comparison gcc/df-core.c @ 0:a06113de4d67

first commit
author kent <kent@cr.ie.u-ryukyu.ac.jp>
date Fri, 17 Jul 2009 14:47:48 +0900
parents
children 77e2b8dfacca
comparison
equal deleted inserted replaced
-1:000000000000 0:a06113de4d67
1 /* Allocation for dataflow support routines.
2 Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007,
3 2008 Free Software Foundation, Inc.
4 Originally contributed by Michael P. Hayes
5 (m.hayes@elec.canterbury.ac.nz, mhayes@redhat.com)
6 Major rewrite contributed by Danny Berlin (dberlin@dberlin.org)
7 and Kenneth Zadeck (zadeck@naturalbridge.com).
8
9 This file is part of GCC.
10
11 GCC is free software; you can redistribute it and/or modify it under
12 the terms of the GNU General Public License as published by the Free
13 Software Foundation; either version 3, or (at your option) any later
14 version.
15
16 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
17 WARRANTY; without even the implied warranty of MERCHANTABILITY or
18 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
19 for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with GCC; see the file COPYING3. If not see
23 <http://www.gnu.org/licenses/>. */
24
25 /*
26 OVERVIEW:
27
28 The files in this collection (df*.c,df.h) provide a general framework
29 for solving dataflow problems. The global dataflow is performed using
30 a good implementation of iterative dataflow analysis.
31
32 The file df-problems.c provides problem instance for the most common
33 dataflow problems: reaching defs, upward exposed uses, live variables,
34 uninitialized variables, def-use chains, and use-def chains. However,
35 the interface allows other dataflow problems to be defined as well.
36
37 Dataflow analysis is available in most of the rtl backend (the parts
38 between pass_df_initialize and pass_df_finish). It is quite likely
39 that these boundaries will be expanded in the future. The only
40 requirement is that there be a correct control flow graph.
41
42 There are three variations of the live variable problem that are
43 available whenever dataflow is available. The LR problem finds the
44 areas that can reach a use of a variable, the UR problems finds the
45 areas that can be reached from a definition of a variable. The LIVE
46 problem finds the intersection of these two areas.
47
48 There are several optional problems. These can be enabled when they
49 are needed and disabled when they are not needed.
50
51 Dataflow problems are generally solved in three layers. The bottom
52 layer is called scanning where a data structure is built for each rtl
53 insn that describes the set of defs and uses of that insn. Scanning
54 is generally kept up to date, i.e. as the insns changes, the scanned
55 version of that insn changes also. There are various mechanisms for
56 making this happen and are described in the INCREMENTAL SCANNING
57 section.
58
59 In the middle layer, basic blocks are scanned to produce transfer
60 functions which describe the effects of that block on the global
61 dataflow solution. The transfer functions are only rebuilt if the
62 some instruction within the block has changed.
63
64 The top layer is the dataflow solution itself. The dataflow solution
65 is computed by using an efficient iterative solver and the transfer
66 functions. The dataflow solution must be recomputed whenever the
67 control changes or if one of the transfer function changes.
68
69
70 USAGE:
71
72 Here is an example of using the dataflow routines.
73
74 df_[chain,live,note,rd]_add_problem (flags);
75
76 df_set_blocks (blocks);
77
78 df_analyze ();
79
80 df_dump (stderr);
81
82 df_finish_pass (false);
83
84 DF_[chain,live,note,rd]_ADD_PROBLEM adds a problem, defined by an
85 instance to struct df_problem, to the set of problems solved in this
86 instance of df. All calls to add a problem for a given instance of df
87 must occur before the first call to DF_ANALYZE.
88
89 Problems can be dependent on other problems. For instance, solving
90 def-use or use-def chains is dependent on solving reaching
91 definitions. As long as these dependencies are listed in the problem
92 definition, the order of adding the problems is not material.
93 Otherwise, the problems will be solved in the order of calls to
94 df_add_problem. Note that it is not necessary to have a problem. In
95 that case, df will just be used to do the scanning.
96
97
98
99 DF_SET_BLOCKS is an optional call used to define a region of the
100 function on which the analysis will be performed. The normal case is
101 to analyze the entire function and no call to df_set_blocks is made.
102 DF_SET_BLOCKS only effects the blocks that are effected when computing
103 the transfer functions and final solution. The insn level information
104 is always kept up to date.
105
106 When a subset is given, the analysis behaves as if the function only
107 contains those blocks and any edges that occur directly between the
108 blocks in the set. Care should be taken to call df_set_blocks right
109 before the call to analyze in order to eliminate the possibility that
110 optimizations that reorder blocks invalidate the bitvector.
111
112 DF_ANALYZE causes all of the defined problems to be (re)solved. When
113 DF_ANALYZE is completes, the IN and OUT sets for each basic block
114 contain the computer information. The DF_*_BB_INFO macros can be used
115 to access these bitvectors. All deferred rescannings are down before
116 the transfer functions are recomputed.
117
118 DF_DUMP can then be called to dump the information produce to some
119 file. This calls DF_DUMP_START, to print the information that is not
120 basic block specific, and then calls DF_DUMP_TOP and DF_DUMP_BOTTOM
121 for each block to print the basic specific information. These parts
122 can all be called separately as part of a larger dump function.
123
124
125 DF_FINISH_PASS causes df_remove_problem to be called on all of the
126 optional problems. It also causes any insns whose scanning has been
127 deferred to be rescanned as well as clears all of the changeable flags.
128 Setting the pass manager TODO_df_finish flag causes this function to
129 be run. However, the pass manager will call df_finish_pass AFTER the
130 pass dumping has been done, so if you want to see the results of the
131 optional problems in the pass dumps, use the TODO flag rather than
132 calling the function yourself.
133
134 INCREMENTAL SCANNING
135
136 There are four ways of doing the incremental scanning:
137
138 1) Immediate rescanning - Calls to df_insn_rescan, df_notes_rescan,
139 df_bb_delete, df_insn_change_bb have been added to most of
140 the low level service functions that maintain the cfg and change
141 rtl. Calling and of these routines many cause some number of insns
142 to be rescanned.
143
144 For most modern rtl passes, this is certainly the easiest way to
145 manage rescanning the insns. This technique also has the advantage
146 that the scanning information is always correct and can be relied
147 upon even after changes have been made to the instructions. This
148 technique is contra indicated in several cases:
149
150 a) If def-use chains OR use-def chains (but not both) are built,
151 using this is SIMPLY WRONG. The problem is that when a ref is
152 deleted that is the target of an edge, there is not enough
153 information to efficiently find the source of the edge and
154 delete the edge. This leaves a dangling reference that may
155 cause problems.
156
157 b) If def-use chains AND use-def chains are built, this may
158 produce unexpected results. The problem is that the incremental
159 scanning of an insn does not know how to repair the chains that
160 point into an insn when the insn changes. So the incremental
161 scanning just deletes the chains that enter and exit the insn
162 being changed. The dangling reference issue in (a) is not a
163 problem here, but if the pass is depending on the chains being
164 maintained after insns have been modified, this technique will
165 not do the correct thing.
166
167 c) If the pass modifies insns several times, this incremental
168 updating may be expensive.
169
170 d) If the pass modifies all of the insns, as does register
171 allocation, it is simply better to rescan the entire function.
172
173 e) If the pass uses either non-standard or ancient techniques to
174 modify insns, automatic detection of the insns that need to be
175 rescanned may be impractical. Cse and regrename fall into this
176 category.
177
178 2) Deferred rescanning - Calls to df_insn_rescan, df_notes_rescan, and
179 df_insn_delete do not immediately change the insn but instead make
180 a note that the insn needs to be rescanned. The next call to
181 df_analyze, df_finish_pass, or df_process_deferred_rescans will
182 cause all of the pending rescans to be processed.
183
184 This is the technique of choice if either 1a, 1b, or 1c are issues
185 in the pass. In the case of 1a or 1b, a call to df_remove_problem
186 (df_chain) should be made before the next call to df_analyze or
187 df_process_deferred_rescans.
188
189 To enable this mode, call df_set_flags (DF_DEFER_INSN_RESCAN).
190 (This mode can be cleared by calling df_clear_flags
191 (DF_DEFER_INSN_RESCAN) but this does not cause the deferred insns to
192 be rescanned.
193
194 3) Total rescanning - In this mode the rescanning is disabled.
195 However, the df information associated with deleted insn is delete
196 at the time the insn is deleted. At the end of the pass, a call
197 must be made to df_insn_rescan_all. This method is used by the
198 register allocator since it generally changes each insn multiple
199 times (once for each ref) and does not need to make use of the
200 updated scanning information.
201
202 It is also currently used by two older passes (cse, and regrename)
203 which change insns in hard to track ways. It is hoped that this
204 will be fixed soon since this it is expensive to rescan all of the
205 insns when only a small number of them have really changed.
206
207 4) Do it yourself - In this mechanism, the pass updates the insns
208 itself using the low level df primitives. Currently no pass does
209 this, but it has the advantage that it is quite efficient given
210 that the pass generally has exact knowledge of what it is changing.
211
212 DATA STRUCTURES
213
214 Scanning produces a `struct df_ref' data structure (ref) is allocated
215 for every register reference (def or use) and this records the insn
216 and bb the ref is found within. The refs are linked together in
217 chains of uses and defs for each insn and for each register. Each ref
218 also has a chain field that links all the use refs for a def or all
219 the def refs for a use. This is used to create use-def or def-use
220 chains.
221
222 Different optimizations have different needs. Ultimately, only
223 register allocation and schedulers should be using the bitmaps
224 produced for the live register and uninitialized register problems.
