comparison gcc/cse.c @ 0:a06113de4d67

first commit
author kent <kent@cr.ie.u-ryukyu.ac.jp>
date Fri, 17 Jul 2009 14:47:48 +0900
parents
children 58ad6c70ea60
comparison
equal deleted inserted replaced
-1:000000000000 0:a06113de4d67
1 /* Common subexpression elimination for GNU compiler.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
4 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 #include "config.h"
23 /* stdio.h must precede rtl.h for FFS. */
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "rtl.h"
28 #include "tm_p.h"
29 #include "hard-reg-set.h"
30 #include "regs.h"
31 #include "basic-block.h"
32 #include "flags.h"
33 #include "real.h"
34 #include "insn-config.h"
35 #include "recog.h"
36 #include "function.h"
37 #include "expr.h"
38 #include "toplev.h"
39 #include "output.h"
40 #include "ggc.h"
41 #include "timevar.h"
42 #include "except.h"
43 #include "target.h"
44 #include "params.h"
45 #include "rtlhooks-def.h"
46 #include "tree-pass.h"
47 #include "df.h"
48 #include "dbgcnt.h"
49
50 /* The basic idea of common subexpression elimination is to go
51 through the code, keeping a record of expressions that would
52 have the same value at the current scan point, and replacing
53 expressions encountered with the cheapest equivalent expression.
54
55 It is too complicated to keep track of the different possibilities
56 when control paths merge in this code; so, at each label, we forget all
57 that is known and start fresh. This can be described as processing each
58 extended basic block separately. We have a separate pass to perform
59 global CSE.
60
61 Note CSE can turn a conditional or computed jump into a nop or
62 an unconditional jump. When this occurs we arrange to run the jump
63 optimizer after CSE to delete the unreachable code.
64
65 We use two data structures to record the equivalent expressions:
66 a hash table for most expressions, and a vector of "quantity
67 numbers" to record equivalent (pseudo) registers.
68
69 The use of the special data structure for registers is desirable
70 because it is faster. It is possible because registers references
71 contain a fairly small number, the register number, taken from
72 a contiguously allocated series, and two register references are
73 identical if they have the same number. General expressions
74 do not have any such thing, so the only way to retrieve the
75 information recorded on an expression other than a register
76 is to keep it in a hash table.
77
78 Registers and "quantity numbers":
79
80 At the start of each basic block, all of the (hardware and pseudo)
81 registers used in the function are given distinct quantity
82 numbers to indicate their contents. During scan, when the code
83 copies one register into another, we copy the quantity number.
84 When a register is loaded in any other way, we allocate a new
85 quantity number to describe the value generated by this operation.
86 `REG_QTY (N)' records what quantity register N is currently thought
87 of as containing.
88
89 All real quantity numbers are greater than or equal to zero.
90 If register N has not been assigned a quantity, `REG_QTY (N)' will
91 equal -N - 1, which is always negative.
92
93 Quantity numbers below zero do not exist and none of the `qty_table'
94 entries should be referenced with a negative index.
95
96 We also maintain a bidirectional chain of registers for each
97 quantity number. The `qty_table` members `first_reg' and `last_reg',
98 and `reg_eqv_table' members `next' and `prev' hold these chains.
99
100 The first register in a chain is the one whose lifespan is least local.
101 Among equals, it is the one that was seen first.
102 We replace any equivalent register with that one.
103
104 If two registers have the same quantity number, it must be true that
105 REG expressions with qty_table `mode' must be in the hash table for both
106 registers and must be in the same class.
107
108 The converse is not true. Since hard registers may be referenced in
109 any mode, two REG expressions might be equivalent in the hash table
110 but not have the same quantity number if the quantity number of one
111 of the registers is not the same mode as those expressions.
112
113 Constants and quantity numbers
114
115 When a quantity has a known constant value, that value is stored
116 in the appropriate qty_table `const_rtx'. This is in addition to
117 putting the constant in the hash table as is usual for non-regs.
118
119 Whether a reg or a constant is preferred is determined by the configuration
120 macro CONST_COSTS and will often depend on the constant value. In any
121 event, expressions containing constants can be simplified, by fold_rtx.
122
123 When a quantity has a known nearly constant value (such as an address
124 of a stack slot), that value is stored in the appropriate qty_table
125 `const_rtx'.
126
127 Integer constants don't have a machine mode. However, cse
128 determines the intended machine mode from the destination
129 of the instruction that moves the constant. The machine mode
130 is recorded in the hash table along with the actual RTL
131 constant expression so that different modes are kept separate.
132
133 Other expressions:
134
135 To record known equivalences among expressions in general
136 we use a hash table called `table'. It has a fixed number of buckets
137 that contain chains of `struct table_elt' elements for expressions.
138 These chains connect the elements whose expressions have the same
139 hash codes.
140
141 Other chains through the same elements connect the elements which
142 currently have equivalent values.
143
144 Register references in an expression are canonicalized before hashing
145 the expression. This is done using `reg_qty' and qty_table `first_reg'.
146 The hash code of a register reference is computed using the quantity
147 number, not the register number.
148
149 When the value of an expression changes, it is necessary to remove from the
150 hash table not just that expression but all expressions whose values
151 could be different as a result.
152
153 1. If the value changing is in memory, except in special cases
154 ANYTHING referring to memory could be changed. That is because
155 nobody knows where a pointer does not point.
156 The function `invalidate_memory' removes what is necessary.
157
158 The special cases are when the address is constant or is
159 a constant plus a fixed register such as the frame pointer
160 or a static chain pointer. When such addresses are stored in,
161 we can tell exactly which other such addresses must be invalidated
162 due to overlap. `invalidate' does this.
163 All expressions that refer to non-constant
164 memory addresses are also invalidated. `invalidate_memory' does this.
165
166 2. If the value changing is a register, all expressions
167 containing references to that register, and only those,
168 must be removed.
169
170 Because searching the entire hash table for expressions that contain
171 a register is very slow, we try to figure out when it isn't necessary.
172 Precisely, this is necessary only when expressions have been
173 entered in the hash table using this register, and then the value has
174 changed, and then another expression wants to be added to refer to
175 the register's new value. This sequence of circumstances is rare
176 within any one basic block.
177
178 `REG_TICK' and `REG_IN_TABLE', accessors for members of
179 cse_reg_info, are used to detect this case. REG_TICK (i) is
180 incremented whenever a value is stored in register i.
181 REG_IN_TABLE (i) holds -1 if no references to register i have been
182 entered in the table; otherwise, it contains the value REG_TICK (i)
183 had when the references were entered. If we want to enter a
184 reference and REG_IN_TABLE (i) != REG_TICK (i), we must scan and
185 remove old references. Until we want to enter a new entry, the
186 mere fact that the two vectors don't match makes the entries be
187 ignored if anyone tries to match them.
188
189 Registers themselves are entered in the hash table as well as in
190 the equivalent-register chains. However, `REG_TICK' and
191 `REG_IN_TABLE' do not apply to expressions which are simple
192 register references. These expressions are removed from the table
193 immediately when they become invalid, and this can be done even if
194 we do not immediately search for all the expressions that refer to
195 the register.
196
197 A CLOBBER rtx in an instruction invalidates its operand for further
198 reuse. A CLOBBER or SET rtx whose operand is a MEM:BLK
199 invalidates everything that resides in memory.
200
201 Related expressions:
202
203 Constant expressions that differ only by an additive integer
204 are called related. When a constant expression is put in
205 the table, the related expression with no constant term
206 is also entered. These are made to point at each other
207 so that it is possible to find out if there exists any
208 register equivalent to an expression related to a given expression. */
209
210 /* Length of qty_table vector. We know in advance we will not need
211 a quantity number this big. */
212
213 static int max_qty;
214
215 /* Next quantity number to be allocated.
216 This is 1 + the largest number needed so far. */
217
218 static int next_qty;
219
220 /* Per-qty information tracking.
221
222 `first_reg' and `last_reg' track the head and tail of the
223 chain of registers which currently contain this quantity.
224
225 `mode' contains the machine mode of this quantity.
226
227 `const_rtx' holds the rtx of the constant value of this
228 quantity, if known. A summations of the frame/arg pointer
229 and a constant can also be entered here. When this holds
230 a known value, `const_insn' is the insn which stored the
231 constant value.
232
233 `comparison_{code,const,qty}' are used to track when a
234 comparison between a quantity and some constant or register has
235 been passed. In such a case, we know the results of the comparison
236 in case we see it again. These members record a comparison that
237 is known to be true. `comparison_code' holds the rtx code of such
238 a comparison, else it is set to UNKNOWN and the other two
239 comparison members are undefined. `comparison_const' holds
240 the constant being compared against, or zero if the comparison
241 is not against a constant. `comparison_qty' holds the quantity
242 being compared against when the result is known. If the comparison
243 is not with a register, `comparison_qty' is -1. */
244
245 struct qty_table_elem
246 {
247 rtx const_rtx;
248 rtx const_insn;
249 rtx comparison_const;
250 int comparison_qty;
251 unsigned int first_reg, last_reg;
252 /* The sizes of these fields should match the sizes of the
253 code and mode fields of struct rtx_def (see rtl.h). */
254 ENUM_BITFIELD(rtx_code) comparison_code : 16;
255 ENUM_BITFIELD(machine_mode) mode : 8;
256 };
257
258 /* The table of all qtys, indexed by qty number. */
259 static struct qty_table_elem *qty_table;
260
261 /* Structure used to pass arguments via for_each_rtx to function
262 cse_change_cc_mode. */
263 struct change_cc_mode_args
264 {
265 rtx insn;
266 rtx newreg;
267 };
268
269 #ifdef HAVE_cc0
270 /* For machines that have a CC0, we do not record its value in the hash
271 table since its use is guaranteed to be the insn immediately following
272 its definition and any other insn is presumed to invalidate it.
273
274 Instead, we store below the current and last value assigned to CC0.
275 If it should happen to be a constant, it is stored in preference
276 to the actual assigned value. In case it is a constant, we store
277 the mode in which the constant should be interpreted. */
278
279 static rtx this_insn_cc0, prev_insn_cc0;
280 static enum machine_mode this_insn_cc0_mode, prev_insn_cc0_mode;
281 #endif
282
283 /* Insn being scanned. */
284
285 static rtx this_insn;
286 static bool optimize_this_for_speed_p;
287
288 /* Index by register number, gives the number of the next (or
289 previous) register in the chain of registers sharing the same
290 value.
291
292 Or -1 if this register is at the end of the chain.
293
294 If REG_QTY (N) == -N - 1, reg_eqv_table[N].next is undefined. */
295
296 /* Per-register equivalence chain. */
297 struct reg_eqv_elem
298 {
299 int next, prev;
300 };
301
302 /* The table of all register equivalence chains. */
303 static struct reg_eqv_elem *reg_eqv_table;
304
305 struct cse_reg_info
306 {
307 /* The timestamp at which this register is initialized. */
308 unsigned int timestamp;
309
310 /* The quantity number of the register's current contents. */
311 int reg_qty;
312
313 /* The number of times the register has been altered in the current
314 basic block. */
315 int reg_tick;
316
317 /* The REG_TICK value at which rtx's containing this register are
318 valid in the hash table. If this does not equal the current
319 reg_tick value, such expressions existing in the hash table are
320 invalid. */
321 int reg_in_table;
322
323 /* The SUBREG that was set when REG_TICK was last incremented. Set
324 to -1 if the last store was to the whole register, not a subreg. */
325 unsigned int subreg_ticked;
326 };
327
328 /* A table of cse_reg_info indexed by register numbers. */
329 static struct cse_reg_info *cse_reg_info_table;
330
331 /* The size of the above table. */
332 static unsigned int cse_reg_info_table_size;
333
334 /* The index of the first entry that has not been initialized. */
335 static unsigned int cse_reg_info_table_first_uninitialized;
336
337 /* The timestamp at the beginning of the current run of
338 cse_extended_basic_block. We increment this variable at the beginning of
339 the current run of cse_extended_basic_block. The timestamp field of a
340 cse_reg_info entry matches the value of this variable if and only
341 if the entry has been initialized during the current run of
342 cse_extended_basic_block. */
343 static unsigned int cse_reg_info_timestamp;
344
345 /* A HARD_REG_SET containing all the hard registers for which there is
346 currently a REG expression in the hash table. Note the difference
347 from the above variables, which indicate if the REG is mentioned in some
348 expression in the table. */
349
350 static HARD_REG_SET hard_regs_in_table;
351
352 /* True if CSE has altered the CFG. */
353 static bool cse_cfg_altered;
354
355 /* True if CSE has altered conditional jump insns in such a way
356 that jump optimization should be redone. */
357 static bool cse_jumps_altered;
358
359 /* True if we put a LABEL_REF into the hash table for an INSN
360 without a REG_LABEL_OPERAND, we have to rerun jump after CSE
361 to put in the note. */
362 static bool recorded_label_ref;
363
364 /* canon_hash stores 1 in do_not_record
365 if it notices a reference to CC0, PC, or some other volatile
366 subexpression. */
367
368 static int do_not_record;
369
370 /* canon_hash stores 1 in hash_arg_in_memory
371 if it notices a reference to memory within the expression being hashed. */
372
373 static int hash_arg_in_memory;
374
375 /* The hash table contains buckets which are chains of `struct table_elt's,
376 each recording one expression's information.
377 That expression is in the `exp' field.
378
379 The canon_exp field contains a canonical (from the point of view of
380 alias analysis) version of the `exp' field.
381
382 Those elements with the same hash code are chained in both directions
383 through the `next_same_hash' and `prev_same_hash' fields.
384
385 Each set of expressions with equivalent values
386 are on a two-way chain through the `next_same_value'
387 and `prev_same_value' fields, and all point with
388 the `first_same_value' field at the first element in
389 that chain. The chain is in order of increasing cost.
390 Each element's cost value is in its `cost' field.
391
392 The `in_memory' field is nonzero for elements that
393 involve any reference to memory. These elements are removed
394 whenever a write is done to an unidentified location in memory.
395 To be safe, we assume that a memory address is unidentified unless
396 the address is either a symbol constant or a constant plus
397 the frame pointer or argument pointer.
398
399 The `related_value' field is used to connect related expressions
400 (that differ by adding an integer).
401 The related expressions are chained in a circular fashion.
402 `related_value' is zero for expressions for which this
403 chain is not useful.
404
405 The `cost' field stores the cost of this element's expression.
406 The `regcost' field stores the value returned by approx_reg_cost for
407 this element's expression.
408
409 The `is_const' flag is set if the element is a constant (including
410 a fixed address).
411
412 The `flag' field is used as a temporary during some search routines.
413
414 The `mode' field is usually the same as GET_MODE (`exp'), but
415 if `exp' is a CONST_INT and has no machine mode then the `mode'
416 field is the mode it was being used as. Each constant is
417 recorded separately for each mode it is used with. */
418
419 struct table_elt
420 {
421 rtx exp;
422 rtx canon_exp;
423 struct table_elt *next_same_hash;
424 struct table_elt *prev_same_hash;
425 struct table_elt *next_same_value;
426 struct table_elt *prev_same_value;
427 struct table_elt *first_same_value;
428 struct table_elt *related_value;
429 int cost;
430 int regcost;
431 /* The size of this field should match the size
432 of the mode field of struct rtx_def (see rtl.h). */
433 ENUM_BITFIELD(machine_mode) mode : 8;
434 char in_memory;
435 char is_const;
436 char flag;
437 };
438
439 /* We don't want a lot of buckets, because we rarely have very many
440 things stored in the hash table, and a lot of buckets slows
441 down a lot of loops that happen frequently. */
442 #define HASH_SHIFT 5
443 #define HASH_SIZE (1 << HASH_SHIFT)
444 #define HASH_MASK (HASH_SIZE - 1)
445
446 /* Compute hash code of X in mode M. Special-case case where X is a pseudo
447 register (hard registers may require `do_not_record' to be set). */
448
449 #define HASH(X, M) \
450 ((REG_P (X) && REGNO (X) >= FIRST_PSEUDO_REGISTER \
451 ? (((unsigned) REG << 7) + (unsigned) REG_QTY (REGNO (X))) \
452 : canon_hash (X, M)) & HASH_MASK)
453
454 /* Like HASH, but without side-effects. */
455 #define SAFE_HASH(X, M) \
456 ((REG_P (X) && REGNO (X) >= FIRST_PSEUDO_REGISTER \
457 ? (((unsigned) REG << 7) + (unsigned) REG_QTY (REGNO (X))) \
458 : safe_hash (X, M)) & HASH_MASK)
459
460 /* Determine whether register number N is considered a fixed register for the
461 purpose of approximating register costs.
462 It is desirable to replace other regs with fixed regs, to reduce need for
463 non-fixed hard regs.
464 A reg wins if it is either the frame pointer or designated as fixed. */
465 #define FIXED_REGNO_P(N) \
466 ((N) == FRAME_POINTER_REGNUM || (N) == HARD_FRAME_POINTER_REGNUM \
467 || fixed_regs[N] || global_regs[N])
468
469 /* Compute cost of X, as stored in the `cost' field of a table_elt. Fixed
470 hard registers and pointers into the frame are the cheapest with a cost
471 of 0. Next come pseudos with a cost of one and other hard registers with
472 a cost of 2. Aside from these special cases, call `rtx_cost'. */
473
474 #define CHEAP_REGNO(N) \
475 (REGNO_PTR_FRAME_P(N) \
476 || (HARD_REGISTER_NUM_P (N) \
477 && FIXED_REGNO_P (N) && REGNO_REG_CLASS (N) != NO_REGS))
478
479 #define COST(X) (REG_P (X) ? 0 : notreg_cost (X, SET))
480 #define COST_IN(X,OUTER) (REG_P (X) ? 0 : notreg_cost (X, OUTER))
481
482 /* Get the number of times this register has been updated in this
483 basic block. */
484
485 #define REG_TICK(N) (get_cse_reg_info (N)->reg_tick)
486
487 /* Get the point at which REG was recorded in the table. */
488
489 #define REG_IN_TABLE(N) (get_cse_reg_info (N)->reg_in_table)
490
491 /* Get the SUBREG set at the last increment to REG_TICK (-1 if not a
492 SUBREG). */
493
494 #define SUBREG_TICKED(N) (get_cse_reg_info (N)->subreg_ticked)
495
496 /* Get the quantity number for REG. */
497
498 #define REG_QTY(N) (get_cse_reg_info (N)->reg_qty)
499
500 /* Determine if the quantity number for register X represents a valid index
501 into the qty_table. */
502
503 #define REGNO_QTY_VALID_P(N) (REG_QTY (N) >= 0)
504
505 static struct table_elt *table[HASH_SIZE];
506
507 /* Chain of `struct table_elt's made so far for this function
508 but currently removed from the table. */
509
510 static struct table_elt *free_element_chain;
511
512 /* Set to the cost of a constant pool reference if one was found for a
513 symbolic constant. If this was found, it means we should try to
514 convert constants into constant pool entries if they don't fit in
515 the insn. */
516
517 static int constant_pool_entries_cost;
518 static int constant_pool_entries_regcost;
519
520 /* This data describes a block that will be processed by
521 cse_extended_basic_block. */
522
523 struct cse_basic_block_data
524 {
525 /* Total number of SETs in block. */
526 int nsets;
527 /* Size of current branch path, if any. */
528 int path_size;
529 /* Current path, indicating which basic_blocks will be processed. */
530 struct branch_path
531 {
532 /* The basic block for this path entry. */
533 basic_block bb;
534 } *path;
535 };
536
537
538 /* Pointers to the live in/live out bitmaps for the boundaries of the
539 current EBB. */
540 static bitmap cse_ebb_live_in, cse_ebb_live_out;
541
542 /* A simple bitmap to track which basic blocks have been visited
543 already as part of an already processed extended basic block. */
544 static sbitmap cse_visited_basic_blocks;
545
546 static bool fixed_base_plus_p (rtx x);
547 static int notreg_cost (rtx, enum rtx_code);
548 static int approx_reg_cost_1 (rtx *, void *);
549 static int approx_reg_cost (rtx);
550 static int preferable (int, int, int, int);
551 static void new_basic_block (void);
552 static void make_new_qty (unsigned int, enum machine_mode);
553 static void make_regs_eqv (unsigned int, unsigned int);
554 static void delete_reg_equiv (unsigned int);
555 static int mention_regs (rtx);
556 static int insert_regs (rtx, struct table_elt *, int);
557 static void remove_from_table (struct table_elt *, unsigned);
558 static void remove_pseudo_from_table (rtx, unsigned);
559 static struct table_elt *lookup (rtx, unsigned, enum machine_mode);
560 static struct table_elt *lookup_for_remove (rtx, unsigned, enum machine_mode);
561 static rtx lookup_as_function (rtx, enum rtx_code);
562 static struct table_elt *insert (rtx, struct table_elt *, unsigned,
563 enum machine_mode);
564 static void merge_equiv_classes (struct table_elt *, struct table_elt *);
565 static void invalidate (rtx, enum machine_mode);
566 static bool cse_rtx_varies_p (const_rtx, bool);
567 static void remove_invalid_refs (unsigned int);
568 static void remove_invalid_subreg_refs (unsigned int, unsigned int,
569 enum machine_mode);
570 static void rehash_using_reg (rtx);
571 static void invalidate_memory (void);
572 static void invalidate_for_call (void);
573 static rtx use_related_value (rtx, struct table_elt *);
574
575 static inline unsigned canon_hash (rtx, enum machine_mode);
576 static inline unsigned safe_hash (rtx, enum machine_mode);
577 static inline unsigned hash_rtx_string (const char *);
578
579 static rtx canon_reg (rtx, rtx);
580 static enum rtx_code find_comparison_args (enum rtx_code, rtx *, rtx *,
581 enum machine_mode *,
582 enum machine_mode *);
583 static rtx fold_rtx (rtx, rtx);
584 static rtx equiv_constant (rtx);
585 static void record_jump_equiv (rtx, bool);
586 static void record_jump_cond (enum rtx_code, enum machine_mode, rtx, rtx,
587 int);
588 static void cse_insn (rtx);
589 static void cse_prescan_path (struct cse_basic_block_data *);
590 static void invalidate_from_clobbers (rtx);
591 static rtx cse_process_notes (rtx, rtx, bool *);
592 static void cse_extended_basic_block (struct cse_basic_block_data *);
593 static void count_reg_usage (rtx, int *, rtx, int);
594 static int check_for_label_ref (rtx *, void *);
595 extern void dump_class (struct table_elt*);
596 static void get_cse_reg_info_1 (unsigned int regno);
597 static struct cse_reg_info * get_cse_reg_info (unsigned int regno);
598 static int check_dependence (rtx *, void *);
599
600 static void flush_hash_table (void);
601 static bool insn_live_p (rtx, int *);
602 static bool set_live_p (rtx, rtx, int *);
603 static int cse_change_cc_mode (rtx *, void *);
604 static void cse_change_cc_mode_insn (rtx, rtx);
605 static void cse_change_cc_mode_insns (rtx, rtx, rtx);
606 static enum machine_mode cse_cc_succs (basic_block, basic_block, rtx, rtx,
607 bool);
608
609
610 #undef RTL_HOOKS_GEN_LOWPART
611 #define RTL_HOOKS_GEN_LOWPART gen_lowpart_if_possible
612
613 static const struct rtl_hooks cse_rtl_hooks = RTL_HOOKS_INITIALIZER;
614
615 /* Nonzero if X has the form (PLUS frame-pointer integer). We check for
616 virtual regs here because the simplify_*_operation routines are called
617 by integrate.c, which is called before virtual register instantiation. */
618
619 static bool
620 fixed_base_plus_p (rtx x)
621 {
622 switch (GET_CODE (x))
623 {
624 case REG:
625 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx)
626 return true;
627 if (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM])
628 return true;
629 if (REGNO (x) >= FIRST_VIRTUAL_REGISTER
630 && REGNO (x) <= LAST_VIRTUAL_REGISTER)
631 return true;
632 return false;
633
634 case PLUS:
635 if (GET_CODE (XEXP (x, 1)) != CONST_INT)
636 return false;
637 return fixed_base_plus_p (XEXP (x, 0));
638
639 default:
640 return false;
641 }
642 }
643
644 /* Dump the expressions in the equivalence class indicated by CLASSP.
645 This function is used only for debugging. */
646 void
647 dump_class (struct table_elt *classp)
648 {
649 struct table_elt *elt;
650
651 fprintf (stderr, "Equivalence chain for ");
652 print_rtl (stderr, classp->exp);
653 fprintf (stderr, ": \n");
654
655 for (elt = classp->first_same_value; elt; elt = elt->next_same_value)
656 {
657 print_rtl (stderr, elt->exp);
658 fprintf (stderr, "\n");
659 }
660 }
661
662 /* Subroutine of approx_reg_cost; called through for_each_rtx. */
663
664 static int
665 approx_reg_cost_1 (rtx *xp, void *data)
666 {
667 rtx x = *xp;
668 int *cost_p = (int *) data;
669
670 if (x && REG_P (x))
671 {
672 unsigned int regno = REGNO (x);
673
674 if (! CHEAP_REGNO (regno))
675 {
676 if (regno < FIRST_PSEUDO_REGISTER)
677 {
678 if (SMALL_REGISTER_CLASSES)
679 return 1;
680 *cost_p += 2;
681 }
682 else
683 *cost_p += 1;
684 }
685 }
686
687 return 0;
688 }
689
690 /* Return an estimate of the cost of the registers used in an rtx.
691 This is mostly the number of different REG expressions in the rtx;
692 however for some exceptions like fixed registers we use a cost of
693 0. If any other hard register reference occurs, return MAX_COST. */
694
695 static int
696 approx_reg_cost (rtx x)
697 {
698 int cost = 0;
699
700 if (for_each_rtx (&x, approx_reg_cost_1, (void *) &cost))
701 return MAX_COST;
702
703 return cost;
704 }
705
706 /* Return a negative value if an rtx A, whose costs are given by COST_A
707 and REGCOST_A, is more desirable than an rtx B.
708 Return a positive value if A is less desirable, or 0 if the two are
709 equally good. */
710 static int
711 preferable (int cost_a, int regcost_a, int cost_b, int regcost_b)
712 {
713 /* First, get rid of cases involving expressions that are entirely
714 unwanted. */
715 if (cost_a != cost_b)
716 {
717 if (cost_a == MAX_COST)
718 return 1;
719 if (cost_b == MAX_COST)
720 return -1;
721 }
722
723 /* Avoid extending lifetimes of hardregs. */
724 if (regcost_a != regcost_b)
725 {
726 if (regcost_a == MAX_COST)
727 return 1;
728 if (regcost_b == MAX_COST)
729 return -1;
730 }
731
732 /* Normal operation costs take precedence. */
733 if (cost_a != cost_b)
734 return cost_a - cost_b;
735 /* Only if these are identical consider effects on register pressure. */
736 if (regcost_a != regcost_b)
737 return regcost_a - regcost_b;
738 return 0;
739 }
740
741 /* Internal function, to compute cost when X is not a register; called
742 from COST macro to keep it simple. */
743
744 static int
745 notreg_cost (rtx x, enum rtx_code outer)
746 {
747 return ((GET_CODE (x) == SUBREG
748 && REG_P (SUBREG_REG (x))
749 && GET_MODE_CLASS (GET_MODE (x)) == MODE_INT
750 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (x))) == MODE_INT
751 && (GET_MODE_SIZE (GET_MODE (x))
752 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
753 && subreg_lowpart_p (x)
754 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (GET_MODE (x)),
755 GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x)))))
756 ? 0
757 : rtx_cost (x, outer, optimize_this_for_speed_p) * 2);
758 }
759
760
761 /* Initialize CSE_REG_INFO_TABLE. */
762
763 static void
764 init_cse_reg_info (unsigned int nregs)
765 {
766 /* Do we need to grow the table? */
767 if (nregs > cse_reg_info_table_size)
768 {
769 unsigned int new_size;
770
771 if (cse_reg_info_table_size < 2048)
772 {
773 /* Compute a new size that is a power of 2 and no smaller
774 than the large of NREGS and 64. */
775 new_size = (cse_reg_info_table_size
776 ? cse_reg_info_table_size : 64);
777
778 while (new_size < nregs)
779 new_size *= 2;
780 }
781 else
782 {
783 /* If we need a big table, allocate just enough to hold
784 NREGS registers. */
785 new_size = nregs;
786 }
787
788 /* Reallocate the table with NEW_SIZE entries. */
789 if (cse_reg_info_table)
790 free (cse_reg_info_table);
791 cse_reg_info_table = XNEWVEC (struct cse_reg_info, new_size);
792 cse_reg_info_table_size = new_size;
793 cse_reg_info_table_first_uninitialized = 0;
794 }
795
796 /* Do we have all of the first NREGS entries initialized? */
797 if (cse_reg_info_table_first_uninitialized < nregs)
798 {
799 unsigned int old_timestamp = cse_reg_info_timestamp - 1;
800 unsigned int i;
801
802 /* Put the old timestamp on newly allocated entries so that they
803 will all be considered out of date. We do not touch those
804 entries beyond the first NREGS entries to be nice to the
805 virtual memory. */
806 for (i = cse_reg_info_table_first_uninitialized; i < nregs; i++)
807 cse_reg_info_table[i].timestamp = old_timestamp;
808
809 cse_reg_info_table_first_uninitialized = nregs;
810 }
811 }
812
813 /* Given REGNO, initialize the cse_reg_info entry for REGNO. */
814
815 static void
816 get_cse_reg_info_1 (unsigned int regno)
817 {
818 /* Set TIMESTAMP field to CSE_REG_INFO_TIMESTAMP so that this
819 entry will be considered to have been initialized. */
820 cse_reg_info_table[regno].timestamp = cse_reg_info_timestamp;
821
822 /* Initialize the rest of the entry. */
823 cse_reg_info_table[regno].reg_tick = 1;
824 cse_reg_info_table[regno].reg_in_table = -1;
825 cse_reg_info_table[regno].subreg_ticked = -1;
826 cse_reg_info_table[regno].reg_qty = -regno - 1;
827 }
828
829 /* Find a cse_reg_info entry for REGNO. */
830
831 static inline struct cse_reg_info *
832 get_cse_reg_info (unsigned int regno)
833 {
834 struct cse_reg_info *p = &cse_reg_info_table[regno];
835
836 /* If this entry has not been initialized, go ahead and initialize
837 it. */
838 if (p->timestamp != cse_reg_info_timestamp)
839 get_cse_reg_info_1 (regno);
840
841 return p;
842 }
843
844 /* Clear the hash table and initialize each register with its own quantity,
845 for a new basic block. */
846
847 static void
848 new_basic_block (void)
849 {
850 int i;
851
852 next_qty = 0;
853
854 /* Invalidate cse_reg_info_table. */
855 cse_reg_info_timestamp++;
856
857 /* Clear out hash table state for this pass. */
858 CLEAR_HARD_REG_SET (hard_regs_in_table);
859
860 /* The per-quantity values used to be initialized here, but it is
861 much faster to initialize each as it is made in `make_new_qty'. */
862
863 for (i = 0; i < HASH_SIZE; i++)
864 {
865 struct table_elt *first;
866
867 first = table[i];
868 if (first != NULL)
869 {
870 struct table_elt *last = first;
871
872 table[i] = NULL;
873
874 while (last->next_same_hash != NULL)
875 last = last->next_same_hash;
876
877 /* Now relink this hash entire chain into
878 the free element list. */
879
880 last->next_same_hash = free_element_chain;
881 free_element_chain = first;
882 }
883 }
884
885 #ifdef HAVE_cc0
886 prev_insn_cc0 = 0;
887 #endif
888 }
889
890 /* Say that register REG contains a quantity in mode MODE not in any
891 register before and initialize that quantity. */
892
893 static void
894 make_new_qty (unsigned int reg, enum machine_mode mode)
895 {
896 int q;
897 struct qty_table_elem *ent;
898 struct reg_eqv_elem *eqv;
899
900 gcc_assert (next_qty < max_qty);
901
902 q = REG_QTY (reg) = next_qty++;
903 ent = &qty_table[q];
904 ent->first_reg = reg;
905 ent->last_reg = reg;
906 ent->mode = mode;
907 ent->const_rtx = ent->const_insn = NULL_RTX;
908 ent->comparison_code = UNKNOWN;
909
910 eqv = &reg_eqv_table[reg];
911 eqv->next = eqv->prev = -1;
912 }
913
914 /* Make reg NEW equivalent to reg OLD.
