comparison gcc/cselib.c @ 0:a06113de4d67

first commit
author kent <kent@cr.ie.u-ryukyu.ac.jp>
date Fri, 17 Jul 2009 14:47:48 +0900
parents
children 58ad6c70ea60
comparison
equal deleted inserted replaced
-1:000000000000 0:a06113de4d67
1 /* Common subexpression elimination library for GNU compiler.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2003, 2004, 2005, 2006, 2007, 2008
4 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26
27 #include "rtl.h"
28 #include "tm_p.h"
29 #include "regs.h"
30 #include "hard-reg-set.h"
31 #include "flags.h"
32 #include "real.h"
33 #include "insn-config.h"
34 #include "recog.h"
35 #include "function.h"
36 #include "emit-rtl.h"
37 #include "toplev.h"
38 #include "output.h"
39 #include "ggc.h"
40 #include "hashtab.h"
41 #include "cselib.h"
42 #include "params.h"
43 #include "alloc-pool.h"
44 #include "target.h"
45
46 static bool cselib_record_memory;
47 static int entry_and_rtx_equal_p (const void *, const void *);
48 static hashval_t get_value_hash (const void *);
49 static struct elt_list *new_elt_list (struct elt_list *, cselib_val *);
50 static struct elt_loc_list *new_elt_loc_list (struct elt_loc_list *, rtx);
51 static void unchain_one_value (cselib_val *);
52 static void unchain_one_elt_list (struct elt_list **);
53 static void unchain_one_elt_loc_list (struct elt_loc_list **);
54 static int discard_useless_locs (void **, void *);
55 static int discard_useless_values (void **, void *);
56 static void remove_useless_values (void);
57 static rtx wrap_constant (enum machine_mode, rtx);
58 static unsigned int cselib_hash_rtx (rtx, int);
59 static cselib_val *new_cselib_val (unsigned int, enum machine_mode);
60 static void add_mem_for_addr (cselib_val *, cselib_val *, rtx);
61 static cselib_val *cselib_lookup_mem (rtx, int);
62 static void cselib_invalidate_regno (unsigned int, enum machine_mode);
63 static void cselib_invalidate_mem (rtx);
64 static void cselib_record_set (rtx, cselib_val *, cselib_val *);
65 static void cselib_record_sets (rtx);
66
67 /* There are three ways in which cselib can look up an rtx:
68 - for a REG, the reg_values table (which is indexed by regno) is used
69 - for a MEM, we recursively look up its address and then follow the
70 addr_list of that value
71 - for everything else, we compute a hash value and go through the hash
72 table. Since different rtx's can still have the same hash value,
73 this involves walking the table entries for a given value and comparing
74 the locations of the entries with the rtx we are looking up. */
75
76 /* A table that enables us to look up elts by their value. */
77 static htab_t cselib_hash_table;
78
79 /* This is a global so we don't have to pass this through every function.
80 It is used in new_elt_loc_list to set SETTING_INSN. */
81 static rtx cselib_current_insn;
82
83 /* Every new unknown value gets a unique number. */
84 static unsigned int next_unknown_value;
85
86 /* The number of registers we had when the varrays were last resized. */
87 static unsigned int cselib_nregs;
88
89 /* Count values without known locations. Whenever this grows too big, we
90 remove these useless values from the table. */
91 static int n_useless_values;
92
93 /* Number of useless values before we remove them from the hash table. */
94 #define MAX_USELESS_VALUES 32
95
96 /* This table maps from register number to values. It does not
97 contain pointers to cselib_val structures, but rather elt_lists.
98 The purpose is to be able to refer to the same register in
99 different modes. The first element of the list defines the mode in
100 which the register was set; if the mode is unknown or the value is
101 no longer valid in that mode, ELT will be NULL for the first
102 element. */
103 static struct elt_list **reg_values;
104 static unsigned int reg_values_size;
105 #define REG_VALUES(i) reg_values[i]
106
107 /* The largest number of hard regs used by any entry added to the
108 REG_VALUES table. Cleared on each cselib_clear_table() invocation. */
109 static unsigned int max_value_regs;
110
111 /* Here the set of indices I with REG_VALUES(I) != 0 is saved. This is used
112 in cselib_clear_table() for fast emptying. */
113 static unsigned int *used_regs;
114 static unsigned int n_used_regs;
115
116 /* We pass this to cselib_invalidate_mem to invalidate all of
117 memory for a non-const call instruction. */
118 static GTY(()) rtx callmem;
119
120 /* Set by discard_useless_locs if it deleted the last location of any
121 value. */
122 static int values_became_useless;
123
124 /* Used as stop element of the containing_mem list so we can check
125 presence in the list by checking the next pointer. */
126 static cselib_val dummy_val;
127
128 /* Used to list all values that contain memory reference.
129 May or may not contain the useless values - the list is compacted
130 each time memory is invalidated. */
131 static cselib_val *first_containing_mem = &dummy_val;
132 static alloc_pool elt_loc_list_pool, elt_list_pool, cselib_val_pool, value_pool;
133
134 /* If nonnull, cselib will call this function before freeing useless
135 VALUEs. A VALUE is deemed useless if its "locs" field is null. */
136 void (*cselib_discard_hook) (cselib_val *);
137
138
139 /* Allocate a struct elt_list and fill in its two elements with the
140 arguments. */
141
142 static inline struct elt_list *
143 new_elt_list (struct elt_list *next, cselib_val *elt)
144 {
145 struct elt_list *el;
146 el = (struct elt_list *) pool_alloc (elt_list_pool);
147 el->next = next;
148 el->elt = elt;
149 return el;
150 }
151
152 /* Allocate a struct elt_loc_list and fill in its two elements with the
153 arguments. */
154
155 static inline struct elt_loc_list *
156 new_elt_loc_list (struct elt_loc_list *next, rtx loc)
157 {
158 struct elt_loc_list *el;
159 el = (struct elt_loc_list *) pool_alloc (elt_loc_list_pool);
160 el->next = next;
161 el->loc = loc;
162 el->setting_insn = cselib_current_insn;
163 return el;
164 }
165
166 /* The elt_list at *PL is no longer needed. Unchain it and free its
167 storage. */
168
169 static inline void
170 unchain_one_elt_list (struct elt_list **pl)
171 {
172 struct elt_list *l = *pl;
173
174 *pl = l->next;
175 pool_free (elt_list_pool, l);
176 }
177
178 /* Likewise for elt_loc_lists. */
179
180 static void
181 unchain_one_elt_loc_list (struct elt_loc_list **pl)
182 {
183 struct elt_loc_list *l = *pl;
184
185 *pl = l->next;
186 pool_free (elt_loc_list_pool, l);
187 }
188
189 /* Likewise for cselib_vals. This also frees the addr_list associated with
190 V. */
191
192 static void
193 unchain_one_value (cselib_val *v)
194 {
195 while (v->addr_list)
196 unchain_one_elt_list (&v->addr_list);
197
198 pool_free (cselib_val_pool, v);
199 }
200
201 /* Remove all entries from the hash table. Also used during
202 initialization. If CLEAR_ALL isn't set, then only clear the entries
203 which are known to have been used. */
204
205 void
206 cselib_clear_table (void)
207 {
208 unsigned int i;
209
210 for (i = 0; i < n_used_regs; i++)
211 REG_VALUES (used_regs[i]) = 0;
212
213 max_value_regs = 0;
214
215 n_used_regs = 0;
216
217 htab_empty (cselib_hash_table);
218
219 n_useless_values = 0;
220
221 next_unknown_value = 0;
222
223 first_containing_mem = &dummy_val;
224 }
225
226 /* The equality test for our hash table. The first argument ENTRY is a table
227 element (i.e. a cselib_val), while the second arg X is an rtx. We know
228 that all callers of htab_find_slot_with_hash will wrap CONST_INTs into a
229 CONST of an appropriate mode. */
230
231 static int
232 entry_and_rtx_equal_p (const void *entry, const void *x_arg)
233 {
234 struct elt_loc_list *l;
235 const cselib_val *const v = (const cselib_val *) entry;
236 rtx x = CONST_CAST_RTX ((const_rtx)x_arg);
237 enum machine_mode mode = GET_MODE (x);
238
239 gcc_assert (GET_CODE (x) != CONST_INT && GET_CODE (x) != CONST_FIXED
