comparison gcc/expr.c @ 0:a06113de4d67

first commit
author kent <kent@cr.ie.u-ryukyu.ac.jp>
date Fri, 17 Jul 2009 14:47:48 +0900
parents
children 58ad6c70ea60
comparison
equal deleted inserted replaced
-1:000000000000 0:a06113de4d67
1 /* Convert tree expression to rtl instructions, for GNU compiler.
2 Copyright (C) 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
3 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
4 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "machmode.h"
27 #include "real.h"
28 #include "rtl.h"
29 #include "tree.h"
30 #include "flags.h"
31 #include "regs.h"
32 #include "hard-reg-set.h"
33 #include "except.h"
34 #include "function.h"
35 #include "insn-config.h"
36 #include "insn-attr.h"
37 /* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
38 #include "expr.h"
39 #include "optabs.h"
40 #include "libfuncs.h"
41 #include "recog.h"
42 #include "reload.h"
43 #include "output.h"
44 #include "typeclass.h"
45 #include "toplev.h"
46 #include "ggc.h"
47 #include "langhooks.h"
48 #include "intl.h"
49 #include "tm_p.h"
50 #include "tree-iterator.h"
51 #include "tree-pass.h"
52 #include "tree-flow.h"
53 #include "target.h"
54 #include "timevar.h"
55 #include "df.h"
56 #include "diagnostic.h"
57
58 /* Decide whether a function's arguments should be processed
59 from first to last or from last to first.
60
61 They should if the stack and args grow in opposite directions, but
62 only if we have push insns. */
63
64 #ifdef PUSH_ROUNDING
65
66 #ifndef PUSH_ARGS_REVERSED
67 #if defined (STACK_GROWS_DOWNWARD) != defined (ARGS_GROW_DOWNWARD)
68 #define PUSH_ARGS_REVERSED /* If it's last to first. */
69 #endif
70 #endif
71
72 #endif
73
74 #ifndef STACK_PUSH_CODE
75 #ifdef STACK_GROWS_DOWNWARD
76 #define STACK_PUSH_CODE PRE_DEC
77 #else
78 #define STACK_PUSH_CODE PRE_INC
79 #endif
80 #endif
81
82
83 /* If this is nonzero, we do not bother generating VOLATILE
84 around volatile memory references, and we are willing to
85 output indirect addresses. If cse is to follow, we reject
86 indirect addresses so a useful potential cse is generated;
87 if it is used only once, instruction combination will produce
88 the same indirect address eventually. */
89 int cse_not_expected;
90
91 /* This structure is used by move_by_pieces to describe the move to
92 be performed. */
93 struct move_by_pieces
94 {
95 rtx to;
96 rtx to_addr;
97 int autinc_to;
98 int explicit_inc_to;
99 rtx from;
100 rtx from_addr;
101 int autinc_from;
102 int explicit_inc_from;
103 unsigned HOST_WIDE_INT len;
104 HOST_WIDE_INT offset;
105 int reverse;
106 };
107
108 /* This structure is used by store_by_pieces to describe the clear to
109 be performed. */
110
111 struct store_by_pieces
112 {
113 rtx to;
114 rtx to_addr;
115 int autinc_to;
116 int explicit_inc_to;
117 unsigned HOST_WIDE_INT len;
118 HOST_WIDE_INT offset;
119 rtx (*constfun) (void *, HOST_WIDE_INT, enum machine_mode);
120 void *constfundata;
121 int reverse;
122 };
123
124 static unsigned HOST_WIDE_INT move_by_pieces_ninsns (unsigned HOST_WIDE_INT,
125 unsigned int,
126 unsigned int);
127 static void move_by_pieces_1 (rtx (*) (rtx, ...), enum machine_mode,
128 struct move_by_pieces *);
129 static bool block_move_libcall_safe_for_call_parm (void);
130 static bool emit_block_move_via_movmem (rtx, rtx, rtx, unsigned, unsigned, HOST_WIDE_INT);
131 static tree emit_block_move_libcall_fn (int);
132 static void emit_block_move_via_loop (rtx, rtx, rtx, unsigned);
133 static rtx clear_by_pieces_1 (void *, HOST_WIDE_INT, enum machine_mode);
134 static void clear_by_pieces (rtx, unsigned HOST_WIDE_INT, unsigned int);
135 static void store_by_pieces_1 (struct store_by_pieces *, unsigned int);
136 static void store_by_pieces_2 (rtx (*) (rtx, ...), enum machine_mode,
137 struct store_by_pieces *);
138 static tree clear_storage_libcall_fn (int);
139 static rtx compress_float_constant (rtx, rtx);
140 static rtx get_subtarget (rtx);
141 static void store_constructor_field (rtx, unsigned HOST_WIDE_INT,
142 HOST_WIDE_INT, enum machine_mode,
143 tree, tree, int, alias_set_type);
144 static void store_constructor (tree, rtx, int, HOST_WIDE_INT);
145 static rtx store_field (rtx, HOST_WIDE_INT, HOST_WIDE_INT, enum machine_mode,
146 tree, tree, alias_set_type, bool);
147
148 static unsigned HOST_WIDE_INT highest_pow2_factor_for_target (const_tree, const_tree);
149
150 static int is_aligning_offset (const_tree, const_tree);
151 static void expand_operands (tree, tree, rtx, rtx*, rtx*,
152 enum expand_modifier);
153 static rtx reduce_to_bit_field_precision (rtx, rtx, tree);
154 static rtx do_store_flag (tree, rtx, enum machine_mode, int);
155 #ifdef PUSH_ROUNDING
156 static void emit_single_push_insn (enum machine_mode, rtx, tree);
157 #endif
158 static void do_tablejump (rtx, enum machine_mode, rtx, rtx, rtx);
159 static rtx const_vector_from_tree (tree);
160 static void write_complex_part (rtx, rtx, bool);
161
162 /* Record for each mode whether we can move a register directly to or
163 from an object of that mode in memory. If we can't, we won't try
164 to use that mode directly when accessing a field of that mode. */
165
166 static char direct_load[NUM_MACHINE_MODES];
167 static char direct_store[NUM_MACHINE_MODES];
168
169 /* Record for each mode whether we can float-extend from memory. */
170
171 static bool float_extend_from_mem[NUM_MACHINE_MODES][NUM_MACHINE_MODES];
172
173 /* This macro is used to determine whether move_by_pieces should be called
174 to perform a structure copy. */
175 #ifndef MOVE_BY_PIECES_P
176 #define MOVE_BY_PIECES_P(SIZE, ALIGN) \
177 (move_by_pieces_ninsns (SIZE, ALIGN, MOVE_MAX_PIECES + 1) \
178 < (unsigned int) MOVE_RATIO (optimize_insn_for_speed_p ()))
179 #endif
180
181 /* This macro is used to determine whether clear_by_pieces should be
182 called to clear storage. */
183 #ifndef CLEAR_BY_PIECES_P
184 #define CLEAR_BY_PIECES_P(SIZE, ALIGN) \
185 (move_by_pieces_ninsns (SIZE, ALIGN, STORE_MAX_PIECES + 1) \
186 < (unsigned int) CLEAR_RATIO (optimize_insn_for_speed_p ()))
187 #endif
188
189 /* This macro is used to determine whether store_by_pieces should be
190 called to "memset" storage with byte values other than zero. */
191 #ifndef SET_BY_PIECES_P
192 #define SET_BY_PIECES_P(SIZE, ALIGN) \
193 (move_by_pieces_ninsns (SIZE, ALIGN, STORE_MAX_PIECES + 1) \
194 < (unsigned int) SET_RATIO (optimize_insn_for_speed_p ()))
195 #endif
196
197 /* This macro is used to determine whether store_by_pieces should be
198 called to "memcpy" storage when the source is a constant string. */
199 #ifndef STORE_BY_PIECES_P
200 #define STORE_BY_PIECES_P(SIZE, ALIGN) \
201 (move_by_pieces_ninsns (SIZE, ALIGN, STORE_MAX_PIECES + 1) \
202 < (unsigned int) MOVE_RATIO (optimize_insn_for_speed_p ()))
203 #endif
204
205 /* This array records the insn_code of insns to perform block moves. */
206 enum insn_code movmem_optab[NUM_MACHINE_MODES];
207
208 /* This array records the insn_code of insns to perform block sets. */
209 enum insn_code setmem_optab[NUM_MACHINE_MODES];
210
211 /* These arrays record the insn_code of three different kinds of insns
212 to perform block compares. */
213 enum insn_code cmpstr_optab[NUM_MACHINE_MODES];
214 enum insn_code cmpstrn_optab[NUM_MACHINE_MODES];
215 enum insn_code cmpmem_optab[NUM_MACHINE_MODES];
216
217 /* Synchronization primitives. */
218 enum insn_code sync_add_optab[NUM_MACHINE_MODES];
219 enum insn_code sync_sub_optab[NUM_MACHINE_MODES];
220 enum insn_code sync_ior_optab[NUM_MACHINE_MODES];
221 enum insn_code sync_and_optab[NUM_MACHINE_MODES];
222 enum insn_code sync_xor_optab[NUM_MACHINE_MODES];
223 enum insn_code sync_nand_optab[NUM_MACHINE_MODES];
224 enum insn_code sync_old_add_optab[NUM_MACHINE_MODES];
225 enum insn_code sync_old_sub_optab[NUM_MACHINE_MODES];
226 enum insn_code sync_old_ior_optab[NUM_MACHINE_MODES];
227 enum insn_code sync_old_and_optab[NUM_MACHINE_MODES];
228 enum insn_code sync_old_xor_optab[NUM_MACHINE_MODES];
229 enum insn_code sync_old_nand_optab[NUM_MACHINE_MODES];
230 enum insn_code sync_new_add_optab[NUM_MACHINE_MODES];
231 enum insn_code sync_new_sub_optab[NUM_MACHINE_MODES];
232 enum insn_code sync_new_ior_optab[NUM_MACHINE_MODES];
233 enum insn_code sync_new_and_optab[NUM_MACHINE_MODES];
234 enum insn_code sync_new_xor_optab[NUM_MACHINE_MODES];
235 enum insn_code sync_new_nand_optab[NUM_MACHINE_MODES];
236 enum insn_code sync_compare_and_swap[NUM_MACHINE_MODES];
237 enum insn_code sync_compare_and_swap_cc[NUM_MACHINE_MODES];
238 enum insn_code sync_lock_test_and_set[NUM_MACHINE_MODES];
239 enum insn_code sync_lock_release[NUM_MACHINE_MODES];
240
241 /* SLOW_UNALIGNED_ACCESS is nonzero if unaligned accesses are very slow. */
242
243 #ifndef SLOW_UNALIGNED_ACCESS
244 #define SLOW_UNALIGNED_ACCESS(MODE, ALIGN) STRICT_ALIGNMENT
245 #endif
246
247 /* This is run to set up which modes can be used
248 directly in memory and to initialize the block move optab. It is run
249 at the beginning of compilation and when the target is reinitialized. */
250
251 void
252 init_expr_target (void)
253 {
254 rtx insn, pat;
255 enum machine_mode mode;
256 int num_clobbers;
257 rtx mem, mem1;
258 rtx reg;
259
260 /* Try indexing by frame ptr and try by stack ptr.
261 It is known that on the Convex the stack ptr isn't a valid index.
262 With luck, one or the other is valid on any machine. */
263 mem = gen_rtx_MEM (VOIDmode, stack_pointer_rtx);
264 mem1 = gen_rtx_MEM (VOIDmode, frame_pointer_rtx);
265
266 /* A scratch register we can modify in-place below to avoid
267 useless RTL allocations. */
268 reg = gen_rtx_REG (VOIDmode, -1);
269
270 insn = rtx_alloc (INSN);
271 pat = gen_rtx_SET (0, NULL_RTX, NULL_RTX);
272 PATTERN (insn) = pat;
273
274 for (mode = VOIDmode; (int) mode < NUM_MACHINE_MODES;
275 mode = (enum machine_mode) ((int) mode + 1))
276 {
277 int regno;
278
279 direct_load[(int) mode] = direct_store[(int) mode] = 0;
280 PUT_MODE (mem, mode);
281 PUT_MODE (mem1, mode);
282 PUT_MODE (reg, mode);
283
284 /* See if there is some register that can be used in this mode and
285 directly loaded or stored from memory. */
286
287 if (mode != VOIDmode && mode != BLKmode)
288 for (regno = 0; regno < FIRST_PSEUDO_REGISTER
289 && (direct_load[(int) mode] == 0 || direct_store[(int) mode] == 0);
290 regno++)
291 {
292 if (! HARD_REGNO_MODE_OK (regno, mode))
293 continue;
294
295 SET_REGNO (reg, regno);
296
297 SET_SRC (pat) = mem;
298 SET_DEST (pat) = reg;
299 if (recog (pat, insn, &num_clobbers) >= 0)
300 direct_load[(int) mode] = 1;
301
302 SET_SRC (pat) = mem1;
303 SET_DEST (pat) = reg;
304 if (recog (pat, insn, &num_clobbers) >= 0)
305 direct_load[(int) mode] = 1;
306
307 SET_SRC (pat) = reg;
308 SET_DEST (pat) = mem;
309 if (recog (pat, insn, &num_clobbers) >= 0)
310 direct_store[(int) mode] = 1;
311
312 SET_SRC (pat) = reg;
313 SET_DEST (pat) = mem1;
314 if (recog (pat, insn, &num_clobbers) >= 0)
315 direct_store[(int) mode] = 1;
316 }
317 }
318
319 mem = gen_rtx_MEM (VOIDmode, gen_rtx_raw_REG (Pmode, 10000));
320
321 for (mode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); mode != VOIDmode;
322 mode = GET_MODE_WIDER_MODE (mode))
323 {
324 enum machine_mode srcmode;
325 for (srcmode = GET_CLASS_NARROWEST_MODE (MODE_FLOAT); srcmode != mode;
326 srcmode = GET_MODE_WIDER_MODE (srcmode))
327 {
328 enum insn_code ic;
329
330 ic = can_extend_p (mode, srcmode, 0);
331 if (ic == CODE_FOR_nothing)
332 continue;
333
334 PUT_MODE (mem, srcmode);
335
336 if ((*insn_data[ic].operand[1].predicate) (mem, srcmode))
337 float_extend_from_mem[mode][srcmode] = true;
338 }
339 }
340 }
341
342 /* This is run at the start of compiling a function. */
343
344 void
345 init_expr (void)
346 {
347 memset (&crtl->expr, 0, sizeof (crtl->expr));
348 }
349
350 /* Copy data from FROM to TO, where the machine modes are not the same.
351 Both modes may be integer, or both may be floating, or both may be
352 fixed-point.
353 UNSIGNEDP should be nonzero if FROM is an unsigned type.
354 This causes zero-extension instead of sign-extension. */
355
356 void
357 convert_move (rtx to, rtx from, int unsignedp)
358 {
359 enum machine_mode to_mode = GET_MODE (to);
360 enum machine_mode from_mode = GET_MODE (from);
361 int to_real = SCALAR_FLOAT_MODE_P (to_mode);
362 int from_real = SCALAR_FLOAT_MODE_P (from_mode);
363 enum insn_code code;
364 rtx libcall;
365
366 /* rtx code for making an equivalent value. */
367 enum rtx_code equiv_code = (unsignedp < 0 ? UNKNOWN
368 : (unsignedp ? ZERO_EXTEND : SIGN_EXTEND));
369
370
371 gcc_assert (to_real == from_real);
372 gcc_assert (to_mode != BLKmode);
373 gcc_assert (from_mode != BLKmode);
374
375 /* If the source and destination are already the same, then there's
376 nothing to do. */
377 if (to == from)
378 return;
379
380 /* If FROM is a SUBREG that indicates that we have already done at least
381 the required extension, strip it. We don't handle such SUBREGs as
382 TO here. */
383
384 if (GET_CODE (from) == SUBREG && SUBREG_PROMOTED_VAR_P (from)
385 && (GET_MODE_SIZE (GET_MODE (SUBREG_REG (from)))
386 >= GET_MODE_SIZE (to_mode))
387 && SUBREG_PROMOTED_UNSIGNED_P (from) == unsignedp)
388 from = gen_lowpart (to_mode, from), from_mode = to_mode;
389
390 gcc_assert (GET_CODE (to) != SUBREG || !SUBREG_PROMOTED_VAR_P (to));
391
392 if (to_mode == from_mode
393 || (from_mode == VOIDmode && CONSTANT_P (from)))
394 {
395 emit_move_insn (to, from);
396 return;
397 }
398
399 if (VECTOR_MODE_P (to_mode) || VECTOR_MODE_P (from_mode))
400 {
401 gcc_assert (GET_MODE_BITSIZE (from_mode) == GET_MODE_BITSIZE (to_mode));
402
403 if (VECTOR_MODE_P (to_mode))
404 from = simplify_gen_subreg (to_mode, from, GET_MODE (from), 0);
405 else
406 to = simplify_gen_subreg (from_mode, to, GET_MODE (to), 0);
407
408 emit_move_insn (to, from);
409 return;
410 }
411
412 if (GET_CODE (to) == CONCAT && GET_CODE (from) == CONCAT)
413 {
414 convert_move (XEXP (to, 0), XEXP (from, 0), unsignedp);
415 convert_move (XEXP (to, 1), XEXP (from, 1), unsignedp);
416 return;
417 }
418
419 if (to_real)
420 {
421 rtx value, insns;
422 convert_optab tab;
423
424 gcc_assert ((GET_MODE_PRECISION (from_mode)
425 != GET_MODE_PRECISION (to_mode))
426 || (DECIMAL_FLOAT_MODE_P (from_mode)
427 != DECIMAL_FLOAT_MODE_P (to_mode)));
428
429 if (GET_MODE_PRECISION (from_mode) == GET_MODE_PRECISION (to_mode))
430 /* Conversion between decimal float and binary float, same size. */
431 tab = DECIMAL_FLOAT_MODE_P (from_mode) ? trunc_optab : sext_optab;
432 else if (GET_MODE_PRECISION (from_mode) < GET_MODE_PRECISION (to_mode))
433 tab = sext_optab;
434 else
435 tab = trunc_optab;
436
437 /* Try converting directly if the insn is supported. */
438
439 code = convert_optab_handler (tab, to_mode, from_mode)->insn_code;
440 if (code != CODE_FOR_nothing)
441 {
442 emit_unop_insn (code, to, from,
443 tab == sext_optab ? FLOAT_EXTEND : FLOAT_TRUNCATE);
444 return;
445 }
446
447 /* Otherwise use a libcall. */
448 libcall = convert_optab_libfunc (tab, to_mode, from_mode);
449
450 /* Is this conversion implemented yet? */
451 gcc_assert (libcall);
452
453 start_sequence ();
454 value = emit_library_call_value (libcall, NULL_RTX, LCT_CONST, to_mode,
455 1, from, from_mode);
456 insns = get_insns ();
457 end_sequence ();
458 emit_libcall_block (insns, to, value,
459 tab == trunc_optab ? gen_rtx_FLOAT_TRUNCATE (to_mode,
460 from)
461 : gen_rtx_FLOAT_EXTEND (to_mode, from));
462 return;
463 }
464
465 /* Handle pointer conversion. */ /* SPEE 900220. */
466 /* Targets are expected to provide conversion insns between PxImode and
467 xImode for all MODE_PARTIAL_INT modes they use, but no others. */
468 if (GET_MODE_CLASS (to_mode) == MODE_PARTIAL_INT)
469 {
470 enum machine_mode full_mode
471 = smallest_mode_for_size (GET_MODE_BITSIZE (to_mode), MODE_INT);
472
473 gcc_assert (convert_optab_handler (trunc_optab, to_mode, full_mode)->insn_code
474 != CODE_FOR_nothing);
475
476 if (full_mode != from_mode)
477 from = convert_to_mode (full_mode, from, unsignedp);
478 emit_unop_insn (convert_optab_handler (trunc_optab, to_mode, full_mode)->insn_code,
479 to, from, UNKNOWN);
480 return;
481 }
482 if (GET_MODE_CLASS (from_mode) == MODE_PARTIAL_INT)
483 {
484 rtx new_from;
485 enum machine_mode full_mode
486 = smallest_mode_for_size (GET_MODE_BITSIZE (from_mode), MODE_INT);
487
488 gcc_assert (convert_optab_handler (sext_optab, full_mode, from_mode)->insn_code
489 != CODE_FOR_nothing);
490
491 if (to_mode == full_mode)
492 {
493 emit_unop_insn (convert_optab_handler (sext_optab, full_mode, from_mode)->insn_code,
494 to, from, UNKNOWN);
495 return;
496 }
497
498 new_from = gen_reg_rtx (full_mode);
499 emit_unop_insn (convert_optab_handler (sext_optab, full_mode, from_mode)->insn_code,
500 new_from, from, UNKNOWN);
501
502 /* else proceed to integer conversions below. */
503 from_mode = full_mode;
504 from = new_from;
505 }
506
507 /* Make sure both are fixed-point modes or both are not. */
508 gcc_assert (ALL_SCALAR_FIXED_POINT_MODE_P (from_mode) ==
509 ALL_SCALAR_FIXED_POINT_MODE_P (to_mode));
510 if (ALL_SCALAR_FIXED_POINT_MODE_P (from_mode))
511 {
512 /* If we widen from_mode to to_mode and they are in the same class,
513 we won't saturate the result.
514 Otherwise, always saturate the result to play safe. */
515 if (GET_MODE_CLASS (from_mode) == GET_MODE_CLASS (to_mode)
516 && GET_MODE_SIZE (from_mode) < GET_MODE_SIZE (to_mode))
517 expand_fixed_convert (to, from, 0, 0);
518 else
519 expand_fixed_convert (to, from, 0, 1);
520 return;
521 }
522
523 /* Now both modes are integers. */
524
525 /* Handle expanding beyond a word. */
526 if (GET_MODE_BITSIZE (from_mode) < GET_MODE_BITSIZE (to_mode)
527 && GET_MODE_BITSIZE (to_mode) > BITS_PER_WORD)
528 {
529 rtx insns;
530 rtx lowpart;
531 rtx fill_value;
532 rtx lowfrom;
533 int i;
534 enum machine_mode lowpart_mode;
535 int nwords = CEIL (GET_MODE_SIZE (to_mode), UNITS_PER_WORD);
536
537 /* Try converting directly if the insn is supported. */
538 if ((code = can_extend_p (to_mode, from_mode, unsignedp))
539 != CODE_FOR_nothing)
540 {
541 /* If FROM is a SUBREG, put it into a register. Do this
542 so that we always generate the same set of insns for
543 better cse'ing; if an intermediate assignment occurred,
544 we won't be doing the operation directly on the SUBREG. */
545 if (optimize > 0 && GET_CODE (from) == SUBREG)
546 from = force_reg (from_mode, from);
547 emit_unop_insn (code, to, from, equiv_code);
548 return;
549 }
550 /* Next, try converting via full word. */
551 else if (GET_MODE_BITSIZE (from_mode) < BITS_PER_WORD
552 && ((code = can_extend_p (to_mode, word_mode, unsignedp))
553 != CODE_FOR_nothing))
554 {
555 rtx word_to = gen_reg_rtx (word_mode);
556 if (REG_P (to))
557 {
558 if (reg_overlap_mentioned_p (to, from))
559 from = force_reg (from_mode, from);
560 emit_clobber (to);
561 }
562 convert_move (word_to, from, unsignedp);
563 emit_unop_insn (code, to, word_to, equiv_code);
564 return;
565 }
566
567 /* No special multiword conversion insn; do it by hand. */
568 start_sequence ();
569
570 /* Since we will turn this into a no conflict block, we must ensure
571 that the source does not overlap the target. */
572
573 if (reg_overlap_mentioned_p (to, from))
574 from = force_reg (from_mode, from);
575
576 /* Get a copy of FROM widened to a word, if necessary. */
577 if (GET_MODE_BITSIZE (from_mode) < BITS_PER_WORD)
578 lowpart_mode = word_mode;
579 else
580 lowpart_mode = from_mode;
581
582 lowfrom = convert_to_mode (lowpart_mode, from, unsignedp);
583
584 lowpart = gen_lowpart (lowpart_mode, to);
585 emit_move_insn (lowpart, lowfrom);
586
587 /* Compute the value to put in each remaining word. */
588 if (unsignedp)
589 fill_value = const0_rtx;
590 else
591 {
592 #ifdef HAVE_slt
593 if (HAVE_slt
594 && insn_data[(int) CODE_FOR_slt].operand[0].mode == word_mode
595 && STORE_FLAG_VALUE == -1)
596 {
597 emit_cmp_insn (lowfrom, const0_rtx, NE, NULL_RTX,
598 lowpart_mode, 0);
599 fill_value = gen_reg_rtx (word_mode);
600 emit_insn (gen_slt (fill_value));
601 }
602 else
603 #endif
604 {
605 fill_value
606 = expand_shift (RSHIFT_EXPR, lowpart_mode, lowfrom,
607 size_int (GET_MODE_BITSIZE (lowpart_mode) - 1),
608 NULL_RTX, 0);
609 fill_value = convert_to_mode (word_mode, fill_value, 1);
610 }
611 }
612
613 /* Fill the remaining words. */
614 for (i = GET_MODE_SIZE (lowpart_mode) / UNITS_PER_WORD; i < nwords; i++)
615 {
616 int index = (WORDS_BIG_ENDIAN ? nwords - i - 1 : i);
617 rtx subword = operand_subword (to, index, 1, to_mode);
618
619 gcc_assert (subword);
620
621 if (fill_value != subword)
622 emit_move_insn (subword, fill_value);
623 }
624
625 insns = get_insns ();
626 end_sequence ();
627
628 emit_insn (insns);
629 return;
630 }
631
632 /* Truncating multi-word to a word or less. */
633 if (GET_MODE_BITSIZE (from_mode) > BITS_PER_WORD
634 && GET_MODE_BITSIZE (to_mode) <= BITS_PER_WORD)
635 {
636 if (!((MEM_P (from)
637 && ! MEM_VOLATILE_P (from)
638 && direct_load[(int) to_mode]
639 && ! mode_dependent_address_p (XEXP (from, 0)))
640 || REG_P (from)
641 || GET_CODE (from) == SUBREG))
642 from = force_reg (from_mode, from);
643 convert_move (to, gen_lowpart (word_mode, from), 0);
644 return;
645 }
646
647 /* Now follow all the conversions between integers
648 no more than a word long. */
649
650 /* For truncation, usually we can just refer to FROM in a narrower mode. */
651 if (GET_MODE_BITSIZE (to_mode) < GET_MODE_BITSIZE (from_mode)
652 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (to_mode),
653 GET_MODE_BITSIZE (from_mode)))
654 {
655 if (!((MEM_P (from)
656 && ! MEM_VOLATILE_P (from)
657 && direct_load[(int) to_mode]
658 && ! mode_dependent_address_p (XEXP (from, 0)))
659 || REG_P (from)
660 || GET_CODE (from) == SUBREG))
661 from = force_reg (from_mode, from);
662 if (REG_P (from) && REGNO (from) < FIRST_PSEUDO_REGISTER
663 && ! HARD_REGNO_MODE_OK (REGNO (from), to_mode))
664 from = copy_to_reg (from);
665 emit_move_insn (to, gen_lowpart (to_mode, from));
666 return;
667 }
668
669 /* Handle extension. */
670 if (GET_MODE_BITSIZE (to_mode) > GET_MODE_BITSIZE (from_mode))
671 {
672 /* Convert directly if that works. */
673 if ((code = can_extend_p (to_mode, from_mode, unsignedp))
674 != CODE_FOR_nothing)
675 {
676 emit_unop_insn (code, to, from, equiv_code);
677 return;
678 }
679 else
680 {
681 enum machine_mode intermediate;
682 rtx tmp;
683 tree shift_amount;
684
685 /* Search for a mode to convert via. */
686 for (intermediate = from_mode; intermediate != VOIDmode;
687 intermediate = GET_MODE_WIDER_MODE (intermediate))
688 if (((can_extend_p (to_mode, intermediate, unsignedp)
689 != CODE_FOR_nothing)
690 || (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (intermediate)
691 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (to_mode),
692 GET_MODE_BITSIZE (intermediate))))
693 && (can_extend_p (intermediate, from_mode, unsignedp)
694 != CODE_FOR_nothing))
695 {
696 convert_move (to, convert_to_mode (intermediate, from,
697 unsignedp), unsignedp);
698 return;
699 }
700
701 /* No suitable intermediate mode.
702 Generate what we need with shifts. */
703 shift_amount = build_int_cst (NULL_TREE,
704 GET_MODE_BITSIZE (to_mode)
705 - GET_MODE_BITSIZE (from_mode));
706 from = gen_lowpart (to_mode, force_reg (from_mode, from));
707 tmp = expand_shift (LSHIFT_EXPR, to_mode, from, shift_amount,
708 to, unsignedp);
709 tmp = expand_shift (RSHIFT_EXPR, to_mode, tmp, shift_amount,
710 to, unsignedp);
711 if (tmp != to)
712 emit_move_insn (to, tmp);
713 return;
714 }
715 }
716
717 /* Support special truncate insns for certain modes. */
718 if (convert_optab_handler (trunc_optab, to_mode, from_mode)->insn_code != CODE_FOR_nothing)
719 {
720 emit_unop_insn (convert_optab_handler (trunc_optab, to_mode, from_mode)->insn_code,
721 to, from, UNKNOWN);
722 return;
723 }
724
725 /* Handle truncation of volatile memrefs, and so on;
726 the things that couldn't be truncated directly,
727 and for which there was no special instruction.
728
729 ??? Code above formerly short-circuited this, for most integer
730 mode pairs, with a force_reg in from_mode followed by a recursive
731 call to this routine. Appears always to have been wrong. */
732 if (GET_MODE_BITSIZE (to_mode) < GET_MODE_BITSIZE (from_mode))
733 {
734 rtx temp = force_reg (to_mode, gen_lowpart (to_mode, from));
735 emit_move_insn (to, temp);
736 return;
737 }
738
739 /* Mode combination is not recognized. */
740 gcc_unreachable ();
741 }
742
743 /* Return an rtx for a value that would result
744 from converting X to mode MODE.
745 Both X and MODE may be floating, or both integer.
746 UNSIGNEDP is nonzero if X is an unsigned value.
747 This can be done by referring to a part of X in place
748 or by copying to a new temporary with conversion. */
749
750 rtx
751 convert_to_mode (enum machine_mode mode, rtx x, int unsignedp)
752 {
753 return convert_modes (mode, VOIDmode, x, unsignedp);
754 }
755
756 /* Return an rtx for a value that would result
757 from converting X from mode OLDMODE to mode MODE.
758 Both modes may be floating, or both integer.
759 UNSIGNEDP is nonzero if X is an unsigned value.
760
761 This can be done by referring to a part of X in place
762 or by copying to a new temporary with conversion.
763
764 You can give VOIDmode for OLDMODE, if you are sure X has a nonvoid mode. */
765
766 rtx
767 convert_modes (enum machine_mode mode, enum machine_mode oldmode, rtx x, int unsignedp)
768 {
769 rtx temp;
770
771 /* If FROM is a SUBREG that indicates that we have already done at least
772 the required extension, strip it. */
773
774 if (GET_CODE (x) == SUBREG && SUBREG_PROMOTED_VAR_P (x)
775 && GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))) >= GET_MODE_SIZE (mode)
776 && SUBREG_PROMOTED_UNSIGNED_P (x) == unsignedp)
777 x = gen_lowpart (mode, x);
778
779 if (GET_MODE (x) != VOIDmode)
780 oldmode = GET_MODE (x);
781
782 if (mode == oldmode)
783 return x;
784
785 /* There is one case that we must handle specially: If we are converting
786 a CONST_INT into a mode whose size is twice HOST_BITS_PER_WIDE_INT and
787 we are to interpret the constant as unsigned, gen_lowpart will do
788 the wrong if the constant appears negative. What we want to do is
789 make the high-order word of the constant zero, not all ones. */
790
791 if (unsignedp && GET_MODE_CLASS (mode) == MODE_INT
792 && GET_MODE_BITSIZE (mode) == 2 * HOST_BITS_PER_WIDE_INT
793 && GET_CODE (x) == CONST_INT && INTVAL (x) < 0)
794 {
795 HOST_WIDE_INT val = INTVAL (x);
796
797 if (oldmode != VOIDmode
798 && HOST_BITS_PER_WIDE_INT > GET_MODE_BITSIZE (oldmode))
799 {
800 int width = GET_MODE_BITSIZE (oldmode);
801
802 /* We need to zero extend VAL. */
803 val &= ((HOST_WIDE_INT) 1 << width) - 1;
804 }
805
806 return immed_double_const (val, (HOST_WIDE_INT) 0, mode);
807 }
808
809 /* We can do this with a gen_lowpart if both desired and current modes
810 are integer, and this is either a constant integer, a register, or a
811 non-volatile MEM. Except for the constant case where MODE is no
812 wider than HOST_BITS_PER_WIDE_INT, we must be narrowing the operand. */
813
814 if ((GET_CODE (x) == CONST_INT
815 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
816 || (GET_MODE_CLASS (mode) == MODE_INT
817 && GET_MODE_CLASS (oldmode) == MODE_INT
818 && (GET_CODE (x) == CONST_DOUBLE
819 || (GET_MODE_SIZE (mode) <= GET_MODE_SIZE (oldmode)
820 && ((MEM_P (x) && ! MEM_VOLATILE_P (x)
821 && direct_load[(int) mode])
822 || (REG_P (x)
823 && (! HARD_REGISTER_P (x)
824 || HARD_REGNO_MODE_OK (REGNO (x), mode))
825 && TRULY_NOOP_TRUNCATION (GET_MODE_BITSIZE (mode),
826 GET_MODE_BITSIZE (GET_MODE (x)))))))))
827 {
828 /* ?? If we don't know OLDMODE, we have to assume here that
829 X does not need sign- or zero-extension. This may not be
830 the case, but it's the best we can do. */
831 if (GET_CODE (x) == CONST_INT && oldmode != VOIDmode
832 && GET_MODE_SIZE (mode) > GET_MODE_SIZE (oldmode))
833 {
834 HOST_WIDE_INT val = INTVAL (x);
835 int width = GET_MODE_BITSIZE (oldmode);
836
837 /* We must sign or zero-extend in this case. Start by
838 zero-extending, then sign extend if we need to. */
839 val &= ((HOST_WIDE_INT) 1 << width) - 1;
840 if (! unsignedp
841 && (val & ((HOST_WIDE_INT) 1 << (width - 1))))
842 val |= (HOST_WIDE_INT) (-1) << width;
843
844 return gen_int_mode (val, mode);
845 }
846
847 return gen_lowpart (mode, x);
848 }
849
850 /* Converting from integer constant into mode is always equivalent to an
851 subreg operation. */
852 if (VECTOR_MODE_P (mode) && GET_MODE (x) == VOIDmode)
853 {
854 gcc_assert (GET_MODE_BITSIZE (mode) == GET_MODE_BITSIZE (oldmode));
855 return simplify_gen_subreg (mode, x, oldmode, 0);
856 }
857
858 temp = gen_reg_rtx (mode);
859 convert_move (temp, x, unsignedp);
860 return temp;
861 }
862
863 /* STORE_MAX_PIECES is the number of bytes at a time that we can
864 store efficiently. Due to internal GCC limitations, this is
865 MOVE_MAX_PIECES limited by the number of bytes GCC can represent
866 for an immediate constant. */
867
868 #define STORE_MAX_PIECES MIN (MOVE_MAX_PIECES, 2 * sizeof (HOST_WIDE_INT))
869
870 /* Determine whether the LEN bytes can be moved by using several move
871 instructions. Return nonzero if a call to move_by_pieces should
872 succeed. */
873
874 int
875 can_move_by_pieces (unsigned HOST_WIDE_INT len,
876 unsigned int align ATTRIBUTE_UNUSED)
877 {
878 return MOVE_BY_PIECES_P (len, align);
879 }
880
881 /* Generate several move instructions to copy LEN bytes from block FROM to
882 block TO. (These are MEM rtx's with BLKmode).
883
884 If PUSH_ROUNDING is defined and TO is NULL, emit_single_push_insn is
885 used to push FROM to the stack.
886
887 ALIGN is maximum stack alignment we can assume.
888
889 If ENDP is 0 return to, if ENDP is 1 return memory at the end ala
890 mempcpy, and if ENDP is 2 return memory the end minus one byte ala
891 stpcpy. */
892
893 rtx
894 move_by_pieces (rtx to, rtx from, unsigned HOST_WIDE_INT len,
895 unsigned int align, int endp)
896 {
897 struct move_by_pieces data;
898 rtx to_addr, from_addr = XEXP (from, 0);
899 unsigned int max_size = MOVE_MAX_PIECES + 1;
900 enum machine_mode mode = VOIDmode, tmode;
901 enum insn_code icode;
902
903 align = MIN (to ? MEM_ALIGN (to) : align, MEM_ALIGN (from));
904
905 data.offset = 0;
906 data.from_addr = from_addr;
907 if (to)
908 {
909 to_addr = XEXP (to, 0);
910 data.to = to;
911 data.autinc_to
912 = (GET_CODE (to_addr) == PRE_INC || GET_CODE (to_addr) == PRE_DEC
913 || GET_CODE (to_addr) == POST_INC || GET_CODE (to_addr) == POST_DEC);
914 data.reverse
915 = (GET_CODE (to_addr) == PRE_DEC || GET_CODE (to_addr) == POST_DEC);
916 }
917 else
918 {
919 to_addr = NULL_RTX;
920 data.to = NULL_RTX;
921 data.autinc_to = 1;
922 #ifdef STACK_GROWS_DOWNWARD
923 data.reverse = 1;
924 #else
925 data.reverse = 0;
926 #endif
927 }
928 data.to_addr = to_addr;
929 data.from = from;
930 data.autinc_from
931 = (GET_CODE (from_addr) == PRE_INC || GET_CODE (from_addr) == PRE_DEC
932 || GET_CODE (from_addr) == POST_INC
933 || GET_CODE (from_addr) == POST_DEC);
934
935 data.explicit_inc_from = 0;
936 data.explicit_inc_to = 0;
937 if (data.reverse) data.offset = len;
938 data.len = len;
939
940 /* If copying requires more than two move insns,
941 copy addresses to registers (to make displacements shorter)
942 and use post-increment if available. */
943 if (!(data.autinc_from && data.autinc_to)
944 && move_by_pieces_ninsns (len, align, max_size) > 2)
945 {
946 /* Find the mode of the largest move... */
947 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
948 tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
949 if (GET_MODE_SIZE (tmode) < max_size)
950 mode = tmode;
951
952 if (USE_LOAD_PRE_DECREMENT (mode) && data.reverse && ! data.autinc_from)
953 {
954 data.from_addr = copy_addr_to_reg (plus_constant (from_addr, len));
955 data.autinc_from = 1;
956 data.explicit_inc_from = -1;
957 }
958 if (USE_LOAD_POST_INCREMENT (mode) && ! data.autinc_from)
959 {
960 data.from_addr = copy_addr_to_reg (from_addr);
961 data.autinc_from = 1;
962 data.explicit_inc_from = 1;
963 }
964 if (!data.autinc_from && CONSTANT_P (from_addr))
965 data.from_addr = copy_addr_to_reg (from_addr);
966 if (USE_STORE_PRE_DECREMENT (mode) && data.reverse && ! data.autinc_to)
967 {
968 data.to_addr = copy_addr_to_reg (plus_constant (to_addr, len));
969 data.autinc_to = 1;
970 data.explicit_inc_to = -1;
971 }
972 if (USE_STORE_POST_INCREMENT (mode) && ! data.reverse && ! data.autinc_to)
973 {
974 data.to_addr = copy_addr_to_reg (to_addr);
975 data.autinc_to = 1;
976 data.explicit_inc_to = 1;
977 }
978 if (!data.autinc_to && CONSTANT_P (to_addr))
979 data.to_addr = copy_addr_to_reg (to_addr);
980 }
981
982 tmode = mode_for_size (MOVE_MAX_PIECES * BITS_PER_UNIT, MODE_INT, 1);
983 if (align >= GET_MODE_ALIGNMENT (tmode))
984 align = GET_MODE_ALIGNMENT (tmode);
985 else
986 {
987 enum machine_mode xmode;
988
989 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT), xmode = tmode;
990 tmode != VOIDmode;
991 xmode = tmode, tmode = GET_MODE_WIDER_MODE (tmode))
992 if (GET_MODE_SIZE (tmode) > MOVE_MAX_PIECES
993 || SLOW_UNALIGNED_ACCESS (tmode, align))
994 break;
995
996 align = MAX (align, GET_MODE_ALIGNMENT (xmode));
997 }
998
999 /* First move what we can in the largest integer mode, then go to
1000 successively smaller modes. */
1001
1002 while (max_size > 1)
1003 {
1004 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
1005 tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
1006 if (GET_MODE_SIZE (tmode) < max_size)
1007 mode = tmode;
1008
1009 if (mode == VOIDmode)
1010 break;
1011
1012 icode = optab_handler (mov_optab, mode)->insn_code;
1013 if (icode != CODE_FOR_nothing && align >= GET_MODE_ALIGNMENT (mode))
1014 move_by_pieces_1 (GEN_FCN (icode), mode, &data);
1015
1016 max_size = GET_MODE_SIZE (mode);
1017 }
1018
1019 /* The code above should have handled everything. */
1020 gcc_assert (!data.len);
1021
1022 if (endp)
1023 {
1024 rtx to1;
1025
1026 gcc_assert (!data.reverse);
1027 if (data.autinc_to)
1028 {
1029 if (endp == 2)
1030 {
1031 if (HAVE_POST_INCREMENT && data.explicit_inc_to > 0)
1032 emit_insn (gen_add2_insn (data.to_addr, constm1_rtx));
1033 else
1034 data.to_addr = copy_addr_to_reg (plus_constant (data.to_addr,
1035 -1));
1036 }
1037 to1 = adjust_automodify_address (data.to, QImode, data.to_addr,
1038 data.offset);
1039 }
1040 else
1041 {
1042 if (endp == 2)
1043 --data.offset;
1044 to1 = adjust_address (data.to, QImode, data.offset);
1045 }
1046 return to1;
1047 }
1048 else
1049 return data.to;
1050 }
1051
1052 /* Return number of insns required to move L bytes by pieces.
1053 ALIGN (in bits) is maximum alignment we can assume. */
1054
1055 static unsigned HOST_WIDE_INT
1056 move_by_pieces_ninsns (unsigned HOST_WIDE_INT l, unsigned int align,
1057 unsigned int max_size)
1058 {
1059 unsigned HOST_WIDE_INT n_insns = 0;
1060 enum machine_mode tmode;
1061
1062 tmode = mode_for_size (MOVE_MAX_PIECES * BITS_PER_UNIT, MODE_INT, 1);
1063 if (align >= GET_MODE_ALIGNMENT (tmode))
1064 align = GET_MODE_ALIGNMENT (tmode);
1065 else
1066 {
1067 enum machine_mode tmode, xmode;
1068
1069 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT), xmode = tmode;
1070 tmode != VOIDmode;
1071 xmode = tmode, tmode = GET_MODE_WIDER_MODE (tmode))
1072 if (GET_MODE_SIZE (tmode) > MOVE_MAX_PIECES
1073 || SLOW_UNALIGNED_ACCESS (tmode, align))
1074 break;
1075
1076 align = MAX (align, GET_MODE_ALIGNMENT (xmode));
1077 }
1078
1079 while (max_size > 1)
1080 {
1081 enum machine_mode mode = VOIDmode;
1082 enum insn_code icode;
1083
1084 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
1085 tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
1086 if (GET_MODE_SIZE (tmode) < max_size)
1087 mode = tmode;
1088
1089 if (mode == VOIDmode)
1090 break;
1091
1092 icode = optab_handler (mov_optab, mode)->insn_code;
1093 if (icode != CODE_FOR_nothing && align >= GET_MODE_ALIGNMENT (mode))
1094 n_insns += l / GET_MODE_SIZE (mode), l %= GET_MODE_SIZE (mode);
1095
1096 max_size = GET_MODE_SIZE (mode);
1097 }
1098
1099 gcc_assert (!l);
1100 return n_insns;
1101 }
1102
1103 /* Subroutine of move_by_pieces. Move as many bytes as appropriate
1104 with move instructions for mode MODE. GENFUN is the gen_... function
1105 to make a move insn for that mode. DATA has all the other info. */
1106
1107 static void
1108 move_by_pieces_1 (rtx (*genfun) (rtx, ...), enum machine_mode mode,
1109 struct move_by_pieces *data)
1110 {
1111 unsigned int size = GET_MODE_SIZE (mode);
1112 rtx to1 = NULL_RTX, from1;
1113
1114 while (data->len >= size)
1115 {
1116 if (data->reverse)
1117 data->offset -= size;
1118
1119 if (data->to)
1120 {
1121 if (data->autinc_to)
1122 to1 = adjust_automodify_address (data->to, mode, data->to_addr,
1123 data->offset);
1124 else
1125 to1 = adjust_address (data->to, mode, data->offset);
1126 }
1127
1128 if (data->autinc_from)
1129 from1 = adjust_automodify_address (data->from, mode, data->from_addr,
1130 data->offset);
1131 else
1132 from1 = adjust_address (data->from, mode, data->offset);
1133
1134 if (HAVE_PRE_DECREMENT && data->explicit_inc_to < 0)
1135 emit_insn (gen_add2_insn (data->to_addr,
1136 GEN_INT (-(HOST_WIDE_INT)size)));
1137 if (HAVE_PRE_DECREMENT && data->explicit_inc_from < 0)
1138 emit_insn (gen_add2_insn (data->from_addr,
1139 GEN_INT (-(HOST_WIDE_INT)size)));
1140
1141 if (data->to)
1142 emit_insn ((*genfun) (to1, from1));
1143 else
1144 {
1145 #ifdef PUSH_ROUNDING
1146 emit_single_push_insn (mode, from1, NULL);
1147 #else
1148 gcc_unreachable ();
1149 #endif
1150 }
1151
1152 if (HAVE_POST_INCREMENT && data->explicit_inc_to > 0)
1153 emit_insn (gen_add2_insn (data->to_addr, GEN_INT (size)));
1154 if (HAVE_POST_INCREMENT && data->explicit_inc_from > 0)
1155 emit_insn (gen_add2_insn (data->from_addr, GEN_INT (size)));
1156
1157 if (! data->reverse)
1158 data->offset += size;
1159
1160 data->len -= size;
1161 }
1162 }
1163
1164 /* Emit code to move a block Y to a block X. This may be done with
1165 string-move instructions, with multiple scalar move instructions,
1166 or with a library call.
1167
1168 Both X and Y must be MEM rtx's (perhaps inside VOLATILE) with mode BLKmode.
1169 SIZE is an rtx that says how long they are.
1170 ALIGN is the maximum alignment we can assume they have.
1171 METHOD describes what kind of copy this is, and what mechanisms may be used.
1172
1173 Return the address of the new block, if memcpy is called and returns it,
1174 0 otherwise. */
1175
1176 rtx
1177 emit_block_move_hints (rtx x, rtx y, rtx size, enum block_op_methods method,
1178 unsigned int expected_align, HOST_WIDE_INT expected_size)
1179 {
1180 bool may_use_call;
1181 rtx retval = 0;
1182 unsigned int align;
1183
1184 switch (method)
1185 {
1186 case BLOCK_OP_NORMAL:
1187 case BLOCK_OP_TAILCALL:
1188 may_use_call = true;
1189 break;
1190
1191 case BLOCK_OP_CALL_PARM:
1192 may_use_call = block_move_libcall_safe_for_call_parm ();
1193
1194 /* Make inhibit_defer_pop nonzero around the library call
1195 to force it to pop the arguments right away. */
1196 NO_DEFER_POP;
1197 break;
1198
1199 case BLOCK_OP_NO_LIBCALL:
1200 may_use_call = false;
1201 break;
1202
1203 default:
1204 gcc_unreachable ();
1205 }
1206
1207 align = MIN (MEM_ALIGN (x), MEM_ALIGN (y));
1208
1209 gcc_assert (MEM_P (x));
1210 gcc_assert (MEM_P (y));
1211 gcc_assert (size);
1212
1213 /* Make sure we've got BLKmode addresses; store_one_arg can decide that
1214 block copy is more efficient for other large modes, e.g. DCmode. */
1215 x = adjust_address (x, BLKmode, 0);
1216 y = adjust_address (y, BLKmode, 0);
1217
1218 /* Set MEM_SIZE as appropriate for this block copy. The main place this
1219 can be incorrect is coming from __builtin_memcpy. */
1220 if (GET_CODE (size) == CONST_INT)
1221 {
1222 if (INTVAL (size) == 0)
1223 return 0;
1224
1225 x = shallow_copy_rtx (x);
1226 y = shallow_copy_rtx (y);
1227 set_mem_size (x, size);
1228 set_mem_size (y, size);
1229 }
1230
1231 if (GET_CODE (size) == CONST_INT && MOVE_BY_PIECES_P (INTVAL (size), align))
1232 move_by_pieces (x, y, INTVAL (size), align, 0);
1233 else if (emit_block_move_via_movmem (x, y, size, align,
1234 expected_align, expected_size))
1235 ;
1236 else if (may_use_call)
1237 retval = emit_block_move_via_libcall (x, y, size,
1238 method == BLOCK_OP_TAILCALL);
1239 else
1240 emit_block_move_via_loop (x, y, size, align);
1241
1242 if (method == BLOCK_OP_CALL_PARM)
1243 OK_DEFER_POP;
1244
1245 return retval;
1246 }
1247
1248 rtx
1249 emit_block_move (rtx x, rtx y, rtx size, enum block_op_methods method)
1250 {
1251 return emit_block_move_hints (x, y, size, method, 0, -1);
1252 }
1253
1254 /* A subroutine of emit_block_move. Returns true if calling the
1255 block move libcall will not clobber any parameters which may have
1256 already been placed on the stack. */
1257
1258 static bool
1259 block_move_libcall_safe_for_call_parm (void)
1260 {
1261 #if defined (REG_PARM_STACK_SPACE)
1262 tree fn;
1263 #endif
1264
1265 /* If arguments are pushed on the stack, then they're safe. */
1266 if (PUSH_ARGS)
1267 return true;
1268
1269 /* If registers go on the stack anyway, any argument is sure to clobber
1270 an outgoing argument. */
1271 #if defined (REG_PARM_STACK_SPACE)
1272 fn = emit_block_move_libcall_fn (false);
1273 if (OUTGOING_REG_PARM_STACK_SPACE ((!fn ? NULL_TREE : TREE_TYPE (fn)))
1274 && REG_PARM_STACK_SPACE (fn) != 0)
1275 return false;
1276 #endif
1277
1278 /* If any argument goes in memory, then it might clobber an outgoing
1279 argument. */
1280 {
1281 CUMULATIVE_ARGS args_so_far;
1282 tree fn, arg;
1283
1284 fn = emit_block_move_libcall_fn (false);
1285 INIT_CUMULATIVE_ARGS (args_so_far, TREE_TYPE (fn), NULL_RTX, 0, 3);
1286
1287 arg = TYPE_ARG_TYPES (TREE_TYPE (fn));
1288 for ( ; arg != void_list_node ; arg = TREE_CHAIN (arg))
1289 {
1290 enum machine_mode mode = TYPE_MODE (TREE_VALUE (arg));
1291 rtx tmp = FUNCTION_ARG (args_so_far, mode, NULL_TREE, 1);
1292 if (!tmp || !REG_P (tmp))
1293 return false;
1294 if (targetm.calls.arg_partial_bytes (&args_so_far, mode, NULL, 1))
1295 return false;
1296 FUNCTION_ARG_ADVANCE (args_so_far, mode, NULL_TREE, 1);
1297 }
1298 }
1299 return true;
1300 }
1301
1302 /* A subroutine of emit_block_move. Expand a movmem pattern;
1303 return true if successful. */
1304
1305 static bool
1306 emit_block_move_via_movmem (rtx x, rtx y, rtx size, unsigned int align,
1307 unsigned int expected_align, HOST_WIDE_INT expected_size)
1308 {
1309 rtx opalign = GEN_INT (align / BITS_PER_UNIT);
1310 int save_volatile_ok = volatile_ok;
1311 enum machine_mode mode;
1312
1313 if (expected_align < align)
1314 expected_align = align;
1315
1316 /* Since this is a move insn, we don't care about volatility. */
1317 volatile_ok = 1;
1318
1319 /* Try the most limited insn first, because there's no point
1320 including more than one in the machine description unless
1321 the more limited one has some advantage. */
1322
1323 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
1324 mode = GET_MODE_WIDER_MODE (mode))
1325 {
1326 enum insn_code code = movmem_optab[(int) mode];
1327 insn_operand_predicate_fn pred;
1328
1329 if (code != CODE_FOR_nothing
1330 /* We don't need MODE to be narrower than BITS_PER_HOST_WIDE_INT
1331 here because if SIZE is less than the mode mask, as it is
1332 returned by the macro, it will definitely be less than the
1333 actual mode mask. */
1334 && ((GET_CODE (size) == CONST_INT
1335 && ((unsigned HOST_WIDE_INT) INTVAL (size)
1336 <= (GET_MODE_MASK (mode) >> 1)))
1337 || GET_MODE_BITSIZE (mode) >= BITS_PER_WORD)
1338 && ((pred = insn_data[(int) code].operand[0].predicate) == 0
1339 || (*pred) (x, BLKmode))
1340 && ((pred = insn_data[(int) code].operand[1].predicate) == 0
1341 || (*pred) (y, BLKmode))
1342 && ((pred = insn_data[(int) code].operand[3].predicate) == 0
1343 || (*pred) (opalign, VOIDmode)))
1344 {
1345 rtx op2;
1346 rtx last = get_last_insn ();
1347 rtx pat;
1348
1349 op2 = convert_to_mode (mode, size, 1);
1350 pred = insn_data[(int) code].operand[2].predicate;
1351 if (pred != 0 && ! (*pred) (op2, mode))
1352 op2 = copy_to_mode_reg (mode, op2);
1353
1354 /* ??? When called via emit_block_move_for_call, it'd be
1355 nice if there were some way to inform the backend, so
1356 that it doesn't fail the expansion because it thinks
1357 emitting the libcall would be more efficient. */
1358
1359 if (insn_data[(int) code].n_operands == 4)
1360 pat = GEN_FCN ((int) code) (x, y, op2, opalign);
1361 else
1362 pat = GEN_FCN ((int) code) (x, y, op2, opalign,
1363 GEN_INT (expected_align
1364 / BITS_PER_UNIT),
1365 GEN_INT (expected_size));
1366 if (pat)
1367 {
1368 emit_insn (pat);
1369 volatile_ok = save_volatile_ok;
1370 return true;
1371 }
1372 else
1373 delete_insns_since (last);
1374 }
1375 }
1376
1377 volatile_ok = save_volatile_ok;
1378 return false;
1379 }
1380
1381 /* A subroutine of emit_block_move. Expand a call to memcpy.
