /* Standard register usage. */
245
246 /* Number of actual hardware registers.
247 The hardware registers are assigned numbers for the compiler
248 from 0 to just below FIRST_PSEUDO_REGISTER.
249 All registers that the compiler knows about must be given numbers,
250 even those that are not normally considered general registers.
251
252 The fake frame pointer and argument pointer will never appear in
253 the generated code, since they will always be eliminated and replaced
254 by either the stack pointer or the hard frame pointer.
255
256 0 - 15 AR[0] - AR[15]
257 16 FRAME_POINTER (fake = initial sp)
258 17 ARG_POINTER (fake = initial sp + framesize)
259 18 BR[0] for floating-point CC
260 19 - 34 FR[0] - FR[15]
261 35 MAC16 accumulator */
262
263 #define FIRST_PSEUDO_REGISTER 36
264
265 /* Return the stabs register number to use for REGNO. */
266 #define DBX_REGISTER_NUMBER(REGNO) xtensa_dbx_register_number (REGNO)
267
268 /* 1 for registers that have pervasive standard uses
269 and are not available for the register allocator. */
270 #define FIXED_REGISTERS \
271 { \
272 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
273 1, 1, 0, \
274 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, \
275 0, \
276 }
277
278 /* 1 for registers not available across function calls.
279 These must include the FIXED_REGISTERS and also any
280 registers that can be used without being saved.
281 The latter must include the registers where values are returned
282 and the register where structure-value addresses are passed.
283 Aside from that, you can include as many other registers as you like. */
284 #define CALL_USED_REGISTERS \
285 { \
286 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, \
287 1, 1, 1, \
288 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, \
289 1, \
290 }
291
292 /* For non-leaf procedures on Xtensa processors, the allocation order
293 is as specified below by REG_ALLOC_ORDER. For leaf procedures, we
294 want to use the lowest numbered registers first to minimize
295 register window overflows. However, local-alloc is not smart
296 enough to consider conflicts with incoming arguments. If an
297 incoming argument in a2 is live throughout the function and
298 local-alloc decides to use a2, then the incoming argument must
299 either be spilled or copied to another register. To get around
300 this, we define ORDER_REGS_FOR_LOCAL_ALLOC to redefine
301 reg_alloc_order for leaf functions such that lowest numbered
302 registers are used first with the exception that the incoming
303 argument registers are not used until after other register choices
304 have been exhausted. */
305
306 #define REG_ALLOC_ORDER \
307 { 8, 9, 10, 11, 12, 13, 14, 15, 7, 6, 5, 4, 3, 2, \
308 18, \
309 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, \
310 0, 1, 16, 17, \
311 35, \
312 }
313
314 #define ORDER_REGS_FOR_LOCAL_ALLOC order_regs_for_local_alloc ()
315
316 /* For Xtensa, the only point of this is to prevent GCC from otherwise
317 giving preference to call-used registers. To minimize window
318 overflows for the AR registers, we want to give preference to the
319 lower-numbered AR registers. For other register files, which are
320 not windowed, we still prefer call-used registers, if there are any. */
321 extern const char xtensa_leaf_regs[FIRST_PSEUDO_REGISTER];
322 #define LEAF_REGISTERS xtensa_leaf_regs
323
324 /* For Xtensa, no remapping is necessary, but this macro must be
325 defined if LEAF_REGISTERS is defined. */
326 #define LEAF_REG_REMAP(REGNO) (REGNO)
327
328 /* This must be declared if LEAF_REGISTERS is set. */
329 extern int leaf_function;
330
331 /* Internal macros to classify a register number. */
332
333 /* 16 address registers + fake registers */
334 #define GP_REG_FIRST 0
335 #define GP_REG_LAST 17
336 #define GP_REG_NUM (GP_REG_LAST - GP_REG_FIRST + 1)
337
338 /* Coprocessor registers */
339 #define BR_REG_FIRST 18
340 #define BR_REG_LAST 18
341 #define BR_REG_NUM (BR_REG_LAST - BR_REG_FIRST + 1)
342
343 /* 16 floating-point registers */
344 #define FP_REG_FIRST 19
345 #define FP_REG_LAST 34
346 #define FP_REG_NUM (FP_REG_LAST - FP_REG_FIRST + 1)
347
348 /* MAC16 accumulator */
349 #define ACC_REG_FIRST 35
350 #define ACC_REG_LAST 35
351 #define ACC_REG_NUM (ACC_REG_LAST - ACC_REG_FIRST + 1)
352
353 #define GP_REG_P(REGNO) ((unsigned) ((REGNO) - GP_REG_FIRST) < GP_REG_NUM)
354 #define BR_REG_P(REGNO) ((unsigned) ((REGNO) - BR_REG_FIRST) < BR_REG_NUM)
355 #define FP_REG_P(REGNO) ((unsigned) ((REGNO) - FP_REG_FIRST) < FP_REG_NUM)
356 #define ACC_REG_P(REGNO) ((unsigned) ((REGNO) - ACC_REG_FIRST) < ACC_REG_NUM)
357
358 /* Return number of consecutive hard regs needed starting at reg REGNO
359 to hold something of mode MODE. */
360 #define HARD_REGNO_NREGS(REGNO, MODE) \
361 (FP_REG_P (REGNO) ? \
362 ((GET_MODE_SIZE (MODE) + UNITS_PER_FPREG - 1) / UNITS_PER_FPREG) : \
363 ((GET_MODE_SIZE (MODE) + UNITS_PER_WORD - 1) / UNITS_PER_WORD))
364
365 /* Value is 1 if hard register REGNO can hold a value of machine-mode
366 MODE. */
367 extern char xtensa_hard_regno_mode_ok[][FIRST_PSEUDO_REGISTER];
368
369 #define HARD_REGNO_MODE_OK(REGNO, MODE) \
370 xtensa_hard_regno_mode_ok[(int) (MODE)][(REGNO)]
371
372 /* Value is 1 if it is a good idea to tie two pseudo registers
373 when one has mode MODE1 and one has mode MODE2.