240 && (mode != VOIDmode || GET_CODE (x) != CONST_DOUBLE));
241
242 if (mode != GET_MODE (v->val_rtx))
243 return 0;
244
245 /* Unwrap X if necessary. */
246 if (GET_CODE (x) == CONST
247 && (GET_CODE (XEXP (x, 0)) == CONST_INT
248 || GET_CODE (XEXP (x, 0)) == CONST_FIXED
249 || GET_CODE (XEXP (x, 0)) == CONST_DOUBLE))
250 x = XEXP (x, 0);
251
252 /* We don't guarantee that distinct rtx's have different hash values,
253 so we need to do a comparison. */
254 for (l = v->locs; l; l = l->next)
255 if (rtx_equal_for_cselib_p (l->loc, x))
256 return 1;
257
258 return 0;
259 }
260
261 /* The hash function for our hash table. The value is always computed with
262 cselib_hash_rtx when adding an element; this function just extracts the
263 hash value from a cselib_val structure. */
264
265 static hashval_t
266 get_value_hash (const void *entry)
267 {
268 const cselib_val *const v = (const cselib_val *) entry;
269 return v->value;
270 }
271
272 /* Return true if X contains a VALUE rtx. If ONLY_USELESS is set, we
273 only return true for values which point to a cselib_val whose value
274 element has been set to zero, which implies the cselib_val will be
275 removed. */
276
277 int
278 references_value_p (const_rtx x, int only_useless)
279 {
280 const enum rtx_code code = GET_CODE (x);
281 const char *fmt = GET_RTX_FORMAT (code);
282 int i, j;
283
284 if (GET_CODE (x) == VALUE
285 && (! only_useless || CSELIB_VAL_PTR (x)->locs == 0))
286 return 1;
287
288 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
289 {
290 if (fmt[i] == 'e' && references_value_p (XEXP (x, i), only_useless))
291 return 1;
292 else if (fmt[i] == 'E')
293 for (j = 0; j < XVECLEN (x, i); j++)
294 if (references_value_p (XVECEXP (x, i, j), only_useless))
295 return 1;
296 }
297
298 return 0;
299 }
300
301 /* For all locations found in X, delete locations that reference useless
302 values (i.e. values without any location). Called through
303 htab_traverse. */
304
305 static int
306 discard_useless_locs (void **x, void *info ATTRIBUTE_UNUSED)
307 {
308 cselib_val *v = (cselib_val *)*x;
309 struct elt_loc_list **p = &v->locs;
310 int had_locs = v->locs != 0;
311
312 while (*p)
313 {
314 if (references_value_p ((*p)->loc, 1))
315 unchain_one_elt_loc_list (p);
316 else
317 p = &(*p)->next;
318 }
319
320 if (had_locs && v->locs == 0)
321 {
322 n_useless_values++;
323 values_became_useless = 1;
324 }
325 return 1;
326 }
327
328 /* If X is a value with no locations, remove it from the hashtable. */
329
330 static int
331 discard_useless_values (void **x, void *info ATTRIBUTE_UNUSED)
332 {
333 cselib_val *v = (cselib_val *)*x;
334
335 if (v->locs == 0)
336 {
337 if (cselib_discard_hook)
338 cselib_discard_hook (v);
339
340 CSELIB_VAL_PTR (v->val_rtx) = NULL;
341 htab_clear_slot (cselib_hash_table, x);
342 unchain_one_value (v);
343 n_useless_values--;
344 }
345
346 return 1;
347 }
348
349 /* Clean out useless values (i.e. those which no longer have locations
350 associated with them) from the hash table. */
351
352 static void
353 remove_useless_values (void)
354 {
355 cselib_val **p, *v;
356 /* First pass: eliminate locations that reference the value. That in
357 turn can make more values useless. */
358 do
359 {
360 values_became_useless = 0;
361 htab_traverse (cselib_hash_table, discard_useless_locs, 0);
362 }
363 while (values_became_useless);
364
365 /* Second pass: actually remove the values. */
366
367 p = &first_containing_mem;
368 for (v = *p; v != &dummy_val; v = v->next_containing_mem)
369 if (v->locs)
370 {
371 *p = v;
372 p = &(*p)->next_containing_mem;
373 }
374 *p = &dummy_val;
375
376 htab_traverse (cselib_hash_table, discard_useless_values, 0);
377
378 gcc_assert (!n_useless_values);
379 }
380
381 /* Return the mode in which a register was last set. If X is not a
382 register, return its mode. If the mode in which the register was
383 set is not known, or the value was already clobbered, return
384 VOIDmode. */
385
386 enum machine_mode
387 cselib_reg_set_mode (const_rtx x)
388 {
389 if (!REG_P (x))
390 return GET_MODE (x);
391
392 if (REG_VALUES (REGNO (x)) == NULL
393 || REG_VALUES (REGNO (x))->elt == NULL)
394 return VOIDmode;
395
396 return GET_MODE (REG_VALUES (REGNO (x))->elt->val_rtx);
397 }
398
399 /* Return nonzero if we can prove that X and Y contain the same value, taking
400 our gathered information into account. */
401
402 int
403 rtx_equal_for_cselib_p (rtx x, rtx y)
404 {
405 enum rtx_code code;
406 const char *fmt;
407 int i;
408
409 if (REG_P (x) || MEM_P (x))
410 {
411 cselib_val *e = cselib_lookup (x, GET_MODE (x), 0);
412
413 if (e)
414 x = e->val_rtx;
415 }
416
417 if (REG_P (y) || MEM_P (y))
418 {
419 cselib_val *e = cselib_lookup (y, GET_MODE (y), 0);
420
421 if (e)
422 y = e->val_rtx;
423 }
424
425 if (x == y)
426 return 1;
427
428 if (GET_CODE (x) == VALUE && GET_CODE (y) == VALUE)
429 return CSELIB_VAL_PTR (x) == CSELIB_VAL_PTR (y);
430
431 if (GET_CODE (x) == VALUE)
432 {
433 cselib_val *e = CSELIB_VAL_PTR (x);
434 struct elt_loc_list *l;
435
436 for (l = e->locs; l; l = l->next)
437 {
438 rtx t = l->loc;
439
440 /* Avoid infinite recursion. */
441 if (REG_P (t) || MEM_P (t))
442 continue;
443 else if (rtx_equal_for_cselib_p (t, y))
444 return 1;
445 }
446
447 return 0;
448 }
449
450 if (GET_CODE (y) == VALUE)
451 {
452 cselib_val *e = CSELIB_VAL_PTR (y);
453 struct elt_loc_list *l;
454
455 for (l = e->locs; l; l = l->next)
456 {
457 rtx t = l->loc;
458
459 if (REG_P (t) || MEM_P (t))
460 continue;
461 else if (rtx_equal_for_cselib_p (x, t))
462 return 1;
463 }
464
465 return 0;
466 }
467
468 if (GET_CODE (x) != GET_CODE (y) || GET_MODE (x) != GET_MODE (y))
469 return 0;
470
471 /* These won't be handled correctly by the code below. */
472 switch (GET_CODE (x))
473 {
474 case CONST_DOUBLE:
475 case CONST_FIXED:
476 return 0;
477
478 case LABEL_REF:
479 return XEXP (x, 0) == XEXP (y, 0);
480
481 default:
482 break;
483 }
484
485 code = GET_CODE (x);
486 fmt = GET_RTX_FORMAT (code);
487
488 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
489 {
490 int j;
491
492 switch (fmt[i])
493 {
494 case 'w':
495 if (XWINT (x, i) != XWINT (y, i))
496 return 0;
497 break;
498
499 case 'n':
500 case 'i':
501 if (XINT (x, i) != XINT (y, i))
502 return 0;
503 break;
504
505 case 'V':
506 case 'E':
507 /* Two vectors must have the same length. */
508 if (XVECLEN (x, i) != XVECLEN (y, i))
509 return 0;
510
511 /* And the corresponding elements must match. */
512 for (j = 0; j < XVECLEN (x, i); j++)
513 if (! rtx_equal_for_cselib_p (XVECEXP (x, i, j),
514 XVECEXP (y, i, j)))
515 return 0;
516 break;
517
518 case 'e':
519 if (i == 1
520 && targetm.commutative_p (x, UNKNOWN)
521 && rtx_equal_for_cselib_p (XEXP (x, 1), XEXP (y, 0))
522 && rtx_equal_for_cselib_p (XEXP (x, 0), XEXP (y, 1)))
523 return 1;
524 if (! rtx_equal_for_cselib_p (XEXP (x, i), XEXP (y, i)))
525 return 0;
526 break;
527
528 case 'S':
529 case 's':
530 if (strcmp (XSTR (x, i), XSTR (y, i)))
531 return 0;
532 break;
533
534 case 'u':
535 /* These are just backpointers, so they don't matter. */
536 break;
537
538 case '0':
539 case 't':
540 break;
541
542 /* It is believed that rtx's at this level will never
543 contain anything but integers and other rtx's,
544 except for within LABEL_REFs and SYMBOL_REFs. */
545 default:
546 gcc_unreachable ();
547 }
548 }
549 return 1;
550 }
551
552 /* We need to pass down the mode of constants through the hash table
553 functions. For that purpose, wrap them in a CONST of the appropriate
554 mode. */
555 static rtx
556 wrap_constant (enum machine_mode mode, rtx x)
557 {
558 if (GET_CODE (x) != CONST_INT && GET_CODE (x) != CONST_FIXED
559 && (GET_CODE (x) != CONST_DOUBLE || GET_MODE (x) != VOIDmode))
560 return x;
561 gcc_assert (mode != VOIDmode);
562 return gen_rtx_CONST (mode, x);
563 }
564
565 /* Hash an rtx. Return 0 if we couldn't hash the rtx.