1382 Return the return value from memcpy, 0 otherwise. */
1383
1384 rtx
1385 emit_block_move_via_libcall (rtx dst, rtx src, rtx size, bool tailcall)
1386 {
1387 rtx dst_addr, src_addr;
1388 tree call_expr, fn, src_tree, dst_tree, size_tree;
1389 enum machine_mode size_mode;
1390 rtx retval;
1391
1392 /* Emit code to copy the addresses of DST and SRC and SIZE into new
1393 pseudos. We can then place those new pseudos into a VAR_DECL and
1394 use them later. */
1395
1396 dst_addr = copy_to_mode_reg (Pmode, XEXP (dst, 0));
1397 src_addr = copy_to_mode_reg (Pmode, XEXP (src, 0));
1398
1399 dst_addr = convert_memory_address (ptr_mode, dst_addr);
1400 src_addr = convert_memory_address (ptr_mode, src_addr);
1401
1402 dst_tree = make_tree (ptr_type_node, dst_addr);
1403 src_tree = make_tree (ptr_type_node, src_addr);
1404
1405 size_mode = TYPE_MODE (sizetype);
1406
1407 size = convert_to_mode (size_mode, size, 1);
1408 size = copy_to_mode_reg (size_mode, size);
1409
1410 /* It is incorrect to use the libcall calling conventions to call
1411 memcpy in this context. This could be a user call to memcpy and
1412 the user may wish to examine the return value from memcpy. For
1413 targets where libcalls and normal calls have different conventions
1414 for returning pointers, we could end up generating incorrect code. */
1415
1416 size_tree = make_tree (sizetype, size);
1417
1418 fn = emit_block_move_libcall_fn (true);
1419 call_expr = build_call_expr (fn, 3, dst_tree, src_tree, size_tree);
1420 CALL_EXPR_TAILCALL (call_expr) = tailcall;
1421
1422 retval = expand_normal (call_expr);
1423
1424 return retval;
1425 }
1426
1427 /* A subroutine of emit_block_move_via_libcall. Create the tree node
1428 for the function we use for block copies. The first time FOR_CALL
1429 is true, we call assemble_external. */
1430
1431 static GTY(()) tree block_move_fn;
1432
1433 void
1434 init_block_move_fn (const char *asmspec)
1435 {
1436 if (!block_move_fn)
1437 {
1438 tree args, fn;
1439
1440 fn = get_identifier ("memcpy");
1441 args = build_function_type_list (ptr_type_node, ptr_type_node,
1442 const_ptr_type_node, sizetype,
1443 NULL_TREE);
1444
1445 fn = build_decl (FUNCTION_DECL, fn, args);
1446 DECL_EXTERNAL (fn) = 1;
1447 TREE_PUBLIC (fn) = 1;
1448 DECL_ARTIFICIAL (fn) = 1;
1449 TREE_NOTHROW (fn) = 1;
1450 DECL_VISIBILITY (fn) = VISIBILITY_DEFAULT;
1451 DECL_VISIBILITY_SPECIFIED (fn) = 1;
1452
1453 block_move_fn = fn;
1454 }
1455
1456 if (asmspec)
1457 set_user_assembler_name (block_move_fn, asmspec);
1458 }
1459
1460 static tree
1461 emit_block_move_libcall_fn (int for_call)
1462 {
1463 static bool emitted_extern;
1464
1465 if (!block_move_fn)
1466 init_block_move_fn (NULL);
1467
1468 if (for_call && !emitted_extern)
1469 {
1470 emitted_extern = true;
1471 make_decl_rtl (block_move_fn);
1472 assemble_external (block_move_fn);
1473 }
1474
1475 return block_move_fn;
1476 }
1477
1478 /* A subroutine of emit_block_move. Copy the data via an explicit
1479 loop. This is used only when libcalls are forbidden. */
1480 /* ??? It'd be nice to copy in hunks larger than QImode. */
1481
1482 static void
1483 emit_block_move_via_loop (rtx x, rtx y, rtx size,
1484 unsigned int align ATTRIBUTE_UNUSED)
1485 {
1486 rtx cmp_label, top_label, iter, x_addr, y_addr, tmp;
1487 enum machine_mode iter_mode;
1488
1489 iter_mode = GET_MODE (size);
1490 if (iter_mode == VOIDmode)
1491 iter_mode = word_mode;
1492
1493 top_label = gen_label_rtx ();
1494 cmp_label = gen_label_rtx ();
1495 iter = gen_reg_rtx (iter_mode);
1496
1497 emit_move_insn (iter, const0_rtx);
1498
1499 x_addr = force_operand (XEXP (x, 0), NULL_RTX);
1500 y_addr = force_operand (XEXP (y, 0), NULL_RTX);
1501 do_pending_stack_adjust ();
1502
1503 emit_jump (cmp_label);
1504 emit_label (top_label);
1505
1506 tmp = convert_modes (Pmode, iter_mode, iter, true);
1507 x_addr = gen_rtx_PLUS (Pmode, x_addr, tmp);
1508 y_addr = gen_rtx_PLUS (Pmode, y_addr, tmp);
1509 x = change_address (x, QImode, x_addr);
1510 y = change_address (y, QImode, y_addr);
1511
1512 emit_move_insn (x, y);
1513
1514 tmp = expand_simple_binop (iter_mode, PLUS, iter, const1_rtx, iter,
1515 true, OPTAB_LIB_WIDEN);
1516 if (tmp != iter)
1517 emit_move_insn (iter, tmp);
1518
1519 emit_label (cmp_label);
1520
1521 emit_cmp_and_jump_insns (iter, size, LT, NULL_RTX, iter_mode,
1522 true, top_label);
1523 }
1524
1525 /* Copy all or part of a value X into registers starting at REGNO.
1526 The number of registers to be filled is NREGS. */
1527
1528 void
1529 move_block_to_reg (int regno, rtx x, int nregs, enum machine_mode mode)
1530 {
1531 int i;
1532 #ifdef HAVE_load_multiple
1533 rtx pat;
1534 rtx last;
1535 #endif
1536
1537 if (nregs == 0)
1538 return;
1539
1540 if (CONSTANT_P (x) && ! LEGITIMATE_CONSTANT_P (x))
1541 x = validize_mem (force_const_mem (mode, x));
1542
1543 /* See if the machine can do this with a load multiple insn. */
1544 #ifdef HAVE_load_multiple
1545 if (HAVE_load_multiple)
1546 {
1547 last = get_last_insn ();
1548 pat = gen_load_multiple (gen_rtx_REG (word_mode, regno), x,
1549 GEN_INT (nregs));
1550 if (pat)
1551 {
1552 emit_insn (pat);
1553 return;
1554 }
1555 else
1556 delete_insns_since (last);
1557 }
1558 #endif
1559
1560 for (i = 0; i < nregs; i++)
1561 emit_move_insn (gen_rtx_REG (word_mode, regno + i),
1562 operand_subword_force (x, i, mode));
1563 }
1564
1565 /* Copy all or part of a BLKmode value X out of registers starting at REGNO.
1566 The number of registers to be filled is NREGS. */
1567
1568 void
1569 move_block_from_reg (int regno, rtx x, int nregs)
1570 {
1571 int i;
1572
1573 if (nregs == 0)
1574 return;
1575
1576 /* See if the machine can do this with a store multiple insn. */
1577 #ifdef HAVE_store_multiple
1578 if (HAVE_store_multiple)
1579 {
1580 rtx last = get_last_insn ();
1581 rtx pat = gen_store_multiple (x, gen_rtx_REG (word_mode, regno),
1582 GEN_INT (nregs));
1583 if (pat)
1584 {
1585 emit_insn (pat);
1586 return;
1587 }
1588 else
1589 delete_insns_since (last);
1590 }
1591 #endif
1592
1593 for (i = 0; i < nregs; i++)
1594 {
1595 rtx tem = operand_subword (x, i, 1, BLKmode);
1596
1597 gcc_assert (tem);
1598
1599 emit_move_insn (tem, gen_rtx_REG (word_mode, regno + i));
1600 }
1601 }
1602
1603 /* Generate a PARALLEL rtx for a new non-consecutive group of registers from
1604 ORIG, where ORIG is a non-consecutive group of registers represented by
1605 a PARALLEL. The clone is identical to the original except in that the
1606 original set of registers is replaced by a new set of pseudo registers.
1607 The new set has the same modes as the original set. */
1608
1609 rtx
1610 gen_group_rtx (rtx orig)
1611 {
1612 int i, length;
1613 rtx *tmps;
1614
1615 gcc_assert (GET_CODE (orig) == PARALLEL);
1616
1617 length = XVECLEN (orig, 0);
1618 tmps = XALLOCAVEC (rtx, length);
1619
1620 /* Skip a NULL entry in first slot. */
1621 i = XEXP (XVECEXP (orig, 0, 0), 0) ? 0 : 1;
1622
1623 if (i)
1624 tmps[0] = 0;
1625
1626 for (; i < length; i++)
1627 {
1628 enum machine_mode mode = GET_MODE (XEXP (XVECEXP (orig, 0, i), 0));
1629 rtx offset = XEXP (XVECEXP (orig, 0, i), 1);
1630
1631 tmps[i] = gen_rtx_EXPR_LIST (VOIDmode, gen_reg_rtx (mode), offset);
1632 }
1633
1634 return gen_rtx_PARALLEL (GET_MODE (orig), gen_rtvec_v (length, tmps));
1635 }
1636
1637 /* A subroutine of emit_group_load. Arguments as for emit_group_load,
1638 except that values are placed in TMPS[i], and must later be moved
1639 into corresponding XEXP (XVECEXP (DST, 0, i), 0) element. */
1640
1641 static void
1642 emit_group_load_1 (rtx *tmps, rtx dst, rtx orig_src, tree type, int ssize)
1643 {
1644 rtx src;
1645 int start, i;
1646 enum machine_mode m = GET_MODE (orig_src);
1647
1648 gcc_assert (GET_CODE (dst) == PARALLEL);
1649
1650 if (m != VOIDmode
1651 && !SCALAR_INT_MODE_P (m)
1652 && !MEM_P (orig_src)
1653 && GET_CODE (orig_src) != CONCAT)
1654 {
1655 enum machine_mode imode = int_mode_for_mode (GET_MODE (orig_src));
1656 if (imode == BLKmode)
1657 src = assign_stack_temp (GET_MODE (orig_src), ssize, 0);
1658 else
1659 src = gen_reg_rtx (imode);
1660 if (imode != BLKmode)
1661 src = gen_lowpart (GET_MODE (orig_src), src);
1662 emit_move_insn (src, orig_src);
1663 /* ...and back again. */
1664 if (imode != BLKmode)
1665 src = gen_lowpart (imode, src);
1666 emit_group_load_1 (tmps, dst, src, type, ssize);
1667 return;
1668 }
1669
1670 /* Check for a NULL entry, used to indicate that the parameter goes
1671 both on the stack and in registers. */
1672 if (XEXP (XVECEXP (dst, 0, 0), 0))
1673 start = 0;
1674 else
1675 start = 1;
1676
1677 /* Process the pieces. */
1678 for (i = start; i < XVECLEN (dst, 0); i++)
1679 {
1680 enum machine_mode mode = GET_MODE (XEXP (XVECEXP (dst, 0, i), 0));
1681 HOST_WIDE_INT bytepos = INTVAL (XEXP (XVECEXP (dst, 0, i), 1));
1682 unsigned int bytelen = GET_MODE_SIZE (mode);
1683 int shift = 0;
1684
1685 /* Handle trailing fragments that run over the size of the struct. */
1686 if (ssize >= 0 && bytepos + (HOST_WIDE_INT) bytelen > ssize)
1687 {
1688 /* Arrange to shift the fragment to where it belongs.
1689 extract_bit_field loads to the lsb of the reg. */
1690 if (
1691 #ifdef BLOCK_REG_PADDING
1692 BLOCK_REG_PADDING (GET_MODE (orig_src), type, i == start)
1693 == (BYTES_BIG_ENDIAN ? upward : downward)
1694 #else
1695 BYTES_BIG_ENDIAN
1696 #endif
1697 )
1698 shift = (bytelen - (ssize - bytepos)) * BITS_PER_UNIT;
1699 bytelen = ssize - bytepos;
1700 gcc_assert (bytelen > 0);
1701 }
1702
1703 /* If we won't be loading directly from memory, protect the real source
1704 from strange tricks we might play; but make sure that the source can
1705 be loaded directly into the destination. */
1706 src = orig_src;
1707 if (!MEM_P (orig_src)
1708 && (!CONSTANT_P (orig_src)
1709 || (GET_MODE (orig_src) != mode
1710 && GET_MODE (orig_src) != VOIDmode)))
1711 {
1712 if (GET_MODE (orig_src) == VOIDmode)
1713 src = gen_reg_rtx (mode);
1714 else
1715 src = gen_reg_rtx (GET_MODE (orig_src));
1716
1717 emit_move_insn (src, orig_src);
1718 }
1719
1720 /* Optimize the access just a bit. */
1721 if (MEM_P (src)
1722 && (! SLOW_UNALIGNED_ACCESS (mode, MEM_ALIGN (src))
1723 || MEM_ALIGN (src) >= GET_MODE_ALIGNMENT (mode))
1724 && bytepos * BITS_PER_UNIT % GET_MODE_ALIGNMENT (mode) == 0
1725 && bytelen == GET_MODE_SIZE (mode))
1726 {
1727 tmps[i] = gen_reg_rtx (mode);
1728 emit_move_insn (tmps[i], adjust_address (src, mode, bytepos));
1729 }
1730 else if (COMPLEX_MODE_P (mode)
1731 && GET_MODE (src) == mode
1732 && bytelen == GET_MODE_SIZE (mode))
1733 /* Let emit_move_complex do the bulk of the work. */
1734 tmps[i] = src;
1735 else if (GET_CODE (src) == CONCAT)
1736 {
1737 unsigned int slen = GET_MODE_SIZE (GET_MODE (src));
1738 unsigned int slen0 = GET_MODE_SIZE (GET_MODE (XEXP (src, 0)));
1739
1740 if ((bytepos == 0 && bytelen == slen0)
1741 || (bytepos != 0 && bytepos + bytelen <= slen))
1742 {
1743 /* The following assumes that the concatenated objects all
1744 have the same size. In this case, a simple calculation
1745 can be used to determine the object and the bit field
1746 to be extracted. */
1747 tmps[i] = XEXP (src, bytepos / slen0);
1748 if (! CONSTANT_P (tmps[i])
1749 && (!REG_P (tmps[i]) || GET_MODE (tmps[i]) != mode))
1750 tmps[i] = extract_bit_field (tmps[i], bytelen * BITS_PER_UNIT,
1751 (bytepos % slen0) * BITS_PER_UNIT,
1752 1, NULL_RTX, mode, mode);
1753 }
1754 else
1755 {
1756 rtx mem;
1757
1758 gcc_assert (!bytepos);
1759 mem = assign_stack_temp (GET_MODE (src), slen, 0);
1760 emit_move_insn (mem, src);
1761 tmps[i] = extract_bit_field (mem, bytelen * BITS_PER_UNIT,
1762 0, 1, NULL_RTX, mode, mode);
1763 }
1764 }
1765 /* FIXME: A SIMD parallel will eventually lead to a subreg of a
1766 SIMD register, which is currently broken. While we get GCC
1767 to emit proper RTL for these cases, let's dump to memory. */
1768 else if (VECTOR_MODE_P (GET_MODE (dst))
1769 && REG_P (src))
1770 {
1771 int slen = GET_MODE_SIZE (GET_MODE (src));
1772 rtx mem;
1773
1774 mem = assign_stack_temp (GET_MODE (src), slen, 0);
1775 emit_move_insn (mem, src);
1776 tmps[i] = adjust_address (mem, mode, (int) bytepos);
1777 }
1778 else if (CONSTANT_P (src) && GET_MODE (dst) != BLKmode
1779 && XVECLEN (dst, 0) > 1)
1780 tmps[i] = simplify_gen_subreg (mode, src, GET_MODE(dst), bytepos);
1781 else if (CONSTANT_P (src))
1782 {
1783 HOST_WIDE_INT len = (HOST_WIDE_INT) bytelen;
1784
1785 if (len == ssize)
1786 tmps[i] = src;
1787 else
1788 {
1789 rtx first, second;
1790
1791 gcc_assert (2 * len == ssize);
1792 split_double (src, &first, &second);
1793 if (i)
1794 tmps[i] = second;
1795 else
1796 tmps[i] = first;
1797 }
1798 }
1799 else if (REG_P (src) && GET_MODE (src) == mode)
1800 tmps[i] = src;
1801 else
1802 tmps[i] = extract_bit_field (src, bytelen * BITS_PER_UNIT,
1803 bytepos * BITS_PER_UNIT, 1, NULL_RTX,
1804 mode, mode);
1805
1806 if (shift)
1807 tmps[i] = expand_shift (LSHIFT_EXPR, mode, tmps[i],
1808 build_int_cst (NULL_TREE, shift), tmps[i], 0);
1809 }
1810 }
1811
1812 /* Emit code to move a block SRC of type TYPE to a block DST,
1813 where DST is non-consecutive registers represented by a PARALLEL.
1814 SSIZE represents the total size of block ORIG_SRC in bytes, or -1
1815 if not known. */
1816
1817 void
1818 emit_group_load (rtx dst, rtx src, tree type, int ssize)
1819 {
1820 rtx *tmps;
1821 int i;
1822
1823 tmps = XALLOCAVEC (rtx, XVECLEN (dst, 0));
1824 emit_group_load_1 (tmps, dst, src, type, ssize);
1825
1826 /* Copy the extracted pieces into the proper (probable) hard regs. */
1827 for (i = 0; i < XVECLEN (dst, 0); i++)
1828 {
1829 rtx d = XEXP (XVECEXP (dst, 0, i), 0);
1830 if (d == NULL)
1831 continue;
1832 emit_move_insn (d, tmps[i]);
1833 }
1834 }
1835
1836 /* Similar, but load SRC into new pseudos in a format that looks like
1837 PARALLEL. This can later be fed to emit_group_move to get things
1838 in the right place. */
1839
1840 rtx
1841 emit_group_load_into_temps (rtx parallel, rtx src, tree type, int ssize)
1842 {
1843 rtvec vec;
1844 int i;
1845
1846 vec = rtvec_alloc (XVECLEN (parallel, 0));
1847 emit_group_load_1 (&RTVEC_ELT (vec, 0), parallel, src, type, ssize);
1848
1849 /* Convert the vector to look just like the original PARALLEL, except
1850 with the computed values. */
1851 for (i = 0; i < XVECLEN (parallel, 0); i++)
1852 {
1853 rtx e = XVECEXP (parallel, 0, i);
1854 rtx d = XEXP (e, 0);
1855
1856 if (d)
1857 {
1858 d = force_reg (GET_MODE (d), RTVEC_ELT (vec, i));
1859 e = alloc_EXPR_LIST (REG_NOTE_KIND (e), d, XEXP (e, 1));
1860 }
1861 RTVEC_ELT (vec, i) = e;
1862 }
1863
1864 return gen_rtx_PARALLEL (GET_MODE (parallel), vec);
1865 }
1866
1867 /* Emit code to move a block SRC to block DST, where SRC and DST are
1868 non-consecutive groups of registers, each represented by a PARALLEL. */
1869
1870 void
1871 emit_group_move (rtx dst, rtx src)
1872 {
1873 int i;
1874
1875 gcc_assert (GET_CODE (src) == PARALLEL
1876 && GET_CODE (dst) == PARALLEL
1877 && XVECLEN (src, 0) == XVECLEN (dst, 0));
1878
1879 /* Skip first entry if NULL. */
1880 for (i = XEXP (XVECEXP (src, 0, 0), 0) ? 0 : 1; i < XVECLEN (src, 0); i++)
1881 emit_move_insn (XEXP (XVECEXP (dst, 0, i), 0),
1882 XEXP (XVECEXP (src, 0, i), 0));
1883 }
1884
1885 /* Move a group of registers represented by a PARALLEL into pseudos. */
1886
1887 rtx
1888 emit_group_move_into_temps (rtx src)
1889 {
1890 rtvec vec = rtvec_alloc (XVECLEN (src, 0));
1891 int i;
1892
1893 for (i = 0; i < XVECLEN (src, 0); i++)
1894 {
1895 rtx e = XVECEXP (src, 0, i);
1896 rtx d = XEXP (e, 0);
1897
1898 if (d)
1899 e = alloc_EXPR_LIST (REG_NOTE_KIND (e), copy_to_reg (d), XEXP (e, 1));
1900 RTVEC_ELT (vec, i) = e;
1901 }
1902
1903 return gen_rtx_PARALLEL (GET_MODE (src), vec);
1904 }
1905
1906 /* Emit code to move a block SRC to a block ORIG_DST of type TYPE,
1907 where SRC is non-consecutive registers represented by a PARALLEL.
1908 SSIZE represents the total size of block ORIG_DST, or -1 if not
1909 known. */
1910
1911 void
1912 emit_group_store (rtx orig_dst, rtx src, tree type ATTRIBUTE_UNUSED, int ssize)
1913 {
1914 rtx *tmps, dst;
1915 int start, finish, i;
1916 enum machine_mode m = GET_MODE (orig_dst);
1917
1918 gcc_assert (GET_CODE (src) == PARALLEL);
1919
1920 if (!SCALAR_INT_MODE_P (m)
1921 && !MEM_P (orig_dst) && GET_CODE (orig_dst) != CONCAT)
1922 {
1923 enum machine_mode imode = int_mode_for_mode (GET_MODE (orig_dst));
1924 if (imode == BLKmode)
1925 dst = assign_stack_temp (GET_MODE (orig_dst), ssize, 0);
1926 else
1927 dst = gen_reg_rtx (imode);
1928 emit_group_store (dst, src, type, ssize);
1929 if (imode != BLKmode)
1930 dst = gen_lowpart (GET_MODE (orig_dst), dst);
1931 emit_move_insn (orig_dst, dst);
1932 return;
1933 }
1934
1935 /* Check for a NULL entry, used to indicate that the parameter goes
1936 both on the stack and in registers. */
1937 if (XEXP (XVECEXP (src, 0, 0), 0))
1938 start = 0;
1939 else
1940 start = 1;
1941 finish = XVECLEN (src, 0);
1942
1943 tmps = XALLOCAVEC (rtx, finish);
1944
1945 /* Copy the (probable) hard regs into pseudos. */
1946 for (i = start; i < finish; i++)
1947 {
1948 rtx reg = XEXP (XVECEXP (src, 0, i), 0);
1949 if (!REG_P (reg) || REGNO (reg) < FIRST_PSEUDO_REGISTER)
1950 {
1951 tmps[i] = gen_reg_rtx (GET_MODE (reg));
1952 emit_move_insn (tmps[i], reg);
1953 }
1954 else
1955 tmps[i] = reg;
1956 }
1957
1958 /* If we won't be storing directly into memory, protect the real destination
1959 from strange tricks we might play. */
1960 dst = orig_dst;
1961 if (GET_CODE (dst) == PARALLEL)
1962 {
1963 rtx temp;
1964
1965 /* We can get a PARALLEL dst if there is a conditional expression in
1966 a return statement. In that case, the dst and src are the same,
1967 so no action is necessary. */
1968 if (rtx_equal_p (dst, src))
1969 return;
1970
1971 /* It is unclear if we can ever reach here, but we may as well handle
1972 it. Allocate a temporary, and split this into a store/load to/from
1973 the temporary. */
1974
1975 temp = assign_stack_temp (GET_MODE (dst), ssize, 0);
1976 emit_group_store (temp, src, type, ssize);
1977 emit_group_load (dst, temp, type, ssize);
1978 return;
1979 }
1980 else if (!MEM_P (dst) && GET_CODE (dst) != CONCAT)
1981 {
1982 enum machine_mode outer = GET_MODE (dst);
1983 enum machine_mode inner;
1984 HOST_WIDE_INT bytepos;
1985 bool done = false;
1986 rtx temp;
1987
1988 if (!REG_P (dst) || REGNO (dst) < FIRST_PSEUDO_REGISTER)
1989 dst = gen_reg_rtx (outer);
1990
1991 /* Make life a bit easier for combine. */
1992 /* If the first element of the vector is the low part
1993 of the destination mode, use a paradoxical subreg to
1994 initialize the destination. */
1995 if (start < finish)
1996 {
1997 inner = GET_MODE (tmps[start]);
1998 bytepos = subreg_lowpart_offset (inner, outer);
1999 if (INTVAL (XEXP (XVECEXP (src, 0, start), 1)) == bytepos)
2000 {
2001 temp = simplify_gen_subreg (outer, tmps[start],
2002 inner, 0);
2003 if (temp)
2004 {
2005 emit_move_insn (dst, temp);
2006 done = true;
2007 start++;
2008 }
2009 }
2010 }
2011
2012 /* If the first element wasn't the low part, try the last. */
2013 if (!done
2014 && start < finish - 1)
2015 {
2016 inner = GET_MODE (tmps[finish - 1]);
2017 bytepos = subreg_lowpart_offset (inner, outer);
2018 if (INTVAL (XEXP (XVECEXP (src, 0, finish - 1), 1)) == bytepos)
2019 {
2020 temp = simplify_gen_subreg (outer, tmps[finish - 1],
2021 inner, 0);
2022 if (temp)
2023 {
2024 emit_move_insn (dst, temp);
2025 done = true;
2026 finish--;
2027 }
2028 }
2029 }
2030
2031 /* Otherwise, simply initialize the result to zero. */
2032 if (!done)
2033 emit_move_insn (dst, CONST0_RTX (outer));
2034 }
2035
2036 /* Process the pieces. */
2037 for (i = start; i < finish; i++)
2038 {
2039 HOST_WIDE_INT bytepos = INTVAL (XEXP (XVECEXP (src, 0, i), 1));
2040 enum machine_mode mode = GET_MODE (tmps[i]);
2041 unsigned int bytelen = GET_MODE_SIZE (mode);
2042 unsigned int adj_bytelen = bytelen;
2043 rtx dest = dst;
2044
2045 /* Handle trailing fragments that run over the size of the struct. */
2046 if (ssize >= 0 && bytepos + (HOST_WIDE_INT) bytelen > ssize)
2047 adj_bytelen = ssize - bytepos;
2048
2049 if (GET_CODE (dst) == CONCAT)
2050 {
2051 if (bytepos + adj_bytelen
2052 <= GET_MODE_SIZE (GET_MODE (XEXP (dst, 0))))
2053 dest = XEXP (dst, 0);
2054 else if (bytepos >= GET_MODE_SIZE (GET_MODE (XEXP (dst, 0))))
2055 {
2056 bytepos -= GET_MODE_SIZE (GET_MODE (XEXP (dst, 0)));
2057 dest = XEXP (dst, 1);
2058 }
2059 else
2060 {
2061 enum machine_mode dest_mode = GET_MODE (dest);
2062 enum machine_mode tmp_mode = GET_MODE (tmps[i]);
2063
2064 gcc_assert (bytepos == 0 && XVECLEN (src, 0));
2065
2066 if (GET_MODE_ALIGNMENT (dest_mode)
2067 >= GET_MODE_ALIGNMENT (tmp_mode))
2068 {
2069 dest = assign_stack_temp (dest_mode,
2070 GET_MODE_SIZE (dest_mode),
2071 0);
2072 emit_move_insn (adjust_address (dest,
2073 tmp_mode,
2074 bytepos),
2075 tmps[i]);
2076 dst = dest;
2077 }
2078 else
2079 {
2080 dest = assign_stack_temp (tmp_mode,
2081 GET_MODE_SIZE (tmp_mode),
2082 0);
2083 emit_move_insn (dest, tmps[i]);
2084 dst = adjust_address (dest, dest_mode, bytepos);
2085 }
2086 break;
2087 }
2088 }
2089
2090 if (ssize >= 0 && bytepos + (HOST_WIDE_INT) bytelen > ssize)
2091 {
2092 /* store_bit_field always takes its value from the lsb.
2093 Move the fragment to the lsb if it's not already there. */
2094 if (
2095 #ifdef BLOCK_REG_PADDING
2096 BLOCK_REG_PADDING (GET_MODE (orig_dst), type, i == start)
2097 == (BYTES_BIG_ENDIAN ? upward : downward)
2098 #else
2099 BYTES_BIG_ENDIAN
2100 #endif
2101 )
2102 {
2103 int shift = (bytelen - (ssize - bytepos)) * BITS_PER_UNIT;
2104 tmps[i] = expand_shift (RSHIFT_EXPR, mode, tmps[i],
2105 build_int_cst (NULL_TREE, shift),
2106 tmps[i], 0);
2107 }
2108 bytelen = adj_bytelen;
2109 }
2110
2111 /* Optimize the access just a bit. */
2112 if (MEM_P (dest)
2113 && (! SLOW_UNALIGNED_ACCESS (mode, MEM_ALIGN (dest))
2114 || MEM_ALIGN (dest) >= GET_MODE_ALIGNMENT (mode))
2115 && bytepos * BITS_PER_UNIT % GET_MODE_ALIGNMENT (mode) == 0
2116 && bytelen == GET_MODE_SIZE (mode))
2117 emit_move_insn (adjust_address (dest, mode, bytepos), tmps[i]);
2118 else
2119 store_bit_field (dest, bytelen * BITS_PER_UNIT, bytepos * BITS_PER_UNIT,
2120 mode, tmps[i]);
2121 }
2122
2123 /* Copy from the pseudo into the (probable) hard reg. */
2124 if (orig_dst != dst)
2125 emit_move_insn (orig_dst, dst);
2126 }
2127
2128 /* Generate code to copy a BLKmode object of TYPE out of a
2129 set of registers starting with SRCREG into TGTBLK. If TGTBLK
2130 is null, a stack temporary is created. TGTBLK is returned.
2131
2132 The purpose of this routine is to handle functions that return
2133 BLKmode structures in registers. Some machines (the PA for example)
2134 want to return all small structures in registers regardless of the
2135 structure's alignment. */
2136
2137 rtx
2138 copy_blkmode_from_reg (rtx tgtblk, rtx srcreg, tree type)
2139 {
2140 unsigned HOST_WIDE_INT bytes = int_size_in_bytes (type);
2141 rtx src = NULL, dst = NULL;
2142 unsigned HOST_WIDE_INT bitsize = MIN (TYPE_ALIGN (type), BITS_PER_WORD);
2143 unsigned HOST_WIDE_INT bitpos, xbitpos, padding_correction = 0;
2144 enum machine_mode copy_mode;
2145
2146 if (tgtblk == 0)
2147 {
2148 tgtblk = assign_temp (build_qualified_type (type,
2149 (TYPE_QUALS (type)
2150 | TYPE_QUAL_CONST)),
2151 0, 1, 1);
2152 preserve_temp_slots (tgtblk);
2153 }
2154
2155 /* This code assumes srcreg is at least a full word. If it isn't, copy it
2156 into a new pseudo which is a full word. */
2157
2158 if (GET_MODE (srcreg) != BLKmode
2159 && GET_MODE_SIZE (GET_MODE (srcreg)) < UNITS_PER_WORD)
2160 srcreg = convert_to_mode (word_mode, srcreg, TYPE_UNSIGNED (type));
2161
2162 /* If the structure doesn't take up a whole number of words, see whether
2163 SRCREG is padded on the left or on the right. If it's on the left,
2164 set PADDING_CORRECTION to the number of bits to skip.
2165
2166 In most ABIs, the structure will be returned at the least end of
2167 the register, which translates to right padding on little-endian
2168 targets and left padding on big-endian targets. The opposite
2169 holds if the structure is returned at the most significant
2170 end of the register. */
2171 if (bytes % UNITS_PER_WORD != 0
2172 && (targetm.calls.return_in_msb (type)
2173 ? !BYTES_BIG_ENDIAN
2174 : BYTES_BIG_ENDIAN))
2175 padding_correction
2176 = (BITS_PER_WORD - ((bytes % UNITS_PER_WORD) * BITS_PER_UNIT));
2177
2178 /* Copy the structure BITSIZE bits at a time. If the target lives in
2179 memory, take care of not reading/writing past its end by selecting
2180 a copy mode suited to BITSIZE. This should always be possible given
2181 how it is computed.
2182
2183 We could probably emit more efficient code for machines which do not use
2184 strict alignment, but it doesn't seem worth the effort at the current
2185 time. */
2186
2187 copy_mode = word_mode;
2188 if (MEM_P (tgtblk))
2189 {
2190 enum machine_mode mem_mode = mode_for_size (bitsize, MODE_INT, 1);
2191 if (mem_mode != BLKmode)
2192 copy_mode = mem_mode;
2193 }
2194
2195 for (bitpos = 0, xbitpos = padding_correction;
2196 bitpos < bytes * BITS_PER_UNIT;
2197 bitpos += bitsize, xbitpos += bitsize)
2198 {
2199 /* We need a new source operand each time xbitpos is on a
2200 word boundary and when xbitpos == padding_correction
2201 (the first time through). */
2202 if (xbitpos % BITS_PER_WORD == 0
2203 || xbitpos == padding_correction)
2204 src = operand_subword_force (srcreg, xbitpos / BITS_PER_WORD,
2205 GET_MODE (srcreg));
2206
2207 /* We need a new destination operand each time bitpos is on
2208 a word boundary. */
2209 if (bitpos % BITS_PER_WORD == 0)
2210 dst = operand_subword (tgtblk, bitpos / BITS_PER_WORD, 1, BLKmode);
2211
2212 /* Use xbitpos for the source extraction (right justified) and
2213 bitpos for the destination store (left justified). */
2214 store_bit_field (dst, bitsize, bitpos % BITS_PER_WORD, copy_mode,
2215 extract_bit_field (src, bitsize,
2216 xbitpos % BITS_PER_WORD, 1,
2217 NULL_RTX, copy_mode, copy_mode));
2218 }
2219
2220 return tgtblk;
2221 }
2222
2223 /* Add a USE expression for REG to the (possibly empty) list pointed
2224 to by CALL_FUSAGE. REG must denote a hard register. */
2225
2226 void
2227 use_reg (rtx *call_fusage, rtx reg)
2228 {
2229 gcc_assert (REG_P (reg) && REGNO (reg) < FIRST_PSEUDO_REGISTER);
2230
2231 *call_fusage
2232 = gen_rtx_EXPR_LIST (VOIDmode,
2233 gen_rtx_USE (VOIDmode, reg), *call_fusage);
2234 }
2235
2236 /* Add USE expressions to *CALL_FUSAGE for each of NREGS consecutive regs,
2237 starting at REGNO. All of these registers must be hard registers. */
2238
2239 void
2240 use_regs (rtx *call_fusage, int regno, int nregs)
2241 {
2242 int i;
2243
2244 gcc_assert (regno + nregs <= FIRST_PSEUDO_REGISTER);
2245
2246 for (i = 0; i < nregs; i++)
2247 use_reg (call_fusage, regno_reg_rtx[regno + i]);
2248 }
2249
2250 /* Add USE expressions to *CALL_FUSAGE for each REG contained in the
2251 PARALLEL REGS. This is for calls that pass values in multiple
2252 non-contiguous locations. The Irix 6 ABI has examples of this. */
2253
2254 void
2255 use_group_regs (rtx *call_fusage, rtx regs)
2256 {
2257 int i;
2258
2259 for (i = 0; i < XVECLEN (regs, 0); i++)
2260 {
2261 rtx reg = XEXP (XVECEXP (regs, 0, i), 0);
2262
2263 /* A NULL entry means the parameter goes both on the stack and in
2264 registers. This can also be a MEM for targets that pass values
2265 partially on the stack and partially in registers. */
2266 if (reg != 0 && REG_P (reg))
2267 use_reg (call_fusage, reg);
2268 }
2269 }
2270
2271
2272 /* Determine whether the LEN bytes generated by CONSTFUN can be
2273 stored to memory using several move instructions. CONSTFUNDATA is
2274 a pointer which will be passed as argument in every CONSTFUN call.
2275 ALIGN is maximum alignment we can assume. MEMSETP is true if this is
2276 a memset operation and false if it's a copy of a constant string.
2277 Return nonzero if a call to store_by_pieces should succeed. */
2278
2279 int
2280 can_store_by_pieces (unsigned HOST_WIDE_INT len,
2281 rtx (*constfun) (void *, HOST_WIDE_INT, enum machine_mode),
2282 void *constfundata, unsigned int align, bool memsetp)
2283 {
2284 unsigned HOST_WIDE_INT l;
2285 unsigned int max_size;
2286 HOST_WIDE_INT offset = 0;
2287 enum machine_mode mode, tmode;
2288 enum insn_code icode;
2289 int reverse;
2290 rtx cst;
2291
2292 if (len == 0)
2293 return 1;
2294
2295 if (! (memsetp
2296 ? SET_BY_PIECES_P (len, align)
2297 : STORE_BY_PIECES_P (len, align)))
2298 return 0;
2299
2300 tmode = mode_for_size (STORE_MAX_PIECES * BITS_PER_UNIT, MODE_INT, 1);
2301 if (align >= GET_MODE_ALIGNMENT (tmode))
2302 align = GET_MODE_ALIGNMENT (tmode);
2303 else
2304 {
2305 enum machine_mode xmode;
2306
2307 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT), xmode = tmode;
2308 tmode != VOIDmode;
2309 xmode = tmode, tmode = GET_MODE_WIDER_MODE (tmode))
2310 if (GET_MODE_SIZE (tmode) > STORE_MAX_PIECES
2311 || SLOW_UNALIGNED_ACCESS (tmode, align))
2312 break;
2313
2314 align = MAX (align, GET_MODE_ALIGNMENT (xmode));
2315 }
2316
2317 /* We would first store what we can in the largest integer mode, then go to
2318 successively smaller modes. */
2319
2320 for (reverse = 0;
2321 reverse <= (HAVE_PRE_DECREMENT || HAVE_POST_DECREMENT);
2322 reverse++)
2323 {
2324 l = len;
2325 mode = VOIDmode;
2326 max_size = STORE_MAX_PIECES + 1;
2327 while (max_size > 1)
2328 {
2329 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
2330 tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
2331 if (GET_MODE_SIZE (tmode) < max_size)
2332 mode = tmode;
2333
2334 if (mode == VOIDmode)
2335 break;
2336
2337 icode = optab_handler (mov_optab, mode)->insn_code;
2338 if (icode != CODE_FOR_nothing
2339 && align >= GET_MODE_ALIGNMENT (mode))
2340 {
2341 unsigned int size = GET_MODE_SIZE (mode);
2342
2343 while (l >= size)
2344 {
2345 if (reverse)
2346 offset -= size;
2347
2348 cst = (*constfun) (constfundata, offset, mode);
2349 if (!LEGITIMATE_CONSTANT_P (cst))
2350 return 0;
2351
2352 if (!reverse)
2353 offset += size;
2354
2355 l -= size;
2356 }
2357 }
2358
2359 max_size = GET_MODE_SIZE (mode);
2360 }
2361
2362 /* The code above should have handled everything. */
2363 gcc_assert (!l);
2364 }
2365
2366 return 1;
2367 }
2368
2369 /* Generate several move instructions to store LEN bytes generated by
2370 CONSTFUN to block TO. (A MEM rtx with BLKmode). CONSTFUNDATA is a
2371 pointer which will be passed as argument in every CONSTFUN call.
2372 ALIGN is maximum alignment we can assume. MEMSETP is true if this is
2373 a memset operation and false if it's a copy of a constant string.
2374 If ENDP is 0 return to, if ENDP is 1 return memory at the end ala
2375 mempcpy, and if ENDP is 2 return memory the end minus one byte ala
2376 stpcpy. */
2377
2378 rtx
2379 store_by_pieces (rtx to, unsigned HOST_WIDE_INT len,
2380 rtx (*constfun) (void *, HOST_WIDE_INT, enum machine_mode),
2381 void *constfundata, unsigned int align, bool memsetp, int endp)
2382 {
2383 struct store_by_pieces data;
2384
2385 if (len == 0)
2386 {
2387 gcc_assert (endp != 2);
2388 return to;
2389 }
2390
2391 gcc_assert (memsetp
2392 ? SET_BY_PIECES_P (len, align)
2393 : STORE_BY_PIECES_P (len, align));
2394 data.constfun = constfun;
2395 data.constfundata = constfundata;
2396 data.len = len;
2397 data.to = to;
2398 store_by_pieces_1 (&data, align);
2399 if (endp)
2400 {
2401 rtx to1;
2402
2403 gcc_assert (!data.reverse);
2404 if (data.autinc_to)
2405 {
2406 if (endp == 2)
2407 {
2408 if (HAVE_POST_INCREMENT && data.explicit_inc_to > 0)
2409 emit_insn (gen_add2_insn (data.to_addr, constm1_rtx));
2410 else
2411 data.to_addr = copy_addr_to_reg (plus_constant (data.to_addr,
2412 -1));
2413 }
2414 to1 = adjust_automodify_address (data.to, QImode, data.to_addr,
2415 data.offset);
2416 }
2417 else
2418 {
2419 if (endp == 2)
2420 --data.offset;
2421 to1 = adjust_address (data.to, QImode, data.offset);
2422 }
2423 return to1;
2424 }
2425 else
2426 return data.to;
2427 }
2428
2429 /* Generate several move instructions to clear LEN bytes of block TO. (A MEM
2430 rtx with BLKmode). ALIGN is maximum alignment we can assume. */
2431
2432 static void
2433 clear_by_pieces (rtx to, unsigned HOST_WIDE_INT len, unsigned int align)
2434 {
2435 struct store_by_pieces data;
2436
2437 if (len == 0)
2438 return;
2439
2440 data.constfun = clear_by_pieces_1;
2441 data.constfundata = NULL;
2442 data.len = len;
2443 data.to = to;
2444 store_by_pieces_1 (&data, align);
2445 }
2446
2447 /* Callback routine for clear_by_pieces.
2448 Return const0_rtx unconditionally. */
2449
2450 static rtx
2451 clear_by_pieces_1 (void *data ATTRIBUTE_UNUSED,
2452 HOST_WIDE_INT offset ATTRIBUTE_UNUSED,
2453 enum machine_mode mode ATTRIBUTE_UNUSED)
2454 {
2455 return const0_rtx;
2456 }
2457
2458 /* Subroutine of clear_by_pieces and store_by_pieces.
2459 Generate several move instructions to store LEN bytes of block TO. (A MEM
2460 rtx with BLKmode). ALIGN is maximum alignment we can assume. */
2461
2462 static void
2463 store_by_pieces_1 (struct store_by_pieces *data ATTRIBUTE_UNUSED,
2464 unsigned int align ATTRIBUTE_UNUSED)
2465 {
2466 rtx to_addr = XEXP (data->to, 0);
2467 unsigned int max_size = STORE_MAX_PIECES + 1;
2468 enum machine_mode mode = VOIDmode, tmode;
2469 enum insn_code icode;
2470
2471 data->offset = 0;
2472 data->to_addr = to_addr;
2473 data->autinc_to
2474 = (GET_CODE (to_addr) == PRE_INC || GET_CODE (to_addr) == PRE_DEC
2475 || GET_CODE (to_addr) == POST_INC || GET_CODE (to_addr) == POST_DEC);
2476
2477 data->explicit_inc_to = 0;
2478 data->reverse
2479 = (GET_CODE (to_addr) == PRE_DEC || GET_CODE (to_addr) == POST_DEC);
2480 if (data->reverse)
2481 data->offset = data->len;
2482
2483 /* If storing requires more than two move insns,
2484 copy addresses to registers (to make displacements shorter)
2485 and use post-increment if available. */
2486 if (!data->autinc_to
2487 && move_by_pieces_ninsns (data->len, align, max_size) > 2)
2488 {
2489 /* Determine the main mode we'll be using. */
2490 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
2491 tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
2492 if (GET_MODE_SIZE (tmode) < max_size)
2493 mode = tmode;
2494
2495 if (USE_STORE_PRE_DECREMENT (mode) && data->reverse && ! data->autinc_to)
2496 {
2497 data->to_addr = copy_addr_to_reg (plus_constant (to_addr, data->len));
2498 data->autinc_to = 1;
2499 data->explicit_inc_to = -1;
2500 }
2501
2502 if (USE_STORE_POST_INCREMENT (mode) && ! data->reverse
2503 && ! data->autinc_to)
2504 {
2505 data->to_addr = copy_addr_to_reg (to_addr);
2506 data->autinc_to = 1;
2507 data->explicit_inc_to = 1;
2508 }
2509
2510 if ( !data->autinc_to && CONSTANT_P (to_addr))
2511 data->to_addr = copy_addr_to_reg (to_addr);
2512 }
2513
2514 tmode = mode_for_size (STORE_MAX_PIECES * BITS_PER_UNIT, MODE_INT, 1);
2515 if (align >= GET_MODE_ALIGNMENT (tmode))
2516 align = GET_MODE_ALIGNMENT (tmode);
2517 else
2518 {
2519 enum machine_mode xmode;
2520
2521 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT), xmode = tmode;
2522 tmode != VOIDmode;
2523 xmode = tmode, tmode = GET_MODE_WIDER_MODE (tmode))
2524 if (GET_MODE_SIZE (tmode) > STORE_MAX_PIECES
2525 || SLOW_UNALIGNED_ACCESS (tmode, align))
2526 break;
2527
2528 align = MAX (align, GET_MODE_ALIGNMENT (xmode));
2529 }
2530
2531 /* First store what we can in the largest integer mode, then go to
2532 successively smaller modes. */
2533
2534 while (max_size > 1)
2535 {
2536 for (tmode = GET_CLASS_NARROWEST_MODE (MODE_INT);
2537 tmode != VOIDmode; tmode = GET_MODE_WIDER_MODE (tmode))
2538 if (GET_MODE_SIZE (tmode) < max_size)
2539 mode = tmode;
2540
2541 if (mode == VOIDmode)
2542 break;
2543
2544 icode = optab_handler (mov_optab, mode)->insn_code;
2545 if (icode != CODE_FOR_nothing && align >= GET_MODE_ALIGNMENT (mode))
2546 store_by_pieces_2 (GEN_FCN (icode), mode, data);
2547
2548 max_size = GET_MODE_SIZE (mode);
2549 }
2550
2551 /* The code above should have handled everything. */
2552 gcc_assert (!data->len);
2553 }
2554
2555 /* Subroutine of store_by_pieces_1. Store as many bytes as appropriate
2556 with move instructions for mode MODE. GENFUN is the gen_... function
2557 to make a move insn for that mode. DATA has all the other info. */
2558
2559 static void
2560 store_by_pieces_2 (rtx (*genfun) (rtx, ...), enum machine_mode mode,
2561 struct store_by_pieces *data)
2562 {
2563 unsigned int size = GET_MODE_SIZE (mode);
2564 rtx to1, cst;
2565
2566 while (data->len >= size)
2567 {
2568 if (data->reverse)
2569 data->offset -= size;
2570
2571 if (data->autinc_to)
2572 to1 = adjust_automodify_address (data->to, mode, data->to_addr,
2573 data->offset);
2574 else
2575 to1 = adjust_address (data->to, mode, data->offset);
2576
2577 if (HAVE_PRE_DECREMENT && data->explicit_inc_to < 0)
2578 emit_insn (gen_add2_insn (data->to_addr,
2579 GEN_INT (-(HOST_WIDE_INT) size)));
2580
2581 cst = (*data->constfun) (data->constfundata, data->offset, mode);
2582 emit_insn ((*genfun) (to1, cst));
2583
2584 if (HAVE_POST_INCREMENT && data->explicit_inc_to > 0)
2585 emit_insn (gen_add2_insn (data->to_addr, GEN_INT (size)));
2586
2587 if (! data->reverse)
2588 data->offset += size;
2589
2590 data->len -= size;
2591 }
2592 }
2593
2594 /* Write zeros through the storage of OBJECT. If OBJECT has BLKmode, SIZE is
2595 its length in bytes. */
2596
2597 rtx
2598 clear_storage_hints (rtx object, rtx size, enum block_op_methods method,
2599 unsigned int expected_align, HOST_WIDE_INT expected_size)
2600 {
2601 enum machine_mode mode = GET_MODE (object);
2602 unsigned int align;
2603
2604 gcc_assert (method == BLOCK_OP_NORMAL || method == BLOCK_OP_TAILCALL);
2605
2606 /* If OBJECT is not BLKmode and SIZE is the same size as its mode,
2607 just move a zero. Otherwise, do this a piece at a time. */
2608 if (mode != BLKmode
2609 && GET_CODE (size) == CONST_INT
2610 && INTVAL (size) == (HOST_WIDE_INT) GET_MODE_SIZE (mode))
2611 {
2612 rtx zero = CONST0_RTX (mode);
2613 if (zero != NULL)
2614 {
2615 emit_move_insn (object, zero);
2616 return NULL;
2617 }
2618
2619 if (COMPLEX_MODE_P (mode))
2620 {
2621 zero = CONST0_RTX (GET_MODE_INNER (mode));
2622 if (zero != NULL)
2623 {
2624 write_complex_part (object, zero, 0);
2625 write_complex_part (object, zero, 1);
2626 return NULL;
2627 }
2628 }
2629 }
2630
2631 if (size == const0_rtx)
2632 return NULL;
2633
2634 align = MEM_ALIGN (object);
2635
2636 if (GET_CODE (size) == CONST_INT
2637 && CLEAR_BY_PIECES_P (INTVAL (size), align))
2638 clear_by_pieces (object, INTVAL (size), align);
2639 else if (set_storage_via_setmem (object, size, const0_rtx, align,
2640 expected_align, expected_size))
2641 ;
2642 else
2643 return set_storage_via_libcall (object, size, const0_rtx,
2644 method == BLOCK_OP_TAILCALL);
2645
2646 return NULL;
2647 }
2648
2649 rtx
2650 clear_storage (rtx object, rtx size, enum block_op_methods method)
2651 {
2652 return clear_storage_hints (object, size, method, 0, -1);
2653 }
2654
2655
2656 /* A subroutine of clear_storage. Expand a call to memset.