374 If HARD_REGNO_MODE_OK could produce different values for MODE1 and MODE2,
375 for any hard reg, then this must be 0 for correct output. */
376 #define MODES_TIEABLE_P(MODE1, MODE2) \
377 ((GET_MODE_CLASS (MODE1) == MODE_FLOAT || \
378 GET_MODE_CLASS (MODE1) == MODE_COMPLEX_FLOAT) \
379 == (GET_MODE_CLASS (MODE2) == MODE_FLOAT || \
380 GET_MODE_CLASS (MODE2) == MODE_COMPLEX_FLOAT))
381
382 /* Register to use for pushing function arguments. */
383 #define STACK_POINTER_REGNUM (GP_REG_FIRST + 1)
384
385 /* Base register for access to local variables of the function. */
386 #define HARD_FRAME_POINTER_REGNUM (GP_REG_FIRST + 7)
387
388 /* The register number of the frame pointer register, which is used to
389 access automatic variables in the stack frame. For Xtensa, this
390 register never appears in the output. It is always eliminated to
391 either the stack pointer or the hard frame pointer. */
392 #define FRAME_POINTER_REGNUM (GP_REG_FIRST + 16)
393
394 /* Value should be nonzero if functions must have frame pointers.
395 Zero means the frame pointer need not be set up (and parms
396 may be accessed via the stack pointer) in functions that seem suitable.
397 This is computed in 'reload', in reload1.c. */
398 #define FRAME_POINTER_REQUIRED xtensa_frame_pointer_required ()
399
400 /* Base register for access to arguments of the function. */
401 #define ARG_POINTER_REGNUM (GP_REG_FIRST + 17)
402
403 /* If the static chain is passed in memory, these macros provide rtx
404 giving 'mem' expressions that denote where they are stored.
405 'STATIC_CHAIN' and 'STATIC_CHAIN_INCOMING' give the locations as
406 seen by the calling and called functions, respectively. */
407
408 #define STATIC_CHAIN \
409 gen_rtx_MEM (Pmode, plus_constant (stack_pointer_rtx, -5 * UNITS_PER_WORD))
410
411 #define STATIC_CHAIN_INCOMING \
412 gen_rtx_MEM (Pmode, plus_constant (arg_pointer_rtx, -5 * UNITS_PER_WORD))
413
414 /* For now we don't try to use the full set of boolean registers. Without
415 software pipelining of FP operations, there's not much to gain and it's
416 a real pain to get them reloaded. */
417 #define FPCC_REGNUM (BR_REG_FIRST + 0)
418
419 /* It is as good or better to call a constant function address than to
420 call an address kept in a register. */
421 #define NO_FUNCTION_CSE 1
422
423 /* Xtensa processors have "register windows". GCC does not currently
424 take advantage of the possibility for variable-sized windows; instead,
425 we use a fixed window size of 8. */
426
427 #define INCOMING_REGNO(OUT) \
428 ((GP_REG_P (OUT) && \
429 ((unsigned) ((OUT) - GP_REG_FIRST) >= WINDOW_SIZE)) ? \
430 (OUT) - WINDOW_SIZE : (OUT))
431
432 #define OUTGOING_REGNO(IN) \
433 ((GP_REG_P (IN) && \
434 ((unsigned) ((IN) - GP_REG_FIRST) < WINDOW_SIZE)) ? \
435 (IN) + WINDOW_SIZE : (IN))
436
437
438 /* Define the classes of registers for register constraints in the
439 machine description. */
440 enum reg_class
441 {
442 NO_REGS, /* no registers in set */
443 BR_REGS, /* coprocessor boolean registers */
444 FP_REGS, /* floating point registers */
445 ACC_REG, /* MAC16 accumulator */
446 SP_REG, /* sp register (aka a1) */
447 RL_REGS, /* preferred reload regs (not sp or fp) */
448 GR_REGS, /* integer registers except sp */
449 AR_REGS, /* all integer registers */
450 ALL_REGS, /* all registers */
451 LIM_REG_CLASSES /* max value + 1 */
452 };
453
454 #define N_REG_CLASSES (int) LIM_REG_CLASSES
455
456 #define GENERAL_REGS AR_REGS
457
458 /* An initializer containing the names of the register classes as C
459 string constants. These names are used in writing some of the
460 debugging dumps. */
461 #define REG_CLASS_NAMES \
462 { \
463 "NO_REGS", \
464 "BR_REGS", \
465 "FP_REGS", \
466 "ACC_REG", \
467 "SP_REG", \