915 OLD is not changing; NEW is. */
916
917 static void
918 make_regs_eqv (unsigned int new_reg, unsigned int old_reg)
919 {
920 unsigned int lastr, firstr;
921 int q = REG_QTY (old_reg);
922 struct qty_table_elem *ent;
923
924 ent = &qty_table[q];
925
926 /* Nothing should become eqv until it has a "non-invalid" qty number. */
927 gcc_assert (REGNO_QTY_VALID_P (old_reg));
928
929 REG_QTY (new_reg) = q;
930 firstr = ent->first_reg;
931 lastr = ent->last_reg;
932
933 /* Prefer fixed hard registers to anything. Prefer pseudo regs to other
934 hard regs. Among pseudos, if NEW will live longer than any other reg
935 of the same qty, and that is beyond the current basic block,
936 make it the new canonical replacement for this qty. */
937 if (! (firstr < FIRST_PSEUDO_REGISTER && FIXED_REGNO_P (firstr))
938 /* Certain fixed registers might be of the class NO_REGS. This means
939 that not only can they not be allocated by the compiler, but
940 they cannot be used in substitutions or canonicalizations
941 either. */
942 && (new_reg >= FIRST_PSEUDO_REGISTER || REGNO_REG_CLASS (new_reg) != NO_REGS)
943 && ((new_reg < FIRST_PSEUDO_REGISTER && FIXED_REGNO_P (new_reg))
944 || (new_reg >= FIRST_PSEUDO_REGISTER
945 && (firstr < FIRST_PSEUDO_REGISTER
946 || (bitmap_bit_p (cse_ebb_live_out, new_reg)
947 && !bitmap_bit_p (cse_ebb_live_out, firstr))
948 || (bitmap_bit_p (cse_ebb_live_in, new_reg)
949 && !bitmap_bit_p (cse_ebb_live_in, firstr))))))
950 {
951 reg_eqv_table[firstr].prev = new_reg;
952 reg_eqv_table[new_reg].next = firstr;
953 reg_eqv_table[new_reg].prev = -1;
954 ent->first_reg = new_reg;
955 }
956 else
957 {
958 /* If NEW is a hard reg (known to be non-fixed), insert at end.
959 Otherwise, insert before any non-fixed hard regs that are at the
960 end. Registers of class NO_REGS cannot be used as an
961 equivalent for anything. */
962 while (lastr < FIRST_PSEUDO_REGISTER && reg_eqv_table[lastr].prev >= 0
963 && (REGNO_REG_CLASS (lastr) == NO_REGS || ! FIXED_REGNO_P (lastr))
964 && new_reg >= FIRST_PSEUDO_REGISTER)
965 lastr = reg_eqv_table[lastr].prev;
966 reg_eqv_table[new_reg].next = reg_eqv_table[lastr].next;
967 if (reg_eqv_table[lastr].next >= 0)
968 reg_eqv_table[reg_eqv_table[lastr].next].prev = new_reg;
969 else
970 qty_table[q].last_reg = new_reg;
971 reg_eqv_table[lastr].next = new_reg;
972 reg_eqv_table[new_reg].prev = lastr;
973 }
974 }
975
976 /* Remove REG from its equivalence class. */
977
978 static void
979 delete_reg_equiv (unsigned int reg)
980 {
981 struct qty_table_elem *ent;
982 int q = REG_QTY (reg);
983 int p, n;
984
985 /* If invalid, do nothing. */
986 if (! REGNO_QTY_VALID_P (reg))
987 return;
988
989 ent = &qty_table[q];
990
991 p = reg_eqv_table[reg].prev;
992 n = reg_eqv_table[reg].next;
993
994 if (n != -1)
995 reg_eqv_table[n].prev = p;
996 else
997 ent->last_reg = p;
998 if (p != -1)
999 reg_eqv_table[p].next = n;
1000 else
1001 ent->first_reg = n;
1002
1003 REG_QTY (reg) = -reg - 1;
1004 }
1005
1006 /* Remove any invalid expressions from the hash table
1007 that refer to any of the registers contained in expression X.
1008
1009 Make sure that newly inserted references to those registers
1010 as subexpressions will be considered valid.
1011
1012 mention_regs is not called when a register itself
1013 is being stored in the table.
1014
1015 Return 1 if we have done something that may have changed the hash code
1016 of X. */
1017
1018 static int
1019 mention_regs (rtx x)
1020 {
1021 enum rtx_code code;
1022 int i, j;
1023 const char *fmt;
1024 int changed = 0;
1025
1026 if (x == 0)
1027 return 0;
1028
1029 code = GET_CODE (x);
1030 if (code == REG)
1031 {
1032 unsigned int regno = REGNO (x);
1033 unsigned int endregno = END_REGNO (x);
1034 unsigned int i;
1035
1036 for (i = regno; i < endregno; i++)
1037 {
1038 if (REG_IN_TABLE (i) >= 0 && REG_IN_TABLE (i) != REG_TICK (i))
1039 remove_invalid_refs (i);
1040
1041 REG_IN_TABLE (i) = REG_TICK (i);
1042 SUBREG_TICKED (i) = -1;
1043 }
1044
1045 return 0;
1046 }
1047
1048 /* If this is a SUBREG, we don't want to discard other SUBREGs of the same
1049 pseudo if they don't use overlapping words. We handle only pseudos
1050 here for simplicity. */
1051 if (code == SUBREG && REG_P (SUBREG_REG (x))
1052 && REGNO (SUBREG_REG (x)) >= FIRST_PSEUDO_REGISTER)
1053 {
1054 unsigned int i = REGNO (SUBREG_REG (x));
1055
1056 if (REG_IN_TABLE (i) >= 0 && REG_IN_TABLE (i) != REG_TICK (i))
1057 {
1058 /* If REG_IN_TABLE (i) differs from REG_TICK (i) by one, and
1059 the last store to this register really stored into this
1060 subreg, then remove the memory of this subreg.
1061 Otherwise, remove any memory of the entire register and
1062 all its subregs from the table. */
1063 if (REG_TICK (i) - REG_IN_TABLE (i) > 1
1064 || SUBREG_TICKED (i) != REGNO (SUBREG_REG (x)))
1065 remove_invalid_refs (i);
1066 else
1067 remove_invalid_subreg_refs (i, SUBREG_BYTE (x), GET_MODE (x));
1068 }
1069
1070 REG_IN_TABLE (i) = REG_TICK (i);
1071 SUBREG_TICKED (i) = REGNO (SUBREG_REG (x));
1072 return 0;
1073 }
1074
1075 /* If X is a comparison or a COMPARE and either operand is a register
1076 that does not have a quantity, give it one. This is so that a later
1077 call to record_jump_equiv won't cause X to be assigned a different
1078 hash code and not found in the table after that call.
1079
1080 It is not necessary to do this here, since rehash_using_reg can
1081 fix up the table later, but doing this here eliminates the need to
1082 call that expensive function in the most common case where the only
1083 use of the register is in the comparison. */
1084
1085 if (code == COMPARE || COMPARISON_P (x))
1086 {
1087 if (REG_P (XEXP (x, 0))
1088 && ! REGNO_QTY_VALID_P (REGNO (XEXP (x, 0))))
1089 if (insert_regs (XEXP (x, 0), NULL, 0))
1090 {
1091 rehash_using_reg (XEXP (x, 0));
1092 changed = 1;
1093 }
1094
1095 if (REG_P (XEXP (x, 1))
1096 && ! REGNO_QTY_VALID_P (REGNO (XEXP (x, 1))))
1097 if (insert_regs (XEXP (x, 1), NULL, 0))
1098 {
1099 rehash_using_reg (XEXP (x, 1));
1100 changed = 1;
1101 }
1102 }
1103
1104 fmt = GET_RTX_FORMAT (code);
1105 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1106 if (fmt[i] == 'e')
1107 changed |= mention_regs (XEXP (x, i));
1108 else if (fmt[i] == 'E')
1109 for (j = 0; j < XVECLEN (x, i); j++)
1110 changed |= mention_regs (XVECEXP (x, i, j));
1111
1112 return changed;
1113 }
1114
1115 /* Update the register quantities for inserting X into the hash table
1116 with a value equivalent to CLASSP.
1117 (If the class does not contain a REG, it is irrelevant.)
1118 If MODIFIED is nonzero, X is a destination; it is being modified.
1119 Note that delete_reg_equiv should be called on a register
1120 before insert_regs is done on that register with MODIFIED != 0.
1121
1122 Nonzero value means that elements of reg_qty have changed
1123 so X's hash code may be different. */
1124
1125 static int
1126 insert_regs (rtx x, struct table_elt *classp, int modified)
1127 {
1128 if (REG_P (x))
1129 {
1130 unsigned int regno = REGNO (x);
1131 int qty_valid;
1132
1133 /* If REGNO is in the equivalence table already but is of the
1134 wrong mode for that equivalence, don't do anything here. */
1135
1136 qty_valid = REGNO_QTY_VALID_P (regno);
1137 if (qty_valid)
1138 {
1139 struct qty_table_elem *ent = &qty_table[REG_QTY (regno)];
1140
1141 if (ent->mode != GET_MODE (x))
1142 return 0;
1143 }
1144
1145 if (modified || ! qty_valid)
1146 {
1147 if (classp)
1148 for (classp = classp->first_same_value;
1149 classp != 0;
1150 classp = classp->next_same_value)
1151 if (REG_P (classp->exp)
1152 && GET_MODE (classp->exp) == GET_MODE (x))
1153 {
1154 unsigned c_regno = REGNO (classp->exp);
1155
1156 gcc_assert (REGNO_QTY_VALID_P (c_regno));
1157
1158 /* Suppose that 5 is hard reg and 100 and 101 are
1159 pseudos. Consider
1160
1161 (set (reg:si 100) (reg:si 5))
1162 (set (reg:si 5) (reg:si 100))
1163 (set (reg:di 101) (reg:di 5))
1164
1165 We would now set REG_QTY (101) = REG_QTY (5), but the
1166 entry for 5 is in SImode. When we use this later in
1167 copy propagation, we get the register in wrong mode. */
1168 if (qty_table[REG_QTY (c_regno)].mode != GET_MODE (x))
1169 continue;
1170
1171 make_regs_eqv (regno, c_regno);
1172 return 1;
1173 }
1174
1175 /* Mention_regs for a SUBREG checks if REG_TICK is exactly one larger
1176 than REG_IN_TABLE to find out if there was only a single preceding
1177 invalidation - for the SUBREG - or another one, which would be
1178 for the full register. However, if we find here that REG_TICK
1179 indicates that the register is invalid, it means that it has
1180 been invalidated in a separate operation. The SUBREG might be used
1181 now (then this is a recursive call), or we might use the full REG
1182 now and a SUBREG of it later. So bump up REG_TICK so that
1183 mention_regs will do the right thing. */
1184 if (! modified
1185 && REG_IN_TABLE (regno) >= 0
1186 && REG_TICK (regno) == REG_IN_TABLE (regno) + 1)
1187 REG_TICK (regno)++;
1188 make_new_qty (regno, GET_MODE (x));
1189 return 1;
1190 }
1191
1192 return 0;
1193 }
1194
1195 /* If X is a SUBREG, we will likely be inserting the inner register in the
1196 table. If that register doesn't have an assigned quantity number at
1197 this point but does later, the insertion that we will be doing now will
1198 not be accessible because its hash code will have changed. So assign
1199 a quantity number now. */
1200
1201 else if (GET_CODE (x) == SUBREG && REG_P (SUBREG_REG (x))
1202 && ! REGNO_QTY_VALID_P (REGNO (SUBREG_REG (x))))
1203 {
1204 insert_regs (SUBREG_REG (x), NULL, 0);
1205 mention_regs (x);
1206 return 1;
1207 }
1208 else
1209 return mention_regs (x);
1210 }
1211
1212 /* Look in or update the hash table. */
1213
1214 /* Remove table element ELT from use in the table.
1215 HASH is its hash code, made using the HASH macro.
1216 It's an argument because often that is known in advance
1217 and we save much time not recomputing it. */
1218
1219 static void
1220 remove_from_table (struct table_elt *elt, unsigned int hash)
1221 {
1222 if (elt == 0)
1223 return;
1224
1225 /* Mark this element as removed. See cse_insn. */
1226 elt->first_same_value = 0;
1227
1228 /* Remove the table element from its equivalence class. */
1229
1230 {
1231 struct table_elt *prev = elt->prev_same_value;
1232 struct table_elt *next = elt->next_same_value;
1233
1234 if (next)
1235 next->prev_same_value = prev;
1236
1237 if (prev)
1238 prev->next_same_value = next;
1239 else
1240 {
1241 struct table_elt *newfirst = next;
1242 while (next)
1243 {
1244 next->first_same_value = newfirst;
1245 next = next->next_same_value;
1246 }
1247 }
1248 }
1249
1250 /* Remove the table element from its hash bucket. */
1251
1252 {
1253 struct table_elt *prev = elt->prev_same_hash;
1254 struct table_elt *next = elt->next_same_hash;
1255
1256 if (next)
1257 next->prev_same_hash = prev;
1258
1259 if (prev)
1260 prev->next_same_hash = next;
1261 else if (table[hash] == elt)
1262 table[hash] = next;
1263 else
1264 {
1265 /* This entry is not in the proper hash bucket. This can happen
1266 when two classes were merged by `merge_equiv_classes'. Search
1267 for the hash bucket that it heads. This happens only very
1268 rarely, so the cost is acceptable. */
1269 for (hash = 0; hash < HASH_SIZE; hash++)
1270 if (table[hash] == elt)
1271 table[hash] = next;
1272 }
1273 }
1274
1275 /* Remove the table element from its related-value circular chain. */
1276
1277 if (elt->related_value != 0 && elt->related_value != elt)
1278 {
1279 struct table_elt *p = elt->related_value;
1280
1281 while (p->related_value != elt)
1282 p = p->related_value;
1283 p->related_value = elt->related_value;
1284 if (p->related_value == p)
1285 p->related_value = 0;
1286 }
1287
1288 /* Now add it to the free element chain. */
1289 elt->next_same_hash = free_element_chain;
1290 free_element_chain = elt;
1291 }
1292
1293 /* Same as above, but X is a pseudo-register. */
1294
1295 static void
1296 remove_pseudo_from_table (rtx x, unsigned int hash)
1297 {
1298 struct table_elt *elt;
1299
1300 /* Because a pseudo-register can be referenced in more than one
1301 mode, we might have to remove more than one table entry. */
1302 while ((elt = lookup_for_remove (x, hash, VOIDmode)))
1303 remove_from_table (elt, hash);
1304 }
1305
1306 /* Look up X in the hash table and return its table element,
1307 or 0 if X is not in the table.
1308
1309 MODE is the machine-mode of X, or if X is an integer constant
1310 with VOIDmode then MODE is the mode with which X will be used.
1311
1312 Here we are satisfied to find an expression whose tree structure
1313 looks like X. */
1314
1315 static struct table_elt *
1316 lookup (rtx x, unsigned int hash, enum machine_mode mode)
1317 {
1318 struct table_elt *p;
1319
1320 for (p = table[hash]; p; p = p->next_same_hash)
1321 if (mode == p->mode && ((x == p->exp && REG_P (x))
1322 || exp_equiv_p (x, p->exp, !REG_P (x), false)))
1323 return p;
1324
1325 return 0;
1326 }
1327
1328 /* Like `lookup' but don't care whether the table element uses invalid regs.
1329 Also ignore discrepancies in the machine mode of a register. */
1330
1331 static struct table_elt *
1332 lookup_for_remove (rtx x, unsigned int hash, enum machine_mode mode)
1333 {
1334 struct table_elt *p;
1335
1336 if (REG_P (x))
1337 {
1338 unsigned int regno = REGNO (x);
1339
1340 /* Don't check the machine mode when comparing registers;
1341 invalidating (REG:SI 0) also invalidates (REG:DF 0). */
1342 for (p = table[hash]; p; p = p->next_same_hash)
1343 if (REG_P (p->exp)
1344 && REGNO (p->exp) == regno)
1345 return p;
1346 }
1347 else
1348 {
1349 for (p = table[hash]; p; p = p->next_same_hash)
1350 if (mode == p->mode
1351 && (x == p->exp || exp_equiv_p (x, p->exp, 0, false)))
1352 return p;
1353 }
1354
1355 return 0;
1356 }
1357
1358 /* Look for an expression equivalent to X and with code CODE.
1359 If one is found, return that expression. */
1360
1361 static rtx
1362 lookup_as_function (rtx x, enum rtx_code code)
1363 {
1364 struct table_elt *p
1365 = lookup (x, SAFE_HASH (x, VOIDmode), GET_MODE (x));
1366
1367 if (p == 0)
1368 return 0;
1369
1370 for (p = p->first_same_value; p; p = p->next_same_value)
1371 if (GET_CODE (p->exp) == code
1372 /* Make sure this is a valid entry in the table. */
1373 && exp_equiv_p (p->exp, p->exp, 1, false))
1374 return p->exp;
1375
1376 return 0;
1377 }
1378
1379 /* Insert X in the hash table, assuming HASH is its hash code
1380 and CLASSP is an element of the class it should go in
1381 (or 0 if a new class should be made).
1382 It is inserted at the proper position to keep the class in
1383 the order cheapest first.
1384
1385 MODE is the machine-mode of X, or if X is an integer constant
1386 with VOIDmode then MODE is the mode with which X will be used.
1387
1388 For elements of equal cheapness, the most recent one
1389 goes in front, except that the first element in the list
1390 remains first unless a cheaper element is added. The order of
1391 pseudo-registers does not matter, as canon_reg will be called to
1392 find the cheapest when a register is retrieved from the table.
1393
1394 The in_memory field in the hash table element is set to 0.
1395 The caller must set it nonzero if appropriate.
1396
1397 You should call insert_regs (X, CLASSP, MODIFY) before calling here,
1398 and if insert_regs returns a nonzero value
1399 you must then recompute its hash code before calling here.
1400
1401 If necessary, update table showing constant values of quantities. */
1402
1403 #define CHEAPER(X, Y) \
1404 (preferable ((X)->cost, (X)->regcost, (Y)->cost, (Y)->regcost) < 0)
1405
1406 static struct table_elt *
1407 insert (rtx x, struct table_elt *classp, unsigned int hash, enum machine_mode mode)
1408 {
1409 struct table_elt *elt;
1410
1411 /* If X is a register and we haven't made a quantity for it,
1412 something is wrong. */
1413 gcc_assert (!REG_P (x) || REGNO_QTY_VALID_P (REGNO (x)));
1414
1415 /* If X is a hard register, show it is being put in the table. */
1416 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
1417 add_to_hard_reg_set (&hard_regs_in_table, GET_MODE (x), REGNO (x));
1418
1419 /* Put an element for X into the right hash bucket. */
1420
1421 elt = free_element_chain;
1422 if (elt)
1423 free_element_chain = elt->next_same_hash;
1424 else
1425 elt = XNEW (struct table_elt);
1426
1427 elt->exp = x;
1428 elt->canon_exp = NULL_RTX;
1429 elt->cost = COST (x);
1430 elt->regcost = approx_reg_cost (x);
1431 elt->next_same_value = 0;
1432 elt->prev_same_value = 0;
1433 elt->next_same_hash = table[hash];
1434 elt->prev_same_hash = 0;
1435 elt->related_value = 0;
1436 elt->in_memory = 0;
1437 elt->mode = mode;
1438 elt->is_const = (CONSTANT_P (x) || fixed_base_plus_p (x));
1439
1440 if (table[hash])
1441 table[hash]->prev_same_hash = elt;
1442 table[hash] = elt;
1443
1444 /* Put it into the proper value-class. */
1445 if (classp)
1446 {
1447 classp = classp->first_same_value;
1448 if (CHEAPER (elt, classp))
1449 /* Insert at the head of the class. */
1450 {
1451 struct table_elt *p;
1452 elt->next_same_value = classp;
1453 classp->prev_same_value = elt;
1454 elt->first_same_value = elt;
1455
1456 for (p = classp; p; p = p->next_same_value)
1457 p->first_same_value = elt;
1458 }
1459 else
1460 {
1461 /* Insert not at head of the class. */
1462 /* Put it after the last element cheaper than X. */
1463 struct table_elt *p, *next;
1464
1465 for (p = classp; (next = p->next_same_value) && CHEAPER (next, elt);
1466 p = next);
1467
1468 /* Put it after P and before NEXT. */
1469 elt->next_same_value = next;
1470 if (next)
1471 next->prev_same_value = elt;
1472
1473 elt->prev_same_value = p;
1474 p->next_same_value = elt;
1475 elt->first_same_value = classp;
1476 }
1477 }
1478 else
1479 elt->first_same_value = elt;
1480
1481 /* If this is a constant being set equivalent to a register or a register
1482 being set equivalent to a constant, note the constant equivalence.
1483
1484 If this is a constant, it cannot be equivalent to a different constant,
1485 and a constant is the only thing that can be cheaper than a register. So
1486 we know the register is the head of the class (before the constant was
1487 inserted).
1488
1489 If this is a register that is not already known equivalent to a
1490 constant, we must check the entire class.
1491
1492 If this is a register that is already known equivalent to an insn,
1493 update the qtys `const_insn' to show that `this_insn' is the latest
1494 insn making that quantity equivalent to the constant. */
1495
1496 if (elt->is_const && classp && REG_P (classp->exp)
1497 && !REG_P (x))
1498 {
1499 int exp_q = REG_QTY (REGNO (classp->exp));
1500 struct qty_table_elem *exp_ent = &qty_table[exp_q];
1501
1502 exp_ent->const_rtx = gen_lowpart (exp_ent->mode, x);
1503 exp_ent->const_insn = this_insn;
1504 }
1505
1506 else if (REG_P (x)
1507 && classp
1508 && ! qty_table[REG_QTY (REGNO (x))].const_rtx
1509 && ! elt->is_const)
1510 {
1511 struct table_elt *p;
1512
1513 for (p = classp; p != 0; p = p->next_same_value)
1514 {
1515 if (p->is_const && !REG_P (p->exp))
1516 {
1517 int x_q = REG_QTY (REGNO (x));
1518 struct qty_table_elem *x_ent = &qty_table[x_q];
1519
1520 x_ent->const_rtx
1521 = gen_lowpart (GET_MODE (x), p->exp);
1522 x_ent->const_insn = this_insn;
1523 break;
1524 }
1525 }
1526 }
1527
1528 else if (REG_P (x)
1529 && qty_table[REG_QTY (REGNO (x))].const_rtx
1530 && GET_MODE (x) == qty_table[REG_QTY (REGNO (x))].mode)
1531 qty_table[REG_QTY (REGNO (x))].const_insn = this_insn;
1532
1533 /* If this is a constant with symbolic value,
1534 and it has a term with an explicit integer value,
1535 link it up with related expressions. */
1536 if (GET_CODE (x) == CONST)
1537 {
1538 rtx subexp = get_related_value (x);
1539 unsigned subhash;
1540 struct table_elt *subelt, *subelt_prev;
1541
1542 if (subexp != 0)
1543 {
1544 /* Get the integer-free subexpression in the hash table. */
1545 subhash = SAFE_HASH (subexp, mode);
1546 subelt = lookup (subexp, subhash, mode);
1547 if (subelt == 0)
1548 subelt = insert (subexp, NULL, subhash, mode);
1549 /* Initialize SUBELT's circular chain if it has none. */
1550 if (subelt->related_value == 0)
1551 subelt->related_value = subelt;
1552 /* Find the element in the circular chain that precedes SUBELT. */
1553 subelt_prev = subelt;
1554 while (subelt_prev->related_value != subelt)
1555 subelt_prev = subelt_prev->related_value;
1556 /* Put new ELT into SUBELT's circular chain just before SUBELT.
1557 This way the element that follows SUBELT is the oldest one. */
1558 elt->related_value = subelt_prev->related_value;
1559 subelt_prev->related_value = elt;
1560 }
1561 }
1562
1563 return elt;
1564 }
1565
1566 /* Given two equivalence classes, CLASS1 and CLASS2, put all the entries from
1567 CLASS2 into CLASS1. This is done when we have reached an insn which makes
1568 the two classes equivalent.
1569
1570 CLASS1 will be the surviving class; CLASS2 should not be used after this
1571 call.
1572
1573 Any invalid entries in CLASS2 will not be copied. */
1574
1575 static void
1576 merge_equiv_classes (struct table_elt *class1, struct table_elt *class2)
1577 {
1578 struct table_elt *elt, *next, *new_elt;
1579
1580 /* Ensure we start with the head of the classes. */
1581 class1 = class1->first_same_value;
1582 class2 = class2->first_same_value;
1583
1584 /* If they were already equal, forget it. */
1585 if (class1 == class2)
1586 return;
1587
1588 for (elt = class2; elt; elt = next)
1589 {
1590 unsigned int hash;
1591 rtx exp = elt->exp;
1592 enum machine_mode mode = elt->mode;
1593
1594 next = elt->next_same_value;
1595
1596 /* Remove old entry, make a new one in CLASS1's class.
1597 Don't do this for invalid entries as we cannot find their
1598 hash code (it also isn't necessary). */
1599 if (REG_P (exp) || exp_equiv_p (exp, exp, 1, false))
1600 {
1601 bool need_rehash = false;
1602
1603 hash_arg_in_memory = 0;
1604 hash = HASH (exp, mode);
1605
1606 if (REG_P (exp))
1607 {
1608 need_rehash = REGNO_QTY_VALID_P (REGNO (exp));
1609 delete_reg_equiv (REGNO (exp));
1610 }
1611
1612 if (REG_P (exp) && REGNO (exp) >= FIRST_PSEUDO_REGISTER)
1613 remove_pseudo_from_table (exp, hash);
1614 else
1615 remove_from_table (elt, hash);
1616
1617 if (insert_regs (exp, class1, 0) || need_rehash)
1618 {
1619 rehash_using_reg (exp);
1620 hash = HASH (exp, mode);
1621 }
1622 new_elt = insert (exp, class1, hash, mode);
1623 new_elt->in_memory = hash_arg_in_memory;
1624 }
1625 }
1626 }
1627
1628 /* Flush the entire hash table. */
1629
1630 static void
1631 flush_hash_table (void)
1632 {
1633 int i;
1634 struct table_elt *p;
1635
1636 for (i = 0; i < HASH_SIZE; i++)
1637 for (p = table[i]; p; p = table[i])
1638 {
1639 /* Note that invalidate can remove elements
1640 after P in the current hash chain. */
1641 if (REG_P (p->exp))
1642 invalidate (p->exp, VOIDmode);
1643 else
1644 remove_from_table (p, i);
1645 }
1646 }
1647
1648 /* Function called for each rtx to check whether true dependence exist. */
1649 struct check_dependence_data
1650 {
1651 enum machine_mode mode;
1652 rtx exp;
1653 rtx addr;
1654 };
1655
1656 static int
1657 check_dependence (rtx *x, void *data)
1658 {
1659 struct check_dependence_data *d = (struct check_dependence_data *) data;
1660 if (*x && MEM_P (*x))
1661 return canon_true_dependence (d->exp, d->mode, d->addr, *x,
1662 cse_rtx_varies_p);
1663 else
1664 return 0;
1665 }
1666
1667 /* Remove from the hash table, or mark as invalid, all expressions whose
1668 values could be altered by storing in X. X is a register, a subreg, or
1669 a memory reference with nonvarying address (because, when a memory
1670 reference with a varying address is stored in, all memory references are
1671 removed by invalidate_memory so specific invalidation is superfluous).
1672 FULL_MODE, if not VOIDmode, indicates that this much should be
1673 invalidated instead of just the amount indicated by the mode of X. This
1674 is only used for bitfield stores into memory.
1675
1676 A nonvarying address may be just a register or just a symbol reference,
1677 or it may be either of those plus a numeric offset. */
1678
1679 static void
1680 invalidate (rtx x, enum machine_mode full_mode)
1681 {
1682 int i;
1683 struct table_elt *p;
1684 rtx addr;
1685
1686 switch (GET_CODE (x))
1687 {
1688 case REG:
1689 {
1690 /* If X is a register, dependencies on its contents are recorded
1691 through the qty number mechanism. Just change the qty number of
1692 the register, mark it as invalid for expressions that refer to it,
1693 and remove it itself. */
1694 unsigned int regno = REGNO (x);
1695 unsigned int hash = HASH (x, GET_MODE (x));
1696
1697 /* Remove REGNO from any quantity list it might be on and indicate
1698 that its value might have changed. If it is a pseudo, remove its
1699 entry from the hash table.
1700
1701 For a hard register, we do the first two actions above for any
1702 additional hard registers corresponding to X. Then, if any of these
1703 registers are in the table, we must remove any REG entries that
1704 overlap these registers. */
1705
1706 delete_reg_equiv (regno);
1707 REG_TICK (regno)++;
1708 SUBREG_TICKED (regno) = -1;
1709
1710 if (regno >= FIRST_PSEUDO_REGISTER)
1711 remove_pseudo_from_table (x, hash);
1712 else
1713 {
1714 HOST_WIDE_INT in_table
1715 = TEST_HARD_REG_BIT (hard_regs_in_table, regno);
1716 unsigned int endregno = END_HARD_REGNO (x);
1717 unsigned int tregno, tendregno, rn;
1718 struct table_elt *p, *next;
1719
1720 CLEAR_HARD_REG_BIT (hard_regs_in_table, regno);
1721
1722 for (rn = regno + 1; rn < endregno; rn++)
1723 {
1724 in_table |= TEST_HARD_REG_BIT (hard_regs_in_table, rn);
1725 CLEAR_HARD_REG_BIT (hard_regs_in_table, rn);
1726 delete_reg_equiv (rn);
1727 REG_TICK (rn)++;
1728 SUBREG_TICKED (rn) = -1;
1729 }
1730
1731 if (in_table)
1732 for (hash = 0; hash < HASH_SIZE; hash++)
1733 for (p = table[hash]; p; p = next)
1734 {
1735 next = p->next_same_hash;
1736
1737 if (!REG_P (p->exp)
1738 || REGNO (p->exp) >= FIRST_PSEUDO_REGISTER)
1739 continue;
1740
1741 tregno = REGNO (p->exp);
1742 tendregno = END_HARD_REGNO (p->exp);
1743 if (tendregno > regno && tregno < endregno)
1744 remove_from_table (p, hash);
1745 }
1746 }
1747 }
1748 return;
1749
1750 case SUBREG:
1751 invalidate (SUBREG_REG (x), VOIDmode);
1752 return;
1753
1754 case PARALLEL:
1755 for (i = XVECLEN (x, 0) - 1; i >= 0; --i)
1756 invalidate (XVECEXP (x, 0, i), VOIDmode);
1757 return;
1758
1759 case EXPR_LIST:
1760 /* This is part of a disjoint return value; extract the location in
1761 question ignoring the offset. */
1762 invalidate (XEXP (x, 0), VOIDmode);
1763 return;
1764
1765 case MEM:
1766 addr = canon_rtx (get_addr (XEXP (x, 0)));
1767 /* Calculate the canonical version of X here so that
1768 true_dependence doesn't generate new RTL for X on each call. */
1769 x = canon_rtx (x);
1770
1771 /* Remove all hash table elements that refer to overlapping pieces of
1772 memory. */
1773 if (full_mode == VOIDmode)
1774 full_mode = GET_MODE (x);
1775
1776 for (i = 0; i < HASH_SIZE; i++)
1777 {
1778 struct table_elt *next;
1779
1780 for (p = table[i]; p; p = next)
1781 {
1782 next = p->next_same_hash;
1783 if (p->in_memory)
1784 {
1785 struct check_dependence_data d;
1786
1787 /* Just canonicalize the expression once;
1788 otherwise each time we call invalidate
1789 true_dependence will canonicalize the
1790 expression again. */
1791 if (!p->canon_exp)
1792 p->canon_exp = canon_rtx (p->exp);
1793 d.exp = x;
1794 d.addr = addr;
1795 d.mode = full_mode;
1796 if (for_each_rtx (&p->canon_exp, check_dependence, &d))
1797 remove_from_table (p, i);
1798 }
1799 }
1800 }
1801 return;
1802
1803 default:
1804 gcc_unreachable ();
1805 }
1806 }
1807
1808 /* Remove all expressions that refer to register REGNO,
1809 since they are already invalid, and we are about to
1810 mark that register valid again and don't want the old
1811 expressions to reappear as valid. */
1812
1813 static void
1814 remove_invalid_refs (unsigned int regno)
1815 {
1816 unsigned int i;
1817 struct table_elt *p, *next;
1818
1819 for (i = 0; i < HASH_SIZE; i++)
1820 for (p = table[i]; p; p = next)
1821 {
1822 next = p->next_same_hash;
1823 if (!REG_P (p->exp)
1824 && refers_to_regno_p (regno, regno + 1, p->exp, (rtx *) 0))
1825 remove_from_table (p, i);
1826 }
1827 }
1828
1829 /* Likewise for a subreg with subreg_reg REGNO, subreg_byte OFFSET,
1830 and mode MODE. */
1831 static void
1832 remove_invalid_subreg_refs (unsigned int regno, unsigned int offset,
1833 enum machine_mode mode)
1834 {
1835 unsigned int i;
1836 struct table_elt *p, *next;
1837 unsigned int end = offset + (GET_MODE_SIZE (mode) - 1);
1838
1839 for (i = 0; i < HASH_SIZE; i++)
1840 for (p = table[i]; p; p = next)
1841 {
1842 rtx exp = p->exp;
1843 next = p->next_same_hash;
1844
1845 if (!REG_P (exp)
1846 && (GET_CODE (exp) != SUBREG
1847 || !REG_P (SUBREG_REG (exp))
1848 || REGNO (SUBREG_REG (exp)) != regno
1849 || (((SUBREG_BYTE (exp)
1850 + (GET_MODE_SIZE (GET_MODE (exp)) - 1)) >= offset)
1851 && SUBREG_BYTE (exp) <= end))
1852 && refers_to_regno_p (regno, regno + 1, p->exp, (rtx *) 0))
1853 remove_from_table (p, i);
1854 }
1855 }
1856
1857 /* Recompute the hash codes of any valid entries in the hash table that
1858 reference X, if X is a register, or SUBREG_REG (X) if X is a SUBREG.