225 The rest of the backend should be upgraded to using and maintaining
226 the linked information such as def use or use def chains.
227
228
229 PHILOSOPHY:
230
231 While incremental bitmaps are not worthwhile to maintain, incremental
232 chains may be perfectly reasonable. The fastest way to build chains
233 from scratch or after significant modifications is to build reaching
234 definitions (RD) and build the chains from this.
235
236 However, general algorithms for maintaining use-def or def-use chains
237 are not practical. The amount of work to recompute the chain any
238 chain after an arbitrary change is large. However, with a modest
239 amount of work it is generally possible to have the application that
240 uses the chains keep them up to date. The high level knowledge of
241 what is really happening is essential to crafting efficient
242 incremental algorithms.
243
244 As for the bit vector problems, there is no interface to give a set of
245 blocks over with to resolve the iteration. In general, restarting a
246 dataflow iteration is difficult and expensive. Again, the best way to
247 keep the dataflow information up to data (if this is really what is
248 needed) it to formulate a problem specific solution.
249
250 There are fine grained calls for creating and deleting references from
251 instructions in df-scan.c. However, these are not currently connected
252 to the engine that resolves the dataflow equations.
253
254
255 DATA STRUCTURES:
256
257 The basic object is a DF_REF (reference) and this may either be a
258 DEF (definition) or a USE of a register.
259
260 These are linked into a variety of lists; namely reg-def, reg-use,
261 insn-def, insn-use, def-use, and use-def lists. For example, the
262 reg-def lists contain all the locations that define a given register
263 while the insn-use lists contain all the locations that use a
264 register.
265
266 Note that the reg-def and reg-use chains are generally short for
267 pseudos and long for the hard registers.
268
269 ACCESSING INSNS:
270
271 1) The df insn information is kept in an array of DF_INSN_INFO objects.
272 The array is indexed by insn uid, and every DF_REF points to the
273 DF_INSN_INFO object of the insn that contains the reference.
274
275 2) Each insn has three sets of refs, which are linked into one of three
276 lists: The insn's defs list (accessed by the DF_INSN_INFO_DEFS,
277 DF_INSN_DEFS, or DF_INSN_UID_DEFS macros), the insn's uses list
278 (accessed by the DF_INSN_INFO_USES, DF_INSN_USES, or
279 DF_INSN_UID_USES macros) or the insn's eq_uses list (accessed by the
280 DF_INSN_INFO_EQ_USES, DF_INSN_EQ_USES or DF_INSN_UID_EQ_USES macros).
281 The latter list are the list of references in REG_EQUAL or REG_EQUIV
282 notes. These macros produce a ref (or NULL), the rest of the list
283 can be obtained by traversal of the NEXT_REF field (accessed by the
284 DF_REF_NEXT_REF macro.) There is no significance to the ordering of
285 the uses or refs in an instruction.
286
287 3) Each insn has a logical uid field (LUID) which is stored in the
288 DF_INSN_INFO object for the insn. The LUID field is accessed by
289 the DF_INSN_INFO_LUID, DF_INSN_LUID, and DF_INSN_UID_LUID macros.
290 When properly set, the LUID is an integer that numbers each insn in
291 the basic block, in order from the start of the block.
292 The numbers are only correct after a call to df_analyze. They will
293 rot after insns are added deleted or moved round.
294
295 ACCESSING REFS:
296
297 There are 4 ways to obtain access to refs:
298
299 1) References are divided into two categories, REAL and ARTIFICIAL.
300
301 REAL refs are associated with instructions.
302
303 ARTIFICIAL refs are associated with basic blocks. The heads of
304 these lists can be accessed by calling df_get_artificial_defs or
305 df_get_artificial_uses for the particular basic block.
306
307 Artificial defs and uses occur both at the beginning and ends of blocks.
308
309 For blocks that area at the destination of eh edges, the
310 artificial uses and defs occur at the beginning. The defs relate
311 to the registers specified in EH_RETURN_DATA_REGNO and the uses
312 relate to the registers specified in ED_USES. Logically these
313 defs and uses should really occur along the eh edge, but there is
314 no convenient way to do this. Artificial edges that occur at the
315 beginning of the block have the DF_REF_AT_TOP flag set.
316
317 Artificial uses occur at the end of all blocks. These arise from
318 the hard registers that are always live, such as the stack
319 register and are put there to keep the code from forgetting about
320 them.
321
322 Artificial defs occur at the end of the entry block. These arise
323 from registers that are live at entry to the function.
324
325 2) There are three types of refs: defs, uses and eq_uses. (Eq_uses are
326 uses that appear inside a REG_EQUAL or REG_EQUIV note.)
327
328 All of the eq_uses, uses and defs associated with each pseudo or
329 hard register may be linked in a bidirectional chain. These are
330 called reg-use or reg_def chains. If the changeable flag
331 DF_EQ_NOTES is set when the chains are built, the eq_uses will be
332 treated like uses. If it is not set they are ignored.
333
334 The first use, eq_use or def for a register can be obtained using
335 the DF_REG_USE_CHAIN, DF_REG_EQ_USE_CHAIN or DF_REG_DEF_CHAIN
336 macros. Subsequent uses for the same regno can be obtained by
337 following the next_reg field of the ref. The number of elements in
338 each of the chains can be found by using the DF_REG_USE_COUNT,
339 DF_REG_EQ_USE_COUNT or DF_REG_DEF_COUNT macros.
340
341 In previous versions of this code, these chains were ordered. It
342 has not been practical to continue this practice.
343
344 3) If def-use or use-def chains are built, these can be traversed to
345 get to other refs. If the flag DF_EQ_NOTES has been set, the chains
346 include the eq_uses. Otherwise these are ignored when building the
347 chains.
348
349 4) An array of all of the uses (and an array of all of the defs) can
350 be built. These arrays are indexed by the value in the id
351 structure. These arrays are only lazily kept up to date, and that
352 process can be expensive. To have these arrays built, call
353 df_reorganize_defs or df_reorganize_uses. If the flag DF_EQ_NOTES
354 has been set the array will contain the eq_uses. Otherwise these
355 are ignored when building the array and assigning the ids. Note
356 that the values in the id field of a ref may change across calls to
357 df_analyze or df_reorganize_defs or df_reorganize_uses.
358
359 If the only use of this array is to find all of the refs, it is
360 better to traverse all of the registers and then traverse all of
361 reg-use or reg-def chains.
362
363 NOTES:
364
365 Embedded addressing side-effects, such as POST_INC or PRE_INC, generate
366 both a use and a def. These are both marked read/write to show that they
367 are dependent. For example, (set (reg 40) (mem (post_inc (reg 42))))
368 will generate a use of reg 42 followed by a def of reg 42 (both marked
369 read/write). Similarly, (set (reg 40) (mem (pre_dec (reg 41))))
370 generates a use of reg 41 then a def of reg 41 (both marked read/write),
371 even though reg 41 is decremented before it is used for the memory
372 address in this second example.
373
374 A set to a REG inside a ZERO_EXTRACT, or a set to a non-paradoxical SUBREG
375 for which the number of word_mode units covered by the outer mode is
376 smaller than that covered by the inner mode, invokes a read-modify-write
377 operation. We generate both a use and a def and again mark them
378 read/write.
379
380 Paradoxical subreg writes do not leave a trace of the old content, so they
381 are write-only operations.
382 */
383
384
385 #include "config.h"
386 #include "system.h"
387 #include "coretypes.h"
388 #include "tm.h"
389 #include "rtl.h"
390 #include "tm_p.h"
391 #include "insn-config.h"
392 #include "recog.h"
393 #include "function.h"
394 #include "regs.h"
395 #include "output.h"
396 #include "alloc-pool.h"
397 #include "flags.h"
398 #include "hard-reg-set.h"
399 #include "basic-block.h"
400 #include "sbitmap.h"
401 #include "bitmap.h"
402 #include "timevar.h"
403 #include "df.h"
404 #include "tree-pass.h"
405 #include "params.h"
406
407 static void *df_get_bb_info (struct dataflow *, unsigned int);
408 static void df_set_bb_info (struct dataflow *, unsigned int, void *);
409 #ifdef DF_DEBUG_CFG
410 static void df_set_clean_cfg (void);
411 #endif
412
413 /* An obstack for bitmap not related to specific dataflow problems.
414 This obstack should e.g. be used for bitmaps with a short life time
415 such as temporary bitmaps. */
416
417 bitmap_obstack df_bitmap_obstack;
418
419
420 /*----------------------------------------------------------------------------
421 Functions to create, destroy and manipulate an instance of df.
422 ----------------------------------------------------------------------------*/
423
424 struct df *df;
425
426 /* Add PROBLEM (and any dependent problems) to the DF instance. */
427
428 void
429 df_add_problem (struct df_problem *problem)
430 {
431 struct dataflow *dflow;
432 int i;
433
434 /* First try to add the dependent problem. */
435 if (problem->dependent_problem)
436 df_add_problem (problem->dependent_problem);
437
438 /* Check to see if this problem has already been defined. If it
439 has, just return that instance, if not, add it to the end of the
440 vector. */
441 dflow = df->problems_by_index[problem->id];
442 if (dflow)
443 return;
444
445 /* Make a new one and add it to the end. */
446 dflow = XCNEW (struct dataflow);
447 dflow->problem = problem;
448 dflow->computed = false;
449 dflow->solutions_dirty = true;
450 df->problems_by_index[dflow->problem->id] = dflow;
451
452 /* Keep the defined problems ordered by index. This solves the
453 problem that RI will use the information from UREC if UREC has
454 been defined, or from LIVE if LIVE is defined and otherwise LR.