468 "RL_REGS", \
469 "GR_REGS", \
470 "AR_REGS", \
471 "ALL_REGS" \
472 }
473
474 /* Contents of the register classes. The Nth integer specifies the
475 contents of class N. The way the integer MASK is interpreted is
476 that register R is in the class if 'MASK & (1 << R)' is 1. */
477 #define REG_CLASS_CONTENTS \
478 { \
479 { 0x00000000, 0x00000000 }, /* no registers */ \
480 { 0x00040000, 0x00000000 }, /* coprocessor boolean registers */ \
481 { 0xfff80000, 0x00000007 }, /* floating-point registers */ \
482 { 0x00000000, 0x00000008 }, /* MAC16 accumulator */ \
483 { 0x00000002, 0x00000000 }, /* stack pointer register */ \
484 { 0x0000ff7d, 0x00000000 }, /* preferred reload registers */ \
485 { 0x0000fffd, 0x00000000 }, /* general-purpose registers */ \
486 { 0x0003ffff, 0x00000000 }, /* integer registers */ \
487 { 0xffffffff, 0x0000000f } /* all registers */ \
488 }
489
490 #define IRA_COVER_CLASSES \
491 { \
492 BR_REGS, FP_REGS, ACC_REG, AR_REGS, LIM_REG_CLASSES \
493 }
494
495 /* A C expression whose value is a register class containing hard
496 register REGNO. In general there is more that one such class;
497 choose a class which is "minimal", meaning that no smaller class
498 also contains the register. */
499 extern const enum reg_class xtensa_regno_to_class[FIRST_PSEUDO_REGISTER];
500
501 #define REGNO_REG_CLASS(REGNO) xtensa_regno_to_class[ (REGNO) ]
502
503 /* Use the Xtensa AR register file for base registers.
504 No index registers. */
505 #define BASE_REG_CLASS AR_REGS
506 #define INDEX_REG_CLASS NO_REGS
507
508 /* SMALL_REGISTER_CLASSES is required for Xtensa, because all of the
509 16 AR registers may be explicitly used in the RTL, as either
510 incoming or outgoing arguments. */
511 #define SMALL_REGISTER_CLASSES 1
512
513 #define PREFERRED_RELOAD_CLASS(X, CLASS) \
514 xtensa_preferred_reload_class (X, CLASS, 0)
515
516 #define PREFERRED_OUTPUT_RELOAD_CLASS(X, CLASS) \
517 xtensa_preferred_reload_class (X, CLASS, 1)
518
519 /* Return the maximum number of consecutive registers
520 needed to represent mode MODE in a register of class CLASS. */
521 #define CLASS_UNITS(mode, size) \
522 ((GET_MODE_SIZE (mode) + (size) - 1) / (size))
523
524 #define CLASS_MAX_NREGS(CLASS, MODE) \
525 (CLASS_UNITS (MODE, UNITS_PER_WORD))
526
527
528 /* Stack layout; function entry, exit and calling. */
529
530 #define STACK_GROWS_DOWNWARD
531
532 /* Offset within stack frame to start allocating local variables at. */
533 #define STARTING_FRAME_OFFSET \
534 crtl->outgoing_args_size
535
536 /* The ARG_POINTER and FRAME_POINTER are not real Xtensa registers, so
537 they are eliminated to either the stack pointer or hard frame pointer. */
538 #define ELIMINABLE_REGS \
539 {{ ARG_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
540 { ARG_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}, \
541 { FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}, \
542 { FRAME_POINTER_REGNUM, HARD_FRAME_POINTER_REGNUM}}
543
544 #define CAN_ELIMINATE(FROM, TO) 1
545
546 /* Specify the initial difference between the specified pair of registers. */
547 #define INITIAL_ELIMINATION_OFFSET(FROM, TO, OFFSET) \
548 do { \
549 compute_frame_size (get_frame_size ()); \
550 switch (FROM) \
551 { \
552 case FRAME_POINTER_REGNUM: \
553 (OFFSET) = 0; \
554 break; \
555 case ARG_POINTER_REGNUM: \
556 (OFFSET) = xtensa_current_frame_size; \
557 break; \
558 default: \
559 gcc_unreachable (); \
560 } \
561 } while (0)
562
563 /* If defined, the maximum amount of space required for outgoing
564 arguments will be computed and placed into the variable
565 'crtl->outgoing_args_size'. No space will be pushed
566 onto the stack for each call; instead, the function prologue
567 should increase the stack frame size by this amount. */