1859
1860 This is called when we make a jump equivalence. */
1861
1862 static void
1863 rehash_using_reg (rtx x)
1864 {
1865 unsigned int i;
1866 struct table_elt *p, *next;
1867 unsigned hash;
1868
1869 if (GET_CODE (x) == SUBREG)
1870 x = SUBREG_REG (x);
1871
1872 /* If X is not a register or if the register is known not to be in any
1873 valid entries in the table, we have no work to do. */
1874
1875 if (!REG_P (x)
1876 || REG_IN_TABLE (REGNO (x)) < 0
1877 || REG_IN_TABLE (REGNO (x)) != REG_TICK (REGNO (x)))
1878 return;
1879
1880 /* Scan all hash chains looking for valid entries that mention X.
1881 If we find one and it is in the wrong hash chain, move it. */
1882
1883 for (i = 0; i < HASH_SIZE; i++)
1884 for (p = table[i]; p; p = next)
1885 {
1886 next = p->next_same_hash;
1887 if (reg_mentioned_p (x, p->exp)
1888 && exp_equiv_p (p->exp, p->exp, 1, false)
1889 && i != (hash = SAFE_HASH (p->exp, p->mode)))
1890 {
1891 if (p->next_same_hash)
1892 p->next_same_hash->prev_same_hash = p->prev_same_hash;
1893
1894 if (p->prev_same_hash)
1895 p->prev_same_hash->next_same_hash = p->next_same_hash;
1896 else
1897 table[i] = p->next_same_hash;
1898
1899 p->next_same_hash = table[hash];
1900 p->prev_same_hash = 0;
1901 if (table[hash])
1902 table[hash]->prev_same_hash = p;
1903 table[hash] = p;
1904 }
1905 }
1906 }
1907
1908 /* Remove from the hash table any expression that is a call-clobbered
1909 register. Also update their TICK values. */
1910
1911 static void
1912 invalidate_for_call (void)
1913 {
1914 unsigned int regno, endregno;
1915 unsigned int i;
1916 unsigned hash;
1917 struct table_elt *p, *next;
1918 int in_table = 0;
1919
1920 /* Go through all the hard registers. For each that is clobbered in
1921 a CALL_INSN, remove the register from quantity chains and update
1922 reg_tick if defined. Also see if any of these registers is currently
1923 in the table. */
1924
1925 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
1926 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, regno))
1927 {
1928 delete_reg_equiv (regno);
1929 if (REG_TICK (regno) >= 0)
1930 {
1931 REG_TICK (regno)++;
1932 SUBREG_TICKED (regno) = -1;
1933 }
1934
1935 in_table |= (TEST_HARD_REG_BIT (hard_regs_in_table, regno) != 0);
1936 }
1937
1938 /* In the case where we have no call-clobbered hard registers in the
1939 table, we are done. Otherwise, scan the table and remove any
1940 entry that overlaps a call-clobbered register. */
1941
1942 if (in_table)
1943 for (hash = 0; hash < HASH_SIZE; hash++)
1944 for (p = table[hash]; p; p = next)
1945 {
1946 next = p->next_same_hash;
1947
1948 if (!REG_P (p->exp)
1949 || REGNO (p->exp) >= FIRST_PSEUDO_REGISTER)
1950 continue;
1951
1952 regno = REGNO (p->exp);
1953 endregno = END_HARD_REGNO (p->exp);
1954
1955 for (i = regno; i < endregno; i++)
1956 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
1957 {
1958 remove_from_table (p, hash);
1959 break;
1960 }
1961 }
1962 }
1963
1964 /* Given an expression X of type CONST,
1965 and ELT which is its table entry (or 0 if it
1966 is not in the hash table),
1967 return an alternate expression for X as a register plus integer.
1968 If none can be found, return 0. */
1969
1970 static rtx
1971 use_related_value (rtx x, struct table_elt *elt)
1972 {
1973 struct table_elt *relt = 0;
1974 struct table_elt *p, *q;
1975 HOST_WIDE_INT offset;
1976
1977 /* First, is there anything related known?
1978 If we have a table element, we can tell from that.
1979 Otherwise, must look it up. */
1980
1981 if (elt != 0 && elt->related_value != 0)
1982 relt = elt;
1983 else if (elt == 0 && GET_CODE (x) == CONST)
1984 {
1985 rtx subexp = get_related_value (x);
1986 if (subexp != 0)
1987 relt = lookup (subexp,
1988 SAFE_HASH (subexp, GET_MODE (subexp)),
1989 GET_MODE (subexp));
1990 }
1991
1992 if (relt == 0)
1993 return 0;
1994
1995 /* Search all related table entries for one that has an
1996 equivalent register. */
1997
1998 p = relt;
1999 while (1)
2000 {
2001 /* This loop is strange in that it is executed in two different cases.
2002 The first is when X is already in the table. Then it is searching
2003 the RELATED_VALUE list of X's class (RELT). The second case is when
2004 X is not in the table. Then RELT points to a class for the related
2005 value.
2006
2007 Ensure that, whatever case we are in, that we ignore classes that have
2008 the same value as X. */
2009
2010 if (rtx_equal_p (x, p->exp))
2011 q = 0;
2012 else
2013 for (q = p->first_same_value; q; q = q->next_same_value)
2014 if (REG_P (q->exp))
2015 break;
2016
2017 if (q)
2018 break;
2019
2020 p = p->related_value;
2021
2022 /* We went all the way around, so there is nothing to be found.
2023 Alternatively, perhaps RELT was in the table for some other reason
2024 and it has no related values recorded. */
2025 if (p == relt || p == 0)
2026 break;
2027 }
2028
2029 if (q == 0)
2030 return 0;
2031
2032 offset = (get_integer_term (x) - get_integer_term (p->exp));
2033 /* Note: OFFSET may be 0 if P->xexp and X are related by commutativity. */
2034 return plus_constant (q->exp, offset);
2035 }
2036
2037
2038 /* Hash a string. Just add its bytes up. */
2039 static inline unsigned
2040 hash_rtx_string (const char *ps)
2041 {
2042 unsigned hash = 0;
2043 const unsigned char *p = (const unsigned char *) ps;
2044
2045 if (p)
2046 while (*p)
2047 hash += *p++;
2048
2049 return hash;
2050 }
2051
2052 /* Same as hash_rtx, but call CB on each rtx if it is not NULL.
2053 When the callback returns true, we continue with the new rtx. */
2054
2055 unsigned
2056 hash_rtx_cb (const_rtx x, enum machine_mode mode,
2057 int *do_not_record_p, int *hash_arg_in_memory_p,
2058 bool have_reg_qty, hash_rtx_callback_function cb)
2059 {
2060 int i, j;
2061 unsigned hash = 0;
2062 enum rtx_code code;
2063 const char *fmt;
2064 enum machine_mode newmode;
2065 rtx newx;
2066
2067 /* Used to turn recursion into iteration. We can't rely on GCC's
2068 tail-recursion elimination since we need to keep accumulating values
2069 in HASH. */
2070 repeat:
2071 if (x == 0)
2072 return hash;
2073
2074 /* Invoke the callback first. */
2075 if (cb != NULL
2076 && ((*cb) (x, mode, &newx, &newmode)))
2077 {
2078 hash += hash_rtx_cb (newx, newmode, do_not_record_p,
2079 hash_arg_in_memory_p, have_reg_qty, cb);
2080 return hash;
2081 }
2082
2083 code = GET_CODE (x);
2084 switch (code)
2085 {
2086 case REG:
2087 {
2088 unsigned int regno = REGNO (x);
2089
2090 if (do_not_record_p && !reload_completed)
2091 {
2092 /* On some machines, we can't record any non-fixed hard register,
2093 because extending its life will cause reload problems. We
2094 consider ap, fp, sp, gp to be fixed for this purpose.
2095
2096 We also consider CCmode registers to be fixed for this purpose;
2097 failure to do so leads to failure to simplify 0<100 type of
2098 conditionals.
2099
2100 On all machines, we can't record any global registers.
2101 Nor should we record any register that is in a small
2102 class, as defined by CLASS_LIKELY_SPILLED_P. */
2103 bool record;
2104
2105 if (regno >= FIRST_PSEUDO_REGISTER)
2106 record = true;
2107 else if (x == frame_pointer_rtx
2108 || x == hard_frame_pointer_rtx
2109 || x == arg_pointer_rtx
2110 || x == stack_pointer_rtx
2111 || x == pic_offset_table_rtx)
2112 record = true;
2113 else if (global_regs[regno])
2114 record = false;
2115 else if (fixed_regs[regno])
2116 record = true;
2117 else if (GET_MODE_CLASS (GET_MODE (x)) == MODE_CC)
2118 record = true;
2119 else if (SMALL_REGISTER_CLASSES)
2120 record = false;
2121 else if (CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (regno)))
2122 record = false;
2123 else
2124 record = true;
2125
2126 if (!record)
2127 {
2128 *do_not_record_p = 1;
2129 return 0;
2130 }
2131 }
2132
2133 hash += ((unsigned int) REG << 7);
2134 hash += (have_reg_qty ? (unsigned) REG_QTY (regno) : regno);
2135 return hash;
2136 }
2137
2138 /* We handle SUBREG of a REG specially because the underlying
2139 reg changes its hash value with every value change; we don't
2140 want to have to forget unrelated subregs when one subreg changes. */
2141 case SUBREG:
2142 {
2143 if (REG_P (SUBREG_REG (x)))
2144 {
2145 hash += (((unsigned int) SUBREG << 7)
2146 + REGNO (SUBREG_REG (x))
2147 + (SUBREG_BYTE (x) / UNITS_PER_WORD));
2148 return hash;
2149 }
2150 break;
2151 }
2152
2153 case CONST_INT:
2154 hash += (((unsigned int) CONST_INT << 7) + (unsigned int) mode
2155 + (unsigned int) INTVAL (x));
2156 return hash;
2157
2158 case CONST_DOUBLE:
2159 /* This is like the general case, except that it only counts
2160 the integers representing the constant. */
2161 hash += (unsigned int) code + (unsigned int) GET_MODE (x);
2162 if (GET_MODE (x) != VOIDmode)
2163 hash += real_hash (CONST_DOUBLE_REAL_VALUE (x));
2164 else
2165 hash += ((unsigned int) CONST_DOUBLE_LOW (x)
2166 + (unsigned int) CONST_DOUBLE_HIGH (x));
2167 return hash;
2168
2169 case CONST_FIXED:
2170 hash += (unsigned int) code + (unsigned int) GET_MODE (x);
2171 hash += fixed_hash (CONST_FIXED_VALUE (x));
2172 return hash;
2173
2174 case CONST_VECTOR:
2175 {
2176 int units;
2177 rtx elt;
2178
2179 units = CONST_VECTOR_NUNITS (x);
2180
2181 for (i = 0; i < units; ++i)
2182 {
2183 elt = CONST_VECTOR_ELT (x, i);
2184 hash += hash_rtx_cb (elt, GET_MODE (elt),
2185 do_not_record_p, hash_arg_in_memory_p,
2186 have_reg_qty, cb);
2187 }
2188
2189 return hash;
2190 }
2191
2192 /* Assume there is only one rtx object for any given label. */
2193 case LABEL_REF:
2194 /* We don't hash on the address of the CODE_LABEL to avoid bootstrap
2195 differences and differences between each stage's debugging dumps. */
2196 hash += (((unsigned int) LABEL_REF << 7)
2197 + CODE_LABEL_NUMBER (XEXP (x, 0)));
2198 return hash;
2199
2200 case SYMBOL_REF:
2201 {
2202 /* Don't hash on the symbol's address to avoid bootstrap differences.
2203 Different hash values may cause expressions to be recorded in
2204 different orders and thus different registers to be used in the
2205 final assembler. This also avoids differences in the dump files
2206 between various stages. */
2207 unsigned int h = 0;
2208 const unsigned char *p = (const unsigned char *) XSTR (x, 0);
2209
2210 while (*p)
2211 h += (h << 7) + *p++; /* ??? revisit */
2212
2213 hash += ((unsigned int) SYMBOL_REF << 7) + h;
2214 return hash;
2215 }
2216
2217 case MEM:
2218 /* We don't record if marked volatile or if BLKmode since we don't
2219 know the size of the move. */
2220 if (do_not_record_p && (MEM_VOLATILE_P (x) || GET_MODE (x) == BLKmode))
2221 {
2222 *do_not_record_p = 1;
2223 return 0;
2224 }
2225 if (hash_arg_in_memory_p && !MEM_READONLY_P (x))
2226 *hash_arg_in_memory_p = 1;
2227
2228 /* Now that we have already found this special case,
2229 might as well speed it up as much as possible. */
2230 hash += (unsigned) MEM;
2231 x = XEXP (x, 0);
2232 goto repeat;
2233
2234 case USE:
2235 /* A USE that mentions non-volatile memory needs special
2236 handling since the MEM may be BLKmode which normally
2237 prevents an entry from being made. Pure calls are
2238 marked by a USE which mentions BLKmode memory.
2239 See calls.c:emit_call_1. */
2240 if (MEM_P (XEXP (x, 0))
2241 && ! MEM_VOLATILE_P (XEXP (x, 0)))
2242 {
2243 hash += (unsigned) USE;
2244 x = XEXP (x, 0);
2245
2246 if (hash_arg_in_memory_p && !MEM_READONLY_P (x))
2247 *hash_arg_in_memory_p = 1;
2248
2249 /* Now that we have already found this special case,
2250 might as well speed it up as much as possible. */
2251 hash += (unsigned) MEM;
2252 x = XEXP (x, 0);
2253 goto repeat;
2254 }
2255 break;
2256
2257 case PRE_DEC:
2258 case PRE_INC:
2259 case POST_DEC:
2260 case POST_INC:
2261 case PRE_MODIFY:
2262 case POST_MODIFY:
2263 case PC:
2264 case CC0:
2265 case CALL:
2266 case UNSPEC_VOLATILE:
2267 if (do_not_record_p) {
2268 *do_not_record_p = 1;
2269 return 0;
2270 }
2271 else
2272 return hash;
2273 break;
2274
2275 case ASM_OPERANDS:
2276 if (do_not_record_p && MEM_VOLATILE_P (x))
2277 {
2278 *do_not_record_p = 1;
2279 return 0;
2280 }
2281 else
2282 {
2283 /* We don't want to take the filename and line into account. */
2284 hash += (unsigned) code + (unsigned) GET_MODE (x)
2285 + hash_rtx_string (ASM_OPERANDS_TEMPLATE (x))
2286 + hash_rtx_string (ASM_OPERANDS_OUTPUT_CONSTRAINT (x))
2287 + (unsigned) ASM_OPERANDS_OUTPUT_IDX (x);
2288
2289 if (ASM_OPERANDS_INPUT_LENGTH (x))
2290 {
2291 for (i = 1; i < ASM_OPERANDS_INPUT_LENGTH (x); i++)
2292 {
2293 hash += (hash_rtx_cb (ASM_OPERANDS_INPUT (x, i),
2294 GET_MODE (ASM_OPERANDS_INPUT (x, i)),
2295 do_not_record_p, hash_arg_in_memory_p,
2296 have_reg_qty, cb)
2297 + hash_rtx_string
2298 (ASM_OPERANDS_INPUT_CONSTRAINT (x, i)));
2299 }
2300
2301 hash += hash_rtx_string (ASM_OPERANDS_INPUT_CONSTRAINT (x, 0));
2302 x = ASM_OPERANDS_INPUT (x, 0);
2303 mode = GET_MODE (x);
2304 goto repeat;
2305 }
2306
2307 return hash;
2308 }
2309 break;
2310
2311 default:
2312 break;
2313 }
2314
2315 i = GET_RTX_LENGTH (code) - 1;
2316 hash += (unsigned) code + (unsigned) GET_MODE (x);
2317 fmt = GET_RTX_FORMAT (code);
2318 for (; i >= 0; i--)
2319 {
2320 switch (fmt[i])
2321 {
2322 case 'e':
2323 /* If we are about to do the last recursive call
2324 needed at this level, change it into iteration.
2325 This function is called enough to be worth it. */
2326 if (i == 0)
2327 {
2328 x = XEXP (x, i);
2329 goto repeat;
2330 }
2331
2332 hash += hash_rtx_cb (XEXP (x, i), 0, do_not_record_p,
2333 hash_arg_in_memory_p,
2334 have_reg_qty, cb);
2335 break;
2336
2337 case 'E':
2338 for (j = 0; j < XVECLEN (x, i); j++)
2339 hash += hash_rtx_cb (XVECEXP (x, i, j), 0, do_not_record_p,
2340 hash_arg_in_memory_p,
2341 have_reg_qty, cb);
2342 break;
2343
2344 case 's':
2345 hash += hash_rtx_string (XSTR (x, i));
2346 break;
2347
2348 case 'i':
2349 hash += (unsigned int) XINT (x, i);
2350 break;
2351
2352 case '0': case 't':
2353 /* Unused. */
2354 break;
2355
2356 default:
2357 gcc_unreachable ();
2358 }
2359 }
2360
2361 return hash;
2362 }
2363
2364 /* Hash an rtx. We are careful to make sure the value is never negative.
2365 Equivalent registers hash identically.
2366 MODE is used in hashing for CONST_INTs only;
2367 otherwise the mode of X is used.
2368
2369 Store 1 in DO_NOT_RECORD_P if any subexpression is volatile.
2370
2371 If HASH_ARG_IN_MEMORY_P is not NULL, store 1 in it if X contains
2372 a MEM rtx which does not have the RTX_UNCHANGING_P bit set.
2373
2374 Note that cse_insn knows that the hash code of a MEM expression
2375 is just (int) MEM plus the hash code of the address. */
2376
2377 unsigned
2378 hash_rtx (const_rtx x, enum machine_mode mode, int *do_not_record_p,
2379 int *hash_arg_in_memory_p, bool have_reg_qty)
2380 {
2381 return hash_rtx_cb (x, mode, do_not_record_p,
2382 hash_arg_in_memory_p, have_reg_qty, NULL);
2383 }
2384
2385 /* Hash an rtx X for cse via hash_rtx.
2386 Stores 1 in do_not_record if any subexpression is volatile.
2387 Stores 1 in hash_arg_in_memory if X contains a mem rtx which
2388 does not have the RTX_UNCHANGING_P bit set. */
2389
2390 static inline unsigned
2391 canon_hash (rtx x, enum machine_mode mode)
2392 {
2393 return hash_rtx (x, mode, &do_not_record, &hash_arg_in_memory, true);
2394 }
2395
2396 /* Like canon_hash but with no side effects, i.e. do_not_record
2397 and hash_arg_in_memory are not changed. */
2398
2399 static inline unsigned
2400 safe_hash (rtx x, enum machine_mode mode)
2401 {
2402 int dummy_do_not_record;
2403 return hash_rtx (x, mode, &dummy_do_not_record, NULL, true);
2404 }
2405
2406 /* Return 1 iff X and Y would canonicalize into the same thing,
2407 without actually constructing the canonicalization of either one.
2408 If VALIDATE is nonzero,
2409 we assume X is an expression being processed from the rtl
2410 and Y was found in the hash table. We check register refs
2411 in Y for being marked as valid.
2412
2413 If FOR_GCSE is true, we compare X and Y for equivalence for GCSE. */
2414
2415 int
2416 exp_equiv_p (const_rtx x, const_rtx y, int validate, bool for_gcse)
2417 {
2418 int i, j;
2419 enum rtx_code code;
2420 const char *fmt;
2421
2422 /* Note: it is incorrect to assume an expression is equivalent to itself
2423 if VALIDATE is nonzero. */
2424 if (x == y && !validate)
2425 return 1;
2426
2427 if (x == 0 || y == 0)
2428 return x == y;
2429
2430 code = GET_CODE (x);
2431 if (code != GET_CODE (y))
2432 return 0;
2433
2434 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
2435 if (GET_MODE (x) != GET_MODE (y))
2436 return 0;
2437
2438 switch (code)
2439 {
2440 case PC:
2441 case CC0:
2442 case CONST_INT:
2443 case CONST_DOUBLE:
2444 case CONST_FIXED:
2445 return x == y;
2446
2447 case LABEL_REF:
2448 return XEXP (x, 0) == XEXP (y, 0);
2449
2450 case SYMBOL_REF:
2451 return XSTR (x, 0) == XSTR (y, 0);
2452
2453 case REG:
2454 if (for_gcse)
2455 return REGNO (x) == REGNO (y);
2456 else
2457 {
2458 unsigned int regno = REGNO (y);
2459 unsigned int i;
2460 unsigned int endregno = END_REGNO (y);
2461
2462 /* If the quantities are not the same, the expressions are not
2463 equivalent. If there are and we are not to validate, they
2464 are equivalent. Otherwise, ensure all regs are up-to-date. */
2465
2466 if (REG_QTY (REGNO (x)) != REG_QTY (regno))
2467 return 0;
2468
2469 if (! validate)
2470 return 1;
2471
2472 for (i = regno; i < endregno; i++)
2473 if (REG_IN_TABLE (i) != REG_TICK (i))
2474 return 0;
2475
2476 return 1;
2477 }
2478
2479 case MEM:
2480 if (for_gcse)
2481 {
2482 /* A volatile mem should not be considered equivalent to any
2483 other. */
2484 if (MEM_VOLATILE_P (x) || MEM_VOLATILE_P (y))
2485 return 0;
2486
2487 /* Can't merge two expressions in different alias sets, since we
2488 can decide that the expression is transparent in a block when
2489 it isn't, due to it being set with the different alias set.
2490
2491 Also, can't merge two expressions with different MEM_ATTRS.
2492 They could e.g. be two different entities allocated into the
2493 same space on the stack (see e.g. PR25130). In that case, the
2494 MEM addresses can be the same, even though the two MEMs are
2495 absolutely not equivalent.
2496
2497 But because really all MEM attributes should be the same for
2498 equivalent MEMs, we just use the invariant that MEMs that have
2499 the same attributes share the same mem_attrs data structure. */
2500 if (MEM_ATTRS (x) != MEM_ATTRS (y))
2501 return 0;
2502 }
2503 break;
2504
2505 /* For commutative operations, check both orders. */
2506 case PLUS:
2507 case MULT:
2508 case AND:
2509 case IOR:
2510 case XOR:
2511 case NE:
2512 case EQ:
2513 return ((exp_equiv_p (XEXP (x, 0), XEXP (y, 0),
2514 validate, for_gcse)
2515 && exp_equiv_p (XEXP (x, 1), XEXP (y, 1),
2516 validate, for_gcse))
2517 || (exp_equiv_p (XEXP (x, 0), XEXP (y, 1),
2518 validate, for_gcse)
2519 && exp_equiv_p (XEXP (x, 1), XEXP (y, 0),
2520 validate, for_gcse)));
2521
2522 case ASM_OPERANDS:
2523 /* We don't use the generic code below because we want to
2524 disregard filename and line numbers. */
2525
2526 /* A volatile asm isn't equivalent to any other. */
2527 if (MEM_VOLATILE_P (x) || MEM_VOLATILE_P (y))
2528 return 0;
2529
2530 if (GET_MODE (x) != GET_MODE (y)
2531 || strcmp (ASM_OPERANDS_TEMPLATE (x), ASM_OPERANDS_TEMPLATE (y))
2532 || strcmp (ASM_OPERANDS_OUTPUT_CONSTRAINT (x),
2533 ASM_OPERANDS_OUTPUT_CONSTRAINT (y))
2534 || ASM_OPERANDS_OUTPUT_IDX (x) != ASM_OPERANDS_OUTPUT_IDX (y)
2535 || ASM_OPERANDS_INPUT_LENGTH (x) != ASM_OPERANDS_INPUT_LENGTH (y))
2536 return 0;
2537
2538 if (ASM_OPERANDS_INPUT_LENGTH (x))
2539 {
2540 for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
2541 if (! exp_equiv_p (ASM_OPERANDS_INPUT (x, i),
2542 ASM_OPERANDS_INPUT (y, i),
2543 validate, for_gcse)
2544 || strcmp (ASM_OPERANDS_INPUT_CONSTRAINT (x, i),
2545 ASM_OPERANDS_INPUT_CONSTRAINT (y, i)))
2546 return 0;
2547 }
2548
2549 return 1;
2550
2551 default:
2552 break;
2553 }
2554
2555 /* Compare the elements. If any pair of corresponding elements
2556 fail to match, return 0 for the whole thing. */
2557
2558 fmt = GET_RTX_FORMAT (code);
2559 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2560 {
2561 switch (fmt[i])
2562 {
2563 case 'e':
2564 if (! exp_equiv_p (XEXP (x, i), XEXP (y, i),
2565 validate, for_gcse))
2566 return 0;
2567 break;
2568
2569 case 'E':
2570 if (XVECLEN (x, i) != XVECLEN (y, i))
2571 return 0;
2572 for (j = 0; j < XVECLEN (x, i); j++)
2573 if (! exp_equiv_p (XVECEXP (x, i, j), XVECEXP (y, i, j),
2574 validate, for_gcse))
2575 return 0;
2576 break;
2577
2578 case 's':
2579 if (strcmp (XSTR (x, i), XSTR (y, i)))
2580 return 0;
2581 break;
2582
2583 case 'i':
2584 if (XINT (x, i) != XINT (y, i))
2585 return 0;
2586 break;
2587
2588 case 'w':
2589 if (XWINT (x, i) != XWINT (y, i))
2590 return 0;
2591 break;
2592
2593 case '0':
2594 case 't':
2595 break;
2596
2597 default:
2598 gcc_unreachable ();
2599 }
2600 }
2601
2602 return 1;
2603 }
2604
2605 /* Return 1 if X has a value that can vary even between two
2606 executions of the program. 0 means X can be compared reliably
2607 against certain constants or near-constants. */
2608
2609 static bool
2610 cse_rtx_varies_p (const_rtx x, bool from_alias)
2611 {
2612 /* We need not check for X and the equivalence class being of the same
2613 mode because if X is equivalent to a constant in some mode, it
2614 doesn't vary in any mode. */
2615
2616 if (REG_P (x)
2617 && REGNO_QTY_VALID_P (REGNO (x)))
2618 {
2619 int x_q = REG_QTY (REGNO (x));
2620 struct qty_table_elem *x_ent = &qty_table[x_q];
2621
2622 if (GET_MODE (x) == x_ent->mode
2623 && x_ent->const_rtx != NULL_RTX)
2624 return 0;
2625 }
2626
2627 if (GET_CODE (x) == PLUS
2628 && GET_CODE (XEXP (x, 1)) == CONST_INT
2629 && REG_P (XEXP (x, 0))
2630 && REGNO_QTY_VALID_P (REGNO (XEXP (x, 0))))
2631 {
2632 int x0_q = REG_QTY (REGNO (XEXP (x, 0)));
2633 struct qty_table_elem *x0_ent = &qty_table[x0_q];
2634
2635 if ((GET_MODE (XEXP (x, 0)) == x0_ent->mode)
2636 && x0_ent->const_rtx != NULL_RTX)
2637 return 0;
2638 }
2639
2640 /* This can happen as the result of virtual register instantiation, if
2641 the initial constant is too large to be a valid address. This gives
2642 us a three instruction sequence, load large offset into a register,
2643 load fp minus a constant into a register, then a MEM which is the
2644 sum of the two `constant' registers. */
2645 if (GET_CODE (x) == PLUS
2646 && REG_P (XEXP (x, 0))
2647 && REG_P (XEXP (x, 1))
2648 && REGNO_QTY_VALID_P (REGNO (XEXP (x, 0)))
2649 && REGNO_QTY_VALID_P (REGNO (XEXP (x, 1))))
2650 {
2651 int x0_q = REG_QTY (REGNO (XEXP (x, 0)));
2652 int x1_q = REG_QTY (REGNO (XEXP (x, 1)));
2653 struct qty_table_elem *x0_ent = &qty_table[x0_q];
2654 struct qty_table_elem *x1_ent = &qty_table[x1_q];
2655
2656 if ((GET_MODE (XEXP (x, 0)) == x0_ent->mode)
2657 && x0_ent->const_rtx != NULL_RTX
2658 && (GET_MODE (XEXP (x, 1)) == x1_ent->mode)
2659 && x1_ent->const_rtx != NULL_RTX)
2660 return 0;
2661 }
2662
2663 return rtx_varies_p (x, from_alias);
2664 }
2665
2666 /* Subroutine of canon_reg. Pass *XLOC through canon_reg, and validate
2667 the result if necessary. INSN is as for canon_reg. */
2668
2669 static void
2670 validate_canon_reg (rtx *xloc, rtx insn)
2671 {
2672 if (*xloc)
2673 {
2674 rtx new_rtx = canon_reg (*xloc, insn);
2675
2676 /* If replacing pseudo with hard reg or vice versa, ensure the
2677 insn remains valid. Likewise if the insn has MATCH_DUPs. */
2678 gcc_assert (insn && new_rtx);
2679 validate_change (insn, xloc, new_rtx, 1);
2680 }
2681 }
2682
2683 /* Canonicalize an expression:
2684 replace each register reference inside it
2685 with the "oldest" equivalent register.
2686
2687 If INSN is nonzero validate_change is used to ensure that INSN remains valid
2688 after we make our substitution. The calls are made with IN_GROUP nonzero
2689 so apply_change_group must be called upon the outermost return from this
2690 function (unless INSN is zero). The result of apply_change_group can
2691 generally be discarded since the changes we are making are optional. */
2692
2693 static rtx
2694 canon_reg (rtx x, rtx insn)
2695 {
2696 int i;
2697 enum rtx_code code;
2698 const char *fmt;
2699
2700 if (x == 0)
2701 return x;
2702
2703 code = GET_CODE (x);
2704 switch (code)
2705 {
2706 case PC:
2707 case CC0:
2708 case CONST:
2709 case CONST_INT:
2710 case CONST_DOUBLE:
2711 case CONST_FIXED:
2712 case CONST_VECTOR:
2713 case SYMBOL_REF:
2714 case LABEL_REF:
2715 case ADDR_VEC:
2716 case ADDR_DIFF_VEC:
2717 return x;
2718
2719 case REG:
2720 {
2721 int first;
2722 int q;
2723 struct qty_table_elem *ent;
2724
2725 /* Never replace a hard reg, because hard regs can appear
2726 in more than one machine mode, and we must preserve the mode
2727 of each occurrence. Also, some hard regs appear in
2728 MEMs that are shared and mustn't be altered. Don't try to
2729 replace any reg that maps to a reg of class NO_REGS. */
2730 if (REGNO (x) < FIRST_PSEUDO_REGISTER
2731 || ! REGNO_QTY_VALID_P (REGNO (x)))
2732 return x;
2733
2734 q = REG_QTY (REGNO (x));
2735 ent = &qty_table[q];
2736 first = ent->first_reg;
2737 return (first >= FIRST_PSEUDO_REGISTER ? regno_reg_rtx[first]
2738 : REGNO_REG_CLASS (first) == NO_REGS ? x
2739 : gen_rtx_REG (ent->mode, first));
2740 }
2741
2742 default:
2743 break;
2744 }
2745
2746 fmt = GET_RTX_FORMAT (code);
2747 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2748 {
2749 int j;
2750
2751 if (fmt[i] == 'e')
2752 validate_canon_reg (&XEXP (x, i), insn);
2753 else if (fmt[i] == 'E')
2754 for (j = 0; j < XVECLEN (x, i); j++)
2755 validate_canon_reg (&XVECEXP (x, i, j), insn);
2756 }
2757
2758 return x;
2759 }
2760
2761 /* Given an operation (CODE, *PARG1, *PARG2), where code is a comparison
2762 operation (EQ, NE, GT, etc.), follow it back through the hash table and
2763 what values are being compared.