455 However for this to work, the computation of RI must be pushed
456 after which ever of those problems is defined, but we do not
457 require any of those except for LR to have actually been
458 defined. */
459 df->num_problems_defined++;
460 for (i = df->num_problems_defined - 2; i >= 0; i--)
461 {
462 if (problem->id < df->problems_in_order[i]->problem->id)
463 df->problems_in_order[i+1] = df->problems_in_order[i];
464 else
465 {
466 df->problems_in_order[i+1] = dflow;
467 return;
468 }
469 }
470 df->problems_in_order[0] = dflow;
471 }
472
473
474 /* Set the MASK flags in the DFLOW problem. The old flags are
475 returned. If a flag is not allowed to be changed this will fail if
476 checking is enabled. */
477 enum df_changeable_flags
478 df_set_flags (enum df_changeable_flags changeable_flags)
479 {
480 enum df_changeable_flags old_flags = df->changeable_flags;
481 df->changeable_flags |= changeable_flags;
482 return old_flags;
483 }
484
485
486 /* Clear the MASK flags in the DFLOW problem. The old flags are
487 returned. If a flag is not allowed to be changed this will fail if
488 checking is enabled. */
489 enum df_changeable_flags
490 df_clear_flags (enum df_changeable_flags changeable_flags)
491 {
492 enum df_changeable_flags old_flags = df->changeable_flags;
493 df->changeable_flags &= ~changeable_flags;
494 return old_flags;
495 }
496
497
498 /* Set the blocks that are to be considered for analysis. If this is
499 not called or is called with null, the entire function in
500 analyzed. */
501
502 void
503 df_set_blocks (bitmap blocks)
504 {
505 if (blocks)
506 {
507 if (dump_file)
508 bitmap_print (dump_file, blocks, "setting blocks to analyze ", "\n");
509 if (df->blocks_to_analyze)
510 {
511 /* This block is called to change the focus from one subset
512 to another. */
513 int p;
514 bitmap diff = BITMAP_ALLOC (&df_bitmap_obstack);
515 bitmap_and_compl (diff, df->blocks_to_analyze, blocks);
516 for (p = 0; p < df->num_problems_defined; p++)
517 {
518 struct dataflow *dflow = df->problems_in_order[p];
519 if (dflow->optional_p && dflow->problem->reset_fun)
520 dflow->problem->reset_fun (df->blocks_to_analyze);
521 else if (dflow->problem->free_blocks_on_set_blocks)
522 {
523 bitmap_iterator bi;
524 unsigned int bb_index;
525
526 EXECUTE_IF_SET_IN_BITMAP (diff, 0, bb_index, bi)
527 {
528 basic_block bb = BASIC_BLOCK (bb_index);
529 if (bb)
530 {
531 void *bb_info = df_get_bb_info (dflow, bb_index);
532 if (bb_info)
533 {
534 dflow->problem->free_bb_fun (bb, bb_info);
535 df_set_bb_info (dflow, bb_index, NULL);
536 }
537 }
538 }
539 }
540 }
541
542 BITMAP_FREE (diff);
543 }
544 else
545 {
546 /* This block of code is executed to change the focus from
547 the entire function to a subset. */
548 bitmap blocks_to_reset = NULL;
549 int p;
550 for (p = 0; p < df->num_problems_defined; p++)
551 {
552 struct dataflow *dflow = df->problems_in_order[p];
553 if (dflow->optional_p && dflow->problem->reset_fun)
554 {
555 if (!blocks_to_reset)
556 {
557 basic_block bb;
558 blocks_to_reset =
559 BITMAP_ALLOC (&df_bitmap_obstack);
560 FOR_ALL_BB(bb)
561 {
562 bitmap_set_bit (blocks_to_reset, bb->index);
563 }
564 }
565 dflow->problem->reset_fun (blocks_to_reset);
566 }
567 }
568 if (blocks_to_reset)
569 BITMAP_FREE (blocks_to_reset);
570
571 df->blocks_to_analyze = BITMAP_ALLOC (&df_bitmap_obstack);
572 }
573 bitmap_copy (df->blocks_to_analyze, blocks);
574 df->analyze_subset = true;
575 }
576 else
577 {
578 /* This block is executed to reset the focus to the entire
579 function. */
580 if (dump_file)
581 fprintf (dump_file, "clearing blocks_to_analyze\n");
582 if (df->blocks_to_analyze)
583 {
584 BITMAP_FREE (df->blocks_to_analyze);
585 df->blocks_to_analyze = NULL;
586 }
587 df->analyze_subset = false;
588 }
589
590 /* Setting the blocks causes the refs to be unorganized since only
591 the refs in the blocks are seen. */
592 df_maybe_reorganize_def_refs (DF_REF_ORDER_NO_TABLE);
593 df_maybe_reorganize_use_refs (DF_REF_ORDER_NO_TABLE);
594 df_mark_solutions_dirty ();
595 }
596
597
598 /* Delete a DFLOW problem (and any problems that depend on this
599 problem). */
600
601 void
602 df_remove_problem (struct dataflow *dflow)
603 {
604 struct df_problem *problem;
605 int i;
606
607 if (!dflow)
608 return;
609
610 problem = dflow->problem;
611 gcc_assert (problem->remove_problem_fun);
612
613 /* Delete any problems that depended on this problem first. */
614 for (i = 0; i < df->num_problems_defined; i++)
615 if (df->problems_in_order[i]->problem->dependent_problem == problem)
616 df_remove_problem (df->problems_in_order[i]);
617
618 /* Now remove this problem. */
619 for (i = 0; i < df->num_problems_defined; i++)
620 if (df->problems_in_order[i] == dflow)
621 {
622 int j;
623 for (j = i + 1; j < df->num_problems_defined; j++)
624 df->problems_in_order[j-1] = df->problems_in_order[j];
625 df->problems_in_order[j-1] = NULL;
626 df->num_problems_defined--;
627 break;
628 }
629
630 (problem->remove_problem_fun) ();
631 df->problems_by_index[problem->id] = NULL;
632 }
633
634
635 /* Remove all of the problems that are not permanent. Scanning, LR
636 and (at -O2 or higher) LIVE are permanent, the rest are removable.
637 Also clear all of the changeable_flags. */
638
639 void
640 df_finish_pass (bool verify ATTRIBUTE_UNUSED)
641 {
642 int i;
643 int removed = 0;
644
645 #ifdef ENABLE_DF_CHECKING
646 enum df_changeable_flags saved_flags;
647 #endif
648
649 if (!df)
650 return;
651
652 df_maybe_reorganize_def_refs (DF_REF_ORDER_NO_TABLE);
653 df_maybe_reorganize_use_refs (DF_REF_ORDER_NO_TABLE);
654
655 #ifdef ENABLE_DF_CHECKING
656 saved_flags = df->changeable_flags;
657 #endif
658
659 for (i = 0; i < df->num_problems_defined; i++)
660 {
661 struct dataflow *dflow = df->problems_in_order[i];
662 struct df_problem *problem = dflow->problem;
663
664 if (dflow->optional_p)
665 {
666 gcc_assert (problem->remove_problem_fun);
667 (problem->remove_problem_fun) ();
668 df->problems_in_order[i] = NULL;
669 df->problems_by_index[problem->id] = NULL;
670 removed++;
671 }
672 }
673 df->num_problems_defined -= removed;
674
675 /* Clear all of the flags. */
676 df->changeable_flags = 0;
677 df_process_deferred_rescans ();
678
679 /* Set the focus back to the whole function. */
680 if (df->blocks_to_analyze)
681 {
682 BITMAP_FREE (df->blocks_to_analyze);
683 df->blocks_to_analyze = NULL;
684 df_mark_solutions_dirty ();
685 df->analyze_subset = false;
686 }
687
688 #ifdef ENABLE_DF_CHECKING
689 /* Verification will fail in DF_NO_INSN_RESCAN. */
690 if (!(saved_flags & DF_NO_INSN_RESCAN))
691 {
692 df_lr_verify_transfer_functions ();
693 if (df_live)
694 df_live_verify_transfer_functions ();
695 }
696
697 #ifdef DF_DEBUG_CFG
698 df_set_clean_cfg ();
699 #endif
700 #endif
701
702 #ifdef ENABLE_CHECKING
703 if (verify)
704 df->changeable_flags |= DF_VERIFY_SCHEDULED;
705 #endif
706 }
707
708
709 /* Set up the dataflow instance for the entire back end. */
710
711 static unsigned int
712 rest_of_handle_df_initialize (void)
713 {
714 gcc_assert (!df);
715 df = XCNEW (struct df);
716 df->changeable_flags = 0;
717
718 bitmap_obstack_initialize (&df_bitmap_obstack);
719
720 /* Set this to a conservative value. Stack_ptr_mod will compute it
721 correctly later. */
722 current_function_sp_is_unchanging = 0;
723
724 df_scan_add_problem ();
725 df_scan_alloc (NULL);
726
727 /* These three problems are permanent. */
728 df_lr_add_problem ();
729 if (optimize > 1)
730 df_live_add_problem ();
731
732 df->postorder = XNEWVEC (int, last_basic_block);
733 df->postorder_inverted = XNEWVEC (int, last_basic_block);
734 df->n_blocks = post_order_compute (df->postorder, true, true);
735 df->n_blocks_inverted = inverted_post_order_compute (df->postorder_inverted);
736 gcc_assert (df->n_blocks == df->n_blocks_inverted);
737
738 df->hard_regs_live_count = XNEWVEC (unsigned int, FIRST_PSEUDO_REGISTER);
739 memset (df->hard_regs_live_count, 0,
740 sizeof (unsigned int) * FIRST_PSEUDO_REGISTER);
741
742 df_hard_reg_init ();
743 /* After reload, some ports add certain bits to regs_ever_live so
744 this cannot be reset. */
745 df_compute_regs_ever_live (true);
746 df_scan_blocks ();
747 df_compute_regs_ever_live (false);
748 return 0;
749 }
750
751
752 static bool
753 gate_opt (void)
754 {
755 return optimize > 0;
756 }
757
758
759 struct rtl_opt_pass pass_df_initialize_opt =
760 {
761 {
762 RTL_PASS,
763 "dfinit", /* name */
764 gate_opt, /* gate */