568 #define ACCUMULATE_OUTGOING_ARGS 1
569
570 /* Offset from the argument pointer register to the first argument's
571 address. On some machines it may depend on the data type of the
572 function. If 'ARGS_GROW_DOWNWARD', this is the offset to the
573 location above the first argument's address. */
574 #define FIRST_PARM_OFFSET(FNDECL) 0
575
576 /* Align stack frames on 128 bits for Xtensa. This is necessary for
577 128-bit datatypes defined in TIE (e.g., for Vectra). */
578 #define STACK_BOUNDARY 128
579
580 /* Functions do not pop arguments off the stack. */
581 #define RETURN_POPS_ARGS(FUNDECL, FUNTYPE, SIZE) 0
582
583 /* Use a fixed register window size of 8. */
584 #define WINDOW_SIZE 8
585
586 /* Symbolic macros for the registers used to return integer, floating
587 point, and values of coprocessor and user-defined modes. */
588 #define GP_RETURN (GP_REG_FIRST + 2 + WINDOW_SIZE)
589 #define GP_OUTGOING_RETURN (GP_REG_FIRST + 2)
590
591 /* Symbolic macros for the first/last argument registers. */
592 #define GP_ARG_FIRST (GP_REG_FIRST + 2)
593 #define GP_ARG_LAST (GP_REG_FIRST + 7)
594 #define GP_OUTGOING_ARG_FIRST (GP_REG_FIRST + 2 + WINDOW_SIZE)
595 #define GP_OUTGOING_ARG_LAST (GP_REG_FIRST + 7 + WINDOW_SIZE)
596
597 #define MAX_ARGS_IN_REGISTERS 6
598
599 /* Don't worry about compatibility with PCC. */
600 #define DEFAULT_PCC_STRUCT_RETURN 0
601
602 /* Define how to find the value returned by a library function
603 assuming the value has mode MODE. Because we have defined
604 TARGET_PROMOTE_FUNCTION_RETURN that returns true, we have to
605 perform the same promotions as PROMOTE_MODE. */
606 #define XTENSA_LIBCALL_VALUE(MODE, OUTGOINGP) \
607 gen_rtx_REG ((GET_MODE_CLASS (MODE) == MODE_INT \
608 && GET_MODE_SIZE (MODE) < UNITS_PER_WORD) \
609 ? SImode : (MODE), \
610 OUTGOINGP ? GP_OUTGOING_RETURN : GP_RETURN)
611
612 #define LIBCALL_VALUE(MODE) \
613 XTENSA_LIBCALL_VALUE ((MODE), 0)
614
615 #define LIBCALL_OUTGOING_VALUE(MODE) \
616 XTENSA_LIBCALL_VALUE ((MODE), 1)
617
618 /* A C expression that is nonzero if REGNO is the number of a hard
619 register in which the values of called function may come back. A
620 register whose use for returning values is limited to serving as
621 the second of a pair (for a value of type 'double', say) need not
622 be recognized by this macro. If the machine has register windows,
623 so that the caller and the called function use different registers
624 for the return value, this macro should recognize only the caller's
625 register numbers. */
626 #define FUNCTION_VALUE_REGNO_P(N) \
627 ((N) == GP_RETURN)
628
629 /* A C expression that is nonzero if REGNO is the number of a hard
630 register in which function arguments are sometimes passed. This
631 does *not* include implicit arguments such as the static chain and
632 the structure-value address. On many machines, no registers can be
633 used for this purpose since all function arguments are pushed on
634 the stack. */
635 #define FUNCTION_ARG_REGNO_P(N) \
636 ((N) >= GP_OUTGOING_ARG_FIRST && (N) <= GP_OUTGOING_ARG_LAST)
637
638 /* Record the number of argument words seen so far, along with a flag to
639 indicate whether these are incoming arguments. (FUNCTION_INCOMING_ARG
640 is used for both incoming and outgoing args, so a separate flag is
641 needed. */
642 typedef struct xtensa_args
643 {
644 int arg_words;
645 int incoming;
646 } CUMULATIVE_ARGS;
647
648 #define INIT_CUMULATIVE_ARGS(CUM, FNTYPE, LIBNAME, INDIRECT, N_NAMED_ARGS) \
649 init_cumulative_args (&CUM, 0)
650
651 #define INIT_CUMULATIVE_INCOMING_ARGS(CUM, FNTYPE, LIBNAME) \
652 init_cumulative_args (&CUM, 1)
653
654 /* Update the data in CUM to advance over an argument
655 of mode MODE and data type TYPE.