2657 Return the return value of memset, 0 otherwise. */
2658
2659 rtx
2660 set_storage_via_libcall (rtx object, rtx size, rtx val, bool tailcall)
2661 {
2662 tree call_expr, fn, object_tree, size_tree, val_tree;
2663 enum machine_mode size_mode;
2664 rtx retval;
2665
2666 /* Emit code to copy OBJECT and SIZE into new pseudos. We can then
2667 place those into new pseudos into a VAR_DECL and use them later. */
2668
2669 object = copy_to_mode_reg (Pmode, XEXP (object, 0));
2670
2671 size_mode = TYPE_MODE (sizetype);
2672 size = convert_to_mode (size_mode, size, 1);
2673 size = copy_to_mode_reg (size_mode, size);
2674
2675 /* It is incorrect to use the libcall calling conventions to call
2676 memset in this context. This could be a user call to memset and
2677 the user may wish to examine the return value from memset. For
2678 targets where libcalls and normal calls have different conventions
2679 for returning pointers, we could end up generating incorrect code. */
2680
2681 object_tree = make_tree (ptr_type_node, object);
2682 if (GET_CODE (val) != CONST_INT)
2683 val = convert_to_mode (TYPE_MODE (integer_type_node), val, 1);
2684 size_tree = make_tree (sizetype, size);
2685 val_tree = make_tree (integer_type_node, val);
2686
2687 fn = clear_storage_libcall_fn (true);
2688 call_expr = build_call_expr (fn, 3,
2689 object_tree, integer_zero_node, size_tree);
2690 CALL_EXPR_TAILCALL (call_expr) = tailcall;
2691
2692 retval = expand_normal (call_expr);
2693
2694 return retval;
2695 }
2696
2697 /* A subroutine of set_storage_via_libcall. Create the tree node
2698 for the function we use for block clears. The first time FOR_CALL
2699 is true, we call assemble_external. */
2700
2701 tree block_clear_fn;
2702
2703 void
2704 init_block_clear_fn (const char *asmspec)
2705 {
2706 if (!block_clear_fn)
2707 {
2708 tree fn, args;
2709
2710 fn = get_identifier ("memset");
2711 args = build_function_type_list (ptr_type_node, ptr_type_node,
2712 integer_type_node, sizetype,
2713 NULL_TREE);
2714
2715 fn = build_decl (FUNCTION_DECL, fn, args);
2716 DECL_EXTERNAL (fn) = 1;
2717 TREE_PUBLIC (fn) = 1;
2718 DECL_ARTIFICIAL (fn) = 1;
2719 TREE_NOTHROW (fn) = 1;
2720 DECL_VISIBILITY (fn) = VISIBILITY_DEFAULT;
2721 DECL_VISIBILITY_SPECIFIED (fn) = 1;
2722
2723 block_clear_fn = fn;
2724 }
2725
2726 if (asmspec)
2727 set_user_assembler_name (block_clear_fn, asmspec);
2728 }
2729
2730 static tree
2731 clear_storage_libcall_fn (int for_call)
2732 {
2733 static bool emitted_extern;
2734
2735 if (!block_clear_fn)
2736 init_block_clear_fn (NULL);
2737
2738 if (for_call && !emitted_extern)
2739 {
2740 emitted_extern = true;
2741 make_decl_rtl (block_clear_fn);
2742 assemble_external (block_clear_fn);
2743 }
2744
2745 return block_clear_fn;
2746 }
2747
2748 /* Expand a setmem pattern; return true if successful. */
2749
2750 bool
2751 set_storage_via_setmem (rtx object, rtx size, rtx val, unsigned int align,
2752 unsigned int expected_align, HOST_WIDE_INT expected_size)
2753 {
2754 /* Try the most limited insn first, because there's no point
2755 including more than one in the machine description unless
2756 the more limited one has some advantage. */
2757
2758 rtx opalign = GEN_INT (align / BITS_PER_UNIT);
2759 enum machine_mode mode;
2760
2761 if (expected_align < align)
2762 expected_align = align;
2763
2764 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
2765 mode = GET_MODE_WIDER_MODE (mode))
2766 {
2767 enum insn_code code = setmem_optab[(int) mode];
2768 insn_operand_predicate_fn pred;
2769
2770 if (code != CODE_FOR_nothing
2771 /* We don't need MODE to be narrower than
2772 BITS_PER_HOST_WIDE_INT here because if SIZE is less than
2773 the mode mask, as it is returned by the macro, it will
2774 definitely be less than the actual mode mask. */
2775 && ((GET_CODE (size) == CONST_INT
2776 && ((unsigned HOST_WIDE_INT) INTVAL (size)
2777 <= (GET_MODE_MASK (mode) >> 1)))
2778 || GET_MODE_BITSIZE (mode) >= BITS_PER_WORD)
2779 && ((pred = insn_data[(int) code].operand[0].predicate) == 0
2780 || (*pred) (object, BLKmode))
2781 && ((pred = insn_data[(int) code].operand[3].predicate) == 0
2782 || (*pred) (opalign, VOIDmode)))
2783 {
2784 rtx opsize, opchar;
2785 enum machine_mode char_mode;
2786 rtx last = get_last_insn ();
2787 rtx pat;
2788
2789 opsize = convert_to_mode (mode, size, 1);
2790 pred = insn_data[(int) code].operand[1].predicate;
2791 if (pred != 0 && ! (*pred) (opsize, mode))
2792 opsize = copy_to_mode_reg (mode, opsize);
2793
2794 opchar = val;
2795 char_mode = insn_data[(int) code].operand[2].mode;
2796 if (char_mode != VOIDmode)
2797 {
2798 opchar = convert_to_mode (char_mode, opchar, 1);
2799 pred = insn_data[(int) code].operand[2].predicate;
2800 if (pred != 0 && ! (*pred) (opchar, char_mode))
2801 opchar = copy_to_mode_reg (char_mode, opchar);
2802 }
2803
2804 if (insn_data[(int) code].n_operands == 4)
2805 pat = GEN_FCN ((int) code) (object, opsize, opchar, opalign);
2806 else
2807 pat = GEN_FCN ((int) code) (object, opsize, opchar, opalign,
2808 GEN_INT (expected_align
2809 / BITS_PER_UNIT),
2810 GEN_INT (expected_size));
2811 if (pat)
2812 {
2813 emit_insn (pat);
2814 return true;
2815 }
2816 else
2817 delete_insns_since (last);
2818 }
2819 }
2820
2821 return false;
2822 }
2823
2824
2825 /* Write to one of the components of the complex value CPLX. Write VAL to
2826 the real part if IMAG_P is false, and the imaginary part if its true. */
2827
2828 static void
2829 write_complex_part (rtx cplx, rtx val, bool imag_p)
2830 {
2831 enum machine_mode cmode;
2832 enum machine_mode imode;
2833 unsigned ibitsize;
2834
2835 if (GET_CODE (cplx) == CONCAT)
2836 {
2837 emit_move_insn (XEXP (cplx, imag_p), val);
2838 return;
2839 }
2840
2841 cmode = GET_MODE (cplx);
2842 imode = GET_MODE_INNER (cmode);
2843 ibitsize = GET_MODE_BITSIZE (imode);
2844
2845 /* For MEMs simplify_gen_subreg may generate an invalid new address
2846 because, e.g., the original address is considered mode-dependent
2847 by the target, which restricts simplify_subreg from invoking
2848 adjust_address_nv. Instead of preparing fallback support for an
2849 invalid address, we call adjust_address_nv directly. */
2850 if (MEM_P (cplx))
2851 {
2852 emit_move_insn (adjust_address_nv (cplx, imode,
2853 imag_p ? GET_MODE_SIZE (imode) : 0),
2854 val);
2855 return;
2856 }
2857
2858 /* If the sub-object is at least word sized, then we know that subregging
2859 will work. This special case is important, since store_bit_field
2860 wants to operate on integer modes, and there's rarely an OImode to
2861 correspond to TCmode. */
2862 if (ibitsize >= BITS_PER_WORD
2863 /* For hard regs we have exact predicates. Assume we can split
2864 the original object if it spans an even number of hard regs.
2865 This special case is important for SCmode on 64-bit platforms
2866 where the natural size of floating-point regs is 32-bit. */
2867 || (REG_P (cplx)
2868 && REGNO (cplx) < FIRST_PSEUDO_REGISTER
2869 && hard_regno_nregs[REGNO (cplx)][cmode] % 2 == 0))
2870 {
2871 rtx part = simplify_gen_subreg (imode, cplx, cmode,
2872 imag_p ? GET_MODE_SIZE (imode) : 0);
2873 if (part)
2874 {
2875 emit_move_insn (part, val);
2876 return;
2877 }
2878 else
2879 /* simplify_gen_subreg may fail for sub-word MEMs. */
2880 gcc_assert (MEM_P (cplx) && ibitsize < BITS_PER_WORD);
2881 }
2882
2883 store_bit_field (cplx, ibitsize, imag_p ? ibitsize : 0, imode, val);
2884 }
2885
2886 /* Extract one of the components of the complex value CPLX. Extract the
2887 real part if IMAG_P is false, and the imaginary part if it's true. */
2888
2889 static rtx
2890 read_complex_part (rtx cplx, bool imag_p)
2891 {
2892 enum machine_mode cmode, imode;
2893 unsigned ibitsize;
2894
2895 if (GET_CODE (cplx) == CONCAT)
2896 return XEXP (cplx, imag_p);
2897
2898 cmode = GET_MODE (cplx);
2899 imode = GET_MODE_INNER (cmode);
2900 ibitsize = GET_MODE_BITSIZE (imode);
2901
2902 /* Special case reads from complex constants that got spilled to memory. */
2903 if (MEM_P (cplx) && GET_CODE (XEXP (cplx, 0)) == SYMBOL_REF)
2904 {
2905 tree decl = SYMBOL_REF_DECL (XEXP (cplx, 0));
2906 if (decl && TREE_CODE (decl) == COMPLEX_CST)
2907 {
2908 tree part = imag_p ? TREE_IMAGPART (decl) : TREE_REALPART (decl);
2909 if (CONSTANT_CLASS_P (part))
2910 return expand_expr (part, NULL_RTX, imode, EXPAND_NORMAL);
2911 }
2912 }
2913
2914 /* For MEMs simplify_gen_subreg may generate an invalid new address
2915 because, e.g., the original address is considered mode-dependent
2916 by the target, which restricts simplify_subreg from invoking
2917 adjust_address_nv. Instead of preparing fallback support for an
2918 invalid address, we call adjust_address_nv directly. */
2919 if (MEM_P (cplx))
2920 return adjust_address_nv (cplx, imode,
2921 imag_p ? GET_MODE_SIZE (imode) : 0);
2922
2923 /* If the sub-object is at least word sized, then we know that subregging
2924 will work. This special case is important, since extract_bit_field
2925 wants to operate on integer modes, and there's rarely an OImode to
2926 correspond to TCmode. */
2927 if (ibitsize >= BITS_PER_WORD
2928 /* For hard regs we have exact predicates. Assume we can split
2929 the original object if it spans an even number of hard regs.
2930 This special case is important for SCmode on 64-bit platforms
2931 where the natural size of floating-point regs is 32-bit. */
2932 || (REG_P (cplx)
2933 && REGNO (cplx) < FIRST_PSEUDO_REGISTER
2934 && hard_regno_nregs[REGNO (cplx)][cmode] % 2 == 0))
2935 {
2936 rtx ret = simplify_gen_subreg (imode, cplx, cmode,
2937 imag_p ? GET_MODE_SIZE (imode) : 0);
2938 if (ret)
2939 return ret;
2940 else
2941 /* simplify_gen_subreg may fail for sub-word MEMs. */
2942 gcc_assert (MEM_P (cplx) && ibitsize < BITS_PER_WORD);
2943 }
2944
2945 return extract_bit_field (cplx, ibitsize, imag_p ? ibitsize : 0,
2946 true, NULL_RTX, imode, imode);
2947 }
2948
2949 /* A subroutine of emit_move_insn_1. Yet another lowpart generator.
2950 NEW_MODE and OLD_MODE are the same size. Return NULL if X cannot be
2951 represented in NEW_MODE. If FORCE is true, this will never happen, as
2952 we'll force-create a SUBREG if needed. */
2953
2954 static rtx
2955 emit_move_change_mode (enum machine_mode new_mode,
2956 enum machine_mode old_mode, rtx x, bool force)
2957 {
2958 rtx ret;
2959
2960 if (push_operand (x, GET_MODE (x)))
2961 {
2962 ret = gen_rtx_MEM (new_mode, XEXP (x, 0));
2963 MEM_COPY_ATTRIBUTES (ret, x);
2964 }
2965 else if (MEM_P (x))
2966 {
2967 /* We don't have to worry about changing the address since the
2968 size in bytes is supposed to be the same. */
2969 if (reload_in_progress)
2970 {
2971 /* Copy the MEM to change the mode and move any
2972 substitutions from the old MEM to the new one. */
2973 ret = adjust_address_nv (x, new_mode, 0);
2974 copy_replacements (x, ret);
2975 }
2976 else
2977 ret = adjust_address (x, new_mode, 0);
2978 }
2979 else
2980 {
2981 /* Note that we do want simplify_subreg's behavior of validating
2982 that the new mode is ok for a hard register. If we were to use
2983 simplify_gen_subreg, we would create the subreg, but would
2984 probably run into the target not being able to implement it. */
2985 /* Except, of course, when FORCE is true, when this is exactly what
2986 we want. Which is needed for CCmodes on some targets. */
2987 if (force)
2988 ret = simplify_gen_subreg (new_mode, x, old_mode, 0);
2989 else
2990 ret = simplify_subreg (new_mode, x, old_mode, 0);
2991 }
2992
2993 return ret;
2994 }
2995
2996 /* A subroutine of emit_move_insn_1. Generate a move from Y into X using
2997 an integer mode of the same size as MODE. Returns the instruction
2998 emitted, or NULL if such a move could not be generated. */
2999
3000 static rtx
3001 emit_move_via_integer (enum machine_mode mode, rtx x, rtx y, bool force)
3002 {
3003 enum machine_mode imode;
3004 enum insn_code code;
3005
3006 /* There must exist a mode of the exact size we require. */
3007 imode = int_mode_for_mode (mode);
3008 if (imode == BLKmode)
3009 return NULL_RTX;
3010
3011 /* The target must support moves in this mode. */
3012 code = optab_handler (mov_optab, imode)->insn_code;
3013 if (code == CODE_FOR_nothing)
3014 return NULL_RTX;
3015
3016 x = emit_move_change_mode (imode, mode, x, force);
3017 if (x == NULL_RTX)
3018 return NULL_RTX;
3019 y = emit_move_change_mode (imode, mode, y, force);
3020 if (y == NULL_RTX)
3021 return NULL_RTX;
3022 return emit_insn (GEN_FCN (code) (x, y));
3023 }
3024
3025 /* A subroutine of emit_move_insn_1. X is a push_operand in MODE.
3026 Return an equivalent MEM that does not use an auto-increment. */
3027
3028 static rtx
3029 emit_move_resolve_push (enum machine_mode mode, rtx x)
3030 {
3031 enum rtx_code code = GET_CODE (XEXP (x, 0));
3032 HOST_WIDE_INT adjust;
3033 rtx temp;
3034
3035 adjust = GET_MODE_SIZE (mode);
3036 #ifdef PUSH_ROUNDING
3037 adjust = PUSH_ROUNDING (adjust);
3038 #endif
3039 if (code == PRE_DEC || code == POST_DEC)
3040 adjust = -adjust;
3041 else if (code == PRE_MODIFY || code == POST_MODIFY)
3042 {
3043 rtx expr = XEXP (XEXP (x, 0), 1);
3044 HOST_WIDE_INT val;
3045
3046 gcc_assert (GET_CODE (expr) == PLUS || GET_CODE (expr) == MINUS);
3047 gcc_assert (GET_CODE (XEXP (expr, 1)) == CONST_INT);
3048 val = INTVAL (XEXP (expr, 1));
3049 if (GET_CODE (expr) == MINUS)
3050 val = -val;
3051 gcc_assert (adjust == val || adjust == -val);
3052 adjust = val;
3053 }
3054
3055 /* Do not use anti_adjust_stack, since we don't want to update
3056 stack_pointer_delta. */
3057 temp = expand_simple_binop (Pmode, PLUS, stack_pointer_rtx,
3058 GEN_INT (adjust), stack_pointer_rtx,
3059 0, OPTAB_LIB_WIDEN);
3060 if (temp != stack_pointer_rtx)
3061 emit_move_insn (stack_pointer_rtx, temp);
3062
3063 switch (code)
3064 {
3065 case PRE_INC:
3066 case PRE_DEC:
3067 case PRE_MODIFY:
3068 temp = stack_pointer_rtx;
3069 break;
3070 case POST_INC:
3071 case POST_DEC:
3072 case POST_MODIFY:
3073 temp = plus_constant (stack_pointer_rtx, -adjust);
3074 break;
3075 default:
3076 gcc_unreachable ();
3077 }
3078
3079 return replace_equiv_address (x, temp);
3080 }
3081
3082 /* A subroutine of emit_move_complex. Generate a move from Y into X.
3083 X is known to satisfy push_operand, and MODE is known to be complex.
3084 Returns the last instruction emitted. */
3085
3086 rtx
3087 emit_move_complex_push (enum machine_mode mode, rtx x, rtx y)
3088 {
3089 enum machine_mode submode = GET_MODE_INNER (mode);
3090 bool imag_first;
3091
3092 #ifdef PUSH_ROUNDING
3093 unsigned int submodesize = GET_MODE_SIZE (submode);
3094
3095 /* In case we output to the stack, but the size is smaller than the
3096 machine can push exactly, we need to use move instructions. */
3097 if (PUSH_ROUNDING (submodesize) != submodesize)
3098 {
3099 x = emit_move_resolve_push (mode, x);
3100 return emit_move_insn (x, y);
3101 }
3102 #endif
3103
3104 /* Note that the real part always precedes the imag part in memory
3105 regardless of machine's endianness. */
3106 switch (GET_CODE (XEXP (x, 0)))
3107 {
3108 case PRE_DEC:
3109 case POST_DEC:
3110 imag_first = true;
3111 break;
3112 case PRE_INC:
3113 case POST_INC:
3114 imag_first = false;
3115 break;
3116 default:
3117 gcc_unreachable ();
3118 }
3119
3120 emit_move_insn (gen_rtx_MEM (submode, XEXP (x, 0)),
3121 read_complex_part (y, imag_first));
3122 return emit_move_insn (gen_rtx_MEM (submode, XEXP (x, 0)),
3123 read_complex_part (y, !imag_first));
3124 }
3125
3126 /* A subroutine of emit_move_complex. Perform the move from Y to X
3127 via two moves of the parts. Returns the last instruction emitted. */
3128
3129 rtx
3130 emit_move_complex_parts (rtx x, rtx y)
3131 {
3132 /* Show the output dies here. This is necessary for SUBREGs
3133 of pseudos since we cannot track their lifetimes correctly;
3134 hard regs shouldn't appear here except as return values. */
3135 if (!reload_completed && !reload_in_progress
3136 && REG_P (x) && !reg_overlap_mentioned_p (x, y))
3137 emit_clobber (x);
3138
3139 write_complex_part (x, read_complex_part (y, false), false);
3140 write_complex_part (x, read_complex_part (y, true), true);
3141
3142 return get_last_insn ();
3143 }
3144
3145 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
3146 MODE is known to be complex. Returns the last instruction emitted. */
3147
3148 static rtx
3149 emit_move_complex (enum machine_mode mode, rtx x, rtx y)
3150 {
3151 bool try_int;
3152
3153 /* Need to take special care for pushes, to maintain proper ordering
3154 of the data, and possibly extra padding. */
3155 if (push_operand (x, mode))
3156 return emit_move_complex_push (mode, x, y);
3157
3158 /* See if we can coerce the target into moving both values at once. */
3159
3160 /* Move floating point as parts. */
3161 if (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
3162 && optab_handler (mov_optab, GET_MODE_INNER (mode))->insn_code != CODE_FOR_nothing)
3163 try_int = false;
3164 /* Not possible if the values are inherently not adjacent. */
3165 else if (GET_CODE (x) == CONCAT || GET_CODE (y) == CONCAT)
3166 try_int = false;
3167 /* Is possible if both are registers (or subregs of registers). */
3168 else if (register_operand (x, mode) && register_operand (y, mode))
3169 try_int = true;
3170 /* If one of the operands is a memory, and alignment constraints
3171 are friendly enough, we may be able to do combined memory operations.
3172 We do not attempt this if Y is a constant because that combination is
3173 usually better with the by-parts thing below. */
3174 else if ((MEM_P (x) ? !CONSTANT_P (y) : MEM_P (y))
3175 && (!STRICT_ALIGNMENT
3176 || get_mode_alignment (mode) == BIGGEST_ALIGNMENT))
3177 try_int = true;
3178 else
3179 try_int = false;
3180
3181 if (try_int)
3182 {
3183 rtx ret;
3184
3185 /* For memory to memory moves, optimal behavior can be had with the
3186 existing block move logic. */
3187 if (MEM_P (x) && MEM_P (y))
3188 {
3189 emit_block_move (x, y, GEN_INT (GET_MODE_SIZE (mode)),
3190 BLOCK_OP_NO_LIBCALL);
3191 return get_last_insn ();
3192 }
3193
3194 ret = emit_move_via_integer (mode, x, y, true);
3195 if (ret)
3196 return ret;
3197 }
3198
3199 return emit_move_complex_parts (x, y);
3200 }
3201
3202 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
3203 MODE is known to be MODE_CC. Returns the last instruction emitted. */
3204
3205 static rtx
3206 emit_move_ccmode (enum machine_mode mode, rtx x, rtx y)
3207 {
3208 rtx ret;
3209
3210 /* Assume all MODE_CC modes are equivalent; if we have movcc, use it. */
3211 if (mode != CCmode)
3212 {
3213 enum insn_code code = optab_handler (mov_optab, CCmode)->insn_code;
3214 if (code != CODE_FOR_nothing)
3215 {
3216 x = emit_move_change_mode (CCmode, mode, x, true);
3217 y = emit_move_change_mode (CCmode, mode, y, true);
3218 return emit_insn (GEN_FCN (code) (x, y));
3219 }
3220 }
3221
3222 /* Otherwise, find the MODE_INT mode of the same width. */
3223 ret = emit_move_via_integer (mode, x, y, false);
3224 gcc_assert (ret != NULL);
3225 return ret;
3226 }
3227
3228 /* Return true if word I of OP lies entirely in the
3229 undefined bits of a paradoxical subreg. */
3230
3231 static bool
3232 undefined_operand_subword_p (const_rtx op, int i)
3233 {
3234 enum machine_mode innermode, innermostmode;
3235 int offset;
3236 if (GET_CODE (op) != SUBREG)
3237 return false;
3238 innermode = GET_MODE (op);
3239 innermostmode = GET_MODE (SUBREG_REG (op));
3240 offset = i * UNITS_PER_WORD + SUBREG_BYTE (op);
3241 /* The SUBREG_BYTE represents offset, as if the value were stored in
3242 memory, except for a paradoxical subreg where we define
3243 SUBREG_BYTE to be 0; undo this exception as in
3244 simplify_subreg. */
3245 if (SUBREG_BYTE (op) == 0
3246 && GET_MODE_SIZE (innermostmode) < GET_MODE_SIZE (innermode))
3247 {
3248 int difference = (GET_MODE_SIZE (innermostmode) - GET_MODE_SIZE (innermode));
3249 if (WORDS_BIG_ENDIAN)
3250 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
3251 if (BYTES_BIG_ENDIAN)
3252 offset += difference % UNITS_PER_WORD;
3253 }
3254 if (offset >= GET_MODE_SIZE (innermostmode)
3255 || offset <= -GET_MODE_SIZE (word_mode))
3256 return true;
3257 return false;
3258 }
3259
3260 /* A subroutine of emit_move_insn_1. Generate a move from Y into X.
3261 MODE is any multi-word or full-word mode that lacks a move_insn
3262 pattern. Note that you will get better code if you define such
3263 patterns, even if they must turn into multiple assembler instructions. */
3264
3265 static rtx
3266 emit_move_multi_word (enum machine_mode mode, rtx x, rtx y)
3267 {
3268 rtx last_insn = 0;
3269 rtx seq, inner;
3270 bool need_clobber;
3271 int i;
3272
3273 gcc_assert (GET_MODE_SIZE (mode) >= UNITS_PER_WORD);
3274
3275 /* If X is a push on the stack, do the push now and replace
3276 X with a reference to the stack pointer. */
3277 if (push_operand (x, mode))
3278 x = emit_move_resolve_push (mode, x);
3279
3280 /* If we are in reload, see if either operand is a MEM whose address
3281 is scheduled for replacement. */
3282 if (reload_in_progress && MEM_P (x)
3283 && (inner = find_replacement (&XEXP (x, 0))) != XEXP (x, 0))
3284 x = replace_equiv_address_nv (x, inner);
3285 if (reload_in_progress && MEM_P (y)
3286 && (inner = find_replacement (&XEXP (y, 0))) != XEXP (y, 0))
3287 y = replace_equiv_address_nv (y, inner);
3288
3289 start_sequence ();
3290
3291 need_clobber = false;
3292 for (i = 0;
3293 i < (GET_MODE_SIZE (mode) + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD;
3294 i++)
3295 {
3296 rtx xpart = operand_subword (x, i, 1, mode);
3297 rtx ypart;
3298
3299 /* Do not generate code for a move if it would come entirely
3300 from the undefined bits of a paradoxical subreg. */
3301 if (undefined_operand_subword_p (y, i))
3302 continue;
3303
3304 ypart = operand_subword (y, i, 1, mode);
3305
3306 /* If we can't get a part of Y, put Y into memory if it is a
3307 constant. Otherwise, force it into a register. Then we must
3308 be able to get a part of Y. */
3309 if (ypart == 0 && CONSTANT_P (y))
3310 {
3311 y = use_anchored_address (force_const_mem (mode, y));
3312 ypart = operand_subword (y, i, 1, mode);
3313 }
3314 else if (ypart == 0)
3315 ypart = operand_subword_force (y, i, mode);
3316
3317 gcc_assert (xpart && ypart);
3318
3319 need_clobber |= (GET_CODE (xpart) == SUBREG);
3320
3321 last_insn = emit_move_insn (xpart, ypart);
3322 }
3323
3324 seq = get_insns ();
3325 end_sequence ();
3326
3327 /* Show the output dies here. This is necessary for SUBREGs
3328 of pseudos since we cannot track their lifetimes correctly;
3329 hard regs shouldn't appear here except as return values.
3330 We never want to emit such a clobber after reload. */
3331 if (x != y
3332 && ! (reload_in_progress || reload_completed)
3333 && need_clobber != 0)
3334 emit_clobber (x);
3335
3336 emit_insn (seq);
3337
3338 return last_insn;
3339 }
3340
3341 /* Low level part of emit_move_insn.
3342 Called just like emit_move_insn, but assumes X and Y
3343 are basically valid. */
3344
3345 rtx
3346 emit_move_insn_1 (rtx x, rtx y)
3347 {
3348 enum machine_mode mode = GET_MODE (x);
3349 enum insn_code code;
3350
3351 gcc_assert ((unsigned int) mode < (unsigned int) MAX_MACHINE_MODE);
3352
3353 code = optab_handler (mov_optab, mode)->insn_code;
3354 if (code != CODE_FOR_nothing)
3355 return emit_insn (GEN_FCN (code) (x, y));
3356
3357 /* Expand complex moves by moving real part and imag part. */
3358 if (COMPLEX_MODE_P (mode))
3359 return emit_move_complex (mode, x, y);
3360
3361 if (GET_MODE_CLASS (mode) == MODE_DECIMAL_FLOAT
3362 || ALL_FIXED_POINT_MODE_P (mode))
3363 {
3364 rtx result = emit_move_via_integer (mode, x, y, true);
3365
3366 /* If we can't find an integer mode, use multi words. */
3367 if (result)
3368 return result;
3369 else
3370 return emit_move_multi_word (mode, x, y);
3371 }
3372
3373 if (GET_MODE_CLASS (mode) == MODE_CC)
3374 return emit_move_ccmode (mode, x, y);
3375
3376 /* Try using a move pattern for the corresponding integer mode. This is
3377 only safe when simplify_subreg can convert MODE constants into integer
3378 constants. At present, it can only do this reliably if the value
3379 fits within a HOST_WIDE_INT. */
3380 if (!CONSTANT_P (y) || GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT)
3381 {
3382 rtx ret = emit_move_via_integer (mode, x, y, false);
3383 if (ret)
3384 return ret;
3385 }
3386
3387 return emit_move_multi_word (mode, x, y);
3388 }
3389
3390 /* Generate code to copy Y into X.
3391 Both Y and X must have the same mode, except that
3392 Y can be a constant with VOIDmode.
3393 This mode cannot be BLKmode; use emit_block_move for that.
3394
3395 Return the last instruction emitted. */
3396
3397 rtx
3398 emit_move_insn (rtx x, rtx y)
3399 {
3400 enum machine_mode mode = GET_MODE (x);
3401 rtx y_cst = NULL_RTX;
3402 rtx last_insn, set;
3403
3404 gcc_assert (mode != BLKmode
3405 && (GET_MODE (y) == mode || GET_MODE (y) == VOIDmode));
3406
3407 if (CONSTANT_P (y))
3408 {
3409 if (optimize
3410 && SCALAR_FLOAT_MODE_P (GET_MODE (x))
3411 && (last_insn = compress_float_constant (x, y)))
3412 return last_insn;
3413
3414 y_cst = y;
3415
3416 if (!LEGITIMATE_CONSTANT_P (y))
3417 {
3418 y = force_const_mem (mode, y);
3419
3420 /* If the target's cannot_force_const_mem prevented the spill,
3421 assume that the target's move expanders will also take care
3422 of the non-legitimate constant. */
3423 if (!y)
3424 y = y_cst;
3425 else
3426 y = use_anchored_address (y);
3427 }
3428 }
3429
3430 /* If X or Y are memory references, verify that their addresses are valid
3431 for the machine. */
3432 if (MEM_P (x)
3433 && (! memory_address_p (GET_MODE (x), XEXP (x, 0))
3434 && ! push_operand (x, GET_MODE (x))))
3435 x = validize_mem (x);
3436
3437 if (MEM_P (y)
3438 && ! memory_address_p (GET_MODE (y), XEXP (y, 0)))
3439 y = validize_mem (y);
3440
3441 gcc_assert (mode != BLKmode);
3442
3443 last_insn = emit_move_insn_1 (x, y);
3444
3445 if (y_cst && REG_P (x)
3446 && (set = single_set (last_insn)) != NULL_RTX
3447 && SET_DEST (set) == x
3448 && ! rtx_equal_p (y_cst, SET_SRC (set)))
3449 set_unique_reg_note (last_insn, REG_EQUAL, y_cst);
3450
3451 return last_insn;
3452 }
3453
3454 /* If Y is representable exactly in a narrower mode, and the target can
3455 perform the extension directly from constant or memory, then emit the
3456 move as an extension. */
3457
3458 static rtx
3459 compress_float_constant (rtx x, rtx y)
3460 {
3461 enum machine_mode dstmode = GET_MODE (x);
3462 enum machine_mode orig_srcmode = GET_MODE (y);
3463 enum machine_mode srcmode;
3464 REAL_VALUE_TYPE r;
3465 int oldcost, newcost;
3466 bool speed = optimize_insn_for_speed_p ();
3467
3468 REAL_VALUE_FROM_CONST_DOUBLE (r, y);
3469
3470 if (LEGITIMATE_CONSTANT_P (y))
3471 oldcost = rtx_cost (y, SET, speed);
3472 else
3473 oldcost = rtx_cost (force_const_mem (dstmode, y), SET, speed);
3474
3475 for (srcmode = GET_CLASS_NARROWEST_MODE (GET_MODE_CLASS (orig_srcmode));
3476 srcmode != orig_srcmode;
3477 srcmode = GET_MODE_WIDER_MODE (srcmode))
3478 {
3479 enum insn_code ic;
3480 rtx trunc_y, last_insn;
3481
3482 /* Skip if the target can't extend this way. */
3483 ic = can_extend_p (dstmode, srcmode, 0);
3484 if (ic == CODE_FOR_nothing)
3485 continue;
3486
3487 /* Skip if the narrowed value isn't exact. */
3488 if (! exact_real_truncate (srcmode, &r))
3489 continue;
3490
3491 trunc_y = CONST_DOUBLE_FROM_REAL_VALUE (r, srcmode);
3492
3493 if (LEGITIMATE_CONSTANT_P (trunc_y))
3494 {
3495 /* Skip if the target needs extra instructions to perform
3496 the extension. */
3497 if (! (*insn_data[ic].operand[1].predicate) (trunc_y, srcmode))
3498 continue;
3499 /* This is valid, but may not be cheaper than the original. */
3500 newcost = rtx_cost (gen_rtx_FLOAT_EXTEND (dstmode, trunc_y), SET, speed);
3501 if (oldcost < newcost)
3502 continue;
3503 }
3504 else if (float_extend_from_mem[dstmode][srcmode])
3505 {
3506 trunc_y = force_const_mem (srcmode, trunc_y);
3507 /* This is valid, but may not be cheaper than the original. */
3508 newcost = rtx_cost (gen_rtx_FLOAT_EXTEND (dstmode, trunc_y), SET, speed);
3509 if (oldcost < newcost)
3510 continue;
3511 trunc_y = validize_mem (trunc_y);
3512 }
3513 else
3514 continue;
3515
3516 /* For CSE's benefit, force the compressed constant pool entry
3517 into a new pseudo. This constant may be used in different modes,
3518 and if not, combine will put things back together for us. */
3519 trunc_y = force_reg (srcmode, trunc_y);
3520 emit_unop_insn (ic, x, trunc_y, UNKNOWN);
3521 last_insn = get_last_insn ();
3522
3523 if (REG_P (x))
3524 set_unique_reg_note (last_insn, REG_EQUAL, y);
3525
3526 return last_insn;
3527 }
3528
3529 return NULL_RTX;
3530 }
3531
3532 /* Pushing data onto the stack. */
3533
3534 /* Push a block of length SIZE (perhaps variable)
3535 and return an rtx to address the beginning of the block.
3536 The value may be virtual_outgoing_args_rtx.
3537
3538 EXTRA is the number of bytes of padding to push in addition to SIZE.
3539 BELOW nonzero means this padding comes at low addresses;
3540 otherwise, the padding comes at high addresses. */
3541
3542 rtx
3543 push_block (rtx size, int extra, int below)
3544 {
3545 rtx temp;
3546
3547 size = convert_modes (Pmode, ptr_mode, size, 1);
3548 if (CONSTANT_P (size))
3549 anti_adjust_stack (plus_constant (size, extra));
3550 else if (REG_P (size) && extra == 0)
3551 anti_adjust_stack (size);
3552 else
3553 {
3554 temp = copy_to_mode_reg (Pmode, size);
3555 if (extra != 0)
3556 temp = expand_binop (Pmode, add_optab, temp, GEN_INT (extra),
3557 temp, 0, OPTAB_LIB_WIDEN);
3558 anti_adjust_stack (temp);
3559 }
3560
3561 #ifndef STACK_GROWS_DOWNWARD
3562 if (0)
3563 #else
3564 if (1)
3565 #endif
3566 {
3567 temp = virtual_outgoing_args_rtx;
3568 if (extra != 0 && below)
3569 temp = plus_constant (temp, extra);
3570 }
3571 else
3572 {
3573 if (GET_CODE (size) == CONST_INT)
3574 temp = plus_constant (virtual_outgoing_args_rtx,
3575 -INTVAL (size) - (below ? 0 : extra));
3576 else if (extra != 0 && !below)
3577 temp = gen_rtx_PLUS (Pmode, virtual_outgoing_args_rtx,
3578 negate_rtx (Pmode, plus_constant (size, extra)));
3579 else
3580 temp = gen_rtx_PLUS (Pmode, virtual_outgoing_args_rtx,
3581 negate_rtx (Pmode, size));
3582 }
3583
3584 return memory_address (GET_CLASS_NARROWEST_MODE (MODE_INT), temp);
3585 }
3586
3587 #ifdef PUSH_ROUNDING
3588
3589 /* Emit single push insn. */
3590
3591 static void
3592 emit_single_push_insn (enum machine_mode mode, rtx x, tree type)
3593 {
3594 rtx dest_addr;
3595 unsigned rounded_size = PUSH_ROUNDING (GET_MODE_SIZE (mode));
3596 rtx dest;
3597 enum insn_code icode;
3598 insn_operand_predicate_fn pred;
3599
3600 stack_pointer_delta += PUSH_ROUNDING (GET_MODE_SIZE (mode));
3601 /* If there is push pattern, use it. Otherwise try old way of throwing
3602 MEM representing push operation to move expander. */
3603 icode = optab_handler (push_optab, mode)->insn_code;
3604 if (icode != CODE_FOR_nothing)
3605 {
3606 if (((pred = insn_data[(int) icode].operand[0].predicate)
3607 && !((*pred) (x, mode))))
3608 x = force_reg (mode, x);
3609 emit_insn (GEN_FCN (icode) (x));
3610 return;
3611 }
3612 if (GET_MODE_SIZE (mode) == rounded_size)
3613 dest_addr = gen_rtx_fmt_e (STACK_PUSH_CODE, Pmode, stack_pointer_rtx);
3614 /* If we are to pad downward, adjust the stack pointer first and
3615 then store X into the stack location using an offset. This is
3616 because emit_move_insn does not know how to pad; it does not have
3617 access to type. */
3618 else if (FUNCTION_ARG_PADDING (mode, type) == downward)
3619 {
3620 unsigned padding_size = rounded_size - GET_MODE_SIZE (mode);
3621 HOST_WIDE_INT offset;
3622
3623 emit_move_insn (stack_pointer_rtx,
3624 expand_binop (Pmode,
3625 #ifdef STACK_GROWS_DOWNWARD
3626 sub_optab,
3627 #else
3628 add_optab,
3629 #endif
3630 stack_pointer_rtx,
3631 GEN_INT (rounded_size),
3632 NULL_RTX, 0, OPTAB_LIB_WIDEN));
3633
3634 offset = (HOST_WIDE_INT) padding_size;
3635 #ifdef STACK_GROWS_DOWNWARD
3636 if (STACK_PUSH_CODE == POST_DEC)
3637 /* We have already decremented the stack pointer, so get the
3638 previous value. */
3639 offset += (HOST_WIDE_INT) rounded_size;
3640 #else
3641 if (STACK_PUSH_CODE == POST_INC)
3642 /* We have already incremented the stack pointer, so get the
3643 previous value. */
3644 offset -= (HOST_WIDE_INT) rounded_size;
3645 #endif
3646 dest_addr = gen_rtx_PLUS (Pmode, stack_pointer_rtx, GEN_INT (offset));
3647 }
3648 else
3649 {
3650 #ifdef STACK_GROWS_DOWNWARD
3651 /* ??? This seems wrong if STACK_PUSH_CODE == POST_DEC. */
3652 dest_addr = gen_rtx_PLUS (Pmode, stack_pointer_rtx,
3653 GEN_INT (-(HOST_WIDE_INT) rounded_size));
3654 #else
3655 /* ??? This seems wrong if STACK_PUSH_CODE == POST_INC. */
3656 dest_addr = gen_rtx_PLUS (Pmode, stack_pointer_rtx,
3657 GEN_INT (rounded_size));
3658 #endif
3659 dest_addr = gen_rtx_PRE_MODIFY (Pmode, stack_pointer_rtx, dest_addr);
3660 }
3661
3662 dest = gen_rtx_MEM (mode, dest_addr);
3663
3664 if (type != 0)
3665 {
3666 set_mem_attributes (dest, type, 1);
3667
3668 if (flag_optimize_sibling_calls)
3669 /* Function incoming arguments may overlap with sibling call
3670 outgoing arguments and we cannot allow reordering of reads
3671 from function arguments with stores to outgoing arguments
3672 of sibling calls. */
3673 set_mem_alias_set (dest, 0);
3674 }
3675 emit_move_insn (dest, x);
3676 }
3677 #endif
3678
3679 /* Generate code to push X onto the stack, assuming it has mode MODE and
3680 type TYPE.
3681 MODE is redundant except when X is a CONST_INT (since they don't
3682 carry mode info).
3683 SIZE is an rtx for the size of data to be copied (in bytes),
3684 needed only if X is BLKmode.
3685
3686 ALIGN (in bits) is maximum alignment we can assume.
3687
3688 If PARTIAL and REG are both nonzero, then copy that many of the first
3689 bytes of X into registers starting with REG, and push the rest of X.
3690 The amount of space pushed is decreased by PARTIAL bytes.
3691 REG must be a hard register in this case.
3692 If REG is zero but PARTIAL is not, take any all others actions for an
3693 argument partially in registers, but do not actually load any
3694 registers.
3695
3696 EXTRA is the amount in bytes of extra space to leave next to this arg.
3697 This is ignored if an argument block has already been allocated.
3698
3699 On a machine that lacks real push insns, ARGS_ADDR is the address of
3700 the bottom of the argument block for this call. We use indexing off there
3701 to store the arg. On machines with push insns, ARGS_ADDR is 0 when a
3702 argument block has not been preallocated.
3703
3704 ARGS_SO_FAR is the size of args previously pushed for this call.
3705
3706 REG_PARM_STACK_SPACE is nonzero if functions require stack space
3707 for arguments passed in registers. If nonzero, it will be the number
3708 of bytes required. */
3709
3710 void
3711 emit_push_insn (rtx x, enum machine_mode mode, tree type, rtx size,
3712 unsigned int align, int partial, rtx reg, int extra,
3713 rtx args_addr, rtx args_so_far, int reg_parm_stack_space,
3714 rtx alignment_pad)
3715 {
3716 rtx xinner;
3717 enum direction stack_direction
3718 #ifdef STACK_GROWS_DOWNWARD
3719 = downward;
3720 #else
3721 = upward;
3722 #endif
3723
3724 /* Decide where to pad the argument: `downward' for below,
3725 `upward' for above, or `none' for don't pad it.
3726 Default is below for small data on big-endian machines; else above. */
3727 enum direction where_pad = FUNCTION_ARG_PADDING (mode, type);
3728
3729 /* Invert direction if stack is post-decrement.
3730 FIXME: why? */
3731 if (STACK_PUSH_CODE == POST_DEC)
3732 if (where_pad != none)
3733 where_pad = (where_pad == downward ? upward : downward);
3734
3735 xinner = x;
3736
3737 if (mode == BLKmode
3738 || (STRICT_ALIGNMENT && align < GET_MODE_ALIGNMENT (mode)))
3739 {
3740 /* Copy a block into the stack, entirely or partially. */
3741
3742 rtx temp;
3743 int used;
3744 int offset;
3745 int skip;
3746
3747 offset = partial % (PARM_BOUNDARY / BITS_PER_UNIT);
3748 used = partial - offset;
3749
3750 if (mode != BLKmode)
3751 {
3752 /* A value is to be stored in an insufficiently aligned
3753 stack slot; copy via a suitably aligned slot if
3754 necessary. */
3755 size = GEN_INT (GET_MODE_SIZE (mode));
3756 if (!MEM_P (xinner))
3757 {
3758 temp = assign_temp (type, 0, 1, 1);
3759 emit_move_insn (temp, xinner);
3760 xinner = temp;
3761 }
3762 }
3763
3764 gcc_assert (size);
3765
3766 /* USED is now the # of bytes we need not copy to the stack
3767 because registers will take care of them. */
3768
3769 if (partial != 0)
3770 xinner = adjust_address (xinner, BLKmode, used);
3771
3772 /* If the partial register-part of the arg counts in its stack size,
3773 skip the part of stack space corresponding to the registers.
3774 Otherwise, start copying to the beginning of the stack space,
3775 by setting SKIP to 0. */
3776 skip = (reg_parm_stack_space == 0) ? 0 : used;
3777
3778 #ifdef PUSH_ROUNDING
3779 /* Do it with several push insns if that doesn't take lots of insns
3780 and if there is no difficulty with push insns that skip bytes
3781 on the stack for alignment purposes. */
3782 if (args_addr == 0
3783 && PUSH_ARGS
3784 && GET_CODE (size) == CONST_INT
3785 && skip == 0
3786 && MEM_ALIGN (xinner) >= align
3787 && (MOVE_BY_PIECES_P ((unsigned) INTVAL (size) - used, align))
3788 /* Here we avoid the case of a structure whose weak alignment
3789 forces many pushes of a small amount of data,
3790 and such small pushes do rounding that causes trouble. */
3791 && ((! SLOW_UNALIGNED_ACCESS (word_mode, align))
3792 || align >= BIGGEST_ALIGNMENT
3793 || (PUSH_ROUNDING (align / BITS_PER_UNIT)
3794 == (align / BITS_PER_UNIT)))
3795 && PUSH_ROUNDING (INTVAL (size)) == INTVAL (size))
3796 {
3797 /* Push padding now if padding above and stack grows down,
3798 or if padding below and stack grows up.
3799 But if space already allocated, this has already been done. */
3800 if (extra && args_addr == 0
3801 && where_pad != none && where_pad != stack_direction)
3802 anti_adjust_stack (GEN_INT (extra));
3803
3804 move_by_pieces (NULL, xinner, INTVAL (size) - used, align, 0);
3805 }
3806 else
3807 #endif /* PUSH_ROUNDING */
3808 {
3809 rtx target;
3810
3811 /* Otherwise make space on the stack and copy the data
3812 to the address of that space. */
3813
3814 /* Deduct words put into registers from the size we must copy. */
3815 if (partial != 0)
3816 {
3817 if (GET_CODE (size) == CONST_INT)
3818 size = GEN_INT (INTVAL (size) - used);
3819 else
3820 size = expand_binop (GET_MODE (size), sub_optab, size,
3821 GEN_INT (used), NULL_RTX, 0,
3822 OPTAB_LIB_WIDEN);
3823 }
3824
3825 /* Get the address of the stack space.
3826 In this case, we do not deal with EXTRA separately.
3827 A single stack adjust will do. */
3828 if (! args_addr)
3829 {
3830 temp = push_block (size, extra, where_pad == downward);
3831 extra = 0;
3832 }
3833 else if (GET_CODE (args_so_far) == CONST_INT)
3834 temp = memory_address (BLKmode,
3835 plus_constant (args_addr,
3836 skip + INTVAL (args_so_far)));
3837 else
3838 temp = memory_address (BLKmode,
3839 plus_constant (gen_rtx_PLUS (Pmode,
3840 args_addr,
3841 args_so_far),
3842 skip));
3843
3844 if (!ACCUMULATE_OUTGOING_ARGS)
3845 {
3846 /* If the source is referenced relative to the stack pointer,
3847 copy it to another register to stabilize it. We do not need
3848 to do this if we know that we won't be changing sp. */
3849
3850 if (reg_mentioned_p (virtual_stack_dynamic_rtx, temp)
3851 || reg_mentioned_p (virtual_outgoing_args_rtx, temp))
3852 temp = copy_to_reg (temp);
3853 }
3854
3855 target = gen_rtx_MEM (BLKmode, temp);
3856
3857 /* We do *not* set_mem_attributes here, because incoming arguments
3858 may overlap with sibling call outgoing arguments and we cannot
3859 allow reordering of reads from function arguments with stores
3860 to outgoing arguments of sibling calls. We do, however, want
3861 to record the alignment of the stack slot. */
3862 /* ALIGN may well be better aligned than TYPE, e.g. due to
3863 PARM_BOUNDARY. Assume the caller isn't lying. */
3864 set_mem_align (target, align);
3865
3866 emit_block_move (target, xinner, size, BLOCK_OP_CALL_PARM);
3867 }
3868 }
3869 else if (partial > 0)
3870 {
3871 /* Scalar partly in registers. */
3872
3873 int size = GET_MODE_SIZE (mode) / UNITS_PER_WORD;
3874 int i;
3875 int not_stack;
3876 /* # bytes of start of argument
3877 that we must make space for but need not store. */
3878 int offset = partial % (PARM_BOUNDARY / BITS_PER_UNIT);
3879 int args_offset = INTVAL (args_so_far);
3880 int skip;
3881
3882 /* Push padding now if padding above and stack grows down,
3883 or if padding below and stack grows up.
3884 But if space already allocated, this has already been done. */
3885 if (extra && args_addr == 0
3886 && where_pad != none && where_pad != stack_direction)
3887 anti_adjust_stack (GEN_INT (extra));
3888
3889 /* If we make space by pushing it, we might as well push
3890 the real data. Otherwise, we can leave OFFSET nonzero
3891 and leave the space uninitialized. */
3892 if (args_addr == 0)
3893 offset = 0;
3894
3895 /* Now NOT_STACK gets the number of words that we don't need to
3896 allocate on the stack. Convert OFFSET to words too. */
3897 not_stack = (partial - offset) / UNITS_PER_WORD;
3898 offset /= UNITS_PER_WORD;
3899
3900 /* If the partial register-part of the arg counts in its stack size,
3901 skip the part of stack space corresponding to the registers.
3902 Otherwise, start copying to the beginning of the stack space,
3903 by setting SKIP to 0. */
3904 skip = (reg_parm_stack_space == 0) ? 0 : not_stack;
3905
3906 if (CONSTANT_P (x) && ! LEGITIMATE_CONSTANT_P (x))
3907 x = validize_mem (force_const_mem (mode, x));
3908
3909 /* If X is a hard register in a non-integer mode, copy it into a pseudo;
3910 SUBREGs of such registers are not allowed. */
3911 if ((REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER
3912 && GET_MODE_CLASS (GET_MODE (x)) != MODE_INT))
3913 x = copy_to_reg (x);
3914
3915 /* Loop over all the words allocated on the stack for this arg. */
3916 /* We can do it by words, because any scalar bigger than a word
3917 has a size a multiple of a word. */
3918 #ifndef PUSH_ARGS_REVERSED
3919 for (i = not_stack; i < size; i++)
3920 #else
3921 for (i = size - 1; i >= not_stack; i--)
3922 #endif
3923 if (i >= not_stack + offset)
3924 emit_push_insn (operand_subword_force (x, i, mode),
3925 word_mode, NULL_TREE, NULL_RTX, align, 0, NULL_RTX,
3926 0, args_addr,
3927 GEN_INT (args_offset + ((i - not_stack + skip)
3928 * UNITS_PER_WORD)),
3929 reg_parm_stack_space, alignment_pad);
3930 }
3931 else
3932 {
3933 rtx addr;
3934 rtx dest;
3935
3936 /* Push padding now if padding above and stack grows down,
3937 or if padding below and stack grows up.