765 rest_of_handle_df_initialize, /* execute */
766 NULL, /* sub */
767 NULL, /* next */
768 0, /* static_pass_number */
769 0, /* tv_id */
770 0, /* properties_required */
771 0, /* properties_provided */
772 0, /* properties_destroyed */
773 0, /* todo_flags_start */
774 0 /* todo_flags_finish */
775 }
776 };
777
778
779 static bool
780 gate_no_opt (void)
781 {
782 return optimize == 0;
783 }
784
785
786 struct rtl_opt_pass pass_df_initialize_no_opt =
787 {
788 {
789 RTL_PASS,
790 "dfinit", /* name */
791 gate_no_opt, /* gate */
792 rest_of_handle_df_initialize, /* execute */
793 NULL, /* sub */
794 NULL, /* next */
795 0, /* static_pass_number */
796 0, /* tv_id */
797 0, /* properties_required */
798 0, /* properties_provided */
799 0, /* properties_destroyed */
800 0, /* todo_flags_start */
801 0 /* todo_flags_finish */
802 }
803 };
804
805
806 /* Free all the dataflow info and the DF structure. This should be
807 called from the df_finish macro which also NULLs the parm. */
808
809 static unsigned int
810 rest_of_handle_df_finish (void)
811 {
812 int i;
813
814 gcc_assert (df);
815
816 for (i = 0; i < df->num_problems_defined; i++)
817 {
818 struct dataflow *dflow = df->problems_in_order[i];
819 dflow->problem->free_fun ();
820 }
821
822 if (df->postorder)
823 free (df->postorder);
824 if (df->postorder_inverted)
825 free (df->postorder_inverted);
826 free (df->hard_regs_live_count);
827 free (df);
828 df = NULL;
829
830 bitmap_obstack_release (&df_bitmap_obstack);
831 return 0;
832 }
833
834
835 struct rtl_opt_pass pass_df_finish =
836 {
837 {
838 RTL_PASS,
839 "dfinish", /* name */
840 NULL, /* gate */
841 rest_of_handle_df_finish, /* execute */
842 NULL, /* sub */
843 NULL, /* next */
844 0, /* static_pass_number */
845 0, /* tv_id */
846 0, /* properties_required */
847 0, /* properties_provided */
848 0, /* properties_destroyed */
849 0, /* todo_flags_start */
850 0 /* todo_flags_finish */
851 }
852 };
853
854
855
856
857
858 /*----------------------------------------------------------------------------
859 The general data flow analysis engine.
860 ----------------------------------------------------------------------------*/
861
862
863 /* Helper function for df_worklist_dataflow.
864 Propagate the dataflow forward.
865 Given a BB_INDEX, do the dataflow propagation
866 and set bits on for successors in PENDING
867 if the out set of the dataflow has changed. */
868
869 static void
870 df_worklist_propagate_forward (struct dataflow *dataflow,
871 unsigned bb_index,
872 unsigned *bbindex_to_postorder,
873 bitmap pending,
874 sbitmap considered)
875 {
876 edge e;
877 edge_iterator ei;
878 basic_block bb = BASIC_BLOCK (bb_index);
879
880 /* Calculate <conf_op> of incoming edges. */
881 if (EDGE_COUNT (bb->preds) > 0)
882 FOR_EACH_EDGE (e, ei, bb->preds)
883 {
884 if (TEST_BIT (considered, e->src->index))
885 dataflow->problem->con_fun_n (e);
886 }
887 else if (dataflow->problem->con_fun_0)
888 dataflow->problem->con_fun_0 (bb);
889
890 if (dataflow->problem->trans_fun (bb_index))
891 {
892 /* The out set of this block has changed.
893 Propagate to the outgoing blocks. */
894 FOR_EACH_EDGE (e, ei, bb->succs)
895 {
896 unsigned ob_index = e->dest->index;
897
898 if (TEST_BIT (considered, ob_index))
899 bitmap_set_bit (pending, bbindex_to_postorder[ob_index]);
900 }
901 }
902 }
903
904
905 /* Helper function for df_worklist_dataflow.
906 Propagate the dataflow backward. */
907
908 static void
909 df_worklist_propagate_backward (struct dataflow *dataflow,
910 unsigned bb_index,
911 unsigned *bbindex_to_postorder,
912 bitmap pending,
913 sbitmap considered)
914 {
915 edge e;
916 edge_iterator ei;
917 basic_block bb = BASIC_BLOCK (bb_index);
918
919 /* Calculate <conf_op> of incoming edges. */
920 if (EDGE_COUNT (bb->succs) > 0)
921 FOR_EACH_EDGE (e, ei, bb->succs)
922 {
923 if (TEST_BIT (considered, e->dest->index))
924 dataflow->problem->con_fun_n (e);
925 }
926 else if (dataflow->problem->con_fun_0)
927 dataflow->problem->con_fun_0 (bb);
928
929 if (dataflow->problem->trans_fun (bb_index))
930 {
931 /* The out set of this block has changed.
932 Propagate to the outgoing blocks. */
933 FOR_EACH_EDGE (e, ei, bb->preds)
934 {
935 unsigned ob_index = e->src->index;
936
937 if (TEST_BIT (considered, ob_index))
938 bitmap_set_bit (pending, bbindex_to_postorder[ob_index]);
939 }
940 }
941 }
942
943
944
945 /* This will free "pending". */
946
947 static void
948 df_worklist_dataflow_doublequeue (struct dataflow *dataflow,
949 bitmap pending,
950 sbitmap considered,
951 int *blocks_in_postorder,
952 unsigned *bbindex_to_postorder)
953 {
954 enum df_flow_dir dir = dataflow->problem->dir;
955 int dcount = 0;
956 bitmap worklist = BITMAP_ALLOC (&df_bitmap_obstack);
957
958 /* Double-queueing. Worklist is for the current iteration,
959 and pending is for the next. */
960 while (!bitmap_empty_p (pending))
961 {
962 /* Swap pending and worklist. */
963 bitmap temp = worklist;
964 worklist = pending;
965 pending = temp;
966
967 do
968 {
969 int index;
970 unsigned bb_index;
971 dcount++;
972
973 index = bitmap_first_set_bit (worklist);
974 bitmap_clear_bit (worklist, index);
975
976 bb_index = blocks_in_postorder[index];
977
978 if (dir == DF_FORWARD)
979 df_worklist_propagate_forward (dataflow, bb_index,
980 bbindex_to_postorder,
981 pending, considered);
982 else
983 df_worklist_propagate_backward (dataflow, bb_index,
984 bbindex_to_postorder,
985 pending, considered);
986 }
987 while (!bitmap_empty_p (worklist));
988 }
989
990 BITMAP_FREE (worklist);
991 BITMAP_FREE (pending);
992
993 /* Dump statistics. */
994 if (dump_file)
995 fprintf (dump_file, "df_worklist_dataflow_doublequeue:"
996 "n_basic_blocks %d n_edges %d"
997 " count %d (%5.2g)\n",
998 n_basic_blocks, n_edges,
999 dcount, dcount / (float)n_basic_blocks);
1000 }
1001
1002 /* Worklist-based dataflow solver. It uses sbitmap as a worklist,
1003 with "n"-th bit representing the n-th block in the reverse-postorder order.
1004 The solver is a double-queue algorithm similar to the "double stack" solver
1005 from Cooper, Harvey and Kennedy, "Iterative data-flow analysis, Revisited".
1006 The only significant difference is that the worklist in this implementation
1007 is always sorted in RPO of the CFG visiting direction. */
1008
1009 void
1010 df_worklist_dataflow (struct dataflow *dataflow,
1011 bitmap blocks_to_consider,
1012 int *blocks_in_postorder,
1013 int n_blocks)
1014 {
1015 bitmap pending = BITMAP_ALLOC (&df_bitmap_obstack);
1016 sbitmap considered = sbitmap_alloc (last_basic_block);
1017 bitmap_iterator bi;
1018 unsigned int *bbindex_to_postorder;
1019 int i;
1020 unsigned int index;
1021 enum df_flow_dir dir = dataflow->problem->dir;
1022
1023 gcc_assert (dir != DF_NONE);
1024
1025 /* BBINDEX_TO_POSTORDER maps the bb->index to the reverse postorder. */
1026 bbindex_to_postorder =
1027 (unsigned int *)xmalloc (last_basic_block * sizeof (unsigned int));
1028
1029 /* Initialize the array to an out-of-bound value. */
1030 for (i = 0; i < last_basic_block; i++)
1031 bbindex_to_postorder[i] = last_basic_block;
1032
1033 /* Initialize the considered map. */
1034 sbitmap_zero (considered);
1035 EXECUTE_IF_SET_IN_BITMAP (blocks_to_consider, 0, index, bi)
1036 {
1037 SET_BIT (considered, index);
1038 }
1039
1040 /* Initialize the mapping of block index to postorder. */
1041 for (i = 0; i < n_blocks; i++)
1042 {
1043 bbindex_to_postorder[blocks_in_postorder[i]] = i;
1044 /* Add all blocks to the worklist. */
1045 bitmap_set_bit (pending, i);
1046 }
1047
1048 /* Initialize the problem. */
1049 if (dataflow->problem->init_fun)
1050 dataflow->problem->init_fun (blocks_to_consider);
1051
1052 /* Solve it. */
1053 df_worklist_dataflow_doublequeue (dataflow, pending, considered,
1054 blocks_in_postorder,
1055 bbindex_to_postorder);
1056
1057 sbitmap_free (considered);
1058 free (bbindex_to_postorder);
1059 }
1060
1061
1062 /* Remove the entries not in BLOCKS from the LIST of length LEN, preserving
1063 the order of the remaining entries. Returns the length of the resulting
1064 list. */
1065
1066 static unsigned
1067 df_prune_to_subcfg (int list[], unsigned len, bitmap blocks)
1068 {
1069 unsigned act, last;
1070
1071 for (act = 0, last = 0; act < len; act++)
1072 if (bitmap_bit_p (blocks, list[act]))
1073 list[last++] = list[act];
1074
1075 return last;
1076 }
1077
1078
1079 /* Execute dataflow analysis on a single dataflow problem.