656 (TYPE is null for libcalls where that information may not be available.) */
657 #define FUNCTION_ARG_ADVANCE(CUM, MODE, TYPE, NAMED) \
658 function_arg_advance (&CUM, MODE, TYPE)
659
660 #define FUNCTION_ARG(CUM, MODE, TYPE, NAMED) \
661 function_arg (&CUM, MODE, TYPE, FALSE)
662
663 #define FUNCTION_INCOMING_ARG(CUM, MODE, TYPE, NAMED) \
664 function_arg (&CUM, MODE, TYPE, TRUE)
665
666 #define FUNCTION_ARG_BOUNDARY function_arg_boundary
667
668 /* Profiling Xtensa code is typically done with the built-in profiling
669 feature of Tensilica's instruction set simulator, which does not
670 require any compiler support. Profiling code on a real (i.e.,
671 non-simulated) Xtensa processor is currently only supported by
672 GNU/Linux with glibc. The glibc version of _mcount doesn't require
673 counter variables. The _mcount function needs the current PC and
674 the current return address to identify an arc in the call graph.
675 Pass the current return address as the first argument; the current
676 PC is available as a0 in _mcount's register window. Both of these
677 values contain window size information in the two most significant
678 bits; we assume that _mcount will mask off those bits. The call to
679 _mcount uses a window size of 8 to make sure that it doesn't clobber
680 any incoming argument values. */
681
682 #define NO_PROFILE_COUNTERS 1
683
684 #define FUNCTION_PROFILER(FILE, LABELNO) \
685 do { \
686 fprintf (FILE, "\t%s\ta10, a0\n", TARGET_DENSITY ? "mov.n" : "mov"); \
687 if (flag_pic) \
688 { \
689 fprintf (FILE, "\tmovi\ta8, _mcount@PLT\n"); \
690 fprintf (FILE, "\tcallx8\ta8\n"); \
691 } \
692 else \
693 fprintf (FILE, "\tcall8\t_mcount\n"); \
694 } while (0)
695
696 /* Stack pointer value doesn't matter at exit. */
697 #define EXIT_IGNORE_STACK 1
698
699 #define TRAMPOLINE_TEMPLATE(STREAM) xtensa_trampoline_template (STREAM)
700
701 /* Size in bytes of the trampoline, as an integer. Make sure this is
702 a multiple of TRAMPOLINE_ALIGNMENT to avoid -Wpadded warnings. */
703 #define TRAMPOLINE_SIZE (TARGET_CONST16 || TARGET_ABSOLUTE_LITERALS ? 60 : 52)
704
705 /* Alignment required for trampolines, in bits. */
706 #define TRAMPOLINE_ALIGNMENT 32
707
708 /* A C statement to initialize the variable parts of a trampoline. */
709 #define INITIALIZE_TRAMPOLINE(ADDR, FUNC, CHAIN) \
710 xtensa_initialize_trampoline (ADDR, FUNC, CHAIN)
711
712
713 /* If defined, a C expression that produces the machine-specific code
714 to setup the stack so that arbitrary frames can be accessed.
715
716 On Xtensa, a stack back-trace must always begin from the stack pointer,
717 so that the register overflow save area can be located. However, the
718 stack-walking code in GCC always begins from the hard_frame_pointer
719 register, not the stack pointer. The frame pointer is usually equal
720 to the stack pointer, but the __builtin_return_address and
721 __builtin_frame_address functions will not work if count > 0 and
722 they are called from a routine that uses alloca. These functions
723 are not guaranteed to work at all if count > 0 so maybe that is OK.
724
725 A nicer solution would be to allow the architecture-specific files to
726 specify whether to start from the stack pointer or frame pointer. That
727 would also allow us to skip the machine->accesses_prev_frame stuff that
728 we currently need to ensure that there is a frame pointer when these
729 builtin functions are used. */
730
731 #define SETUP_FRAME_ADDRESSES xtensa_setup_frame_addresses
732
733 /* A C expression whose value is RTL representing the address in a
734 stack frame where the pointer to the caller's frame is stored.