3938 But if space already allocated, this has already been done. */
3939 if (extra && args_addr == 0
3940 && where_pad != none && where_pad != stack_direction)
3941 anti_adjust_stack (GEN_INT (extra));
3942
3943 #ifdef PUSH_ROUNDING
3944 if (args_addr == 0 && PUSH_ARGS)
3945 emit_single_push_insn (mode, x, type);
3946 else
3947 #endif
3948 {
3949 if (GET_CODE (args_so_far) == CONST_INT)
3950 addr
3951 = memory_address (mode,
3952 plus_constant (args_addr,
3953 INTVAL (args_so_far)));
3954 else
3955 addr = memory_address (mode, gen_rtx_PLUS (Pmode, args_addr,
3956 args_so_far));
3957 dest = gen_rtx_MEM (mode, addr);
3958
3959 /* We do *not* set_mem_attributes here, because incoming arguments
3960 may overlap with sibling call outgoing arguments and we cannot
3961 allow reordering of reads from function arguments with stores
3962 to outgoing arguments of sibling calls. We do, however, want
3963 to record the alignment of the stack slot. */
3964 /* ALIGN may well be better aligned than TYPE, e.g. due to
3965 PARM_BOUNDARY. Assume the caller isn't lying. */
3966 set_mem_align (dest, align);
3967
3968 emit_move_insn (dest, x);
3969 }
3970 }
3971
3972 /* If part should go in registers, copy that part
3973 into the appropriate registers. Do this now, at the end,
3974 since mem-to-mem copies above may do function calls. */
3975 if (partial > 0 && reg != 0)
3976 {
3977 /* Handle calls that pass values in multiple non-contiguous locations.
3978 The Irix 6 ABI has examples of this. */
3979 if (GET_CODE (reg) == PARALLEL)
3980 emit_group_load (reg, x, type, -1);
3981 else
3982 {
3983 gcc_assert (partial % UNITS_PER_WORD == 0);
3984 move_block_to_reg (REGNO (reg), x, partial / UNITS_PER_WORD, mode);
3985 }
3986 }
3987
3988 if (extra && args_addr == 0 && where_pad == stack_direction)
3989 anti_adjust_stack (GEN_INT (extra));
3990
3991 if (alignment_pad && args_addr == 0)
3992 anti_adjust_stack (alignment_pad);
3993 }
3994
3995 /* Return X if X can be used as a subtarget in a sequence of arithmetic
3996 operations. */
3997
3998 static rtx
3999 get_subtarget (rtx x)
4000 {
4001 return (optimize
4002 || x == 0
4003 /* Only registers can be subtargets. */
4004 || !REG_P (x)
4005 /* Don't use hard regs to avoid extending their life. */
4006 || REGNO (x) < FIRST_PSEUDO_REGISTER
4007 ? 0 : x);
4008 }
4009
4010 /* A subroutine of expand_assignment. Optimize FIELD op= VAL, where
4011 FIELD is a bitfield. Returns true if the optimization was successful,
4012 and there's nothing else to do. */
4013
4014 static bool
4015 optimize_bitfield_assignment_op (unsigned HOST_WIDE_INT bitsize,
4016 unsigned HOST_WIDE_INT bitpos,
4017 enum machine_mode mode1, rtx str_rtx,
4018 tree to, tree src)
4019 {
4020 enum machine_mode str_mode = GET_MODE (str_rtx);
4021 unsigned int str_bitsize = GET_MODE_BITSIZE (str_mode);
4022 tree op0, op1;
4023 rtx value, result;
4024 optab binop;
4025
4026 if (mode1 != VOIDmode
4027 || bitsize >= BITS_PER_WORD
4028 || str_bitsize > BITS_PER_WORD
4029 || TREE_SIDE_EFFECTS (to)
4030 || TREE_THIS_VOLATILE (to))
4031 return false;
4032
4033 STRIP_NOPS (src);
4034 if (!BINARY_CLASS_P (src)
4035 || TREE_CODE (TREE_TYPE (src)) != INTEGER_TYPE)
4036 return false;
4037
4038 op0 = TREE_OPERAND (src, 0);
4039 op1 = TREE_OPERAND (src, 1);
4040 STRIP_NOPS (op0);
4041
4042 if (!operand_equal_p (to, op0, 0))
4043 return false;
4044
4045 if (MEM_P (str_rtx))
4046 {
4047 unsigned HOST_WIDE_INT offset1;
4048
4049 if (str_bitsize == 0 || str_bitsize > BITS_PER_WORD)
4050 str_mode = word_mode;
4051 str_mode = get_best_mode (bitsize, bitpos,
4052 MEM_ALIGN (str_rtx), str_mode, 0);
4053 if (str_mode == VOIDmode)
4054 return false;
4055 str_bitsize = GET_MODE_BITSIZE (str_mode);
4056
4057 offset1 = bitpos;
4058 bitpos %= str_bitsize;
4059 offset1 = (offset1 - bitpos) / BITS_PER_UNIT;
4060 str_rtx = adjust_address (str_rtx, str_mode, offset1);
4061 }
4062 else if (!REG_P (str_rtx) && GET_CODE (str_rtx) != SUBREG)
4063 return false;
4064
4065 /* If the bit field covers the whole REG/MEM, store_field
4066 will likely generate better code. */
4067 if (bitsize >= str_bitsize)
4068 return false;
4069
4070 /* We can't handle fields split across multiple entities. */
4071 if (bitpos + bitsize > str_bitsize)
4072 return false;
4073
4074 if (BYTES_BIG_ENDIAN)
4075 bitpos = str_bitsize - bitpos - bitsize;
4076
4077 switch (TREE_CODE (src))
4078 {
4079 case PLUS_EXPR:
4080 case MINUS_EXPR:
4081 /* For now, just optimize the case of the topmost bitfield
4082 where we don't need to do any masking and also
4083 1 bit bitfields where xor can be used.
4084 We might win by one instruction for the other bitfields
4085 too if insv/extv instructions aren't used, so that
4086 can be added later. */
4087 if (bitpos + bitsize != str_bitsize
4088 && (bitsize != 1 || TREE_CODE (op1) != INTEGER_CST))
4089 break;
4090
4091 value = expand_expr (op1, NULL_RTX, str_mode, EXPAND_NORMAL);
4092 value = convert_modes (str_mode,
4093 TYPE_MODE (TREE_TYPE (op1)), value,
4094 TYPE_UNSIGNED (TREE_TYPE (op1)));
4095
4096 /* We may be accessing data outside the field, which means
4097 we can alias adjacent data. */
4098 if (MEM_P (str_rtx))
4099 {
4100 str_rtx = shallow_copy_rtx (str_rtx);
4101 set_mem_alias_set (str_rtx, 0);
4102 set_mem_expr (str_rtx, 0);
4103 }
4104
4105 binop = TREE_CODE (src) == PLUS_EXPR ? add_optab : sub_optab;
4106 if (bitsize == 1 && bitpos + bitsize != str_bitsize)
4107 {
4108 value = expand_and (str_mode, value, const1_rtx, NULL);
4109 binop = xor_optab;
4110 }
4111 value = expand_shift (LSHIFT_EXPR, str_mode, value,
4112 build_int_cst (NULL_TREE, bitpos),
4113 NULL_RTX, 1);
4114 result = expand_binop (str_mode, binop, str_rtx,
4115 value, str_rtx, 1, OPTAB_WIDEN);
4116 if (result != str_rtx)
4117 emit_move_insn (str_rtx, result);
4118 return true;
4119
4120 case BIT_IOR_EXPR:
4121 case BIT_XOR_EXPR:
4122 if (TREE_CODE (op1) != INTEGER_CST)
4123 break;
4124 value = expand_expr (op1, NULL_RTX, GET_MODE (str_rtx), EXPAND_NORMAL);
4125 value = convert_modes (GET_MODE (str_rtx),
4126 TYPE_MODE (TREE_TYPE (op1)), value,
4127 TYPE_UNSIGNED (TREE_TYPE (op1)));
4128
4129 /* We may be accessing data outside the field, which means
4130 we can alias adjacent data. */
4131 if (MEM_P (str_rtx))
4132 {
4133 str_rtx = shallow_copy_rtx (str_rtx);
4134 set_mem_alias_set (str_rtx, 0);
4135 set_mem_expr (str_rtx, 0);
4136 }
4137
4138 binop = TREE_CODE (src) == BIT_IOR_EXPR ? ior_optab : xor_optab;
4139 if (bitpos + bitsize != GET_MODE_BITSIZE (GET_MODE (str_rtx)))
4140 {
4141 rtx mask = GEN_INT (((unsigned HOST_WIDE_INT) 1 << bitsize)
4142 - 1);
4143 value = expand_and (GET_MODE (str_rtx), value, mask,
4144 NULL_RTX);
4145 }
4146 value = expand_shift (LSHIFT_EXPR, GET_MODE (str_rtx), value,
4147 build_int_cst (NULL_TREE, bitpos),
4148 NULL_RTX, 1);
4149 result = expand_binop (GET_MODE (str_rtx), binop, str_rtx,
4150 value, str_rtx, 1, OPTAB_WIDEN);
4151 if (result != str_rtx)
4152 emit_move_insn (str_rtx, result);
4153 return true;
4154
4155 default:
4156 break;
4157 }
4158
4159 return false;
4160 }
4161
4162
4163 /* Expand an assignment that stores the value of FROM into TO. If NONTEMPORAL
4164 is true, try generating a nontemporal store. */
4165
4166 void
4167 expand_assignment (tree to, tree from, bool nontemporal)
4168 {
4169 rtx to_rtx = 0;
4170 rtx result;
4171
4172 /* Don't crash if the lhs of the assignment was erroneous. */
4173 if (TREE_CODE (to) == ERROR_MARK)
4174 {
4175 result = expand_normal (from);
4176 return;
4177 }
4178
4179 /* Optimize away no-op moves without side-effects. */
4180 if (operand_equal_p (to, from, 0))
4181 return;
4182
4183 /* Assignment of a structure component needs special treatment
4184 if the structure component's rtx is not simply a MEM.
4185 Assignment of an array element at a constant index, and assignment of
4186 an array element in an unaligned packed structure field, has the same
4187 problem. */
4188 if (handled_component_p (to)
4189 || TREE_CODE (TREE_TYPE (to)) == ARRAY_TYPE)
4190 {
4191 enum machine_mode mode1;
4192 HOST_WIDE_INT bitsize, bitpos;
4193 tree offset;
4194 int unsignedp;
4195 int volatilep = 0;
4196 tree tem;
4197
4198 push_temp_slots ();
4199 tem = get_inner_reference (to, &bitsize, &bitpos, &offset, &mode1,
4200 &unsignedp, &volatilep, true);
4201
4202 /* If we are going to use store_bit_field and extract_bit_field,
4203 make sure to_rtx will be safe for multiple use. */
4204
4205 to_rtx = expand_normal (tem);
4206
4207 if (offset != 0)
4208 {
4209 rtx offset_rtx;
4210
4211 if (!MEM_P (to_rtx))
4212 {
4213 /* We can get constant negative offsets into arrays with broken
4214 user code. Translate this to a trap instead of ICEing. */
4215 gcc_assert (TREE_CODE (offset) == INTEGER_CST);
4216 expand_builtin_trap ();
4217 to_rtx = gen_rtx_MEM (BLKmode, const0_rtx);
4218 }
4219
4220 offset_rtx = expand_expr (offset, NULL_RTX, VOIDmode, EXPAND_SUM);
4221 #ifdef POINTERS_EXTEND_UNSIGNED
4222 if (GET_MODE (offset_rtx) != Pmode)
4223 offset_rtx = convert_to_mode (Pmode, offset_rtx, 0);
4224 #else
4225 if (GET_MODE (offset_rtx) != ptr_mode)
4226 offset_rtx = convert_to_mode (ptr_mode, offset_rtx, 0);
4227 #endif
4228
4229 /* A constant address in TO_RTX can have VOIDmode, we must not try
4230 to call force_reg for that case. Avoid that case. */
4231 if (MEM_P (to_rtx)
4232 && GET_MODE (to_rtx) == BLKmode
4233 && GET_MODE (XEXP (to_rtx, 0)) != VOIDmode
4234 && bitsize > 0
4235 && (bitpos % bitsize) == 0
4236 && (bitsize % GET_MODE_ALIGNMENT (mode1)) == 0
4237 && MEM_ALIGN (to_rtx) == GET_MODE_ALIGNMENT (mode1))
4238 {
4239 to_rtx = adjust_address (to_rtx, mode1, bitpos / BITS_PER_UNIT);
4240 bitpos = 0;
4241 }
4242
4243 to_rtx = offset_address (to_rtx, offset_rtx,
4244 highest_pow2_factor_for_target (to,
4245 offset));
4246 }
4247
4248 /* Handle expand_expr of a complex value returning a CONCAT. */
4249 if (GET_CODE (to_rtx) == CONCAT)
4250 {
4251 if (TREE_CODE (TREE_TYPE (from)) == COMPLEX_TYPE)
4252 {
4253 gcc_assert (bitpos == 0);
4254 result = store_expr (from, to_rtx, false, nontemporal);
4255 }
4256 else
4257 {
4258 gcc_assert (bitpos == 0 || bitpos == GET_MODE_BITSIZE (mode1));
4259 result = store_expr (from, XEXP (to_rtx, bitpos != 0), false,
4260 nontemporal);
4261 }
4262 }
4263 else
4264 {
4265 if (MEM_P (to_rtx))
4266 {
4267 /* If the field is at offset zero, we could have been given the
4268 DECL_RTX of the parent struct. Don't munge it. */
4269 to_rtx = shallow_copy_rtx (to_rtx);
4270
4271 set_mem_attributes_minus_bitpos (to_rtx, to, 0, bitpos);
4272
4273 /* Deal with volatile and readonly fields. The former is only
4274 done for MEM. Also set MEM_KEEP_ALIAS_SET_P if needed. */
4275 if (volatilep)
4276 MEM_VOLATILE_P (to_rtx) = 1;
4277 if (component_uses_parent_alias_set (to))
4278 MEM_KEEP_ALIAS_SET_P (to_rtx) = 1;
4279 }
4280
4281 if (optimize_bitfield_assignment_op (bitsize, bitpos, mode1,
4282 to_rtx, to, from))
4283 result = NULL;
4284 else
4285 result = store_field (to_rtx, bitsize, bitpos, mode1, from,
4286 TREE_TYPE (tem), get_alias_set (to),
4287 nontemporal);
4288 }
4289
4290 if (result)
4291 preserve_temp_slots (result);
4292 free_temp_slots ();
4293 pop_temp_slots ();
4294 return;
4295 }
4296
4297 /* If the rhs is a function call and its value is not an aggregate,
4298 call the function before we start to compute the lhs.
4299 This is needed for correct code for cases such as
4300 val = setjmp (buf) on machines where reference to val
4301 requires loading up part of an address in a separate insn.
4302
4303 Don't do this if TO is a VAR_DECL or PARM_DECL whose DECL_RTL is REG
4304 since it might be a promoted variable where the zero- or sign- extension
4305 needs to be done. Handling this in the normal way is safe because no
4306 computation is done before the call. */
4307 if (TREE_CODE (from) == CALL_EXPR && ! aggregate_value_p (from, from)
4308 && COMPLETE_TYPE_P (TREE_TYPE (from))
4309 && TREE_CODE (TYPE_SIZE (TREE_TYPE (from))) == INTEGER_CST
4310 && ! ((TREE_CODE (to) == VAR_DECL || TREE_CODE (to) == PARM_DECL)
4311 && REG_P (DECL_RTL (to))))
4312 {
4313 rtx value;
4314
4315 push_temp_slots ();
4316 value = expand_normal (from);
4317 if (to_rtx == 0)
4318 to_rtx = expand_expr (to, NULL_RTX, VOIDmode, EXPAND_WRITE);
4319
4320 /* Handle calls that return values in multiple non-contiguous locations.
4321 The Irix 6 ABI has examples of this. */
4322 if (GET_CODE (to_rtx) == PARALLEL)
4323 emit_group_load (to_rtx, value, TREE_TYPE (from),
4324 int_size_in_bytes (TREE_TYPE (from)));
4325 else if (GET_MODE (to_rtx) == BLKmode)
4326 emit_block_move (to_rtx, value, expr_size (from), BLOCK_OP_NORMAL);
4327 else
4328 {
4329 if (POINTER_TYPE_P (TREE_TYPE (to)))
4330 value = convert_memory_address (GET_MODE (to_rtx), value);
4331 emit_move_insn (to_rtx, value);
4332 }
4333 preserve_temp_slots (to_rtx);
4334 free_temp_slots ();
4335 pop_temp_slots ();
4336 return;
4337 }
4338
4339 /* Ordinary treatment. Expand TO to get a REG or MEM rtx.
4340 Don't re-expand if it was expanded already (in COMPONENT_REF case). */
4341
4342 if (to_rtx == 0)
4343 to_rtx = expand_expr (to, NULL_RTX, VOIDmode, EXPAND_WRITE);
4344
4345 /* Don't move directly into a return register. */
4346 if (TREE_CODE (to) == RESULT_DECL
4347 && (REG_P (to_rtx) || GET_CODE (to_rtx) == PARALLEL))
4348 {
4349 rtx temp;
4350
4351 push_temp_slots ();
4352 temp = expand_expr (from, NULL_RTX, GET_MODE (to_rtx), EXPAND_NORMAL);
4353
4354 if (GET_CODE (to_rtx) == PARALLEL)
4355 emit_group_load (to_rtx, temp, TREE_TYPE (from),
4356 int_size_in_bytes (TREE_TYPE (from)));
4357 else
4358 emit_move_insn (to_rtx, temp);
4359
4360 preserve_temp_slots (to_rtx);
4361 free_temp_slots ();
4362 pop_temp_slots ();
4363 return;
4364 }
4365
4366 /* In case we are returning the contents of an object which overlaps
4367 the place the value is being stored, use a safe function when copying
4368 a value through a pointer into a structure value return block. */
4369 if (TREE_CODE (to) == RESULT_DECL && TREE_CODE (from) == INDIRECT_REF
4370 && cfun->returns_struct
4371 && !cfun->returns_pcc_struct)
4372 {
4373 rtx from_rtx, size;
4374
4375 push_temp_slots ();
4376 size = expr_size (from);
4377 from_rtx = expand_normal (from);
4378
4379 emit_library_call (memmove_libfunc, LCT_NORMAL,
4380 VOIDmode, 3, XEXP (to_rtx, 0), Pmode,
4381 XEXP (from_rtx, 0), Pmode,
4382 convert_to_mode (TYPE_MODE (sizetype),
4383 size, TYPE_UNSIGNED (sizetype)),
4384 TYPE_MODE (sizetype));
4385
4386 preserve_temp_slots (to_rtx);
4387 free_temp_slots ();
4388 pop_temp_slots ();
4389 return;
4390 }
4391
4392 /* Compute FROM and store the value in the rtx we got. */
4393
4394 push_temp_slots ();
4395 result = store_expr (from, to_rtx, 0, nontemporal);
4396 preserve_temp_slots (result);
4397 free_temp_slots ();
4398 pop_temp_slots ();
4399 return;
4400 }
4401
4402 /* Emits nontemporal store insn that moves FROM to TO. Returns true if this
4403 succeeded, false otherwise. */
4404
4405 static bool
4406 emit_storent_insn (rtx to, rtx from)
4407 {
4408 enum machine_mode mode = GET_MODE (to), imode;
4409 enum insn_code code = optab_handler (storent_optab, mode)->insn_code;
4410 rtx pattern;
4411
4412 if (code == CODE_FOR_nothing)
4413 return false;
4414
4415 imode = insn_data[code].operand[0].mode;
4416 if (!insn_data[code].operand[0].predicate (to, imode))
4417 return false;
4418
4419 imode = insn_data[code].operand[1].mode;
4420 if (!insn_data[code].operand[1].predicate (from, imode))
4421 {
4422 from = copy_to_mode_reg (imode, from);
4423 if (!insn_data[code].operand[1].predicate (from, imode))
4424 return false;
4425 }
4426
4427 pattern = GEN_FCN (code) (to, from);
4428 if (pattern == NULL_RTX)
4429 return false;
4430
4431 emit_insn (pattern);
4432 return true;
4433 }
4434
4435 /* Generate code for computing expression EXP,
4436 and storing the value into TARGET.
4437
4438 If the mode is BLKmode then we may return TARGET itself.
4439 It turns out that in BLKmode it doesn't cause a problem.
4440 because C has no operators that could combine two different
4441 assignments into the same BLKmode object with different values
4442 with no sequence point. Will other languages need this to
4443 be more thorough?
4444
4445 If CALL_PARAM_P is nonzero, this is a store into a call param on the
4446 stack, and block moves may need to be treated specially.
4447
4448 If NONTEMPORAL is true, try using a nontemporal store instruction. */
4449
4450 rtx
4451 store_expr (tree exp, rtx target, int call_param_p, bool nontemporal)
4452 {
4453 rtx temp;
4454 rtx alt_rtl = NULL_RTX;
4455 int dont_return_target = 0;
4456
4457 if (VOID_TYPE_P (TREE_TYPE (exp)))
4458 {
4459 /* C++ can generate ?: expressions with a throw expression in one
4460 branch and an rvalue in the other. Here, we resolve attempts to
4461 store the throw expression's nonexistent result. */
4462 gcc_assert (!call_param_p);
4463 expand_expr (exp, const0_rtx, VOIDmode, EXPAND_NORMAL);
4464 return NULL_RTX;
4465 }
4466 if (TREE_CODE (exp) == COMPOUND_EXPR)
4467 {
4468 /* Perform first part of compound expression, then assign from second
4469 part. */
4470 expand_expr (TREE_OPERAND (exp, 0), const0_rtx, VOIDmode,
4471 call_param_p ? EXPAND_STACK_PARM : EXPAND_NORMAL);
4472 return store_expr (TREE_OPERAND (exp, 1), target, call_param_p,
4473 nontemporal);
4474 }
4475 else if (TREE_CODE (exp) == COND_EXPR && GET_MODE (target) == BLKmode)
4476 {
4477 /* For conditional expression, get safe form of the target. Then
4478 test the condition, doing the appropriate assignment on either
4479 side. This avoids the creation of unnecessary temporaries.
4480 For non-BLKmode, it is more efficient not to do this. */
4481
4482 rtx lab1 = gen_label_rtx (), lab2 = gen_label_rtx ();
4483
4484 do_pending_stack_adjust ();
4485 NO_DEFER_POP;
4486 jumpifnot (TREE_OPERAND (exp, 0), lab1);
4487 store_expr (TREE_OPERAND (exp, 1), target, call_param_p,
4488 nontemporal);
4489 emit_jump_insn (gen_jump (lab2));
4490 emit_barrier ();
4491 emit_label (lab1);
4492 store_expr (TREE_OPERAND (exp, 2), target, call_param_p,
4493 nontemporal);
4494 emit_label (lab2);
4495 OK_DEFER_POP;
4496
4497 return NULL_RTX;
4498 }
4499 else if (GET_CODE (target) == SUBREG && SUBREG_PROMOTED_VAR_P (target))
4500 /* If this is a scalar in a register that is stored in a wider mode
4501 than the declared mode, compute the result into its declared mode
4502 and then convert to the wider mode. Our value is the computed
4503 expression. */
4504 {
4505 rtx inner_target = 0;
4506
4507 /* We can do the conversion inside EXP, which will often result
4508 in some optimizations. Do the conversion in two steps: first
4509 change the signedness, if needed, then the extend. But don't
4510 do this if the type of EXP is a subtype of something else
4511 since then the conversion might involve more than just
4512 converting modes. */
4513 if (INTEGRAL_TYPE_P (TREE_TYPE (exp))
4514 && TREE_TYPE (TREE_TYPE (exp)) == 0
4515 && GET_MODE_PRECISION (GET_MODE (target))
4516 == TYPE_PRECISION (TREE_TYPE (exp)))
4517 {
4518 if (TYPE_UNSIGNED (TREE_TYPE (exp))
4519 != SUBREG_PROMOTED_UNSIGNED_P (target))
4520 {
4521 /* Some types, e.g. Fortran's logical*4, won't have a signed
4522 version, so use the mode instead. */
4523 tree ntype
4524 = (signed_or_unsigned_type_for
4525 (SUBREG_PROMOTED_UNSIGNED_P (target), TREE_TYPE (exp)));
4526 if (ntype == NULL)
4527 ntype = lang_hooks.types.type_for_mode
4528 (TYPE_MODE (TREE_TYPE (exp)),
4529 SUBREG_PROMOTED_UNSIGNED_P (target));
4530
4531 exp = fold_convert (ntype, exp);
4532 }
4533
4534 exp = fold_convert (lang_hooks.types.type_for_mode
4535 (GET_MODE (SUBREG_REG (target)),
4536 SUBREG_PROMOTED_UNSIGNED_P (target)),
4537 exp);
4538
4539 inner_target = SUBREG_REG (target);
4540 }
4541
4542 temp = expand_expr (exp, inner_target, VOIDmode,
4543 call_param_p ? EXPAND_STACK_PARM : EXPAND_NORMAL);
4544
4545 /* If TEMP is a VOIDmode constant, use convert_modes to make
4546 sure that we properly convert it. */
4547 if (CONSTANT_P (temp) && GET_MODE (temp) == VOIDmode)
4548 {
4549 temp = convert_modes (GET_MODE (target), TYPE_MODE (TREE_TYPE (exp)),
4550 temp, SUBREG_PROMOTED_UNSIGNED_P (target));
4551 temp = convert_modes (GET_MODE (SUBREG_REG (target)),
4552 GET_MODE (target), temp,
4553 SUBREG_PROMOTED_UNSIGNED_P (target));
4554 }
4555
4556 convert_move (SUBREG_REG (target), temp,
4557 SUBREG_PROMOTED_UNSIGNED_P (target));
4558
4559 return NULL_RTX;
4560 }
4561 else if (TREE_CODE (exp) == STRING_CST
4562 && !nontemporal && !call_param_p
4563 && TREE_STRING_LENGTH (exp) > 0
4564 && TYPE_MODE (TREE_TYPE (exp)) == BLKmode)
4565 {
4566 /* Optimize initialization of an array with a STRING_CST. */
4567 HOST_WIDE_INT exp_len, str_copy_len;
4568 rtx dest_mem;
4569
4570 exp_len = int_expr_size (exp);
4571 if (exp_len <= 0)
4572 goto normal_expr;
4573
4574 str_copy_len = strlen (TREE_STRING_POINTER (exp));
4575 if (str_copy_len < TREE_STRING_LENGTH (exp) - 1)
4576 goto normal_expr;
4577
4578 str_copy_len = TREE_STRING_LENGTH (exp);
4579 if ((STORE_MAX_PIECES & (STORE_MAX_PIECES - 1)) == 0)
4580 {
4581 str_copy_len += STORE_MAX_PIECES - 1;
4582 str_copy_len &= ~(STORE_MAX_PIECES - 1);
4583 }
4584 str_copy_len = MIN (str_copy_len, exp_len);
4585 if (!can_store_by_pieces (str_copy_len, builtin_strncpy_read_str,
4586 CONST_CAST(char *, TREE_STRING_POINTER (exp)),
4587 MEM_ALIGN (target), false))
4588 goto normal_expr;
4589
4590 dest_mem = target;
4591
4592 dest_mem = store_by_pieces (dest_mem,
4593 str_copy_len, builtin_strncpy_read_str,
4594 CONST_CAST(char *, TREE_STRING_POINTER (exp)),
4595 MEM_ALIGN (target), false,
4596 exp_len > str_copy_len ? 1 : 0);
4597 if (exp_len > str_copy_len)
4598 clear_storage (adjust_address (dest_mem, BLKmode, 0),
4599 GEN_INT (exp_len - str_copy_len),
4600 BLOCK_OP_NORMAL);
4601 return NULL_RTX;
4602 }
4603 else
4604 {
4605 rtx tmp_target;
4606
4607 normal_expr:
4608 /* If we want to use a nontemporal store, force the value to
4609 register first. */
4610 tmp_target = nontemporal ? NULL_RTX : target;
4611 temp = expand_expr_real (exp, tmp_target, GET_MODE (target),
4612 (call_param_p
4613 ? EXPAND_STACK_PARM : EXPAND_NORMAL),
4614 &alt_rtl);
4615 /* Return TARGET if it's a specified hardware register.
4616 If TARGET is a volatile mem ref, either return TARGET
4617 or return a reg copied *from* TARGET; ANSI requires this.
4618
4619 Otherwise, if TEMP is not TARGET, return TEMP
4620 if it is constant (for efficiency),
4621 or if we really want the correct value. */
4622 if (!(target && REG_P (target)
4623 && REGNO (target) < FIRST_PSEUDO_REGISTER)
4624 && !(MEM_P (target) && MEM_VOLATILE_P (target))
4625 && ! rtx_equal_p (temp, target)
4626 && CONSTANT_P (temp))
4627 dont_return_target = 1;
4628 }
4629
4630 /* If TEMP is a VOIDmode constant and the mode of the type of EXP is not
4631 the same as that of TARGET, adjust the constant. This is needed, for
4632 example, in case it is a CONST_DOUBLE and we want only a word-sized
4633 value. */
4634 if (CONSTANT_P (temp) && GET_MODE (temp) == VOIDmode
4635 && TREE_CODE (exp) != ERROR_MARK
4636 && GET_MODE (target) != TYPE_MODE (TREE_TYPE (exp)))
4637 temp = convert_modes (GET_MODE (target), TYPE_MODE (TREE_TYPE (exp)),
4638 temp, TYPE_UNSIGNED (TREE_TYPE (exp)));
4639
4640 /* If value was not generated in the target, store it there.
4641 Convert the value to TARGET's type first if necessary and emit the
4642 pending incrementations that have been queued when expanding EXP.
4643 Note that we cannot emit the whole queue blindly because this will
4644 effectively disable the POST_INC optimization later.
4645
4646 If TEMP and TARGET compare equal according to rtx_equal_p, but
4647 one or both of them are volatile memory refs, we have to distinguish
4648 two cases:
4649 - expand_expr has used TARGET. In this case, we must not generate
4650 another copy. This can be detected by TARGET being equal according
4651 to == .
4652 - expand_expr has not used TARGET - that means that the source just
4653 happens to have the same RTX form. Since temp will have been created
4654 by expand_expr, it will compare unequal according to == .
4655 We must generate a copy in this case, to reach the correct number
4656 of volatile memory references. */
4657
4658 if ((! rtx_equal_p (temp, target)
4659 || (temp != target && (side_effects_p (temp)
4660 || side_effects_p (target))))
4661 && TREE_CODE (exp) != ERROR_MARK
4662 /* If store_expr stores a DECL whose DECL_RTL(exp) == TARGET,
4663 but TARGET is not valid memory reference, TEMP will differ
4664 from TARGET although it is really the same location. */
4665 && !(alt_rtl && rtx_equal_p (alt_rtl, target))
4666 /* If there's nothing to copy, don't bother. Don't call
4667 expr_size unless necessary, because some front-ends (C++)
4668 expr_size-hook must not be given objects that are not
4669 supposed to be bit-copied or bit-initialized. */
4670 && expr_size (exp) != const0_rtx)
4671 {
4672 if (GET_MODE (temp) != GET_MODE (target)
4673 && GET_MODE (temp) != VOIDmode)
4674 {
4675 int unsignedp = TYPE_UNSIGNED (TREE_TYPE (exp));
4676 if (dont_return_target)
4677 {
4678 /* In this case, we will return TEMP,
4679 so make sure it has the proper mode.
4680 But don't forget to store the value into TARGET. */
4681 temp = convert_to_mode (GET_MODE (target), temp, unsignedp);
4682 emit_move_insn (target, temp);
4683 }
4684 else if (GET_MODE (target) == BLKmode
4685 || GET_MODE (temp) == BLKmode)
4686 emit_block_move (target, temp, expr_size (exp),
4687 (call_param_p
4688 ? BLOCK_OP_CALL_PARM
4689 : BLOCK_OP_NORMAL));
4690 else
4691 convert_move (target, temp, unsignedp);
4692 }
4693
4694 else if (GET_MODE (temp) == BLKmode && TREE_CODE (exp) == STRING_CST)
4695 {
4696 /* Handle copying a string constant into an array. The string
4697 constant may be shorter than the array. So copy just the string's
4698 actual length, and clear the rest. First get the size of the data
4699 type of the string, which is actually the size of the target. */
4700 rtx size = expr_size (exp);
4701
4702 if (GET_CODE (size) == CONST_INT
4703 && INTVAL (size) < TREE_STRING_LENGTH (exp))
4704 emit_block_move (target, temp, size,
4705 (call_param_p
4706 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
4707 else
4708 {
4709 /* Compute the size of the data to copy from the string. */
4710 tree copy_size
4711 = size_binop (MIN_EXPR,
4712 make_tree (sizetype, size),
4713 size_int (TREE_STRING_LENGTH (exp)));
4714 rtx copy_size_rtx
4715 = expand_expr (copy_size, NULL_RTX, VOIDmode,
4716 (call_param_p
4717 ? EXPAND_STACK_PARM : EXPAND_NORMAL));
4718 rtx label = 0;
4719
4720 /* Copy that much. */
4721 copy_size_rtx = convert_to_mode (ptr_mode, copy_size_rtx,
4722 TYPE_UNSIGNED (sizetype));
4723 emit_block_move (target, temp, copy_size_rtx,
4724 (call_param_p
4725 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
4726
4727 /* Figure out how much is left in TARGET that we have to clear.
4728 Do all calculations in ptr_mode. */
4729 if (GET_CODE (copy_size_rtx) == CONST_INT)
4730 {
4731 size = plus_constant (size, -INTVAL (copy_size_rtx));
4732 target = adjust_address (target, BLKmode,
4733 INTVAL (copy_size_rtx));
4734 }
4735 else
4736 {
4737 size = expand_binop (TYPE_MODE (sizetype), sub_optab, size,
4738 copy_size_rtx, NULL_RTX, 0,
4739 OPTAB_LIB_WIDEN);
4740
4741 #ifdef POINTERS_EXTEND_UNSIGNED
4742 if (GET_MODE (copy_size_rtx) != Pmode)
4743 copy_size_rtx = convert_to_mode (Pmode, copy_size_rtx,
4744 TYPE_UNSIGNED (sizetype));
4745 #endif
4746
4747 target = offset_address (target, copy_size_rtx,
4748 highest_pow2_factor (copy_size));
4749 label = gen_label_rtx ();
4750 emit_cmp_and_jump_insns (size, const0_rtx, LT, NULL_RTX,
4751 GET_MODE (size), 0, label);
4752 }
4753
4754 if (size != const0_rtx)
4755 clear_storage (target, size, BLOCK_OP_NORMAL);
4756
4757 if (label)
4758 emit_label (label);
4759 }
4760 }
4761 /* Handle calls that return values in multiple non-contiguous locations.
4762 The Irix 6 ABI has examples of this. */
4763 else if (GET_CODE (target) == PARALLEL)
4764 emit_group_load (target, temp, TREE_TYPE (exp),
4765 int_size_in_bytes (TREE_TYPE (exp)));
4766 else if (GET_MODE (temp) == BLKmode)
4767 emit_block_move (target, temp, expr_size (exp),
4768 (call_param_p
4769 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
4770 else if (nontemporal
4771 && emit_storent_insn (target, temp))
4772 /* If we managed to emit a nontemporal store, there is nothing else to
4773 do. */
4774 ;
4775 else
4776 {
4777 temp = force_operand (temp, target);
4778 if (temp != target)
4779 emit_move_insn (target, temp);
4780 }
4781 }
4782
4783 return NULL_RTX;
4784 }
4785
4786 /* Helper for categorize_ctor_elements. Identical interface. */
4787
4788 static bool
4789 categorize_ctor_elements_1 (const_tree ctor, HOST_WIDE_INT *p_nz_elts,
4790 HOST_WIDE_INT *p_elt_count,
4791 bool *p_must_clear)
4792 {
4793 unsigned HOST_WIDE_INT idx;
4794 HOST_WIDE_INT nz_elts, elt_count;
4795 tree value, purpose;
4796
4797 /* Whether CTOR is a valid constant initializer, in accordance with what
4798 initializer_constant_valid_p does. If inferred from the constructor
4799 elements, true until proven otherwise. */
4800 bool const_from_elts_p = constructor_static_from_elts_p (ctor);
4801 bool const_p = const_from_elts_p ? true : TREE_STATIC (ctor);
4802
4803 nz_elts = 0;
4804 elt_count = 0;
4805
4806 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (ctor), idx, purpose, value)
4807 {
4808 HOST_WIDE_INT mult;
4809
4810 mult = 1;
4811 if (TREE_CODE (purpose) == RANGE_EXPR)
4812 {
4813 tree lo_index = TREE_OPERAND (purpose, 0);
4814 tree hi_index = TREE_OPERAND (purpose, 1);
4815
4816 if (host_integerp (lo_index, 1) && host_integerp (hi_index, 1))
4817 mult = (tree_low_cst (hi_index, 1)
4818 - tree_low_cst (lo_index, 1) + 1);
4819 }
4820
4821 switch (TREE_CODE (value))
4822 {
4823 case CONSTRUCTOR:
4824 {
4825 HOST_WIDE_INT nz = 0, ic = 0;
4826
4827 bool const_elt_p
4828 = categorize_ctor_elements_1 (value, &nz, &ic, p_must_clear);
4829
4830 nz_elts += mult * nz;
4831 elt_count += mult * ic;
4832
4833 if (const_from_elts_p && const_p)
4834 const_p = const_elt_p;
4835 }
4836 break;
4837
4838 case INTEGER_CST:
4839 case REAL_CST:
4840 case FIXED_CST:
4841 if (!initializer_zerop (value))
4842 nz_elts += mult;
4843 elt_count += mult;
4844 break;
4845
4846 case STRING_CST:
4847 nz_elts += mult * TREE_STRING_LENGTH (value);
4848 elt_count += mult * TREE_STRING_LENGTH (value);
4849 break;
4850
4851 case COMPLEX_CST:
4852 if (!initializer_zerop (TREE_REALPART (value)))
4853 nz_elts += mult;
4854 if (!initializer_zerop (TREE_IMAGPART (value)))
4855 nz_elts += mult;
4856 elt_count += mult;
4857 break;
4858
4859 case VECTOR_CST:
4860 {
4861 tree v;
4862 for (v = TREE_VECTOR_CST_ELTS (value); v; v = TREE_CHAIN (v))
4863 {
4864 if (!initializer_zerop (TREE_VALUE (v)))
4865 nz_elts += mult;
4866 elt_count += mult;
4867 }
4868 }
4869 break;
4870
4871 default:
4872 nz_elts += mult;
4873 elt_count += mult;
4874
4875 if (const_from_elts_p && const_p)
4876 const_p = initializer_constant_valid_p (value, TREE_TYPE (value))
4877 != NULL_TREE;
4878 break;
4879 }
4880 }
4881
4882 if (!*p_must_clear
4883 && (TREE_CODE (TREE_TYPE (ctor)) == UNION_TYPE
4884 || TREE_CODE (TREE_TYPE (ctor)) == QUAL_UNION_TYPE))
4885 {
4886 tree init_sub_type;
4887 bool clear_this = true;
4888
4889 if (!VEC_empty (constructor_elt, CONSTRUCTOR_ELTS (ctor)))
4890 {
4891 /* We don't expect more than one element of the union to be
4892 initialized. Not sure what we should do otherwise... */
4893 gcc_assert (VEC_length (constructor_elt, CONSTRUCTOR_ELTS (ctor))
4894 == 1);
4895
4896 init_sub_type = TREE_TYPE (VEC_index (constructor_elt,
4897 CONSTRUCTOR_ELTS (ctor),
4898 0)->value);
4899
4900 /* ??? We could look at each element of the union, and find the
4901 largest element. Which would avoid comparing the size of the
4902 initialized element against any tail padding in the union.
4903 Doesn't seem worth the effort... */
4904 if (simple_cst_equal (TYPE_SIZE (TREE_TYPE (ctor)),
4905 TYPE_SIZE (init_sub_type)) == 1)
4906 {
4907 /* And now we have to find out if the element itself is fully
4908 constructed. E.g. for union { struct { int a, b; } s; } u
4909 = { .s = { .a = 1 } }. */
4910 if (elt_count == count_type_elements (init_sub_type, false))
4911 clear_this = false;
4912 }
4913 }
4914
4915 *p_must_clear = clear_this;
4916 }
4917
4918 *p_nz_elts += nz_elts;
4919 *p_elt_count += elt_count;
4920
4921 return const_p;
4922 }
4923
4924 /* Examine CTOR to discover:
4925 * how many scalar fields are set to nonzero values,
4926 and place it in *P_NZ_ELTS;
4927 * how many scalar fields in total are in CTOR,
4928 and place it in *P_ELT_COUNT.
4929 * if a type is a union, and the initializer from the constructor
4930 is not the largest element in the union, then set *p_must_clear.
4931
4932 Return whether or not CTOR is a valid static constant initializer, the same
4933 as "initializer_constant_valid_p (CTOR, TREE_TYPE (CTOR)) != 0". */
4934
4935 bool
4936 categorize_ctor_elements (const_tree ctor, HOST_WIDE_INT *p_nz_elts,
4937 HOST_WIDE_INT *p_elt_count,
4938 bool *p_must_clear)
4939 {
4940 *p_nz_elts = 0;
4941 *p_elt_count = 0;
4942 *p_must_clear = false;
4943
4944 return
4945 categorize_ctor_elements_1 (ctor, p_nz_elts, p_elt_count, p_must_clear);
4946 }
4947
4948 /* Count the number of scalars in TYPE. Return -1 on overflow or
4949 variable-sized. If ALLOW_FLEXARR is true, don't count flexible
4950 array member at the end of the structure. */
4951
4952 HOST_WIDE_INT
4953 count_type_elements (const_tree type, bool allow_flexarr)
4954 {
4955 const HOST_WIDE_INT max = ~((HOST_WIDE_INT)1 << (HOST_BITS_PER_WIDE_INT-1));
4956 switch (TREE_CODE (type))
4957 {
4958 case ARRAY_TYPE:
4959 {
4960 tree telts = array_type_nelts (type);
4961 if (telts && host_integerp (telts, 1))
4962 {
4963 HOST_WIDE_INT n = tree_low_cst (telts, 1) + 1;
4964 HOST_WIDE_INT m = count_type_elements (TREE_TYPE (type), false);
4965 if (n == 0)
4966 return 0;
4967 else if (max / n > m)
4968 return n * m;
4969 }
4970 return -1;
4971 }
4972
4973 case RECORD_TYPE:
4974 {
4975 HOST_WIDE_INT n = 0, t;
4976 tree f;
4977
4978 for (f = TYPE_FIELDS (type); f ; f = TREE_CHAIN (f))
4979 if (TREE_CODE (f) == FIELD_DECL)
4980 {
4981 t = count_type_elements (TREE_TYPE (f), false);
4982 if (t < 0)
4983 {
4984 /* Check for structures with flexible array member. */
4985 tree tf = TREE_TYPE (f);
4986 if (allow_flexarr
4987 && TREE_CHAIN (f) == NULL
4988 && TREE_CODE (tf) == ARRAY_TYPE
4989 && TYPE_DOMAIN (tf)
4990 && TYPE_MIN_VALUE (TYPE_DOMAIN (tf))
4991 && integer_zerop (TYPE_MIN_VALUE (TYPE_DOMAIN (tf)))
4992 && !TYPE_MAX_VALUE (TYPE_DOMAIN (tf))
4993 && int_size_in_bytes (type) >= 0)
4994 break;
4995
4996 return -1;
4997 }
4998 n += t;
4999 }
5000
5001 return n;
5002 }
5003
5004 case UNION_TYPE:
5005 case QUAL_UNION_TYPE:
5006 return -1;
5007
5008 case COMPLEX_TYPE:
5009 return 2;
5010
5011 case VECTOR_TYPE:
5012 return TYPE_VECTOR_SUBPARTS (type);
5013
5014 case INTEGER_TYPE:
5015 case REAL_TYPE:
5016 case FIXED_POINT_TYPE:
5017 case ENUMERAL_TYPE:
5018 case BOOLEAN_TYPE:
5019 case POINTER_TYPE:
5020 case OFFSET_TYPE:
5021 case REFERENCE_TYPE:
5022 return 1;
5023
5024 case ERROR_MARK:
5025 return 0;
5026
5027 case VOID_TYPE:
5028 case METHOD_TYPE:
5029 case FUNCTION_TYPE:
5030 case LANG_TYPE:
5031 default:
5032 gcc_unreachable ();
5033 }
5034 }
5035
5036 /* Return 1 if EXP contains mostly (3/4) zeros. */
5037
5038 static int
5039 mostly_zeros_p (const_tree exp)
5040 {
5041 if (TREE_CODE (exp) == CONSTRUCTOR)
5042
5043 {
5044 HOST_WIDE_INT nz_elts, count, elts;
5045 bool must_clear;
5046
5047 categorize_ctor_elements (exp, &nz_elts, &count, &must_clear);
5048 if (must_clear)
5049 return 1;
5050
5051 elts = count_type_elements (TREE_TYPE (exp), false);
5052
5053 return nz_elts < elts / 4;
5054 }
5055
5056 return initializer_zerop (exp);
5057 }
5058
5059 /* Return 1 if EXP contains all zeros. */
5060
5061 static int
5062 all_zeros_p (const_tree exp)
5063 {
5064 if (TREE_CODE (exp) == CONSTRUCTOR)
5065
5066 {
5067 HOST_WIDE_INT nz_elts, count;
5068 bool must_clear;
5069
5070 categorize_ctor_elements (exp, &nz_elts, &count, &must_clear);
5071 return nz_elts == 0;
5072 }
5073
5074 return initializer_zerop (exp);
5075 }
5076
5077 /* Helper function for store_constructor.
5078 TARGET, BITSIZE, BITPOS, MODE, EXP are as for store_field.
5079 TYPE is the type of the CONSTRUCTOR, not the element type.
5080 CLEARED is as for store_constructor.
5081 ALIAS_SET is the alias set to use for any stores.
5082
5083 This provides a recursive shortcut back to store_constructor when it isn't
5084 necessary to go through store_field. This is so that we can pass through
5085 the cleared field to let store_constructor know that we may not have to
5086 clear a substructure if the outer structure has already been cleared. */
5087
5088 static void
5089 store_constructor_field (rtx target, unsigned HOST_WIDE_INT bitsize,
5090 HOST_WIDE_INT bitpos, enum machine_mode mode,
5091 tree exp, tree type, int cleared,
5092 alias_set_type alias_set)
5093 {
5094 if (TREE_CODE (exp) == CONSTRUCTOR
5095 /* We can only call store_constructor recursively if the size and
5096 bit position are on a byte boundary. */
5097 && bitpos % BITS_PER_UNIT == 0
5098 && (bitsize > 0 && bitsize % BITS_PER_UNIT == 0)
5099 /* If we have a nonzero bitpos for a register target, then we just
5100 let store_field do the bitfield handling. This is unlikely to
5101 generate unnecessary clear instructions anyways. */
5102 && (bitpos == 0 || MEM_P (target)))
5103 {
5104 if (MEM_P (target))
5105 target
5106 = adjust_address (target,
5107 GET_MODE (target) == BLKmode
5108 || 0 != (bitpos
5109 % GET_MODE_ALIGNMENT (GET_MODE (target)))
5110 ? BLKmode : VOIDmode, bitpos / BITS_PER_UNIT);
5111
5112
5113 /* Update the alias set, if required. */
5114 if (MEM_P (target) && ! MEM_KEEP_ALIAS_SET_P (target)
5115 && MEM_ALIAS_SET (target) != 0)
5116 {
5117 target = copy_rtx (target);
5118 set_mem_alias_set (target, alias_set);
5119 }
5120
5121 store_constructor (exp, target, cleared, bitsize / BITS_PER_UNIT);
5122 }
5123 else
5124 store_field (target, bitsize, bitpos, mode, exp, type, alias_set, false);
5125 }
5126
5127 /* Store the value of constructor EXP into the rtx TARGET.
5128 TARGET is either a REG or a MEM; we know it cannot conflict, since
5129 safe_from_p has been called.