2764
2765 *PARG1 and *PARG2 are updated to contain the rtx representing the values
2766 actually being compared. For example, if *PARG1 was (cc0) and *PARG2
2767 was (const_int 0), *PARG1 and *PARG2 will be set to the objects that were
2768 compared to produce cc0.
2769
2770 The return value is the comparison operator and is either the code of
2771 A or the code corresponding to the inverse of the comparison. */
2772
2773 static enum rtx_code
2774 find_comparison_args (enum rtx_code code, rtx *parg1, rtx *parg2,
2775 enum machine_mode *pmode1, enum machine_mode *pmode2)
2776 {
2777 rtx arg1, arg2;
2778
2779 arg1 = *parg1, arg2 = *parg2;
2780
2781 /* If ARG2 is const0_rtx, see what ARG1 is equivalent to. */
2782
2783 while (arg2 == CONST0_RTX (GET_MODE (arg1)))
2784 {
2785 /* Set nonzero when we find something of interest. */
2786 rtx x = 0;
2787 int reverse_code = 0;
2788 struct table_elt *p = 0;
2789
2790 /* If arg1 is a COMPARE, extract the comparison arguments from it.
2791 On machines with CC0, this is the only case that can occur, since
2792 fold_rtx will return the COMPARE or item being compared with zero
2793 when given CC0. */
2794
2795 if (GET_CODE (arg1) == COMPARE && arg2 == const0_rtx)
2796 x = arg1;
2797
2798 /* If ARG1 is a comparison operator and CODE is testing for
2799 STORE_FLAG_VALUE, get the inner arguments. */
2800
2801 else if (COMPARISON_P (arg1))
2802 {
2803 #ifdef FLOAT_STORE_FLAG_VALUE
2804 REAL_VALUE_TYPE fsfv;
2805 #endif
2806
2807 if (code == NE
2808 || (GET_MODE_CLASS (GET_MODE (arg1)) == MODE_INT
2809 && code == LT && STORE_FLAG_VALUE == -1)
2810 #ifdef FLOAT_STORE_FLAG_VALUE
2811 || (SCALAR_FLOAT_MODE_P (GET_MODE (arg1))
2812 && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
2813 REAL_VALUE_NEGATIVE (fsfv)))
2814 #endif
2815 )
2816 x = arg1;
2817 else if (code == EQ
2818 || (GET_MODE_CLASS (GET_MODE (arg1)) == MODE_INT
2819 && code == GE && STORE_FLAG_VALUE == -1)
2820 #ifdef FLOAT_STORE_FLAG_VALUE
2821 || (SCALAR_FLOAT_MODE_P (GET_MODE (arg1))
2822 && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
2823 REAL_VALUE_NEGATIVE (fsfv)))
2824 #endif
2825 )
2826 x = arg1, reverse_code = 1;
2827 }
2828
2829 /* ??? We could also check for
2830
2831 (ne (and (eq (...) (const_int 1))) (const_int 0))
2832
2833 and related forms, but let's wait until we see them occurring. */
2834
2835 if (x == 0)
2836 /* Look up ARG1 in the hash table and see if it has an equivalence
2837 that lets us see what is being compared. */
2838 p = lookup (arg1, SAFE_HASH (arg1, GET_MODE (arg1)), GET_MODE (arg1));
2839 if (p)
2840 {
2841 p = p->first_same_value;
2842
2843 /* If what we compare is already known to be constant, that is as
2844 good as it gets.
2845 We need to break the loop in this case, because otherwise we
2846 can have an infinite loop when looking at a reg that is known
2847 to be a constant which is the same as a comparison of a reg
2848 against zero which appears later in the insn stream, which in
2849 turn is constant and the same as the comparison of the first reg
2850 against zero... */
2851 if (p->is_const)
2852 break;
2853 }
2854
2855 for (; p; p = p->next_same_value)
2856 {
2857 enum machine_mode inner_mode = GET_MODE (p->exp);
2858 #ifdef FLOAT_STORE_FLAG_VALUE
2859 REAL_VALUE_TYPE fsfv;
2860 #endif
2861
2862 /* If the entry isn't valid, skip it. */
2863 if (! exp_equiv_p (p->exp, p->exp, 1, false))
2864 continue;
2865
2866 if (GET_CODE (p->exp) == COMPARE
2867 /* Another possibility is that this machine has a compare insn
2868 that includes the comparison code. In that case, ARG1 would
2869 be equivalent to a comparison operation that would set ARG1 to
2870 either STORE_FLAG_VALUE or zero. If this is an NE operation,
2871 ORIG_CODE is the actual comparison being done; if it is an EQ,
2872 we must reverse ORIG_CODE. On machine with a negative value
2873 for STORE_FLAG_VALUE, also look at LT and GE operations. */
2874 || ((code == NE
2875 || (code == LT
2876 && GET_MODE_CLASS (inner_mode) == MODE_INT
2877 && (GET_MODE_BITSIZE (inner_mode)
2878 <= HOST_BITS_PER_WIDE_INT)
2879 && (STORE_FLAG_VALUE
2880 & ((HOST_WIDE_INT) 1
2881 << (GET_MODE_BITSIZE (inner_mode) - 1))))
2882 #ifdef FLOAT_STORE_FLAG_VALUE
2883 || (code == LT
2884 && SCALAR_FLOAT_MODE_P (inner_mode)
2885 && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
2886 REAL_VALUE_NEGATIVE (fsfv)))
2887 #endif
2888 )
2889 && COMPARISON_P (p->exp)))
2890 {
2891 x = p->exp;
2892 break;
2893 }
2894 else if ((code == EQ
2895 || (code == GE
2896 && GET_MODE_CLASS (inner_mode) == MODE_INT
2897 && (GET_MODE_BITSIZE (inner_mode)
2898 <= HOST_BITS_PER_WIDE_INT)
2899 && (STORE_FLAG_VALUE
2900 & ((HOST_WIDE_INT) 1
2901 << (GET_MODE_BITSIZE (inner_mode) - 1))))
2902 #ifdef FLOAT_STORE_FLAG_VALUE
2903 || (code == GE
2904 && SCALAR_FLOAT_MODE_P (inner_mode)
2905 && (fsfv = FLOAT_STORE_FLAG_VALUE (GET_MODE (arg1)),
2906 REAL_VALUE_NEGATIVE (fsfv)))
2907 #endif
2908 )
2909 && COMPARISON_P (p->exp))
2910 {
2911 reverse_code = 1;
2912 x = p->exp;
2913 break;
2914 }
2915
2916 /* If this non-trapping address, e.g. fp + constant, the
2917 equivalent is a better operand since it may let us predict
2918 the value of the comparison. */
2919 else if (!rtx_addr_can_trap_p (p->exp))
2920 {
2921 arg1 = p->exp;
2922 continue;
2923 }
2924 }
2925
2926 /* If we didn't find a useful equivalence for ARG1, we are done.
2927 Otherwise, set up for the next iteration. */
2928 if (x == 0)
2929 break;
2930
2931 /* If we need to reverse the comparison, make sure that that is
2932 possible -- we can't necessarily infer the value of GE from LT
2933 with floating-point operands. */
2934 if (reverse_code)
2935 {
2936 enum rtx_code reversed = reversed_comparison_code (x, NULL_RTX);
2937 if (reversed == UNKNOWN)
2938 break;
2939 else
2940 code = reversed;
2941 }
2942 else if (COMPARISON_P (x))
2943 code = GET_CODE (x);
2944 arg1 = XEXP (x, 0), arg2 = XEXP (x, 1);
2945 }
2946
2947 /* Return our results. Return the modes from before fold_rtx
2948 because fold_rtx might produce const_int, and then it's too late. */
2949 *pmode1 = GET_MODE (arg1), *pmode2 = GET_MODE (arg2);
2950 *parg1 = fold_rtx (arg1, 0), *parg2 = fold_rtx (arg2, 0);
2951
2952 return code;
2953 }
2954
2955 /* If X is a nontrivial arithmetic operation on an argument for which
2956 a constant value can be determined, return the result of operating
2957 on that value, as a constant. Otherwise, return X, possibly with
2958 one or more operands changed to a forward-propagated constant.
2959
2960 If X is a register whose contents are known, we do NOT return
2961 those contents here; equiv_constant is called to perform that task.
2962 For SUBREGs and MEMs, we do that both here and in equiv_constant.
2963
2964 INSN is the insn that we may be modifying. If it is 0, make a copy
2965 of X before modifying it. */
2966
2967 static rtx
2968 fold_rtx (rtx x, rtx insn)
2969 {
2970 enum rtx_code code;
2971 enum machine_mode mode;
2972 const char *fmt;
2973 int i;
2974 rtx new_rtx = 0;
2975 int changed = 0;
2976
2977 /* Operands of X. */
2978 rtx folded_arg0;
2979 rtx folded_arg1;
2980
2981 /* Constant equivalents of first three operands of X;
2982 0 when no such equivalent is known. */
2983 rtx const_arg0;
2984 rtx const_arg1;
2985 rtx const_arg2;
2986
2987 /* The mode of the first operand of X. We need this for sign and zero
2988 extends. */
2989 enum machine_mode mode_arg0;
2990
2991 if (x == 0)
2992 return x;
2993
2994 /* Try to perform some initial simplifications on X. */
2995 code = GET_CODE (x);
2996 switch (code)
2997 {
2998 case MEM:
2999 case SUBREG:
3000 if ((new_rtx = equiv_constant (x)) != NULL_RTX)
3001 return new_rtx;
3002 return x;
3003
3004 case CONST:
3005 case CONST_INT:
3006 case CONST_DOUBLE:
3007 case CONST_FIXED:
3008 case CONST_VECTOR:
3009 case SYMBOL_REF:
3010 case LABEL_REF:
3011 case REG:
3012 case PC:
3013 /* No use simplifying an EXPR_LIST
3014 since they are used only for lists of args
3015 in a function call's REG_EQUAL note. */
3016 case EXPR_LIST:
3017 return x;
3018
3019 #ifdef HAVE_cc0
3020 case CC0:
3021 return prev_insn_cc0;
3022 #endif
3023
3024 case ASM_OPERANDS:
3025 if (insn)
3026 {
3027 for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
3028 validate_change (insn, &ASM_OPERANDS_INPUT (x, i),
3029 fold_rtx (ASM_OPERANDS_INPUT (x, i), insn), 0);
3030 }
3031 return x;
3032
3033 #ifdef NO_FUNCTION_CSE
3034 case CALL:
3035 if (CONSTANT_P (XEXP (XEXP (x, 0), 0)))
3036 return x;
3037 break;
3038 #endif
3039
3040 /* Anything else goes through the loop below. */
3041 default:
3042 break;
3043 }
3044
3045 mode = GET_MODE (x);
3046 const_arg0 = 0;
3047 const_arg1 = 0;
3048 const_arg2 = 0;
3049 mode_arg0 = VOIDmode;
3050
3051 /* Try folding our operands.
3052 Then see which ones have constant values known. */
3053
3054 fmt = GET_RTX_FORMAT (code);
3055 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3056 if (fmt[i] == 'e')
3057 {
3058 rtx folded_arg = XEXP (x, i), const_arg;
3059 enum machine_mode mode_arg = GET_MODE (folded_arg);
3060
3061 switch (GET_CODE (folded_arg))
3062 {
3063 case MEM:
3064 case REG:
3065 case SUBREG:
3066 const_arg = equiv_constant (folded_arg);
3067 break;
3068
3069 case CONST:
3070 case CONST_INT:
3071 case SYMBOL_REF:
3072 case LABEL_REF:
3073 case CONST_DOUBLE:
3074 case CONST_FIXED:
3075 case CONST_VECTOR:
3076 const_arg = folded_arg;
3077 break;
3078
3079 #ifdef HAVE_cc0
3080 case CC0:
3081 folded_arg = prev_insn_cc0;
3082 mode_arg = prev_insn_cc0_mode;
3083 const_arg = equiv_constant (folded_arg);
3084 break;
3085 #endif
3086
3087 default:
3088 folded_arg = fold_rtx (folded_arg, insn);
3089 const_arg = equiv_constant (folded_arg);
3090 break;
3091 }
3092
3093 /* For the first three operands, see if the operand
3094 is constant or equivalent to a constant. */
3095 switch (i)
3096 {
3097 case 0:
3098 folded_arg0 = folded_arg;
3099 const_arg0 = const_arg;
3100 mode_arg0 = mode_arg;
3101 break;
3102 case 1:
3103 folded_arg1 = folded_arg;
3104 const_arg1 = const_arg;
3105 break;
3106 case 2:
3107 const_arg2 = const_arg;
3108 break;
3109 }
3110
3111 /* Pick the least expensive of the argument and an equivalent constant
3112 argument. */
3113 if (const_arg != 0
3114 && const_arg != folded_arg
3115 && COST_IN (const_arg, code) <= COST_IN (folded_arg, code)
3116
3117 /* It's not safe to substitute the operand of a conversion
3118 operator with a constant, as the conversion's identity
3119 depends upon the mode of its operand. This optimization
3120 is handled by the call to simplify_unary_operation. */
3121 && (GET_RTX_CLASS (code) != RTX_UNARY
3122 || GET_MODE (const_arg) == mode_arg0
3123 || (code != ZERO_EXTEND
3124 && code != SIGN_EXTEND
3125 && code != TRUNCATE
3126 && code != FLOAT_TRUNCATE
3127 && code != FLOAT_EXTEND
3128 && code != FLOAT
3129 && code != FIX
3130 && code != UNSIGNED_FLOAT
3131 && code != UNSIGNED_FIX)))
3132 folded_arg = const_arg;
3133
3134 if (folded_arg == XEXP (x, i))
3135 continue;
3136
3137 if (insn == NULL_RTX && !changed)
3138 x = copy_rtx (x);
3139 changed = 1;
3140 validate_unshare_change (insn, &XEXP (x, i), folded_arg, 1);
3141 }
3142
3143 if (changed)
3144 {
3145 /* Canonicalize X if necessary, and keep const_argN and folded_argN
3146 consistent with the order in X. */
3147 if (canonicalize_change_group (insn, x))
3148 {
3149 rtx tem;
3150 tem = const_arg0, const_arg0 = const_arg1, const_arg1 = tem;
3151 tem = folded_arg0, folded_arg0 = folded_arg1, folded_arg1 = tem;
3152 }
3153
3154 apply_change_group ();
3155 }
3156
3157 /* If X is an arithmetic operation, see if we can simplify it. */
3158
3159 switch (GET_RTX_CLASS (code))
3160 {
3161 case RTX_UNARY:
3162 {
3163 /* We can't simplify extension ops unless we know the
3164 original mode. */
3165 if ((code == ZERO_EXTEND || code == SIGN_EXTEND)
3166 && mode_arg0 == VOIDmode)
3167 break;
3168
3169 new_rtx = simplify_unary_operation (code, mode,
3170 const_arg0 ? const_arg0 : folded_arg0,
3171 mode_arg0);
3172 }
3173 break;
3174
3175 case RTX_COMPARE:
3176 case RTX_COMM_COMPARE:
3177 /* See what items are actually being compared and set FOLDED_ARG[01]
3178 to those values and CODE to the actual comparison code. If any are
3179 constant, set CONST_ARG0 and CONST_ARG1 appropriately. We needn't
3180 do anything if both operands are already known to be constant. */
3181
3182 /* ??? Vector mode comparisons are not supported yet. */
3183 if (VECTOR_MODE_P (mode))
3184 break;
3185
3186 if (const_arg0 == 0 || const_arg1 == 0)
3187 {
3188 struct table_elt *p0, *p1;
3189 rtx true_rtx, false_rtx;
3190 enum machine_mode mode_arg1;
3191
3192 if (SCALAR_FLOAT_MODE_P (mode))
3193 {
3194 #ifdef FLOAT_STORE_FLAG_VALUE
3195 true_rtx = (CONST_DOUBLE_FROM_REAL_VALUE
3196 (FLOAT_STORE_FLAG_VALUE (mode), mode));
3197 #else
3198 true_rtx = NULL_RTX;
3199 #endif
3200 false_rtx = CONST0_RTX (mode);
3201 }
3202 else
3203 {
3204 true_rtx = const_true_rtx;
3205 false_rtx = const0_rtx;
3206 }
3207
3208 code = find_comparison_args (code, &folded_arg0, &folded_arg1,
3209 &mode_arg0, &mode_arg1);
3210
3211 /* If the mode is VOIDmode or a MODE_CC mode, we don't know
3212 what kinds of things are being compared, so we can't do
3213 anything with this comparison. */
3214
3215 if (mode_arg0 == VOIDmode || GET_MODE_CLASS (mode_arg0) == MODE_CC)
3216 break;
3217
3218 const_arg0 = equiv_constant (folded_arg0);
3219 const_arg1 = equiv_constant (folded_arg1);
3220
3221 /* If we do not now have two constants being compared, see
3222 if we can nevertheless deduce some things about the
3223 comparison. */
3224 if (const_arg0 == 0 || const_arg1 == 0)
3225 {
3226 if (const_arg1 != NULL)
3227 {
3228 rtx cheapest_simplification;
3229 int cheapest_cost;
3230 rtx simp_result;
3231 struct table_elt *p;
3232
3233 /* See if we can find an equivalent of folded_arg0
3234 that gets us a cheaper expression, possibly a
3235 constant through simplifications. */
3236 p = lookup (folded_arg0, SAFE_HASH (folded_arg0, mode_arg0),
3237 mode_arg0);
3238
3239 if (p != NULL)
3240 {
3241 cheapest_simplification = x;
3242 cheapest_cost = COST (x);
3243
3244 for (p = p->first_same_value; p != NULL; p = p->next_same_value)
3245 {
3246 int cost;
3247
3248 /* If the entry isn't valid, skip it. */
3249 if (! exp_equiv_p (p->exp, p->exp, 1, false))
3250 continue;
3251
3252 /* Try to simplify using this equivalence. */
3253 simp_result
3254 = simplify_relational_operation (code, mode,
3255 mode_arg0,
3256 p->exp,
3257 const_arg1);
3258
3259 if (simp_result == NULL)
3260 continue;
3261
3262 cost = COST (simp_result);
3263 if (cost < cheapest_cost)
3264 {
3265 cheapest_cost = cost;
3266 cheapest_simplification = simp_result;
3267 }
3268 }
3269
3270 /* If we have a cheaper expression now, use that
3271 and try folding it further, from the top. */
3272 if (cheapest_simplification != x)
3273 return fold_rtx (copy_rtx (cheapest_simplification),
3274 insn);
3275 }
3276 }
3277
3278 /* See if the two operands are the same. */
3279
3280 if ((REG_P (folded_arg0)
3281 && REG_P (folded_arg1)
3282 && (REG_QTY (REGNO (folded_arg0))
3283 == REG_QTY (REGNO (folded_arg1))))
3284 || ((p0 = lookup (folded_arg0,
3285 SAFE_HASH (folded_arg0, mode_arg0),
3286 mode_arg0))
3287 && (p1 = lookup (folded_arg1,
3288 SAFE_HASH (folded_arg1, mode_arg0),
3289 mode_arg0))
3290 && p0->first_same_value == p1->first_same_value))
3291 folded_arg1 = folded_arg0;
3292
3293 /* If FOLDED_ARG0 is a register, see if the comparison we are
3294 doing now is either the same as we did before or the reverse
3295 (we only check the reverse if not floating-point). */
3296 else if (REG_P (folded_arg0))
3297 {
3298 int qty = REG_QTY (REGNO (folded_arg0));
3299
3300 if (REGNO_QTY_VALID_P (REGNO (folded_arg0)))
3301 {
3302 struct qty_table_elem *ent = &qty_table[qty];
3303
3304 if ((comparison_dominates_p (ent->comparison_code, code)
3305 || (! FLOAT_MODE_P (mode_arg0)
3306 && comparison_dominates_p (ent->comparison_code,
3307 reverse_condition (code))))
3308 && (rtx_equal_p (ent->comparison_const, folded_arg1)
3309 || (const_arg1
3310 && rtx_equal_p (ent->comparison_const,
3311 const_arg1))
3312 || (REG_P (folded_arg1)
3313 && (REG_QTY (REGNO (folded_arg1)) == ent->comparison_qty))))
3314 {
3315 if (comparison_dominates_p (ent->comparison_code, code))
3316 {
3317 if (true_rtx)
3318 return true_rtx;
3319 else
3320 break;
3321 }
3322 else
3323 return false_rtx;
3324 }
3325 }
3326 }
3327 }
3328 }
3329
3330 /* If we are comparing against zero, see if the first operand is
3331 equivalent to an IOR with a constant. If so, we may be able to
3332 determine the result of this comparison. */
3333 if (const_arg1 == const0_rtx && !const_arg0)
3334 {
3335 rtx y = lookup_as_function (folded_arg0, IOR);
3336 rtx inner_const;
3337
3338 if (y != 0
3339 && (inner_const = equiv_constant (XEXP (y, 1))) != 0
3340 && GET_CODE (inner_const) == CONST_INT
3341 && INTVAL (inner_const) != 0)
3342 folded_arg0 = gen_rtx_IOR (mode_arg0, XEXP (y, 0), inner_const);
3343 }
3344
3345 {
3346 rtx op0 = const_arg0 ? const_arg0 : folded_arg0;
3347 rtx op1 = const_arg1 ? const_arg1 : folded_arg1;
3348 new_rtx = simplify_relational_operation (code, mode, mode_arg0, op0, op1);
3349 }
3350 break;
3351
3352 case RTX_BIN_ARITH:
3353 case RTX_COMM_ARITH:
3354 switch (code)
3355 {
3356 case PLUS:
3357 /* If the second operand is a LABEL_REF, see if the first is a MINUS
3358 with that LABEL_REF as its second operand. If so, the result is
3359 the first operand of that MINUS. This handles switches with an
3360 ADDR_DIFF_VEC table. */
3361 if (const_arg1 && GET_CODE (const_arg1) == LABEL_REF)
3362 {
3363 rtx y
3364 = GET_CODE (folded_arg0) == MINUS ? folded_arg0
3365 : lookup_as_function (folded_arg0, MINUS);
3366
3367 if (y != 0 && GET_CODE (XEXP (y, 1)) == LABEL_REF
3368 && XEXP (XEXP (y, 1), 0) == XEXP (const_arg1, 0))
3369 return XEXP (y, 0);
3370
3371 /* Now try for a CONST of a MINUS like the above. */
3372 if ((y = (GET_CODE (folded_arg0) == CONST ? folded_arg0
3373 : lookup_as_function (folded_arg0, CONST))) != 0
3374 && GET_CODE (XEXP (y, 0)) == MINUS
3375 && GET_CODE (XEXP (XEXP (y, 0), 1)) == LABEL_REF
3376 && XEXP (XEXP (XEXP (y, 0), 1), 0) == XEXP (const_arg1, 0))
3377 return XEXP (XEXP (y, 0), 0);
3378 }
3379
3380 /* Likewise if the operands are in the other order. */
3381 if (const_arg0 && GET_CODE (const_arg0) == LABEL_REF)
3382 {
3383 rtx y
3384 = GET_CODE (folded_arg1) == MINUS ? folded_arg1
3385 : lookup_as_function (folded_arg1, MINUS);
3386
3387 if (y != 0 && GET_CODE (XEXP (y, 1)) == LABEL_REF
3388 && XEXP (XEXP (y, 1), 0) == XEXP (const_arg0, 0))
3389 return XEXP (y, 0);
3390
3391 /* Now try for a CONST of a MINUS like the above. */
3392 if ((y = (GET_CODE (folded_arg1) == CONST ? folded_arg1
3393 : lookup_as_function (folded_arg1, CONST))) != 0
3394 && GET_CODE (XEXP (y, 0)) == MINUS
3395 && GET_CODE (XEXP (XEXP (y, 0), 1)) == LABEL_REF
3396 && XEXP (XEXP (XEXP (y, 0), 1), 0) == XEXP (const_arg0, 0))
3397 return XEXP (XEXP (y, 0), 0);
3398 }
3399
3400 /* If second operand is a register equivalent to a negative
3401 CONST_INT, see if we can find a register equivalent to the
3402 positive constant. Make a MINUS if so. Don't do this for
3403 a non-negative constant since we might then alternate between
3404 choosing positive and negative constants. Having the positive
3405 constant previously-used is the more common case. Be sure
3406 the resulting constant is non-negative; if const_arg1 were
3407 the smallest negative number this would overflow: depending
3408 on the mode, this would either just be the same value (and
3409 hence not save anything) or be incorrect. */
3410 if (const_arg1 != 0 && GET_CODE (const_arg1) == CONST_INT
3411 && INTVAL (const_arg1) < 0
3412 /* This used to test
3413
3414 -INTVAL (const_arg1) >= 0
3415
3416 But The Sun V5.0 compilers mis-compiled that test. So
3417 instead we test for the problematic value in a more direct
3418 manner and hope the Sun compilers get it correct. */
3419 && INTVAL (const_arg1) !=
3420 ((HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT - 1))
3421 && REG_P (folded_arg1))
3422 {
3423 rtx new_const = GEN_INT (-INTVAL (const_arg1));
3424 struct table_elt *p
3425 = lookup (new_const, SAFE_HASH (new_const, mode), mode);
3426
3427 if (p)
3428 for (p = p->first_same_value; p; p = p->next_same_value)
3429 if (REG_P (p->exp))
3430 return simplify_gen_binary (MINUS, mode, folded_arg0,
3431 canon_reg (p->exp, NULL_RTX));
3432 }
3433 goto from_plus;
3434
3435 case MINUS:
3436 /* If we have (MINUS Y C), see if Y is known to be (PLUS Z C2).
3437 If so, produce (PLUS Z C2-C). */
3438 if (const_arg1 != 0 && GET_CODE (const_arg1) == CONST_INT)
3439 {
3440 rtx y = lookup_as_function (XEXP (x, 0), PLUS);
3441 if (y && GET_CODE (XEXP (y, 1)) == CONST_INT)
3442 return fold_rtx (plus_constant (copy_rtx (y),
3443 -INTVAL (const_arg1)),
3444 NULL_RTX);
3445 }
3446
3447 /* Fall through. */
3448
3449 from_plus:
3450 case SMIN: case SMAX: case UMIN: case UMAX:
3451 case IOR: case AND: case XOR:
3452 case MULT:
3453 case ASHIFT: case LSHIFTRT: case ASHIFTRT:
3454 /* If we have (<op> <reg> <const_int>) for an associative OP and REG
3455 is known to be of similar form, we may be able to replace the
3456 operation with a combined operation. This may eliminate the
3457 intermediate operation if every use is simplified in this way.
3458 Note that the similar optimization done by combine.c only works
3459 if the intermediate operation's result has only one reference. */
3460
3461 if (REG_P (folded_arg0)
3462 && const_arg1 && GET_CODE (const_arg1) == CONST_INT)
3463 {
3464 int is_shift
3465 = (code == ASHIFT || code == ASHIFTRT || code == LSHIFTRT);
3466 rtx y, inner_const, new_const;
3467 rtx canon_const_arg1 = const_arg1;
3468 enum rtx_code associate_code;
3469
3470 if (is_shift
3471 && (INTVAL (const_arg1) >= GET_MODE_BITSIZE (mode)
3472 || INTVAL (const_arg1) < 0))
3473 {
3474 if (SHIFT_COUNT_TRUNCATED)
3475 canon_const_arg1 = GEN_INT (INTVAL (const_arg1)
3476 & (GET_MODE_BITSIZE (mode)
3477 - 1));
3478 else
3479 break;
3480 }
3481
3482 y = lookup_as_function (folded_arg0, code);
3483 if (y == 0)
3484 break;
3485
3486 /* If we have compiled a statement like
3487 "if (x == (x & mask1))", and now are looking at
3488 "x & mask2", we will have a case where the first operand
3489 of Y is the same as our first operand. Unless we detect
3490 this case, an infinite loop will result. */
3491 if (XEXP (y, 0) == folded_arg0)
3492 break;
3493
3494 inner_const = equiv_constant (fold_rtx (XEXP (y, 1), 0));
3495 if (!inner_const || GET_CODE (inner_const) != CONST_INT)
3496 break;
3497
3498 /* Don't associate these operations if they are a PLUS with the
3499 same constant and it is a power of two. These might be doable
3500 with a pre- or post-increment. Similarly for two subtracts of
3501 identical powers of two with post decrement. */
3502
3503 if (code == PLUS && const_arg1 == inner_const
3504 && ((HAVE_PRE_INCREMENT
3505 && exact_log2 (INTVAL (const_arg1)) >= 0)
3506 || (HAVE_POST_INCREMENT
3507 && exact_log2 (INTVAL (const_arg1)) >= 0)
3508 || (HAVE_PRE_DECREMENT
3509 && exact_log2 (- INTVAL (const_arg1)) >= 0)
3510 || (HAVE_POST_DECREMENT
3511 && exact_log2 (- INTVAL (const_arg1)) >= 0)))
3512 break;
3513
3514 /* ??? Vector mode shifts by scalar
3515 shift operand are not supported yet. */
3516 if (is_shift && VECTOR_MODE_P (mode))
3517 break;
3518
3519 if (is_shift
3520 && (INTVAL (inner_const) >= GET_MODE_BITSIZE (mode)
3521 || INTVAL (inner_const) < 0))
3522 {
3523 if (SHIFT_COUNT_TRUNCATED)
3524 inner_const = GEN_INT (INTVAL (inner_const)
3525 & (GET_MODE_BITSIZE (mode) - 1));
3526 else
3527 break;
3528 }
3529
3530 /* Compute the code used to compose the constants. For example,
3531 A-C1-C2 is A-(C1 + C2), so if CODE == MINUS, we want PLUS. */
3532
3533 associate_code = (is_shift || code == MINUS ? PLUS : code);
3534
3535 new_const = simplify_binary_operation (associate_code, mode,
3536 canon_const_arg1,
3537 inner_const);
3538
3539 if (new_const == 0)
3540 break;
3541
3542 /* If we are associating shift operations, don't let this
3543 produce a shift of the size of the object or larger.
3544 This could occur when we follow a sign-extend by a right
3545 shift on a machine that does a sign-extend as a pair
3546 of shifts. */
3547
3548 if (is_shift
3549 && GET_CODE (new_const) == CONST_INT
3550 && INTVAL (new_const) >= GET_MODE_BITSIZE (mode))
3551 {
3552 /* As an exception, we can turn an ASHIFTRT of this
3553 form into a shift of the number of bits - 1. */
3554 if (code == ASHIFTRT)
3555 new_const = GEN_INT (GET_MODE_BITSIZE (mode) - 1);
3556 else if (!side_effects_p (XEXP (y, 0)))
3557 return CONST0_RTX (mode);
3558 else
3559 break;
3560 }
3561
3562 y = copy_rtx (XEXP (y, 0));
3563
3564 /* If Y contains our first operand (the most common way this
3565 can happen is if Y is a MEM), we would do into an infinite
3566 loop if we tried to fold it. So don't in that case. */
3567
3568 if (! reg_mentioned_p (folded_arg0, y))
3569 y = fold_rtx (y, insn);
3570
3571 return simplify_gen_binary (code, mode, y, new_const);
3572 }
3573 break;
3574
3575 case DIV: case UDIV:
3576 /* ??? The associative optimization performed immediately above is
3577 also possible for DIV and UDIV using associate_code of MULT.
3578 However, we would need extra code to verify that the
3579 multiplication does not overflow, that is, there is no overflow
3580 in the calculation of new_const. */
3581 break;
3582
3583 default:
3584 break;
3585 }
3586
3587 new_rtx = simplify_binary_operation (code, mode,
3588 const_arg0 ? const_arg0 : folded_arg0,
3589 const_arg1 ? const_arg1 : folded_arg1);
3590 break;
3591
3592 case RTX_OBJ:
3593 /* (lo_sum (high X) X) is simply X. */
3594 if (code == LO_SUM && const_arg0 != 0
3595 && GET_CODE (const_arg0) == HIGH
3596 && rtx_equal_p (XEXP (const_arg0, 0), const_arg1))
3597 return const_arg1;
3598 break;
3599
3600 case RTX_TERNARY:
3601 case RTX_BITFIELD_OPS:
3602 new_rtx = simplify_ternary_operation (code, mode, mode_arg0,
3603 const_arg0 ? const_arg0 : folded_arg0,
3604 const_arg1 ? const_arg1 : folded_arg1,
3605 const_arg2 ? const_arg2 : XEXP (x, 2));
3606 break;
3607
3608 default:
3609 break;
3610 }
3611
3612 return new_rtx ? new_rtx : x;
3613 }
3614
3615 /* Return a constant value currently equivalent to X.