1080
1081 BLOCKS_TO_CONSIDER are the blocks whose solution can either be
1082 examined or will be computed. For calls from DF_ANALYZE, this is
1083 the set of blocks that has been passed to DF_SET_BLOCKS.
1084 */
1085
1086 void
1087 df_analyze_problem (struct dataflow *dflow,
1088 bitmap blocks_to_consider,
1089 int *postorder, int n_blocks)
1090 {
1091 timevar_push (dflow->problem->tv_id);
1092
1093 #ifdef ENABLE_DF_CHECKING
1094 if (dflow->problem->verify_start_fun)
1095 dflow->problem->verify_start_fun ();
1096 #endif
1097
1098 /* (Re)Allocate the datastructures necessary to solve the problem. */
1099 if (dflow->problem->alloc_fun)
1100 dflow->problem->alloc_fun (blocks_to_consider);
1101
1102 /* Set up the problem and compute the local information. */
1103 if (dflow->problem->local_compute_fun)
1104 dflow->problem->local_compute_fun (blocks_to_consider);
1105
1106 /* Solve the equations. */
1107 if (dflow->problem->dataflow_fun)
1108 dflow->problem->dataflow_fun (dflow, blocks_to_consider,
1109 postorder, n_blocks);
1110
1111 /* Massage the solution. */
1112 if (dflow->problem->finalize_fun)
1113 dflow->problem->finalize_fun (blocks_to_consider);
1114
1115 #ifdef ENABLE_DF_CHECKING
1116 if (dflow->problem->verify_end_fun)
1117 dflow->problem->verify_end_fun ();
1118 #endif
1119
1120 timevar_pop (dflow->problem->tv_id);
1121
1122 dflow->computed = true;
1123 }
1124
1125
1126 /* Analyze dataflow info for the basic blocks specified by the bitmap
1127 BLOCKS, or for the whole CFG if BLOCKS is zero. */
1128
1129 void
1130 df_analyze (void)
1131 {
1132 bitmap current_all_blocks = BITMAP_ALLOC (&df_bitmap_obstack);
1133 bool everything;
1134 int i;
1135
1136 if (df->postorder)
1137 free (df->postorder);
1138 if (df->postorder_inverted)
1139 free (df->postorder_inverted);
1140 df->postorder = XNEWVEC (int, last_basic_block);
1141 df->postorder_inverted = XNEWVEC (int, last_basic_block);
1142 df->n_blocks = post_order_compute (df->postorder, true, true);
1143 df->n_blocks_inverted = inverted_post_order_compute (df->postorder_inverted);
1144
1145 /* These should be the same. */
1146 gcc_assert (df->n_blocks == df->n_blocks_inverted);
1147
1148 /* We need to do this before the df_verify_all because this is
1149 not kept incrementally up to date. */
1150 df_compute_regs_ever_live (false);
1151 df_process_deferred_rescans ();
1152
1153 if (dump_file)
1154 fprintf (dump_file, "df_analyze called\n");
1155
1156 #ifndef ENABLE_DF_CHECKING
1157 if (df->changeable_flags & DF_VERIFY_SCHEDULED)
1158 #endif
1159 df_verify ();
1160
1161 for (i = 0; i < df->n_blocks; i++)
1162 bitmap_set_bit (current_all_blocks, df->postorder[i]);
1163
1164 #ifdef ENABLE_CHECKING
1165 /* Verify that POSTORDER_INVERTED only contains blocks reachable from
1166 the ENTRY block. */
1167 for (i = 0; i < df->n_blocks_inverted; i++)
1168 gcc_assert (bitmap_bit_p (current_all_blocks, df->postorder_inverted[i]));
1169 #endif
1170
1171 /* Make sure that we have pruned any unreachable blocks from these
1172 sets. */
1173 if (df->analyze_subset)
1174 {
1175 everything = false;
1176 bitmap_and_into (df->blocks_to_analyze, current_all_blocks);
1177 df->n_blocks = df_prune_to_subcfg (df->postorder,
1178 df->n_blocks, df->blocks_to_analyze);
1179 df->n_blocks_inverted = df_prune_to_subcfg (df->postorder_inverted,
1180 df->n_blocks_inverted,
1181 df->blocks_to_analyze);
1182 BITMAP_FREE (current_all_blocks);
1183 }
1184 else
1185 {
1186 everything = true;
1187 df->blocks_to_analyze = current_all_blocks;
1188 current_all_blocks = NULL;
1189 }
1190
1191 /* Skip over the DF_SCAN problem. */
1192 for (i = 1; i < df->num_problems_defined; i++)
1193 {
1194 struct dataflow *dflow = df->problems_in_order[i];
1195 if (dflow->solutions_dirty)
1196 {
1197 if (dflow->problem->dir == DF_FORWARD)
1198 df_analyze_problem (dflow,
1199 df->blocks_to_analyze,
1200 df->postorder_inverted,
1201 df->n_blocks_inverted);
1202 else
1203 df_analyze_problem (dflow,
1204 df->blocks_to_analyze,
1205 df->postorder,
1206 df->n_blocks);
1207 }
1208 }
1209
1210 if (everything)
1211 {
1212 BITMAP_FREE (df->blocks_to_analyze);
1213 df->blocks_to_analyze = NULL;
1214 }
1215
1216 #ifdef DF_DEBUG_CFG
1217 df_set_clean_cfg ();
1218 #endif
1219 }
1220
1221
1222 /* Return the number of basic blocks from the last call to df_analyze. */
1223
1224 int
1225 df_get_n_blocks (enum df_flow_dir dir)
1226 {
1227 gcc_assert (dir != DF_NONE);
1228
1229 if (dir == DF_FORWARD)
1230 {
1231 gcc_assert (df->postorder_inverted);
1232 return df->n_blocks_inverted;
1233 }
1234
1235 gcc_assert (df->postorder);
1236 return df->n_blocks;
1237 }
1238
1239
1240 /* Return a pointer to the array of basic blocks in the reverse postorder.
1241 Depending on the direction of the dataflow problem,
1242 it returns either the usual reverse postorder array
1243 or the reverse postorder of inverted traversal. */
1244 int *
1245 df_get_postorder (enum df_flow_dir dir)
1246 {
1247 gcc_assert (dir != DF_NONE);
1248
1249 if (dir == DF_FORWARD)
1250 {
1251 gcc_assert (df->postorder_inverted);
1252 return df->postorder_inverted;
1253 }
1254 gcc_assert (df->postorder);
1255 return df->postorder;
1256 }
1257
1258 static struct df_problem user_problem;
1259 static struct dataflow user_dflow;
1260
1261 /* Interface for calling iterative dataflow with user defined
1262 confluence and transfer functions. All that is necessary is to
1263 supply DIR, a direction, CONF_FUN_0, a confluence function for
1264 blocks with no logical preds (or NULL), CONF_FUN_N, the normal
1265 confluence function, TRANS_FUN, the basic block transfer function,
1266 and BLOCKS, the set of blocks to examine, POSTORDER the blocks in
1267 postorder, and N_BLOCKS, the number of blocks in POSTORDER. */
1268
1269 void
1270 df_simple_dataflow (enum df_flow_dir dir,
1271 df_init_function init_fun,
1272 df_confluence_function_0 con_fun_0,
1273 df_confluence_function_n con_fun_n,
1274 df_transfer_function trans_fun,
1275 bitmap blocks, int * postorder, int n_blocks)
1276 {
1277 memset (&user_problem, 0, sizeof (struct df_problem));
1278 user_problem.dir = dir;
1279 user_problem.init_fun = init_fun;
1280 user_problem.con_fun_0 = con_fun_0;
1281 user_problem.con_fun_n = con_fun_n;
1282 user_problem.trans_fun = trans_fun;
1283 user_dflow.problem = &user_problem;
1284 df_worklist_dataflow (&user_dflow, blocks, postorder, n_blocks);
1285 }
1286
1287
1288
1289 /*----------------------------------------------------------------------------