5130 CLEARED is true if TARGET is known to have been zero'd.
5131 SIZE is the number of bytes of TARGET we are allowed to modify: this
5132 may not be the same as the size of EXP if we are assigning to a field
5133 which has been packed to exclude padding bits. */
5134
5135 static void
5136 store_constructor (tree exp, rtx target, int cleared, HOST_WIDE_INT size)
5137 {
5138 tree type = TREE_TYPE (exp);
5139 #ifdef WORD_REGISTER_OPERATIONS
5140 HOST_WIDE_INT exp_size = int_size_in_bytes (type);
5141 #endif
5142
5143 switch (TREE_CODE (type))
5144 {
5145 case RECORD_TYPE:
5146 case UNION_TYPE:
5147 case QUAL_UNION_TYPE:
5148 {
5149 unsigned HOST_WIDE_INT idx;
5150 tree field, value;
5151
5152 /* If size is zero or the target is already cleared, do nothing. */
5153 if (size == 0 || cleared)
5154 cleared = 1;
5155 /* We either clear the aggregate or indicate the value is dead. */
5156 else if ((TREE_CODE (type) == UNION_TYPE
5157 || TREE_CODE (type) == QUAL_UNION_TYPE)
5158 && ! CONSTRUCTOR_ELTS (exp))
5159 /* If the constructor is empty, clear the union. */
5160 {
5161 clear_storage (target, expr_size (exp), BLOCK_OP_NORMAL);
5162 cleared = 1;
5163 }
5164
5165 /* If we are building a static constructor into a register,
5166 set the initial value as zero so we can fold the value into
5167 a constant. But if more than one register is involved,
5168 this probably loses. */
5169 else if (REG_P (target) && TREE_STATIC (exp)
5170 && GET_MODE_SIZE (GET_MODE (target)) <= UNITS_PER_WORD)
5171 {
5172 emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
5173 cleared = 1;
5174 }
5175
5176 /* If the constructor has fewer fields than the structure or
5177 if we are initializing the structure to mostly zeros, clear
5178 the whole structure first. Don't do this if TARGET is a
5179 register whose mode size isn't equal to SIZE since
5180 clear_storage can't handle this case. */
5181 else if (size > 0
5182 && (((int)VEC_length (constructor_elt, CONSTRUCTOR_ELTS (exp))
5183 != fields_length (type))
5184 || mostly_zeros_p (exp))
5185 && (!REG_P (target)
5186 || ((HOST_WIDE_INT) GET_MODE_SIZE (GET_MODE (target))
5187 == size)))
5188 {
5189 clear_storage (target, GEN_INT (size), BLOCK_OP_NORMAL);
5190 cleared = 1;
5191 }
5192
5193 if (REG_P (target) && !cleared)
5194 emit_clobber (target);
5195
5196 /* Store each element of the constructor into the
5197 corresponding field of TARGET. */
5198 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp), idx, field, value)
5199 {
5200 enum machine_mode mode;
5201 HOST_WIDE_INT bitsize;
5202 HOST_WIDE_INT bitpos = 0;
5203 tree offset;
5204 rtx to_rtx = target;
5205
5206 /* Just ignore missing fields. We cleared the whole
5207 structure, above, if any fields are missing. */
5208 if (field == 0)
5209 continue;
5210
5211 if (cleared && initializer_zerop (value))
5212 continue;
5213
5214 if (host_integerp (DECL_SIZE (field), 1))
5215 bitsize = tree_low_cst (DECL_SIZE (field), 1);
5216 else
5217 bitsize = -1;
5218
5219 mode = DECL_MODE (field);
5220 if (DECL_BIT_FIELD (field))
5221 mode = VOIDmode;
5222
5223 offset = DECL_FIELD_OFFSET (field);
5224 if (host_integerp (offset, 0)
5225 && host_integerp (bit_position (field), 0))
5226 {
5227 bitpos = int_bit_position (field);
5228 offset = 0;
5229 }
5230 else
5231 bitpos = tree_low_cst (DECL_FIELD_BIT_OFFSET (field), 0);
5232
5233 if (offset)
5234 {
5235 rtx offset_rtx;
5236
5237 offset
5238 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (offset,
5239 make_tree (TREE_TYPE (exp),
5240 target));
5241
5242 offset_rtx = expand_normal (offset);
5243 gcc_assert (MEM_P (to_rtx));
5244
5245 #ifdef POINTERS_EXTEND_UNSIGNED
5246 if (GET_MODE (offset_rtx) != Pmode)
5247 offset_rtx = convert_to_mode (Pmode, offset_rtx, 0);
5248 #else
5249 if (GET_MODE (offset_rtx) != ptr_mode)
5250 offset_rtx = convert_to_mode (ptr_mode, offset_rtx, 0);
5251 #endif
5252
5253 to_rtx = offset_address (to_rtx, offset_rtx,
5254 highest_pow2_factor (offset));
5255 }
5256
5257 #ifdef WORD_REGISTER_OPERATIONS
5258 /* If this initializes a field that is smaller than a
5259 word, at the start of a word, try to widen it to a full
5260 word. This special case allows us to output C++ member
5261 function initializations in a form that the optimizers
5262 can understand. */
5263 if (REG_P (target)
5264 && bitsize < BITS_PER_WORD
5265 && bitpos % BITS_PER_WORD == 0
5266 && GET_MODE_CLASS (mode) == MODE_INT
5267 && TREE_CODE (value) == INTEGER_CST
5268 && exp_size >= 0
5269 && bitpos + BITS_PER_WORD <= exp_size * BITS_PER_UNIT)
5270 {
5271 tree type = TREE_TYPE (value);
5272
5273 if (TYPE_PRECISION (type) < BITS_PER_WORD)
5274 {
5275 type = lang_hooks.types.type_for_size
5276 (BITS_PER_WORD, TYPE_UNSIGNED (type));
5277 value = fold_convert (type, value);
5278 }
5279
5280 if (BYTES_BIG_ENDIAN)
5281 value
5282 = fold_build2 (LSHIFT_EXPR, type, value,
5283 build_int_cst (type,
5284 BITS_PER_WORD - bitsize));
5285 bitsize = BITS_PER_WORD;
5286 mode = word_mode;
5287 }
5288 #endif
5289
5290 if (MEM_P (to_rtx) && !MEM_KEEP_ALIAS_SET_P (to_rtx)
5291 && DECL_NONADDRESSABLE_P (field))
5292 {
5293 to_rtx = copy_rtx (to_rtx);
5294 MEM_KEEP_ALIAS_SET_P (to_rtx) = 1;
5295 }
5296
5297 store_constructor_field (to_rtx, bitsize, bitpos, mode,
5298 value, type, cleared,
5299 get_alias_set (TREE_TYPE (field)));
5300 }
5301 break;
5302 }
5303 case ARRAY_TYPE:
5304 {
5305 tree value, index;
5306 unsigned HOST_WIDE_INT i;
5307 int need_to_clear;
5308 tree domain;
5309 tree elttype = TREE_TYPE (type);
5310 int const_bounds_p;
5311 HOST_WIDE_INT minelt = 0;
5312 HOST_WIDE_INT maxelt = 0;
5313
5314 domain = TYPE_DOMAIN (type);
5315 const_bounds_p = (TYPE_MIN_VALUE (domain)
5316 && TYPE_MAX_VALUE (domain)
5317 && host_integerp (TYPE_MIN_VALUE (domain), 0)
5318 && host_integerp (TYPE_MAX_VALUE (domain), 0));
5319
5320 /* If we have constant bounds for the range of the type, get them. */
5321 if (const_bounds_p)
5322 {
5323 minelt = tree_low_cst (TYPE_MIN_VALUE (domain), 0);
5324 maxelt = tree_low_cst (TYPE_MAX_VALUE (domain), 0);
5325 }
5326
5327 /* If the constructor has fewer elements than the array, clear
5328 the whole array first. Similarly if this is static
5329 constructor of a non-BLKmode object. */
5330 if (cleared)
5331 need_to_clear = 0;
5332 else if (REG_P (target) && TREE_STATIC (exp))
5333 need_to_clear = 1;
5334 else
5335 {
5336 unsigned HOST_WIDE_INT idx;
5337 tree index, value;
5338 HOST_WIDE_INT count = 0, zero_count = 0;
5339 need_to_clear = ! const_bounds_p;
5340
5341 /* This loop is a more accurate version of the loop in
5342 mostly_zeros_p (it handles RANGE_EXPR in an index). It
5343 is also needed to check for missing elements. */
5344 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp), idx, index, value)
5345 {
5346 HOST_WIDE_INT this_node_count;
5347
5348 if (need_to_clear)
5349 break;
5350
5351 if (index != NULL_TREE && TREE_CODE (index) == RANGE_EXPR)
5352 {
5353 tree lo_index = TREE_OPERAND (index, 0);
5354 tree hi_index = TREE_OPERAND (index, 1);
5355
5356 if (! host_integerp (lo_index, 1)
5357 || ! host_integerp (hi_index, 1))
5358 {
5359 need_to_clear = 1;
5360 break;
5361 }
5362
5363 this_node_count = (tree_low_cst (hi_index, 1)
5364 - tree_low_cst (lo_index, 1) + 1);
5365 }
5366 else
5367 this_node_count = 1;
5368
5369 count += this_node_count;
5370 if (mostly_zeros_p (value))
5371 zero_count += this_node_count;
5372 }
5373
5374 /* Clear the entire array first if there are any missing
5375 elements, or if the incidence of zero elements is >=
5376 75%. */
5377 if (! need_to_clear
5378 && (count < maxelt - minelt + 1
5379 || 4 * zero_count >= 3 * count))
5380 need_to_clear = 1;
5381 }
5382
5383 if (need_to_clear && size > 0)
5384 {
5385 if (REG_P (target))
5386 emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
5387 else
5388 clear_storage (target, GEN_INT (size), BLOCK_OP_NORMAL);
5389 cleared = 1;
5390 }
5391
5392 if (!cleared && REG_P (target))
5393 /* Inform later passes that the old value is dead. */
5394 emit_clobber (target);
5395
5396 /* Store each element of the constructor into the
5397 corresponding element of TARGET, determined by counting the
5398 elements. */
5399 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp), i, index, value)
5400 {
5401 enum machine_mode mode;
5402 HOST_WIDE_INT bitsize;
5403 HOST_WIDE_INT bitpos;
5404 int unsignedp;
5405 rtx xtarget = target;
5406
5407 if (cleared && initializer_zerop (value))
5408 continue;
5409
5410 unsignedp = TYPE_UNSIGNED (elttype);
5411 mode = TYPE_MODE (elttype);
5412 if (mode == BLKmode)
5413 bitsize = (host_integerp (TYPE_SIZE (elttype), 1)
5414 ? tree_low_cst (TYPE_SIZE (elttype), 1)
5415 : -1);
5416 else
5417 bitsize = GET_MODE_BITSIZE (mode);
5418
5419 if (index != NULL_TREE && TREE_CODE (index) == RANGE_EXPR)
5420 {
5421 tree lo_index = TREE_OPERAND (index, 0);
5422 tree hi_index = TREE_OPERAND (index, 1);
5423 rtx index_r, pos_rtx;
5424 HOST_WIDE_INT lo, hi, count;
5425 tree position;
5426
5427 /* If the range is constant and "small", unroll the loop. */
5428 if (const_bounds_p
5429 && host_integerp (lo_index, 0)
5430 && host_integerp (hi_index, 0)
5431 && (lo = tree_low_cst (lo_index, 0),
5432 hi = tree_low_cst (hi_index, 0),
5433 count = hi - lo + 1,
5434 (!MEM_P (target)
5435 || count <= 2
5436 || (host_integerp (TYPE_SIZE (elttype), 1)
5437 && (tree_low_cst (TYPE_SIZE (elttype), 1) * count
5438 <= 40 * 8)))))
5439 {
5440 lo -= minelt; hi -= minelt;
5441 for (; lo <= hi; lo++)
5442 {
5443 bitpos = lo * tree_low_cst (TYPE_SIZE (elttype), 0);
5444
5445 if (MEM_P (target)
5446 && !MEM_KEEP_ALIAS_SET_P (target)
5447 && TREE_CODE (type) == ARRAY_TYPE
5448 && TYPE_NONALIASED_COMPONENT (type))
5449 {
5450 target = copy_rtx (target);
5451 MEM_KEEP_ALIAS_SET_P (target) = 1;
5452 }
5453
5454 store_constructor_field
5455 (target, bitsize, bitpos, mode, value, type, cleared,
5456 get_alias_set (elttype));
5457 }
5458 }
5459 else
5460 {
5461 rtx loop_start = gen_label_rtx ();
5462 rtx loop_end = gen_label_rtx ();
5463 tree exit_cond;
5464
5465 expand_normal (hi_index);
5466 unsignedp = TYPE_UNSIGNED (domain);
5467
5468 index = build_decl (VAR_DECL, NULL_TREE, domain);
5469
5470 index_r
5471 = gen_reg_rtx (promote_mode (domain, DECL_MODE (index),
5472 &unsignedp, 0));
5473 SET_DECL_RTL (index, index_r);
5474 store_expr (lo_index, index_r, 0, false);
5475
5476 /* Build the head of the loop. */
5477 do_pending_stack_adjust ();
5478 emit_label (loop_start);
5479
5480 /* Assign value to element index. */
5481 position =
5482 fold_convert (ssizetype,
5483 fold_build2 (MINUS_EXPR,
5484 TREE_TYPE (index),
5485 index,
5486 TYPE_MIN_VALUE (domain)));
5487
5488 position =
5489 size_binop (MULT_EXPR, position,
5490 fold_convert (ssizetype,
5491 TYPE_SIZE_UNIT (elttype)));
5492
5493 pos_rtx = expand_normal (position);
5494 xtarget = offset_address (target, pos_rtx,
5495 highest_pow2_factor (position));
5496 xtarget = adjust_address (xtarget, mode, 0);
5497 if (TREE_CODE (value) == CONSTRUCTOR)
5498 store_constructor (value, xtarget, cleared,
5499 bitsize / BITS_PER_UNIT);
5500 else
5501 store_expr (value, xtarget, 0, false);
5502
5503 /* Generate a conditional jump to exit the loop. */
5504 exit_cond = build2 (LT_EXPR, integer_type_node,
5505 index, hi_index);
5506 jumpif (exit_cond, loop_end);
5507
5508 /* Update the loop counter, and jump to the head of
5509 the loop. */
5510 expand_assignment (index,
5511 build2 (PLUS_EXPR, TREE_TYPE (index),
5512 index, integer_one_node),
5513 false);
5514
5515 emit_jump (loop_start);
5516
5517 /* Build the end of the loop. */
5518 emit_label (loop_end);
5519 }
5520 }
5521 else if ((index != 0 && ! host_integerp (index, 0))
5522 || ! host_integerp (TYPE_SIZE (elttype), 1))
5523 {
5524 tree position;
5525
5526 if (index == 0)
5527 index = ssize_int (1);
5528
5529 if (minelt)
5530 index = fold_convert (ssizetype,
5531 fold_build2 (MINUS_EXPR,
5532 TREE_TYPE (index),
5533 index,
5534 TYPE_MIN_VALUE (domain)));
5535
5536 position =
5537 size_binop (MULT_EXPR, index,
5538 fold_convert (ssizetype,
5539 TYPE_SIZE_UNIT (elttype)));
5540 xtarget = offset_address (target,
5541 expand_normal (position),
5542 highest_pow2_factor (position));
5543 xtarget = adjust_address (xtarget, mode, 0);
5544 store_expr (value, xtarget, 0, false);
5545 }
5546 else
5547 {
5548 if (index != 0)
5549 bitpos = ((tree_low_cst (index, 0) - minelt)
5550 * tree_low_cst (TYPE_SIZE (elttype), 1));
5551 else
5552 bitpos = (i * tree_low_cst (TYPE_SIZE (elttype), 1));
5553
5554 if (MEM_P (target) && !MEM_KEEP_ALIAS_SET_P (target)
5555 && TREE_CODE (type) == ARRAY_TYPE
5556 && TYPE_NONALIASED_COMPONENT (type))
5557 {
5558 target = copy_rtx (target);
5559 MEM_KEEP_ALIAS_SET_P (target) = 1;
5560 }
5561 store_constructor_field (target, bitsize, bitpos, mode, value,
5562 type, cleared, get_alias_set (elttype));
5563 }
5564 }
5565 break;
5566 }
5567
5568 case VECTOR_TYPE:
5569 {
5570 unsigned HOST_WIDE_INT idx;
5571 constructor_elt *ce;
5572 int i;
5573 int need_to_clear;
5574 int icode = 0;
5575 tree elttype = TREE_TYPE (type);
5576 int elt_size = tree_low_cst (TYPE_SIZE (elttype), 1);
5577 enum machine_mode eltmode = TYPE_MODE (elttype);
5578 HOST_WIDE_INT bitsize;
5579 HOST_WIDE_INT bitpos;
5580 rtvec vector = NULL;
5581 unsigned n_elts;
5582 alias_set_type alias;
5583
5584 gcc_assert (eltmode != BLKmode);
5585
5586 n_elts = TYPE_VECTOR_SUBPARTS (type);
5587 if (REG_P (target) && VECTOR_MODE_P (GET_MODE (target)))
5588 {
5589 enum machine_mode mode = GET_MODE (target);
5590
5591 icode = (int) optab_handler (vec_init_optab, mode)->insn_code;
5592 if (icode != CODE_FOR_nothing)
5593 {
5594 unsigned int i;
5595
5596 vector = rtvec_alloc (n_elts);
5597 for (i = 0; i < n_elts; i++)
5598 RTVEC_ELT (vector, i) = CONST0_RTX (GET_MODE_INNER (mode));
5599 }
5600 }
5601
5602 /* If the constructor has fewer elements than the vector,
5603 clear the whole array first. Similarly if this is static
5604 constructor of a non-BLKmode object. */
5605 if (cleared)
5606 need_to_clear = 0;
5607 else if (REG_P (target) && TREE_STATIC (exp))
5608 need_to_clear = 1;
5609 else
5610 {
5611 unsigned HOST_WIDE_INT count = 0, zero_count = 0;
5612 tree value;
5613
5614 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (exp), idx, value)
5615 {
5616 int n_elts_here = tree_low_cst
5617 (int_const_binop (TRUNC_DIV_EXPR,
5618 TYPE_SIZE (TREE_TYPE (value)),
5619 TYPE_SIZE (elttype), 0), 1);
5620
5621 count += n_elts_here;
5622 if (mostly_zeros_p (value))
5623 zero_count += n_elts_here;
5624 }
5625
5626 /* Clear the entire vector first if there are any missing elements,
5627 or if the incidence of zero elements is >= 75%. */
5628 need_to_clear = (count < n_elts || 4 * zero_count >= 3 * count);
5629 }
5630
5631 if (need_to_clear && size > 0 && !vector)
5632 {
5633 if (REG_P (target))
5634 emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
5635 else
5636 clear_storage (target, GEN_INT (size), BLOCK_OP_NORMAL);
5637 cleared = 1;
5638 }
5639
5640 /* Inform later passes that the old value is dead. */
5641 if (!cleared && !vector && REG_P (target))
5642 emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
5643
5644 if (MEM_P (target))
5645 alias = MEM_ALIAS_SET (target);
5646 else
5647 alias = get_alias_set (elttype);
5648
5649 /* Store each element of the constructor into the corresponding
5650 element of TARGET, determined by counting the elements. */
5651 for (idx = 0, i = 0;
5652 VEC_iterate (constructor_elt, CONSTRUCTOR_ELTS (exp), idx, ce);
5653 idx++, i += bitsize / elt_size)
5654 {
5655 HOST_WIDE_INT eltpos;
5656 tree value = ce->value;
5657
5658 bitsize = tree_low_cst (TYPE_SIZE (TREE_TYPE (value)), 1);
5659 if (cleared && initializer_zerop (value))
5660 continue;
5661
5662 if (ce->index)
5663 eltpos = tree_low_cst (ce->index, 1);
5664 else
5665 eltpos = i;
5666
5667 if (vector)
5668 {
5669 /* Vector CONSTRUCTORs should only be built from smaller
5670 vectors in the case of BLKmode vectors. */
5671 gcc_assert (TREE_CODE (TREE_TYPE (value)) != VECTOR_TYPE);
5672 RTVEC_ELT (vector, eltpos)
5673 = expand_normal (value);
5674 }
5675 else
5676 {
5677 enum machine_mode value_mode =
5678 TREE_CODE (TREE_TYPE (value)) == VECTOR_TYPE
5679 ? TYPE_MODE (TREE_TYPE (value))
5680 : eltmode;
5681 bitpos = eltpos * elt_size;
5682 store_constructor_field (target, bitsize, bitpos,
5683 value_mode, value, type,
5684 cleared, alias);
5685 }
5686 }
5687
5688 if (vector)
5689 emit_insn (GEN_FCN (icode)
5690 (target,
5691 gen_rtx_PARALLEL (GET_MODE (target), vector)));
5692 break;
5693 }
5694
5695 default:
5696 gcc_unreachable ();
5697 }
5698 }
5699
5700 /* Store the value of EXP (an expression tree)
5701 into a subfield of TARGET which has mode MODE and occupies
5702 BITSIZE bits, starting BITPOS bits from the start of TARGET.
5703 If MODE is VOIDmode, it means that we are storing into a bit-field.
5704
5705 Always return const0_rtx unless we have something particular to
5706 return.
5707
5708 TYPE is the type of the underlying object,
5709
5710 ALIAS_SET is the alias set for the destination. This value will
5711 (in general) be different from that for TARGET, since TARGET is a
5712 reference to the containing structure.
5713
5714 If NONTEMPORAL is true, try generating a nontemporal store. */
5715
5716 static rtx
5717 store_field (rtx target, HOST_WIDE_INT bitsize, HOST_WIDE_INT bitpos,
5718 enum machine_mode mode, tree exp, tree type,
5719 alias_set_type alias_set, bool nontemporal)
5720 {
5721 HOST_WIDE_INT width_mask = 0;
5722
5723 if (TREE_CODE (exp) == ERROR_MARK)
5724 return const0_rtx;
5725
5726 /* If we have nothing to store, do nothing unless the expression has
5727 side-effects. */
5728 if (bitsize == 0)
5729 return expand_expr (exp, const0_rtx, VOIDmode, EXPAND_NORMAL);
5730 else if (bitsize >= 0 && bitsize < HOST_BITS_PER_WIDE_INT)
5731 width_mask = ((HOST_WIDE_INT) 1 << bitsize) - 1;
5732
5733 /* If we are storing into an unaligned field of an aligned union that is
5734 in a register, we may have the mode of TARGET being an integer mode but
5735 MODE == BLKmode. In that case, get an aligned object whose size and
5736 alignment are the same as TARGET and store TARGET into it (we can avoid
5737 the store if the field being stored is the entire width of TARGET). Then
5738 call ourselves recursively to store the field into a BLKmode version of
5739 that object. Finally, load from the object into TARGET. This is not
5740 very efficient in general, but should only be slightly more expensive
5741 than the otherwise-required unaligned accesses. Perhaps this can be
5742 cleaned up later. It's tempting to make OBJECT readonly, but it's set
5743 twice, once with emit_move_insn and once via store_field. */
5744
5745 if (mode == BLKmode
5746 && (REG_P (target) || GET_CODE (target) == SUBREG))
5747 {
5748 rtx object = assign_temp (type, 0, 1, 1);
5749 rtx blk_object = adjust_address (object, BLKmode, 0);
5750
5751 if (bitsize != (HOST_WIDE_INT) GET_MODE_BITSIZE (GET_MODE (target)))
5752 emit_move_insn (object, target);
5753
5754 store_field (blk_object, bitsize, bitpos, mode, exp, type, alias_set,
5755 nontemporal);
5756
5757 emit_move_insn (target, object);
5758
5759 /* We want to return the BLKmode version of the data. */
5760 return blk_object;
5761 }
5762
5763 if (GET_CODE (target) == CONCAT)
5764 {
5765 /* We're storing into a struct containing a single __complex. */
5766
5767 gcc_assert (!bitpos);
5768 return store_expr (exp, target, 0, nontemporal);
5769 }
5770
5771 /* If the structure is in a register or if the component
5772 is a bit field, we cannot use addressing to access it.
5773 Use bit-field techniques or SUBREG to store in it. */
5774
5775 if (mode == VOIDmode
5776 || (mode != BLKmode && ! direct_store[(int) mode]
5777 && GET_MODE_CLASS (mode) != MODE_COMPLEX_INT
5778 && GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT)
5779 || REG_P (target)
5780 || GET_CODE (target) == SUBREG
5781 /* If the field isn't aligned enough to store as an ordinary memref,
5782 store it as a bit field. */
5783 || (mode != BLKmode
5784 && ((((MEM_ALIGN (target) < GET_MODE_ALIGNMENT (mode))
5785 || bitpos % GET_MODE_ALIGNMENT (mode))
5786 && SLOW_UNALIGNED_ACCESS (mode, MEM_ALIGN (target)))
5787 || (bitpos % BITS_PER_UNIT != 0)))
5788 /* If the RHS and field are a constant size and the size of the
5789 RHS isn't the same size as the bitfield, we must use bitfield
5790 operations. */
5791 || (bitsize >= 0
5792 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp))) == INTEGER_CST
5793 && compare_tree_int (TYPE_SIZE (TREE_TYPE (exp)), bitsize) != 0))
5794 {
5795 rtx temp;
5796
5797 /* If EXP is a NOP_EXPR of precision less than its mode, then that
5798 implies a mask operation. If the precision is the same size as
5799 the field we're storing into, that mask is redundant. This is
5800 particularly common with bit field assignments generated by the
5801 C front end. */
5802 if (TREE_CODE (exp) == NOP_EXPR)
5803 {
5804 tree type = TREE_TYPE (exp);
5805 if (INTEGRAL_TYPE_P (type)
5806 && TYPE_PRECISION (type) < GET_MODE_BITSIZE (TYPE_MODE (type))
5807 && bitsize == TYPE_PRECISION (type))
5808 {
5809 type = TREE_TYPE (TREE_OPERAND (exp, 0));
5810 if (INTEGRAL_TYPE_P (type) && TYPE_PRECISION (type) >= bitsize)
5811 exp = TREE_OPERAND (exp, 0);
5812 }
5813 }
5814
5815 temp = expand_normal (exp);
5816
5817 /* If BITSIZE is narrower than the size of the type of EXP
5818 we will be narrowing TEMP. Normally, what's wanted are the
5819 low-order bits. However, if EXP's type is a record and this is
5820 big-endian machine, we want the upper BITSIZE bits. */
5821 if (BYTES_BIG_ENDIAN && GET_MODE_CLASS (GET_MODE (temp)) == MODE_INT
5822 && bitsize < (HOST_WIDE_INT) GET_MODE_BITSIZE (GET_MODE (temp))
5823 && TREE_CODE (TREE_TYPE (exp)) == RECORD_TYPE)
5824 temp = expand_shift (RSHIFT_EXPR, GET_MODE (temp), temp,
5825 size_int (GET_MODE_BITSIZE (GET_MODE (temp))
5826 - bitsize),
5827 NULL_RTX, 1);
5828
5829 /* Unless MODE is VOIDmode or BLKmode, convert TEMP to
5830 MODE. */
5831 if (mode != VOIDmode && mode != BLKmode
5832 && mode != TYPE_MODE (TREE_TYPE (exp)))
5833 temp = convert_modes (mode, TYPE_MODE (TREE_TYPE (exp)), temp, 1);
5834
5835 /* If the modes of TEMP and TARGET are both BLKmode, both
5836 must be in memory and BITPOS must be aligned on a byte
5837 boundary. If so, we simply do a block copy. Likewise
5838 for a BLKmode-like TARGET. */
5839 if (GET_MODE (temp) == BLKmode
5840 && (GET_MODE (target) == BLKmode
5841 || (MEM_P (target)
5842 && GET_MODE_CLASS (GET_MODE (target)) == MODE_INT
5843 && (bitpos % BITS_PER_UNIT) == 0
5844 && (bitsize % BITS_PER_UNIT) == 0)))
5845 {
5846 gcc_assert (MEM_P (target) && MEM_P (temp)
5847 && (bitpos % BITS_PER_UNIT) == 0);
5848
5849 target = adjust_address (target, VOIDmode, bitpos / BITS_PER_UNIT);
5850 emit_block_move (target, temp,
5851 GEN_INT ((bitsize + BITS_PER_UNIT - 1)
5852 / BITS_PER_UNIT),
5853 BLOCK_OP_NORMAL);
5854
5855 return const0_rtx;
5856 }
5857
5858 /* Store the value in the bitfield. */
5859 store_bit_field (target, bitsize, bitpos, mode, temp);
5860
5861 return const0_rtx;
5862 }
5863 else
5864 {
5865 /* Now build a reference to just the desired component. */
5866 rtx to_rtx = adjust_address (target, mode, bitpos / BITS_PER_UNIT);
5867
5868 if (to_rtx == target)
5869 to_rtx = copy_rtx (to_rtx);
5870
5871 MEM_SET_IN_STRUCT_P (to_rtx, 1);
5872 if (!MEM_KEEP_ALIAS_SET_P (to_rtx) && MEM_ALIAS_SET (to_rtx) != 0)
5873 set_mem_alias_set (to_rtx, alias_set);
5874
5875 return store_expr (exp, to_rtx, 0, nontemporal);
5876 }
5877 }
5878
5879 /* Given an expression EXP that may be a COMPONENT_REF, a BIT_FIELD_REF,
5880 an ARRAY_REF, or an ARRAY_RANGE_REF, look for nested operations of these
5881 codes and find the ultimate containing object, which we return.
5882
5883 We set *PBITSIZE to the size in bits that we want, *PBITPOS to the
5884 bit position, and *PUNSIGNEDP to the signedness of the field.
5885 If the position of the field is variable, we store a tree
5886 giving the variable offset (in units) in *POFFSET.
5887 This offset is in addition to the bit position.
5888 If the position is not variable, we store 0 in *POFFSET.
5889
5890 If any of the extraction expressions is volatile,
5891 we store 1 in *PVOLATILEP. Otherwise we don't change that.
5892
5893 If the field is a non-BLKmode bit-field, *PMODE is set to VOIDmode.
5894 Otherwise, it is a mode that can be used to access the field.
5895
5896 If the field describes a variable-sized object, *PMODE is set to
5897 BLKmode and *PBITSIZE is set to -1. An access cannot be made in
5898 this case, but the address of the object can be found.
5899
5900 If KEEP_ALIGNING is true and the target is STRICT_ALIGNMENT, we don't
5901 look through nodes that serve as markers of a greater alignment than
5902 the one that can be deduced from the expression. These nodes make it
5903 possible for front-ends to prevent temporaries from being created by
5904 the middle-end on alignment considerations. For that purpose, the
5905 normal operating mode at high-level is to always pass FALSE so that
5906 the ultimate containing object is really returned; moreover, the
5907 associated predicate handled_component_p will always return TRUE
5908 on these nodes, thus indicating that they are essentially handled
5909 by get_inner_reference. TRUE should only be passed when the caller
5910 is scanning the expression in order to build another representation
5911 and specifically knows how to handle these nodes; as such, this is
5912 the normal operating mode in the RTL expanders. */
5913
5914 tree
5915 get_inner_reference (tree exp, HOST_WIDE_INT *pbitsize,
5916 HOST_WIDE_INT *pbitpos, tree *poffset,
5917 enum machine_mode *pmode, int *punsignedp,
5918 int *pvolatilep, bool keep_aligning)
5919 {
5920 tree size_tree = 0;
5921 enum machine_mode mode = VOIDmode;
5922 bool blkmode_bitfield = false;
5923 tree offset = size_zero_node;
5924 tree bit_offset = bitsize_zero_node;
5925
5926 /* First get the mode, signedness, and size. We do this from just the
5927 outermost expression. */
5928 if (TREE_CODE (exp) == COMPONENT_REF)
5929 {
5930 tree field = TREE_OPERAND (exp, 1);
5931 size_tree = DECL_SIZE (field);
5932 if (!DECL_BIT_FIELD (field))
5933 mode = DECL_MODE (field);
5934 else if (DECL_MODE (field) == BLKmode)
5935 blkmode_bitfield = true;
5936
5937 *punsignedp = DECL_UNSIGNED (field);
5938 }
5939 else if (TREE_CODE (exp) == BIT_FIELD_REF)
5940 {
5941 size_tree = TREE_OPERAND (exp, 1);
5942 *punsignedp = (! INTEGRAL_TYPE_P (TREE_TYPE (exp))
5943 || TYPE_UNSIGNED (TREE_TYPE (exp)));
5944
5945 /* For vector types, with the correct size of access, use the mode of
5946 inner type. */
5947 if (TREE_CODE (TREE_TYPE (TREE_OPERAND (exp, 0))) == VECTOR_TYPE
5948 && TREE_TYPE (exp) == TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0)))
5949 && tree_int_cst_equal (size_tree, TYPE_SIZE (TREE_TYPE (exp))))
5950 mode = TYPE_MODE (TREE_TYPE (exp));
5951 }
5952 else
5953 {
5954 mode = TYPE_MODE (TREE_TYPE (exp));
5955 *punsignedp = TYPE_UNSIGNED (TREE_TYPE (exp));
5956
5957 if (mode == BLKmode)
5958 size_tree = TYPE_SIZE (TREE_TYPE (exp));
5959 else
5960 *pbitsize = GET_MODE_BITSIZE (mode);
5961 }
5962
5963 if (size_tree != 0)
5964 {
5965 if (! host_integerp (size_tree, 1))
5966 mode = BLKmode, *pbitsize = -1;
5967 else
5968 *pbitsize = tree_low_cst (size_tree, 1);
5969 }
5970
5971 /* Compute cumulative bit-offset for nested component-refs and array-refs,
5972 and find the ultimate containing object. */
5973 while (1)
5974 {
5975 switch (TREE_CODE (exp))
5976 {
5977 case BIT_FIELD_REF:
5978 bit_offset = size_binop (PLUS_EXPR, bit_offset,
5979 TREE_OPERAND (exp, 2));
5980 break;
5981
5982 case COMPONENT_REF:
5983 {
5984 tree field = TREE_OPERAND (exp, 1);
5985 tree this_offset = component_ref_field_offset (exp);
5986
5987 /* If this field hasn't been filled in yet, don't go past it.
5988 This should only happen when folding expressions made during
5989 type construction. */
5990 if (this_offset == 0)
5991 break;
5992
5993 offset = size_binop (PLUS_EXPR, offset, this_offset);
5994 bit_offset = size_binop (PLUS_EXPR, bit_offset,
5995 DECL_FIELD_BIT_OFFSET (field));
5996
5997 /* ??? Right now we don't do anything with DECL_OFFSET_ALIGN. */
5998 }
5999 break;
6000
6001 case ARRAY_REF:
6002 case ARRAY_RANGE_REF:
6003 {
6004 tree index = TREE_OPERAND (exp, 1);
6005 tree low_bound = array_ref_low_bound (exp);
6006 tree unit_size = array_ref_element_size (exp);
6007
6008 /* We assume all arrays have sizes that are a multiple of a byte.
6009 First subtract the lower bound, if any, in the type of the
6010 index, then convert to sizetype and multiply by the size of
6011 the array element. */
6012 if (! integer_zerop (low_bound))
6013 index = fold_build2 (MINUS_EXPR, TREE_TYPE (index),
6014 index, low_bound);
6015
6016 offset = size_binop (PLUS_EXPR, offset,
6017 size_binop (MULT_EXPR,
6018 fold_convert (sizetype, index),
6019 unit_size));
6020 }
6021 break;
6022
6023 case REALPART_EXPR:
6024 break;
6025
6026 case IMAGPART_EXPR:
6027 bit_offset = size_binop (PLUS_EXPR, bit_offset,
6028 bitsize_int (*pbitsize));
6029 break;
6030
6031 case VIEW_CONVERT_EXPR:
6032 if (keep_aligning && STRICT_ALIGNMENT
6033 && (TYPE_ALIGN (TREE_TYPE (exp))
6034 > TYPE_ALIGN (TREE_TYPE (TREE_OPERAND (exp, 0))))
6035 && (TYPE_ALIGN (TREE_TYPE (TREE_OPERAND (exp, 0)))
6036 < BIGGEST_ALIGNMENT)
6037 && (TYPE_ALIGN_OK (TREE_TYPE (exp))
6038 || TYPE_ALIGN_OK (TREE_TYPE (TREE_OPERAND (exp, 0)))))
6039 goto done;
6040 break;
6041
6042 default:
6043 goto done;
6044 }
6045
6046 /* If any reference in the chain is volatile, the effect is volatile. */
6047 if (TREE_THIS_VOLATILE (exp))
6048 *pvolatilep = 1;
6049
6050 exp = TREE_OPERAND (exp, 0);
6051 }
6052 done:
6053
6054 /* If OFFSET is constant, see if we can return the whole thing as a
6055 constant bit position. Make sure to handle overflow during
6056 this conversion. */
6057 if (host_integerp (offset, 0))
6058 {
6059 double_int tem = double_int_mul (tree_to_double_int (offset),
6060 uhwi_to_double_int (BITS_PER_UNIT));
6061 tem = double_int_add (tem, tree_to_double_int (bit_offset));
6062 if (double_int_fits_in_shwi_p (tem))
6063 {
6064 *pbitpos = double_int_to_shwi (tem);
6065 *poffset = offset = NULL_TREE;
6066 }
6067 }
6068
6069 /* Otherwise, split it up. */
6070 if (offset)
6071 {
6072 *pbitpos = tree_low_cst (bit_offset, 0);
6073 *poffset = offset;
6074 }
6075
6076 /* We can use BLKmode for a byte-aligned BLKmode bitfield. */
6077 if (mode == VOIDmode
6078 && blkmode_bitfield
6079 && (*pbitpos % BITS_PER_UNIT) == 0
6080 && (*pbitsize % BITS_PER_UNIT) == 0)
6081 *pmode = BLKmode;
6082 else
6083 *pmode = mode;
6084
6085 return exp;
6086 }
6087
6088 /* Given an expression EXP that may be a COMPONENT_REF, an ARRAY_REF or an
6089 ARRAY_RANGE_REF, look for whether EXP or any nested component-refs within
6090 EXP is marked as PACKED. */
6091
6092 bool
6093 contains_packed_reference (const_tree exp)
6094 {
6095 bool packed_p = false;
6096
6097 while (1)
6098 {
6099 switch (TREE_CODE (exp))
6100 {
6101 case COMPONENT_REF:
6102 {
6103 tree field = TREE_OPERAND (exp, 1);
6104 packed_p = DECL_PACKED (field)
6105 || TYPE_PACKED (TREE_TYPE (field))
6106 || TYPE_PACKED (TREE_TYPE (exp));
6107 if (packed_p)
6108 goto done;
6109 }
6110 break;
6111
6112 case BIT_FIELD_REF:
6113 case ARRAY_REF:
6114 case ARRAY_RANGE_REF:
6115 case REALPART_EXPR:
6116 case IMAGPART_EXPR:
6117 case VIEW_CONVERT_EXPR:
6118 break;
6119
6120 default:
6121 goto done;
6122 }
6123 exp = TREE_OPERAND (exp, 0);
6124 }
6125 done:
6126 return packed_p;
6127 }
6128
6129 /* Return a tree of sizetype representing the size, in bytes, of the element
6130 of EXP, an ARRAY_REF or an ARRAY_RANGE_REF. */
6131
6132 tree
6133 array_ref_element_size (tree exp)
6134 {
6135 tree aligned_size = TREE_OPERAND (exp, 3);
6136 tree elmt_type = TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0)));
6137
6138 /* If a size was specified in the ARRAY_REF, it's the size measured
6139 in alignment units of the element type. So multiply by that value. */
6140 if (aligned_size)
6141 {
6142 /* ??? tree_ssa_useless_type_conversion will eliminate casts to
6143 sizetype from another type of the same width and signedness. */
6144 if (TREE_TYPE (aligned_size) != sizetype)
6145 aligned_size = fold_convert (sizetype, aligned_size);
6146 return size_binop (MULT_EXPR, aligned_size,
6147 size_int (TYPE_ALIGN_UNIT (elmt_type)));
6148 }
6149
6150 /* Otherwise, take the size from that of the element type. Substitute
6151 any PLACEHOLDER_EXPR that we have. */
6152 else
6153 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_SIZE_UNIT (elmt_type), exp);
6154 }
6155
6156 /* Return a tree representing the lower bound of the array mentioned in
6157 EXP, an ARRAY_REF or an ARRAY_RANGE_REF. */
6158
6159 tree
6160 array_ref_low_bound (tree exp)
6161 {
6162 tree domain_type = TYPE_DOMAIN (TREE_TYPE (TREE_OPERAND (exp, 0)));
6163
6164 /* If a lower bound is specified in EXP, use it. */
6165 if (TREE_OPERAND (exp, 2))
6166 return TREE_OPERAND (exp, 2);
6167
6168 /* Otherwise, if there is a domain type and it has a lower bound, use it,
6169 substituting for a PLACEHOLDER_EXPR as needed. */
6170 if (domain_type && TYPE_MIN_VALUE (domain_type))
6171 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_MIN_VALUE (domain_type), exp);
6172
6173 /* Otherwise, return a zero of the appropriate type. */
6174 return build_int_cst (TREE_TYPE (TREE_OPERAND (exp, 1)), 0);
6175 }
6176
6177 /* Return a tree representing the upper bound of the array mentioned in
6178 EXP, an ARRAY_REF or an ARRAY_RANGE_REF. */
6179
6180 tree
6181 array_ref_up_bound (tree exp)
6182 {
6183 tree domain_type = TYPE_DOMAIN (TREE_TYPE (TREE_OPERAND (exp, 0)));
6184
6185 /* If there is a domain type and it has an upper bound, use it, substituting
6186 for a PLACEHOLDER_EXPR as needed. */
6187 if (domain_type && TYPE_MAX_VALUE (domain_type))
6188 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_MAX_VALUE (domain_type), exp);
6189
6190 /* Otherwise fail. */
6191 return NULL_TREE;
6192 }
6193
6194 /* Return a tree representing the offset, in bytes, of the field referenced
6195 by EXP. This does not include any offset in DECL_FIELD_BIT_OFFSET. */
6196
6197 tree
6198 component_ref_field_offset (tree exp)
6199 {
6200 tree aligned_offset = TREE_OPERAND (exp, 2);
6201 tree field = TREE_OPERAND (exp, 1);
6202
6203 /* If an offset was specified in the COMPONENT_REF, it's the offset measured
6204 in units of DECL_OFFSET_ALIGN / BITS_PER_UNIT. So multiply by that
6205 value. */
6206 if (aligned_offset)
6207 {
6208 /* ??? tree_ssa_useless_type_conversion will eliminate casts to
6209 sizetype from another type of the same width and signedness. */
6210 if (TREE_TYPE (aligned_offset) != sizetype)
6211 aligned_offset = fold_convert (sizetype, aligned_offset);
6212 return size_binop (MULT_EXPR, aligned_offset,
6213 size_int (DECL_OFFSET_ALIGN (field) / BITS_PER_UNIT));
6214 }
6215
6216 /* Otherwise, take the offset from that of the field. Substitute
6217 any PLACEHOLDER_EXPR that we have. */
6218 else
6219 return SUBSTITUTE_PLACEHOLDER_IN_EXPR (DECL_FIELD_OFFSET (field), exp);
6220 }
6221
6222 /* Return 1 if T is an expression that get_inner_reference handles. */
6223
6224 int
6225 handled_component_p (const_tree t)
6226 {
6227 switch (TREE_CODE (t))
6228 {
6229 case BIT_FIELD_REF:
6230 case COMPONENT_REF:
6231 case ARRAY_REF:
6232 case ARRAY_RANGE_REF:
6233 case VIEW_CONVERT_EXPR:
6234 case REALPART_EXPR:
6235 case IMAGPART_EXPR:
6236 return 1;
6237
6238 default:
6239 return 0;
6240 }
6241 }
6242
6243 /* Given an rtx VALUE that may contain additions and multiplications, return
6244 an equivalent value that just refers to a register, memory, or constant.
6245 This is done by generating instructions to perform the arithmetic and
6246 returning a pseudo-register containing the value.
6247
6248 The returned value may be a REG, SUBREG, MEM or constant. */
6249
6250 rtx
6251 force_operand (rtx value, rtx target)
6252 {
6253 rtx op1, op2;
6254 /* Use subtarget as the target for operand 0 of a binary operation. */
6255 rtx subtarget = get_subtarget (target);
6256 enum rtx_code code = GET_CODE (value);
6257
6258 /* Check for subreg applied to an expression produced by loop optimizer. */
6259 if (code == SUBREG
6260 && !REG_P (SUBREG_REG (value))
6261 && !MEM_P (SUBREG_REG (value)))
6262 {
6263 value
6264 = simplify_gen_subreg (GET_MODE (value),
6265 force_reg (GET_MODE (SUBREG_REG (value)),
6266 force_operand (SUBREG_REG (value),
6267 NULL_RTX)),
6268 GET_MODE (SUBREG_REG (value)),
6269 SUBREG_BYTE (value));
6270 code = GET_CODE (value);
6271 }
6272
6273 /* Check for a PIC address load. */
6274 if ((code == PLUS || code == MINUS)
6275 && XEXP (value, 0) == pic_offset_table_rtx
6276 && (GET_CODE (XEXP (value, 1)) == SYMBOL_REF
6277 || GET_CODE (XEXP (value, 1)) == LABEL_REF
6278 || GET_CODE (XEXP (value, 1)) == CONST))
6279 {
6280 if (!subtarget)
6281 subtarget = gen_reg_rtx (GET_MODE (value));
6282 emit_move_insn (subtarget, value);
6283 return subtarget;
6284 }
6285
6286 if (ARITHMETIC_P (value))
6287 {
6288 op2 = XEXP (value, 1);
6289 if (!CONSTANT_P (op2) && !(REG_P (op2) && op2 != subtarget))
6290 subtarget = 0;
6291 if (code == MINUS && GET_CODE (op2) == CONST_INT)
6292 {
6293 code = PLUS;
6294 op2 = negate_rtx (GET_MODE (value), op2);
6295 }
6296
6297 /* Check for an addition with OP2 a constant integer and our first
6298 operand a PLUS of a virtual register and something else. In that
6299 case, we want to emit the sum of the virtual register and the
6300 constant first and then add the other value. This allows virtual
6301 register instantiation to simply modify the constant rather than
6302 creating another one around this addition. */
6303 if (code == PLUS && GET_CODE (op2) == CONST_INT
6304 && GET_CODE (XEXP (value, 0)) == PLUS
6305 && REG_P (XEXP (XEXP (value, 0), 0))
6306 && REGNO (XEXP (XEXP (value, 0), 0)) >= FIRST_VIRTUAL_REGISTER
6307 && REGNO (XEXP (XEXP (value, 0), 0)) <= LAST_VIRTUAL_REGISTER)
6308 {
6309 rtx temp = expand_simple_binop (GET_MODE (value), code,
6310 XEXP (XEXP (value, 0), 0), op2,
6311 subtarget, 0, OPTAB_LIB_WIDEN);
6312 return expand_simple_binop (GET_MODE (value), code, temp,
6313 force_operand (XEXP (XEXP (value,
6314 0), 1), 0),
6315 target, 0, OPTAB_LIB_WIDEN);
6316 }
6317
6318 op1 = force_operand (XEXP (value, 0), subtarget);
6319 op2 = force_operand (op2, NULL_RTX);
6320 switch (code)
6321 {
6322 case MULT:
6323 return expand_mult (GET_MODE (value), op1, op2, target, 1);
6324 case DIV:
6325 if (!INTEGRAL_MODE_P (GET_MODE (value)))
6326 return expand_simple_binop (GET_MODE (value), code, op1, op2,
6327 target, 1, OPTAB_LIB_WIDEN);
6328 else
6329 return expand_divmod (0,
6330 FLOAT_MODE_P (GET_MODE (value))
6331 ? RDIV_EXPR : TRUNC_DIV_EXPR,
6332 GET_MODE (value), op1, op2, target, 0);
6333 case MOD:
6334 return expand_divmod (1, TRUNC_MOD_EXPR, GET_MODE (value), op1, op2,
6335 target, 0);
6336 case UDIV:
6337 return expand_divmod (0, TRUNC_DIV_EXPR, GET_MODE (value), op1, op2,
6338 target, 1);
6339 case UMOD:
6340 return expand_divmod (1, TRUNC_MOD_EXPR, GET_MODE (value), op1, op2,
6341 target, 1);
6342 case ASHIFTRT:
6343 return expand_simple_binop (GET_MODE (value), code, op1, op2,
6344 target, 0, OPTAB_LIB_WIDEN);
6345 default:
6346 return expand_simple_binop (GET_MODE (value), code, op1, op2,
6347 target, 1, OPTAB_LIB_WIDEN);
6348 }
6349 }
6350 if (UNARY_P (value))
6351 {
6352 if (!target)
6353 target = gen_reg_rtx (GET_MODE (value));
6354 op1 = force_operand (XEXP (value, 0), NULL_RTX);
6355 switch (code)
6356 {
6357 case ZERO_EXTEND:
6358 case SIGN_EXTEND:
6359 case TRUNCATE:
6360 case FLOAT_EXTEND:
6361 case FLOAT_TRUNCATE:
6362 convert_move (target, op1, code == ZERO_EXTEND);
6363 return target;
6364
6365 case FIX:
6366 case UNSIGNED_FIX:
6367 expand_fix (target, op1, code == UNSIGNED_FIX);
6368 return target;
6369
6370 case FLOAT:
6371 case UNSIGNED_FLOAT:
6372 expand_float (target, op1, code == UNSIGNED_FLOAT);
6373 return target;
6374
6375 default:
6376 return expand_simple_unop (GET_MODE (value), code, op1, target, 0);
6377 }
6378 }
6379
6380 #ifdef INSN_SCHEDULING
6381 /* On machines that have insn scheduling, we want all memory reference to be
6382 explicit, so we need to deal with such paradoxical SUBREGs. */
6383 if (GET_CODE (value) == SUBREG && MEM_P (SUBREG_REG (value))
6384 && (GET_MODE_SIZE (GET_MODE (value))
6385 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (value)))))
6386 value
6387 = simplify_gen_subreg (GET_MODE (value),
6388 force_reg (GET_MODE (SUBREG_REG (value)),
6389 force_operand (SUBREG_REG (value),
6390 NULL_RTX)),
6391 GET_MODE (SUBREG_REG (value)),
6392 SUBREG_BYTE (value));
6393 #endif
6394
6395 return value;
6396 }
6397
6398 /* Subroutine of expand_expr: return nonzero iff there is no way that
6399 EXP can reference X, which is being modified. TOP_P is nonzero if this
6400 call is going to be used to determine whether we need a temporary
6401 for EXP, as opposed to a recursive call to this function.
6402
6403 It is always safe for this routine to return zero since it merely
6404 searches for optimization opportunities. */
6405
6406 int
6407 safe_from_p (const_rtx x, tree exp, int top_p)
6408 {
6409 rtx exp_rtl = 0;
6410 int i, nops;
6411
6412 if (x == 0
6413 /* If EXP has varying size, we MUST use a target since we currently
6414 have no way of allocating temporaries of variable size
6415 (except for arrays that have TYPE_ARRAY_MAX_SIZE set).
6416 So we assume here that something at a higher level has prevented a
6417 clash. This is somewhat bogus, but the best we can do. Only
6418 do this when X is BLKmode and when we are at the top level. */
6419 || (top_p && TREE_TYPE (exp) != 0 && COMPLETE_TYPE_P (TREE_TYPE (exp))
6420 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp))) != INTEGER_CST
6421 && (TREE_CODE (TREE_TYPE (exp)) != ARRAY_TYPE
6422 || TYPE_ARRAY_MAX_SIZE (TREE_TYPE (exp)) == NULL_TREE
6423 || TREE_CODE (TYPE_ARRAY_MAX_SIZE (TREE_TYPE (exp)))
6424 != INTEGER_CST)
6425 && GET_MODE (x) == BLKmode)
6426 /* If X is in the outgoing argument area, it is always safe. */
6427 || (MEM_P (x)
6428 && (XEXP (x, 0) == virtual_outgoing_args_rtx
6429 || (GET_CODE (XEXP (x, 0)) == PLUS
6430 && XEXP (XEXP (x, 0), 0) == virtual_outgoing_args_rtx))))
6431 return 1;
6432
6433 /* If this is a subreg of a hard register, declare it unsafe, otherwise,
6434 find the underlying pseudo. */
6435 if (GET_CODE (x) == SUBREG)
6436 {
6437 x = SUBREG_REG (x);
6438 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
6439 return 0;
6440 }
6441
6442 /* Now look at our tree code and possibly recurse. */
6443 switch (TREE_CODE_CLASS (TREE_CODE (exp)))
6444 {
6445 case tcc_declaration:
6446 exp_rtl = DECL_RTL_IF_SET (exp);
6447 break;
6448
6449 case tcc_constant:
6450 return 1;
6451
6452 case tcc_exceptional:
6453 if (TREE_CODE (exp) == TREE_LIST)
6454 {
6455 while (1)
6456 {
6457 if (TREE_VALUE (exp) && !safe_from_p (x, TREE_VALUE (exp), 0))
6458 return 0;
6459 exp = TREE_CHAIN (exp);
6460 if (!exp)
6461 return 1;
6462 if (TREE_CODE (exp) != TREE_LIST)
6463 return safe_from_p (x, exp, 0);
6464 }
6465 }
6466 else if (TREE_CODE (exp) == CONSTRUCTOR)
6467 {
6468 constructor_elt *ce;
6469 unsigned HOST_WIDE_INT idx;
6470
6471 for (idx = 0;
6472 VEC_iterate (constructor_elt, CONSTRUCTOR_ELTS (exp), idx, ce);
6473 idx++)
6474 if ((ce->index != NULL_TREE && !safe_from_p (x, ce->index, 0))
6475 || !safe_from_p (x, ce->value, 0))
6476 return 0;
6477 return 1;
6478 }
6479 else if (TREE_CODE (exp) == ERROR_MARK)
6480 return 1; /* An already-visited SAVE_EXPR? */
6481 else
6482 return 0;
6483
6484 case tcc_statement:
6485 /* The only case we look at here is the DECL_INITIAL inside a
6486 DECL_EXPR. */
6487 return (TREE_CODE (exp) != DECL_EXPR
6488 || TREE_CODE (DECL_EXPR_DECL (exp)) != VAR_DECL
6489 || !DECL_INITIAL (DECL_EXPR_DECL (exp))
6490 || safe_from_p (x, DECL_INITIAL (DECL_EXPR_DECL (exp)), 0));
6491
6492 case tcc_binary:
6493 case tcc_comparison:
6494 if (!safe_from_p (x, TREE_OPERAND (exp, 1), 0))
6495 return 0;
6496 /* Fall through. */
6497
6498 case tcc_unary:
6499 return safe_from_p (x, TREE_OPERAND (exp, 0), 0);
6500
6501 case tcc_expression:
6502 case tcc_reference:
6503 case tcc_vl_exp:
6504 /* Now do code-specific tests. EXP_RTL is set to any rtx we find in
6505 the expression. If it is set, we conflict iff we are that rtx or
6506 both are in memory. Otherwise, we check all operands of the
6507 expression recursively. */
6508
6509 switch (TREE_CODE (exp))
6510 {
6511 case ADDR_EXPR:
6512 /* If the operand is static or we are static, we can't conflict.