566 For registers and memory locations, we look up their cselib_val structure
567 and return its VALUE element.
568 Possible reasons for return 0 are: the object is volatile, or we couldn't
569 find a register or memory location in the table and CREATE is zero. If
570 CREATE is nonzero, table elts are created for regs and mem.
571 N.B. this hash function returns the same hash value for RTXes that
572 differ only in the order of operands, thus it is suitable for comparisons
573 that take commutativity into account.
574 If we wanted to also support associative rules, we'd have to use a different
575 strategy to avoid returning spurious 0, e.g. return ~(~0U >> 1) .
576 We used to have a MODE argument for hashing for CONST_INTs, but that
577 didn't make sense, since it caused spurious hash differences between
578 (set (reg:SI 1) (const_int))
579 (plus:SI (reg:SI 2) (reg:SI 1))
580 and
581 (plus:SI (reg:SI 2) (const_int))
582 If the mode is important in any context, it must be checked specifically
583 in a comparison anyway, since relying on hash differences is unsafe. */
584
585 static unsigned int
586 cselib_hash_rtx (rtx x, int create)
587 {
588 cselib_val *e;
589 int i, j;
590 enum rtx_code code;
591 const char *fmt;
592 unsigned int hash = 0;
593
594 code = GET_CODE (x);
595 hash += (unsigned) code + (unsigned) GET_MODE (x);
596
597 switch (code)
598 {
599 case MEM:
600 case REG:
601 e = cselib_lookup (x, GET_MODE (x), create);
602 if (! e)
603 return 0;
604
605 return e->value;
606
607 case CONST_INT:
608 hash += ((unsigned) CONST_INT << 7) + INTVAL (x);
609 return hash ? hash : (unsigned int) CONST_INT;
610
611 case CONST_DOUBLE:
612 /* This is like the general case, except that it only counts
613 the integers representing the constant. */
614 hash += (unsigned) code + (unsigned) GET_MODE (x);
615 if (GET_MODE (x) != VOIDmode)
616 hash += real_hash (CONST_DOUBLE_REAL_VALUE (x));
617 else
618 hash += ((unsigned) CONST_DOUBLE_LOW (x)
619 + (unsigned) CONST_DOUBLE_HIGH (x));
620 return hash ? hash : (unsigned int) CONST_DOUBLE;
621
622 case CONST_FIXED:
623 hash += (unsigned int) code + (unsigned int) GET_MODE (x);
624 hash += fixed_hash (CONST_FIXED_VALUE (x));
625 return hash ? hash : (unsigned int) CONST_FIXED;
626
627 case CONST_VECTOR:
628 {
629 int units;
630 rtx elt;
631
632 units = CONST_VECTOR_NUNITS (x);
633
634 for (i = 0; i < units; ++i)
635 {
636 elt = CONST_VECTOR_ELT (x, i);
637 hash += cselib_hash_rtx (elt, 0);
638 }
639
640 return hash;
641 }
642
643 /* Assume there is only one rtx object for any given label. */
644 case LABEL_REF:
645 /* We don't hash on the address of the CODE_LABEL to avoid bootstrap
646 differences and differences between each stage's debugging dumps. */
647 hash += (((unsigned int) LABEL_REF << 7)
648 + CODE_LABEL_NUMBER (XEXP (x, 0)));
649 return hash ? hash : (unsigned int) LABEL_REF;
650
651 case SYMBOL_REF:
652 {
653 /* Don't hash on the symbol's address to avoid bootstrap differences.
654 Different hash values may cause expressions to be recorded in
655 different orders and thus different registers to be used in the
656 final assembler. This also avoids differences in the dump files
657 between various stages. */
658 unsigned int h = 0;
659 const unsigned char *p = (const unsigned char *) XSTR (x, 0);
660
661 while (*p)
662 h += (h << 7) + *p++; /* ??? revisit */
663
664 hash += ((unsigned int) SYMBOL_REF << 7) + h;
665 return hash ? hash : (unsigned int) SYMBOL_REF;
666 }
667
668 case PRE_DEC:
669 case PRE_INC:
670 case POST_DEC:
671 case POST_INC:
672 case POST_MODIFY:
673 case PRE_MODIFY:
674 case PC:
675 case CC0:
676 case CALL:
677 case UNSPEC_VOLATILE:
678 return 0;
679
680 case ASM_OPERANDS:
681 if (MEM_VOLATILE_P (x))
682 return 0;
683
684 break;
685
686 default:
687 break;
688 }
689
690 i = GET_RTX_LENGTH (code) - 1;
691 fmt = GET_RTX_FORMAT (code);
692 for (; i >= 0; i--)
693 {
694 switch (fmt[i])
695 {
696 case 'e':
697 {
698 rtx tem = XEXP (x, i);
699 unsigned int tem_hash = cselib_hash_rtx (tem, create);
700
701 if (tem_hash == 0)
702 return 0;
703
704 hash += tem_hash;
705 }
706 break;
707 case 'E':
708 for (j = 0; j < XVECLEN (x, i); j++)
709 {
710 unsigned int tem_hash
711 = cselib_hash_rtx (XVECEXP (x, i, j), create);
712
713 if (tem_hash == 0)
714 return 0;
715
716 hash += tem_hash;
717 }
718 break;
719
720 case 's':
721 {
722 const unsigned char *p = (const unsigned char *) XSTR (x, i);
723
724 if (p)
725 while (*p)
726 hash += *p++;
727 break;
728 }
729
730 case 'i':
731 hash += XINT (x, i);
732 break;
733
734 case '0':
735 case 't':
736 /* unused */
737 break;
738
739 default:
740 gcc_unreachable ();
741 }
742 }
743
744 return hash ? hash : 1 + (unsigned int) GET_CODE (x);
745 }
746
747 /* Create a new value structure for VALUE and initialize it. The mode of the
748 value is MODE. */
749
750 static inline cselib_val *
751 new_cselib_val (unsigned int value, enum machine_mode mode)
752 {
753 cselib_val *e = (cselib_val *) pool_alloc (cselib_val_pool);
754
755 gcc_assert (value);
756
757 e->value = value;
758 /* We use an alloc pool to allocate this RTL construct because it
759 accounts for about 8% of the overall memory usage. We know
760 precisely when we can have VALUE RTXen (when cselib is active)
761 so we don't need to put them in garbage collected memory.