735 Assume that FRAMEADDR is an RTL expression for the address of the
736 stack frame itself.
737
738 For Xtensa, there is no easy way to get the frame pointer if it is
739 not equivalent to the stack pointer. Moreover, the result of this
740 macro is used for continuing to walk back up the stack, so it must
741 return the stack pointer address. Thus, there is some inconsistency
742 here in that __builtin_frame_address will return the frame pointer
743 when count == 0 and the stack pointer when count > 0. */
744
745 #define DYNAMIC_CHAIN_ADDRESS(frame) \
746 gen_rtx_PLUS (Pmode, frame, GEN_INT (-3 * UNITS_PER_WORD))
747
748 /* Define this if the return address of a particular stack frame is
749 accessed from the frame pointer of the previous stack frame. */
750 #define RETURN_ADDR_IN_PREVIOUS_FRAME
751
752 /* A C expression whose value is RTL representing the value of the
753 return address for the frame COUNT steps up from the current
754 frame, after the prologue. */
755 #define RETURN_ADDR_RTX xtensa_return_addr
756
757 /* Addressing modes, and classification of registers for them. */
758
759 /* C expressions which are nonzero if register number NUM is suitable
760 for use as a base or index register in operand addresses. */
761
762 #define REGNO_OK_FOR_INDEX_P(NUM) 0
763 #define REGNO_OK_FOR_BASE_P(NUM) \
764 (GP_REG_P (NUM) || GP_REG_P ((unsigned) reg_renumber[NUM]))
765
766 /* C expressions that are nonzero if X (assumed to be a `reg' RTX) is
767 valid for use as a base or index register. */
768
769 #ifdef REG_OK_STRICT
770 #define REG_OK_STRICT_FLAG 1
771 #else
772 #define REG_OK_STRICT_FLAG 0
773 #endif
774
775 #define BASE_REG_P(X, STRICT) \
776 ((!(STRICT) && REGNO (X) >= FIRST_PSEUDO_REGISTER) \
777 || REGNO_OK_FOR_BASE_P (REGNO (X)))
778
779 #define REG_OK_FOR_INDEX_P(X) 0
780 #define REG_OK_FOR_BASE_P(X) BASE_REG_P (X, REG_OK_STRICT_FLAG)
781
782 /* Maximum number of registers that can appear in a valid memory address. */
783 #define MAX_REGS_PER_ADDRESS 1
784
785 /* Identify valid Xtensa addresses. */
786 #define GO_IF_LEGITIMATE_ADDRESS(MODE, ADDR, LABEL) \
787 do { \
788 if (xtensa_legitimate_address_p (MODE, ADDR, REG_OK_STRICT_FLAG)) \
789 goto LABEL; \
790 } while (0)
791
792 /* A C expression that is 1 if the RTX X is a constant which is a
793 valid address. This is defined to be the same as 'CONSTANT_P (X)',
794 but rejecting CONST_DOUBLE. */
795 #define CONSTANT_ADDRESS_P(X) \
796 ((GET_CODE (X) == LABEL_REF || GET_CODE (X) == SYMBOL_REF \
797 || GET_CODE (X) == CONST_INT || GET_CODE (X) == HIGH \
798 || (GET_CODE (X) == CONST)))
799
800 /* Nonzero if the constant value X is a legitimate general operand.