3616 Return 0 if we don't know one. */
3617
3618 static rtx
3619 equiv_constant (rtx x)
3620 {
3621 if (REG_P (x)
3622 && REGNO_QTY_VALID_P (REGNO (x)))
3623 {
3624 int x_q = REG_QTY (REGNO (x));
3625 struct qty_table_elem *x_ent = &qty_table[x_q];
3626
3627 if (x_ent->const_rtx)
3628 x = gen_lowpart (GET_MODE (x), x_ent->const_rtx);
3629 }
3630
3631 if (x == 0 || CONSTANT_P (x))
3632 return x;
3633
3634 if (GET_CODE (x) == SUBREG)
3635 {
3636 enum machine_mode mode = GET_MODE (x);
3637 enum machine_mode imode = GET_MODE (SUBREG_REG (x));
3638 rtx new_rtx;
3639
3640 /* See if we previously assigned a constant value to this SUBREG. */
3641 if ((new_rtx = lookup_as_function (x, CONST_INT)) != 0
3642 || (new_rtx = lookup_as_function (x, CONST_DOUBLE)) != 0
3643 || (new_rtx = lookup_as_function (x, CONST_FIXED)) != 0)
3644 return new_rtx;
3645
3646 /* If we didn't and if doing so makes sense, see if we previously
3647 assigned a constant value to the enclosing word mode SUBREG. */
3648 if (GET_MODE_SIZE (mode) < GET_MODE_SIZE (word_mode)
3649 && GET_MODE_SIZE (word_mode) < GET_MODE_SIZE (imode))
3650 {
3651 int byte = SUBREG_BYTE (x) - subreg_lowpart_offset (mode, word_mode);
3652 if (byte >= 0 && (byte % UNITS_PER_WORD) == 0)
3653 {
3654 rtx y = gen_rtx_SUBREG (word_mode, SUBREG_REG (x), byte);
3655 new_rtx = lookup_as_function (y, CONST_INT);
3656 if (new_rtx)
3657 return gen_lowpart (mode, new_rtx);
3658 }
3659 }
3660
3661 /* Otherwise see if we already have a constant for the inner REG. */
3662 if (REG_P (SUBREG_REG (x))
3663 && (new_rtx = equiv_constant (SUBREG_REG (x))) != 0)
3664 return simplify_subreg (mode, new_rtx, imode, SUBREG_BYTE (x));
3665
3666 return 0;
3667 }
3668
3669 /* If X is a MEM, see if it is a constant-pool reference, or look it up in
3670 the hash table in case its value was seen before. */
3671
3672 if (MEM_P (x))
3673 {
3674 struct table_elt *elt;
3675
3676 x = avoid_constant_pool_reference (x);
3677 if (CONSTANT_P (x))
3678 return x;
3679
3680 elt = lookup (x, SAFE_HASH (x, GET_MODE (x)), GET_MODE (x));
3681 if (elt == 0)
3682 return 0;
3683
3684 for (elt = elt->first_same_value; elt; elt = elt->next_same_value)
3685 if (elt->is_const && CONSTANT_P (elt->exp))
3686 return elt->exp;
3687 }
3688
3689 return 0;
3690 }
3691
3692 /* Given INSN, a jump insn, TAKEN indicates if we are following the
3693 "taken" branch.
3694
3695 In certain cases, this can cause us to add an equivalence. For example,
3696 if we are following the taken case of
3697 if (i == 2)
3698 we can add the fact that `i' and '2' are now equivalent.
3699
3700 In any case, we can record that this comparison was passed. If the same
3701 comparison is seen later, we will know its value. */
3702
3703 static void
3704 record_jump_equiv (rtx insn, bool taken)
3705 {
3706 int cond_known_true;
3707 rtx op0, op1;
3708 rtx set;
3709 enum machine_mode mode, mode0, mode1;
3710 int reversed_nonequality = 0;
3711 enum rtx_code code;
3712
3713 /* Ensure this is the right kind of insn. */
3714 gcc_assert (any_condjump_p (insn));
3715
3716 set = pc_set (insn);
3717
3718 /* See if this jump condition is known true or false. */
3719 if (taken)
3720 cond_known_true = (XEXP (SET_SRC (set), 2) == pc_rtx);
3721 else
3722 cond_known_true = (XEXP (SET_SRC (set), 1) == pc_rtx);
3723
3724 /* Get the type of comparison being done and the operands being compared.
3725 If we had to reverse a non-equality condition, record that fact so we
3726 know that it isn't valid for floating-point. */
3727 code = GET_CODE (XEXP (SET_SRC (set), 0));
3728 op0 = fold_rtx (XEXP (XEXP (SET_SRC (set), 0), 0), insn);
3729 op1 = fold_rtx (XEXP (XEXP (SET_SRC (set), 0), 1), insn);
3730
3731 code = find_comparison_args (code, &op0, &op1, &mode0, &mode1);
3732 if (! cond_known_true)
3733 {
3734 code = reversed_comparison_code_parts (code, op0, op1, insn);
3735
3736 /* Don't remember if we can't find the inverse. */
3737 if (code == UNKNOWN)
3738 return;
3739 }
3740
3741 /* The mode is the mode of the non-constant. */
3742 mode = mode0;
3743 if (mode1 != VOIDmode)
3744 mode = mode1;
3745
3746 record_jump_cond (code, mode, op0, op1, reversed_nonequality);
3747 }
3748
3749 /* Yet another form of subreg creation. In this case, we want something in
3750 MODE, and we should assume OP has MODE iff it is naturally modeless. */
3751
3752 static rtx
3753 record_jump_cond_subreg (enum machine_mode mode, rtx op)
3754 {
3755 enum machine_mode op_mode = GET_MODE (op);
3756 if (op_mode == mode || op_mode == VOIDmode)
3757 return op;
3758 return lowpart_subreg (mode, op, op_mode);
3759 }
3760
3761 /* We know that comparison CODE applied to OP0 and OP1 in MODE is true.
3762 REVERSED_NONEQUALITY is nonzero if CODE had to be swapped.
3763 Make any useful entries we can with that information. Called from
3764 above function and called recursively. */
3765
3766 static void
3767 record_jump_cond (enum rtx_code code, enum machine_mode mode, rtx op0,
3768 rtx op1, int reversed_nonequality)
3769 {
3770 unsigned op0_hash, op1_hash;
3771 int op0_in_memory, op1_in_memory;
3772 struct table_elt *op0_elt, *op1_elt;
3773
3774 /* If OP0 and OP1 are known equal, and either is a paradoxical SUBREG,
3775 we know that they are also equal in the smaller mode (this is also
3776 true for all smaller modes whether or not there is a SUBREG, but
3777 is not worth testing for with no SUBREG). */
3778
3779 /* Note that GET_MODE (op0) may not equal MODE. */
3780 if (code == EQ && GET_CODE (op0) == SUBREG
3781 && (GET_MODE_SIZE (GET_MODE (op0))
3782 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0)))))
3783 {
3784 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
3785 rtx tem = record_jump_cond_subreg (inner_mode, op1);
3786 if (tem)
3787 record_jump_cond (code, mode, SUBREG_REG (op0), tem,
3788 reversed_nonequality);
3789 }
3790
3791 if (code == EQ && GET_CODE (op1) == SUBREG
3792 && (GET_MODE_SIZE (GET_MODE (op1))
3793 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (op1)))))
3794 {
3795 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op1));
3796 rtx tem = record_jump_cond_subreg (inner_mode, op0);
3797 if (tem)
3798 record_jump_cond (code, mode, SUBREG_REG (op1), tem,
3799 reversed_nonequality);
3800 }
3801
3802 /* Similarly, if this is an NE comparison, and either is a SUBREG
3803 making a smaller mode, we know the whole thing is also NE. */
3804
3805 /* Note that GET_MODE (op0) may not equal MODE;
3806 if we test MODE instead, we can get an infinite recursion
3807 alternating between two modes each wider than MODE. */
3808
3809 if (code == NE && GET_CODE (op0) == SUBREG
3810 && subreg_lowpart_p (op0)
3811 && (GET_MODE_SIZE (GET_MODE (op0))
3812 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (op0)))))
3813 {
3814 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op0));
3815 rtx tem = record_jump_cond_subreg (inner_mode, op1);
3816 if (tem)
3817 record_jump_cond (code, mode, SUBREG_REG (op0), tem,
3818 reversed_nonequality);
3819 }
3820
3821 if (code == NE && GET_CODE (op1) == SUBREG
3822 && subreg_lowpart_p (op1)
3823 && (GET_MODE_SIZE (GET_MODE (op1))
3824 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (op1)))))
3825 {
3826 enum machine_mode inner_mode = GET_MODE (SUBREG_REG (op1));
3827 rtx tem = record_jump_cond_subreg (inner_mode, op0);
3828 if (tem)
3829 record_jump_cond (code, mode, SUBREG_REG (op1), tem,
3830 reversed_nonequality);
3831 }
3832
3833 /* Hash both operands. */
3834
3835 do_not_record = 0;
3836 hash_arg_in_memory = 0;
3837 op0_hash = HASH (op0, mode);
3838 op0_in_memory = hash_arg_in_memory;
3839
3840 if (do_not_record)
3841 return;
3842
3843 do_not_record = 0;
3844 hash_arg_in_memory = 0;
3845 op1_hash = HASH (op1, mode);
3846 op1_in_memory = hash_arg_in_memory;
3847
3848 if (do_not_record)
3849 return;
3850
3851 /* Look up both operands. */
3852 op0_elt = lookup (op0, op0_hash, mode);
3853 op1_elt = lookup (op1, op1_hash, mode);
3854
3855 /* If both operands are already equivalent or if they are not in the
3856 table but are identical, do nothing. */
3857 if ((op0_elt != 0 && op1_elt != 0
3858 && op0_elt->first_same_value == op1_elt->first_same_value)
3859 || op0 == op1 || rtx_equal_p (op0, op1))
3860 return;
3861
3862 /* If we aren't setting two things equal all we can do is save this
3863 comparison. Similarly if this is floating-point. In the latter
3864 case, OP1 might be zero and both -0.0 and 0.0 are equal to it.
3865 If we record the equality, we might inadvertently delete code
3866 whose intent was to change -0 to +0. */
3867
3868 if (code != EQ || FLOAT_MODE_P (GET_MODE (op0)))
3869 {
3870 struct qty_table_elem *ent;
3871 int qty;
3872
3873 /* If we reversed a floating-point comparison, if OP0 is not a
3874 register, or if OP1 is neither a register or constant, we can't
3875 do anything. */
3876
3877 if (!REG_P (op1))
3878 op1 = equiv_constant (op1);
3879
3880 if ((reversed_nonequality && FLOAT_MODE_P (mode))
3881 || !REG_P (op0) || op1 == 0)
3882 return;
3883
3884 /* Put OP0 in the hash table if it isn't already. This gives it a
3885 new quantity number. */
3886 if (op0_elt == 0)
3887 {
3888 if (insert_regs (op0, NULL, 0))
3889 {
3890 rehash_using_reg (op0);
3891 op0_hash = HASH (op0, mode);
3892
3893 /* If OP0 is contained in OP1, this changes its hash code
3894 as well. Faster to rehash than to check, except
3895 for the simple case of a constant. */
3896 if (! CONSTANT_P (op1))
3897 op1_hash = HASH (op1,mode);
3898 }
3899
3900 op0_elt = insert (op0, NULL, op0_hash, mode);
3901 op0_elt->in_memory = op0_in_memory;
3902 }
3903
3904 qty = REG_QTY (REGNO (op0));
3905 ent = &qty_table[qty];
3906
3907 ent->comparison_code = code;
3908 if (REG_P (op1))
3909 {
3910 /* Look it up again--in case op0 and op1 are the same. */
3911 op1_elt = lookup (op1, op1_hash, mode);
3912
3913 /* Put OP1 in the hash table so it gets a new quantity number. */
3914 if (op1_elt == 0)
3915 {
3916 if (insert_regs (op1, NULL, 0))
3917 {
3918 rehash_using_reg (op1);
3919 op1_hash = HASH (op1, mode);
3920 }
3921
3922 op1_elt = insert (op1, NULL, op1_hash, mode);
3923 op1_elt->in_memory = op1_in_memory;
3924 }
3925
3926 ent->comparison_const = NULL_RTX;
3927 ent->comparison_qty = REG_QTY (REGNO (op1));
3928 }
3929 else
3930 {
3931 ent->comparison_const = op1;
3932 ent->comparison_qty = -1;
3933 }
3934
3935 return;
3936 }
3937
3938 /* If either side is still missing an equivalence, make it now,
3939 then merge the equivalences. */
3940
3941 if (op0_elt == 0)
3942 {
3943 if (insert_regs (op0, NULL, 0))
3944 {
3945 rehash_using_reg (op0);
3946 op0_hash = HASH (op0, mode);
3947 }
3948
3949 op0_elt = insert (op0, NULL, op0_hash, mode);
3950 op0_elt->in_memory = op0_in_memory;
3951 }
3952
3953 if (op1_elt == 0)
3954 {
3955 if (insert_regs (op1, NULL, 0))
3956 {
3957 rehash_using_reg (op1);
3958 op1_hash = HASH (op1, mode);
3959 }
3960
3961 op1_elt = insert (op1, NULL, op1_hash, mode);
3962 op1_elt->in_memory = op1_in_memory;
3963 }
3964
3965 merge_equiv_classes (op0_elt, op1_elt);
3966 }
3967
3968 /* CSE processing for one instruction.
3969 First simplify sources and addresses of all assignments
3970 in the instruction, using previously-computed equivalents values.
3971 Then install the new sources and destinations in the table
3972 of available values. */
3973
3974 /* Data on one SET contained in the instruction. */
3975
3976 struct set
3977 {
3978 /* The SET rtx itself. */
3979 rtx rtl;
3980 /* The SET_SRC of the rtx (the original value, if it is changing). */
3981 rtx src;
3982 /* The hash-table element for the SET_SRC of the SET. */
3983 struct table_elt *src_elt;
3984 /* Hash value for the SET_SRC. */
3985 unsigned src_hash;
3986 /* Hash value for the SET_DEST. */
3987 unsigned dest_hash;
3988 /* The SET_DEST, with SUBREG, etc., stripped. */
3989 rtx inner_dest;
3990 /* Nonzero if the SET_SRC is in memory. */
3991 char src_in_memory;
3992 /* Nonzero if the SET_SRC contains something
3993 whose value cannot be predicted and understood. */
3994 char src_volatile;
3995 /* Original machine mode, in case it becomes a CONST_INT.
3996 The size of this field should match the size of the mode
3997 field of struct rtx_def (see rtl.h). */
3998 ENUM_BITFIELD(machine_mode) mode : 8;
3999 /* A constant equivalent for SET_SRC, if any. */
4000 rtx src_const;
4001 /* Hash value of constant equivalent for SET_SRC. */
4002 unsigned src_const_hash;
4003 /* Table entry for constant equivalent for SET_SRC, if any. */
4004 struct table_elt *src_const_elt;
4005 /* Table entry for the destination address. */
4006 struct table_elt *dest_addr_elt;
4007 };
4008
4009 static void
4010 cse_insn (rtx insn)
4011 {
4012 rtx x = PATTERN (insn);
4013 int i;
4014 rtx tem;
4015 int n_sets = 0;
4016
4017 rtx src_eqv = 0;
4018 struct table_elt *src_eqv_elt = 0;
4019 int src_eqv_volatile = 0;
4020 int src_eqv_in_memory = 0;
4021 unsigned src_eqv_hash = 0;
4022
4023 struct set *sets = (struct set *) 0;
4024
4025 this_insn = insn;
4026 #ifdef HAVE_cc0
4027 /* Records what this insn does to set CC0. */
4028 this_insn_cc0 = 0;
4029 this_insn_cc0_mode = VOIDmode;
4030 #endif
4031
4032 /* Find all the SETs and CLOBBERs in this instruction.
4033 Record all the SETs in the array `set' and count them.
4034 Also determine whether there is a CLOBBER that invalidates
4035 all memory references, or all references at varying addresses. */
4036
4037 if (CALL_P (insn))
4038 {
4039 for (tem = CALL_INSN_FUNCTION_USAGE (insn); tem; tem = XEXP (tem, 1))
4040 {
4041 if (GET_CODE (XEXP (tem, 0)) == CLOBBER)
4042 invalidate (SET_DEST (XEXP (tem, 0)), VOIDmode);
4043 XEXP (tem, 0) = canon_reg (XEXP (tem, 0), insn);
4044 }
4045 }
4046
4047 if (GET_CODE (x) == SET)
4048 {
4049 sets = XALLOCA (struct set);
4050 sets[0].rtl = x;
4051
4052 /* Ignore SETs that are unconditional jumps.
4053 They never need cse processing, so this does not hurt.
4054 The reason is not efficiency but rather
4055 so that we can test at the end for instructions
4056 that have been simplified to unconditional jumps
4057 and not be misled by unchanged instructions
4058 that were unconditional jumps to begin with. */
4059 if (SET_DEST (x) == pc_rtx
4060 && GET_CODE (SET_SRC (x)) == LABEL_REF)
4061 ;
4062
4063 /* Don't count call-insns, (set (reg 0) (call ...)), as a set.
4064 The hard function value register is used only once, to copy to
4065 someplace else, so it isn't worth cse'ing (and on 80386 is unsafe)!
4066 Ensure we invalidate the destination register. On the 80386 no
4067 other code would invalidate it since it is a fixed_reg.
4068 We need not check the return of apply_change_group; see canon_reg. */
4069
4070 else if (GET_CODE (SET_SRC (x)) == CALL)
4071 {
4072 canon_reg (SET_SRC (x), insn);
4073 apply_change_group ();
4074 fold_rtx (SET_SRC (x), insn);
4075 invalidate (SET_DEST (x), VOIDmode);
4076 }
4077 else
4078 n_sets = 1;
4079 }
4080 else if (GET_CODE (x) == PARALLEL)
4081 {
4082 int lim = XVECLEN (x, 0);
4083
4084 sets = XALLOCAVEC (struct set, lim);
4085
4086 /* Find all regs explicitly clobbered in this insn,
4087 and ensure they are not replaced with any other regs
4088 elsewhere in this insn.
4089 When a reg that is clobbered is also used for input,
4090 we should presume that that is for a reason,
4091 and we should not substitute some other register
4092 which is not supposed to be clobbered.
4093 Therefore, this loop cannot be merged into the one below
4094 because a CALL may precede a CLOBBER and refer to the
4095 value clobbered. We must not let a canonicalization do
4096 anything in that case. */
4097 for (i = 0; i < lim; i++)
4098 {
4099 rtx y = XVECEXP (x, 0, i);
4100 if (GET_CODE (y) == CLOBBER)
4101 {
4102 rtx clobbered = XEXP (y, 0);
4103
4104 if (REG_P (clobbered)
4105 || GET_CODE (clobbered) == SUBREG)
4106 invalidate (clobbered, VOIDmode);
4107 else if (GET_CODE (clobbered) == STRICT_LOW_PART
4108 || GET_CODE (clobbered) == ZERO_EXTRACT)
4109 invalidate (XEXP (clobbered, 0), GET_MODE (clobbered));
4110 }
4111 }
4112
4113 for (i = 0; i < lim; i++)
4114 {
4115 rtx y = XVECEXP (x, 0, i);
4116 if (GET_CODE (y) == SET)
4117 {
4118 /* As above, we ignore unconditional jumps and call-insns and
4119 ignore the result of apply_change_group. */
4120 if (GET_CODE (SET_SRC (y)) == CALL)
4121 {
4122 canon_reg (SET_SRC (y), insn);
4123 apply_change_group ();
4124 fold_rtx (SET_SRC (y), insn);
4125 invalidate (SET_DEST (y), VOIDmode);
4126 }
4127 else if (SET_DEST (y) == pc_rtx
4128 && GET_CODE (SET_SRC (y)) == LABEL_REF)
4129 ;
4130 else
4131 sets[n_sets++].rtl = y;
4132 }
4133 else if (GET_CODE (y) == CLOBBER)
4134 {
4135 /* If we clobber memory, canon the address.
4136 This does nothing when a register is clobbered
4137 because we have already invalidated the reg. */
4138 if (MEM_P (XEXP (y, 0)))
4139 canon_reg (XEXP (y, 0), insn);
4140 }
4141 else if (GET_CODE (y) == USE
4142 && ! (REG_P (XEXP (y, 0))
4143 && REGNO (XEXP (y, 0)) < FIRST_PSEUDO_REGISTER))
4144 canon_reg (y, insn);
4145 else if (GET_CODE (y) == CALL)
4146 {
4147 /* The result of apply_change_group can be ignored; see
4148 canon_reg. */
4149 canon_reg (y, insn);
4150 apply_change_group ();
4151 fold_rtx (y, insn);
4152 }
4153 }
4154 }
4155 else if (GET_CODE (x) == CLOBBER)
4156 {
4157 if (MEM_P (XEXP (x, 0)))
4158 canon_reg (XEXP (x, 0), insn);
4159 }
4160
4161 /* Canonicalize a USE of a pseudo register or memory location. */
4162 else if (GET_CODE (x) == USE
4163 && ! (REG_P (XEXP (x, 0))
4164 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER))
4165 canon_reg (XEXP (x, 0), insn);
4166 else if (GET_CODE (x) == CALL)
4167 {
4168 /* The result of apply_change_group can be ignored; see canon_reg. */
4169 canon_reg (x, insn);
4170 apply_change_group ();
4171 fold_rtx (x, insn);
4172 }
4173
4174 /* Store the equivalent value in SRC_EQV, if different, or if the DEST
4175 is a STRICT_LOW_PART. The latter condition is necessary because SRC_EQV
4176 is handled specially for this case, and if it isn't set, then there will
4177 be no equivalence for the destination. */
4178 if (n_sets == 1 && REG_NOTES (insn) != 0
4179 && (tem = find_reg_note (insn, REG_EQUAL, NULL_RTX)) != 0
4180 && (! rtx_equal_p (XEXP (tem, 0), SET_SRC (sets[0].rtl))
4181 || GET_CODE (SET_DEST (sets[0].rtl)) == STRICT_LOW_PART))
4182 {
4183 /* The result of apply_change_group can be ignored; see canon_reg. */
4184 canon_reg (XEXP (tem, 0), insn);
4185 apply_change_group ();
4186 src_eqv = fold_rtx (XEXP (tem, 0), insn);
4187 XEXP (tem, 0) = copy_rtx (src_eqv);
4188 df_notes_rescan (insn);
4189 }
4190
4191 /* Canonicalize sources and addresses of destinations.
4192 We do this in a separate pass to avoid problems when a MATCH_DUP is
4193 present in the insn pattern. In that case, we want to ensure that
4194 we don't break the duplicate nature of the pattern. So we will replace
4195 both operands at the same time. Otherwise, we would fail to find an
4196 equivalent substitution in the loop calling validate_change below.
4197
4198 We used to suppress canonicalization of DEST if it appears in SRC,
4199 but we don't do this any more. */
4200
4201 for (i = 0; i < n_sets; i++)
4202 {
4203 rtx dest = SET_DEST (sets[i].rtl);
4204 rtx src = SET_SRC (sets[i].rtl);
4205 rtx new_rtx = canon_reg (src, insn);
4206
4207 validate_change (insn, &SET_SRC (sets[i].rtl), new_rtx, 1);
4208
4209 if (GET_CODE (dest) == ZERO_EXTRACT)
4210 {
4211 validate_change (insn, &XEXP (dest, 1),
4212 canon_reg (XEXP (dest, 1), insn), 1);
4213 validate_change (insn, &XEXP (dest, 2),
4214 canon_reg (XEXP (dest, 2), insn), 1);
4215 }
4216
4217 while (GET_CODE (dest) == SUBREG
4218 || GET_CODE (dest) == ZERO_EXTRACT
4219 || GET_CODE (dest) == STRICT_LOW_PART)
4220 dest = XEXP (dest, 0);
4221
4222 if (MEM_P (dest))
4223 canon_reg (dest, insn);
4224 }
4225
4226 /* Now that we have done all the replacements, we can apply the change
4227 group and see if they all work. Note that this will cause some
4228 canonicalizations that would have worked individually not to be applied
4229 because some other canonicalization didn't work, but this should not
4230 occur often.
4231
4232 The result of apply_change_group can be ignored; see canon_reg. */
4233
4234 apply_change_group ();
4235
4236 /* Set sets[i].src_elt to the class each source belongs to.
4237 Detect assignments from or to volatile things
4238 and set set[i] to zero so they will be ignored
4239 in the rest of this function.
4240
4241 Nothing in this loop changes the hash table or the register chains. */
4242
4243 for (i = 0; i < n_sets; i++)
4244 {
4245 rtx src, dest;
4246 rtx src_folded;
4247 struct table_elt *elt = 0, *p;
4248 enum machine_mode mode;
4249 rtx src_eqv_here;
4250 rtx src_const = 0;
4251 rtx src_related = 0;
4252 struct table_elt *src_const_elt = 0;
4253 int src_cost = MAX_COST;
4254 int src_eqv_cost = MAX_COST;
4255 int src_folded_cost = MAX_COST;
4256 int src_related_cost = MAX_COST;
4257 int src_elt_cost = MAX_COST;
4258 int src_regcost = MAX_COST;
4259 int src_eqv_regcost = MAX_COST;
4260 int src_folded_regcost = MAX_COST;
4261 int src_related_regcost = MAX_COST;
4262 int src_elt_regcost = MAX_COST;
4263 /* Set nonzero if we need to call force_const_mem on with the
4264 contents of src_folded before using it. */
4265 int src_folded_force_flag = 0;
4266
4267 dest = SET_DEST (sets[i].rtl);
4268 src = SET_SRC (sets[i].rtl);
4269
4270 /* If SRC is a constant that has no machine mode,
4271 hash it with the destination's machine mode.
4272 This way we can keep different modes separate. */
4273
4274 mode = GET_MODE (src) == VOIDmode ? GET_MODE (dest) : GET_MODE (src);
4275 sets[i].mode = mode;
4276
4277 if (src_eqv)
4278 {
4279 enum machine_mode eqvmode = mode;
4280 if (GET_CODE (dest) == STRICT_LOW_PART)
4281 eqvmode = GET_MODE (SUBREG_REG (XEXP (dest, 0)));
4282 do_not_record = 0;
4283 hash_arg_in_memory = 0;
4284 src_eqv_hash = HASH (src_eqv, eqvmode);
4285
4286 /* Find the equivalence class for the equivalent expression. */
4287
4288 if (!do_not_record)
4289 src_eqv_elt = lookup (src_eqv, src_eqv_hash, eqvmode);
4290
4291 src_eqv_volatile = do_not_record;
4292 src_eqv_in_memory = hash_arg_in_memory;
4293 }
4294
4295 /* If this is a STRICT_LOW_PART assignment, src_eqv corresponds to the
4296 value of the INNER register, not the destination. So it is not
4297 a valid substitution for the source. But save it for later. */
4298 if (GET_CODE (dest) == STRICT_LOW_PART)
4299 src_eqv_here = 0;
4300 else
4301 src_eqv_here = src_eqv;
4302
4303 /* Simplify and foldable subexpressions in SRC. Then get the fully-
4304 simplified result, which may not necessarily be valid. */
4305 src_folded = fold_rtx (src, insn);
4306
4307 #if 0
4308 /* ??? This caused bad code to be generated for the m68k port with -O2.
4309 Suppose src is (CONST_INT -1), and that after truncation src_folded
4310 is (CONST_INT 3). Suppose src_folded is then used for src_const.
4311 At the end we will add src and src_const to the same equivalence
4312 class. We now have 3 and -1 on the same equivalence class. This
4313 causes later instructions to be mis-optimized. */
4314 /* If storing a constant in a bitfield, pre-truncate the constant
4315 so we will be able to record it later. */
4316 if (GET_CODE (SET_DEST (sets[i].rtl)) == ZERO_EXTRACT)
4317 {
4318 rtx width = XEXP (SET_DEST (sets[i].rtl), 1);
4319
4320 if (GET_CODE (src) == CONST_INT
4321 && GET_CODE (width) == CONST_INT
4322 && INTVAL (width) < HOST_BITS_PER_WIDE_INT
4323 && (INTVAL (src) & ((HOST_WIDE_INT) (-1) << INTVAL (width))))
4324 src_folded
4325 = GEN_INT (INTVAL (src) & (((HOST_WIDE_INT) 1
4326 << INTVAL (width)) - 1));
4327 }
4328 #endif
4329
4330 /* Compute SRC's hash code, and also notice if it
4331 should not be recorded at all. In that case,
4332 prevent any further processing of this assignment. */
4333 do_not_record = 0;
4334 hash_arg_in_memory = 0;
4335
4336 sets[i].src = src;
4337 sets[i].src_hash = HASH (src, mode);
4338 sets[i].src_volatile = do_not_record;
4339 sets[i].src_in_memory = hash_arg_in_memory;
4340
4341 /* If SRC is a MEM, there is a REG_EQUIV note for SRC, and DEST is
4342 a pseudo, do not record SRC. Using SRC as a replacement for
4343 anything else will be incorrect in that situation. Note that
4344 this usually occurs only for stack slots, in which case all the
4345 RTL would be referring to SRC, so we don't lose any optimization
4346 opportunities by not having SRC in the hash table. */
4347
4348 if (MEM_P (src)
4349 && find_reg_note (insn, REG_EQUIV, NULL_RTX) != 0
4350 && REG_P (dest)
4351 && REGNO (dest) >= FIRST_PSEUDO_REGISTER)
4352 sets[i].src_volatile = 1;
4353
4354 #if 0
4355 /* It is no longer clear why we used to do this, but it doesn't
4356 appear to still be needed. So let's try without it since this
4357 code hurts cse'ing widened ops. */
4358 /* If source is a paradoxical subreg (such as QI treated as an SI),
4359 treat it as volatile. It may do the work of an SI in one context
4360 where the extra bits are not being used, but cannot replace an SI
4361 in general. */
4362 if (GET_CODE (src) == SUBREG
4363 && (GET_MODE_SIZE (GET_MODE (src))
4364 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))))
4365 sets[i].src_volatile = 1;
4366 #endif
4367
4368 /* Locate all possible equivalent forms for SRC. Try to replace
4369 SRC in the insn with each cheaper equivalent.
4370
4371 We have the following types of equivalents: SRC itself, a folded
4372 version, a value given in a REG_EQUAL note, or a value related
4373 to a constant.
4374
4375 Each of these equivalents may be part of an additional class
4376 of equivalents (if more than one is in the table, they must be in
4377 the same class; we check for this).
4378
4379 If the source is volatile, we don't do any table lookups.
4380
4381 We note any constant equivalent for possible later use in a
4382 REG_NOTE. */
4383
4384 if (!sets[i].src_volatile)
4385 elt = lookup (src, sets[i].src_hash, mode);
4386
4387 sets[i].src_elt = elt;
4388
4389 if (elt && src_eqv_here && src_eqv_elt)
4390 {
4391 if (elt->first_same_value != src_eqv_elt->first_same_value)
4392 {
4393 /* The REG_EQUAL is indicating that two formerly distinct
4394 classes are now equivalent. So merge them. */
4395 merge_equiv_classes (elt, src_eqv_elt);
4396 src_eqv_hash = HASH (src_eqv, elt->mode);
4397 src_eqv_elt = lookup (src_eqv, src_eqv_hash, elt->mode);
4398 }
4399
4400 src_eqv_here = 0;
4401 }
4402
4403 else if (src_eqv_elt)
4404 elt = src_eqv_elt;
4405
4406 /* Try to find a constant somewhere and record it in `src_const'.