762 ??? Why should a VALUE be an RTX in the first place? */
763 e->val_rtx = (rtx) pool_alloc (value_pool);
764 memset (e->val_rtx, 0, RTX_HDR_SIZE);
765 PUT_CODE (e->val_rtx, VALUE);
766 PUT_MODE (e->val_rtx, mode);
767 CSELIB_VAL_PTR (e->val_rtx) = e;
768 e->addr_list = 0;
769 e->locs = 0;
770 e->next_containing_mem = 0;
771 return e;
772 }
773
774 /* ADDR_ELT is a value that is used as address. MEM_ELT is the value that
775 contains the data at this address. X is a MEM that represents the
776 value. Update the two value structures to represent this situation. */
777
778 static void
779 add_mem_for_addr (cselib_val *addr_elt, cselib_val *mem_elt, rtx x)
780 {
781 struct elt_loc_list *l;
782
783 /* Avoid duplicates. */
784 for (l = mem_elt->locs; l; l = l->next)
785 if (MEM_P (l->loc)
786 && CSELIB_VAL_PTR (XEXP (l->loc, 0)) == addr_elt)
787 return;
788
789 addr_elt->addr_list = new_elt_list (addr_elt->addr_list, mem_elt);
790 mem_elt->locs
791 = new_elt_loc_list (mem_elt->locs,
792 replace_equiv_address_nv (x, addr_elt->val_rtx));
793 if (mem_elt->next_containing_mem == NULL)
794 {
795 mem_elt->next_containing_mem = first_containing_mem;
796 first_containing_mem = mem_elt;
797 }
798 }
799
800 /* Subroutine of cselib_lookup. Return a value for X, which is a MEM rtx.
801 If CREATE, make a new one if we haven't seen it before. */
802
803 static cselib_val *
804 cselib_lookup_mem (rtx x, int create)
805 {
806 enum machine_mode mode = GET_MODE (x);
807 void **slot;
808 cselib_val *addr;
809 cselib_val *mem_elt;
810 struct elt_list *l;
811
812 if (MEM_VOLATILE_P (x) || mode == BLKmode
813 || !cselib_record_memory
814 || (FLOAT_MODE_P (mode) && flag_float_store))
815 return 0;
816
817 /* Look up the value for the address. */
818 addr = cselib_lookup (XEXP (x, 0), mode, create);
819 if (! addr)
820 return 0;
821
822 /* Find a value that describes a value of our mode at that address. */
823 for (l = addr->addr_list; l; l = l->next)
824 if (GET_MODE (l->elt->val_rtx) == mode)
825 return l->elt;
826
827 if (! create)
828 return 0;
829
830 mem_elt = new_cselib_val (++next_unknown_value, mode);
831 add_mem_for_addr (addr, mem_elt, x);
832 slot = htab_find_slot_with_hash (cselib_hash_table, wrap_constant (mode, x),
833 mem_elt->value, INSERT);
834 *slot = mem_elt;
835 return mem_elt;
836 }
837
838 /* Search thru the possible substitutions in P. We prefer a non reg
839 substitution because this allows us to expand the tree further. If
840 we find, just a reg, take the lowest regno. There may be several
841 non-reg results, we just take the first one because they will all
842 expand to the same place. */
843
844 static rtx
845 expand_loc (struct elt_loc_list *p, bitmap regs_active, int max_depth)
846 {
847 rtx reg_result = NULL;
848 unsigned int regno = UINT_MAX;
849 struct elt_loc_list *p_in = p;
850
851 for (; p; p = p -> next)
852 {
853 /* Avoid infinite recursion trying to expand a reg into a
854 the same reg. */
855 if ((REG_P (p->loc))
856 && (REGNO (p->loc) < regno)
857 && !bitmap_bit_p (regs_active, REGNO (p->loc)))
858 {
859 reg_result = p->loc;
860 regno = REGNO (p->loc);
861 }
862 /* Avoid infinite recursion and do not try to expand the
863 value. */
864 else if (GET_CODE (p->loc) == VALUE
865 && CSELIB_VAL_PTR (p->loc)->locs == p_in)
866 continue;
867 else if (!REG_P (p->loc))
868 {
869 rtx result, note;
870 if (dump_file)
871 {
872 print_inline_rtx (dump_file, p->loc, 0);
873 fprintf (dump_file, "\n");
874 }
875 if (GET_CODE (p->loc) == LO_SUM
876 && GET_CODE (XEXP (p->loc, 1)) == SYMBOL_REF
877 && p->setting_insn
878 && (note = find_reg_note (p->setting_insn, REG_EQUAL, NULL_RTX))
879 && XEXP (note, 0) == XEXP (p->loc, 1))
880 return XEXP (p->loc, 1);
881 result = cselib_expand_value_rtx (p->loc, regs_active, max_depth - 1);
882 if (result)
883 return result;
884 }
885
886 }
887
888 if (regno != UINT_MAX)
889 {
890 rtx result;
891 if (dump_file)
892 fprintf (dump_file, "r%d\n", regno);
893
894 result = cselib_expand_value_rtx (reg_result, regs_active, max_depth - 1);
895 if (result)
896 return result;
897 }
898
899 if (dump_file)
900 {
901 if (reg_result)
902 {
903 print_inline_rtx (dump_file, reg_result, 0);
904 fprintf (dump_file, "\n");
905 }
906 else
907 fprintf (dump_file, "NULL\n");
908 }
909 return reg_result;
910 }
911
912
913 /* Forward substitute and expand an expression out to its roots.
914 This is the opposite of common subexpression. Because local value
915 numbering is such a weak optimization, the expanded expression is
916 pretty much unique (not from a pointer equals point of view but
917 from a tree shape point of view.
918
919 This function returns NULL if the expansion fails. The expansion
920 will fail if there is no value number for one of the operands or if
921 one of the operands has been overwritten between the current insn
922 and the beginning of the basic block. For instance x has no
923 expansion in:
924
925 r1 <- r1 + 3
926 x <- r1 + 8
927
928 REGS_ACTIVE is a scratch bitmap that should be clear when passing in.
929 It is clear on return. */
930
931 rtx
932 cselib_expand_value_rtx (rtx orig, bitmap regs_active, int max_depth)
933 {
934 rtx copy, scopy;
935 int i, j;
936 RTX_CODE code;
937 const char *format_ptr;
938 enum machine_mode mode;
939
940 code = GET_CODE (orig);
941
942 /* For the context of dse, if we end up expand into a huge tree, we
943 will not have a useful address, so we might as well just give up
944 quickly. */
945 if (max_depth <= 0)
946 return NULL;
947
948 switch (code)
949 {
950 case REG:
951 {
952 struct elt_list *l = REG_VALUES (REGNO (orig));
953
954 if (l && l->elt == NULL)
955 l = l->next;
956 for (; l; l = l->next)
957 if (GET_MODE (l->elt->val_rtx) == GET_MODE (orig))
958 {
959 rtx result;
960 int regno = REGNO (orig);