1290 Functions to support limited incremental change.
1291 ----------------------------------------------------------------------------*/
1292
1293
1294 /* Get basic block info. */
1295
1296 static void *
1297 df_get_bb_info (struct dataflow *dflow, unsigned int index)
1298 {
1299 if (dflow->block_info == NULL)
1300 return NULL;
1301 if (index >= dflow->block_info_size)
1302 return NULL;
1303 return (struct df_scan_bb_info *) dflow->block_info[index];
1304 }
1305
1306
1307 /* Set basic block info. */
1308
1309 static void
1310 df_set_bb_info (struct dataflow *dflow, unsigned int index,
1311 void *bb_info)
1312 {
1313 gcc_assert (dflow->block_info);
1314 dflow->block_info[index] = bb_info;
1315 }
1316
1317
1318 /* Mark the solutions as being out of date. */
1319
1320 void
1321 df_mark_solutions_dirty (void)
1322 {
1323 if (df)
1324 {
1325 int p;
1326 for (p = 1; p < df->num_problems_defined; p++)
1327 df->problems_in_order[p]->solutions_dirty = true;
1328 }
1329 }
1330
1331
1332 /* Return true if BB needs it's transfer functions recomputed. */
1333
1334 bool
1335 df_get_bb_dirty (basic_block bb)
1336 {
1337 if (df && df_live)
1338 return bitmap_bit_p (df_live->out_of_date_transfer_functions, bb->index);
1339 else
1340 return false;
1341 }
1342
1343
1344 /* Mark BB as needing it's transfer functions as being out of
1345 date. */
1346
1347 void
1348 df_set_bb_dirty (basic_block bb)
1349 {
1350 if (df)
1351 {
1352 int p;
1353 for (p = 1; p < df->num_problems_defined; p++)
1354 {
1355 struct dataflow *dflow = df->problems_in_order[p];
1356 if (dflow->out_of_date_transfer_functions)
1357 bitmap_set_bit (dflow->out_of_date_transfer_functions, bb->index);
1358 }
1359 df_mark_solutions_dirty ();
1360 }
1361 }
1362
1363
1364 /* Clear the dirty bits. This is called from places that delete
1365 blocks. */
1366 static void
1367 df_clear_bb_dirty (basic_block bb)
1368 {
1369 int p;
1370 for (p = 1; p < df->num_problems_defined; p++)
1371 {
1372 struct dataflow *dflow = df->problems_in_order[p];
1373 if (dflow->out_of_date_transfer_functions)
1374 bitmap_clear_bit (dflow->out_of_date_transfer_functions, bb->index);
1375 }
1376 }
1377 /* Called from the rtl_compact_blocks to reorganize the problems basic
1378 block info. */
1379
1380 void
1381 df_compact_blocks (void)
1382 {
1383 int i, p;
1384 basic_block bb;
1385 void **problem_temps;
1386 int size = last_basic_block * sizeof (void *);
1387 bitmap tmp = BITMAP_ALLOC (&df_bitmap_obstack);
1388 problem_temps = XNEWVAR (void *, size);
1389
1390 for (p = 0; p < df->num_problems_defined; p++)
1391 {
1392 struct dataflow *dflow = df->problems_in_order[p];
1393
1394 /* Need to reorganize the out_of_date_transfer_functions for the
1395 dflow problem. */
1396 if (dflow->out_of_date_transfer_functions)
1397 {
1398 bitmap_copy (tmp, dflow->out_of_date_transfer_functions);
1399 bitmap_clear (dflow->out_of_date_transfer_functions);
1400 if (bitmap_bit_p (tmp, ENTRY_BLOCK))
1401 bitmap_set_bit (dflow->out_of_date_transfer_functions, ENTRY_BLOCK);
1402 if (bitmap_bit_p (tmp, EXIT_BLOCK))
1403 bitmap_set_bit (dflow->out_of_date_transfer_functions, EXIT_BLOCK);
1404
1405 i = NUM_FIXED_BLOCKS;
1406 FOR_EACH_BB (bb)
1407 {
1408 if (bitmap_bit_p (tmp, bb->index))
1409 bitmap_set_bit (dflow->out_of_date_transfer_functions, i);
1410 i++;
1411 }
1412 }
1413
1414 /* Now shuffle the block info for the problem. */
1415 if (dflow->problem->free_bb_fun)
1416 {
1417 df_grow_bb_info (dflow);
1418 memcpy (problem_temps, dflow->block_info, size);
1419
1420 /* Copy the bb info from the problem tmps to the proper
1421 place in the block_info vector. Null out the copied
1422 item. The entry and exit blocks never move. */
1423 i = NUM_FIXED_BLOCKS;
1424 FOR_EACH_BB (bb)
1425 {
1426 df_set_bb_info (dflow, i, problem_temps[bb->index]);
1427 problem_temps[bb->index] = NULL;
1428 i++;
1429 }
1430 memset (dflow->block_info + i, 0,
1431 (last_basic_block - i) *sizeof (void *));
1432
1433 /* Free any block infos that were not copied (and NULLed).
1434 These are from orphaned blocks. */
1435 for (i = NUM_FIXED_BLOCKS; i < last_basic_block; i++)
1436 {
1437 basic_block bb = BASIC_BLOCK (i);
1438 if (problem_temps[i] && bb)
1439 dflow->problem->free_bb_fun
1440 (bb, problem_temps[i]);
1441 }
1442 }
1443 }
1444
1445 /* Shuffle the bits in the basic_block indexed arrays. */
1446
1447 if (df->blocks_to_analyze)
1448 {
1449 if (bitmap_bit_p (tmp, ENTRY_BLOCK))
1450 bitmap_set_bit (df->blocks_to_analyze, ENTRY_BLOCK);
1451 if (bitmap_bit_p (tmp, EXIT_BLOCK))
1452 bitmap_set_bit (df->blocks_to_analyze, EXIT_BLOCK);
1453 bitmap_copy (tmp, df->blocks_to_analyze);
1454 bitmap_clear (df->blocks_to_analyze);
1455 i = NUM_FIXED_BLOCKS;
1456 FOR_EACH_BB (bb)
1457 {
1458 if (bitmap_bit_p (tmp, bb->index))
1459 bitmap_set_bit (df->blocks_to_analyze, i);
1460 i++;
1461 }
1462 }
1463
1464 BITMAP_FREE (tmp);
1465
1466 free (problem_temps);
1467
1468 i = NUM_FIXED_BLOCKS;
1469 FOR_EACH_BB (bb)
1470 {
1471 SET_BASIC_BLOCK (i, bb);
1472 bb->index = i;
1473 i++;
1474 }
1475
1476 gcc_assert (i == n_basic_blocks);
1477
1478 for (; i < last_basic_block; i++)
1479 SET_BASIC_BLOCK (i, NULL);
1480
1481 #ifdef DF_DEBUG_CFG
1482 if (!df_lr->solutions_dirty)
1483 df_set_clean_cfg ();
1484 #endif
1485 }
1486
1487
1488 /* Shove NEW_BLOCK in at OLD_INDEX. Called from ifcvt to hack a
1489 block. There is no excuse for people to do this kind of thing. */
1490
1491 void
1492 df_bb_replace (int old_index, basic_block new_block)
1493 {
1494 int new_block_index = new_block->index;
1495 int p;
1496
1497 if (dump_file)
1498 fprintf (dump_file, "shoving block %d into %d\n", new_block_index, old_index);
1499
1500 gcc_assert (df);
1501 gcc_assert (BASIC_BLOCK (old_index) == NULL);
1502
1503 for (p = 0; p < df->num_problems_defined; p++)
1504 {
1505 struct dataflow *dflow = df->problems_in_order[p];
1506 if (dflow->block_info)
1507 {
1508 df_grow_bb_info (dflow);
1509 gcc_assert (df_get_bb_info (dflow, old_index) == NULL);
1510 df_set_bb_info (dflow, old_index,
1511 df_get_bb_info (dflow, new_block_index));
1512 }
1513 }
1514
1515 df_clear_bb_dirty (new_block);
1516 SET_BASIC_BLOCK (old_index, new_block);
1517 new_block->index = old_index;
1518 df_set_bb_dirty (BASIC_BLOCK (old_index));
1519 SET_BASIC_BLOCK (new_block_index, NULL);
1520 }
1521
1522
1523 /* Free all of the per basic block dataflow from all of the problems.