4407 Record its table element, if any, in `src_const_elt'. Look in
4408 any known equivalences first. (If the constant is not in the
4409 table, also set `sets[i].src_const_hash'). */
4410 if (elt)
4411 for (p = elt->first_same_value; p; p = p->next_same_value)
4412 if (p->is_const)
4413 {
4414 src_const = p->exp;
4415 src_const_elt = elt;
4416 break;
4417 }
4418
4419 if (src_const == 0
4420 && (CONSTANT_P (src_folded)
4421 /* Consider (minus (label_ref L1) (label_ref L2)) as
4422 "constant" here so we will record it. This allows us
4423 to fold switch statements when an ADDR_DIFF_VEC is used. */
4424 || (GET_CODE (src_folded) == MINUS
4425 && GET_CODE (XEXP (src_folded, 0)) == LABEL_REF
4426 && GET_CODE (XEXP (src_folded, 1)) == LABEL_REF)))
4427 src_const = src_folded, src_const_elt = elt;
4428 else if (src_const == 0 && src_eqv_here && CONSTANT_P (src_eqv_here))
4429 src_const = src_eqv_here, src_const_elt = src_eqv_elt;
4430
4431 /* If we don't know if the constant is in the table, get its
4432 hash code and look it up. */
4433 if (src_const && src_const_elt == 0)
4434 {
4435 sets[i].src_const_hash = HASH (src_const, mode);
4436 src_const_elt = lookup (src_const, sets[i].src_const_hash, mode);
4437 }
4438
4439 sets[i].src_const = src_const;
4440 sets[i].src_const_elt = src_const_elt;
4441
4442 /* If the constant and our source are both in the table, mark them as
4443 equivalent. Otherwise, if a constant is in the table but the source
4444 isn't, set ELT to it. */
4445 if (src_const_elt && elt
4446 && src_const_elt->first_same_value != elt->first_same_value)
4447 merge_equiv_classes (elt, src_const_elt);
4448 else if (src_const_elt && elt == 0)
4449 elt = src_const_elt;
4450
4451 /* See if there is a register linearly related to a constant
4452 equivalent of SRC. */
4453 if (src_const
4454 && (GET_CODE (src_const) == CONST
4455 || (src_const_elt && src_const_elt->related_value != 0)))
4456 {
4457 src_related = use_related_value (src_const, src_const_elt);
4458 if (src_related)
4459 {
4460 struct table_elt *src_related_elt
4461 = lookup (src_related, HASH (src_related, mode), mode);
4462 if (src_related_elt && elt)
4463 {
4464 if (elt->first_same_value
4465 != src_related_elt->first_same_value)
4466 /* This can occur when we previously saw a CONST
4467 involving a SYMBOL_REF and then see the SYMBOL_REF
4468 twice. Merge the involved classes. */
4469 merge_equiv_classes (elt, src_related_elt);
4470
4471 src_related = 0;
4472 src_related_elt = 0;
4473 }
4474 else if (src_related_elt && elt == 0)
4475 elt = src_related_elt;
4476 }
4477 }
4478
4479 /* See if we have a CONST_INT that is already in a register in a
4480 wider mode. */
4481
4482 if (src_const && src_related == 0 && GET_CODE (src_const) == CONST_INT
4483 && GET_MODE_CLASS (mode) == MODE_INT
4484 && GET_MODE_BITSIZE (mode) < BITS_PER_WORD)
4485 {
4486 enum machine_mode wider_mode;
4487
4488 for (wider_mode = GET_MODE_WIDER_MODE (mode);
4489 wider_mode != VOIDmode
4490 && GET_MODE_BITSIZE (wider_mode) <= BITS_PER_WORD
4491 && src_related == 0;
4492 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
4493 {
4494 struct table_elt *const_elt
4495 = lookup (src_const, HASH (src_const, wider_mode), wider_mode);
4496
4497 if (const_elt == 0)
4498 continue;
4499
4500 for (const_elt = const_elt->first_same_value;
4501 const_elt; const_elt = const_elt->next_same_value)
4502 if (REG_P (const_elt->exp))
4503 {
4504 src_related = gen_lowpart (mode, const_elt->exp);
4505 break;
4506 }
4507 }
4508 }
4509
4510 /* Another possibility is that we have an AND with a constant in
4511 a mode narrower than a word. If so, it might have been generated
4512 as part of an "if" which would narrow the AND. If we already
4513 have done the AND in a wider mode, we can use a SUBREG of that
4514 value. */
4515
4516 if (flag_expensive_optimizations && ! src_related
4517 && GET_CODE (src) == AND && GET_CODE (XEXP (src, 1)) == CONST_INT
4518 && GET_MODE_SIZE (mode) < UNITS_PER_WORD)
4519 {
4520 enum machine_mode tmode;
4521 rtx new_and = gen_rtx_AND (VOIDmode, NULL_RTX, XEXP (src, 1));
4522
4523 for (tmode = GET_MODE_WIDER_MODE (mode);
4524 GET_MODE_SIZE (tmode) <= UNITS_PER_WORD;
4525 tmode = GET_MODE_WIDER_MODE (tmode))
4526 {
4527 rtx inner = gen_lowpart (tmode, XEXP (src, 0));
4528 struct table_elt *larger_elt;
4529
4530 if (inner)
4531 {
4532 PUT_MODE (new_and, tmode);
4533 XEXP (new_and, 0) = inner;
4534 larger_elt = lookup (new_and, HASH (new_and, tmode), tmode);
4535 if (larger_elt == 0)
4536 continue;
4537
4538 for (larger_elt = larger_elt->first_same_value;
4539 larger_elt; larger_elt = larger_elt->next_same_value)
4540 if (REG_P (larger_elt->exp))
4541 {
4542 src_related
4543 = gen_lowpart (mode, larger_elt->exp);
4544 break;
4545 }
4546
4547 if (src_related)
4548 break;
4549 }
4550 }
4551 }
4552
4553 #ifdef LOAD_EXTEND_OP
4554 /* See if a MEM has already been loaded with a widening operation;
4555 if it has, we can use a subreg of that. Many CISC machines
4556 also have such operations, but this is only likely to be
4557 beneficial on these machines. */
4558
4559 if (flag_expensive_optimizations && src_related == 0
4560 && (GET_MODE_SIZE (mode) < UNITS_PER_WORD)
4561 && GET_MODE_CLASS (mode) == MODE_INT
4562 && MEM_P (src) && ! do_not_record
4563 && LOAD_EXTEND_OP (mode) != UNKNOWN)
4564 {
4565 struct rtx_def memory_extend_buf;
4566 rtx memory_extend_rtx = &memory_extend_buf;
4567 enum machine_mode tmode;
4568
4569 /* Set what we are trying to extend and the operation it might
4570 have been extended with. */
4571 memset (memory_extend_rtx, 0, sizeof(*memory_extend_rtx));
4572 PUT_CODE (memory_extend_rtx, LOAD_EXTEND_OP (mode));
4573 XEXP (memory_extend_rtx, 0) = src;
4574
4575 for (tmode = GET_MODE_WIDER_MODE (mode);
4576 GET_MODE_SIZE (tmode) <= UNITS_PER_WORD;
4577 tmode = GET_MODE_WIDER_MODE (tmode))
4578 {
4579 struct table_elt *larger_elt;
4580
4581 PUT_MODE (memory_extend_rtx, tmode);
4582 larger_elt = lookup (memory_extend_rtx,
4583 HASH (memory_extend_rtx, tmode), tmode);
4584 if (larger_elt == 0)
4585 continue;
4586
4587 for (larger_elt = larger_elt->first_same_value;
4588 larger_elt; larger_elt = larger_elt->next_same_value)
4589 if (REG_P (larger_elt->exp))
4590 {
4591 src_related = gen_lowpart (mode, larger_elt->exp);
4592 break;
4593 }
4594
4595 if (src_related)
4596 break;
4597 }
4598 }
4599 #endif /* LOAD_EXTEND_OP */
4600
4601 if (src == src_folded)
4602 src_folded = 0;
4603
4604 /* At this point, ELT, if nonzero, points to a class of expressions
4605 equivalent to the source of this SET and SRC, SRC_EQV, SRC_FOLDED,
4606 and SRC_RELATED, if nonzero, each contain additional equivalent
4607 expressions. Prune these latter expressions by deleting expressions
4608 already in the equivalence class.
4609
4610 Check for an equivalent identical to the destination. If found,
4611 this is the preferred equivalent since it will likely lead to
4612 elimination of the insn. Indicate this by placing it in
4613 `src_related'. */
4614
4615 if (elt)
4616 elt = elt->first_same_value;
4617 for (p = elt; p; p = p->next_same_value)
4618 {
4619 enum rtx_code code = GET_CODE (p->exp);
4620
4621 /* If the expression is not valid, ignore it. Then we do not
4622 have to check for validity below. In most cases, we can use
4623 `rtx_equal_p', since canonicalization has already been done. */
4624 if (code != REG && ! exp_equiv_p (p->exp, p->exp, 1, false))
4625 continue;
4626
4627 /* Also skip paradoxical subregs, unless that's what we're
4628 looking for. */
4629 if (code == SUBREG
4630 && (GET_MODE_SIZE (GET_MODE (p->exp))
4631 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (p->exp))))
4632 && ! (src != 0
4633 && GET_CODE (src) == SUBREG
4634 && GET_MODE (src) == GET_MODE (p->exp)
4635 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
4636 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (p->exp))))))
4637 continue;
4638
4639 if (src && GET_CODE (src) == code && rtx_equal_p (src, p->exp))
4640 src = 0;
4641 else if (src_folded && GET_CODE (src_folded) == code
4642 && rtx_equal_p (src_folded, p->exp))
4643 src_folded = 0;
4644 else if (src_eqv_here && GET_CODE (src_eqv_here) == code
4645 && rtx_equal_p (src_eqv_here, p->exp))
4646 src_eqv_here = 0;
4647 else if (src_related && GET_CODE (src_related) == code
4648 && rtx_equal_p (src_related, p->exp))
4649 src_related = 0;
4650
4651 /* This is the same as the destination of the insns, we want
4652 to prefer it. Copy it to src_related. The code below will
4653 then give it a negative cost. */
4654 if (GET_CODE (dest) == code && rtx_equal_p (p->exp, dest))
4655 src_related = dest;
4656 }
4657
4658 /* Find the cheapest valid equivalent, trying all the available
4659 possibilities. Prefer items not in the hash table to ones
4660 that are when they are equal cost. Note that we can never
4661 worsen an insn as the current contents will also succeed.
4662 If we find an equivalent identical to the destination, use it as best,
4663 since this insn will probably be eliminated in that case. */
4664 if (src)
4665 {
4666 if (rtx_equal_p (src, dest))
4667 src_cost = src_regcost = -1;
4668 else
4669 {
4670 src_cost = COST (src);
4671 src_regcost = approx_reg_cost (src);
4672 }
4673 }
4674
4675 if (src_eqv_here)
4676 {
4677 if (rtx_equal_p (src_eqv_here, dest))
4678 src_eqv_cost = src_eqv_regcost = -1;
4679 else
4680 {
4681 src_eqv_cost = COST (src_eqv_here);
4682 src_eqv_regcost = approx_reg_cost (src_eqv_here);
4683 }
4684 }
4685
4686 if (src_folded)
4687 {
4688 if (rtx_equal_p (src_folded, dest))
4689 src_folded_cost = src_folded_regcost = -1;
4690 else
4691 {
4692 src_folded_cost = COST (src_folded);
4693 src_folded_regcost = approx_reg_cost (src_folded);
4694 }
4695 }
4696
4697 if (src_related)
4698 {
4699 if (rtx_equal_p (src_related, dest))
4700 src_related_cost = src_related_regcost = -1;
4701 else
4702 {
4703 src_related_cost = COST (src_related);
4704 src_related_regcost = approx_reg_cost (src_related);
4705 }
4706 }
4707
4708 /* If this was an indirect jump insn, a known label will really be
4709 cheaper even though it looks more expensive. */
4710 if (dest == pc_rtx && src_const && GET_CODE (src_const) == LABEL_REF)
4711 src_folded = src_const, src_folded_cost = src_folded_regcost = -1;
4712
4713 /* Terminate loop when replacement made. This must terminate since
4714 the current contents will be tested and will always be valid. */
4715 while (1)
4716 {
4717 rtx trial;
4718
4719 /* Skip invalid entries. */
4720 while (elt && !REG_P (elt->exp)
4721 && ! exp_equiv_p (elt->exp, elt->exp, 1, false))
4722 elt = elt->next_same_value;
4723
4724 /* A paradoxical subreg would be bad here: it'll be the right
4725 size, but later may be adjusted so that the upper bits aren't
4726 what we want. So reject it. */
4727 if (elt != 0
4728 && GET_CODE (elt->exp) == SUBREG
4729 && (GET_MODE_SIZE (GET_MODE (elt->exp))
4730 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (elt->exp))))
4731 /* It is okay, though, if the rtx we're trying to match
4732 will ignore any of the bits we can't predict. */
4733 && ! (src != 0
4734 && GET_CODE (src) == SUBREG
4735 && GET_MODE (src) == GET_MODE (elt->exp)
4736 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (src)))
4737 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (elt->exp))))))
4738 {
4739 elt = elt->next_same_value;
4740 continue;
4741 }
4742
4743 if (elt)
4744 {
4745 src_elt_cost = elt->cost;
4746 src_elt_regcost = elt->regcost;
4747 }
4748
4749 /* Find cheapest and skip it for the next time. For items
4750 of equal cost, use this order:
4751 src_folded, src, src_eqv, src_related and hash table entry. */
4752 if (src_folded
4753 && preferable (src_folded_cost, src_folded_regcost,
4754 src_cost, src_regcost) <= 0
4755 && preferable (src_folded_cost, src_folded_regcost,
4756 src_eqv_cost, src_eqv_regcost) <= 0
4757 && preferable (src_folded_cost, src_folded_regcost,
4758 src_related_cost, src_related_regcost) <= 0
4759 && preferable (src_folded_cost, src_folded_regcost,
4760 src_elt_cost, src_elt_regcost) <= 0)
4761 {
4762 trial = src_folded, src_folded_cost = MAX_COST;
4763 if (src_folded_force_flag)
4764 {
4765 rtx forced = force_const_mem (mode, trial);
4766 if (forced)
4767 trial = forced;
4768 }
4769 }
4770 else if (src
4771 && preferable (src_cost, src_regcost,
4772 src_eqv_cost, src_eqv_regcost) <= 0
4773 && preferable (src_cost, src_regcost,
4774 src_related_cost, src_related_regcost) <= 0
4775 && preferable (src_cost, src_regcost,
4776 src_elt_cost, src_elt_regcost) <= 0)
4777 trial = src, src_cost = MAX_COST;
4778 else if (src_eqv_here
4779 && preferable (src_eqv_cost, src_eqv_regcost,
4780 src_related_cost, src_related_regcost) <= 0
4781 && preferable (src_eqv_cost, src_eqv_regcost,
4782 src_elt_cost, src_elt_regcost) <= 0)
4783 trial = src_eqv_here, src_eqv_cost = MAX_COST;
4784 else if (src_related
4785 && preferable (src_related_cost, src_related_regcost,
4786 src_elt_cost, src_elt_regcost) <= 0)
4787 trial = src_related, src_related_cost = MAX_COST;
4788 else
4789 {
4790 trial = elt->exp;
4791 elt = elt->next_same_value;
4792 src_elt_cost = MAX_COST;
4793 }
4794
4795 /* Avoid creation of overlapping memory moves. */
4796 if (MEM_P (trial) && MEM_P (SET_DEST (sets[i].rtl)))
4797 {
4798 rtx src, dest;
4799
4800 /* BLKmode moves are not handled by cse anyway. */
4801 if (GET_MODE (trial) == BLKmode)
4802 break;
4803
4804 src = canon_rtx (trial);
4805 dest = canon_rtx (SET_DEST (sets[i].rtl));
4806
4807 if (!MEM_P (src) || !MEM_P (dest)
4808 || !nonoverlapping_memrefs_p (src, dest))
4809 break;
4810 }
4811
4812 /* We don't normally have an insn matching (set (pc) (pc)), so
4813 check for this separately here. We will delete such an
4814 insn below.
4815
4816 For other cases such as a table jump or conditional jump
4817 where we know the ultimate target, go ahead and replace the
4818 operand. While that may not make a valid insn, we will
4819 reemit the jump below (and also insert any necessary
4820 barriers). */
4821 if (n_sets == 1 && dest == pc_rtx
4822 && (trial == pc_rtx
4823 || (GET_CODE (trial) == LABEL_REF
4824 && ! condjump_p (insn))))
4825 {
4826 /* Don't substitute non-local labels, this confuses CFG. */
4827 if (GET_CODE (trial) == LABEL_REF
4828 && LABEL_REF_NONLOCAL_P (trial))
4829 continue;
4830
4831 SET_SRC (sets[i].rtl) = trial;
4832 cse_jumps_altered = true;
4833 break;
4834 }
4835
4836 /* Reject certain invalid forms of CONST that we create. */
4837 else if (CONSTANT_P (trial)
4838 && GET_CODE (trial) == CONST
4839 /* Reject cases that will cause decode_rtx_const to
4840 die. On the alpha when simplifying a switch, we
4841 get (const (truncate (minus (label_ref)
4842 (label_ref)))). */
4843 && (GET_CODE (XEXP (trial, 0)) == TRUNCATE
4844 /* Likewise on IA-64, except without the
4845 truncate. */
4846 || (GET_CODE (XEXP (trial, 0)) == MINUS
4847 && GET_CODE (XEXP (XEXP (trial, 0), 0)) == LABEL_REF
4848 && GET_CODE (XEXP (XEXP (trial, 0), 1)) == LABEL_REF)))
4849 /* Do nothing for this case. */
4850 ;
4851
4852 /* Look for a substitution that makes a valid insn. */
4853 else if (validate_unshare_change
4854 (insn, &SET_SRC (sets[i].rtl), trial, 0))
4855 {
4856 rtx new_rtx = canon_reg (SET_SRC (sets[i].rtl), insn);
4857
4858 /* The result of apply_change_group can be ignored; see
4859 canon_reg. */
4860
4861 validate_change (insn, &SET_SRC (sets[i].rtl), new_rtx, 1);
4862 apply_change_group ();
4863
4864 break;
4865 }
4866
4867 /* If we previously found constant pool entries for
4868 constants and this is a constant, try making a
4869 pool entry. Put it in src_folded unless we already have done
4870 this since that is where it likely came from. */
4871
4872 else if (constant_pool_entries_cost
4873 && CONSTANT_P (trial)
4874 && (src_folded == 0
4875 || (!MEM_P (src_folded)
4876 && ! src_folded_force_flag))
4877 && GET_MODE_CLASS (mode) != MODE_CC
4878 && mode != VOIDmode)
4879 {
4880 src_folded_force_flag = 1;
4881 src_folded = trial;
4882 src_folded_cost = constant_pool_entries_cost;
4883 src_folded_regcost = constant_pool_entries_regcost;
4884 }
4885 }
4886
4887 src = SET_SRC (sets[i].rtl);
4888
4889 /* In general, it is good to have a SET with SET_SRC == SET_DEST.
4890 However, there is an important exception: If both are registers
4891 that are not the head of their equivalence class, replace SET_SRC
4892 with the head of the class. If we do not do this, we will have
4893 both registers live over a portion of the basic block. This way,
4894 their lifetimes will likely abut instead of overlapping. */
4895 if (REG_P (dest)
4896 && REGNO_QTY_VALID_P (REGNO (dest)))
4897 {
4898 int dest_q = REG_QTY (REGNO (dest));
4899 struct qty_table_elem *dest_ent = &qty_table[dest_q];
4900
4901 if (dest_ent->mode == GET_MODE (dest)
4902 && dest_ent->first_reg != REGNO (dest)
4903 && REG_P (src) && REGNO (src) == REGNO (dest)
4904 /* Don't do this if the original insn had a hard reg as
4905 SET_SRC or SET_DEST. */
4906 && (!REG_P (sets[i].src)
4907 || REGNO (sets[i].src) >= FIRST_PSEUDO_REGISTER)
4908 && (!REG_P (dest) || REGNO (dest) >= FIRST_PSEUDO_REGISTER))
4909 /* We can't call canon_reg here because it won't do anything if
4910 SRC is a hard register. */
4911 {
4912 int src_q = REG_QTY (REGNO (src));
4913 struct qty_table_elem *src_ent = &qty_table[src_q];
4914 int first = src_ent->first_reg;
4915 rtx new_src
4916 = (first >= FIRST_PSEUDO_REGISTER
4917 ? regno_reg_rtx[first] : gen_rtx_REG (GET_MODE (src), first));
4918
4919 /* We must use validate-change even for this, because this
4920 might be a special no-op instruction, suitable only to
4921 tag notes onto. */
4922 if (validate_change (insn, &SET_SRC (sets[i].rtl), new_src, 0))
4923 {
4924 src = new_src;
4925 /* If we had a constant that is cheaper than what we are now
4926 setting SRC to, use that constant. We ignored it when we
4927 thought we could make this into a no-op. */
4928 if (src_const && COST (src_const) < COST (src)
4929 && validate_change (insn, &SET_SRC (sets[i].rtl),
4930 src_const, 0))
4931 src = src_const;
4932 }
4933 }
4934 }
4935
4936 /* If we made a change, recompute SRC values. */
4937 if (src != sets[i].src)
4938 {
4939 do_not_record = 0;
4940 hash_arg_in_memory = 0;
4941 sets[i].src = src;
4942 sets[i].src_hash = HASH (src, mode);
4943 sets[i].src_volatile = do_not_record;
4944 sets[i].src_in_memory = hash_arg_in_memory;
4945 sets[i].src_elt = lookup (src, sets[i].src_hash, mode);
4946 }
4947
4948 /* If this is a single SET, we are setting a register, and we have an
4949 equivalent constant, we want to add a REG_NOTE. We don't want
4950 to write a REG_EQUAL note for a constant pseudo since verifying that
4951 that pseudo hasn't been eliminated is a pain. Such a note also
4952 won't help anything.
4953
4954 Avoid a REG_EQUAL note for (CONST (MINUS (LABEL_REF) (LABEL_REF)))
4955 which can be created for a reference to a compile time computable
4956 entry in a jump table. */
4957
4958 if (n_sets == 1 && src_const && REG_P (dest)
4959 && !REG_P (src_const)
4960 && ! (GET_CODE (src_const) == CONST
4961 && GET_CODE (XEXP (src_const, 0)) == MINUS
4962 && GET_CODE (XEXP (XEXP (src_const, 0), 0)) == LABEL_REF
4963 && GET_CODE (XEXP (XEXP (src_const, 0), 1)) == LABEL_REF))
4964 {
4965 /* We only want a REG_EQUAL note if src_const != src. */
4966 if (! rtx_equal_p (src, src_const))
4967 {
4968 /* Make sure that the rtx is not shared. */
4969 src_const = copy_rtx (src_const);
4970
4971 /* Record the actual constant value in a REG_EQUAL note,
4972 making a new one if one does not already exist. */
4973 set_unique_reg_note (insn, REG_EQUAL, src_const);
4974 df_notes_rescan (insn);
4975 }
4976 }
4977
4978 /* Now deal with the destination. */
4979 do_not_record = 0;
4980
4981 /* Look within any ZERO_EXTRACT to the MEM or REG within it. */
4982 while (GET_CODE (dest) == SUBREG
4983 || GET_CODE (dest) == ZERO_EXTRACT
4984 || GET_CODE (dest) == STRICT_LOW_PART)
4985 dest = XEXP (dest, 0);
4986
4987 sets[i].inner_dest = dest;
4988
4989 if (MEM_P (dest))
4990 {
4991 #ifdef PUSH_ROUNDING
4992 /* Stack pushes invalidate the stack pointer. */
4993 rtx addr = XEXP (dest, 0);
4994 if (GET_RTX_CLASS (GET_CODE (addr)) == RTX_AUTOINC
4995 && XEXP (addr, 0) == stack_pointer_rtx)
4996 invalidate (stack_pointer_rtx, VOIDmode);
4997 #endif
4998 dest = fold_rtx (dest, insn);
4999 }
5000
5001 /* Compute the hash code of the destination now,
5002 before the effects of this instruction are recorded,
5003 since the register values used in the address computation
5004 are those before this instruction. */
5005 sets[i].dest_hash = HASH (dest, mode);
5006
5007 /* Don't enter a bit-field in the hash table
5008 because the value in it after the store
5009 may not equal what was stored, due to truncation. */
5010
5011 if (GET_CODE (SET_DEST (sets[i].rtl)) == ZERO_EXTRACT)
5012 {
5013 rtx width = XEXP (SET_DEST (sets[i].rtl), 1);
5014
5015 if (src_const != 0 && GET_CODE (src_const) == CONST_INT
5016 && GET_CODE (width) == CONST_INT
5017 && INTVAL (width) < HOST_BITS_PER_WIDE_INT
5018 && ! (INTVAL (src_const)
5019 & ((HOST_WIDE_INT) (-1) << INTVAL (width))))
5020 /* Exception: if the value is constant,
5021 and it won't be truncated, record it. */
5022 ;
5023 else
5024 {
5025 /* This is chosen so that the destination will be invalidated
5026 but no new value will be recorded.
5027 We must invalidate because sometimes constant
5028 values can be recorded for bitfields. */
5029 sets[i].src_elt = 0;
5030 sets[i].src_volatile = 1;
5031 src_eqv = 0;
5032 src_eqv_elt = 0;
5033 }
5034 }
5035
5036 /* If only one set in a JUMP_INSN and it is now a no-op, we can delete
5037 the insn. */
5038 else if (n_sets == 1 && dest == pc_rtx && src == pc_rtx)
5039 {
5040 /* One less use of the label this insn used to jump to. */
5041 delete_insn_and_edges (insn);
5042 cse_jumps_altered = true;
5043 /* No more processing for this set. */
5044 sets[i].rtl = 0;
5045 }
5046
5047 /* If this SET is now setting PC to a label, we know it used to
5048 be a conditional or computed branch. */
5049 else if (dest == pc_rtx && GET_CODE (src) == LABEL_REF
5050 && !LABEL_REF_NONLOCAL_P (src))
5051 {
5052 /* We reemit the jump in as many cases as possible just in
5053 case the form of an unconditional jump is significantly
5054 different than a computed jump or conditional jump.
5055
5056 If this insn has multiple sets, then reemitting the
5057 jump is nontrivial. So instead we just force rerecognition
5058 and hope for the best. */
5059 if (n_sets == 1)
5060 {
5061 rtx new_rtx, note;
5062
5063 new_rtx = emit_jump_insn_before (gen_jump (XEXP (src, 0)), insn);
5064 JUMP_LABEL (new_rtx) = XEXP (src, 0);
5065 LABEL_NUSES (XEXP (src, 0))++;
5066
5067 /* Make sure to copy over REG_NON_LOCAL_GOTO. */
5068 note = find_reg_note (insn, REG_NON_LOCAL_GOTO, 0);
5069 if (note)
5070 {
5071 XEXP (note, 1) = NULL_RTX;
5072 REG_NOTES (new_rtx) = note;
5073 }
5074
5075 delete_insn_and_edges (insn);
5076 insn = new_rtx;
5077 }
5078 else
5079 INSN_CODE (insn) = -1;
5080
5081 /* Do not bother deleting any unreachable code, let jump do it. */
5082 cse_jumps_altered = true;
5083 sets[i].rtl = 0;
5084 }
5085
5086 /* If destination is volatile, invalidate it and then do no further
5087 processing for this assignment. */
5088
5089 else if (do_not_record)
5090 {
5091 if (REG_P (dest) || GET_CODE (dest) == SUBREG)
5092 invalidate (dest, VOIDmode);
5093 else if (MEM_P (dest))
5094 invalidate (dest, VOIDmode);
5095 else if (GET_CODE (dest) == STRICT_LOW_PART
5096 || GET_CODE (dest) == ZERO_EXTRACT)
5097 invalidate (XEXP (dest, 0), GET_MODE (dest));
5098 sets[i].rtl = 0;
5099 }
5100
5101 if (sets[i].rtl != 0 && dest != SET_DEST (sets[i].rtl))
5102 sets[i].dest_hash = HASH (SET_DEST (sets[i].rtl), mode);
5103
5104 #ifdef HAVE_cc0
5105 /* If setting CC0, record what it was set to, or a constant, if it
5106 is equivalent to a constant. If it is being set to a floating-point
5107 value, make a COMPARE with the appropriate constant of 0. If we
5108 don't do this, later code can interpret this as a test against
5109 const0_rtx, which can cause problems if we try to put it into an
5110 insn as a floating-point operand. */
5111 if (dest == cc0_rtx)
5112 {
5113 this_insn_cc0 = src_const && mode != VOIDmode ? src_const : src;
5114 this_insn_cc0_mode = mode;
5115 if (FLOAT_MODE_P (mode))
5116 this_insn_cc0 = gen_rtx_COMPARE (VOIDmode, this_insn_cc0,
5117 CONST0_RTX (mode));
5118 }
5119 #endif
5120 }
5121
5122 /* Now enter all non-volatile source expressions in the hash table
5123 if they are not already present.
5124 Record their equivalence classes in src_elt.
5125 This way we can insert the corresponding destinations into
5126 the same classes even if the actual sources are no longer in them
5127 (having been invalidated). */
5128
5129 if (src_eqv && src_eqv_elt == 0 && sets[0].rtl != 0 && ! src_eqv_volatile
5130 && ! rtx_equal_p (src_eqv, SET_DEST (sets[0].rtl)))
5131 {
5132 struct table_elt *elt;
5133 struct table_elt *classp = sets[0].src_elt;
5134 rtx dest = SET_DEST (sets[0].rtl);
5135 enum machine_mode eqvmode = GET_MODE (dest);
5136
5137 if (GET_CODE (dest) == STRICT_LOW_PART)
5138 {
5139 eqvmode = GET_MODE (SUBREG_REG (XEXP (dest, 0)));
5140 classp = 0;
5141 }
5142 if (insert_regs (src_eqv, classp, 0))
5143 {
5144 rehash_using_reg (src_eqv);
5145 src_eqv_hash = HASH (src_eqv, eqvmode);
5146 }
5147 elt = insert (src_eqv, classp, src_eqv_hash, eqvmode);
5148 elt->in_memory = src_eqv_in_memory;
5149 src_eqv_elt = elt;
5150
5151 /* Check to see if src_eqv_elt is the same as a set source which
5152 does not yet have an elt, and if so set the elt of the set source
5153 to src_eqv_elt. */
5154 for (i = 0; i < n_sets; i++)
5155 if (sets[i].rtl && sets[i].src_elt == 0
5156 && rtx_equal_p (SET_SRC (sets[i].rtl), src_eqv))
5157 sets[i].src_elt = src_eqv_elt;
5158 }
5159
5160 for (i = 0; i < n_sets; i++)
5161 if (sets[i].rtl && ! sets[i].src_volatile
5162 && ! rtx_equal_p (SET_SRC (sets[i].rtl), SET_DEST (sets[i].rtl)))
5163 {
5164 if (GET_CODE (SET_DEST (sets[i].rtl)) == STRICT_LOW_PART)
5165 {
5166 /* REG_EQUAL in setting a STRICT_LOW_PART
5167 gives an equivalent for the entire destination register,
5168 not just for the subreg being stored in now.
5169 This is a more interesting equivalence, so we arrange later
5170 to treat the entire reg as the destination. */
5171 sets[i].src_elt = src_eqv_elt;
5172 sets[i].src_hash = src_eqv_hash;
5173 }
5174 else
5175 {
5176 /* Insert source and constant equivalent into hash table, if not
5177 already present. */
5178 struct table_elt *classp = src_eqv_elt;
5179 rtx src = sets[i].src;
5180 rtx dest = SET_DEST (sets[i].rtl);
5181 enum machine_mode mode
5182 = GET_MODE (src) == VOIDmode ? GET_MODE (dest) : GET_MODE (src);
5183
5184 /* It's possible that we have a source value known to be
5185 constant but don't have a REG_EQUAL note on the insn.