961
962 /* The only thing that we are not willing to do (this
963 is requirement of dse and if others potential uses
964 need this function we should add a parm to control
965 it) is that we will not substitute the
966 STACK_POINTER_REGNUM, FRAME_POINTER or the
967 HARD_FRAME_POINTER.
968
969 These expansions confuses the code that notices that
970 stores into the frame go dead at the end of the
971 function and that the frame is not effected by calls
972 to subroutines. If you allow the
973 STACK_POINTER_REGNUM substitution, then dse will
974 think that parameter pushing also goes dead which is
975 wrong. If you allow the FRAME_POINTER or the
976 HARD_FRAME_POINTER then you lose the opportunity to
977 make the frame assumptions. */
978 if (regno == STACK_POINTER_REGNUM
979 || regno == FRAME_POINTER_REGNUM
980 || regno == HARD_FRAME_POINTER_REGNUM)
981 return orig;
982
983 bitmap_set_bit (regs_active, regno);
984
985 if (dump_file)
986 fprintf (dump_file, "expanding: r%d into: ", regno);
987
988 result = expand_loc (l->elt->locs, regs_active, max_depth);
989 bitmap_clear_bit (regs_active, regno);
990
991 if (result)
992 return result;
993 else
994 return orig;
995 }
996 }
997
998 case CONST_INT:
999 case CONST_DOUBLE:
1000 case CONST_VECTOR:
1001 case SYMBOL_REF:
1002 case CODE_LABEL:
1003 case PC:
1004 case CC0:
1005 case SCRATCH:
1006 /* SCRATCH must be shared because they represent distinct values. */
1007 return orig;
1008 case CLOBBER:
1009 if (REG_P (XEXP (orig, 0)) && HARD_REGISTER_NUM_P (REGNO (XEXP (orig, 0))))
1010 return orig;
1011 break;
1012
1013 case CONST:
1014 if (shared_const_p (orig))
1015 return orig;
1016 break;
1017
1018 case SUBREG:
1019 {
1020 rtx subreg = cselib_expand_value_rtx (SUBREG_REG (orig), regs_active,
1021 max_depth - 1);
1022 if (!subreg)
1023 return NULL;
1024 scopy = simplify_gen_subreg (GET_MODE (orig), subreg,
1025 GET_MODE (SUBREG_REG (orig)),
1026 SUBREG_BYTE (orig));
1027 if (scopy == NULL
1028 || (GET_CODE (scopy) == SUBREG
1029 && !REG_P (SUBREG_REG (scopy))
1030 && !MEM_P (SUBREG_REG (scopy))))
1031 return shallow_copy_rtx (orig);
1032 return scopy;
1033 }
1034
1035 case VALUE:
1036 if (dump_file)
1037 fprintf (dump_file, "expanding value %s into: ",
1038 GET_MODE_NAME (GET_MODE (orig)));
1039
1040 return expand_loc (CSELIB_VAL_PTR (orig)->locs, regs_active, max_depth);
1041
1042 default:
1043 break;
1044 }
1045
1046 /* Copy the various flags, fields, and other information. We assume
1047 that all fields need copying, and then clear the fields that should
1048 not be copied. That is the sensible default behavior, and forces
1049 us to explicitly document why we are *not* copying a flag. */
1050 copy = shallow_copy_rtx (orig);
1051
1052 format_ptr = GET_RTX_FORMAT (code);
1053
1054 for (i = 0; i < GET_RTX_LENGTH (code); i++)
1055 switch (*format_ptr++)
1056 {
1057 case 'e':
1058 if (XEXP (orig, i) != NULL)
1059 {
1060 rtx result = cselib_expand_value_rtx (XEXP (orig, i), regs_active, max_depth - 1);
1061 if (!result)
1062 return NULL;
1063 XEXP (copy, i) = result;
1064 }
1065 break;
1066
1067 case 'E':
1068 case 'V':
1069 if (XVEC (orig, i) != NULL)
1070 {
1071 XVEC (copy, i) = rtvec_alloc (XVECLEN (orig, i));
1072 for (j = 0; j < XVECLEN (copy, i); j++)
1073 {
1074 rtx result = cselib_expand_value_rtx (XVECEXP (orig, i, j), regs_active, max_depth - 1);
1075 if (!result)
1076 return NULL;
1077 XVECEXP (copy, i, j) = result;
1078 }
1079 }
1080 break;
1081
1082 case 't':
1083 case 'w':
1084 case 'i':
1085 case 's':
1086 case 'S':
1087 case 'T':
1088 case 'u':
1089 case 'B':
1090 case '0':
1091 /* These are left unchanged. */
1092 break;
1093
1094 default:
1095 gcc_unreachable ();
1096 }
1097
1098 mode = GET_MODE (copy);
1099 /* If an operand has been simplified into CONST_INT, which doesn't
1100 have a mode and the mode isn't derivable from whole rtx's mode,
1101 try simplify_*_operation first with mode from original's operand
1102 and as a fallback wrap CONST_INT into gen_rtx_CONST. */
1103 scopy = copy;
1104 switch (GET_RTX_CLASS (code))
1105 {
1106 case RTX_UNARY:
1107 if (CONST_INT_P (XEXP (copy, 0))
1108 && GET_MODE (XEXP (orig, 0)) != VOIDmode)
1109 {
1110 scopy = simplify_unary_operation (code, mode, XEXP (copy, 0),
1111 GET_MODE (XEXP (orig, 0)));
1112 if (scopy)
1113 return scopy;
1114 }
1115 break;
1116 case RTX_COMM_ARITH:
1117 case RTX_BIN_ARITH:
1118 /* These expressions can derive operand modes from the whole rtx's mode. */
1119 break;
1120 case RTX_TERNARY:
1121 case RTX_BITFIELD_OPS:
1122 if (CONST_INT_P (XEXP (copy, 0))
1123 && GET_MODE (XEXP (orig, 0)) != VOIDmode)
1124 {
1125 scopy = simplify_ternary_operation (code, mode,
1126 GET_MODE (XEXP (orig, 0)),
1127 XEXP (copy, 0), XEXP (copy, 1),
1128 XEXP (copy, 2));
1129 if (scopy)
1130 return scopy;
1131 }
1132 break;
1133 case RTX_COMPARE:
1134 case RTX_COMM_COMPARE:
1135 if (CONST_INT_P (XEXP (copy, 0))
1136 && GET_MODE (XEXP (copy, 1)) == VOIDmode
1137 && (GET_MODE (XEXP (orig, 0)) != VOIDmode
1138 || GET_MODE (XEXP (orig, 1)) != VOIDmode))
1139 {
1140 scopy = simplify_relational_operation (code, mode,
1141 (GET_MODE (XEXP (orig, 0))
1142 != VOIDmode)
1143 ? GET_MODE (XEXP (orig, 0))
1144 : GET_MODE (XEXP (orig, 1)),
1145 XEXP (copy, 0),
1146 XEXP (copy, 1));
1147 if (scopy)
1148 return scopy;
1149 }
1150 break;
1151 default:
1152 break;
1153 }
1154 if (scopy == NULL_RTX)
1155 {
1156 XEXP (copy, 0)
1157 = gen_rtx_CONST (GET_MODE (XEXP (orig, 0)), XEXP (copy, 0));
1158 if (dump_file)
1159 fprintf (dump_file, " wrapping const_int result in const to preserve mode %s\n",
1160 GET_MODE_NAME (GET_MODE (XEXP (copy, 0))));
1161 }
1162 scopy = simplify_rtx (copy);
1163 if (scopy)
1164 return scopy;
1165 return copy;
1166 }
1167
1168 /* Walk rtx X and replace all occurrences of REG and MEM subexpressions
1169 with VALUE expressions. This way, it becomes independent of changes
1170 to registers and memory.
1171 X isn't actually modified; if modifications are needed, new rtl is
1172 allocated. However, the return value can share rtl with X. */
1173
1174 rtx
1175 cselib_subst_to_values (rtx x)
1176 {
1177 enum rtx_code code = GET_CODE (x);
1178 const char *fmt = GET_RTX_FORMAT (code);
1179 cselib_val *e;
1180 struct elt_list *l;
1181 rtx copy = x;
1182 int i;
1183
1184 switch (code)
1185 {
1186 case REG:
1187 l = REG_VALUES (REGNO (x));
1188 if (l && l->elt == NULL)
1189 l = l->next;
1190 for (; l; l = l->next)
1191 if (GET_MODE (l->elt->val_rtx) == GET_MODE (x))
1192 return l->elt->val_rtx;
1193
1194 gcc_unreachable ();
1195
1196 case MEM:
1197 e = cselib_lookup_mem (x, 0);
1198 if (! e)
1199 {
1200 /* This happens for autoincrements. Assign a value that doesn't
1201 match any other. */
1202 e = new_cselib_val (++next_unknown_value, GET_MODE (x));
1203 }
1204 return e->val_rtx;
1205
1206 case CONST_DOUBLE:
1207 case CONST_VECTOR:
1208 case CONST_INT:
1209 case CONST_FIXED:
1210 return x;
1211
1212 case POST_INC:
1213 case PRE_INC:
1214 case POST_DEC:
1215 case PRE_DEC:
1216 case POST_MODIFY:
1217 case PRE_MODIFY:
1218 e = new_cselib_val (++next_unknown_value, GET_MODE (x));
1219 return e->val_rtx;
1220
1221 default:
1222 break;
1223 }
1224
1225 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1226 {
1227 if (fmt[i] == 'e')
1228 {
1229 rtx t = cselib_subst_to_values (XEXP (x, i));
1230
1231 if (t != XEXP (x, i) && x == copy)
1232 copy = shallow_copy_rtx (x);
1233
1234 XEXP (copy, i) = t;
1235 }
1236 else if (fmt[i] == 'E')
1237 {
1238 int j, k;
1239
1240 for (j = 0; j < XVECLEN (x, i); j++)
1241 {
1242 rtx t = cselib_subst_to_values (XVECEXP (x, i, j));
1243
1244 if (t != XVECEXP (x, i, j) && XVEC (x, i) == XVEC (copy, i))
1245 {
1246 if (x == copy)
1247 copy = shallow_copy_rtx (x);
1248
1249 XVEC (copy, i) = rtvec_alloc (XVECLEN (x, i));
1250 for (k = 0; k < j; k++)
1251 XVECEXP (copy, i, k) = XVECEXP (x, i, k);
1252 }
1253
1254 XVECEXP (copy, i, j) = t;
1255 }
1256 }
1257 }
1258
1259 return copy;
1260 }
1261
1262 /* Look up the rtl expression X in our tables and return the value it has.