801 It is given that X satisfies CONSTANT_P or is a CONST_DOUBLE. */
802 #define LEGITIMATE_CONSTANT_P(X) (! xtensa_tls_referenced_p (X))
803
804 /* A C expression that is nonzero if X is a legitimate immediate
805 operand on the target machine when generating position independent
806 code. */
807 #define LEGITIMATE_PIC_OPERAND_P(X) \
808 ((GET_CODE (X) != SYMBOL_REF \
809 || (SYMBOL_REF_LOCAL_P (X) && !SYMBOL_REF_EXTERNAL_P (X))) \
810 && GET_CODE (X) != LABEL_REF \
811 && GET_CODE (X) != CONST)
812
813 #define LEGITIMIZE_ADDRESS(X, OLDX, MODE, WIN) \
814 do { \
815 rtx new_x = xtensa_legitimize_address (X, OLDX, MODE); \
816 if (new_x) \
817 { \
818 X = new_x; \
819 goto WIN; \
820 } \
821 } while (0)
822
823
824 /* Treat constant-pool references as "mode dependent" since they can
825 only be accessed with SImode loads. This works around a bug in the
826 combiner where a constant pool reference is temporarily converted
827 to an HImode load, which is then assumed to zero-extend based on
828 our definition of LOAD_EXTEND_OP. This is wrong because the high
829 bits of a 16-bit value in the constant pool are now sign-extended
830 by default. */
831
832 #define GO_IF_MODE_DEPENDENT_ADDRESS(ADDR, LABEL) \
833 do { \
834 if (constantpool_address_p (ADDR)) \
835 goto LABEL; \
836 } while (0)
837
838 /* Specify the machine mode that this machine uses
839 for the index in the tablejump instruction. */
840 #define CASE_VECTOR_MODE (SImode)
841
842 /* Define this as 1 if 'char' should by default be signed; else as 0. */
843 #define DEFAULT_SIGNED_CHAR 0
844
845 /* Max number of bytes we can move from memory to memory
846 in one reasonably fast instruction. */
847 #define MOVE_MAX 4
848 #define MAX_MOVE_MAX 4
849
850 /* Prefer word-sized loads. */
851 #define SLOW_BYTE_ACCESS 1
852
853 /* Shift instructions ignore all but the low-order few bits. */
854 #define SHIFT_COUNT_TRUNCATED 1
855
856 /* Value is 1 if truncating an integer of INPREC bits to OUTPREC bits
857 is done just by pretending it is already truncated. */
858 #define TRULY_NOOP_TRUNCATION(OUTPREC, INPREC) 1
859
860 #define CLZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) ((VALUE) = 32, 1)
861 #define CTZ_DEFINED_VALUE_AT_ZERO(MODE, VALUE) ((VALUE) = -1, 1)
862
863 /* Specify the machine mode that pointers have.
864 After generation of rtl, the compiler makes no further distinction
865 between pointers and any other objects of this machine mode. */
866 #define Pmode SImode
867
868 /* A function address in a call instruction is a word address (for
869 indexing purposes) so give the MEM rtx a words's mode. */
870 #define FUNCTION_MODE SImode
871
872 /* A C expression for the cost of moving data from a register in
873 class FROM to one in class TO. The classes are expressed using
874 the enumeration values such as 'GENERAL_REGS'. A value of 2 is
875 the default; other values are interpreted relative to that. */
876 #define REGISTER_MOVE_COST(MODE, FROM, TO) \
877 (((FROM) == (TO) && (FROM) != BR_REGS && (TO) != BR_REGS) \
878 ? 2 \
879 : (reg_class_subset_p ((FROM), AR_REGS) \
880 && reg_class_subset_p ((TO), AR_REGS) \
881 ? 2 \
882 : (reg_class_subset_p ((FROM), AR_REGS) \
883 && (TO) == ACC_REG \
884 ? 3 \
885 : ((FROM) == ACC_REG \
886 && reg_class_subset_p ((TO), AR_REGS) \
887 ? 3 \
888 : 10))))
889
890 #define MEMORY_MOVE_COST(MODE, CLASS, IN) 4
891
892 #define BRANCH_COST(speed_p, predictable_p) 3
893
894 /* How to refer to registers in assembler output.
895 This sequence is indexed by compiler's hard-register-number (see above). */
896 #define REGISTER_NAMES \
897 { \
898 "a0", "sp", "a2", "a3", "a4", "a5", "a6", "a7", \
899 "a8", "a9", "a10", "a11", "a12", "a13", "a14", "a15", \
900 "fp", "argp", "b0", \
901 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7", \
902 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15", \
903 "acc" \
904 }
905
906 /* If defined, a C initializer for an array of structures containing a
907 name and a register number. This macro defines additional names
908 for hard registers, thus allowing the 'asm' option in declarations
909 to refer to registers using alternate names. */
910 #define ADDITIONAL_REGISTER_NAMES \
911 { \
912 { "a1", 1 + GP_REG_FIRST } \
913 }
914
915 #define PRINT_OPERAND(FILE, X, CODE) print_operand (FILE, X, CODE)
916 #define PRINT_OPERAND_ADDRESS(FILE, ADDR) print_operand_address (FILE, ADDR)
917
918 /* Recognize machine-specific patterns that may appear within
919 constants. Used for PIC-specific UNSPECs. */
920 #define OUTPUT_ADDR_CONST_EXTRA(STREAM, X, FAIL) \
921 do { \
922 if (xtensa_output_addr_const_extra (STREAM, X) == FALSE) \
923 goto FAIL; \
924 } while (0)
925
926 /* Globalizing directive for a label. */
927 #define GLOBAL_ASM_OP "\t.global\t"
928
929 /* Declare an uninitialized external linkage data object. */
930 #define ASM_OUTPUT_ALIGNED_BSS(FILE, DECL, NAME, SIZE, ALIGN) \
931 asm_output_aligned_bss (FILE, DECL, NAME, SIZE, ALIGN)
932
933 /* This is how to output an element of a case-vector that is absolute. */
934 #define ASM_OUTPUT_ADDR_VEC_ELT(STREAM, VALUE) \
935 fprintf (STREAM, "%s%sL%u\n", integer_asm_op (4, TRUE), \
936 LOCAL_LABEL_PREFIX, VALUE)
937
938 /* This is how to output an element of a case-vector that is relative.