6513 Likewise if we don't conflict with the operand at all. */
6514 if (staticp (TREE_OPERAND (exp, 0))
6515 || TREE_STATIC (exp)
6516 || safe_from_p (x, TREE_OPERAND (exp, 0), 0))
6517 return 1;
6518
6519 /* Otherwise, the only way this can conflict is if we are taking
6520 the address of a DECL a that address if part of X, which is
6521 very rare. */
6522 exp = TREE_OPERAND (exp, 0);
6523 if (DECL_P (exp))
6524 {
6525 if (!DECL_RTL_SET_P (exp)
6526 || !MEM_P (DECL_RTL (exp)))
6527 return 0;
6528 else
6529 exp_rtl = XEXP (DECL_RTL (exp), 0);
6530 }
6531 break;
6532
6533 case MISALIGNED_INDIRECT_REF:
6534 case ALIGN_INDIRECT_REF:
6535 case INDIRECT_REF:
6536 if (MEM_P (x)
6537 && alias_sets_conflict_p (MEM_ALIAS_SET (x),
6538 get_alias_set (exp)))
6539 return 0;
6540 break;
6541
6542 case CALL_EXPR:
6543 /* Assume that the call will clobber all hard registers and
6544 all of memory. */
6545 if ((REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
6546 || MEM_P (x))
6547 return 0;
6548 break;
6549
6550 case WITH_CLEANUP_EXPR:
6551 case CLEANUP_POINT_EXPR:
6552 /* Lowered by gimplify.c. */
6553 gcc_unreachable ();
6554
6555 case SAVE_EXPR:
6556 return safe_from_p (x, TREE_OPERAND (exp, 0), 0);
6557
6558 default:
6559 break;
6560 }
6561
6562 /* If we have an rtx, we do not need to scan our operands. */
6563 if (exp_rtl)
6564 break;
6565
6566 nops = TREE_OPERAND_LENGTH (exp);
6567 for (i = 0; i < nops; i++)
6568 if (TREE_OPERAND (exp, i) != 0
6569 && ! safe_from_p (x, TREE_OPERAND (exp, i), 0))
6570 return 0;
6571
6572 break;
6573
6574 case tcc_type:
6575 /* Should never get a type here. */
6576 gcc_unreachable ();
6577 }
6578
6579 /* If we have an rtl, find any enclosed object. Then see if we conflict
6580 with it. */
6581 if (exp_rtl)
6582 {
6583 if (GET_CODE (exp_rtl) == SUBREG)
6584 {
6585 exp_rtl = SUBREG_REG (exp_rtl);
6586 if (REG_P (exp_rtl)
6587 && REGNO (exp_rtl) < FIRST_PSEUDO_REGISTER)
6588 return 0;
6589 }
6590
6591 /* If the rtl is X, then it is not safe. Otherwise, it is unless both
6592 are memory and they conflict. */
6593 return ! (rtx_equal_p (x, exp_rtl)
6594 || (MEM_P (x) && MEM_P (exp_rtl)
6595 && true_dependence (exp_rtl, VOIDmode, x,
6596 rtx_addr_varies_p)));
6597 }
6598
6599 /* If we reach here, it is safe. */
6600 return 1;
6601 }
6602
6603
6604 /* Return the highest power of two that EXP is known to be a multiple of.
6605 This is used in updating alignment of MEMs in array references. */
6606
6607 unsigned HOST_WIDE_INT
6608 highest_pow2_factor (const_tree exp)
6609 {
6610 unsigned HOST_WIDE_INT c0, c1;
6611
6612 switch (TREE_CODE (exp))
6613 {
6614 case INTEGER_CST:
6615 /* We can find the lowest bit that's a one. If the low
6616 HOST_BITS_PER_WIDE_INT bits are zero, return BIGGEST_ALIGNMENT.
6617 We need to handle this case since we can find it in a COND_EXPR,
6618 a MIN_EXPR, or a MAX_EXPR. If the constant overflows, we have an
6619 erroneous program, so return BIGGEST_ALIGNMENT to avoid any
6620 later ICE. */
6621 if (TREE_OVERFLOW (exp))
6622 return BIGGEST_ALIGNMENT;
6623 else
6624 {
6625 /* Note: tree_low_cst is intentionally not used here,
6626 we don't care about the upper bits. */
6627 c0 = TREE_INT_CST_LOW (exp);
6628 c0 &= -c0;
6629 return c0 ? c0 : BIGGEST_ALIGNMENT;
6630 }
6631 break;
6632
6633 case PLUS_EXPR: case MINUS_EXPR: case MIN_EXPR: case MAX_EXPR:
6634 c0 = highest_pow2_factor (TREE_OPERAND (exp, 0));
6635 c1 = highest_pow2_factor (TREE_OPERAND (exp, 1));
6636 return MIN (c0, c1);
6637
6638 case MULT_EXPR:
6639 c0 = highest_pow2_factor (TREE_OPERAND (exp, 0));
6640 c1 = highest_pow2_factor (TREE_OPERAND (exp, 1));
6641 return c0 * c1;
6642
6643 case ROUND_DIV_EXPR: case TRUNC_DIV_EXPR: case FLOOR_DIV_EXPR:
6644 case CEIL_DIV_EXPR:
6645 if (integer_pow2p (TREE_OPERAND (exp, 1))
6646 && host_integerp (TREE_OPERAND (exp, 1), 1))
6647 {
6648 c0 = highest_pow2_factor (TREE_OPERAND (exp, 0));
6649 c1 = tree_low_cst (TREE_OPERAND (exp, 1), 1);
6650 return MAX (1, c0 / c1);
6651 }
6652 break;
6653
6654 case BIT_AND_EXPR:
6655 /* The highest power of two of a bit-and expression is the maximum of
6656 that of its operands. We typically get here for a complex LHS and
6657 a constant negative power of two on the RHS to force an explicit
6658 alignment, so don't bother looking at the LHS. */
6659 return highest_pow2_factor (TREE_OPERAND (exp, 1));
6660
6661 CASE_CONVERT:
6662 case SAVE_EXPR:
6663 return highest_pow2_factor (TREE_OPERAND (exp, 0));
6664
6665 case COMPOUND_EXPR:
6666 return highest_pow2_factor (TREE_OPERAND (exp, 1));
6667
6668 case COND_EXPR:
6669 c0 = highest_pow2_factor (TREE_OPERAND (exp, 1));
6670 c1 = highest_pow2_factor (TREE_OPERAND (exp, 2));
6671 return MIN (c0, c1);
6672
6673 default:
6674 break;
6675 }
6676
6677 return 1;
6678 }
6679
6680 /* Similar, except that the alignment requirements of TARGET are
6681 taken into account. Assume it is at least as aligned as its
6682 type, unless it is a COMPONENT_REF in which case the layout of
6683 the structure gives the alignment. */
6684
6685 static unsigned HOST_WIDE_INT
6686 highest_pow2_factor_for_target (const_tree target, const_tree exp)
6687 {
6688 unsigned HOST_WIDE_INT target_align, factor;
6689
6690 factor = highest_pow2_factor (exp);
6691 if (TREE_CODE (target) == COMPONENT_REF)
6692 target_align = DECL_ALIGN_UNIT (TREE_OPERAND (target, 1));
6693 else
6694 target_align = TYPE_ALIGN_UNIT (TREE_TYPE (target));
6695 return MAX (factor, target_align);
6696 }
6697
6698 /* Return &VAR expression for emulated thread local VAR. */
6699
6700 static tree
6701 emutls_var_address (tree var)
6702 {
6703 tree emuvar = emutls_decl (var);
6704 tree fn = built_in_decls [BUILT_IN_EMUTLS_GET_ADDRESS];
6705 tree arg = build_fold_addr_expr_with_type (emuvar, ptr_type_node);
6706 tree arglist = build_tree_list (NULL_TREE, arg);
6707 tree call = build_function_call_expr (fn, arglist);
6708 return fold_convert (build_pointer_type (TREE_TYPE (var)), call);
6709 }
6710
6711
6712 /* Subroutine of expand_expr. Expand the two operands of a binary
6713 expression EXP0 and EXP1 placing the results in OP0 and OP1.
6714 The value may be stored in TARGET if TARGET is nonzero. The
6715 MODIFIER argument is as documented by expand_expr. */
6716
6717 static void
6718 expand_operands (tree exp0, tree exp1, rtx target, rtx *op0, rtx *op1,
6719 enum expand_modifier modifier)
6720 {
6721 if (! safe_from_p (target, exp1, 1))
6722 target = 0;
6723 if (operand_equal_p (exp0, exp1, 0))
6724 {
6725 *op0 = expand_expr (exp0, target, VOIDmode, modifier);
6726 *op1 = copy_rtx (*op0);
6727 }
6728 else
6729 {
6730 /* If we need to preserve evaluation order, copy exp0 into its own
6731 temporary variable so that it can't be clobbered by exp1. */
6732 if (flag_evaluation_order && TREE_SIDE_EFFECTS (exp1))
6733 exp0 = save_expr (exp0);
6734 *op0 = expand_expr (exp0, target, VOIDmode, modifier);
6735 *op1 = expand_expr (exp1, NULL_RTX, VOIDmode, modifier);
6736 }
6737 }
6738
6739
6740 /* Return a MEM that contains constant EXP. DEFER is as for
6741 output_constant_def and MODIFIER is as for expand_expr. */
6742
6743 static rtx
6744 expand_expr_constant (tree exp, int defer, enum expand_modifier modifier)
6745 {
6746 rtx mem;
6747
6748 mem = output_constant_def (exp, defer);
6749 if (modifier != EXPAND_INITIALIZER)
6750 mem = use_anchored_address (mem);
6751 return mem;
6752 }
6753
6754 /* A subroutine of expand_expr_addr_expr. Evaluate the address of EXP.
6755 The TARGET, TMODE and MODIFIER arguments are as for expand_expr. */
6756
6757 static rtx
6758 expand_expr_addr_expr_1 (tree exp, rtx target, enum machine_mode tmode,
6759 enum expand_modifier modifier)
6760 {
6761 rtx result, subtarget;
6762 tree inner, offset;
6763 HOST_WIDE_INT bitsize, bitpos;
6764 int volatilep, unsignedp;
6765 enum machine_mode mode1;
6766
6767 /* If we are taking the address of a constant and are at the top level,
6768 we have to use output_constant_def since we can't call force_const_mem
6769 at top level. */
6770 /* ??? This should be considered a front-end bug. We should not be
6771 generating ADDR_EXPR of something that isn't an LVALUE. The only
6772 exception here is STRING_CST. */
6773 if (CONSTANT_CLASS_P (exp))
6774 return XEXP (expand_expr_constant (exp, 0, modifier), 0);
6775
6776 /* Everything must be something allowed by is_gimple_addressable. */
6777 switch (TREE_CODE (exp))
6778 {
6779 case INDIRECT_REF:
6780 /* This case will happen via recursion for &a->b. */
6781 return expand_expr (TREE_OPERAND (exp, 0), target, tmode, modifier);
6782
6783 case CONST_DECL:
6784 /* Recurse and make the output_constant_def clause above handle this. */
6785 return expand_expr_addr_expr_1 (DECL_INITIAL (exp), target,
6786 tmode, modifier);
6787
6788 case REALPART_EXPR:
6789 /* The real part of the complex number is always first, therefore
6790 the address is the same as the address of the parent object. */
6791 offset = 0;
6792 bitpos = 0;
6793 inner = TREE_OPERAND (exp, 0);
6794 break;
6795
6796 case IMAGPART_EXPR:
6797 /* The imaginary part of the complex number is always second.
6798 The expression is therefore always offset by the size of the
6799 scalar type. */
6800 offset = 0;
6801 bitpos = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (exp)));
6802 inner = TREE_OPERAND (exp, 0);
6803 break;
6804
6805 case VAR_DECL:
6806 /* TLS emulation hook - replace __thread VAR's &VAR with
6807 __emutls_get_address (&_emutls.VAR). */
6808 if (! targetm.have_tls
6809 && TREE_CODE (exp) == VAR_DECL
6810 && DECL_THREAD_LOCAL_P (exp))
6811 {
6812 exp = emutls_var_address (exp);
6813 return expand_expr (exp, target, tmode, modifier);
6814 }
6815 /* Fall through. */
6816
6817 default:
6818 /* If the object is a DECL, then expand it for its rtl. Don't bypass
6819 expand_expr, as that can have various side effects; LABEL_DECLs for
6820 example, may not have their DECL_RTL set yet. Expand the rtl of
6821 CONSTRUCTORs too, which should yield a memory reference for the
6822 constructor's contents. Assume language specific tree nodes can
6823 be expanded in some interesting way. */
6824 if (DECL_P (exp)
6825 || TREE_CODE (exp) == CONSTRUCTOR
6826 || TREE_CODE (exp) >= LAST_AND_UNUSED_TREE_CODE)
6827 {
6828 result = expand_expr (exp, target, tmode,
6829 modifier == EXPAND_INITIALIZER
6830 ? EXPAND_INITIALIZER : EXPAND_CONST_ADDRESS);
6831
6832 /* If the DECL isn't in memory, then the DECL wasn't properly
6833 marked TREE_ADDRESSABLE, which will be either a front-end
6834 or a tree optimizer bug. */
6835 gcc_assert (MEM_P (result));
6836 result = XEXP (result, 0);
6837
6838 /* ??? Is this needed anymore? */
6839 if (DECL_P (exp) && !TREE_USED (exp) == 0)
6840 {
6841 assemble_external (exp);
6842 TREE_USED (exp) = 1;
6843 }
6844
6845 if (modifier != EXPAND_INITIALIZER
6846 && modifier != EXPAND_CONST_ADDRESS)
6847 result = force_operand (result, target);
6848 return result;
6849 }
6850
6851 /* Pass FALSE as the last argument to get_inner_reference although
6852 we are expanding to RTL. The rationale is that we know how to
6853 handle "aligning nodes" here: we can just bypass them because
6854 they won't change the final object whose address will be returned
6855 (they actually exist only for that purpose). */
6856 inner = get_inner_reference (exp, &bitsize, &bitpos, &offset,
6857 &mode1, &unsignedp, &volatilep, false);
6858 break;
6859 }
6860
6861 /* We must have made progress. */
6862 gcc_assert (inner != exp);
6863
6864 subtarget = offset || bitpos ? NULL_RTX : target;
6865 /* For VIEW_CONVERT_EXPR, where the outer alignment is bigger than
6866 inner alignment, force the inner to be sufficiently aligned. */
6867 if (CONSTANT_CLASS_P (inner)
6868 && TYPE_ALIGN (TREE_TYPE (inner)) < TYPE_ALIGN (TREE_TYPE (exp)))
6869 {
6870 inner = copy_node (inner);
6871 TREE_TYPE (inner) = copy_node (TREE_TYPE (inner));
6872 TYPE_ALIGN (TREE_TYPE (inner)) = TYPE_ALIGN (TREE_TYPE (exp));
6873 TYPE_USER_ALIGN (TREE_TYPE (inner)) = 1;
6874 }
6875 result = expand_expr_addr_expr_1 (inner, subtarget, tmode, modifier);
6876
6877 if (offset)
6878 {
6879 rtx tmp;
6880
6881 if (modifier != EXPAND_NORMAL)
6882 result = force_operand (result, NULL);
6883 tmp = expand_expr (offset, NULL_RTX, tmode,
6884 modifier == EXPAND_INITIALIZER
6885 ? EXPAND_INITIALIZER : EXPAND_NORMAL);
6886
6887 result = convert_memory_address (tmode, result);
6888 tmp = convert_memory_address (tmode, tmp);
6889
6890 if (modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER)
6891 result = gen_rtx_PLUS (tmode, result, tmp);
6892 else
6893 {
6894 subtarget = bitpos ? NULL_RTX : target;
6895 result = expand_simple_binop (tmode, PLUS, result, tmp, subtarget,
6896 1, OPTAB_LIB_WIDEN);
6897 }
6898 }
6899
6900 if (bitpos)
6901 {
6902 /* Someone beforehand should have rejected taking the address
6903 of such an object. */
6904 gcc_assert ((bitpos % BITS_PER_UNIT) == 0);
6905
6906 result = plus_constant (result, bitpos / BITS_PER_UNIT);
6907 if (modifier < EXPAND_SUM)
6908 result = force_operand (result, target);
6909 }
6910
6911 return result;
6912 }
6913
6914 /* A subroutine of expand_expr. Evaluate EXP, which is an ADDR_EXPR.
6915 The TARGET, TMODE and MODIFIER arguments are as for expand_expr. */
6916
6917 static rtx
6918 expand_expr_addr_expr (tree exp, rtx target, enum machine_mode tmode,
6919 enum expand_modifier modifier)
6920 {
6921 enum machine_mode rmode;
6922 rtx result;
6923
6924 /* Target mode of VOIDmode says "whatever's natural". */
6925 if (tmode == VOIDmode)
6926 tmode = TYPE_MODE (TREE_TYPE (exp));
6927
6928 /* We can get called with some Weird Things if the user does silliness
6929 like "(short) &a". In that case, convert_memory_address won't do
6930 the right thing, so ignore the given target mode. */
6931 if (tmode != Pmode && tmode != ptr_mode)
6932 tmode = Pmode;
6933
6934 result = expand_expr_addr_expr_1 (TREE_OPERAND (exp, 0), target,
6935 tmode, modifier);
6936
6937 /* Despite expand_expr claims concerning ignoring TMODE when not
6938 strictly convenient, stuff breaks if we don't honor it. Note
6939 that combined with the above, we only do this for pointer modes. */
6940 rmode = GET_MODE (result);
6941 if (rmode == VOIDmode)
6942 rmode = tmode;
6943 if (rmode != tmode)
6944 result = convert_memory_address (tmode, result);
6945
6946 return result;
6947 }
6948
6949 /* Generate code for computing CONSTRUCTOR EXP.
6950 An rtx for the computed value is returned. If AVOID_TEMP_MEM
6951 is TRUE, instead of creating a temporary variable in memory
6952 NULL is returned and the caller needs to handle it differently. */
6953
6954 static rtx
6955 expand_constructor (tree exp, rtx target, enum expand_modifier modifier,
6956 bool avoid_temp_mem)
6957 {
6958 tree type = TREE_TYPE (exp);
6959 enum machine_mode mode = TYPE_MODE (type);
6960
6961 /* Try to avoid creating a temporary at all. This is possible
6962 if all of the initializer is zero.
6963 FIXME: try to handle all [0..255] initializers we can handle
6964 with memset. */
6965 if (TREE_STATIC (exp)
6966 && !TREE_ADDRESSABLE (exp)
6967 && target != 0 && mode == BLKmode
6968 && all_zeros_p (exp))
6969 {
6970 clear_storage (target, expr_size (exp), BLOCK_OP_NORMAL);
6971 return target;
6972 }
6973
6974 /* All elts simple constants => refer to a constant in memory. But
6975 if this is a non-BLKmode mode, let it store a field at a time
6976 since that should make a CONST_INT or CONST_DOUBLE when we
6977 fold. Likewise, if we have a target we can use, it is best to
6978 store directly into the target unless the type is large enough
6979 that memcpy will be used. If we are making an initializer and
6980 all operands are constant, put it in memory as well.
6981
6982 FIXME: Avoid trying to fill vector constructors piece-meal.
6983 Output them with output_constant_def below unless we're sure
6984 they're zeros. This should go away when vector initializers
6985 are treated like VECTOR_CST instead of arrays. */
6986 if ((TREE_STATIC (exp)
6987 && ((mode == BLKmode
6988 && ! (target != 0 && safe_from_p (target, exp, 1)))
6989 || TREE_ADDRESSABLE (exp)
6990 || (host_integerp (TYPE_SIZE_UNIT (type), 1)
6991 && (! MOVE_BY_PIECES_P
6992 (tree_low_cst (TYPE_SIZE_UNIT (type), 1),
6993 TYPE_ALIGN (type)))
6994 && ! mostly_zeros_p (exp))))
6995 || ((modifier == EXPAND_INITIALIZER || modifier == EXPAND_CONST_ADDRESS)
6996 && TREE_CONSTANT (exp)))
6997 {
6998 rtx constructor;
6999
7000 if (avoid_temp_mem)
7001 return NULL_RTX;
7002
7003 constructor = expand_expr_constant (exp, 1, modifier);
7004
7005 if (modifier != EXPAND_CONST_ADDRESS
7006 && modifier != EXPAND_INITIALIZER
7007 && modifier != EXPAND_SUM)
7008 constructor = validize_mem (constructor);
7009
7010 return constructor;
7011 }
7012
7013 /* Handle calls that pass values in multiple non-contiguous
7014 locations. The Irix 6 ABI has examples of this. */
7015 if (target == 0 || ! safe_from_p (target, exp, 1)
7016 || GET_CODE (target) == PARALLEL || modifier == EXPAND_STACK_PARM)
7017 {
7018 if (avoid_temp_mem)
7019 return NULL_RTX;
7020
7021 target
7022 = assign_temp (build_qualified_type (type, (TYPE_QUALS (type)
7023 | (TREE_READONLY (exp)
7024 * TYPE_QUAL_CONST))),
7025 0, TREE_ADDRESSABLE (exp), 1);
7026 }
7027
7028 store_constructor (exp, target, 0, int_expr_size (exp));
7029 return target;
7030 }
7031
7032
7033 /* expand_expr: generate code for computing expression EXP.
7034 An rtx for the computed value is returned. The value is never null.
7035 In the case of a void EXP, const0_rtx is returned.
7036
7037 The value may be stored in TARGET if TARGET is nonzero.
7038 TARGET is just a suggestion; callers must assume that
7039 the rtx returned may not be the same as TARGET.
7040
7041 If TARGET is CONST0_RTX, it means that the value will be ignored.
7042
7043 If TMODE is not VOIDmode, it suggests generating the
7044 result in mode TMODE. But this is done only when convenient.
7045 Otherwise, TMODE is ignored and the value generated in its natural mode.
7046 TMODE is just a suggestion; callers must assume that
7047 the rtx returned may not have mode TMODE.
7048
7049 Note that TARGET may have neither TMODE nor MODE. In that case, it
7050 probably will not be used.
7051
7052 If MODIFIER is EXPAND_SUM then when EXP is an addition
7053 we can return an rtx of the form (MULT (REG ...) (CONST_INT ...))
7054 or a nest of (PLUS ...) and (MINUS ...) where the terms are
7055 products as above, or REG or MEM, or constant.
7056 Ordinarily in such cases we would output mul or add instructions
7057 and then return a pseudo reg containing the sum.
7058
7059 EXPAND_INITIALIZER is much like EXPAND_SUM except that
7060 it also marks a label as absolutely required (it can't be dead).
7061 It also makes a ZERO_EXTEND or SIGN_EXTEND instead of emitting extend insns.
7062 This is used for outputting expressions used in initializers.
7063
7064 EXPAND_CONST_ADDRESS says that it is okay to return a MEM
7065 with a constant address even if that address is not normally legitimate.
7066 EXPAND_INITIALIZER and EXPAND_SUM also have this effect.
7067
7068 EXPAND_STACK_PARM is used when expanding to a TARGET on the stack for
7069 a call parameter. Such targets require special care as we haven't yet
7070 marked TARGET so that it's safe from being trashed by libcalls. We
7071 don't want to use TARGET for anything but the final result;
7072 Intermediate values must go elsewhere. Additionally, calls to
7073 emit_block_move will be flagged with BLOCK_OP_CALL_PARM.
7074
7075 If EXP is a VAR_DECL whose DECL_RTL was a MEM with an invalid
7076 address, and ALT_RTL is non-NULL, then *ALT_RTL is set to the
7077 DECL_RTL of the VAR_DECL. *ALT_RTL is also set if EXP is a
7078 COMPOUND_EXPR whose second argument is such a VAR_DECL, and so on
7079 recursively. */
7080
7081 static rtx expand_expr_real_1 (tree, rtx, enum machine_mode,
7082 enum expand_modifier, rtx *);
7083
7084 rtx
7085 expand_expr_real (tree exp, rtx target, enum machine_mode tmode,
7086 enum expand_modifier modifier, rtx *alt_rtl)
7087 {
7088 int rn = -1;
7089 rtx ret, last = NULL;
7090
7091 /* Handle ERROR_MARK before anybody tries to access its type. */
7092 if (TREE_CODE (exp) == ERROR_MARK
7093 || (TREE_CODE (TREE_TYPE (exp)) == ERROR_MARK))
7094 {
7095 ret = CONST0_RTX (tmode);
7096 return ret ? ret : const0_rtx;
7097 }
7098
7099 if (flag_non_call_exceptions)
7100 {
7101 rn = lookup_expr_eh_region (exp);
7102
7103 /* If rn < 0, then either (1) tree-ssa not used or (2) doesn't throw. */
7104 if (rn >= 0)
7105 last = get_last_insn ();
7106 }
7107
7108 /* If this is an expression of some kind and it has an associated line
7109 number, then emit the line number before expanding the expression.
7110
7111 We need to save and restore the file and line information so that
7112 errors discovered during expansion are emitted with the right
7113 information. It would be better of the diagnostic routines
7114 used the file/line information embedded in the tree nodes rather
7115 than globals. */
7116 if (cfun && EXPR_HAS_LOCATION (exp))
7117 {
7118 location_t saved_location = input_location;
7119 input_location = EXPR_LOCATION (exp);
7120 set_curr_insn_source_location (input_location);
7121
7122 /* Record where the insns produced belong. */
7123 set_curr_insn_block (TREE_BLOCK (exp));
7124
7125 ret = expand_expr_real_1 (exp, target, tmode, modifier, alt_rtl);
7126
7127 input_location = saved_location;
7128 }
7129 else
7130 {
7131 ret = expand_expr_real_1 (exp, target, tmode, modifier, alt_rtl);
7132 }
7133
7134 /* If using non-call exceptions, mark all insns that may trap.
7135 expand_call() will mark CALL_INSNs before we get to this code,
7136 but it doesn't handle libcalls, and these may trap. */
7137 if (rn >= 0)
7138 {
7139 rtx insn;
7140 for (insn = next_real_insn (last); insn;
7141 insn = next_real_insn (insn))
7142 {
7143 if (! find_reg_note (insn, REG_EH_REGION, NULL_RTX)
7144 /* If we want exceptions for non-call insns, any
7145 may_trap_p instruction may throw. */
7146 && GET_CODE (PATTERN (insn)) != CLOBBER
7147 && GET_CODE (PATTERN (insn)) != USE
7148 && (CALL_P (insn) || may_trap_p (PATTERN (insn))))
7149 add_reg_note (insn, REG_EH_REGION, GEN_INT (rn));
7150 }
7151 }
7152
7153 return ret;
7154 }
7155
7156 static rtx
7157 expand_expr_real_1 (tree exp, rtx target, enum machine_mode tmode,
7158 enum expand_modifier modifier, rtx *alt_rtl)
7159 {
7160 rtx op0, op1, op2, temp, decl_rtl;
7161 tree type;
7162 int unsignedp;
7163 enum machine_mode mode;
7164 enum tree_code code = TREE_CODE (exp);
7165 optab this_optab;
7166 rtx subtarget, original_target;
7167 int ignore;
7168 tree context, subexp0, subexp1;
7169 bool reduce_bit_field;
7170 #define REDUCE_BIT_FIELD(expr) (reduce_bit_field \
7171 ? reduce_to_bit_field_precision ((expr), \
7172 target, \
7173 type) \
7174 : (expr))
7175
7176 type = TREE_TYPE (exp);
7177 mode = TYPE_MODE (type);
7178 unsignedp = TYPE_UNSIGNED (type);
7179
7180 ignore = (target == const0_rtx
7181 || ((CONVERT_EXPR_CODE_P (code)
7182 || code == COND_EXPR || code == VIEW_CONVERT_EXPR)
7183 && TREE_CODE (type) == VOID_TYPE));
7184
7185 /* An operation in what may be a bit-field type needs the
7186 result to be reduced to the precision of the bit-field type,
7187 which is narrower than that of the type's mode. */
7188 reduce_bit_field = (!ignore
7189 && TREE_CODE (type) == INTEGER_TYPE
7190 && GET_MODE_PRECISION (mode) > TYPE_PRECISION (type));
7191
7192 /* If we are going to ignore this result, we need only do something
7193 if there is a side-effect somewhere in the expression. If there
7194 is, short-circuit the most common cases here. Note that we must
7195 not call expand_expr with anything but const0_rtx in case this
7196 is an initial expansion of a size that contains a PLACEHOLDER_EXPR. */
7197
7198 if (ignore)
7199 {
7200 if (! TREE_SIDE_EFFECTS (exp))
7201 return const0_rtx;
7202
7203 /* Ensure we reference a volatile object even if value is ignored, but
7204 don't do this if all we are doing is taking its address. */
7205 if (TREE_THIS_VOLATILE (exp)
7206 && TREE_CODE (exp) != FUNCTION_DECL
7207 && mode != VOIDmode && mode != BLKmode
7208 && modifier != EXPAND_CONST_ADDRESS)
7209 {
7210 temp = expand_expr (exp, NULL_RTX, VOIDmode, modifier);
7211 if (MEM_P (temp))
7212 temp = copy_to_reg (temp);
7213 return const0_rtx;
7214 }
7215
7216 if (TREE_CODE_CLASS (code) == tcc_unary
7217 || code == COMPONENT_REF || code == INDIRECT_REF)
7218 return expand_expr (TREE_OPERAND (exp, 0), const0_rtx, VOIDmode,
7219 modifier);
7220
7221 else if (TREE_CODE_CLASS (code) == tcc_binary
7222 || TREE_CODE_CLASS (code) == tcc_comparison
7223 || code == ARRAY_REF || code == ARRAY_RANGE_REF)
7224 {
7225 expand_expr (TREE_OPERAND (exp, 0), const0_rtx, VOIDmode, modifier);
7226 expand_expr (TREE_OPERAND (exp, 1), const0_rtx, VOIDmode, modifier);
7227 return const0_rtx;
7228 }
7229 else if (code == BIT_FIELD_REF)
7230 {
7231 expand_expr (TREE_OPERAND (exp, 0), const0_rtx, VOIDmode, modifier);
7232 expand_expr (TREE_OPERAND (exp, 1), const0_rtx, VOIDmode, modifier);
7233 expand_expr (TREE_OPERAND (exp, 2), const0_rtx, VOIDmode, modifier);
7234 return const0_rtx;
7235 }
7236
7237 target = 0;
7238 }
7239
7240 if (reduce_bit_field && modifier == EXPAND_STACK_PARM)
7241 target = 0;
7242
7243 /* Use subtarget as the target for operand 0 of a binary operation. */
7244 subtarget = get_subtarget (target);
7245 original_target = target;
7246
7247 switch (code)
7248 {
7249 case LABEL_DECL:
7250 {
7251 tree function = decl_function_context (exp);
7252
7253 temp = label_rtx (exp);
7254 temp = gen_rtx_LABEL_REF (Pmode, temp);
7255
7256 if (function != current_function_decl
7257 && function != 0)
7258 LABEL_REF_NONLOCAL_P (temp) = 1;
7259
7260 temp = gen_rtx_MEM (FUNCTION_MODE, temp);
7261 return temp;
7262 }
7263
7264 case SSA_NAME:
7265 return expand_expr_real_1 (SSA_NAME_VAR (exp), target, tmode, modifier,
7266 NULL);
7267
7268 case PARM_DECL:
7269 case VAR_DECL:
7270 /* If a static var's type was incomplete when the decl was written,
7271 but the type is complete now, lay out the decl now. */
7272 if (DECL_SIZE (exp) == 0
7273 && COMPLETE_OR_UNBOUND_ARRAY_TYPE_P (TREE_TYPE (exp))
7274 && (TREE_STATIC (exp) || DECL_EXTERNAL (exp)))
7275 layout_decl (exp, 0);
7276
7277 /* TLS emulation hook - replace __thread vars with
7278 *__emutls_get_address (&_emutls.var). */
7279 if (! targetm.have_tls
7280 && TREE_CODE (exp) == VAR_DECL
7281 && DECL_THREAD_LOCAL_P (exp))
7282 {
7283 exp = build_fold_indirect_ref (emutls_var_address (exp));
7284 return expand_expr_real_1 (exp, target, tmode, modifier, NULL);
7285 }
7286
7287 /* ... fall through ... */
7288
7289 case FUNCTION_DECL:
7290 case RESULT_DECL:
7291 decl_rtl = DECL_RTL (exp);
7292 gcc_assert (decl_rtl);
7293 decl_rtl = copy_rtx (decl_rtl);
7294
7295 /* Ensure variable marked as used even if it doesn't go through
7296 a parser. If it hasn't be used yet, write out an external
7297 definition. */
7298 if (! TREE_USED (exp))
7299 {
7300 assemble_external (exp);
7301 TREE_USED (exp) = 1;
7302 }
7303
7304 /* Show we haven't gotten RTL for this yet. */
7305 temp = 0;
7306
7307 /* Variables inherited from containing functions should have
7308 been lowered by this point. */
7309 context = decl_function_context (exp);
7310 gcc_assert (!context
7311 || context == current_function_decl
7312 || TREE_STATIC (exp)
7313 /* ??? C++ creates functions that are not TREE_STATIC. */
7314 || TREE_CODE (exp) == FUNCTION_DECL);
7315
7316 /* This is the case of an array whose size is to be determined
7317 from its initializer, while the initializer is still being parsed.
7318 See expand_decl. */
7319
7320 if (MEM_P (decl_rtl) && REG_P (XEXP (decl_rtl, 0)))
7321 temp = validize_mem (decl_rtl);
7322
7323 /* If DECL_RTL is memory, we are in the normal case and the
7324 address is not valid, get the address into a register. */
7325
7326 else if (MEM_P (decl_rtl) && modifier != EXPAND_INITIALIZER)
7327 {
7328 if (alt_rtl)
7329 *alt_rtl = decl_rtl;
7330 decl_rtl = use_anchored_address (decl_rtl);
7331 if (modifier != EXPAND_CONST_ADDRESS
7332 && modifier != EXPAND_SUM
7333 && !memory_address_p (DECL_MODE (exp), XEXP (decl_rtl, 0)))
7334 temp = replace_equiv_address (decl_rtl,
7335 copy_rtx (XEXP (decl_rtl, 0)));
7336 }
7337
7338 /* If we got something, return it. But first, set the alignment
7339 if the address is a register. */
7340 if (temp != 0)
7341 {
7342 if (MEM_P (temp) && REG_P (XEXP (temp, 0)))
7343 mark_reg_pointer (XEXP (temp, 0), DECL_ALIGN (exp));
7344
7345 return temp;
7346 }
7347
7348 /* If the mode of DECL_RTL does not match that of the decl, it
7349 must be a promoted value. We return a SUBREG of the wanted mode,
7350 but mark it so that we know that it was already extended. */
7351
7352 if (REG_P (decl_rtl)
7353 && GET_MODE (decl_rtl) != DECL_MODE (exp))
7354 {
7355 enum machine_mode pmode;
7356
7357 /* Get the signedness used for this variable. Ensure we get the
7358 same mode we got when the variable was declared. */
7359 pmode = promote_mode (type, DECL_MODE (exp), &unsignedp,
7360 (TREE_CODE (exp) == RESULT_DECL
7361 || TREE_CODE (exp) == PARM_DECL) ? 1 : 0);
7362 gcc_assert (GET_MODE (decl_rtl) == pmode);
7363
7364 temp = gen_lowpart_SUBREG (mode, decl_rtl);
7365 SUBREG_PROMOTED_VAR_P (temp) = 1;
7366 SUBREG_PROMOTED_UNSIGNED_SET (temp, unsignedp);
7367 return temp;
7368 }
7369
7370 return decl_rtl;
7371
7372 case INTEGER_CST:
7373 temp = immed_double_const (TREE_INT_CST_LOW (exp),
7374 TREE_INT_CST_HIGH (exp), mode);
7375
7376 return temp;
7377
7378 case VECTOR_CST:
7379 {
7380 tree tmp = NULL_TREE;
7381 if (GET_MODE_CLASS (mode) == MODE_VECTOR_INT
7382 || GET_MODE_CLASS (mode) == MODE_VECTOR_FLOAT
7383 || GET_MODE_CLASS (mode) == MODE_VECTOR_FRACT
7384 || GET_MODE_CLASS (mode) == MODE_VECTOR_UFRACT
7385 || GET_MODE_CLASS (mode) == MODE_VECTOR_ACCUM
7386 || GET_MODE_CLASS (mode) == MODE_VECTOR_UACCUM)
7387 return const_vector_from_tree (exp);
7388 if (GET_MODE_CLASS (mode) == MODE_INT)
7389 {
7390 tree type_for_mode = lang_hooks.types.type_for_mode (mode, 1);
7391 if (type_for_mode)
7392 tmp = fold_unary (VIEW_CONVERT_EXPR, type_for_mode, exp);
7393 }
7394 if (!tmp)
7395 tmp = build_constructor_from_list (type,
7396 TREE_VECTOR_CST_ELTS (exp));
7397 return expand_expr (tmp, ignore ? const0_rtx : target,
7398 tmode, modifier);
7399 }
7400
7401 case CONST_DECL:
7402 return expand_expr (DECL_INITIAL (exp), target, VOIDmode, modifier);
7403
7404 case REAL_CST:
7405 /* If optimized, generate immediate CONST_DOUBLE
7406 which will be turned into memory by reload if necessary.
7407
7408 We used to force a register so that loop.c could see it. But
7409 this does not allow gen_* patterns to perform optimizations with
7410 the constants. It also produces two insns in cases like "x = 1.0;".
7411 On most machines, floating-point constants are not permitted in
7412 many insns, so we'd end up copying it to a register in any case.
7413
7414 Now, we do the copying in expand_binop, if appropriate. */
7415 return CONST_DOUBLE_FROM_REAL_VALUE (TREE_REAL_CST (exp),
7416 TYPE_MODE (TREE_TYPE (exp)));
7417
7418 case FIXED_CST:
7419 return CONST_FIXED_FROM_FIXED_VALUE (TREE_FIXED_CST (exp),
7420 TYPE_MODE (TREE_TYPE (exp)));
7421
7422 case COMPLEX_CST:
7423 /* Handle evaluating a complex constant in a CONCAT target. */
7424 if (original_target && GET_CODE (original_target) == CONCAT)
7425 {
7426 enum machine_mode mode = TYPE_MODE (TREE_TYPE (TREE_TYPE (exp)));
7427 rtx rtarg, itarg;
7428
7429 rtarg = XEXP (original_target, 0);
7430 itarg = XEXP (original_target, 1);
7431
7432 /* Move the real and imaginary parts separately. */
7433 op0 = expand_expr (TREE_REALPART (exp), rtarg, mode, EXPAND_NORMAL);
7434 op1 = expand_expr (TREE_IMAGPART (exp), itarg, mode, EXPAND_NORMAL);
7435
7436 if (op0 != rtarg)
7437 emit_move_insn (rtarg, op0);
7438 if (op1 != itarg)
7439 emit_move_insn (itarg, op1);
7440
7441 return original_target;
7442 }
7443
7444 /* ... fall through ... */
7445
7446 case STRING_CST:
7447 temp = expand_expr_constant (exp, 1, modifier);
7448
7449 /* temp contains a constant address.
7450 On RISC machines where a constant address isn't valid,
7451 make some insns to get that address into a register. */
7452 if (modifier != EXPAND_CONST_ADDRESS
7453 && modifier != EXPAND_INITIALIZER
7454 && modifier != EXPAND_SUM
7455 && ! memory_address_p (mode, XEXP (temp, 0)))
7456 return replace_equiv_address (temp,
7457 copy_rtx (XEXP (temp, 0)));
7458 return temp;
7459
7460 case SAVE_EXPR:
7461 {
7462 tree val = TREE_OPERAND (exp, 0);
7463 rtx ret = expand_expr_real_1 (val, target, tmode, modifier, alt_rtl);
7464
7465 if (!SAVE_EXPR_RESOLVED_P (exp))
7466 {
7467 /* We can indeed still hit this case, typically via builtin
7468 expanders calling save_expr immediately before expanding
7469 something. Assume this means that we only have to deal
7470 with non-BLKmode values. */
7471 gcc_assert (GET_MODE (ret) != BLKmode);
7472
7473 val = build_decl (VAR_DECL, NULL, TREE_TYPE (exp));
7474 DECL_ARTIFICIAL (val) = 1;
7475 DECL_IGNORED_P (val) = 1;
7476 TREE_OPERAND (exp, 0) = val;
7477 SAVE_EXPR_RESOLVED_P (exp) = 1;
7478
7479 if (!CONSTANT_P (ret))
7480 ret = copy_to_reg (ret);
7481 SET_DECL_RTL (val, ret);
7482 }
7483
7484 return ret;
7485 }
7486
7487 case GOTO_EXPR:
7488 if (TREE_CODE (TREE_OPERAND (exp, 0)) == LABEL_DECL)
7489 expand_goto (TREE_OPERAND (exp, 0));
7490 else
7491 expand_computed_goto (TREE_OPERAND (exp, 0));
7492 return const0_rtx;
7493
7494 case CONSTRUCTOR:
7495 /* If we don't need the result, just ensure we evaluate any
7496 subexpressions. */
7497 if (ignore)
7498 {
7499 unsigned HOST_WIDE_INT idx;
7500 tree value;
7501
7502 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (exp), idx, value)
7503 expand_expr (value, const0_rtx, VOIDmode, EXPAND_NORMAL);
7504
7505 return const0_rtx;
7506 }
7507
7508 return expand_constructor (exp, target, modifier, false);
7509
7510 case MISALIGNED_INDIRECT_REF:
7511 case ALIGN_INDIRECT_REF:
7512 case INDIRECT_REF:
7513 {
7514 tree exp1 = TREE_OPERAND (exp, 0);
7515
7516 if (modifier != EXPAND_WRITE)
7517 {
7518 tree t;
7519
7520 t = fold_read_from_constant_string (exp);
7521 if (t)
7522 return expand_expr (t, target, tmode, modifier);
7523 }
7524
7525 op0 = expand_expr (exp1, NULL_RTX, VOIDmode, EXPAND_SUM);
7526 op0 = memory_address (mode, op0);
7527
7528 if (code == ALIGN_INDIRECT_REF)
7529 {
7530 int align = TYPE_ALIGN_UNIT (type);
7531 op0 = gen_rtx_AND (Pmode, op0, GEN_INT (-align));
7532 op0 = memory_address (mode, op0);
7533 }
7534
7535 temp = gen_rtx_MEM (mode, op0);
7536
7537 set_mem_attributes (temp, exp, 0);
7538
7539 /* Resolve the misalignment now, so that we don't have to remember
7540 to resolve it later. Of course, this only works for reads. */
7541 /* ??? When we get around to supporting writes, we'll have to handle
7542 this in store_expr directly. The vectorizer isn't generating
7543 those yet, however. */
7544 if (code == MISALIGNED_INDIRECT_REF)
7545 {
7546 int icode;
7547 rtx reg, insn;
7548
7549 gcc_assert (modifier == EXPAND_NORMAL
7550 || modifier == EXPAND_STACK_PARM);
7551
7552 /* The vectorizer should have already checked the mode. */
7553 icode = optab_handler (movmisalign_optab, mode)->insn_code;
7554 gcc_assert (icode != CODE_FOR_nothing);
7555
7556 /* We've already validated the memory, and we're creating a
7557 new pseudo destination. The predicates really can't fail. */
7558 reg = gen_reg_rtx (mode);
7559
7560 /* Nor can the insn generator. */
7561 insn = GEN_FCN (icode) (reg, temp);
7562 emit_insn (insn);
7563
7564 return reg;
7565 }
7566
7567 return temp;
7568 }
7569
7570 case TARGET_MEM_REF:
7571 {
7572 struct mem_address addr;
7573
7574 get_address_description (exp, &addr);
7575 op0 = addr_for_mem_ref (&addr, true);
7576 op0 = memory_address (mode, op0);
7577 temp = gen_rtx_MEM (mode, op0);
7578 set_mem_attributes (temp, TMR_ORIGINAL (exp), 0);
7579 }
7580 return temp;
7581
7582 case ARRAY_REF:
7583
7584 {
7585 tree array = TREE_OPERAND (exp, 0);
7586 tree index = TREE_OPERAND (exp, 1);
7587
7588 /* Fold an expression like: "foo"[2].
7589 This is not done in fold so it won't happen inside &.
7590 Don't fold if this is for wide characters since it's too
7591 difficult to do correctly and this is a very rare case. */
7592
7593 if (modifier != EXPAND_CONST_ADDRESS
7594 && modifier != EXPAND_INITIALIZER
7595 && modifier != EXPAND_MEMORY)
7596 {
7597 tree t = fold_read_from_constant_string (exp);
7598
7599 if (t)
7600 return expand_expr (t, target, tmode, modifier);
7601 }
7602
7603 /* If this is a constant index into a constant array,
7604 just get the value from the array. Handle both the cases when
7605 we have an explicit constructor and when our operand is a variable
7606 that was declared const. */
7607
7608 if (modifier != EXPAND_CONST_ADDRESS
7609 && modifier != EXPAND_INITIALIZER
7610 && modifier != EXPAND_MEMORY
7611 && TREE_CODE (array) == CONSTRUCTOR
7612 && ! TREE_SIDE_EFFECTS (array)
7613 && TREE_CODE (index) == INTEGER_CST)
7614 {
7615 unsigned HOST_WIDE_INT ix;
7616 tree field, value;
7617
7618 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (array), ix,
7619 field, value)
7620 if (tree_int_cst_equal (field, index))
7621 {
7622 if (!TREE_SIDE_EFFECTS (value))
7623 return expand_expr (fold (value), target, tmode, modifier);
7624 break;
7625 }
7626 }
7627
7628 else if (optimize >= 1
7629 && modifier != EXPAND_CONST_ADDRESS
7630 && modifier != EXPAND_INITIALIZER
7631 && modifier != EXPAND_MEMORY
7632 && TREE_READONLY (array) && ! TREE_SIDE_EFFECTS (array)
7633 && TREE_CODE (array) == VAR_DECL && DECL_INITIAL (array)
7634 && TREE_CODE (DECL_INITIAL (array)) != ERROR_MARK
7635 && targetm.binds_local_p (array))
7636 {
7637 if (TREE_CODE (index) == INTEGER_CST)
7638 {
7639 tree init = DECL_INITIAL (array);
7640
7641 if (TREE_CODE (init) == CONSTRUCTOR)
7642 {
7643 unsigned HOST_WIDE_INT ix;
7644 tree field, value;
7645
7646 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (init), ix,
7647 field, value)
7648 if (tree_int_cst_equal (field, index))
7649 {
7650 if (TREE_SIDE_EFFECTS (value))
7651 break;
7652
7653 if (TREE_CODE (value) == CONSTRUCTOR)
7654 {
7655 /* If VALUE is a CONSTRUCTOR, this
7656 optimization is only useful if
7657 this doesn't store the CONSTRUCTOR
7658 into memory. If it does, it is more
7659 efficient to just load the data from
7660 the array directly. */
7661 rtx ret = expand_constructor (value, target,
7662 modifier, true);
7663 if (ret == NULL_RTX)
7664 break;
7665 }
7666
7667 return expand_expr (fold (value), target, tmode,
7668 modifier);
7669 }
7670 }
7671 else if(TREE_CODE (init) == STRING_CST)
7672 {
7673 tree index1 = index;
7674 tree low_bound = array_ref_low_bound (exp);
7675 index1 = fold_convert (sizetype, TREE_OPERAND (exp, 1));
7676
7677 /* Optimize the special-case of a zero lower bound.
7678
7679 We convert the low_bound to sizetype to avoid some problems
7680 with constant folding. (E.g. suppose the lower bound is 1,
7681 and its mode is QI. Without the conversion,l (ARRAY
7682 +(INDEX-(unsigned char)1)) becomes ((ARRAY+(-(unsigned char)1))
7683 +INDEX), which becomes (ARRAY+255+INDEX). Opps!) */
7684
7685 if (! integer_zerop (low_bound))
7686 index1 = size_diffop (index1, fold_convert (sizetype,
7687 low_bound));
7688
7689 if (0 > compare_tree_int (index1,
7690 TREE_STRING_LENGTH (init)))
7691 {
7692 tree type = TREE_TYPE (TREE_TYPE (init));
7693 enum machine_mode mode = TYPE_MODE (type);
7694
7695 if (GET_MODE_CLASS (mode) == MODE_INT
7696 && GET_MODE_SIZE (mode) == 1)
7697 return gen_int_mode (TREE_STRING_POINTER (init)
7698 [TREE_INT_CST_LOW (index1)],
7699 mode);
7700 }
7701 }
7702 }
7703 }
7704 }
7705 goto normal_inner_ref;
7706
7707 case COMPONENT_REF:
7708 /* If the operand is a CONSTRUCTOR, we can just extract the
7709 appropriate field if it is present. */
7710 if (TREE_CODE (TREE_OPERAND (exp, 0)) == CONSTRUCTOR)
7711 {
7712 unsigned HOST_WIDE_INT idx;
7713 tree field, value;
7714
7715 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (TREE_OPERAND (exp, 0)),
7716 idx, field, value)
7717 if (field == TREE_OPERAND (exp, 1)
7718 /* We can normally use the value of the field in the
7719 CONSTRUCTOR. However, if this is a bitfield in
7720 an integral mode that we can fit in a HOST_WIDE_INT,
7721 we must mask only the number of bits in the bitfield,
7722 since this is done implicitly by the constructor. If
7723 the bitfield does not meet either of those conditions,
7724 we can't do this optimization. */
7725 && (! DECL_BIT_FIELD (field)
7726 || ((GET_MODE_CLASS (DECL_MODE (field)) == MODE_INT)
7727 && (GET_MODE_BITSIZE (DECL_MODE (field))
7728 <= HOST_BITS_PER_WIDE_INT))))
7729 {
7730 if (DECL_BIT_FIELD (field)
7731 && modifier == EXPAND_STACK_PARM)
7732 target = 0;
7733 op0 = expand_expr (value, target, tmode, modifier);
7734 if (DECL_BIT_FIELD (field))
7735 {
7736 HOST_WIDE_INT bitsize = TREE_INT_CST_LOW (DECL_SIZE (field));
7737 enum machine_mode imode = TYPE_MODE (TREE_TYPE (field));
7738
7739 if (TYPE_UNSIGNED (TREE_TYPE (field)))
7740 {
7741 op1 = GEN_INT (((HOST_WIDE_INT) 1 << bitsize) - 1);
7742 op0 = expand_and (imode, op0, op1, target);
7743 }
7744 else
7745 {
7746 tree count
7747 = build_int_cst (NULL_TREE,
7748 GET_MODE_BITSIZE (imode) - bitsize);
7749
7750 op0 = expand_shift (LSHIFT_EXPR, imode, op0, count,
7751 target, 0);
7752 op0 = expand_shift (RSHIFT_EXPR, imode, op0, count,
7753 target, 0);
7754 }
7755 }
7756
7757 return op0;
7758 }
7759 }
7760 goto normal_inner_ref;
7761
7762 case BIT_FIELD_REF:
7763 case ARRAY_RANGE_REF:
7764 normal_inner_ref:
7765 {
7766 enum machine_mode mode1, mode2;
7767 HOST_WIDE_INT bitsize, bitpos;
7768 tree offset;
7769 int volatilep = 0, must_force_mem;
7770 tree tem = get_inner_reference (exp, &bitsize, &bitpos, &offset,
7771 &mode1, &unsignedp, &volatilep, true);
7772 rtx orig_op0, memloc;
7773
7774 /* If we got back the original object, something is wrong. Perhaps
7775 we are evaluating an expression too early. In any event, don't
7776 infinitely recurse. */
7777 gcc_assert (tem != exp);
7778
7779 /* If TEM's type is a union of variable size, pass TARGET to the inner
7780 computation, since it will need a temporary and TARGET is known
7781 to have to do. This occurs in unchecked conversion in Ada. */
7782 orig_op0 = op0
7783 = expand_expr (tem,
7784 (TREE_CODE (TREE_TYPE (tem)) == UNION_TYPE
7785 && (TREE_CODE (TYPE_SIZE (TREE_TYPE (tem)))
7786 != INTEGER_CST)
7787 && modifier != EXPAND_STACK_PARM
7788 ? target : NULL_RTX),
7789 VOIDmode,
7790 (modifier == EXPAND_INITIALIZER
7791 || modifier == EXPAND_CONST_ADDRESS
7792 || modifier == EXPAND_STACK_PARM)
7793 ? modifier : EXPAND_NORMAL);
7794
7795 mode2
7796 = CONSTANT_P (op0) ? TYPE_MODE (TREE_TYPE (tem)) : GET_MODE (op0);
7797
7798 /* If we have either an offset, a BLKmode result, or a reference
7799 outside the underlying object, we must force it to memory.