5186 Lack of a note will mean src_eqv_elt will be NULL. This
5187 can happen where we've generated a SUBREG to access a
5188 CONST_INT that is already in a register in a wider mode.
5189 Ensure that the source expression is put in the proper
5190 constant class. */
5191 if (!classp)
5192 classp = sets[i].src_const_elt;
5193
5194 if (sets[i].src_elt == 0)
5195 {
5196 struct table_elt *elt;
5197
5198 /* Note that these insert_regs calls cannot remove
5199 any of the src_elt's, because they would have failed to
5200 match if not still valid. */
5201 if (insert_regs (src, classp, 0))
5202 {
5203 rehash_using_reg (src);
5204 sets[i].src_hash = HASH (src, mode);
5205 }
5206 elt = insert (src, classp, sets[i].src_hash, mode);
5207 elt->in_memory = sets[i].src_in_memory;
5208 sets[i].src_elt = classp = elt;
5209 }
5210 if (sets[i].src_const && sets[i].src_const_elt == 0
5211 && src != sets[i].src_const
5212 && ! rtx_equal_p (sets[i].src_const, src))
5213 sets[i].src_elt = insert (sets[i].src_const, classp,
5214 sets[i].src_const_hash, mode);
5215 }
5216 }
5217 else if (sets[i].src_elt == 0)
5218 /* If we did not insert the source into the hash table (e.g., it was
5219 volatile), note the equivalence class for the REG_EQUAL value, if any,
5220 so that the destination goes into that class. */
5221 sets[i].src_elt = src_eqv_elt;
5222
5223 /* Record destination addresses in the hash table. This allows us to
5224 check if they are invalidated by other sets. */
5225 for (i = 0; i < n_sets; i++)
5226 {
5227 if (sets[i].rtl)
5228 {
5229 rtx x = sets[i].inner_dest;
5230 struct table_elt *elt;
5231 enum machine_mode mode;
5232 unsigned hash;
5233
5234 if (MEM_P (x))
5235 {
5236 x = XEXP (x, 0);
5237 mode = GET_MODE (x);
5238 hash = HASH (x, mode);
5239 elt = lookup (x, hash, mode);
5240 if (!elt)
5241 {
5242 if (insert_regs (x, NULL, 0))
5243 {
5244 rtx dest = SET_DEST (sets[i].rtl);
5245
5246 rehash_using_reg (x);
5247 hash = HASH (x, mode);
5248 sets[i].dest_hash = HASH (dest, GET_MODE (dest));
5249 }
5250 elt = insert (x, NULL, hash, mode);
5251 }
5252
5253 sets[i].dest_addr_elt = elt;
5254 }
5255 else
5256 sets[i].dest_addr_elt = NULL;
5257 }
5258 }
5259
5260 invalidate_from_clobbers (x);
5261
5262 /* Some registers are invalidated by subroutine calls. Memory is
5263 invalidated by non-constant calls. */
5264
5265 if (CALL_P (insn))
5266 {
5267 if (!(RTL_CONST_OR_PURE_CALL_P (insn)))
5268 invalidate_memory ();
5269 invalidate_for_call ();
5270 }
5271
5272 /* Now invalidate everything set by this instruction.
5273 If a SUBREG or other funny destination is being set,
5274 sets[i].rtl is still nonzero, so here we invalidate the reg
5275 a part of which is being set. */
5276
5277 for (i = 0; i < n_sets; i++)
5278 if (sets[i].rtl)
5279 {
5280 /* We can't use the inner dest, because the mode associated with
5281 a ZERO_EXTRACT is significant. */
5282 rtx dest = SET_DEST (sets[i].rtl);
5283
5284 /* Needed for registers to remove the register from its
5285 previous quantity's chain.
5286 Needed for memory if this is a nonvarying address, unless
5287 we have just done an invalidate_memory that covers even those. */
5288 if (REG_P (dest) || GET_CODE (dest) == SUBREG)
5289 invalidate (dest, VOIDmode);
5290 else if (MEM_P (dest))
5291 invalidate (dest, VOIDmode);
5292 else if (GET_CODE (dest) == STRICT_LOW_PART
5293 || GET_CODE (dest) == ZERO_EXTRACT)
5294 invalidate (XEXP (dest, 0), GET_MODE (dest));
5295 }
5296
5297 /* A volatile ASM invalidates everything. */
5298 if (NONJUMP_INSN_P (insn)
5299 && GET_CODE (PATTERN (insn)) == ASM_OPERANDS
5300 && MEM_VOLATILE_P (PATTERN (insn)))
5301 flush_hash_table ();
5302
5303 /* Don't cse over a call to setjmp; on some machines (eg VAX)
5304 the regs restored by the longjmp come from a later time
5305 than the setjmp. */
5306 if (CALL_P (insn) && find_reg_note (insn, REG_SETJMP, NULL))
5307 {
5308 flush_hash_table ();
5309 goto done;
5310 }
5311
5312 /* Make sure registers mentioned in destinations
5313 are safe for use in an expression to be inserted.
5314 This removes from the hash table
5315 any invalid entry that refers to one of these registers.
5316
5317 We don't care about the return value from mention_regs because
5318 we are going to hash the SET_DEST values unconditionally. */
5319
5320 for (i = 0; i < n_sets; i++)
5321 {
5322 if (sets[i].rtl)
5323 {
5324 rtx x = SET_DEST (sets[i].rtl);
5325
5326 if (!REG_P (x))
5327 mention_regs (x);
5328 else
5329 {
5330 /* We used to rely on all references to a register becoming
5331 inaccessible when a register changes to a new quantity,
5332 since that changes the hash code. However, that is not
5333 safe, since after HASH_SIZE new quantities we get a
5334 hash 'collision' of a register with its own invalid
5335 entries. And since SUBREGs have been changed not to
5336 change their hash code with the hash code of the register,
5337 it wouldn't work any longer at all. So we have to check
5338 for any invalid references lying around now.
5339 This code is similar to the REG case in mention_regs,
5340 but it knows that reg_tick has been incremented, and
5341 it leaves reg_in_table as -1 . */
5342 unsigned int regno = REGNO (x);
5343 unsigned int endregno = END_REGNO (x);
5344 unsigned int i;
5345
5346 for (i = regno; i < endregno; i++)
5347 {
5348 if (REG_IN_TABLE (i) >= 0)
5349 {
5350 remove_invalid_refs (i);
5351 REG_IN_TABLE (i) = -1;
5352 }
5353 }
5354 }
5355 }
5356 }
5357
5358 /* We may have just removed some of the src_elt's from the hash table.
5359 So replace each one with the current head of the same class.
5360 Also check if destination addresses have been removed. */
5361
5362 for (i = 0; i < n_sets; i++)
5363 if (sets[i].rtl)
5364 {
5365 if (sets[i].dest_addr_elt
5366 && sets[i].dest_addr_elt->first_same_value == 0)
5367 {
5368 /* The elt was removed, which means this destination is not
5369 valid after this instruction. */
5370 sets[i].rtl = NULL_RTX;
5371 }
5372 else if (sets[i].src_elt && sets[i].src_elt->first_same_value == 0)
5373 /* If elt was removed, find current head of same class,
5374 or 0 if nothing remains of that class. */
5375 {
5376 struct table_elt *elt = sets[i].src_elt;
5377
5378 while (elt && elt->prev_same_value)
5379 elt = elt->prev_same_value;
5380
5381 while (elt && elt->first_same_value == 0)
5382 elt = elt->next_same_value;
5383 sets[i].src_elt = elt ? elt->first_same_value : 0;
5384 }
5385 }
5386
5387 /* Now insert the destinations into their equivalence classes. */
5388
5389 for (i = 0; i < n_sets; i++)
5390 if (sets[i].rtl)
5391 {
5392 rtx dest = SET_DEST (sets[i].rtl);
5393 struct table_elt *elt;
5394
5395 /* Don't record value if we are not supposed to risk allocating
5396 floating-point values in registers that might be wider than
5397 memory. */
5398 if ((flag_float_store
5399 && MEM_P (dest)
5400 && FLOAT_MODE_P (GET_MODE (dest)))
5401 /* Don't record BLKmode values, because we don't know the
5402 size of it, and can't be sure that other BLKmode values
5403 have the same or smaller size. */
5404 || GET_MODE (dest) == BLKmode
5405 /* If we didn't put a REG_EQUAL value or a source into the hash
5406 table, there is no point is recording DEST. */
5407 || sets[i].src_elt == 0
5408 /* If DEST is a paradoxical SUBREG and SRC is a ZERO_EXTEND
5409 or SIGN_EXTEND, don't record DEST since it can cause
5410 some tracking to be wrong.
5411
5412 ??? Think about this more later. */
5413 || (GET_CODE (dest) == SUBREG
5414 && (GET_MODE_SIZE (GET_MODE (dest))
5415 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest))))
5416 && (GET_CODE (sets[i].src) == SIGN_EXTEND
5417 || GET_CODE (sets[i].src) == ZERO_EXTEND)))
5418 continue;
5419
5420 /* STRICT_LOW_PART isn't part of the value BEING set,
5421 and neither is the SUBREG inside it.
5422 Note that in this case SETS[I].SRC_ELT is really SRC_EQV_ELT. */
5423 if (GET_CODE (dest) == STRICT_LOW_PART)
5424 dest = SUBREG_REG (XEXP (dest, 0));
5425
5426 if (REG_P (dest) || GET_CODE (dest) == SUBREG)
5427 /* Registers must also be inserted into chains for quantities. */
5428 if (insert_regs (dest, sets[i].src_elt, 1))
5429 {
5430 /* If `insert_regs' changes something, the hash code must be
5431 recalculated. */
5432 rehash_using_reg (dest);
5433 sets[i].dest_hash = HASH (dest, GET_MODE (dest));
5434 }
5435
5436 elt = insert (dest, sets[i].src_elt,
5437 sets[i].dest_hash, GET_MODE (dest));
5438
5439 elt->in_memory = (MEM_P (sets[i].inner_dest)
5440 && !MEM_READONLY_P (sets[i].inner_dest));
5441
5442 /* If we have (set (subreg:m1 (reg:m2 foo) 0) (bar:m1)), M1 is no
5443 narrower than M2, and both M1 and M2 are the same number of words,
5444 we are also doing (set (reg:m2 foo) (subreg:m2 (bar:m1) 0)) so
5445 make that equivalence as well.
5446
5447 However, BAR may have equivalences for which gen_lowpart
5448 will produce a simpler value than gen_lowpart applied to
5449 BAR (e.g., if BAR was ZERO_EXTENDed from M2), so we will scan all
5450 BAR's equivalences. If we don't get a simplified form, make
5451 the SUBREG. It will not be used in an equivalence, but will
5452 cause two similar assignments to be detected.
5453
5454 Note the loop below will find SUBREG_REG (DEST) since we have
5455 already entered SRC and DEST of the SET in the table. */
5456
5457 if (GET_CODE (dest) == SUBREG
5458 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest))) - 1)
5459 / UNITS_PER_WORD)
5460 == (GET_MODE_SIZE (GET_MODE (dest)) - 1) / UNITS_PER_WORD)
5461 && (GET_MODE_SIZE (GET_MODE (dest))
5462 >= GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest))))
5463 && sets[i].src_elt != 0)
5464 {
5465 enum machine_mode new_mode = GET_MODE (SUBREG_REG (dest));
5466 struct table_elt *elt, *classp = 0;
5467
5468 for (elt = sets[i].src_elt->first_same_value; elt;
5469 elt = elt->next_same_value)
5470 {
5471 rtx new_src = 0;
5472 unsigned src_hash;
5473 struct table_elt *src_elt;
5474 int byte = 0;
5475
5476 /* Ignore invalid entries. */
5477 if (!REG_P (elt->exp)
5478 && ! exp_equiv_p (elt->exp, elt->exp, 1, false))
5479 continue;
5480
5481 /* We may have already been playing subreg games. If the
5482 mode is already correct for the destination, use it. */
5483 if (GET_MODE (elt->exp) == new_mode)
5484 new_src = elt->exp;
5485 else
5486 {
5487 /* Calculate big endian correction for the SUBREG_BYTE.
5488 We have already checked that M1 (GET_MODE (dest))
5489 is not narrower than M2 (new_mode). */
5490 if (BYTES_BIG_ENDIAN)
5491 byte = (GET_MODE_SIZE (GET_MODE (dest))
5492 - GET_MODE_SIZE (new_mode));
5493
5494 new_src = simplify_gen_subreg (new_mode, elt->exp,
5495 GET_MODE (dest), byte);
5496 }
5497
5498 /* The call to simplify_gen_subreg fails if the value
5499 is VOIDmode, yet we can't do any simplification, e.g.
5500 for EXPR_LISTs denoting function call results.
5501 It is invalid to construct a SUBREG with a VOIDmode
5502 SUBREG_REG, hence a zero new_src means we can't do
5503 this substitution. */
5504 if (! new_src)
5505 continue;
5506
5507 src_hash = HASH (new_src, new_mode);
5508 src_elt = lookup (new_src, src_hash, new_mode);
5509
5510 /* Put the new source in the hash table is if isn't
5511 already. */
5512 if (src_elt == 0)
5513 {
5514 if (insert_regs (new_src, classp, 0))
5515 {
5516 rehash_using_reg (new_src);
5517 src_hash = HASH (new_src, new_mode);
5518 }
5519 src_elt = insert (new_src, classp, src_hash, new_mode);
5520 src_elt->in_memory = elt->in_memory;
5521 }
5522 else if (classp && classp != src_elt->first_same_value)
5523 /* Show that two things that we've seen before are
5524 actually the same. */
5525 merge_equiv_classes (src_elt, classp);
5526
5527 classp = src_elt->first_same_value;
5528 /* Ignore invalid entries. */
5529 while (classp
5530 && !REG_P (classp->exp)
5531 && ! exp_equiv_p (classp->exp, classp->exp, 1, false))
5532 classp = classp->next_same_value;
5533 }
5534 }
5535 }
5536
5537 /* Special handling for (set REG0 REG1) where REG0 is the
5538 "cheapest", cheaper than REG1. After cse, REG1 will probably not
5539 be used in the sequel, so (if easily done) change this insn to
5540 (set REG1 REG0) and replace REG1 with REG0 in the previous insn
5541 that computed their value. Then REG1 will become a dead store
5542 and won't cloud the situation for later optimizations.
5543
5544 Do not make this change if REG1 is a hard register, because it will
5545 then be used in the sequel and we may be changing a two-operand insn
5546 into a three-operand insn.
5547
5548 Also do not do this if we are operating on a copy of INSN. */
5549
5550 if (n_sets == 1 && sets[0].rtl && REG_P (SET_DEST (sets[0].rtl))
5551 && NEXT_INSN (PREV_INSN (insn)) == insn
5552 && REG_P (SET_SRC (sets[0].rtl))
5553 && REGNO (SET_SRC (sets[0].rtl)) >= FIRST_PSEUDO_REGISTER
5554 && REGNO_QTY_VALID_P (REGNO (SET_SRC (sets[0].rtl))))
5555 {
5556 int src_q = REG_QTY (REGNO (SET_SRC (sets[0].rtl)));
5557 struct qty_table_elem *src_ent = &qty_table[src_q];
5558
5559 if (src_ent->first_reg == REGNO (SET_DEST (sets[0].rtl)))
5560 {
5561 /* Scan for the previous nonnote insn, but stop at a basic
5562 block boundary. */
5563 rtx prev = insn;
5564 rtx bb_head = BB_HEAD (BLOCK_FOR_INSN (insn));
5565 do
5566 {
5567 prev = PREV_INSN (prev);
5568 }
5569 while (prev != bb_head && NOTE_P (prev));
5570
5571 /* Do not swap the registers around if the previous instruction
5572 attaches a REG_EQUIV note to REG1.
5573
5574 ??? It's not entirely clear whether we can transfer a REG_EQUIV
5575 from the pseudo that originally shadowed an incoming argument
5576 to another register. Some uses of REG_EQUIV might rely on it
5577 being attached to REG1 rather than REG2.
5578
5579 This section previously turned the REG_EQUIV into a REG_EQUAL
5580 note. We cannot do that because REG_EQUIV may provide an
5581 uninitialized stack slot when REG_PARM_STACK_SPACE is used. */
5582 if (NONJUMP_INSN_P (prev)
5583 && GET_CODE (PATTERN (prev)) == SET
5584 && SET_DEST (PATTERN (prev)) == SET_SRC (sets[0].rtl)
5585 && ! find_reg_note (prev, REG_EQUIV, NULL_RTX))
5586 {
5587 rtx dest = SET_DEST (sets[0].rtl);
5588 rtx src = SET_SRC (sets[0].rtl);
5589 rtx note;
5590
5591 validate_change (prev, &SET_DEST (PATTERN (prev)), dest, 1);
5592 validate_change (insn, &SET_DEST (sets[0].rtl), src, 1);
5593 validate_change (insn, &SET_SRC (sets[0].rtl), dest, 1);
5594 apply_change_group ();
5595
5596 /* If INSN has a REG_EQUAL note, and this note mentions
5597 REG0, then we must delete it, because the value in
5598 REG0 has changed. If the note's value is REG1, we must
5599 also delete it because that is now this insn's dest. */
5600 note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
5601 if (note != 0
5602 && (reg_mentioned_p (dest, XEXP (note, 0))
5603 || rtx_equal_p (src, XEXP (note, 0))))
5604 remove_note (insn, note);
5605 }
5606 }
5607 }
5608
5609 done:;
5610 }
5611
5612 /* Remove from the hash table all expressions that reference memory. */
5613
5614 static void
5615 invalidate_memory (void)
5616 {
5617 int i;
5618 struct table_elt *p, *next;
5619
5620 for (i = 0; i < HASH_SIZE; i++)
5621 for (p = table[i]; p; p = next)
5622 {
5623 next = p->next_same_hash;
5624 if (p->in_memory)
5625 remove_from_table (p, i);
5626 }
5627 }
5628
5629 /* Perform invalidation on the basis of everything about an insn
5630 except for invalidating the actual places that are SET in it.
5631 This includes the places CLOBBERed, and anything that might
5632 alias with something that is SET or CLOBBERed.
5633
5634 X is the pattern of the insn. */
5635
5636 static void
5637 invalidate_from_clobbers (rtx x)
5638 {
5639 if (GET_CODE (x) == CLOBBER)
5640 {
5641 rtx ref = XEXP (x, 0);
5642 if (ref)
5643 {
5644 if (REG_P (ref) || GET_CODE (ref) == SUBREG
5645 || MEM_P (ref))
5646 invalidate (ref, VOIDmode);
5647 else if (GET_CODE (ref) == STRICT_LOW_PART
5648 || GET_CODE (ref) == ZERO_EXTRACT)
5649 invalidate (XEXP (ref, 0), GET_MODE (ref));
5650 }
5651 }
5652 else if (GET_CODE (x) == PARALLEL)
5653 {
5654 int i;
5655 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
5656 {
5657 rtx y = XVECEXP (x, 0, i);
5658 if (GET_CODE (y) == CLOBBER)
5659 {
5660 rtx ref = XEXP (y, 0);
5661 if (REG_P (ref) || GET_CODE (ref) == SUBREG
5662 || MEM_P (ref))
5663 invalidate (ref, VOIDmode);
5664 else if (GET_CODE (ref) == STRICT_LOW_PART
5665 || GET_CODE (ref) == ZERO_EXTRACT)
5666 invalidate (XEXP (ref, 0), GET_MODE (ref));
5667 }
5668 }
5669 }
5670 }
5671
5672 /* Process X, part of the REG_NOTES of an insn. Look at any REG_EQUAL notes
5673 and replace any registers in them with either an equivalent constant
5674 or the canonical form of the register. If we are inside an address,
5675 only do this if the address remains valid.
5676
5677 OBJECT is 0 except when within a MEM in which case it is the MEM.
5678
5679 Return the replacement for X. */
5680
5681 static rtx
5682 cse_process_notes_1 (rtx x, rtx object, bool *changed)
5683 {
5684 enum rtx_code code = GET_CODE (x);
5685 const char *fmt = GET_RTX_FORMAT (code);
5686 int i;
5687
5688 switch (code)
5689 {
5690 case CONST_INT:
5691 case CONST:
5692 case SYMBOL_REF:
5693 case LABEL_REF:
5694 case CONST_DOUBLE:
5695 case CONST_FIXED:
5696 case CONST_VECTOR:
5697 case PC:
5698 case CC0:
5699 case LO_SUM:
5700 return x;
5701
5702 case MEM:
5703 validate_change (x, &XEXP (x, 0),
5704 cse_process_notes (XEXP (x, 0), x, changed), 0);
5705 return x;
5706
5707 case EXPR_LIST:
5708 case INSN_LIST:
5709 if (REG_NOTE_KIND (x) == REG_EQUAL)
5710 XEXP (x, 0) = cse_process_notes (XEXP (x, 0), NULL_RTX, changed);
5711 if (XEXP (x, 1))
5712 XEXP (x, 1) = cse_process_notes (XEXP (x, 1), NULL_RTX, changed);
5713 return x;
5714
5715 case SIGN_EXTEND:
5716 case ZERO_EXTEND:
5717 case SUBREG:
5718 {
5719 rtx new_rtx = cse_process_notes (XEXP (x, 0), object, changed);
5720 /* We don't substitute VOIDmode constants into these rtx,
5721 since they would impede folding. */
5722 if (GET_MODE (new_rtx) != VOIDmode)
5723 validate_change (object, &XEXP (x, 0), new_rtx, 0);
5724 return x;
5725 }
5726
5727 case REG:
5728 i = REG_QTY (REGNO (x));
5729
5730 /* Return a constant or a constant register. */
5731 if (REGNO_QTY_VALID_P (REGNO (x)))
5732 {
5733 struct qty_table_elem *ent = &qty_table[i];
5734
5735 if (ent->const_rtx != NULL_RTX
5736 && (CONSTANT_P (ent->const_rtx)
5737 || REG_P (ent->const_rtx)))
5738 {
5739 rtx new_rtx = gen_lowpart (GET_MODE (x), ent->const_rtx);
5740 if (new_rtx)
5741 return copy_rtx (new_rtx);
5742 }
5743 }
5744
5745 /* Otherwise, canonicalize this register. */
5746 return canon_reg (x, NULL_RTX);
5747
5748 default:
5749 break;
5750 }
5751
5752 for (i = 0; i < GET_RTX_LENGTH (code); i++)
5753 if (fmt[i] == 'e')
5754 validate_change (object, &XEXP (x, i),
5755 cse_process_notes (XEXP (x, i), object, changed), 0);
5756
5757 return x;
5758 }
5759
5760 static rtx
5761 cse_process_notes (rtx x, rtx object, bool *changed)
5762 {
5763 rtx new_rtx = cse_process_notes_1 (x, object, changed);
5764 if (new_rtx != x)
5765 *changed = true;
5766 return new_rtx;
5767 }
5768
5769
5770 /* Find a path in the CFG, starting with FIRST_BB to perform CSE on.
5771
5772 DATA is a pointer to a struct cse_basic_block_data, that is used to
5773 describe the path.
5774 It is filled with a queue of basic blocks, starting with FIRST_BB
5775 and following a trace through the CFG.
5776
5777 If all paths starting at FIRST_BB have been followed, or no new path
5778 starting at FIRST_BB can be constructed, this function returns FALSE.
5779 Otherwise, DATA->path is filled and the function returns TRUE indicating
5780 that a path to follow was found.
5781
5782 If FOLLOW_JUMPS is false, the maximum path length is 1 and the only
5783 block in the path will be FIRST_BB. */
5784
5785 static bool
5786 cse_find_path (basic_block first_bb, struct cse_basic_block_data *data,
5787 int follow_jumps)
5788 {
5789 basic_block bb;
5790 edge e;
5791 int path_size;
5792
5793 SET_BIT (cse_visited_basic_blocks, first_bb->index);
5794
5795 /* See if there is a previous path. */
5796 path_size = data->path_size;
5797
5798 /* There is a previous path. Make sure it started with FIRST_BB. */
5799 if (path_size)
5800 gcc_assert (data->path[0].bb == first_bb);
5801
5802 /* There was only one basic block in the last path. Clear the path and
5803 return, so that paths starting at another basic block can be tried. */
5804 if (path_size == 1)
5805 {
5806 path_size = 0;
5807 goto done;
5808 }
5809
5810 /* If the path was empty from the beginning, construct a new path. */
5811 if (path_size == 0)
5812 data->path[path_size++].bb = first_bb;
5813 else
5814 {
5815 /* Otherwise, path_size must be equal to or greater than 2, because
5816 a previous path exists that is at least two basic blocks long.
5817
5818 Update the previous branch path, if any. If the last branch was
5819 previously along the branch edge, take the fallthrough edge now. */
5820 while (path_size >= 2)
5821 {
5822 basic_block last_bb_in_path, previous_bb_in_path;
5823 edge e;
5824
5825 --path_size;
5826 last_bb_in_path = data->path[path_size].bb;
5827 previous_bb_in_path = data->path[path_size - 1].bb;
5828
5829 /* If we previously followed a path along the branch edge, try
5830 the fallthru edge now. */
5831 if (EDGE_COUNT (previous_bb_in_path->succs) == 2
5832 && any_condjump_p (BB_END (previous_bb_in_path))
5833 && (e = find_edge (previous_bb_in_path, last_bb_in_path))
5834 && e == BRANCH_EDGE (previous_bb_in_path))
5835 {
5836 bb = FALLTHRU_EDGE (previous_bb_in_path)->dest;
5837 if (bb != EXIT_BLOCK_PTR
5838 && single_pred_p (bb)
5839 /* We used to assert here that we would only see blocks
5840 that we have not visited yet. But we may end up
5841 visiting basic blocks twice if the CFG has changed
5842 in this run of cse_main, because when the CFG changes
5843 the topological sort of the CFG also changes. A basic
5844 blocks that previously had more than two predecessors
5845 may now have a single predecessor, and become part of
5846 a path that starts at another basic block.
5847
5848 We still want to visit each basic block only once, so
5849 halt the path here if we have already visited BB. */
5850 && !TEST_BIT (cse_visited_basic_blocks, bb->index))
5851 {
5852 SET_BIT (cse_visited_basic_blocks, bb->index);
5853 data->path[path_size++].bb = bb;
5854 break;
5855 }
5856 }
5857
5858 data->path[path_size].bb = NULL;
5859 }
5860
5861 /* If only one block remains in the path, bail. */
5862 if (path_size == 1)
5863 {
5864 path_size = 0;
5865 goto done;
5866 }
5867 }
5868
5869 /* Extend the path if possible. */
5870 if (follow_jumps)
5871 {
5872 bb = data->path[path_size - 1].bb;
5873 while (bb && path_size < PARAM_VALUE (PARAM_MAX_CSE_PATH_LENGTH))
5874 {
5875 if (single_succ_p (bb))
5876 e = single_succ_edge (bb);
5877 else if (EDGE_COUNT (bb->succs) == 2
5878 && any_condjump_p (BB_END (bb)))
5879 {
5880 /* First try to follow the branch. If that doesn't lead
5881 to a useful path, follow the fallthru edge. */
5882 e = BRANCH_EDGE (bb);
5883 if (!single_pred_p (e->dest))
5884 e = FALLTHRU_EDGE (bb);
5885 }
5886 else
5887 e = NULL;
5888
5889 if (e && e->dest != EXIT_BLOCK_PTR
5890 && single_pred_p (e->dest)
5891 /* Avoid visiting basic blocks twice. The large comment
5892 above explains why this can happen. */
5893 && !TEST_BIT (cse_visited_basic_blocks, e->dest->index))
5894 {
5895 basic_block bb2 = e->dest;
5896 SET_BIT (cse_visited_basic_blocks, bb2->index);
5897 data->path[path_size++].bb = bb2;
5898 bb = bb2;
5899 }
5900 else
5901 bb = NULL;
5902 }
5903 }
5904
5905 done:
5906 data->path_size = path_size;
5907 return path_size != 0;
5908 }
5909
5910 /* Dump the path in DATA to file F. NSETS is the number of sets
5911 in the path. */
5912
5913 static void
5914 cse_dump_path (struct cse_basic_block_data *data, int nsets, FILE *f)
5915 {
5916 int path_entry;
5917
5918 fprintf (f, ";; Following path with %d sets: ", nsets);
5919 for (path_entry = 0; path_entry < data->path_size; path_entry++)
5920 fprintf (f, "%d ", (data->path[path_entry].bb)->index);
5921 fputc ('\n', dump_file);
5922 fflush (f);
5923 }
5924
5925
5926 /* Return true if BB has exception handling successor edges. */
5927
5928 static bool
5929 have_eh_succ_edges (basic_block bb)
5930 {
5931 edge e;
5932 edge_iterator ei;
5933
5934 FOR_EACH_EDGE (e, ei, bb->succs)
5935 if (e->flags & EDGE_EH)
5936 return true;
5937
5938 return false;
5939 }
5940
5941
5942 /* Scan to the end of the path described by DATA. Return an estimate of
5943 the total number of SETs of all insns in the path. */
5944
5945 static void
5946 cse_prescan_path (struct cse_basic_block_data *data)
5947 {
5948 int nsets = 0;
5949 int path_size = data->path_size;
5950 int path_entry;
5951
5952 /* Scan to end of each basic block in the path. */
5953 for (path_entry = 0; path_entry < path_size; path_entry++)
5954 {
5955 basic_block bb;
5956 rtx insn;
5957
5958 bb = data->path[path_entry].bb;
5959
5960 FOR_BB_INSNS (bb, insn)
5961 {
5962 if (!INSN_P (insn))
5963 continue;
5964
5965 /* A PARALLEL can have lots of SETs in it,
5966 especially if it is really an ASM_OPERANDS. */
5967 if (GET_CODE (PATTERN (insn)) == PARALLEL)
5968 nsets += XVECLEN (PATTERN (insn), 0);
5969 else
5970 nsets += 1;
5971 }
5972 }
5973
5974 data->nsets = nsets;
5975 }
5976
5977 /* Process a single extended basic block described by EBB_DATA. */
5978
5979 static void
5980 cse_extended_basic_block (struct cse_basic_block_data *ebb_data)
5981 {
5982 int path_size = ebb_data->path_size;
5983 int path_entry;
5984 int num_insns = 0;
5985
5986 /* Allocate the space needed by qty_table. */
5987 qty_table = XNEWVEC (struct qty_table_elem, max_qty);
5988
5989 new_basic_block ();
5990 cse_ebb_live_in = df_get_live_in (ebb_data->path[0].bb);
5991 cse_ebb_live_out = df_get_live_out (ebb_data->path[path_size - 1].bb);
5992 for (path_entry = 0; path_entry < path_size; path_entry++)
5993 {
5994 basic_block bb;
5995 rtx insn;
5996
5997 bb = ebb_data->path[path_entry].bb;
5998
5999 /* Invalidate recorded information for eh regs if there is an EH
6000 edge pointing to that bb. */
6001 if (bb_has_eh_pred (bb))
6002 {
6003 df_ref *def_rec;
6004
6005 for (def_rec = df_get_artificial_defs (bb->index); *def_rec; def_rec++)
6006 {
6007 df_ref def = *def_rec;
6008 if (DF_REF_FLAGS (def) & DF_REF_AT_TOP)
6009 invalidate (DF_REF_REG (def), GET_MODE (DF_REF_REG (def)));
6010 }
6011 }
6012
6013 FOR_BB_INSNS (bb, insn)
6014 {
6015 optimize_this_for_speed_p = optimize_bb_for_speed_p (bb);
6016 /* If we have processed 1,000 insns, flush the hash table to
6017 avoid extreme quadratic behavior. We must not include NOTEs
6018 in the count since there may be more of them when generating
6019 debugging information. If we clear the table at different
6020 times, code generated with -g -O might be different than code
6021 generated with -O but not -g.
6022
6023 FIXME: This is a real kludge and needs to be done some other
6024 way. */
6025 if (INSN_P (insn)
6026 && num_insns++ > PARAM_VALUE (PARAM_MAX_CSE_INSNS))
6027 {
6028 flush_hash_table ();
6029 num_insns = 0;
6030 }
6031
6032 if (INSN_P (insn))
6033 {
6034 /* Process notes first so we have all notes in canonical forms
6035 when looking for duplicate operations. */
6036 if (REG_NOTES (insn))
6037 {
6038 bool changed = false;
6039 REG_NOTES (insn) = cse_process_notes (REG_NOTES (insn),
6040 NULL_RTX, &changed);
6041 if (changed)
6042 df_notes_rescan (insn);
6043 }
6044
6045 cse_insn (insn);
6046
6047 /* If we haven't already found an insn where we added a LABEL_REF,
6048 check this one. */
6049 if (INSN_P (insn) && !recorded_label_ref
6050 && for_each_rtx (&PATTERN (insn), check_for_label_ref,
6051 (void *) insn))
6052 recorded_label_ref = true;
6053
6054 #ifdef HAVE_cc0
6055 /* If the previous insn set CC0 and this insn no longer
6056 references CC0, delete the previous insn. Here we use
6057 fact that nothing expects CC0 to be valid over an insn,
6058 which is true until the final pass. */
6059 {
6060 rtx prev_insn, tem;
6061
6062 prev_insn = PREV_INSN (insn);
6063 if (prev_insn && NONJUMP_INSN_P (prev_insn)
6064 && (tem = single_set (prev_insn)) != 0
6065 && SET_DEST (tem) == cc0_rtx
6066 && ! reg_mentioned_p (cc0_rtx, PATTERN (insn)))
6067 delete_insn (prev_insn);
6068 }
6069
6070 /* If this insn is not the last insn in the basic block,
6071 it will be PREV_INSN(insn) in the next iteration. If
6072 we recorded any CC0-related information for this insn,
6073 remember it. */
6074 if (insn != BB_END (bb))
6075 {
6076 prev_insn_cc0 = this_insn_cc0;
6077 prev_insn_cc0_mode = this_insn_cc0_mode;
6078 }
6079 #endif
6080 }
6081 }
6082
6083 /* With non-call exceptions, we are not always able to update
6084 the CFG properly inside cse_insn. So clean up possibly
6085 redundant EH edges here. */
6086 if (flag_non_call_exceptions && have_eh_succ_edges (bb))
6087 cse_cfg_altered |= purge_dead_edges (bb);
6088
6089 /* If we changed a conditional jump, we may have terminated
6090 the path we are following. Check that by verifying that
6091 the edge we would take still exists. If the edge does
6092 not exist anymore, purge the remainder of the path.