939 This is used for pc-relative code. */
940 #define ASM_OUTPUT_ADDR_DIFF_ELT(STREAM, BODY, VALUE, REL) \
941 do { \
942 fprintf (STREAM, "%s%sL%u-%sL%u\n", integer_asm_op (4, TRUE), \
943 LOCAL_LABEL_PREFIX, (VALUE), \
944 LOCAL_LABEL_PREFIX, (REL)); \
945 } while (0)
946
947 /* This is how to output an assembler line that says to advance the
948 location counter to a multiple of 2**LOG bytes. */
949 #define ASM_OUTPUT_ALIGN(STREAM, LOG) \
950 do { \
951 if ((LOG) != 0) \
952 fprintf (STREAM, "\t.align\t%d\n", 1 << (LOG)); \
953 } while (0)
954
955 /* Indicate that jump tables go in the text section. This is
956 necessary when compiling PIC code. */
957 #define JUMP_TABLES_IN_TEXT_SECTION (flag_pic)
958
959
960 /* Define the strings to put out for each section in the object file. */
961 #define TEXT_SECTION_ASM_OP "\t.text"
962 #define DATA_SECTION_ASM_OP "\t.data"
963 #define BSS_SECTION_ASM_OP "\t.section\t.bss"
964
965
966 /* Define output to appear before the constant pool. */
967 #define ASM_OUTPUT_POOL_PROLOGUE(FILE, FUNNAME, FUNDECL, SIZE) \
968 do { \
969 if ((SIZE) > 0) \
970 { \
971 resolve_unique_section ((FUNDECL), 0, flag_function_sections); \
972 switch_to_section (function_section (FUNDECL)); \
973 fprintf (FILE, "\t.literal_position\n"); \
974 } \
975 } while (0)
976
977
978 /* A C statement (with or without semicolon) to output a constant in
979 the constant pool, if it needs special treatment. */
980 #define ASM_OUTPUT_SPECIAL_POOL_ENTRY(FILE, X, MODE, ALIGN, LABELNO, JUMPTO) \
981 do { \
982 xtensa_output_literal (FILE, X, MODE, LABELNO); \
983 goto JUMPTO; \
984 } while (0)
985
986 /* How to start an assembler comment. */
987 #define ASM_COMMENT_START "#"
988
989 /* Exception handling. Xtensa uses much of the standard DWARF2 unwinding
990 machinery, but the variable size register window save areas are too
991 complicated to efficiently describe with CFI entries. The CFA must
992 still be specified in DWARF so that DW_AT_frame_base is set correctly
993 for debugging. */
994 #define INCOMING_RETURN_ADDR_RTX gen_rtx_REG (Pmode, 0)
995 #define DWARF_FRAME_RETURN_COLUMN DWARF_FRAME_REGNUM (0)
996 #define DWARF_FRAME_REGISTERS 16
997 #define EH_RETURN_DATA_REGNO(N) ((N) < 2 ? (N) + 2 : INVALID_REGNUM)
998 #define ASM_PREFERRED_EH_DATA_FORMAT(CODE, GLOBAL) \
999 (flag_pic \
1000 ? (((GLOBAL) ? DW_EH_PE_indirect : 0) \
1001 | DW_EH_PE_pcrel | DW_EH_PE_sdata4) \
1002 : DW_EH_PE_absptr)
1003
1004 /* Emit a PC-relative relocation. */
1005 #define ASM_OUTPUT_DWARF_PCREL(FILE, SIZE, LABEL) \
1006 do { \
1007 fputs (integer_asm_op (SIZE, FALSE), FILE); \
1008 assemble_name (FILE, LABEL); \
1009 fputs ("@pcrel", FILE); \
1010 } while (0)
1011
1012 /* Xtensa constant pool breaks the devices in crtstuff.c to control
1013 section in where code resides. We have to write it as asm code. Use
1014 a MOVI and let the assembler relax it -- for the .init and .fini
1015 sections, the assembler knows to put the literal in the right
1016 place. */
1017 #define CRT_CALL_STATIC_FUNCTION(SECTION_OP, FUNC) \
1018 asm (SECTION_OP "\n\
1019 movi\ta8, " USER_LABEL_PREFIX #FUNC "\n\
1020 callx8\ta8\n" \
1021 TEXT_SECTION_ASM_OP);