7800 Such a case can occur in Ada if we have unchecked conversion
7801 of an expression from a scalar type to an aggregate type or
7802 for an ARRAY_RANGE_REF whose type is BLKmode, or if we were
7803 passed a partially uninitialized object or a view-conversion
7804 to a larger size. */
7805 must_force_mem = (offset
7806 || mode1 == BLKmode
7807 || bitpos + bitsize > GET_MODE_BITSIZE (mode2));
7808
7809 /* If this is a constant, put it in a register if it is a legitimate
7810 constant and we don't need a memory reference. */
7811 if (CONSTANT_P (op0)
7812 && mode2 != BLKmode
7813 && LEGITIMATE_CONSTANT_P (op0)
7814 && !must_force_mem)
7815 op0 = force_reg (mode2, op0);
7816
7817 /* Otherwise, if this is a constant, try to force it to the constant
7818 pool. Note that back-ends, e.g. MIPS, may refuse to do so if it
7819 is a legitimate constant. */
7820 else if (CONSTANT_P (op0) && (memloc = force_const_mem (mode2, op0)))
7821 op0 = validize_mem (memloc);
7822
7823 /* Otherwise, if this is a constant or the object is not in memory
7824 and need be, put it there. */
7825 else if (CONSTANT_P (op0) || (!MEM_P (op0) && must_force_mem))
7826 {
7827 tree nt = build_qualified_type (TREE_TYPE (tem),
7828 (TYPE_QUALS (TREE_TYPE (tem))
7829 | TYPE_QUAL_CONST));
7830 memloc = assign_temp (nt, 1, 1, 1);
7831 emit_move_insn (memloc, op0);
7832 op0 = memloc;
7833 }
7834
7835 if (offset)
7836 {
7837 rtx offset_rtx = expand_expr (offset, NULL_RTX, VOIDmode,
7838 EXPAND_SUM);
7839
7840 gcc_assert (MEM_P (op0));
7841
7842 #ifdef POINTERS_EXTEND_UNSIGNED
7843 if (GET_MODE (offset_rtx) != Pmode)
7844 offset_rtx = convert_to_mode (Pmode, offset_rtx, 0);
7845 #else
7846 if (GET_MODE (offset_rtx) != ptr_mode)
7847 offset_rtx = convert_to_mode (ptr_mode, offset_rtx, 0);
7848 #endif
7849
7850 if (GET_MODE (op0) == BLKmode
7851 /* A constant address in OP0 can have VOIDmode, we must
7852 not try to call force_reg in that case. */
7853 && GET_MODE (XEXP (op0, 0)) != VOIDmode
7854 && bitsize != 0
7855 && (bitpos % bitsize) == 0
7856 && (bitsize % GET_MODE_ALIGNMENT (mode1)) == 0
7857 && MEM_ALIGN (op0) == GET_MODE_ALIGNMENT (mode1))
7858 {
7859 op0 = adjust_address (op0, mode1, bitpos / BITS_PER_UNIT);
7860 bitpos = 0;
7861 }
7862
7863 op0 = offset_address (op0, offset_rtx,
7864 highest_pow2_factor (offset));
7865 }
7866
7867 /* If OFFSET is making OP0 more aligned than BIGGEST_ALIGNMENT,
7868 record its alignment as BIGGEST_ALIGNMENT. */
7869 if (MEM_P (op0) && bitpos == 0 && offset != 0
7870 && is_aligning_offset (offset, tem))
7871 set_mem_align (op0, BIGGEST_ALIGNMENT);
7872
7873 /* Don't forget about volatility even if this is a bitfield. */
7874 if (MEM_P (op0) && volatilep && ! MEM_VOLATILE_P (op0))
7875 {
7876 if (op0 == orig_op0)
7877 op0 = copy_rtx (op0);
7878
7879 MEM_VOLATILE_P (op0) = 1;
7880 }
7881
7882 /* The following code doesn't handle CONCAT.
7883 Assume only bitpos == 0 can be used for CONCAT, due to
7884 one element arrays having the same mode as its element. */
7885 if (GET_CODE (op0) == CONCAT)
7886 {
7887 gcc_assert (bitpos == 0
7888 && bitsize == GET_MODE_BITSIZE (GET_MODE (op0)));
7889 return op0;
7890 }
7891
7892 /* In cases where an aligned union has an unaligned object
7893 as a field, we might be extracting a BLKmode value from
7894 an integer-mode (e.g., SImode) object. Handle this case
7895 by doing the extract into an object as wide as the field
7896 (which we know to be the width of a basic mode), then
7897 storing into memory, and changing the mode to BLKmode. */
7898 if (mode1 == VOIDmode
7899 || REG_P (op0) || GET_CODE (op0) == SUBREG
7900 || (mode1 != BLKmode && ! direct_load[(int) mode1]
7901 && GET_MODE_CLASS (mode) != MODE_COMPLEX_INT
7902 && GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT
7903 && modifier != EXPAND_CONST_ADDRESS
7904 && modifier != EXPAND_INITIALIZER)
7905 /* If the field isn't aligned enough to fetch as a memref,
7906 fetch it as a bit field. */
7907 || (mode1 != BLKmode
7908 && (((TYPE_ALIGN (TREE_TYPE (tem)) < GET_MODE_ALIGNMENT (mode)
7909 || (bitpos % GET_MODE_ALIGNMENT (mode) != 0)
7910 || (MEM_P (op0)
7911 && (MEM_ALIGN (op0) < GET_MODE_ALIGNMENT (mode1)
7912 || (bitpos % GET_MODE_ALIGNMENT (mode1) != 0))))
7913 && ((modifier == EXPAND_CONST_ADDRESS
7914 || modifier == EXPAND_INITIALIZER)
7915 ? STRICT_ALIGNMENT
7916 : SLOW_UNALIGNED_ACCESS (mode1, MEM_ALIGN (op0))))
7917 || (bitpos % BITS_PER_UNIT != 0)))
7918 /* If the type and the field are a constant size and the
7919 size of the type isn't the same size as the bitfield,
7920 we must use bitfield operations. */
7921 || (bitsize >= 0
7922 && TYPE_SIZE (TREE_TYPE (exp))
7923 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp))) == INTEGER_CST
7924 && 0 != compare_tree_int (TYPE_SIZE (TREE_TYPE (exp)),
7925 bitsize)))
7926 {
7927 enum machine_mode ext_mode = mode;
7928
7929 if (ext_mode == BLKmode
7930 && ! (target != 0 && MEM_P (op0)
7931 && MEM_P (target)
7932 && bitpos % BITS_PER_UNIT == 0))
7933 ext_mode = mode_for_size (bitsize, MODE_INT, 1);
7934
7935 if (ext_mode == BLKmode)
7936 {
7937 if (target == 0)
7938 target = assign_temp (type, 0, 1, 1);
7939
7940 if (bitsize == 0)
7941 return target;
7942
7943 /* In this case, BITPOS must start at a byte boundary and
7944 TARGET, if specified, must be a MEM. */
7945 gcc_assert (MEM_P (op0)
7946 && (!target || MEM_P (target))
7947 && !(bitpos % BITS_PER_UNIT));
7948
7949 emit_block_move (target,
7950 adjust_address (op0, VOIDmode,
7951 bitpos / BITS_PER_UNIT),
7952 GEN_INT ((bitsize + BITS_PER_UNIT - 1)
7953 / BITS_PER_UNIT),
7954 (modifier == EXPAND_STACK_PARM
7955 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
7956
7957 return target;
7958 }
7959
7960 op0 = validize_mem (op0);
7961
7962 if (MEM_P (op0) && REG_P (XEXP (op0, 0)))
7963 mark_reg_pointer (XEXP (op0, 0), MEM_ALIGN (op0));
7964
7965 op0 = extract_bit_field (op0, bitsize, bitpos, unsignedp,
7966 (modifier == EXPAND_STACK_PARM
7967 ? NULL_RTX : target),
7968 ext_mode, ext_mode);
7969
7970 /* If the result is a record type and BITSIZE is narrower than
7971 the mode of OP0, an integral mode, and this is a big endian
7972 machine, we must put the field into the high-order bits. */
7973 if (TREE_CODE (type) == RECORD_TYPE && BYTES_BIG_ENDIAN
7974 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_INT
7975 && bitsize < (HOST_WIDE_INT) GET_MODE_BITSIZE (GET_MODE (op0)))
7976 op0 = expand_shift (LSHIFT_EXPR, GET_MODE (op0), op0,
7977 size_int (GET_MODE_BITSIZE (GET_MODE (op0))
7978 - bitsize),
7979 op0, 1);
7980
7981 /* If the result type is BLKmode, store the data into a temporary
7982 of the appropriate type, but with the mode corresponding to the
7983 mode for the data we have (op0's mode). It's tempting to make
7984 this a constant type, since we know it's only being stored once,
7985 but that can cause problems if we are taking the address of this
7986 COMPONENT_REF because the MEM of any reference via that address
7987 will have flags corresponding to the type, which will not
7988 necessarily be constant. */
7989 if (mode == BLKmode)
7990 {
7991 HOST_WIDE_INT size = GET_MODE_BITSIZE (ext_mode);
7992 rtx new_rtx;
7993
7994 /* If the reference doesn't use the alias set of its type,
7995 we cannot create the temporary using that type. */
7996 if (component_uses_parent_alias_set (exp))
7997 {
7998 new_rtx = assign_stack_local (ext_mode, size, 0);
7999 set_mem_alias_set (new_rtx, get_alias_set (exp));
8000 }
8001 else
8002 new_rtx = assign_stack_temp_for_type (ext_mode, size, 0, type);
8003
8004 emit_move_insn (new_rtx, op0);
8005 op0 = copy_rtx (new_rtx);
8006 PUT_MODE (op0, BLKmode);
8007 set_mem_attributes (op0, exp, 1);
8008 }
8009
8010 return op0;
8011 }
8012
8013 /* If the result is BLKmode, use that to access the object
8014 now as well. */
8015 if (mode == BLKmode)
8016 mode1 = BLKmode;
8017
8018 /* Get a reference to just this component. */
8019 if (modifier == EXPAND_CONST_ADDRESS
8020 || modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER)
8021 op0 = adjust_address_nv (op0, mode1, bitpos / BITS_PER_UNIT);
8022 else
8023 op0 = adjust_address (op0, mode1, bitpos / BITS_PER_UNIT);
8024
8025 if (op0 == orig_op0)
8026 op0 = copy_rtx (op0);
8027
8028 set_mem_attributes (op0, exp, 0);
8029 if (REG_P (XEXP (op0, 0)))
8030 mark_reg_pointer (XEXP (op0, 0), MEM_ALIGN (op0));
8031
8032 MEM_VOLATILE_P (op0) |= volatilep;
8033 if (mode == mode1 || mode1 == BLKmode || mode1 == tmode
8034 || modifier == EXPAND_CONST_ADDRESS
8035 || modifier == EXPAND_INITIALIZER)
8036 return op0;
8037 else if (target == 0)
8038 target = gen_reg_rtx (tmode != VOIDmode ? tmode : mode);
8039
8040 convert_move (target, op0, unsignedp);
8041 return target;
8042 }
8043
8044 case OBJ_TYPE_REF:
8045 return expand_expr (OBJ_TYPE_REF_EXPR (exp), target, tmode, modifier);
8046
8047 case CALL_EXPR:
8048 /* All valid uses of __builtin_va_arg_pack () are removed during
8049 inlining. */
8050 if (CALL_EXPR_VA_ARG_PACK (exp))
8051 error ("%Kinvalid use of %<__builtin_va_arg_pack ()%>", exp);
8052 {
8053 tree fndecl = get_callee_fndecl (exp), attr;
8054
8055 if (fndecl
8056 && (attr = lookup_attribute ("error",
8057 DECL_ATTRIBUTES (fndecl))) != NULL)
8058 error ("%Kcall to %qs declared with attribute error: %s",
8059 exp, lang_hooks.decl_printable_name (fndecl, 1),
8060 TREE_STRING_POINTER (TREE_VALUE (TREE_VALUE (attr))));
8061 if (fndecl
8062 && (attr = lookup_attribute ("warning",
8063 DECL_ATTRIBUTES (fndecl))) != NULL)
8064 warning_at (tree_nonartificial_location (exp),
8065 0, "%Kcall to %qs declared with attribute warning: %s",
8066 exp, lang_hooks.decl_printable_name (fndecl, 1),
8067 TREE_STRING_POINTER (TREE_VALUE (TREE_VALUE (attr))));
8068
8069 /* Check for a built-in function. */
8070 if (fndecl && DECL_BUILT_IN (fndecl))
8071 {
8072 if (DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_FRONTEND)
8073 return lang_hooks.expand_expr (exp, original_target,
8074 tmode, modifier, alt_rtl);
8075 else
8076 return expand_builtin (exp, target, subtarget, tmode, ignore);
8077 }
8078 }
8079 return expand_call (exp, target, ignore);
8080
8081 case PAREN_EXPR:
8082 CASE_CONVERT:
8083 if (TREE_OPERAND (exp, 0) == error_mark_node)
8084 return const0_rtx;
8085
8086 if (TREE_CODE (type) == UNION_TYPE)
8087 {
8088 tree valtype = TREE_TYPE (TREE_OPERAND (exp, 0));
8089
8090 /* If both input and output are BLKmode, this conversion isn't doing
8091 anything except possibly changing memory attribute. */
8092 if (mode == BLKmode && TYPE_MODE (valtype) == BLKmode)
8093 {
8094 rtx result = expand_expr (TREE_OPERAND (exp, 0), target, tmode,
8095 modifier);
8096
8097 result = copy_rtx (result);
8098 set_mem_attributes (result, exp, 0);
8099 return result;
8100 }
8101
8102 if (target == 0)
8103 {
8104 if (TYPE_MODE (type) != BLKmode)
8105 target = gen_reg_rtx (TYPE_MODE (type));
8106 else
8107 target = assign_temp (type, 0, 1, 1);
8108 }
8109
8110 if (MEM_P (target))
8111 /* Store data into beginning of memory target. */
8112 store_expr (TREE_OPERAND (exp, 0),
8113 adjust_address (target, TYPE_MODE (valtype), 0),
8114 modifier == EXPAND_STACK_PARM,
8115 false);
8116
8117 else
8118 {
8119 gcc_assert (REG_P (target));
8120
8121 /* Store this field into a union of the proper type. */
8122 store_field (target,
8123 MIN ((int_size_in_bytes (TREE_TYPE
8124 (TREE_OPERAND (exp, 0)))
8125 * BITS_PER_UNIT),
8126 (HOST_WIDE_INT) GET_MODE_BITSIZE (mode)),
8127 0, TYPE_MODE (valtype), TREE_OPERAND (exp, 0),
8128 type, 0, false);
8129 }
8130
8131 /* Return the entire union. */
8132 return target;
8133 }
8134
8135 if (mode == TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 0))))
8136 {
8137 op0 = expand_expr (TREE_OPERAND (exp, 0), target, VOIDmode,
8138 modifier);
8139
8140 /* If the signedness of the conversion differs and OP0 is
8141 a promoted SUBREG, clear that indication since we now
8142 have to do the proper extension. */
8143 if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (exp, 0))) != unsignedp
8144 && GET_CODE (op0) == SUBREG)
8145 SUBREG_PROMOTED_VAR_P (op0) = 0;
8146
8147 return REDUCE_BIT_FIELD (op0);
8148 }
8149
8150 op0 = expand_expr (TREE_OPERAND (exp, 0), NULL_RTX, mode,
8151 modifier == EXPAND_SUM ? EXPAND_NORMAL : modifier);
8152 if (GET_MODE (op0) == mode)
8153 ;
8154
8155 /* If OP0 is a constant, just convert it into the proper mode. */
8156 else if (CONSTANT_P (op0))
8157 {
8158 tree inner_type = TREE_TYPE (TREE_OPERAND (exp, 0));
8159 enum machine_mode inner_mode = TYPE_MODE (inner_type);
8160
8161 if (modifier == EXPAND_INITIALIZER)
8162 op0 = simplify_gen_subreg (mode, op0, inner_mode,
8163 subreg_lowpart_offset (mode,
8164 inner_mode));
8165 else
8166 op0= convert_modes (mode, inner_mode, op0,
8167 TYPE_UNSIGNED (inner_type));
8168 }
8169
8170 else if (modifier == EXPAND_INITIALIZER)
8171 op0 = gen_rtx_fmt_e (unsignedp ? ZERO_EXTEND : SIGN_EXTEND, mode, op0);
8172
8173 else if (target == 0)
8174 op0 = convert_to_mode (mode, op0,
8175 TYPE_UNSIGNED (TREE_TYPE
8176 (TREE_OPERAND (exp, 0))));
8177 else
8178 {
8179 convert_move (target, op0,
8180 TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (exp, 0))));
8181 op0 = target;
8182 }
8183
8184 return REDUCE_BIT_FIELD (op0);
8185
8186 case VIEW_CONVERT_EXPR:
8187 op0 = NULL_RTX;
8188
8189 /* If we are converting to BLKmode, try to avoid an intermediate
8190 temporary by fetching an inner memory reference. */
8191 if (mode == BLKmode
8192 && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp))) == INTEGER_CST
8193 && TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 0))) != BLKmode
8194 && handled_component_p (TREE_OPERAND (exp, 0)))
8195 {
8196 enum machine_mode mode1;
8197 HOST_WIDE_INT bitsize, bitpos;
8198 tree offset;
8199 int unsignedp;
8200 int volatilep = 0;
8201 tree tem
8202 = get_inner_reference (TREE_OPERAND (exp, 0), &bitsize, &bitpos,
8203 &offset, &mode1, &unsignedp, &volatilep,
8204 true);
8205 rtx orig_op0;
8206
8207 /* ??? We should work harder and deal with non-zero offsets. */
8208 if (!offset
8209 && (bitpos % BITS_PER_UNIT) == 0
8210 && bitsize >= 0
8211 && compare_tree_int (TYPE_SIZE (TREE_TYPE (exp)), bitsize) == 0)
8212 {
8213 /* See the normal_inner_ref case for the rationale. */
8214 orig_op0
8215 = expand_expr (tem,
8216 (TREE_CODE (TREE_TYPE (tem)) == UNION_TYPE
8217 && (TREE_CODE (TYPE_SIZE (TREE_TYPE (tem)))
8218 != INTEGER_CST)
8219 && modifier != EXPAND_STACK_PARM
8220 ? target : NULL_RTX),
8221 VOIDmode,
8222 (modifier == EXPAND_INITIALIZER
8223 || modifier == EXPAND_CONST_ADDRESS
8224 || modifier == EXPAND_STACK_PARM)
8225 ? modifier : EXPAND_NORMAL);
8226
8227 if (MEM_P (orig_op0))
8228 {
8229 op0 = orig_op0;
8230
8231 /* Get a reference to just this component. */
8232 if (modifier == EXPAND_CONST_ADDRESS
8233 || modifier == EXPAND_SUM
8234 || modifier == EXPAND_INITIALIZER)
8235 op0 = adjust_address_nv (op0, mode, bitpos / BITS_PER_UNIT);
8236 else
8237 op0 = adjust_address (op0, mode, bitpos / BITS_PER_UNIT);
8238
8239 if (op0 == orig_op0)
8240 op0 = copy_rtx (op0);
8241
8242 set_mem_attributes (op0, TREE_OPERAND (exp, 0), 0);
8243 if (REG_P (XEXP (op0, 0)))
8244 mark_reg_pointer (XEXP (op0, 0), MEM_ALIGN (op0));
8245
8246 MEM_VOLATILE_P (op0) |= volatilep;
8247 }
8248 }
8249 }
8250
8251 if (!op0)
8252 op0 = expand_expr (TREE_OPERAND (exp, 0), NULL_RTX, mode, modifier);
8253
8254 /* If the input and output modes are both the same, we are done. */
8255 if (mode == GET_MODE (op0))
8256 ;
8257 /* If neither mode is BLKmode, and both modes are the same size
8258 then we can use gen_lowpart. */
8259 else if (mode != BLKmode && GET_MODE (op0) != BLKmode
8260 && GET_MODE_SIZE (mode) == GET_MODE_SIZE (GET_MODE (op0)))
8261 {
8262 if (GET_CODE (op0) == SUBREG)
8263 op0 = force_reg (GET_MODE (op0), op0);
8264 op0 = gen_lowpart (mode, op0);
8265 }
8266 /* If both modes are integral, then we can convert from one to the
8267 other. */
8268 else if (SCALAR_INT_MODE_P (GET_MODE (op0)) && SCALAR_INT_MODE_P (mode))
8269 op0 = convert_modes (mode, GET_MODE (op0), op0,
8270 TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (exp, 0))));
8271 /* As a last resort, spill op0 to memory, and reload it in a
8272 different mode. */
8273 else if (!MEM_P (op0))
8274 {
8275 /* If the operand is not a MEM, force it into memory. Since we
8276 are going to be changing the mode of the MEM, don't call
8277 force_const_mem for constants because we don't allow pool
8278 constants to change mode. */
8279 tree inner_type = TREE_TYPE (TREE_OPERAND (exp, 0));
8280
8281 gcc_assert (!TREE_ADDRESSABLE (exp));
8282
8283 if (target == 0 || GET_MODE (target) != TYPE_MODE (inner_type))
8284 target
8285 = assign_stack_temp_for_type
8286 (TYPE_MODE (inner_type),
8287 GET_MODE_SIZE (TYPE_MODE (inner_type)), 0, inner_type);
8288
8289 emit_move_insn (target, op0);
8290 op0 = target;
8291 }
8292
8293 /* At this point, OP0 is in the correct mode. If the output type is
8294 such that the operand is known to be aligned, indicate that it is.
8295 Otherwise, we need only be concerned about alignment for non-BLKmode
8296 results. */
8297 if (MEM_P (op0))
8298 {
8299 op0 = copy_rtx (op0);
8300
8301 if (TYPE_ALIGN_OK (type))
8302 set_mem_align (op0, MAX (MEM_ALIGN (op0), TYPE_ALIGN (type)));
8303 else if (STRICT_ALIGNMENT
8304 && mode != BLKmode
8305 && MEM_ALIGN (op0) < GET_MODE_ALIGNMENT (mode))
8306 {
8307 tree inner_type = TREE_TYPE (TREE_OPERAND (exp, 0));
8308 HOST_WIDE_INT temp_size
8309 = MAX (int_size_in_bytes (inner_type),
8310 (HOST_WIDE_INT) GET_MODE_SIZE (mode));
8311 rtx new_rtx
8312 = assign_stack_temp_for_type (mode, temp_size, 0, type);
8313 rtx new_with_op0_mode
8314 = adjust_address (new_rtx, GET_MODE (op0), 0);
8315
8316 gcc_assert (!TREE_ADDRESSABLE (exp));
8317
8318 if (GET_MODE (op0) == BLKmode)
8319 emit_block_move (new_with_op0_mode, op0,
8320 GEN_INT (GET_MODE_SIZE (mode)),
8321 (modifier == EXPAND_STACK_PARM
8322 ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
8323 else
8324 emit_move_insn (new_with_op0_mode, op0);
8325
8326 op0 = new_rtx;
8327 }
8328
8329 op0 = adjust_address (op0, mode, 0);
8330 }
8331
8332 return op0;
8333
8334 case POINTER_PLUS_EXPR:
8335 /* Even though the sizetype mode and the pointer's mode can be different
8336 expand is able to handle this correctly and get the correct result out
8337 of the PLUS_EXPR code. */
8338 /* Make sure to sign-extend the sizetype offset in a POINTER_PLUS_EXPR
8339 if sizetype precision is smaller than pointer precision. */
8340 if (TYPE_PRECISION (sizetype) < TYPE_PRECISION (type))
8341 exp = build2 (PLUS_EXPR, type,
8342 TREE_OPERAND (exp, 0),
8343 fold_convert (type,
8344 fold_convert (ssizetype,
8345 TREE_OPERAND (exp, 1))));
8346 case PLUS_EXPR:
8347
8348 /* Check if this is a case for multiplication and addition. */
8349 if ((TREE_CODE (type) == INTEGER_TYPE
8350 || TREE_CODE (type) == FIXED_POINT_TYPE)
8351 && TREE_CODE (TREE_OPERAND (exp, 0)) == MULT_EXPR)
8352 {
8353 tree subsubexp0, subsubexp1;
8354 enum tree_code code0, code1, this_code;
8355
8356 subexp0 = TREE_OPERAND (exp, 0);
8357 subsubexp0 = TREE_OPERAND (subexp0, 0);
8358 subsubexp1 = TREE_OPERAND (subexp0, 1);
8359 code0 = TREE_CODE (subsubexp0);
8360 code1 = TREE_CODE (subsubexp1);
8361 this_code = TREE_CODE (type) == INTEGER_TYPE ? NOP_EXPR
8362 : FIXED_CONVERT_EXPR;
8363 if (code0 == this_code && code1 == this_code
8364 && (TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (subsubexp0, 0)))
8365 < TYPE_PRECISION (TREE_TYPE (subsubexp0)))
8366 && (TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (subsubexp0, 0)))
8367 == TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (subsubexp1, 0))))
8368 && (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (subsubexp0, 0)))
8369 == TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (subsubexp1, 0)))))
8370 {
8371 tree op0type = TREE_TYPE (TREE_OPERAND (subsubexp0, 0));
8372 enum machine_mode innermode = TYPE_MODE (op0type);
8373 bool zextend_p = TYPE_UNSIGNED (op0type);
8374 bool sat_p = TYPE_SATURATING (TREE_TYPE (subsubexp0));
8375 if (sat_p == 0)
8376 this_optab = zextend_p ? umadd_widen_optab : smadd_widen_optab;
8377 else
8378 this_optab = zextend_p ? usmadd_widen_optab
8379 : ssmadd_widen_optab;
8380 if (mode == GET_MODE_2XWIDER_MODE (innermode)
8381 && (optab_handler (this_optab, mode)->insn_code
8382 != CODE_FOR_nothing))
8383 {
8384 expand_operands (TREE_OPERAND (subsubexp0, 0),
8385 TREE_OPERAND (subsubexp1, 0),
8386 NULL_RTX, &op0, &op1, EXPAND_NORMAL);
8387 op2 = expand_expr (TREE_OPERAND (exp, 1), subtarget,
8388 VOIDmode, EXPAND_NORMAL);
8389 temp = expand_ternary_op (mode, this_optab, op0, op1, op2,
8390 target, unsignedp);
8391 gcc_assert (temp);
8392 return REDUCE_BIT_FIELD (temp);
8393 }
8394 }
8395 }
8396
8397 /* If we are adding a constant, a VAR_DECL that is sp, fp, or ap, and
8398 something else, make sure we add the register to the constant and
8399 then to the other thing. This case can occur during strength
8400 reduction and doing it this way will produce better code if the
8401 frame pointer or argument pointer is eliminated.
8402
8403 fold-const.c will ensure that the constant is always in the inner
8404 PLUS_EXPR, so the only case we need to do anything about is if
8405 sp, ap, or fp is our second argument, in which case we must swap
8406 the innermost first argument and our second argument. */
8407
8408 if (TREE_CODE (TREE_OPERAND (exp, 0)) == PLUS_EXPR
8409 && TREE_CODE (TREE_OPERAND (TREE_OPERAND (exp, 0), 1)) == INTEGER_CST
8410 && TREE_CODE (TREE_OPERAND (exp, 1)) == VAR_DECL
8411 && (DECL_RTL (TREE_OPERAND (exp, 1)) == frame_pointer_rtx
8412 || DECL_RTL (TREE_OPERAND (exp, 1)) == stack_pointer_rtx
8413 || DECL_RTL (TREE_OPERAND (exp, 1)) == arg_pointer_rtx))
8414 {
8415 tree t = TREE_OPERAND (exp, 1);
8416
8417 TREE_OPERAND (exp, 1) = TREE_OPERAND (TREE_OPERAND (exp, 0), 0);
8418 TREE_OPERAND (TREE_OPERAND (exp, 0), 0) = t;
8419 }
8420
8421 /* If the result is to be ptr_mode and we are adding an integer to
8422 something, we might be forming a constant. So try to use
8423 plus_constant. If it produces a sum and we can't accept it,
8424 use force_operand. This allows P = &ARR[const] to generate
8425 efficient code on machines where a SYMBOL_REF is not a valid
8426 address.
8427
8428 If this is an EXPAND_SUM call, always return the sum. */
8429 if (modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER
8430 || (mode == ptr_mode && (unsignedp || ! flag_trapv)))
8431 {
8432 if (modifier == EXPAND_STACK_PARM)
8433 target = 0;
8434 if (TREE_CODE (TREE_OPERAND (exp, 0)) == INTEGER_CST
8435 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
8436 && TREE_CONSTANT (TREE_OPERAND (exp, 1)))
8437 {
8438 rtx constant_part;
8439
8440 op1 = expand_expr (TREE_OPERAND (exp, 1), subtarget, VOIDmode,
8441 EXPAND_SUM);
8442 /* Use immed_double_const to ensure that the constant is
8443 truncated according to the mode of OP1, then sign extended
8444 to a HOST_WIDE_INT. Using the constant directly can result
8445 in non-canonical RTL in a 64x32 cross compile. */
8446 constant_part
8447 = immed_double_const (TREE_INT_CST_LOW (TREE_OPERAND (exp, 0)),
8448 (HOST_WIDE_INT) 0,
8449 TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 1))));
8450 op1 = plus_constant (op1, INTVAL (constant_part));
8451 if (modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
8452 op1 = force_operand (op1, target);
8453 return REDUCE_BIT_FIELD (op1);
8454 }
8455
8456 else if (TREE_CODE (TREE_OPERAND (exp, 1)) == INTEGER_CST
8457 && GET_MODE_BITSIZE (mode) <= HOST_BITS_PER_WIDE_INT
8458 && TREE_CONSTANT (TREE_OPERAND (exp, 0)))
8459 {
8460 rtx constant_part;
8461
8462 op0 = expand_expr (TREE_OPERAND (exp, 0), subtarget, VOIDmode,
8463 (modifier == EXPAND_INITIALIZER
8464 ? EXPAND_INITIALIZER : EXPAND_SUM));
8465 if (! CONSTANT_P (op0))
8466 {
8467 op1 = expand_expr (TREE_OPERAND (exp, 1), NULL_RTX,
8468 VOIDmode, modifier);
8469 /* Return a PLUS if modifier says it's OK. */
8470 if (modifier == EXPAND_SUM
8471 || modifier == EXPAND_INITIALIZER)
8472 return simplify_gen_binary (PLUS, mode, op0, op1);
8473 goto binop2;
8474 }
8475 /* Use immed_double_const to ensure that the constant is
8476 truncated according to the mode of OP1, then sign extended
8477 to a HOST_WIDE_INT. Using the constant directly can result
8478 in non-canonical RTL in a 64x32 cross compile. */
8479 constant_part
8480 = immed_double_const (TREE_INT_CST_LOW (TREE_OPERAND (exp, 1)),
8481 (HOST_WIDE_INT) 0,
8482 TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 0))));
8483 op0 = plus_constant (op0, INTVAL (constant_part));
8484 if (modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
8485 op0 = force_operand (op0, target);
8486 return REDUCE_BIT_FIELD (op0);
8487 }
8488 }
8489
8490 /* No sense saving up arithmetic to be done
8491 if it's all in the wrong mode to form part of an address.
8492 And force_operand won't know whether to sign-extend or
8493 zero-extend. */
8494 if ((modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
8495 || mode != ptr_mode)
8496 {
8497 expand_operands (TREE_OPERAND (exp, 0), TREE_OPERAND (exp, 1),
8498 subtarget, &op0, &op1, 0);
8499 if (op0 == const0_rtx)
8500 return op1;
8501 if (op1 == const0_rtx)
8502 return op0;
8503 goto binop2;
8504 }
8505
8506 expand_operands (TREE_OPERAND (exp, 0), TREE_OPERAND (exp, 1),
8507 subtarget, &op0, &op1, modifier);
8508 return REDUCE_BIT_FIELD (simplify_gen_binary (PLUS, mode, op0, op1));
8509
8510 case MINUS_EXPR:
8511 /* Check if this is a case for multiplication and subtraction. */
8512 if ((TREE_CODE (type) == INTEGER_TYPE
8513 || TREE_CODE (type) == FIXED_POINT_TYPE)
8514 && TREE_CODE (TREE_OPERAND (exp, 1)) == MULT_EXPR)
8515 {
8516 tree subsubexp0, subsubexp1;
8517 enum tree_code code0, code1, this_code;
8518
8519 subexp1 = TREE_OPERAND (exp, 1);
8520 subsubexp0 = TREE_OPERAND (subexp1, 0);
8521 subsubexp1 = TREE_OPERAND (subexp1, 1);
8522 code0 = TREE_CODE (subsubexp0);
8523 code1 = TREE_CODE (subsubexp1);
8524 this_code = TREE_CODE (type) == INTEGER_TYPE ? NOP_EXPR
8525 : FIXED_CONVERT_EXPR;
8526 if (code0 == this_code && code1 == this_code
8527 && (TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (subsubexp0, 0)))
8528 < TYPE_PRECISION (TREE_TYPE (subsubexp0)))
8529 && (TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (subsubexp0, 0)))
8530 == TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (subsubexp1, 0))))
8531 && (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (subsubexp0, 0)))
8532 == TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (subsubexp1, 0)))))
8533 {
8534 tree op0type = TREE_TYPE (TREE_OPERAND (subsubexp0, 0));
8535 enum machine_mode innermode = TYPE_MODE (op0type);
8536 bool zextend_p = TYPE_UNSIGNED (op0type);
8537 bool sat_p = TYPE_SATURATING (TREE_TYPE (subsubexp0));
8538 if (sat_p == 0)
8539 this_optab = zextend_p ? umsub_widen_optab : smsub_widen_optab;
8540 else
8541 this_optab = zextend_p ? usmsub_widen_optab
8542 : ssmsub_widen_optab;
8543 if (mode == GET_MODE_2XWIDER_MODE (innermode)
8544 && (optab_handler (this_optab, mode)->insn_code
8545 != CODE_FOR_nothing))
8546 {
8547 expand_operands (TREE_OPERAND (subsubexp0, 0),
8548 TREE_OPERAND (subsubexp1, 0),
8549 NULL_RTX, &op0, &op1, EXPAND_NORMAL);
8550 op2 = expand_expr (TREE_OPERAND (exp, 0), subtarget,
8551 VOIDmode, EXPAND_NORMAL);
8552 temp = expand_ternary_op (mode, this_optab, op0, op1, op2,
8553 target, unsignedp);
8554 gcc_assert (temp);
8555 return REDUCE_BIT_FIELD (temp);
8556 }
8557 }
8558 }
8559
8560 /* For initializers, we are allowed to return a MINUS of two
8561 symbolic constants. Here we handle all cases when both operands
8562 are constant. */
8563 /* Handle difference of two symbolic constants,
8564 for the sake of an initializer. */
8565 if ((modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER)
8566 && really_constant_p (TREE_OPERAND (exp, 0))
8567 && really_constant_p (TREE_OPERAND (exp, 1)))
8568 {
8569 expand_operands (TREE_OPERAND (exp, 0), TREE_OPERAND (exp, 1),
8570 NULL_RTX, &op0, &op1, modifier);
8571
8572 /* If the last operand is a CONST_INT, use plus_constant of
8573 the negated constant. Else make the MINUS. */
8574 if (GET_CODE (op1) == CONST_INT)
8575 return REDUCE_BIT_FIELD (plus_constant (op0, - INTVAL (op1)));
8576 else
8577 return REDUCE_BIT_FIELD (gen_rtx_MINUS (mode, op0, op1));
8578 }
8579
8580 /* No sense saving up arithmetic to be done
8581 if it's all in the wrong mode to form part of an address.
8582 And force_operand won't know whether to sign-extend or
8583 zero-extend. */
8584 if ((modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
8585 || mode != ptr_mode)
8586 goto binop;
8587
8588 expand_operands (TREE_OPERAND (exp, 0), TREE_OPERAND (exp, 1),
8589 subtarget, &op0, &op1, modifier);
8590
8591 /* Convert A - const to A + (-const). */
8592 if (GET_CODE (op1) == CONST_INT)
8593 {
8594 op1 = negate_rtx (mode, op1);
8595 return REDUCE_BIT_FIELD (simplify_gen_binary (PLUS, mode, op0, op1));
8596 }
8597
8598 goto binop2;
8599
8600 case MULT_EXPR:
8601 /* If this is a fixed-point operation, then we cannot use the code
8602 below because "expand_mult" doesn't support sat/no-sat fixed-point
8603 multiplications. */
8604 if (ALL_FIXED_POINT_MODE_P (mode))
8605 goto binop;
8606
8607 /* If first operand is constant, swap them.
8608 Thus the following special case checks need only
8609 check the second operand. */
8610 if (TREE_CODE (TREE_OPERAND (exp, 0)) == INTEGER_CST)
8611 {
8612 tree t1 = TREE_OPERAND (exp, 0);
8613 TREE_OPERAND (exp, 0) = TREE_OPERAND (exp, 1);
8614 TREE_OPERAND (exp, 1) = t1;
8615 }
8616
8617 /* Attempt to return something suitable for generating an
8618 indexed address, for machines that support that. */
8619
8620 if (modifier == EXPAND_SUM && mode == ptr_mode
8621 && host_integerp (TREE_OPERAND (exp, 1), 0))
8622 {
8623 tree exp1 = TREE_OPERAND (exp, 1);
8624
8625 op0 = expand_expr (TREE_OPERAND (exp, 0), subtarget, VOIDmode,
8626 EXPAND_SUM);
8627
8628 if (!REG_P (op0))
8629 op0 = force_operand (op0, NULL_RTX);
8630 if (!REG_P (op0))
8631 op0 = copy_to_mode_reg (mode, op0);
8632
8633 return REDUCE_BIT_FIELD (gen_rtx_MULT (mode, op0,
8634 gen_int_mode (tree_low_cst (exp1, 0),
8635 TYPE_MODE (TREE_TYPE (exp1)))));
8636 }
8637
8638 if (modifier == EXPAND_STACK_PARM)
8639 target = 0;
8640
8641 /* Check for multiplying things that have been extended
8642 from a narrower type. If this machine supports multiplying
8643 in that narrower type with a result in the desired type,
8644 do it that way, and avoid the explicit type-conversion. */
8645
8646 subexp0 = TREE_OPERAND (exp, 0);
8647 subexp1 = TREE_OPERAND (exp, 1);
8648 /* First, check if we have a multiplication of one signed and one
8649 unsigned operand. */
8650 if (TREE_CODE (subexp0) == NOP_EXPR
8651 && TREE_CODE (subexp1) == NOP_EXPR
8652 && TREE_CODE (type) == INTEGER_TYPE
8653 && (TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (subexp0, 0)))
8654 < TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (exp, 0))))
8655 && (TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (subexp0, 0)))
8656 == TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (subexp1, 0))))
8657 && (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (subexp0, 0)))
8658 != TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (subexp1, 0)))))
8659 {
8660 enum machine_mode innermode
8661 = TYPE_MODE (TREE_TYPE (TREE_OPERAND (subexp0, 0)));
8662 this_optab = usmul_widen_optab;
8663 if (mode == GET_MODE_WIDER_MODE (innermode))
8664 {
8665 if (optab_handler (this_optab, mode)->insn_code != CODE_FOR_nothing)
8666 {
8667 if (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (subexp0, 0))))
8668 expand_operands (TREE_OPERAND (subexp0, 0),
8669 TREE_OPERAND (subexp1, 0),
8670 NULL_RTX, &op0, &op1, 0);
8671 else
8672 expand_operands (TREE_OPERAND (subexp0, 0),
8673 TREE_OPERAND (subexp1, 0),
8674 NULL_RTX, &op1, &op0, 0);
8675
8676 goto binop3;
8677 }
8678 }
8679 }
8680 /* Check for a multiplication with matching signedness. */
8681 else if (TREE_CODE (TREE_OPERAND (exp, 0)) == NOP_EXPR
8682 && TREE_CODE (type) == INTEGER_TYPE
8683 && (TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0)))
8684 < TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (exp, 0))))
8685 && ((TREE_CODE (TREE_OPERAND (exp, 1)) == INTEGER_CST
8686 && int_fits_type_p (TREE_OPERAND (exp, 1),
8687 TREE_TYPE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0)))
8688 /* Don't use a widening multiply if a shift will do. */
8689 && ((GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 1))))
8690 > HOST_BITS_PER_WIDE_INT)
8691 || exact_log2 (TREE_INT_CST_LOW (TREE_OPERAND (exp, 1))) < 0))
8692 ||
8693 (TREE_CODE (TREE_OPERAND (exp, 1)) == NOP_EXPR
8694 && (TYPE_PRECISION (TREE_TYPE
8695 (TREE_OPERAND (TREE_OPERAND (exp, 1), 0)))
8696 == TYPE_PRECISION (TREE_TYPE
8697 (TREE_OPERAND
8698 (TREE_OPERAND (exp, 0), 0))))
8699 /* If both operands are extended, they must either both
8700 be zero-extended or both be sign-extended. */
8701 && (TYPE_UNSIGNED (TREE_TYPE
8702 (TREE_OPERAND (TREE_OPERAND (exp, 1), 0)))
8703 == TYPE_UNSIGNED (TREE_TYPE
8704 (TREE_OPERAND
8705 (TREE_OPERAND (exp, 0), 0)))))))
8706 {
8707 tree op0type = TREE_TYPE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0));
8708 enum machine_mode innermode = TYPE_MODE (op0type);
8709 bool zextend_p = TYPE_UNSIGNED (op0type);
8710 optab other_optab = zextend_p ? smul_widen_optab : umul_widen_optab;
8711 this_optab = zextend_p ? umul_widen_optab : smul_widen_optab;
8712
8713 if (mode == GET_MODE_2XWIDER_MODE (innermode))
8714 {
8715 if (optab_handler (this_optab, mode)->insn_code != CODE_FOR_nothing)
8716 {
8717 if (TREE_CODE (TREE_OPERAND (exp, 1)) == INTEGER_CST)
8718 expand_operands (TREE_OPERAND (TREE_OPERAND (exp, 0), 0),
8719 TREE_OPERAND (exp, 1),
8720 NULL_RTX, &op0, &op1, EXPAND_NORMAL);
8721 else
8722 expand_operands (TREE_OPERAND (TREE_OPERAND (exp, 0), 0),
8723 TREE_OPERAND (TREE_OPERAND (exp, 1), 0),
8724 NULL_RTX, &op0, &op1, EXPAND_NORMAL);
8725 goto binop3;
8726 }
8727 else if (optab_handler (other_optab, mode)->insn_code != CODE_FOR_nothing
8728 && innermode == word_mode)
8729 {
8730 rtx htem, hipart;
8731 op0 = expand_normal (TREE_OPERAND (TREE_OPERAND (exp, 0), 0));
8732 if (TREE_CODE (TREE_OPERAND (exp, 1)) == INTEGER_CST)
8733 op1 = convert_modes (innermode, mode,
8734 expand_normal (TREE_OPERAND (exp, 1)),
8735 unsignedp);
8736 else
8737 op1 = expand_normal (TREE_OPERAND (TREE_OPERAND (exp, 1), 0));
8738 temp = expand_binop (mode, other_optab, op0, op1, target,
8739 unsignedp, OPTAB_LIB_WIDEN);
8740 hipart = gen_highpart (innermode, temp);
8741 htem = expand_mult_highpart_adjust (innermode, hipart,
8742 op0, op1, hipart,
8743 zextend_p);
8744 if (htem != hipart)
8745 emit_move_insn (hipart, htem);
8746 return REDUCE_BIT_FIELD (temp);
8747 }
8748 }
8749 }
8750 expand_operands (TREE_OPERAND (exp, 0), TREE_OPERAND (exp, 1),
8751 subtarget, &op0, &op1, 0);
8752 return REDUCE_BIT_FIELD (expand_mult (mode, op0, op1, target, unsignedp));
8753
8754 case TRUNC_DIV_EXPR:
8755 case FLOOR_DIV_EXPR:
8756 case CEIL_DIV_EXPR:
8757 case ROUND_DIV_EXPR:
8758 case EXACT_DIV_EXPR:
8759 /* If this is a fixed-point operation, then we cannot use the code
8760 below because "expand_divmod" doesn't support sat/no-sat fixed-point
8761 divisions. */
8762 if (ALL_FIXED_POINT_MODE_P (mode))
8763 goto binop;
8764
8765 if (modifier == EXPAND_STACK_PARM)
8766 target = 0;
8767 /* Possible optimization: compute the dividend with EXPAND_SUM
8768 then if the divisor is constant can optimize the case
8769 where some terms of the dividend have coeffs divisible by it. */
8770 expand_operands (TREE_OPERAND (exp, 0), TREE_OPERAND (exp, 1),
8771 subtarget, &op0, &op1, 0);
8772 return expand_divmod (0, code, mode, op0, op1, target, unsignedp);
8773
8774 case RDIV_EXPR:
8775 goto binop;
8776
8777 case TRUNC_MOD_EXPR:
8778 case FLOOR_MOD_EXPR:
8779 case CEIL_MOD_EXPR:
8780 case ROUND_MOD_EXPR:
8781 if (modifier == EXPAND_STACK_PARM)
8782 target = 0;
8783 expand_operands (TREE_OPERAND (exp, 0), TREE_OPERAND (exp, 1),
8784 subtarget, &op0, &op1, 0);
8785 return expand_divmod (1, code, mode, op0, op1, target, unsignedp);
8786
8787 case FIXED_CONVERT_EXPR:
8788 op0 = expand_normal (TREE_OPERAND (exp, 0));
8789 if (target == 0 || modifier == EXPAND_STACK_PARM)
8790 target = gen_reg_rtx (mode);
8791
8792 if ((TREE_CODE (TREE_TYPE (TREE_OPERAND (exp, 0))) == INTEGER_TYPE
8793 && TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (exp, 0))))
8794 || (TREE_CODE (type) == INTEGER_TYPE && TYPE_UNSIGNED (type)))
8795 expand_fixed_convert (target, op0, 1, TYPE_SATURATING (type));
8796 else
8797 expand_fixed_convert (target, op0, 0, TYPE_SATURATING (type));
8798 return target;
8799
8800 case FIX_TRUNC_EXPR:
8801 op0 = expand_normal (TREE_OPERAND (exp, 0));
8802 if (target == 0 || modifier == EXPAND_STACK_PARM)
8803 target = gen_reg_rtx (mode);
8804 expand_fix (target, op0, unsignedp);
8805 return target;
8806
8807 case FLOAT_EXPR:
8808 op0 = expand_normal (TREE_OPERAND (exp, 0));
8809 if (target == 0 || modifier == EXPAND_STACK_PARM)
8810 target = gen_reg_rtx (mode);
8811 /* expand_float can't figure out what to do if FROM has VOIDmode.
8812 So give it the correct mode. With -O, cse will optimize this. */
8813 if (GET_MODE (op0) == VOIDmode)
8814 op0 = copy_to_mode_reg (TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 0))),
8815 op0);
8816 expand_float (target, op0,
8817 TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (exp, 0))));
8818 return target;
8819
8820 case NEGATE_EXPR:
8821 op0 = expand_expr (TREE_OPERAND (exp, 0), subtarget,
8822 VOIDmode, EXPAND_NORMAL);
8823 if (modifier == EXPAND_STACK_PARM)
8824 target = 0;
8825 temp = expand_unop (mode,
8826 optab_for_tree_code (NEGATE_EXPR, type,
8827 optab_default),
8828 op0, target, 0);
8829 gcc_assert (temp);
8830 return REDUCE_BIT_FIELD (temp);
8831
8832 case ABS_EXPR:
8833 op0 = expand_expr (TREE_OPERAND (exp, 0), subtarget,
8834 VOIDmode, EXPAND_NORMAL);
8835 if (modifier == EXPAND_STACK_PARM)
8836 target = 0;
8837
8838 /* ABS_EXPR is not valid for complex arguments. */
8839 gcc_assert (GET_MODE_CLASS (mode) != MODE_COMPLEX_INT
8840 && GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT);
8841
8842 /* Unsigned abs is simply the operand. Testing here means we don't
8843 risk generating incorrect code below. */
8844 if (TYPE_UNSIGNED (type))
8845 return op0;
8846
8847 return expand_abs (mode, op0, target, unsignedp,
8848 safe_from_p (target, TREE_OPERAND (exp, 0), 1));
8849
8850 case MAX_EXPR:
8851 case MIN_EXPR:
8852 target = original_target;
8853 if (target == 0
8854 || modifier == EXPAND_STACK_PARM
8855 || (MEM_P (target) && MEM_VOLATILE_P (target))
8856 || GET_MODE (target) != mode
8857 || (REG_P (target)
8858 && REGNO (target) < FIRST_PSEUDO_REGISTER))
8859 target = gen_reg_rtx (mode);
8860 expand_operands (TREE_OPERAND (exp, 0), TREE_OPERAND (exp, 1),
8861 target, &op0, &op1, 0);
8862
8863 /* First try to do it with a special MIN or MAX instruction.
8864 If that does not win, use a conditional jump to select the proper
8865 value. */
8866 this_optab = optab_for_tree_code (code, type, optab_default);
8867 temp = expand_binop (mode, this_optab, op0, op1, target, unsignedp,
8868 OPTAB_WIDEN);
8869 if (temp != 0)
8870 return temp;
8871
8872 /* At this point, a MEM target is no longer useful; we will get better
8873 code without it. */
8874
8875 if (! REG_P (target))
8876 target = gen_reg_rtx (mode);
8877
8878 /* If op1 was placed in target, swap op0 and op1. */
8879 if (target != op0 && target == op1)
8880 {
8881 temp = op0;
8882 op0 = op1;
8883 op1 = temp;
8884 }
8885
8886 /* We generate better code and avoid problems with op1 mentioning
8887 target by forcing op1 into a pseudo if it isn't a constant. */
8888 if (! CONSTANT_P (op1))
8889 op1 = force_reg (mode, op1);
8890
8891 {
8892 enum rtx_code comparison_code;
8893 rtx cmpop1 = op1;
8894
8895 if (code == MAX_EXPR)
8896 comparison_code = unsignedp ? GEU : GE;
8897 else
8898 comparison_code = unsignedp ? LEU : LE;
8899
8900 /* Canonicalize to comparisons against 0. */
8901 if (op1 == const1_rtx)
8902 {
8903 /* Converting (a >= 1 ? a : 1) into (a > 0 ? a : 1)
8904 or (a != 0 ? a : 1) for unsigned.