6093 Note that this will cause us to return to the caller. */
6094 if (path_entry < path_size - 1)
6095 {
6096 basic_block next_bb = ebb_data->path[path_entry + 1].bb;
6097 if (!find_edge (bb, next_bb))
6098 {
6099 do
6100 {
6101 path_size--;
6102
6103 /* If we truncate the path, we must also reset the
6104 visited bit on the remaining blocks in the path,
6105 or we will never visit them at all. */
6106 RESET_BIT (cse_visited_basic_blocks,
6107 ebb_data->path[path_size].bb->index);
6108 ebb_data->path[path_size].bb = NULL;
6109 }
6110 while (path_size - 1 != path_entry);
6111 ebb_data->path_size = path_size;
6112 }
6113 }
6114
6115 /* If this is a conditional jump insn, record any known
6116 equivalences due to the condition being tested. */
6117 insn = BB_END (bb);
6118 if (path_entry < path_size - 1
6119 && JUMP_P (insn)
6120 && single_set (insn)
6121 && any_condjump_p (insn))
6122 {
6123 basic_block next_bb = ebb_data->path[path_entry + 1].bb;
6124 bool taken = (next_bb == BRANCH_EDGE (bb)->dest);
6125 record_jump_equiv (insn, taken);
6126 }
6127
6128 #ifdef HAVE_cc0
6129 /* Clear the CC0-tracking related insns, they can't provide
6130 useful information across basic block boundaries. */
6131 prev_insn_cc0 = 0;
6132 #endif
6133 }
6134
6135 gcc_assert (next_qty <= max_qty);
6136
6137 free (qty_table);
6138 }
6139
6140
6141 /* Perform cse on the instructions of a function.
6142 F is the first instruction.
6143 NREGS is one plus the highest pseudo-reg number used in the instruction.
6144
6145 Return 2 if jump optimizations should be redone due to simplifications
6146 in conditional jump instructions.
6147 Return 1 if the CFG should be cleaned up because it has been modified.
6148 Return 0 otherwise. */
6149
6150 int
6151 cse_main (rtx f ATTRIBUTE_UNUSED, int nregs)
6152 {
6153 struct cse_basic_block_data ebb_data;
6154 basic_block bb;
6155 int *rc_order = XNEWVEC (int, last_basic_block);
6156 int i, n_blocks;
6157
6158 df_set_flags (DF_LR_RUN_DCE);
6159 df_analyze ();
6160 df_set_flags (DF_DEFER_INSN_RESCAN);
6161
6162 reg_scan (get_insns (), max_reg_num ());
6163 init_cse_reg_info (nregs);
6164
6165 ebb_data.path = XNEWVEC (struct branch_path,
6166 PARAM_VALUE (PARAM_MAX_CSE_PATH_LENGTH));
6167
6168 cse_cfg_altered = false;
6169 cse_jumps_altered = false;
6170 recorded_label_ref = false;
6171 constant_pool_entries_cost = 0;
6172 constant_pool_entries_regcost = 0;
6173 ebb_data.path_size = 0;
6174 ebb_data.nsets = 0;
6175 rtl_hooks = cse_rtl_hooks;
6176
6177 init_recog ();
6178 init_alias_analysis ();
6179
6180 reg_eqv_table = XNEWVEC (struct reg_eqv_elem, nregs);
6181
6182 /* Set up the table of already visited basic blocks. */
6183 cse_visited_basic_blocks = sbitmap_alloc (last_basic_block);
6184 sbitmap_zero (cse_visited_basic_blocks);
6185
6186 /* Loop over basic blocks in reverse completion order (RPO),
6187 excluding the ENTRY and EXIT blocks. */
6188 n_blocks = pre_and_rev_post_order_compute (NULL, rc_order, false);
6189 i = 0;
6190 while (i < n_blocks)
6191 {
6192 /* Find the first block in the RPO queue that we have not yet
6193 processed before. */
6194 do
6195 {
6196 bb = BASIC_BLOCK (rc_order[i++]);
6197 }
6198 while (TEST_BIT (cse_visited_basic_blocks, bb->index)
6199 && i < n_blocks);
6200
6201 /* Find all paths starting with BB, and process them. */
6202 while (cse_find_path (bb, &ebb_data, flag_cse_follow_jumps))
6203 {
6204 /* Pre-scan the path. */
6205 cse_prescan_path (&ebb_data);
6206
6207 /* If this basic block has no sets, skip it. */
6208 if (ebb_data.nsets == 0)
6209 continue;
6210
6211 /* Get a reasonable estimate for the maximum number of qty's
6212 needed for this path. For this, we take the number of sets
6213 and multiply that by MAX_RECOG_OPERANDS. */
6214 max_qty = ebb_data.nsets * MAX_RECOG_OPERANDS;
6215
6216 /* Dump the path we're about to process. */
6217 if (dump_file)
6218 cse_dump_path (&ebb_data, ebb_data.nsets, dump_file);
6219
6220 cse_extended_basic_block (&ebb_data);
6221 }
6222 }
6223
6224 /* Clean up. */
6225 end_alias_analysis ();
6226 free (reg_eqv_table);
6227 free (ebb_data.path);
6228 sbitmap_free (cse_visited_basic_blocks);
6229 free (rc_order);
6230 rtl_hooks = general_rtl_hooks;
6231
6232 if (cse_jumps_altered || recorded_label_ref)
6233 return 2;
6234 else if (cse_cfg_altered)
6235 return 1;
6236 else
6237 return 0;
6238 }
6239
6240 /* Called via for_each_rtx to see if an insn is using a LABEL_REF for
6241 which there isn't a REG_LABEL_OPERAND note.
6242 Return one if so. DATA is the insn. */
6243
6244 static int
6245 check_for_label_ref (rtx *rtl, void *data)
6246 {
6247 rtx insn = (rtx) data;
6248
6249 /* If this insn uses a LABEL_REF and there isn't a REG_LABEL_OPERAND
6250 note for it, we must rerun jump since it needs to place the note. If
6251 this is a LABEL_REF for a CODE_LABEL that isn't in the insn chain,
6252 don't do this since no REG_LABEL_OPERAND will be added. */
6253 return (GET_CODE (*rtl) == LABEL_REF
6254 && ! LABEL_REF_NONLOCAL_P (*rtl)
6255 && (!JUMP_P (insn)
6256 || !label_is_jump_target_p (XEXP (*rtl, 0), insn))
6257 && LABEL_P (XEXP (*rtl, 0))
6258 && INSN_UID (XEXP (*rtl, 0)) != 0
6259 && ! find_reg_note (insn, REG_LABEL_OPERAND, XEXP (*rtl, 0)));
6260 }
6261
6262 /* Count the number of times registers are used (not set) in X.
6263 COUNTS is an array in which we accumulate the count, INCR is how much
6264 we count each register usage.
6265
6266 Don't count a usage of DEST, which is the SET_DEST of a SET which
6267 contains X in its SET_SRC. This is because such a SET does not
6268 modify the liveness of DEST.
6269 DEST is set to pc_rtx for a trapping insn, which means that we must count
6270 uses of a SET_DEST regardless because the insn can't be deleted here. */
6271
6272 static void
6273 count_reg_usage (rtx x, int *counts, rtx dest, int incr)
6274 {
6275 enum rtx_code code;
6276 rtx note;
6277 const char *fmt;
6278 int i, j;
6279
6280 if (x == 0)
6281 return;
6282
6283 switch (code = GET_CODE (x))
6284 {
6285 case REG:
6286 if (x != dest)
6287 counts[REGNO (x)] += incr;
6288 return;
6289
6290 case PC:
6291 case CC0:
6292 case CONST:
6293 case CONST_INT:
6294 case CONST_DOUBLE:
6295 case CONST_FIXED:
6296 case CONST_VECTOR:
6297 case SYMBOL_REF:
6298 case LABEL_REF:
6299 return;
6300
6301 case CLOBBER:
6302 /* If we are clobbering a MEM, mark any registers inside the address
6303 as being used. */
6304 if (MEM_P (XEXP (x, 0)))
6305 count_reg_usage (XEXP (XEXP (x, 0), 0), counts, NULL_RTX, incr);
6306 return;
6307
6308 case SET:
6309 /* Unless we are setting a REG, count everything in SET_DEST. */
6310 if (!REG_P (SET_DEST (x)))
6311 count_reg_usage (SET_DEST (x), counts, NULL_RTX, incr);
6312 count_reg_usage (SET_SRC (x), counts,
6313 dest ? dest : SET_DEST (x),
6314 incr);
6315 return;
6316
6317 case CALL_INSN:
6318 case INSN:
6319 case JUMP_INSN:
6320 /* We expect dest to be NULL_RTX here. If the insn may trap, mark
6321 this fact by setting DEST to pc_rtx. */
6322 if (flag_non_call_exceptions && may_trap_p (PATTERN (x)))
6323 dest = pc_rtx;
6324 if (code == CALL_INSN)
6325 count_reg_usage (CALL_INSN_FUNCTION_USAGE (x), counts, dest, incr);
6326 count_reg_usage (PATTERN (x), counts, dest, incr);
6327
6328 /* Things used in a REG_EQUAL note aren't dead since loop may try to
6329 use them. */
6330
6331 note = find_reg_equal_equiv_note (x);
6332 if (note)
6333 {
6334 rtx eqv = XEXP (note, 0);
6335
6336 if (GET_CODE (eqv) == EXPR_LIST)
6337 /* This REG_EQUAL note describes the result of a function call.
6338 Process all the arguments. */
6339 do
6340 {
6341 count_reg_usage (XEXP (eqv, 0), counts, dest, incr);
6342 eqv = XEXP (eqv, 1);
6343 }
6344 while (eqv && GET_CODE (eqv) == EXPR_LIST);
6345 else
6346 count_reg_usage (eqv, counts, dest, incr);
6347 }
6348 return;
6349
6350 case EXPR_LIST:
6351 if (REG_NOTE_KIND (x) == REG_EQUAL
6352 || (REG_NOTE_KIND (x) != REG_NONNEG && GET_CODE (XEXP (x,0)) == USE)
6353 /* FUNCTION_USAGE expression lists may include (CLOBBER (mem /u)),
6354 involving registers in the address. */
6355 || GET_CODE (XEXP (x, 0)) == CLOBBER)
6356 count_reg_usage (XEXP (x, 0), counts, NULL_RTX, incr);
6357
6358 count_reg_usage (XEXP (x, 1), counts, NULL_RTX, incr);
6359 return;
6360
6361 case ASM_OPERANDS:
6362 /* If the asm is volatile, then this insn cannot be deleted,
6363 and so the inputs *must* be live. */
6364 if (MEM_VOLATILE_P (x))
6365 dest = NULL_RTX;
6366 /* Iterate over just the inputs, not the constraints as well. */
6367 for (i = ASM_OPERANDS_INPUT_LENGTH (x) - 1; i >= 0; i--)
6368 count_reg_usage (ASM_OPERANDS_INPUT (x, i), counts, dest, incr);
6369 return;
6370
6371 case INSN_LIST:
6372 gcc_unreachable ();
6373
6374 default:
6375 break;
6376 }
6377
6378 fmt = GET_RTX_FORMAT (code);
6379 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
6380 {
6381 if (fmt[i] == 'e')
6382 count_reg_usage (XEXP (x, i), counts, dest, incr);
6383 else if (fmt[i] == 'E')
6384 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
6385 count_reg_usage (XVECEXP (x, i, j), counts, dest, incr);
6386 }
6387 }
6388
6389 /* Return true if set is live. */
6390 static bool
6391 set_live_p (rtx set, rtx insn ATTRIBUTE_UNUSED, /* Only used with HAVE_cc0. */
6392 int *counts)
6393 {
6394 #ifdef HAVE_cc0
6395 rtx tem;
6396 #endif
6397
6398 if (set_noop_p (set))
6399 ;
6400
6401 #ifdef HAVE_cc0
6402 else if (GET_CODE (SET_DEST (set)) == CC0
6403 && !side_effects_p (SET_SRC (set))
6404 && ((tem = next_nonnote_insn (insn)) == 0
6405 || !INSN_P (tem)
6406 || !reg_referenced_p (cc0_rtx, PATTERN (tem))))
6407 return false;
6408 #endif
6409 else if (!REG_P (SET_DEST (set))
6410 || REGNO (SET_DEST (set)) < FIRST_PSEUDO_REGISTER
6411 || counts[REGNO (SET_DEST (set))] != 0
6412 || side_effects_p (SET_SRC (set)))
6413 return true;
6414 return false;
6415 }
6416
6417 /* Return true if insn is live. */
6418
6419 static bool
6420 insn_live_p (rtx insn, int *counts)
6421 {
6422 int i;
6423 if (flag_non_call_exceptions && may_trap_p (PATTERN (insn)))
6424 return true;
6425 else if (GET_CODE (PATTERN (insn)) == SET)
6426 return set_live_p (PATTERN (insn), insn, counts);
6427 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
6428 {
6429 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
6430 {
6431 rtx elt = XVECEXP (PATTERN (insn), 0, i);
6432
6433 if (GET_CODE (elt) == SET)
6434 {
6435 if (set_live_p (elt, insn, counts))
6436 return true;
6437 }
6438 else if (GET_CODE (elt) != CLOBBER && GET_CODE (elt) != USE)
6439 return true;
6440 }
6441 return false;
6442 }
6443 else
6444 return true;
6445 }
6446
6447 /* Scan all the insns and delete any that are dead; i.e., they store a register
6448 that is never used or they copy a register to itself.
6449
6450 This is used to remove insns made obviously dead by cse, loop or other
6451 optimizations. It improves the heuristics in loop since it won't try to
6452 move dead invariants out of loops or make givs for dead quantities. The
6453 remaining passes of the compilation are also sped up. */
6454
6455 int
6456 delete_trivially_dead_insns (rtx insns, int nreg)
6457 {
6458 int *counts;
6459 rtx insn, prev;
6460 int ndead = 0;
6461
6462 timevar_push (TV_DELETE_TRIVIALLY_DEAD);
6463 /* First count the number of times each register is used. */
6464 counts = XCNEWVEC (int, nreg);
6465 for (insn = insns; insn; insn = NEXT_INSN (insn))
6466 if (INSN_P (insn))
6467 count_reg_usage (insn, counts, NULL_RTX, 1);
6468
6469 /* Go from the last insn to the first and delete insns that only set unused
6470 registers or copy a register to itself. As we delete an insn, remove
6471 usage counts for registers it uses.
6472
6473 The first jump optimization pass may leave a real insn as the last
6474 insn in the function. We must not skip that insn or we may end
6475 up deleting code that is not really dead. */
6476 for (insn = get_last_insn (); insn; insn = prev)
6477 {
6478 int live_insn = 0;
6479
6480 prev = PREV_INSN (insn);
6481 if (!INSN_P (insn))
6482 continue;
6483
6484 live_insn = insn_live_p (insn, counts);
6485
6486 /* If this is a dead insn, delete it and show registers in it aren't
6487 being used. */
6488
6489 if (! live_insn && dbg_cnt (delete_trivial_dead))
6490 {
6491 count_reg_usage (insn, counts, NULL_RTX, -1);
6492 delete_insn_and_edges (insn);
6493 ndead++;
6494 }
6495 }
6496
6497 if (dump_file && ndead)
6498 fprintf (dump_file, "Deleted %i trivially dead insns\n",
6499 ndead);
6500 /* Clean up. */
6501 free (counts);
6502 timevar_pop (TV_DELETE_TRIVIALLY_DEAD);
6503 return ndead;
6504 }
6505
6506 /* This function is called via for_each_rtx. The argument, NEWREG, is
6507 a condition code register with the desired mode. If we are looking
6508 at the same register in a different mode, replace it with
6509 NEWREG. */
6510
6511 static int
6512 cse_change_cc_mode (rtx *loc, void *data)
6513 {
6514 struct change_cc_mode_args* args = (struct change_cc_mode_args*)data;
6515
6516 if (*loc
6517 && REG_P (*loc)
6518 && REGNO (*loc) == REGNO (args->newreg)
6519 && GET_MODE (*loc) != GET_MODE (args->newreg))
6520 {
6521 validate_change (args->insn, loc, args->newreg, 1);
6522
6523 return -1;
6524 }
6525 return 0;
6526 }
6527
6528 /* Change the mode of any reference to the register REGNO (NEWREG) to
6529 GET_MODE (NEWREG) in INSN. */
6530
6531 static void
6532 cse_change_cc_mode_insn (rtx insn, rtx newreg)
6533 {
6534 struct change_cc_mode_args args;
6535 int success;
6536
6537 if (!INSN_P (insn))
6538 return;
6539
6540 args.insn = insn;
6541 args.newreg = newreg;
6542
6543 for_each_rtx (&PATTERN (insn), cse_change_cc_mode, &args);
6544 for_each_rtx (&REG_NOTES (insn), cse_change_cc_mode, &args);
6545
6546 /* If the following assertion was triggered, there is most probably
6547 something wrong with the cc_modes_compatible back end function.
6548 CC modes only can be considered compatible if the insn - with the mode
6549 replaced by any of the compatible modes - can still be recognized. */
6550 success = apply_change_group ();
6551 gcc_assert (success);
6552 }
6553
6554 /* Change the mode of any reference to the register REGNO (NEWREG) to
6555 GET_MODE (NEWREG), starting at START. Stop before END. Stop at
6556 any instruction which modifies NEWREG. */
6557
6558 static void
6559 cse_change_cc_mode_insns (rtx start, rtx end, rtx newreg)
6560 {
6561 rtx insn;
6562
6563 for (insn = start; insn != end; insn = NEXT_INSN (insn))
6564 {
6565 if (! INSN_P (insn))
6566 continue;
6567
6568 if (reg_set_p (newreg, insn))
6569 return;
6570
6571 cse_change_cc_mode_insn (insn, newreg);
6572 }
6573 }
6574
6575 /* BB is a basic block which finishes with CC_REG as a condition code
6576 register which is set to CC_SRC. Look through the successors of BB
6577 to find blocks which have a single predecessor (i.e., this one),
6578 and look through those blocks for an assignment to CC_REG which is
6579 equivalent to CC_SRC. CAN_CHANGE_MODE indicates whether we are
6580 permitted to change the mode of CC_SRC to a compatible mode. This
6581 returns VOIDmode if no equivalent assignments were found.
6582 Otherwise it returns the mode which CC_SRC should wind up with.
6583 ORIG_BB should be the same as BB in the outermost cse_cc_succs call,
6584 but is passed unmodified down to recursive calls in order to prevent
6585 endless recursion.
6586
6587 The main complexity in this function is handling the mode issues.
6588 We may have more than one duplicate which we can eliminate, and we
6589 try to find a mode which will work for multiple duplicates. */
6590
6591 static enum machine_mode
6592 cse_cc_succs (basic_block bb, basic_block orig_bb, rtx cc_reg, rtx cc_src,
6593 bool can_change_mode)
6594 {
6595 bool found_equiv;
6596 enum machine_mode mode;
6597 unsigned int insn_count;
6598 edge e;
6599 rtx insns[2];
6600 enum machine_mode modes[2];
6601 rtx last_insns[2];
6602 unsigned int i;
6603 rtx newreg;
6604 edge_iterator ei;
6605
6606 /* We expect to have two successors. Look at both before picking
6607 the final mode for the comparison. If we have more successors
6608 (i.e., some sort of table jump, although that seems unlikely),
6609 then we require all beyond the first two to use the same
6610 mode. */
6611
6612 found_equiv = false;
6613 mode = GET_MODE (cc_src);
6614 insn_count = 0;
6615 FOR_EACH_EDGE (e, ei, bb->succs)
6616 {
6617 rtx insn;
6618 rtx end;
6619
6620 if (e->flags & EDGE_COMPLEX)
6621 continue;
6622
6623 if (EDGE_COUNT (e->dest->preds) != 1
6624 || e->dest == EXIT_BLOCK_PTR
6625 /* Avoid endless recursion on unreachable blocks. */
6626 || e->dest == orig_bb)
6627 continue;
6628
6629 end = NEXT_INSN (BB_END (e->dest));
6630 for (insn = BB_HEAD (e->dest); insn != end; insn = NEXT_INSN (insn))
6631 {
6632 rtx set;
6633
6634 if (! INSN_P (insn))
6635 continue;
6636
6637 /* If CC_SRC is modified, we have to stop looking for
6638 something which uses it. */
6639 if (modified_in_p (cc_src, insn))
6640 break;
6641
6642 /* Check whether INSN sets CC_REG to CC_SRC. */
6643 set = single_set (insn);
6644 if (set
6645 && REG_P (SET_DEST (set))
6646 && REGNO (SET_DEST (set)) == REGNO (cc_reg))
6647 {
6648 bool found;
6649 enum machine_mode set_mode;
6650 enum machine_mode comp_mode;
6651
6652 found = false;
6653 set_mode = GET_MODE (SET_SRC (set));
6654 comp_mode = set_mode;
6655 if (rtx_equal_p (cc_src, SET_SRC (set)))
6656 found = true;
6657 else if (GET_CODE (cc_src) == COMPARE
6658 && GET_CODE (SET_SRC (set)) == COMPARE
6659 && mode != set_mode
6660 && rtx_equal_p (XEXP (cc_src, 0),
6661 XEXP (SET_SRC (set), 0))
6662 && rtx_equal_p (XEXP (cc_src, 1),
6663 XEXP (SET_SRC (set), 1)))
6664
6665 {
6666 comp_mode = targetm.cc_modes_compatible (mode, set_mode);
6667 if (comp_mode != VOIDmode
6668 && (can_change_mode || comp_mode == mode))
6669 found = true;
6670 }
6671
6672 if (found)
6673 {
6674 found_equiv = true;
6675 if (insn_count < ARRAY_SIZE (insns))
6676 {
6677 insns[insn_count] = insn;
6678 modes[insn_count] = set_mode;
6679 last_insns[insn_count] = end;
6680 ++insn_count;
6681
6682 if (mode != comp_mode)
6683 {
6684 gcc_assert (can_change_mode);
6685 mode = comp_mode;
6686
6687 /* The modified insn will be re-recognized later. */
6688 PUT_MODE (cc_src, mode);
6689 }
6690 }
6691 else
6692 {
6693 if (set_mode != mode)
6694 {
6695 /* We found a matching expression in the
6696 wrong mode, but we don't have room to
6697 store it in the array. Punt. This case
6698 should be rare. */
6699 break;
6700 }
6701 /* INSN sets CC_REG to a value equal to CC_SRC
6702 with the right mode. We can simply delete
6703 it. */
6704 delete_insn (insn);
6705 }
6706
6707 /* We found an instruction to delete. Keep looking,
6708 in the hopes of finding a three-way jump. */
6709 continue;
6710 }
6711
6712 /* We found an instruction which sets the condition
6713 code, so don't look any farther. */
6714 break;
6715 }
6716
6717 /* If INSN sets CC_REG in some other way, don't look any
6718 farther. */
6719 if (reg_set_p (cc_reg, insn))
6720 break;
6721 }
6722
6723 /* If we fell off the bottom of the block, we can keep looking
6724 through successors. We pass CAN_CHANGE_MODE as false because
6725 we aren't prepared to handle compatibility between the
6726 further blocks and this block. */
6727 if (insn == end)
6728 {
6729 enum machine_mode submode;
6730
6731 submode = cse_cc_succs (e->dest, orig_bb, cc_reg, cc_src, false);
6732 if (submode != VOIDmode)
6733 {
6734 gcc_assert (submode == mode);
6735 found_equiv = true;
6736 can_change_mode = false;
6737 }
6738 }
6739 }
6740
6741 if (! found_equiv)
6742 return VOIDmode;
6743
6744 /* Now INSN_COUNT is the number of instructions we found which set
6745 CC_REG to a value equivalent to CC_SRC. The instructions are in
6746 INSNS. The modes used by those instructions are in MODES. */
6747
6748 newreg = NULL_RTX;
6749 for (i = 0; i < insn_count; ++i)
6750 {
6751 if (modes[i] != mode)
6752 {
6753 /* We need to change the mode of CC_REG in INSNS[i] and
6754 subsequent instructions. */
6755 if (! newreg)
6756 {
6757 if (GET_MODE (cc_reg) == mode)
6758 newreg = cc_reg;
6759 else
6760 newreg = gen_rtx_REG (mode, REGNO (cc_reg));
6761 }
6762 cse_change_cc_mode_insns (NEXT_INSN (insns[i]), last_insns[i],
6763 newreg);
6764 }
6765
6766 delete_insn_and_edges (insns[i]);
6767 }
6768
6769 return mode;
6770 }
6771
6772 /* If we have a fixed condition code register (or two), walk through
6773 the instructions and try to eliminate duplicate assignments. */
6774
6775 static void
6776 cse_condition_code_reg (void)
6777 {
6778 unsigned int cc_regno_1;
6779 unsigned int cc_regno_2;
6780 rtx cc_reg_1;
6781 rtx cc_reg_2;
6782 basic_block bb;
6783
6784 if (! targetm.fixed_condition_code_regs (&cc_regno_1, &cc_regno_2))
6785 return;
6786
6787 cc_reg_1 = gen_rtx_REG (CCmode, cc_regno_1);
6788 if (cc_regno_2 != INVALID_REGNUM)
6789 cc_reg_2 = gen_rtx_REG (CCmode, cc_regno_2);
6790 else
6791 cc_reg_2 = NULL_RTX;
6792
6793 FOR_EACH_BB (bb)
6794 {
6795 rtx last_insn;
6796 rtx cc_reg;
6797 rtx insn;
6798 rtx cc_src_insn;
6799 rtx cc_src;
6800 enum machine_mode mode;
6801 enum machine_mode orig_mode;
6802
6803 /* Look for blocks which end with a conditional jump based on a
6804 condition code register. Then look for the instruction which
6805 sets the condition code register. Then look through the
6806 successor blocks for instructions which set the condition
6807 code register to the same value. There are other possible
6808 uses of the condition code register, but these are by far the
6809 most common and the ones which we are most likely to be able
6810 to optimize. */
6811
6812 last_insn = BB_END (bb);
6813 if (!JUMP_P (last_insn))
6814 continue;
6815
6816 if (reg_referenced_p (cc_reg_1, PATTERN (last_insn)))
6817 cc_reg = cc_reg_1;
6818 else if (cc_reg_2 && reg_referenced_p (cc_reg_2, PATTERN (last_insn)))
6819 cc_reg = cc_reg_2;
6820 else
6821 continue;
6822
6823 cc_src_insn = NULL_RTX;
6824 cc_src = NULL_RTX;
6825 for (insn = PREV_INSN (last_insn);
6826 insn && insn != PREV_INSN (BB_HEAD (bb));
6827 insn = PREV_INSN (insn))
6828 {
6829 rtx set;
6830
6831 if (! INSN_P (insn))
6832 continue;
6833 set = single_set (insn);
6834 if (set
6835 && REG_P (SET_DEST (set))
6836 && REGNO (SET_DEST (set)) == REGNO (cc_reg))
6837 {
6838 cc_src_insn = insn;
6839 cc_src = SET_SRC (set);
6840 break;
6841 }
6842 else if (reg_set_p (cc_reg, insn))
6843 break;
6844 }
6845
6846 if (! cc_src_insn)
6847 continue;
6848
6849 if (modified_between_p (cc_src, cc_src_insn, NEXT_INSN (last_insn)))
6850 continue;
6851
6852 /* Now CC_REG is a condition code register used for a
6853 conditional jump at the end of the block, and CC_SRC, in
6854 CC_SRC_INSN, is the value to which that condition code
6855 register is set, and CC_SRC is still meaningful at the end of
6856 the basic block. */
6857
6858 orig_mode = GET_MODE (cc_src);
6859 mode = cse_cc_succs (bb, bb, cc_reg, cc_src, true);
6860 if (mode != VOIDmode)
6861 {
6862 gcc_assert (mode == GET_MODE (cc_src));
6863 if (mode != orig_mode)
6864 {
6865 rtx newreg = gen_rtx_REG (mode, REGNO (cc_reg));
6866
6867 cse_change_cc_mode_insn (cc_src_insn, newreg);
6868
6869 /* Do the same in the following insns that use the
6870 current value of CC_REG within BB. */
6871 cse_change_cc_mode_insns (NEXT_INSN (cc_src_insn),
6872 NEXT_INSN (last_insn),
6873 newreg);
6874 }
6875 }
6876 }
6877 }
6878
6879
6880 /* Perform common subexpression elimination. Nonzero value from
6881 `cse_main' means that jumps were simplified and some code may now
6882 be unreachable, so do jump optimization again. */
6883 static bool
6884 gate_handle_cse (void)
6885 {
6886 return optimize > 0;
6887 }
6888
6889 static unsigned int
6890 rest_of_handle_cse (void)
6891 {
6892 int tem;
6893
6894 if (dump_file)
6895 dump_flow_info (dump_file, dump_flags);
6896
6897 tem = cse_main (get_insns (), max_reg_num ());
6898
6899 /* If we are not running more CSE passes, then we are no longer
6900 expecting CSE to be run. But always rerun it in a cheap mode. */
6901 cse_not_expected = !flag_rerun_cse_after_loop && !flag_gcse;
6902
6903 if (tem == 2)
6904 {
6905 timevar_push (TV_JUMP);
6906 rebuild_jump_labels (get_insns ());
6907 cleanup_cfg (0);
6908 timevar_pop (TV_JUMP);
6909 }
6910 else if (tem == 1 || optimize > 1)
6911 cleanup_cfg (0);
6912
6913 return 0;
6914 }
6915
6916 struct rtl_opt_pass pass_cse =
6917 {
6918 {
6919 RTL_PASS,
6920 "cse1", /* name */
6921 gate_handle_cse, /* gate */
6922 rest_of_handle_cse, /* execute */
6923 NULL, /* sub */
6924 NULL, /* next */
6925 0, /* static_pass_number */
6926 TV_CSE, /* tv_id */
6927 0, /* properties_required */
6928 0, /* properties_provided */
6929 0, /* properties_destroyed */
6930 0, /* todo_flags_start */
6931 TODO_df_finish | TODO_verify_rtl_sharing |
6932 TODO_dump_func |
6933 TODO_ggc_collect |
6934 TODO_verify_flow, /* todo_flags_finish */
6935 }
6936 };
6937
6938
6939 static bool
6940 gate_handle_cse2 (void)
6941 {
6942 return optimize > 0 && flag_rerun_cse_after_loop;
6943 }
6944
6945 /* Run second CSE pass after loop optimizations. */
6946 static unsigned int
6947 rest_of_handle_cse2 (void)
6948 {
6949 int tem;
6950
6951 if (dump_file)
6952 dump_flow_info (dump_file, dump_flags);
6953
6954 tem = cse_main (get_insns (), max_reg_num ());
6955
6956 /* Run a pass to eliminate duplicated assignments to condition code
6957 registers. We have to run this after bypass_jumps, because it
6958 makes it harder for that pass to determine whether a jump can be
6959 bypassed safely. */
6960 cse_condition_code_reg ();
6961
6962 delete_trivially_dead_insns (get_insns (), max_reg_num ());
6963
6964 if (tem == 2)
6965 {
6966 timevar_push (TV_JUMP);
6967 rebuild_jump_labels (get_insns ());
6968 cleanup_cfg (0);
6969 timevar_pop (TV_JUMP);
6970 }
6971 else if (tem == 1)
6972 cleanup_cfg (0);
6973
6974 cse_not_expected = 1;
6975 return 0;
6976 }
6977
6978
6979 struct rtl_opt_pass pass_cse2 =
6980 {
6981 {
6982 RTL_PASS,
6983 "cse2", /* name */
6984 gate_handle_cse2, /* gate */
6985 rest_of_handle_cse2, /* execute */
6986 NULL, /* sub */
6987 NULL, /* next */
6988 0, /* static_pass_number */
6989 TV_CSE2, /* tv_id */
6990 0, /* properties_required */
6991 0, /* properties_provided */
6992 0, /* properties_destroyed */
6993 0, /* todo_flags_start */
6994 TODO_df_finish | TODO_verify_rtl_sharing |
6995 TODO_dump_func |
6996 TODO_ggc_collect |
6997 TODO_verify_flow /* todo_flags_finish */
6998 }
6999 };
7000