1524 This is typically called before a basic block is deleted and the
1525 problem will be reanalyzed. */
1526
1527 void
1528 df_bb_delete (int bb_index)
1529 {
1530 basic_block bb = BASIC_BLOCK (bb_index);
1531 int i;
1532
1533 if (!df)
1534 return;
1535
1536 for (i = 0; i < df->num_problems_defined; i++)
1537 {
1538 struct dataflow *dflow = df->problems_in_order[i];
1539 if (dflow->problem->free_bb_fun)
1540 {
1541 void *bb_info = df_get_bb_info (dflow, bb_index);
1542 if (bb_info)
1543 {
1544 dflow->problem->free_bb_fun (bb, bb_info);
1545 df_set_bb_info (dflow, bb_index, NULL);
1546 }
1547 }
1548 }
1549 df_clear_bb_dirty (bb);
1550 df_mark_solutions_dirty ();
1551 }
1552
1553
1554 /* Verify that there is a place for everything and everything is in
1555 its place. This is too expensive to run after every pass in the
1556 mainline. However this is an excellent debugging tool if the
1557 dataflow information is not being updated properly. You can just
1558 sprinkle calls in until you find the place that is changing an
1559 underlying structure without calling the proper updating
1560 routine. */
1561
1562 void
1563 df_verify (void)
1564 {
1565 df_scan_verify ();
1566 #ifdef ENABLE_DF_CHECKING
1567 df_lr_verify_transfer_functions ();
1568 if (df_live)
1569 df_live_verify_transfer_functions ();
1570 #endif
1571 }
1572
1573 #ifdef DF_DEBUG_CFG
1574
1575 /* Compute an array of ints that describes the cfg. This can be used
1576 to discover places where the cfg is modified by the appropriate
1577 calls have not been made to the keep df informed. The internals of
1578 this are unexciting, the key is that two instances of this can be
1579 compared to see if any changes have been made to the cfg. */
1580
1581 static int *
1582 df_compute_cfg_image (void)
1583 {
1584 basic_block bb;
1585 int size = 2 + (2 * n_basic_blocks);
1586 int i;
1587 int * map;
1588
1589 FOR_ALL_BB (bb)
1590 {
1591 size += EDGE_COUNT (bb->succs);
1592 }
1593
1594 map = XNEWVEC (int, size);
1595 map[0] = size;
1596 i = 1;
1597 FOR_ALL_BB (bb)
1598 {
1599 edge_iterator ei;
1600 edge e;
1601
1602 map[i++] = bb->index;
1603 FOR_EACH_EDGE (e, ei, bb->succs)
1604 map[i++] = e->dest->index;
1605 map[i++] = -1;
1606 }
1607 map[i] = -1;
1608 return map;
1609 }
1610
1611 static int *saved_cfg = NULL;
1612
1613
1614 /* This function compares the saved version of the cfg with the
1615 current cfg and aborts if the two are identical. The function
1616 silently returns if the cfg has been marked as dirty or the two are
1617 the same. */
1618
1619 void
1620 df_check_cfg_clean (void)
1621 {
1622 int *new_map;
1623
1624 if (!df)
1625 return;
1626
1627 if (df_lr->solutions_dirty)
1628 return;
1629
1630 if (saved_cfg == NULL)
1631 return;
1632
1633 new_map = df_compute_cfg_image ();
1634 gcc_assert (memcmp (saved_cfg, new_map, saved_cfg[0] * sizeof (int)) == 0);
1635 free (new_map);
1636 }
1637
1638
1639 /* This function builds a cfg fingerprint and squirrels it away in
1640 saved_cfg. */
1641
1642 static void
1643 df_set_clean_cfg (void)
1644 {
1645 if (saved_cfg)
1646 free (saved_cfg);
1647 saved_cfg = df_compute_cfg_image ();
1648 }
1649
1650 #endif /* DF_DEBUG_CFG */
1651 /*----------------------------------------------------------------------------
1652 PUBLIC INTERFACES TO QUERY INFORMATION.
1653 ----------------------------------------------------------------------------*/
1654
1655
1656 /* Return first def of REGNO within BB. */
1657
1658 df_ref
1659 df_bb_regno_first_def_find (basic_block bb, unsigned int regno)
1660 {
1661 rtx insn;
1662 df_ref *def_rec;
1663 unsigned int uid;
1664
1665 FOR_BB_INSNS (bb, insn)
1666 {
1667 if (!INSN_P (insn))
1668 continue;
1669
1670 uid = INSN_UID (insn);
1671 for (def_rec = DF_INSN_UID_DEFS (uid); *def_rec; def_rec++)
1672 {
1673 df_ref def = *def_rec;
1674 if (DF_REF_REGNO (def) == regno)
1675 return def;
1676 }
1677 }
1678 return NULL;
1679 }
1680
1681
1682 /* Return last def of REGNO within BB. */
1683
1684 df_ref
1685 df_bb_regno_last_def_find (basic_block bb, unsigned int regno)
1686 {
1687 rtx insn;
1688 df_ref *def_rec;
1689 unsigned int uid;
1690
1691 FOR_BB_INSNS_REVERSE (bb, insn)
1692 {
1693 if (!INSN_P (insn))
1694 continue;
1695
1696 uid = INSN_UID (insn);
1697 for (def_rec = DF_INSN_UID_DEFS (uid); *def_rec; def_rec++)
1698 {
1699 df_ref def = *def_rec;
1700 if (DF_REF_REGNO (def) == regno)
1701 return def;
1702 }
1703 }
1704
1705 return NULL;
1706 }
1707
1708 /* Finds the reference corresponding to the definition of REG in INSN.
1709 DF is the dataflow object. */
1710
1711 df_ref
1712 df_find_def (rtx insn, rtx reg)
1713 {
1714 unsigned int uid;
1715 df_ref *def_rec;
1716
1717 if (GET_CODE (reg) == SUBREG)
1718 reg = SUBREG_REG (reg);
1719 gcc_assert (REG_P (reg));
1720
1721 uid = INSN_UID (insn);
1722 for (def_rec = DF_INSN_UID_DEFS (uid); *def_rec; def_rec++)
1723 {
1724 df_ref def = *def_rec;
1725 if (rtx_equal_p (DF_REF_REAL_REG (def), reg))
1726 return def;
1727 }
1728
1729 return NULL;
1730 }
1731
1732
1733 /* Return true if REG is defined in INSN, zero otherwise. */
1734
1735 bool
1736 df_reg_defined (rtx insn, rtx reg)
1737 {
1738 return df_find_def (insn, reg) != NULL;
1739 }
1740
1741
1742 /* Finds the reference corresponding to the use of REG in INSN.
1743 DF is the dataflow object. */
1744
1745 df_ref
1746 df_find_use (rtx insn, rtx reg)
1747 {
1748 unsigned int uid;
1749 df_ref *use_rec;
1750
1751 if (GET_CODE (reg) == SUBREG)
1752 reg = SUBREG_REG (reg);
1753 gcc_assert (REG_P (reg));
1754
1755 uid = INSN_UID (insn);
1756 for (use_rec = DF_INSN_UID_USES (uid); *use_rec; use_rec++)
1757 {
1758 df_ref use = *use_rec;
1759 if (rtx_equal_p (DF_REF_REAL_REG (use), reg))
1760 return use;
1761 }
1762 if (df->changeable_flags & DF_EQ_NOTES)
1763 for (use_rec = DF_INSN_UID_EQ_USES (uid); *use_rec; use_rec++)
1764 {
1765 df_ref use = *use_rec;
1766 if (rtx_equal_p (DF_REF_REAL_REG (use), reg))
1767 return use;
1768 }
1769 return NULL;
1770 }
1771
1772
1773 /* Return true if REG is referenced in INSN, zero otherwise. */
1774
1775 bool
1776 df_reg_used (rtx insn, rtx reg)
1777 {
1778 return df_find_use (insn, reg) != NULL;
1779 }
1780
1781
1782 /*----------------------------------------------------------------------------
1783 Debugging and printing functions.
1784 ----------------------------------------------------------------------------*/
1785
1786
1787 /* Write information about registers and basic blocks into FILE.
1788 This is part of making a debugging dump. */
1789
1790 void
1791 df_print_regset (FILE *file, bitmap r)
1792 {
1793 unsigned int i;
1794 bitmap_iterator bi;
1795
1796 if (r == NULL)
1797 fputs (" (nil)", file);
1798 else
1799 {
1800 EXECUTE_IF_SET_IN_BITMAP (r, 0, i, bi)
1801 {
1802 fprintf (file, " %d", i);
1803 if (i < FIRST_PSEUDO_REGISTER)
1804 fprintf (file, " [%s]", reg_names[i]);
1805 }
1806 }
1807 fprintf (file, "\n");
1808 }
1809
1810
1811 /* Write information about registers and basic blocks into FILE. The
1812 bitmap is in the form used by df_byte_lr. This is part of making a
1813 debugging dump. */
1814
1815 void
1816 df_print_byte_regset (FILE *file, bitmap r)
1817 {
1818 unsigned int max_reg = max_reg_num ();
1819 bitmap_iterator bi;
1820
1821 if (r == NULL)
1822 fputs (" (nil)", file);
1823 else
1824 {
1825 unsigned int i;
1826 for (i = 0; i < max_reg; i++)
1827 {
1828 unsigned int first = df_byte_lr_get_regno_start (i);
1829 unsigned int len = df_byte_lr_get_regno_len (i);
1830
1831 if (len > 1)
1832 {
1833 bool found = false;
1834 unsigned int j;
1835
1836 EXECUTE_IF_SET_IN_BITMAP (r, first, j, bi)
1837 {
1838 found = j < first + len;
1839 break;
1840 }
1841 if (found)
1842 {
1843 const char * sep = "";
1844 fprintf (file, " %d", i);