1263 If CREATE is zero, we return NULL if we don't know the value. Otherwise,
1264 we create a new one if possible, using mode MODE if X doesn't have a mode
1265 (i.e. because it's a constant). */
1266
1267 cselib_val *
1268 cselib_lookup (rtx x, enum machine_mode mode, int create)
1269 {
1270 void **slot;
1271 cselib_val *e;
1272 unsigned int hashval;
1273
1274 if (GET_MODE (x) != VOIDmode)
1275 mode = GET_MODE (x);
1276
1277 if (GET_CODE (x) == VALUE)
1278 return CSELIB_VAL_PTR (x);
1279
1280 if (REG_P (x))
1281 {
1282 struct elt_list *l;
1283 unsigned int i = REGNO (x);
1284
1285 l = REG_VALUES (i);
1286 if (l && l->elt == NULL)
1287 l = l->next;
1288 for (; l; l = l->next)
1289 if (mode == GET_MODE (l->elt->val_rtx))
1290 return l->elt;
1291
1292 if (! create)
1293 return 0;
1294
1295 if (i < FIRST_PSEUDO_REGISTER)
1296 {
1297 unsigned int n = hard_regno_nregs[i][mode];
1298
1299 if (n > max_value_regs)
1300 max_value_regs = n;
1301 }
1302
1303 e = new_cselib_val (++next_unknown_value, GET_MODE (x));
1304 e->locs = new_elt_loc_list (e->locs, x);
1305 if (REG_VALUES (i) == 0)
1306 {
1307 /* Maintain the invariant that the first entry of
1308 REG_VALUES, if present, must be the value used to set the
1309 register, or NULL. */
1310 used_regs[n_used_regs++] = i;
1311 REG_VALUES (i) = new_elt_list (REG_VALUES (i), NULL);
1312 }
1313 REG_VALUES (i)->next = new_elt_list (REG_VALUES (i)->next, e);
1314 slot = htab_find_slot_with_hash (cselib_hash_table, x, e->value, INSERT);
1315 *slot = e;
1316 return e;
1317 }
1318
1319 if (MEM_P (x))
1320 return cselib_lookup_mem (x, create);
1321
1322 hashval = cselib_hash_rtx (x, create);
1323 /* Can't even create if hashing is not possible. */
1324 if (! hashval)
1325 return 0;
1326
1327 slot = htab_find_slot_with_hash (cselib_hash_table, wrap_constant (mode, x),
1328 hashval, create ? INSERT : NO_INSERT);
1329 if (slot == 0)
1330 return 0;
1331
1332 e = (cselib_val *) *slot;
1333 if (e)
1334 return e;
1335
1336 e = new_cselib_val (hashval, mode);
1337
1338 /* We have to fill the slot before calling cselib_subst_to_values:
1339 the hash table is inconsistent until we do so, and
1340 cselib_subst_to_values will need to do lookups. */
1341 *slot = (void *) e;
1342 e->locs = new_elt_loc_list (e->locs, cselib_subst_to_values (x));
1343 return e;
1344 }
1345
1346 /* Invalidate any entries in reg_values that overlap REGNO. This is called
1347 if REGNO is changing. MODE is the mode of the assignment to REGNO, which
1348 is used to determine how many hard registers are being changed. If MODE
1349 is VOIDmode, then only REGNO is being changed; this is used when
1350 invalidating call clobbered registers across a call. */
1351
1352 static void
1353 cselib_invalidate_regno (unsigned int regno, enum machine_mode mode)
1354 {
1355 unsigned int endregno;
1356 unsigned int i;
1357
1358 /* If we see pseudos after reload, something is _wrong_. */
1359 gcc_assert (!reload_completed || regno < FIRST_PSEUDO_REGISTER
1360 || reg_renumber[regno] < 0);
1361
1362 /* Determine the range of registers that must be invalidated. For
1363 pseudos, only REGNO is affected. For hard regs, we must take MODE
1364 into account, and we must also invalidate lower register numbers
1365 if they contain values that overlap REGNO. */
1366 if (regno < FIRST_PSEUDO_REGISTER)
1367 {
1368 gcc_assert (mode != VOIDmode);
1369
1370 if (regno < max_value_regs)
1371 i = 0;
1372 else
1373 i = regno - max_value_regs;
1374
1375 endregno = end_hard_regno (mode, regno);
1376 }
1377 else
1378 {
1379 i = regno;
1380 endregno = regno + 1;
1381 }
1382
1383 for (; i < endregno; i++)
1384 {
1385 struct elt_list **l = &REG_VALUES (i);
1386
1387 /* Go through all known values for this reg; if it overlaps the range
1388 we're invalidating, remove the value. */
1389 while (*l)
1390 {
1391 cselib_val *v = (*l)->elt;
1392 struct elt_loc_list **p;
1393 unsigned int this_last = i;
1394
1395 if (i < FIRST_PSEUDO_REGISTER && v != NULL)
1396 this_last = end_hard_regno (GET_MODE (v->val_rtx), i) - 1;
1397
1398 if (this_last < regno || v == NULL)
1399 {
1400 l = &(*l)->next;
1401 continue;
1402 }
1403
1404 /* We have an overlap. */
1405 if (*l == REG_VALUES (i))
1406 {
1407 /* Maintain the invariant that the first entry of
1408 REG_VALUES, if present, must be the value used to set
1409 the register, or NULL. This is also nice because
1410 then we won't push the same regno onto user_regs
1411 multiple times. */
1412 (*l)->elt = NULL;
1413 l = &(*l)->next;
1414 }
1415 else
1416 unchain_one_elt_list (l);
1417
1418 /* Now, we clear the mapping from value to reg. It must exist, so
1419 this code will crash intentionally if it doesn't. */
1420 for (p = &v->locs; ; p = &(*p)->next)
1421 {
1422 rtx x = (*p)->loc;
1423
1424 if (REG_P (x) && REGNO (x) == i)
1425 {
1426 unchain_one_elt_loc_list (p);
1427 break;
1428 }
1429 }
1430 if (v->locs == 0)
1431 n_useless_values++;
1432 }
1433 }
1434 }
1435
1436 /* Return 1 if X has a value that can vary even between two
1437 executions of the program. 0 means X can be compared reliably
1438 against certain constants or near-constants. */
1439
1440 static bool
1441 cselib_rtx_varies_p (const_rtx x ATTRIBUTE_UNUSED, bool from_alias ATTRIBUTE_UNUSED)
1442 {
1443 /* We actually don't need to verify very hard. This is because
1444 if X has actually changed, we invalidate the memory anyway,
1445 so assume that all common memory addresses are
1446 invariant. */
1447 return 0;
1448 }
1449
1450 /* Invalidate any locations in the table which are changed because of a
1451 store to MEM_RTX. If this is called because of a non-const call
1452 instruction, MEM_RTX is (mem:BLK const0_rtx). */
1453
1454 static void
1455 cselib_invalidate_mem (rtx mem_rtx)
1456 {
1457 cselib_val **vp, *v, *next;
1458 int num_mems = 0;
1459 rtx mem_addr;
1460
1461 mem_addr = canon_rtx (get_addr (XEXP (mem_rtx, 0)));
1462 mem_rtx = canon_rtx (mem_rtx);
1463
1464 vp = &first_containing_mem;
1465 for (v = *vp; v != &dummy_val; v = next)
1466 {