8905 For MIN we are safe converting (a <= 1 ? a : 1)
8906 into (a <= 0 ? a : 1) */
8907 cmpop1 = const0_rtx;
8908 if (code == MAX_EXPR)
8909 comparison_code = unsignedp ? NE : GT;
8910 }
8911 if (op1 == constm1_rtx && !unsignedp)
8912 {
8913 /* Converting (a >= -1 ? a : -1) into (a >= 0 ? a : -1)
8914 and (a <= -1 ? a : -1) into (a < 0 ? a : -1) */
8915 cmpop1 = const0_rtx;
8916 if (code == MIN_EXPR)
8917 comparison_code = LT;
8918 }
8919 #ifdef HAVE_conditional_move
8920 /* Use a conditional move if possible. */
8921 if (can_conditionally_move_p (mode))
8922 {
8923 rtx insn;
8924
8925 /* ??? Same problem as in expmed.c: emit_conditional_move
8926 forces a stack adjustment via compare_from_rtx, and we
8927 lose the stack adjustment if the sequence we are about
8928 to create is discarded. */
8929 do_pending_stack_adjust ();
8930
8931 start_sequence ();
8932
8933 /* Try to emit the conditional move. */
8934 insn = emit_conditional_move (target, comparison_code,
8935 op0, cmpop1, mode,
8936 op0, op1, mode,
8937 unsignedp);
8938
8939 /* If we could do the conditional move, emit the sequence,
8940 and return. */
8941 if (insn)
8942 {
8943 rtx seq = get_insns ();
8944 end_sequence ();
8945 emit_insn (seq);
8946 return target;
8947 }
8948
8949 /* Otherwise discard the sequence and fall back to code with
8950 branches. */
8951 end_sequence ();
8952 }
8953 #endif
8954 if (target != op0)
8955 emit_move_insn (target, op0);
8956
8957 temp = gen_label_rtx ();
8958 do_compare_rtx_and_jump (target, cmpop1, comparison_code,
8959 unsignedp, mode, NULL_RTX, NULL_RTX, temp);
8960 }
8961 emit_move_insn (target, op1);
8962 emit_label (temp);
8963 return target;
8964
8965 case BIT_NOT_EXPR:
8966 op0 = expand_expr (TREE_OPERAND (exp, 0), subtarget,
8967 VOIDmode, EXPAND_NORMAL);
8968 if (modifier == EXPAND_STACK_PARM)
8969 target = 0;
8970 temp = expand_unop (mode, one_cmpl_optab, op0, target, 1);
8971 gcc_assert (temp);
8972 return temp;
8973
8974 /* ??? Can optimize bitwise operations with one arg constant.
8975 Can optimize (a bitwise1 n) bitwise2 (a bitwise3 b)
8976 and (a bitwise1 b) bitwise2 b (etc)
8977 but that is probably not worth while. */
8978
8979 /* BIT_AND_EXPR is for bitwise anding. TRUTH_AND_EXPR is for anding two
8980 boolean values when we want in all cases to compute both of them. In
8981 general it is fastest to do TRUTH_AND_EXPR by computing both operands
8982 as actual zero-or-1 values and then bitwise anding. In cases where
8983 there cannot be any side effects, better code would be made by
8984 treating TRUTH_AND_EXPR like TRUTH_ANDIF_EXPR; but the question is
8985 how to recognize those cases. */
8986
8987 case TRUTH_AND_EXPR:
8988 code = BIT_AND_EXPR;
8989 case BIT_AND_EXPR:
8990 goto binop;
8991
8992 case TRUTH_OR_EXPR:
8993 code = BIT_IOR_EXPR;
8994 case BIT_IOR_EXPR:
8995 goto binop;
8996
8997 case TRUTH_XOR_EXPR:
8998 code = BIT_XOR_EXPR;
8999 case BIT_XOR_EXPR:
9000 goto binop;
9001
9002 case LROTATE_EXPR:
9003 case RROTATE_EXPR:
9004 gcc_assert (VECTOR_MODE_P (TYPE_MODE (type))
9005 || (GET_MODE_PRECISION (TYPE_MODE (type))
9006 == TYPE_PRECISION (type)));
9007 /* fall through */
9008
9009 case LSHIFT_EXPR:
9010 case RSHIFT_EXPR:
9011 /* If this is a fixed-point operation, then we cannot use the code
9012 below because "expand_shift" doesn't support sat/no-sat fixed-point
9013 shifts. */
9014 if (ALL_FIXED_POINT_MODE_P (mode))
9015 goto binop;
9016
9017 if (! safe_from_p (subtarget, TREE_OPERAND (exp, 1), 1))
9018 subtarget = 0;
9019 if (modifier == EXPAND_STACK_PARM)
9020 target = 0;
9021 op0 = expand_expr (TREE_OPERAND (exp, 0), subtarget,
9022 VOIDmode, EXPAND_NORMAL);
9023 temp = expand_shift (code, mode, op0, TREE_OPERAND (exp, 1), target,
9024 unsignedp);
9025 if (code == LSHIFT_EXPR)
9026 temp = REDUCE_BIT_FIELD (temp);
9027 return temp;
9028
9029 /* Could determine the answer when only additive constants differ. Also,
9030 the addition of one can be handled by changing the condition. */
9031 case LT_EXPR:
9032 case LE_EXPR:
9033 case GT_EXPR:
9034 case GE_EXPR:
9035 case EQ_EXPR:
9036 case NE_EXPR:
9037 case UNORDERED_EXPR:
9038 case ORDERED_EXPR:
9039 case UNLT_EXPR:
9040 case UNLE_EXPR:
9041 case UNGT_EXPR:
9042 case UNGE_EXPR:
9043 case UNEQ_EXPR:
9044 case LTGT_EXPR:
9045 temp = do_store_flag (exp,
9046 modifier != EXPAND_STACK_PARM ? target : NULL_RTX,
9047 tmode != VOIDmode ? tmode : mode, 0);
9048 if (temp != 0)
9049 return temp;
9050
9051 /* For foo != 0, load foo, and if it is nonzero load 1 instead. */
9052 if (code == NE_EXPR && integer_zerop (TREE_OPERAND (exp, 1))
9053 && original_target
9054 && REG_P (original_target)
9055 && (GET_MODE (original_target)
9056 == TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 0)))))
9057 {
9058 temp = expand_expr (TREE_OPERAND (exp, 0), original_target,
9059 VOIDmode, EXPAND_NORMAL);
9060
9061 /* If temp is constant, we can just compute the result. */
9062 if (GET_CODE (temp) == CONST_INT)
9063 {
9064 if (INTVAL (temp) != 0)
9065 emit_move_insn (target, const1_rtx);
9066 else
9067 emit_move_insn (target, const0_rtx);
9068
9069 return target;
9070 }
9071
9072 if (temp != original_target)
9073 {
9074 enum machine_mode mode1 = GET_MODE (temp);
9075 if (mode1 == VOIDmode)
9076 mode1 = tmode != VOIDmode ? tmode : mode;
9077
9078 temp = copy_to_mode_reg (mode1, temp);
9079 }
9080
9081 op1 = gen_label_rtx ();
9082 emit_cmp_and_jump_insns (temp, const0_rtx, EQ, NULL_RTX,
9083 GET_MODE (temp), unsignedp, op1);
9084 emit_move_insn (temp, const1_rtx);
9085 emit_label (op1);
9086 return temp;
9087 }
9088
9089 /* If no set-flag instruction, must generate a conditional store
9090 into a temporary variable. Drop through and handle this
9091 like && and ||. */
9092 /* Although TRUTH_{AND,OR}IF_EXPR aren't present in GIMPLE, they
9093 are occassionally created by folding during expansion. */
9094 case TRUTH_ANDIF_EXPR:
9095 case TRUTH_ORIF_EXPR:
9096 if (! ignore
9097 && (target == 0
9098 || modifier == EXPAND_STACK_PARM
9099 || ! safe_from_p (target, exp, 1)
9100 /* Make sure we don't have a hard reg (such as function's return
9101 value) live across basic blocks, if not optimizing. */
9102 || (!optimize && REG_P (target)
9103 && REGNO (target) < FIRST_PSEUDO_REGISTER)))
9104 target = gen_reg_rtx (tmode != VOIDmode ? tmode : mode);
9105
9106 if (target)
9107 emit_move_insn (target, const0_rtx);
9108
9109 op1 = gen_label_rtx ();
9110 jumpifnot (exp, op1);
9111
9112 if (target)
9113 emit_move_insn (target, const1_rtx);
9114
9115 emit_label (op1);
9116 return ignore ? const0_rtx : target;
9117
9118 case TRUTH_NOT_EXPR:
9119 if (modifier == EXPAND_STACK_PARM)
9120 target = 0;
9121 op0 = expand_expr (TREE_OPERAND (exp, 0), target,
9122 VOIDmode, EXPAND_NORMAL);
9123 /* The parser is careful to generate TRUTH_NOT_EXPR
9124 only with operands that are always zero or one. */
9125 temp = expand_binop (mode, xor_optab, op0, const1_rtx,
9126 target, 1, OPTAB_LIB_WIDEN);
9127 gcc_assert (temp);
9128 return temp;
9129
9130 case STATEMENT_LIST:
9131 {
9132 tree_stmt_iterator iter;
9133
9134 gcc_assert (ignore);
9135
9136 for (iter = tsi_start (exp); !tsi_end_p (iter); tsi_next (&iter))
9137 expand_expr (tsi_stmt (iter), const0_rtx, VOIDmode, modifier);
9138 }
9139 return const0_rtx;
9140
9141 case COND_EXPR:
9142 /* A COND_EXPR with its type being VOID_TYPE represents a
9143 conditional jump and is handled in
9144 expand_gimple_cond_expr. */
9145 gcc_assert (!VOID_TYPE_P (TREE_TYPE (exp)));
9146
9147 /* Note that COND_EXPRs whose type is a structure or union
9148 are required to be constructed to contain assignments of
9149 a temporary variable, so that we can evaluate them here
9150 for side effect only. If type is void, we must do likewise. */
9151
9152 gcc_assert (!TREE_ADDRESSABLE (type)
9153 && !ignore
9154 && TREE_TYPE (TREE_OPERAND (exp, 1)) != void_type_node
9155 && TREE_TYPE (TREE_OPERAND (exp, 2)) != void_type_node);
9156
9157 /* If we are not to produce a result, we have no target. Otherwise,
9158 if a target was specified use it; it will not be used as an
9159 intermediate target unless it is safe. If no target, use a
9160 temporary. */
9161
9162 if (modifier != EXPAND_STACK_PARM
9163 && original_target
9164 && safe_from_p (original_target, TREE_OPERAND (exp, 0), 1)
9165 && GET_MODE (original_target) == mode
9166 #ifdef HAVE_conditional_move
9167 && (! can_conditionally_move_p (mode)
9168 || REG_P (original_target))
9169 #endif
9170 && !MEM_P (original_target))
9171 temp = original_target;
9172 else
9173 temp = assign_temp (type, 0, 0, 1);
9174
9175 do_pending_stack_adjust ();
9176 NO_DEFER_POP;
9177 op0 = gen_label_rtx ();
9178 op1 = gen_label_rtx ();
9179 jumpifnot (TREE_OPERAND (exp, 0), op0);
9180 store_expr (TREE_OPERAND (exp, 1), temp,
9181 modifier == EXPAND_STACK_PARM,
9182 false);
9183
9184 emit_jump_insn (gen_jump (op1));
9185 emit_barrier ();
9186 emit_label (op0);
9187 store_expr (TREE_OPERAND (exp, 2), temp,
9188 modifier == EXPAND_STACK_PARM,
9189 false);
9190
9191 emit_label (op1);
9192 OK_DEFER_POP;
9193 return temp;
9194
9195 case VEC_COND_EXPR:
9196 target = expand_vec_cond_expr (exp, target);
9197 return target;
9198
9199 case MODIFY_EXPR:
9200 {
9201 tree lhs = TREE_OPERAND (exp, 0);
9202 tree rhs = TREE_OPERAND (exp, 1);
9203 gcc_assert (ignore);
9204
9205 /* Check for |= or &= of a bitfield of size one into another bitfield
9206 of size 1. In this case, (unless we need the result of the
9207 assignment) we can do this more efficiently with a
9208 test followed by an assignment, if necessary.
9209
9210 ??? At this point, we can't get a BIT_FIELD_REF here. But if
9211 things change so we do, this code should be enhanced to
9212 support it. */
9213 if (TREE_CODE (lhs) == COMPONENT_REF
9214 && (TREE_CODE (rhs) == BIT_IOR_EXPR
9215 || TREE_CODE (rhs) == BIT_AND_EXPR)
9216 && TREE_OPERAND (rhs, 0) == lhs
9217 && TREE_CODE (TREE_OPERAND (rhs, 1)) == COMPONENT_REF
9218 && integer_onep (DECL_SIZE (TREE_OPERAND (lhs, 1)))
9219 && integer_onep (DECL_SIZE (TREE_OPERAND (TREE_OPERAND (rhs, 1), 1))))
9220 {
9221 rtx label = gen_label_rtx ();
9222 int value = TREE_CODE (rhs) == BIT_IOR_EXPR;
9223 do_jump (TREE_OPERAND (rhs, 1),
9224 value ? label : 0,
9225 value ? 0 : label);
9226 expand_assignment (lhs, build_int_cst (TREE_TYPE (rhs), value),
9227 MOVE_NONTEMPORAL (exp));
9228 do_pending_stack_adjust ();
9229 emit_label (label);
9230 return const0_rtx;
9231 }
9232
9233 expand_assignment (lhs, rhs, MOVE_NONTEMPORAL (exp));
9234 return const0_rtx;
9235 }
9236
9237 case RETURN_EXPR:
9238 if (!TREE_OPERAND (exp, 0))
9239 expand_null_return ();
9240 else
9241 expand_return (TREE_OPERAND (exp, 0));
9242 return const0_rtx;
9243
9244 case ADDR_EXPR:
9245 return expand_expr_addr_expr (exp, target, tmode, modifier);
9246
9247 case COMPLEX_EXPR:
9248 /* Get the rtx code of the operands. */
9249 op0 = expand_normal (TREE_OPERAND (exp, 0));
9250 op1 = expand_normal (TREE_OPERAND (exp, 1));
9251
9252 if (!target)
9253 target = gen_reg_rtx (TYPE_MODE (TREE_TYPE (exp)));
9254
9255 /* Move the real (op0) and imaginary (op1) parts to their location. */
9256 write_complex_part (target, op0, false);
9257 write_complex_part (target, op1, true);
9258
9259 return target;
9260
9261 case REALPART_EXPR:
9262 op0 = expand_normal (TREE_OPERAND (exp, 0));
9263 return read_complex_part (op0, false);
9264
9265 case IMAGPART_EXPR:
9266 op0 = expand_normal (TREE_OPERAND (exp, 0));
9267 return read_complex_part (op0, true);
9268
9269 case RESX_EXPR:
9270 expand_resx_expr (exp);
9271 return const0_rtx;
9272
9273 case TRY_CATCH_EXPR:
9274 case CATCH_EXPR:
9275 case EH_FILTER_EXPR:
9276 case TRY_FINALLY_EXPR:
9277 /* Lowered by tree-eh.c. */
9278 gcc_unreachable ();
9279
9280 case WITH_CLEANUP_EXPR:
9281 case CLEANUP_POINT_EXPR:
9282 case TARGET_EXPR:
9283 case CASE_LABEL_EXPR:
9284 case VA_ARG_EXPR:
9285 case BIND_EXPR:
9286 case INIT_EXPR:
9287 case CONJ_EXPR:
9288 case COMPOUND_EXPR:
9289 case PREINCREMENT_EXPR:
9290 case PREDECREMENT_EXPR:
9291 case POSTINCREMENT_EXPR:
9292 case POSTDECREMENT_EXPR:
9293 case LOOP_EXPR:
9294 case EXIT_EXPR:
9295 /* Lowered by gimplify.c. */
9296 gcc_unreachable ();
9297
9298 case CHANGE_DYNAMIC_TYPE_EXPR:
9299 /* This is ignored at the RTL level. The tree level set
9300 DECL_POINTER_ALIAS_SET of any variable to be 0, which is
9301 overkill for the RTL layer but is all that we can
9302 represent. */
9303 return const0_rtx;
9304
9305 case EXC_PTR_EXPR:
9306 return get_exception_pointer ();
9307
9308 case FILTER_EXPR:
9309 return get_exception_filter ();
9310
9311 case FDESC_EXPR:
9312 /* Function descriptors are not valid except for as
9313 initialization constants, and should not be expanded. */
9314 gcc_unreachable ();
9315
9316 case SWITCH_EXPR:
9317 expand_case (exp);
9318 return const0_rtx;
9319
9320 case LABEL_EXPR:
9321 expand_label (TREE_OPERAND (exp, 0));
9322 return const0_rtx;
9323
9324 case ASM_EXPR:
9325 expand_asm_expr (exp);
9326 return const0_rtx;
9327
9328 case WITH_SIZE_EXPR:
9329 /* WITH_SIZE_EXPR expands to its first argument. The caller should
9330 have pulled out the size to use in whatever context it needed. */
9331 return expand_expr_real (TREE_OPERAND (exp, 0), original_target, tmode,
9332 modifier, alt_rtl);
9333
9334 case REALIGN_LOAD_EXPR:
9335 {
9336 tree oprnd0 = TREE_OPERAND (exp, 0);
9337 tree oprnd1 = TREE_OPERAND (exp, 1);
9338 tree oprnd2 = TREE_OPERAND (exp, 2);
9339 rtx op2;
9340
9341 this_optab = optab_for_tree_code (code, type, optab_default);
9342 expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
9343 op2 = expand_normal (oprnd2);
9344 temp = expand_ternary_op (mode, this_optab, op0, op1, op2,
9345 target, unsignedp);
9346 gcc_assert (temp);
9347 return temp;
9348 }
9349
9350 case DOT_PROD_EXPR:
9351 {
9352 tree oprnd0 = TREE_OPERAND (exp, 0);
9353 tree oprnd1 = TREE_OPERAND (exp, 1);
9354 tree oprnd2 = TREE_OPERAND (exp, 2);
9355 rtx op2;
9356
9357 expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
9358 op2 = expand_normal (oprnd2);
9359 target = expand_widen_pattern_expr (exp, op0, op1, op2,
9360 target, unsignedp);
9361 return target;
9362 }
9363
9364 case WIDEN_SUM_EXPR:
9365 {
9366 tree oprnd0 = TREE_OPERAND (exp, 0);
9367 tree oprnd1 = TREE_OPERAND (exp, 1);
9368
9369 expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, 0);
9370 target = expand_widen_pattern_expr (exp, op0, NULL_RTX, op1,
9371 target, unsignedp);
9372 return target;
9373 }
9374
9375 case REDUC_MAX_EXPR:
9376 case REDUC_MIN_EXPR:
9377 case REDUC_PLUS_EXPR:
9378 {
9379 op0 = expand_normal (TREE_OPERAND (exp, 0));
9380 this_optab = optab_for_tree_code (code, type, optab_default);
9381 temp = expand_unop (mode, this_optab, op0, target, unsignedp);
9382 gcc_assert (temp);
9383 return temp;
9384 }
9385
9386 case VEC_EXTRACT_EVEN_EXPR:
9387 case VEC_EXTRACT_ODD_EXPR:
9388 {
9389 expand_operands (TREE_OPERAND (exp, 0), TREE_OPERAND (exp, 1),
9390 NULL_RTX, &op0, &op1, 0);
9391 this_optab = optab_for_tree_code (code, type, optab_default);
9392 temp = expand_binop (mode, this_optab, op0, op1, target, unsignedp,
9393 OPTAB_WIDEN);
9394 gcc_assert (temp);
9395 return temp;
9396 }
9397
9398 case VEC_INTERLEAVE_HIGH_EXPR:
9399 case VEC_INTERLEAVE_LOW_EXPR:
9400 {
9401 expand_operands (TREE_OPERAND (exp, 0), TREE_OPERAND (exp, 1),
9402 NULL_RTX, &op0, &op1, 0);
9403 this_optab = optab_for_tree_code (code, type, optab_default);
9404 temp = expand_binop (mode, this_optab, op0, op1, target, unsignedp,
9405 OPTAB_WIDEN);
9406 gcc_assert (temp);
9407 return temp;
9408 }
9409
9410 case VEC_LSHIFT_EXPR:
9411 case VEC_RSHIFT_EXPR:
9412 {
9413 target = expand_vec_shift_expr (exp, target);
9414 return target;
9415 }
9416
9417 case VEC_UNPACK_HI_EXPR:
9418 case VEC_UNPACK_LO_EXPR:
9419 {
9420 op0 = expand_normal (TREE_OPERAND (exp, 0));
9421 this_optab = optab_for_tree_code (code, type, optab_default);
9422 temp = expand_widen_pattern_expr (exp, op0, NULL_RTX, NULL_RTX,
9423 target, unsignedp);
9424 gcc_assert (temp);
9425 return temp;
9426 }
9427
9428 case VEC_UNPACK_FLOAT_HI_EXPR:
9429 case VEC_UNPACK_FLOAT_LO_EXPR:
9430 {
9431 op0 = expand_normal (TREE_OPERAND (exp, 0));
9432 /* The signedness is determined from input operand. */
9433 this_optab = optab_for_tree_code (code,
9434 TREE_TYPE (TREE_OPERAND (exp, 0)),
9435 optab_default);
9436 temp = expand_widen_pattern_expr
9437 (exp, op0, NULL_RTX, NULL_RTX,
9438 target, TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (exp, 0))));
9439
9440 gcc_assert (temp);
9441 return temp;
9442 }
9443
9444 case VEC_WIDEN_MULT_HI_EXPR:
9445 case VEC_WIDEN_MULT_LO_EXPR:
9446 {
9447 tree oprnd0 = TREE_OPERAND (exp, 0);
9448 tree oprnd1 = TREE_OPERAND (exp, 1);
9449
9450 expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, 0);
9451 target = expand_widen_pattern_expr (exp, op0, op1, NULL_RTX,
9452 target, unsignedp);
9453 gcc_assert (target);
9454 return target;
9455 }
9456
9457 case VEC_PACK_TRUNC_EXPR:
9458 case VEC_PACK_SAT_EXPR:
9459 case VEC_PACK_FIX_TRUNC_EXPR:
9460 mode = TYPE_MODE (TREE_TYPE (TREE_OPERAND (exp, 0)));
9461 goto binop;
9462
9463 default:
9464 return lang_hooks.expand_expr (exp, original_target, tmode,
9465 modifier, alt_rtl);
9466 }
9467
9468 /* Here to do an ordinary binary operator. */
9469 binop:
9470 expand_operands (TREE_OPERAND (exp, 0), TREE_OPERAND (exp, 1),
9471 subtarget, &op0, &op1, 0);
9472 binop2:
9473 this_optab = optab_for_tree_code (code, type, optab_default);
9474 binop3:
9475 if (modifier == EXPAND_STACK_PARM)
9476 target = 0;
9477 temp = expand_binop (mode, this_optab, op0, op1, target,
9478 unsignedp, OPTAB_LIB_WIDEN);
9479 gcc_assert (temp);
9480 return REDUCE_BIT_FIELD (temp);
9481 }
9482 #undef REDUCE_BIT_FIELD
9483
9484 /* Subroutine of above: reduce EXP to the precision of TYPE (in the
9485 signedness of TYPE), possibly returning the result in TARGET. */
9486 static rtx
9487 reduce_to_bit_field_precision (rtx exp, rtx target, tree type)
9488 {
9489 HOST_WIDE_INT prec = TYPE_PRECISION (type);
9490 if (target && GET_MODE (target) != GET_MODE (exp))
9491 target = 0;
9492 /* For constant values, reduce using build_int_cst_type. */
9493 if (GET_CODE (exp) == CONST_INT)
9494 {
9495 HOST_WIDE_INT value = INTVAL (exp);
9496 tree t = build_int_cst_type (type, value);
9497 return expand_expr (t, target, VOIDmode, EXPAND_NORMAL);
9498 }
9499 else if (TYPE_UNSIGNED (type))
9500 {
9501 rtx mask;
9502 if (prec < HOST_BITS_PER_WIDE_INT)
9503 mask = immed_double_const (((unsigned HOST_WIDE_INT) 1 << prec) - 1, 0,
9504 GET_MODE (exp));
9505 else
9506 mask = immed_double_const ((unsigned HOST_WIDE_INT) -1,
9507 ((unsigned HOST_WIDE_INT) 1
9508 << (prec - HOST_BITS_PER_WIDE_INT)) - 1,
9509 GET_MODE (exp));
9510 return expand_and (GET_MODE (exp), exp, mask, target);
9511 }
9512 else
9513 {
9514 tree count = build_int_cst (NULL_TREE,
9515 GET_MODE_BITSIZE (GET_MODE (exp)) - prec);
9516 exp = expand_shift (LSHIFT_EXPR, GET_MODE (exp), exp, count, target, 0);
9517 return expand_shift (RSHIFT_EXPR, GET_MODE (exp), exp, count, target, 0);
9518 }
9519 }
9520
9521 /* Subroutine of above: returns 1 if OFFSET corresponds to an offset that
9522 when applied to the address of EXP produces an address known to be
9523 aligned more than BIGGEST_ALIGNMENT. */
9524
9525 static int
9526 is_aligning_offset (const_tree offset, const_tree exp)
9527 {
9528 /* Strip off any conversions. */
9529 while (CONVERT_EXPR_P (offset))
9530 offset = TREE_OPERAND (offset, 0);
9531
9532 /* We must now have a BIT_AND_EXPR with a constant that is one less than
9533 power of 2 and which is larger than BIGGEST_ALIGNMENT. */
9534 if (TREE_CODE (offset) != BIT_AND_EXPR
9535 || !host_integerp (TREE_OPERAND (offset, 1), 1)
9536 || compare_tree_int (TREE_OPERAND (offset, 1),
9537 BIGGEST_ALIGNMENT / BITS_PER_UNIT) <= 0
9538 || !exact_log2 (tree_low_cst (TREE_OPERAND (offset, 1), 1) + 1) < 0)
9539 return 0;
9540
9541 /* Look at the first operand of BIT_AND_EXPR and strip any conversion.
9542 It must be NEGATE_EXPR. Then strip any more conversions. */
9543 offset = TREE_OPERAND (offset, 0);
9544 while (CONVERT_EXPR_P (offset))
9545 offset = TREE_OPERAND (offset, 0);
9546
9547 if (TREE_CODE (offset) != NEGATE_EXPR)
9548 return 0;
9549
9550 offset = TREE_OPERAND (offset, 0);
9551 while (CONVERT_EXPR_P (offset))
9552 offset = TREE_OPERAND (offset, 0);
9553
9554 /* This must now be the address of EXP. */
9555 return TREE_CODE (offset) == ADDR_EXPR && TREE_OPERAND (offset, 0) == exp;
9556 }
9557
9558 /* Return the tree node if an ARG corresponds to a string constant or zero
9559 if it doesn't. If we return nonzero, set *PTR_OFFSET to the offset
9560 in bytes within the string that ARG is accessing. The type of the
9561 offset will be `sizetype'. */
9562
9563 tree
9564 string_constant (tree arg, tree *ptr_offset)
9565 {
9566 tree array, offset, lower_bound;
9567 STRIP_NOPS (arg);
9568
9569 if (TREE_CODE (arg) == ADDR_EXPR)
9570 {
9571 if (TREE_CODE (TREE_OPERAND (arg, 0)) == STRING_CST)
9572 {
9573 *ptr_offset = size_zero_node;
9574 return TREE_OPERAND (arg, 0);
9575 }
9576 else if (TREE_CODE (TREE_OPERAND (arg, 0)) == VAR_DECL)
9577 {
9578 array = TREE_OPERAND (arg, 0);
9579 offset = size_zero_node;
9580 }
9581 else if (TREE_CODE (TREE_OPERAND (arg, 0)) == ARRAY_REF)
9582 {
9583 array = TREE_OPERAND (TREE_OPERAND (arg, 0), 0);
9584 offset = TREE_OPERAND (TREE_OPERAND (arg, 0), 1);
9585 if (TREE_CODE (array) != STRING_CST
9586 && TREE_CODE (array) != VAR_DECL)
9587 return 0;
9588
9589 /* Check if the array has a nonzero lower bound. */
9590 lower_bound = array_ref_low_bound (TREE_OPERAND (arg, 0));
9591 if (!integer_zerop (lower_bound))
9592 {
9593 /* If the offset and base aren't both constants, return 0. */
9594 if (TREE_CODE (lower_bound) != INTEGER_CST)
9595 return 0;
9596 if (TREE_CODE (offset) != INTEGER_CST)
9597 return 0;
9598 /* Adjust offset by the lower bound. */
9599 offset = size_diffop (fold_convert (sizetype, offset),
9600 fold_convert (sizetype, lower_bound));
9601 }
9602 }
9603 else
9604 return 0;
9605 }
9606 else if (TREE_CODE (arg) == PLUS_EXPR || TREE_CODE (arg) == POINTER_PLUS_EXPR)
9607 {
9608 tree arg0 = TREE_OPERAND (arg, 0);
9609 tree arg1 = TREE_OPERAND (arg, 1);
9610
9611 STRIP_NOPS (arg0);
9612 STRIP_NOPS (arg1);
9613
9614 if (TREE_CODE (arg0) == ADDR_EXPR
9615 && (TREE_CODE (TREE_OPERAND (arg0, 0)) == STRING_CST
9616 || TREE_CODE (TREE_OPERAND (arg0, 0)) == VAR_DECL))
9617 {
9618 array = TREE_OPERAND (arg0, 0);
9619 offset = arg1;
9620 }
9621 else if (TREE_CODE (arg1) == ADDR_EXPR
9622 && (TREE_CODE (TREE_OPERAND (arg1, 0)) == STRING_CST
9623 || TREE_CODE (TREE_OPERAND (arg1, 0)) == VAR_DECL))
9624 {
9625 array = TREE_OPERAND (arg1, 0);
9626 offset = arg0;
9627 }
9628 else
9629 return 0;
9630 }
9631 else
9632 return 0;
9633
9634 if (TREE_CODE (array) == STRING_CST)
9635 {
9636 *ptr_offset = fold_convert (sizetype, offset);
9637 return array;
9638 }
9639 else if (TREE_CODE (array) == VAR_DECL)
9640 {
9641 int length;
9642
9643 /* Variables initialized to string literals can be handled too. */
9644 if (DECL_INITIAL (array) == NULL_TREE
9645 || TREE_CODE (DECL_INITIAL (array)) != STRING_CST)
9646 return 0;
9647
9648 /* If they are read-only, non-volatile and bind locally. */
9649 if (! TREE_READONLY (array)
9650 || TREE_SIDE_EFFECTS (array)
9651 || ! targetm.binds_local_p (array))
9652 return 0;
9653
9654 /* Avoid const char foo[4] = "abcde"; */
9655 if (DECL_SIZE_UNIT (array) == NULL_TREE
9656 || TREE_CODE (DECL_SIZE_UNIT (array)) != INTEGER_CST
9657 || (length = TREE_STRING_LENGTH (DECL_INITIAL (array))) <= 0
9658 || compare_tree_int (DECL_SIZE_UNIT (array), length) < 0)
9659 return 0;
9660
9661 /* If variable is bigger than the string literal, OFFSET must be constant
9662 and inside of the bounds of the string literal. */
9663 offset = fold_convert (sizetype, offset);
9664 if (compare_tree_int (DECL_SIZE_UNIT (array), length) > 0
9665 && (! host_integerp (offset, 1)
9666 || compare_tree_int (offset, length) >= 0))
9667 return 0;
9668
9669 *ptr_offset = offset;
9670 return DECL_INITIAL (array);
9671 }
9672
9673 return 0;
9674 }
9675
9676 /* Generate code to calculate EXP using a store-flag instruction
9677 and return an rtx for the result. EXP is either a comparison
9678 or a TRUTH_NOT_EXPR whose operand is a comparison.
9679
9680 If TARGET is nonzero, store the result there if convenient.
9681
9682 If ONLY_CHEAP is nonzero, only do this if it is likely to be very
9683 cheap.
9684
9685 Return zero if there is no suitable set-flag instruction
9686 available on this machine.
9687
9688 Once expand_expr has been called on the arguments of the comparison,
9689 we are committed to doing the store flag, since it is not safe to
9690 re-evaluate the expression. We emit the store-flag insn by calling
9691 emit_store_flag, but only expand the arguments if we have a reason
9692 to believe that emit_store_flag will be successful. If we think that
9693 it will, but it isn't, we have to simulate the store-flag with a
9694 set/jump/set sequence. */
9695
9696 static rtx
9697 do_store_flag (tree exp, rtx target, enum machine_mode mode, int only_cheap)
9698 {
9699 enum rtx_code code;
9700 tree arg0, arg1, type;
9701 tree tem;
9702 enum machine_mode operand_mode;
9703 int invert = 0;
9704 int unsignedp;
9705 rtx op0, op1;
9706 enum insn_code icode;
9707 rtx subtarget = target;
9708 rtx result, label;
9709
9710 /* If this is a TRUTH_NOT_EXPR, set a flag indicating we must invert the
9711 result at the end. We can't simply invert the test since it would
9712 have already been inverted if it were valid. This case occurs for
9713 some floating-point comparisons. */
9714
9715 if (TREE_CODE (exp) == TRUTH_NOT_EXPR)
9716 invert = 1, exp = TREE_OPERAND (exp, 0);
9717
9718 arg0 = TREE_OPERAND (exp, 0);
9719 arg1 = TREE_OPERAND (exp, 1);
9720
9721 /* Don't crash if the comparison was erroneous. */
9722 if (arg0 == error_mark_node || arg1 == error_mark_node)
9723 return const0_rtx;
9724
9725 type = TREE_TYPE (arg0);
9726 operand_mode = TYPE_MODE (type);
9727 unsignedp = TYPE_UNSIGNED (type);
9728
9729 /* We won't bother with BLKmode store-flag operations because it would mean
9730 passing a lot of information to emit_store_flag. */
9731 if (operand_mode == BLKmode)
9732 return 0;
9733
9734 /* We won't bother with store-flag operations involving function pointers
9735 when function pointers must be canonicalized before comparisons. */
9736 #ifdef HAVE_canonicalize_funcptr_for_compare
9737 if (HAVE_canonicalize_funcptr_for_compare
9738 && ((TREE_CODE (TREE_TYPE (TREE_OPERAND (exp, 0))) == POINTER_TYPE
9739 && (TREE_CODE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0))))
9740 == FUNCTION_TYPE))
9741 || (TREE_CODE (TREE_TYPE (TREE_OPERAND (exp, 1))) == POINTER_TYPE
9742 && (TREE_CODE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 1))))
9743 == FUNCTION_TYPE))))
9744 return 0;
9745 #endif
9746
9747 STRIP_NOPS (arg0);
9748 STRIP_NOPS (arg1);
9749
9750 /* Get the rtx comparison code to use. We know that EXP is a comparison
9751 operation of some type. Some comparisons against 1 and -1 can be
9752 converted to comparisons with zero. Do so here so that the tests
9753 below will be aware that we have a comparison with zero. These
9754 tests will not catch constants in the first operand, but constants
9755 are rarely passed as the first operand. */
9756
9757 switch (TREE_CODE (exp))
9758 {
9759 case EQ_EXPR:
9760 code = EQ;
9761 break;
9762 case NE_EXPR:
9763 code = NE;
9764 break;
9765 case LT_EXPR:
9766 if (integer_onep (arg1))
9767 arg1 = integer_zero_node, code = unsignedp ? LEU : LE;
9768 else
9769 code = unsignedp ? LTU : LT;
9770 break;
9771 case LE_EXPR:
9772 if (! unsignedp && integer_all_onesp (arg1))
9773 arg1 = integer_zero_node, code = LT;
9774 else
9775 code = unsignedp ? LEU : LE;
9776 break;
9777 case GT_EXPR:
9778 if (! unsignedp && integer_all_onesp (arg1))
9779 arg1 = integer_zero_node, code = GE;
9780 else
9781 code = unsignedp ? GTU : GT;
9782 break;
9783 case GE_EXPR:
9784 if (integer_onep (arg1))
9785 arg1 = integer_zero_node, code = unsignedp ? GTU : GT;
9786 else
9787 code = unsignedp ? GEU : GE;
9788 break;
9789
9790 case UNORDERED_EXPR:
9791 code = UNORDERED;
9792 break;
9793 case ORDERED_EXPR:
9794 code = ORDERED;
9795 break;
9796 case UNLT_EXPR:
9797 code = UNLT;
9798 break;
9799 case UNLE_EXPR:
9800 code = UNLE;
9801 break;
9802 case UNGT_EXPR:
9803 code = UNGT;
9804 break;
9805 case UNGE_EXPR:
9806 code = UNGE;
9807 break;
9808 case UNEQ_EXPR:
9809 code = UNEQ;
9810 break;
9811 case LTGT_EXPR:
9812 code = LTGT;
9813 break;
9814
9815 default:
9816 gcc_unreachable ();
9817 }
9818
9819 /* Put a constant second. */
9820 if (TREE_CODE (arg0) == REAL_CST || TREE_CODE (arg0) == INTEGER_CST
9821 || TREE_CODE (arg0) == FIXED_CST)
9822 {
9823 tem = arg0; arg0 = arg1; arg1 = tem;
9824 code = swap_condition (code);
9825 }
9826
9827 /* If this is an equality or inequality test of a single bit, we can
9828 do this by shifting the bit being tested to the low-order bit and
9829 masking the result with the constant 1. If the condition was EQ,
9830 we xor it with 1. This does not require an scc insn and is faster
9831 than an scc insn even if we have it.
9832
9833 The code to make this transformation was moved into fold_single_bit_test,
9834 so we just call into the folder and expand its result. */
9835
9836 if ((code == NE || code == EQ)
9837 && TREE_CODE (arg0) == BIT_AND_EXPR && integer_zerop (arg1)
9838 && integer_pow2p (TREE_OPERAND (arg0, 1)))
9839 {
9840 tree type = lang_hooks.types.type_for_mode (mode, unsignedp);
9841 return expand_expr (fold_single_bit_test (code == NE ? NE_EXPR : EQ_EXPR,
9842 arg0, arg1, type),
9843 target, VOIDmode, EXPAND_NORMAL);
9844 }
9845
9846 /* Now see if we are likely to be able to do this. Return if not. */
9847 if (! can_compare_p (code, operand_mode, ccp_store_flag))
9848 return 0;
9849
9850 icode = setcc_gen_code[(int) code];
9851
9852 if (icode == CODE_FOR_nothing)
9853 {
9854 enum machine_mode wmode;
9855
9856 for (wmode = operand_mode;
9857 icode == CODE_FOR_nothing && wmode != VOIDmode;
9858 wmode = GET_MODE_WIDER_MODE (wmode))
9859 icode = optab_handler (cstore_optab, wmode)->insn_code;
9860 }
9861
9862 if (icode == CODE_FOR_nothing
9863 || (only_cheap && insn_data[(int) icode].operand[0].mode != mode))
9864 {
9865 /* We can only do this if it is one of the special cases that
9866 can be handled without an scc insn. */
9867 if ((code == LT && integer_zerop (arg1))
9868 || (! only_cheap && code == GE && integer_zerop (arg1)))
9869 ;
9870 else if (! only_cheap && (code == NE || code == EQ)
9871 && TREE_CODE (type) != REAL_TYPE
9872 && ((optab_handler (abs_optab, operand_mode)->insn_code
9873 != CODE_FOR_nothing)
9874 || (optab_handler (ffs_optab, operand_mode)->insn_code
9875 != CODE_FOR_nothing)))
9876 ;
9877 else
9878 return 0;
9879 }
9880
9881 if (! get_subtarget (target)
9882 || GET_MODE (subtarget) != operand_mode)
9883 subtarget = 0;
9884
9885 expand_operands (arg0, arg1, subtarget, &op0, &op1, 0);
9886
9887 if (target == 0)
9888 target = gen_reg_rtx (mode);
9889
9890 result = emit_store_flag (target, code, op0, op1,
9891 operand_mode, unsignedp, 1);
9892
9893 if (result)
9894 {
9895 if (invert)
9896 result = expand_binop (mode, xor_optab, result, const1_rtx,
9897 result, 0, OPTAB_LIB_WIDEN);
9898 return result;
9899 }
9900
9901 /* If this failed, we have to do this with set/compare/jump/set code. */
9902 if (!REG_P (target)
9903 || reg_mentioned_p (target, op0) || reg_mentioned_p (target, op1))
9904 target = gen_reg_rtx (GET_MODE (target));
9905
9906 emit_move_insn (target, invert ? const0_rtx : const1_rtx);
9907 label = gen_label_rtx ();
9908 do_compare_rtx_and_jump (op0, op1, code, unsignedp, operand_mode, NULL_RTX,
9909 NULL_RTX, label);
9910
9911 emit_move_insn (target, invert ? const1_rtx : const0_rtx);
9912 emit_label (label);
9913
9914 return target;
9915 }
9916
9917
9918 /* Stubs in case we haven't got a casesi insn. */
9919 #ifndef HAVE_casesi
9920 # define HAVE_casesi 0
9921 # define gen_casesi(a, b, c, d, e) (0)
9922 # define CODE_FOR_casesi CODE_FOR_nothing
9923 #endif
9924
9925 /* If the machine does not have a case insn that compares the bounds,
9926 this means extra overhead for dispatch tables, which raises the
9927 threshold for using them. */
9928 #ifndef CASE_VALUES_THRESHOLD
9929 #define CASE_VALUES_THRESHOLD (HAVE_casesi ? 4 : 5)
9930 #endif /* CASE_VALUES_THRESHOLD */
9931
9932 unsigned int
9933 case_values_threshold (void)
9934 {
9935 return CASE_VALUES_THRESHOLD;
9936 }
9937
9938 /* Attempt to generate a casesi instruction. Returns 1 if successful,
9939 0 otherwise (i.e. if there is no casesi instruction). */
9940 int
9941 try_casesi (tree index_type, tree index_expr, tree minval, tree range,
9942 rtx table_label ATTRIBUTE_UNUSED, rtx default_label,
9943 rtx fallback_label ATTRIBUTE_UNUSED)
9944 {
9945 enum machine_mode index_mode = SImode;
9946 int index_bits = GET_MODE_BITSIZE (index_mode);
9947 rtx op1, op2, index;
9948 enum machine_mode op_mode;
9949
9950 if (! HAVE_casesi)
9951 return 0;
9952
9953 /* Convert the index to SImode. */
9954 if (GET_MODE_BITSIZE (TYPE_MODE (index_type)) > GET_MODE_BITSIZE (index_mode))
9955 {
9956 enum machine_mode omode = TYPE_MODE (index_type);
9957 rtx rangertx = expand_normal (range);
9958
9959 /* We must handle the endpoints in the original mode. */
9960 index_expr = build2 (MINUS_EXPR, index_type,
9961 index_expr, minval);
9962 minval = integer_zero_node;
9963 index = expand_normal (index_expr);
9964 if (default_label)
9965 emit_cmp_and_jump_insns (rangertx, index, LTU, NULL_RTX,
9966 omode, 1, default_label);
9967 /* Now we can safely truncate. */
9968 index = convert_to_mode (index_mode, index, 0);
9969 }
9970 else
9971 {
9972 if (TYPE_MODE (index_type) != index_mode)
9973 {
9974 index_type = lang_hooks.types.type_for_size (index_bits, 0);
9975 index_expr = fold_convert (index_type, index_expr);
9976 }
9977
9978 index = expand_normal (index_expr);
9979 }
9980
9981 do_pending_stack_adjust ();
9982
9983 op_mode = insn_data[(int) CODE_FOR_casesi].operand[0].mode;
9984 if (! (*insn_data[(int) CODE_FOR_casesi].operand[0].predicate)
9985 (index, op_mode))
9986 index = copy_to_mode_reg (op_mode, index);
9987
9988 op1 = expand_normal (minval);
9989
9990 op_mode = insn_data[(int) CODE_FOR_casesi].operand[1].mode;
9991 op1 = convert_modes (op_mode, TYPE_MODE (TREE_TYPE (minval)),
9992 op1, TYPE_UNSIGNED (TREE_TYPE (minval)));
9993 if (! (*insn_data[(int) CODE_FOR_casesi].operand[1].predicate)
9994 (op1, op_mode))
9995 op1 = copy_to_mode_reg (op_mode, op1);
9996
9997 op2 = expand_normal (range);
9998
9999 op_mode = insn_data[(int) CODE_FOR_casesi].operand[2].mode;
10000 op2 = convert_modes (op_mode, TYPE_MODE (TREE_TYPE (range)),
10001 op2, TYPE_UNSIGNED (TREE_TYPE (range)));
10002 if (! (*insn_data[(int) CODE_FOR_casesi].operand[2].predicate)
10003 (op2, op_mode))
10004 op2 = copy_to_mode_reg (op_mode, op2);
10005
10006 emit_jump_insn (gen_casesi (index, op1, op2,
10007 table_label, !default_label
10008 ? fallback_label : default_label));
10009 return 1;
10010 }
10011
10012 /* Attempt to generate a tablejump instruction; same concept. */
10013 #ifndef HAVE_tablejump
10014 #define HAVE_tablejump 0
10015 #define gen_tablejump(x, y) (0)
10016 #endif
10017
10018 /* Subroutine of the next function.
10019
10020 INDEX is the value being switched on, with the lowest value
10021 in the table already subtracted.
10022 MODE is its expected mode (needed if INDEX is constant).
10023 RANGE is the length of the jump table.
10024 TABLE_LABEL is a CODE_LABEL rtx for the table itself.
10025
10026 DEFAULT_LABEL is a CODE_LABEL rtx to jump to if the
10027 index value is out of range. */
10028
10029 static void
10030 do_tablejump (rtx index, enum machine_mode mode, rtx range, rtx table_label,
10031 rtx default_label)
10032 {
10033 rtx temp, vector;
10034
10035 if (INTVAL (range) > cfun->cfg->max_jumptable_ents)
10036 cfun->cfg->max_jumptable_ents = INTVAL (range);
10037
10038 /* Do an unsigned comparison (in the proper mode) between the index
10039 expression and the value which represents the length of the range.
10040 Since we just finished subtracting the lower bound of the range
10041 from the index expression, this comparison allows us to simultaneously
10042 check that the original index expression value is both greater than
10043 or equal to the minimum value of the range and less than or equal to
10044 the maximum value of the range. */
10045
10046 if (default_label)
10047 emit_cmp_and_jump_insns (index, range, GTU, NULL_RTX, mode, 1,
10048 default_label);
10049
10050 /* If index is in range, it must fit in Pmode.
10051 Convert to Pmode so we can index with it. */
10052 if (mode != Pmode)
10053 index = convert_to_mode (Pmode, index, 1);
10054
10055 /* Don't let a MEM slip through, because then INDEX that comes
10056 out of PIC_CASE_VECTOR_ADDRESS won't be a valid address,
10057 and break_out_memory_refs will go to work on it and mess it up. */
10058 #ifdef PIC_CASE_VECTOR_ADDRESS
10059 if (flag_pic && !REG_P (index))
10060 index = copy_to_mode_reg (Pmode, index);
10061 #endif
10062
10063 /* ??? The only correct use of CASE_VECTOR_MODE is the one inside the
10064 GET_MODE_SIZE, because this indicates how large insns are. The other
10065 uses should all be Pmode, because they are addresses. This code
10066 could fail if addresses and insns are not the same size. */
10067 index = gen_rtx_PLUS (Pmode,
10068 gen_rtx_MULT (Pmode, index,
10069 GEN_INT (GET_MODE_SIZE (CASE_VECTOR_MODE))),
10070 gen_rtx_LABEL_REF (Pmode, table_label));
10071 #ifdef PIC_CASE_VECTOR_ADDRESS
10072 if (flag_pic)
10073 index = PIC_CASE_VECTOR_ADDRESS (index);
10074 else
10075 #endif
10076 index = memory_address (CASE_VECTOR_MODE, index);
10077 temp = gen_reg_rtx (CASE_VECTOR_MODE);
10078 vector = gen_const_mem (CASE_VECTOR_MODE, index);
10079 convert_move (temp, vector, 0);
10080
10081 emit_jump_insn (gen_tablejump (temp, table_label));
10082
10083 /* If we are generating PIC code or if the table is PC-relative, the
10084 table and JUMP_INSN must be adjacent, so don't output a BARRIER. */
10085 if (! CASE_VECTOR_PC_RELATIVE && ! flag_pic)
10086 emit_barrier ();
10087 }
10088
10089 int
10090 try_tablejump (tree index_type, tree index_expr, tree minval, tree range,
10091 rtx table_label, rtx default_label)
10092 {
10093 rtx index;
10094
10095 if (! HAVE_tablejump)
10096 return 0;
10097
10098 index_expr = fold_build2 (MINUS_EXPR, index_type,
10099 fold_convert (index_type, index_expr),
10100 fold_convert (index_type, minval));
10101 index = expand_normal (index_expr);
10102 do_pending_stack_adjust ();
10103
10104 do_tablejump (index, TYPE_MODE (index_type),
10105 convert_modes (TYPE_MODE (index_type),
10106 TYPE_MODE (TREE_TYPE (range)),
10107 expand_normal (range),
10108 TYPE_UNSIGNED (TREE_TYPE (range))),
10109 table_label, default_label);
10110 return 1;
10111 }
10112
10113 /* Nonzero if the mode is a valid vector mode for this architecture.
10114 This returns nonzero even if there is no hardware support for the
10115 vector mode, but we can emulate with narrower modes. */
10116
10117 int
10118 vector_mode_valid_p (enum machine_mode mode)
10119 {
10120 enum mode_class mclass = GET_MODE_CLASS (mode);
10121 enum machine_mode innermode;
10122
10123 /* Doh! What's going on? */
10124 if (mclass != MODE_VECTOR_INT
10125 && mclass != MODE_VECTOR_FLOAT
10126 && mclass != MODE_VECTOR_FRACT
10127 && mclass != MODE_VECTOR_UFRACT
10128 && mclass != MODE_VECTOR_ACCUM
10129 && mclass != MODE_VECTOR_UACCUM)
10130 return 0;
10131
10132 /* Hardware support. Woo hoo! */
10133 if (targetm.vector_mode_supported_p (mode))
10134 return 1;
10135
10136 innermode = GET_MODE_INNER (mode);
10137
10138 /* We should probably return 1 if requesting V4DI and we have no DI,
10139 but we have V2DI, but this is probably very unlikely. */
10140
10141 /* If we have support for the inner mode, we can safely emulate it.
10142 We may not have V2DI, but me can emulate with a pair of DIs. */
10143 return targetm.scalar_mode_supported_p (innermode);
10144 }
10145
10146 /* Return a CONST_VECTOR rtx for a VECTOR_CST tree. */
10147 static rtx
10148 const_vector_from_tree (tree exp)
10149 {
10150 rtvec v;
10151 int units, i;
10152 tree link, elt;
10153 enum machine_mode inner, mode;
10154
10155 mode = TYPE_MODE (TREE_TYPE (exp));
10156
10157 if (initializer_zerop (exp))
10158 return CONST0_RTX (mode);
10159
10160 units = GET_MODE_NUNITS (mode);
10161 inner = GET_MODE_INNER (mode);
10162
10163 v = rtvec_alloc (units);
10164
10165 link = TREE_VECTOR_CST_ELTS (exp);
10166 for (i = 0; link; link = TREE_CHAIN (link), ++i)
10167 {
10168 elt = TREE_VALUE (link);
10169
10170 if (TREE_CODE (elt) == REAL_CST)
10171 RTVEC_ELT (v, i) = CONST_DOUBLE_FROM_REAL_VALUE (TREE_REAL_CST (elt),
10172 inner);
10173 else if (TREE_CODE (elt) == FIXED_CST)
10174 RTVEC_ELT (v, i) = CONST_FIXED_FROM_FIXED_VALUE (TREE_FIXED_CST (elt),
10175 inner);
10176 else
10177 RTVEC_ELT (v, i) = immed_double_const (TREE_INT_CST_LOW (elt),
10178 TREE_INT_CST_HIGH (elt),
10179 inner);
10180 }
10181
10182 /* Initialize remaining elements to 0. */
10183 for (; i < units; ++i)
10184 RTVEC_ELT (v, i) = CONST0_RTX (inner);
10185
10186 return gen_rtx_CONST_VECTOR (mode, v);
10187 }
10188 #include "gt-expr.h"