1845 if (i < FIRST_PSEUDO_REGISTER)
1846 fprintf (file, " [%s]", reg_names[i]);
1847 fprintf (file, "(");
1848 EXECUTE_IF_SET_IN_BITMAP (r, first, j, bi)
1849 {
1850 if (j > first + len - 1)
1851 break;
1852 fprintf (file, "%s%d", sep, j-first);
1853 sep = ", ";
1854 }
1855 fprintf (file, ")");
1856 }
1857 }
1858 else
1859 {
1860 if (bitmap_bit_p (r, first))
1861 {
1862 fprintf (file, " %d", i);
1863 if (i < FIRST_PSEUDO_REGISTER)
1864 fprintf (file, " [%s]", reg_names[i]);
1865 }
1866 }
1867
1868 }
1869 }
1870 fprintf (file, "\n");
1871 }
1872
1873
1874 /* Dump dataflow info. */
1875
1876 void
1877 df_dump (FILE *file)
1878 {
1879 basic_block bb;
1880 df_dump_start (file);
1881
1882 FOR_ALL_BB (bb)
1883 {
1884 df_print_bb_index (bb, file);
1885 df_dump_top (bb, file);
1886 df_dump_bottom (bb, file);
1887 }
1888
1889 fprintf (file, "\n");
1890 }
1891
1892
1893 /* Dump dataflow info for df->blocks_to_analyze. */
1894
1895 void
1896 df_dump_region (FILE *file)
1897 {
1898 if (df->blocks_to_analyze)
1899 {
1900 bitmap_iterator bi;
1901 unsigned int bb_index;
1902
1903 fprintf (file, "\n\nstarting region dump\n");
1904 df_dump_start (file);
1905
1906 EXECUTE_IF_SET_IN_BITMAP (df->blocks_to_analyze, 0, bb_index, bi)
1907 {
1908 basic_block bb = BASIC_BLOCK (bb_index);
1909
1910 df_print_bb_index (bb, file);
1911 df_dump_top (bb, file);
1912 df_dump_bottom (bb, file);
1913 }
1914 fprintf (file, "\n");
1915 }
1916 else
1917 df_dump (file);
1918 }
1919
1920
1921 /* Dump the introductory information for each problem defined. */
1922
1923 void
1924 df_dump_start (FILE *file)
1925 {
1926 int i;
1927
1928 if (!df || !file)
1929 return;
1930
1931 fprintf (file, "\n\n%s\n", current_function_name ());
1932 fprintf (file, "\nDataflow summary:\n");
1933 if (df->blocks_to_analyze)
1934 fprintf (file, "def_info->table_size = %d, use_info->table_size = %d\n",
1935 DF_DEFS_TABLE_SIZE (), DF_USES_TABLE_SIZE ());
1936
1937 for (i = 0; i < df->num_problems_defined; i++)
1938 {
1939 struct dataflow *dflow = df->problems_in_order[i];
1940 if (dflow->computed)
1941 {
1942 df_dump_problem_function fun = dflow->problem->dump_start_fun;
1943 if (fun)
1944 fun(file);
1945 }
1946 }
1947 }
1948
1949
1950 /* Dump the top of the block information for BB. */
1951
1952 void
1953 df_dump_top (basic_block bb, FILE *file)
1954 {
1955 int i;
1956
1957 if (!df || !file)
1958 return;
1959
1960 for (i = 0; i < df->num_problems_defined; i++)
1961 {
1962 struct dataflow *dflow = df->problems_in_order[i];
1963 if (dflow->computed)
1964 {
1965 df_dump_bb_problem_function bbfun = dflow->problem->dump_top_fun;
1966 if (bbfun)
1967 bbfun (bb, file);
1968 }
1969 }
1970 }
1971
1972
1973 /* Dump the bottom of the block information for BB. */
1974
1975 void
1976 df_dump_bottom (basic_block bb, FILE *file)
1977 {
1978 int i;
1979
1980 if (!df || !file)
1981 return;
1982
1983 for (i = 0; i < df->num_problems_defined; i++)
1984 {
1985 struct dataflow *dflow = df->problems_in_order[i];
1986 if (dflow->computed)
1987 {
1988 df_dump_bb_problem_function bbfun = dflow->problem->dump_bottom_fun;
1989 if (bbfun)
1990 bbfun (bb, file);
1991 }
1992 }
1993 }
1994
1995
1996 void
1997 df_refs_chain_dump (df_ref *ref_rec, bool follow_chain, FILE *file)
1998 {
1999 fprintf (file, "{ ");
2000 while (*ref_rec)
2001 {
2002 df_ref ref = *ref_rec;
2003 fprintf (file, "%c%d(%d)",
2004 DF_REF_REG_DEF_P (ref) ? 'd' : (DF_REF_FLAGS (ref) & DF_REF_IN_NOTE) ? 'e' : 'u',
2005 DF_REF_ID (ref),
2006 DF_REF_REGNO (ref));
2007 if (follow_chain)
2008 df_chain_dump (DF_REF_CHAIN (ref), file);
2009 ref_rec++;
2010 }
2011 fprintf (file, "}");
2012 }
2013
2014
2015 /* Dump either a ref-def or reg-use chain. */
2016
2017 void
2018 df_regs_chain_dump (df_ref ref, FILE *file)
2019 {
2020 fprintf (file, "{ ");
2021 while (ref)
2022 {
2023 fprintf (file, "%c%d(%d) ",
2024 DF_REF_REG_DEF_P (ref) ? 'd' : 'u',
2025 DF_REF_ID (ref),
2026 DF_REF_REGNO (ref));
2027 ref = DF_REF_NEXT_REG (ref);
2028 }
2029 fprintf (file, "}");
2030 }
2031
2032
2033 static void
2034 df_mws_dump (struct df_mw_hardreg **mws, FILE *file)
2035 {
2036 while (*mws)
2037 {
2038 fprintf (file, "mw %c r[%d..%d]\n",
2039 (DF_MWS_REG_DEF_P (*mws)) ? 'd' : 'u',
2040 (*mws)->start_regno, (*mws)->end_regno);
2041 mws++;
2042 }
2043 }
2044
2045
2046 static void
2047 df_insn_uid_debug (unsigned int uid,
2048 bool follow_chain, FILE *file)
2049 {
2050 fprintf (file, "insn %d luid %d",
2051 uid, DF_INSN_UID_LUID (uid));
2052
2053 if (DF_INSN_UID_DEFS (uid))
2054 {
2055 fprintf (file, " defs ");
2056 df_refs_chain_dump (DF_INSN_UID_DEFS (uid), follow_chain, file);
2057 }
2058
2059 if (DF_INSN_UID_USES (uid))
2060 {
2061 fprintf (file, " uses ");
2062 df_refs_chain_dump (DF_INSN_UID_USES (uid), follow_chain, file);
2063 }
2064
2065 if (DF_INSN_UID_EQ_USES (uid))
2066 {
2067 fprintf (file, " eq uses ");
2068 df_refs_chain_dump (DF_INSN_UID_EQ_USES (uid), follow_chain, file);
2069 }
2070
2071 if (DF_INSN_UID_MWS (uid))
2072 {
2073 fprintf (file, " mws ");
2074 df_mws_dump (DF_INSN_UID_MWS (uid), file);
2075 }
2076 fprintf (file, "\n");
2077 }
2078
2079
2080 void
2081 df_insn_debug (rtx insn, bool follow_chain, FILE *file)
2082 {
2083 df_insn_uid_debug (INSN_UID (insn), follow_chain, file);
2084 }
2085
2086 void
2087 df_insn_debug_regno (rtx insn, FILE *file)
2088 {
2089 struct df_insn_info *insn_info = DF_INSN_INFO_GET (insn);
2090
2091 fprintf (file, "insn %d bb %d luid %d defs ",
2092 INSN_UID (insn), BLOCK_FOR_INSN (insn)->index,
2093 DF_INSN_INFO_LUID (insn_info));
2094 df_refs_chain_dump (DF_INSN_INFO_DEFS (insn_info), false, file);
2095
2096 fprintf (file, " uses ");
2097 df_refs_chain_dump (DF_INSN_INFO_USES (insn_info), false, file);
2098
2099 fprintf (file, " eq_uses ");
2100 df_refs_chain_dump (DF_INSN_INFO_EQ_USES (insn_info), false, file);
2101 fprintf (file, "\n");
2102 }
2103
2104 void
2105 df_regno_debug (unsigned int regno, FILE *file)
2106 {
2107 fprintf (file, "reg %d defs ", regno);
2108 df_regs_chain_dump (DF_REG_DEF_CHAIN (regno), file);
2109 fprintf (file, " uses ");
2110 df_regs_chain_dump (DF_REG_USE_CHAIN (regno), file);
2111 fprintf (file, " eq_uses ");
2112 df_regs_chain_dump (DF_REG_EQ_USE_CHAIN (regno), file);
2113 fprintf (file, "\n");
2114 }
2115
2116
2117 void
2118 df_ref_debug (df_ref ref, FILE *file)
2119 {
2120 fprintf (file, "%c%d ",
2121 DF_REF_REG_DEF_P (ref) ? 'd' : 'u',
2122 DF_REF_ID (ref));
2123 fprintf (file, "reg %d bb %d insn %d flag 0x%x type 0x%x ",
2124 DF_REF_REGNO (ref),
2125 DF_REF_BBNO (ref),
2126 DF_REF_IS_ARTIFICIAL (ref) ? -1 : DF_REF_INSN_UID (ref),
2127 DF_REF_FLAGS (ref),
2128 DF_REF_TYPE (ref));
2129 if (DF_REF_LOC (ref))
2130 fprintf (file, "loc %p(%p) chain ", (void *)DF_REF_LOC (ref), (void *)*DF_REF_LOC (ref));
2131 else
2132 fprintf (file, "chain ");
2133 df_chain_dump (DF_REF_CHAIN (ref), file);
2134 fprintf (file, "\n");
2135 }
2136
2137 /* Functions for debugging from GDB. */
2138
2139 void
2140 debug_df_insn (rtx insn)
2141 {
2142 df_insn_debug (insn, true, stderr);
2143 debug_rtx (insn);
2144 }
2145
2146
2147 void
2148 debug_df_reg (rtx reg)
2149 {
2150 df_regno_debug (REGNO (reg), stderr);
2151 }
2152
2153
2154 void
2155 debug_df_regno (unsigned int regno)
2156 {
2157 df_regno_debug (regno, stderr);
2158 }
2159
2160
2161 void
2162 debug_df_ref (df_ref ref)
2163 {
2164 df_ref_debug (ref, stderr);
2165 }
2166
2167
2168 void
2169 debug_df_defno (unsigned int defno)
2170 {
2171 df_ref_debug (DF_DEFS_GET (defno), stderr);
2172 }
2173
2174
2175 void
2176 debug_df_useno (unsigned int defno)
2177 {
2178 df_ref_debug (DF_USES_GET (defno), stderr);
2179 }
2180
2181
2182 void
2183 debug_df_chain (struct df_link *link)
2184 {
2185 df_chain_dump (link, stderr);
2186 fputc ('\n', stderr);
2187 }