1467 bool has_mem = false;
1468 struct elt_loc_list **p = &v->locs;
1469 int had_locs = v->locs != 0;
1470
1471 while (*p)
1472 {
1473 rtx x = (*p)->loc;
1474 cselib_val *addr;
1475 struct elt_list **mem_chain;
1476
1477 /* MEMs may occur in locations only at the top level; below
1478 that every MEM or REG is substituted by its VALUE. */
1479 if (!MEM_P (x))
1480 {
1481 p = &(*p)->next;
1482 continue;
1483 }
1484 if (num_mems < PARAM_VALUE (PARAM_MAX_CSELIB_MEMORY_LOCATIONS)
1485 && ! canon_true_dependence (mem_rtx, GET_MODE (mem_rtx), mem_addr,
1486 x, cselib_rtx_varies_p))
1487 {
1488 has_mem = true;
1489 num_mems++;
1490 p = &(*p)->next;
1491 continue;
1492 }
1493
1494 /* This one overlaps. */
1495 /* We must have a mapping from this MEM's address to the
1496 value (E). Remove that, too. */
1497 addr = cselib_lookup (XEXP (x, 0), VOIDmode, 0);
1498 mem_chain = &addr->addr_list;
1499 for (;;)
1500 {
1501 if ((*mem_chain)->elt == v)
1502 {
1503 unchain_one_elt_list (mem_chain);
1504 break;
1505 }
1506
1507 mem_chain = &(*mem_chain)->next;
1508 }
1509
1510 unchain_one_elt_loc_list (p);
1511 }
1512
1513 if (had_locs && v->locs == 0)
1514 n_useless_values++;
1515
1516 next = v->next_containing_mem;
1517 if (has_mem)
1518 {
1519 *vp = v;
1520 vp = &(*vp)->next_containing_mem;
1521 }
1522 else
1523 v->next_containing_mem = NULL;
1524 }
1525 *vp = &dummy_val;
1526 }
1527
1528 /* Invalidate DEST, which is being assigned to or clobbered. */
1529
1530 void
1531 cselib_invalidate_rtx (rtx dest)
1532 {
1533 while (GET_CODE (dest) == SUBREG
1534 || GET_CODE (dest) == ZERO_EXTRACT
1535 || GET_CODE (dest) == STRICT_LOW_PART)
1536 dest = XEXP (dest, 0);
1537
1538 if (REG_P (dest))
1539 cselib_invalidate_regno (REGNO (dest), GET_MODE (dest));
1540 else if (MEM_P (dest))
1541 cselib_invalidate_mem (dest);
1542
1543 /* Some machines don't define AUTO_INC_DEC, but they still use push
1544 instructions. We need to catch that case here in order to
1545 invalidate the stack pointer correctly. Note that invalidating
1546 the stack pointer is different from invalidating DEST. */
1547 if (push_operand (dest, GET_MODE (dest)))
1548 cselib_invalidate_rtx (stack_pointer_rtx);
1549 }
1550
1551 /* A wrapper for cselib_invalidate_rtx to be called via note_stores. */
1552
1553 static void
1554 cselib_invalidate_rtx_note_stores (rtx dest, const_rtx ignore ATTRIBUTE_UNUSED,
1555 void *data ATTRIBUTE_UNUSED)
1556 {
1557 cselib_invalidate_rtx (dest);
1558 }
1559
1560 /* Record the result of a SET instruction. DEST is being set; the source
1561 contains the value described by SRC_ELT. If DEST is a MEM, DEST_ADDR_ELT
1562 describes its address. */
1563
1564 static void
1565 cselib_record_set (rtx dest, cselib_val *src_elt, cselib_val *dest_addr_elt)
1566 {
1567 int dreg = REG_P (dest) ? (int) REGNO (dest) : -1;
1568
1569 if (src_elt == 0 || side_effects_p (dest))
1570 return;
1571
1572 if (dreg >= 0)
1573 {
1574 if (dreg < FIRST_PSEUDO_REGISTER)
1575 {
1576 unsigned int n = hard_regno_nregs[dreg][GET_MODE (dest)];
1577
1578 if (n > max_value_regs)
1579 max_value_regs = n;
1580 }
1581
1582 if (REG_VALUES (dreg) == 0)
1583 {
1584 used_regs[n_used_regs++] = dreg;
1585 REG_VALUES (dreg) = new_elt_list (REG_VALUES (dreg), src_elt);
1586 }
1587 else
1588 {
1589 /* The register should have been invalidated. */
1590 gcc_assert (REG_VALUES (dreg)->elt == 0);
1591 REG_VALUES (dreg)->elt = src_elt;
1592 }
1593
1594 if (src_elt->locs == 0)
1595 n_useless_values--;
1596 src_elt->locs = new_elt_loc_list (src_elt->locs, dest);
1597 }
1598 else if (MEM_P (dest) && dest_addr_elt != 0
1599 && cselib_record_memory)
1600 {
1601 if (src_elt->locs == 0)
1602 n_useless_values--;
1603 add_mem_for_addr (dest_addr_elt, src_elt, dest);
1604 }
1605 }
1606
1607 /* Describe a single set that is part of an insn. */
1608 struct set
1609 {
1610 rtx src;
1611 rtx dest;
1612 cselib_val *src_elt;
1613 cselib_val *dest_addr_elt;
1614 };
1615
1616 /* There is no good way to determine how many elements there can be
1617 in a PARALLEL. Since it's fairly cheap, use a really large number. */
1618 #define MAX_SETS (FIRST_PSEUDO_REGISTER * 2)
1619
1620 /* Record the effects of any sets in INSN. */
1621 static void
1622 cselib_record_sets (rtx insn)
1623 {
1624 int n_sets = 0;
1625 int i;
1626 struct set sets[MAX_SETS];
1627 rtx body = PATTERN (insn);
1628 rtx cond = 0;
1629
1630 body = PATTERN (insn);
1631 if (GET_CODE (body) == COND_EXEC)
1632 {
1633 cond = COND_EXEC_TEST (body);
1634 body = COND_EXEC_CODE (body);
1635 }
1636
1637 /* Find all sets. */
1638 if (GET_CODE (body) == SET)
1639 {
1640 sets[0].src = SET_SRC (body);
1641 sets[0].dest = SET_DEST (body);
1642 n_sets = 1;
1643 }
1644 else if (GET_CODE (body) == PARALLEL)
1645 {
1646 /* Look through the PARALLEL and record the values being
1647 set, if possible. Also handle any CLOBBERs. */
1648 for (i = XVECLEN (body, 0) - 1; i >= 0; --i)
1649 {
1650 rtx x = XVECEXP (body, 0, i);
1651
1652 if (GET_CODE (x) == SET)
1653 {
1654 sets[n_sets].src = SET_SRC (x);
1655 sets[n_sets].dest = SET_DEST (x);
1656 n_sets++;
1657 }
1658 }
1659 }
1660
1661 if (n_sets == 1
1662 && MEM_P (sets[0].src)
1663 && !cselib_record_memory
1664 && MEM_READONLY_P (sets[0].src))
1665 {
1666 rtx note = find_reg_equal_equiv_note (insn);
1667
1668 if (note && CONSTANT_P (XEXP (note, 0)))
1669 sets[0].src = XEXP (note, 0);
1670 }
1671
1672 /* Look up the values that are read. Do this before invalidating the
1673 locations that are written. */
1674 for (i = 0; i < n_sets; i++)
1675 {
1676 rtx dest = sets[i].dest;
1677
1678 /* A STRICT_LOW_PART can be ignored; we'll record the equivalence for
1679 the low part after invalidating any knowledge about larger modes. */
1680 if (GET_CODE (sets[i].dest) == STRICT_LOW_PART)
1681 sets[i].dest = dest = XEXP (dest, 0);
1682
1683 /* We don't know how to record anything but REG or MEM. */
1684 if (REG_P (dest)
1685 || (MEM_P (dest) && cselib_record_memory))
1686 {
1687 rtx src = sets[i].src;
1688 if (cond)
1689 src = gen_rtx_IF_THEN_ELSE (GET_MODE (dest), cond, src, dest);
1690 sets[i].src_elt = cselib_lookup (src, GET_MODE (dest), 1);
1691 if (MEM_P (dest))
1692 sets[i].dest_addr_elt = cselib_lookup (XEXP (dest, 0), Pmode, 1);
1693 else
1694 sets[i].dest_addr_elt = 0;
1695 }
1696 }
1697
1698 /* Invalidate all locations written by this insn. Note that the elts we
1699 looked up in the previous loop aren't affected, just some of their
1700 locations may go away. */
1701 note_stores (body, cselib_invalidate_rtx_note_stores, NULL);
1702
1703 /* If this is an asm, look for duplicate sets. This can happen when the
1704 user uses the same value as an output multiple times. This is valid
1705 if the outputs are not actually used thereafter. Treat this case as
1706 if the value isn't actually set. We do this by smashing the destination
1707 to pc_rtx, so that we won't record the value later. */
1708 if (n_sets >= 2 && asm_noperands (body) >= 0)
1709 {
1710 for (i = 0; i < n_sets; i++)
1711 {
1712 rtx dest = sets[i].dest;
1713 if (REG_P (dest) || MEM_P (dest))
1714 {
1715 int j;
1716 for (j = i + 1; j < n_sets; j++)
1717 if (rtx_equal_p (dest, sets[j].dest))
1718 {
1719 sets[i].dest = pc_rtx;
1720 sets[j].dest = pc_rtx;
1721 }
1722 }
1723 }
1724 }
1725
1726 /* Now enter the equivalences in our tables. */
1727 for (i = 0; i < n_sets; i++)
1728 {
1729 rtx dest = sets[i].dest;
1730 if (REG_P (dest)
1731 || (MEM_P (dest) && cselib_record_memory))
1732 cselib_record_set (dest, sets[i].src_elt, sets[i].dest_addr_elt);
1733 }
1734 }
1735
1736 /* Record the effects of INSN. */
1737
1738 void
1739 cselib_process_insn (rtx insn)
1740 {
1741 int i;
1742 rtx x;
1743
1744 cselib_current_insn = insn;
1745
1746 /* Forget everything at a CODE_LABEL, a volatile asm, or a setjmp. */
1747 if (LABEL_P (insn)
1748 || (CALL_P (insn)
1749 && find_reg_note (insn, REG_SETJMP, NULL))
1750 || (NONJUMP_INSN_P (insn)
1751 && GET_CODE (PATTERN (insn)) == ASM_OPERANDS
1752 && MEM_VOLATILE_P (PATTERN (insn))))
1753 {
1754 cselib_clear_table ();
1755 return;
1756 }
1757
1758 if (! INSN_P (insn))
1759 {
1760 cselib_current_insn = 0;
1761 return;
1762 }
1763
1764 /* If this is a call instruction, forget anything stored in a
1765 call clobbered register, or, if this is not a const call, in
1766 memory. */
1767 if (CALL_P (insn))
1768 {
1769 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1770 if (call_used_regs[i]
1771 || (REG_VALUES (i) && REG_VALUES (i)->elt
1772 && HARD_REGNO_CALL_PART_CLOBBERED (i,
1773 GET_MODE (REG_VALUES (i)->elt->val_rtx))))
1774 cselib_invalidate_regno (i, reg_raw_mode[i]);
1775
1776 /* Since it is not clear how cselib is going to be used, be
1777 conservative here and treat looping pure or const functions
1778 as if they were regular functions. */
1779 if (RTL_LOOPING_CONST_OR_PURE_CALL_P (insn)
1780 || !(RTL_CONST_OR_PURE_CALL_P (insn)))
1781 cselib_invalidate_mem (callmem);
1782 }
1783
1784 cselib_record_sets (insn);
1785
1786 #ifdef AUTO_INC_DEC
1787 /* Clobber any registers which appear in REG_INC notes. We
1788 could keep track of the changes to their values, but it is
1789 unlikely to help. */
1790 for (x = REG_NOTES (insn); x; x = XEXP (x, 1))
1791 if (REG_NOTE_KIND (x) == REG_INC)
1792 cselib_invalidate_rtx (XEXP (x, 0));
1793 #endif
1794
1795 /* Look for any CLOBBERs in CALL_INSN_FUNCTION_USAGE, but only
1796 after we have processed the insn. */
1797 if (CALL_P (insn))
1798 for (x = CALL_INSN_FUNCTION_USAGE (insn); x; x = XEXP (x, 1))
1799 if (GET_CODE (XEXP (x, 0)) == CLOBBER)
1800 cselib_invalidate_rtx (XEXP (XEXP (x, 0), 0));
1801
1802 cselib_current_insn = 0;
1803
1804 if (n_useless_values > MAX_USELESS_VALUES
1805 /* remove_useless_values is linear in the hash table size. Avoid
1806 quadratic behavior for very large hashtables with very few
1807 useless elements. */
1808 && (unsigned int)n_useless_values > cselib_hash_table->n_elements / 4)
1809 remove_useless_values ();
1810 }
1811
1812 /* Initialize cselib for one pass. The caller must also call
1813 init_alias_analysis. */
1814
1815 void
1816 cselib_init (bool record_memory)
1817 {
1818 elt_list_pool = create_alloc_pool ("elt_list",
1819 sizeof (struct elt_list), 10);
1820 elt_loc_list_pool = create_alloc_pool ("elt_loc_list",
1821 sizeof (struct elt_loc_list), 10);
1822 cselib_val_pool = create_alloc_pool ("cselib_val_list",
1823 sizeof (cselib_val), 10);
1824 value_pool = create_alloc_pool ("value", RTX_CODE_SIZE (VALUE), 100);
1825 cselib_record_memory = record_memory;
1826
1827 /* (mem:BLK (scratch)) is a special mechanism to conflict with everything,
1828 see canon_true_dependence. This is only created once. */
1829 if (! callmem)
1830 callmem = gen_rtx_MEM (BLKmode, gen_rtx_SCRATCH (VOIDmode));
1831
1832 cselib_nregs = max_reg_num ();
1833
1834 /* We preserve reg_values to allow expensive clearing of the whole thing.
1835 Reallocate it however if it happens to be too large. */
1836 if (!reg_values || reg_values_size < cselib_nregs
1837 || (reg_values_size > 10 && reg_values_size > cselib_nregs * 4))
1838 {
1839 if (reg_values)
1840 free (reg_values);
1841 /* Some space for newly emit instructions so we don't end up
1842 reallocating in between passes. */
1843 reg_values_size = cselib_nregs + (63 + cselib_nregs) / 16;
1844 reg_values = XCNEWVEC (struct elt_list *, reg_values_size);
1845 }
1846 used_regs = XNEWVEC (unsigned int, cselib_nregs);
1847 n_used_regs = 0;
1848 cselib_hash_table = htab_create (31, get_value_hash,
1849 entry_and_rtx_equal_p, NULL);
1850 }
1851
1852 /* Called when the current user is done with cselib. */
1853
1854 void
1855 cselib_finish (void)
1856 {
1857 cselib_discard_hook = NULL;
1858 free_alloc_pool (elt_list_pool);
1859 free_alloc_pool (elt_loc_list_pool);
1860 free_alloc_pool (cselib_val_pool);
1861 free_alloc_pool (value_pool);
1862 cselib_clear_table ();
1863 htab_delete (cselib_hash_table);
1864 free (used_regs);
1865 used_regs = 0;
1866 cselib_hash_table = 0;
1867 n_useless_values = 0;
1868 next_unknown_value = 0;
1869 }
1870
1871 #include "gt-cselib.h"