comparison gcc/final.c @ 0:a06113de4d67

first commit
author kent <kent@cr.ie.u-ryukyu.ac.jp>
date Fri, 17 Jul 2009 14:47:48 +0900
parents
children 77e2b8dfacca
comparison
equal deleted inserted replaced
-1:000000000000 0:a06113de4d67
1 /* Convert RTL to assembler code and output it, for GNU compiler.
2 Copyright (C) 1987, 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997,
3 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
4 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 /* This is the final pass of the compiler.
23 It looks at the rtl code for a function and outputs assembler code.
24
25 Call `final_start_function' to output the assembler code for function entry,
26 `final' to output assembler code for some RTL code,
27 `final_end_function' to output assembler code for function exit.
28 If a function is compiled in several pieces, each piece is
29 output separately with `final'.
30
31 Some optimizations are also done at this level.
32 Move instructions that were made unnecessary by good register allocation
33 are detected and omitted from the output. (Though most of these
34 are removed by the last jump pass.)
35
36 Instructions to set the condition codes are omitted when it can be
37 seen that the condition codes already had the desired values.
38
39 In some cases it is sufficient if the inherited condition codes
40 have related values, but this may require the following insn
41 (the one that tests the condition codes) to be modified.
42
43 The code for the function prologue and epilogue are generated
44 directly in assembler by the target functions function_prologue and
45 function_epilogue. Those instructions never exist as rtl. */
46
47 #include "config.h"
48 #include "system.h"
49 #include "coretypes.h"
50 #include "tm.h"
51
52 #include "tree.h"
53 #include "rtl.h"
54 #include "tm_p.h"
55 #include "regs.h"
56 #include "insn-config.h"
57 #include "insn-attr.h"
58 #include "recog.h"
59 #include "conditions.h"
60 #include "flags.h"
61 #include "real.h"
62 #include "hard-reg-set.h"
63 #include "output.h"
64 #include "except.h"
65 #include "function.h"
66 #include "toplev.h"
67 #include "reload.h"
68 #include "intl.h"
69 #include "basic-block.h"
70 #include "target.h"
71 #include "debug.h"
72 #include "expr.h"
73 #include "cfglayout.h"
74 #include "tree-pass.h"
75 #include "timevar.h"
76 #include "cgraph.h"
77 #include "coverage.h"
78 #include "df.h"
79 #include "vecprim.h"
80 #include "ggc.h"
81 #include "cfgloop.h"
82 #include "params.h"
83
84 #ifdef XCOFF_DEBUGGING_INFO
85 #include "xcoffout.h" /* Needed for external data
86 declarations for e.g. AIX 4.x. */
87 #endif
88
89 #if defined (DWARF2_UNWIND_INFO) || defined (DWARF2_DEBUGGING_INFO)
90 #include "dwarf2out.h"
91 #endif
92
93 #ifdef DBX_DEBUGGING_INFO
94 #include "dbxout.h"
95 #endif
96
97 #ifdef SDB_DEBUGGING_INFO
98 #include "sdbout.h"
99 #endif
100
101 /* If we aren't using cc0, CC_STATUS_INIT shouldn't exist. So define a
102 null default for it to save conditionalization later. */
103 #ifndef CC_STATUS_INIT
104 #define CC_STATUS_INIT
105 #endif
106
107 /* How to start an assembler comment. */
108 #ifndef ASM_COMMENT_START
109 #define ASM_COMMENT_START ";#"
110 #endif
111
112 /* Is the given character a logical line separator for the assembler? */
113 #ifndef IS_ASM_LOGICAL_LINE_SEPARATOR
114 #define IS_ASM_LOGICAL_LINE_SEPARATOR(C, STR) ((C) == ';')
115 #endif
116
117 #ifndef JUMP_TABLES_IN_TEXT_SECTION
118 #define JUMP_TABLES_IN_TEXT_SECTION 0
119 #endif
120
121 /* Bitflags used by final_scan_insn. */
122 #define SEEN_BB 1
123 #define SEEN_NOTE 2
124 #define SEEN_EMITTED 4
125
126 /* Last insn processed by final_scan_insn. */
127 static rtx debug_insn;
128 rtx current_output_insn;
129
130 /* Line number of last NOTE. */
131 static int last_linenum;
132
133 /* Highest line number in current block. */
134 static int high_block_linenum;
135
136 /* Likewise for function. */
137 static int high_function_linenum;
138
139 /* Filename of last NOTE. */
140 static const char *last_filename;
141
142 /* Override filename and line number. */
143 static const char *override_filename;
144 static int override_linenum;
145
146 /* Whether to force emission of a line note before the next insn. */
147 static bool force_source_line = false;
148
149 extern const int length_unit_log; /* This is defined in insn-attrtab.c. */
150
151 /* Nonzero while outputting an `asm' with operands.
152 This means that inconsistencies are the user's fault, so don't die.
153 The precise value is the insn being output, to pass to error_for_asm. */
154 rtx this_is_asm_operands;
155
156 /* Number of operands of this insn, for an `asm' with operands. */
157 static unsigned int insn_noperands;
158
159 /* Compare optimization flag. */
160
161 static rtx last_ignored_compare = 0;
162
163 /* Assign a unique number to each insn that is output.
164 This can be used to generate unique local labels. */
165
166 static int insn_counter = 0;
167
168 #ifdef HAVE_cc0
169 /* This variable contains machine-dependent flags (defined in tm.h)
170 set and examined by output routines
171 that describe how to interpret the condition codes properly. */
172
173 CC_STATUS cc_status;
174
175 /* During output of an insn, this contains a copy of cc_status
176 from before the insn. */
177
178 CC_STATUS cc_prev_status;
179 #endif
180
181 /* Number of unmatched NOTE_INSN_BLOCK_BEG notes we have seen. */
182
183 static int block_depth;
184
185 /* Nonzero if have enabled APP processing of our assembler output. */
186
187 static int app_on;
188
189 /* If we are outputting an insn sequence, this contains the sequence rtx.
190 Zero otherwise. */
191
192 rtx final_sequence;
193
194 #ifdef ASSEMBLER_DIALECT
195
196 /* Number of the assembler dialect to use, starting at 0. */
197 static int dialect_number;
198 #endif
199
200 #ifdef HAVE_conditional_execution
201 /* Nonnull if the insn currently being emitted was a COND_EXEC pattern. */
202 rtx current_insn_predicate;
203 #endif
204
205 #ifdef HAVE_ATTR_length
206 static int asm_insn_count (rtx);
207 #endif
208 static void profile_function (FILE *);
209 static void profile_after_prologue (FILE *);
210 static bool notice_source_line (rtx);
211 static rtx walk_alter_subreg (rtx *, bool *);
212 static void output_asm_name (void);
213 static void output_alternate_entry_point (FILE *, rtx);
214 static tree get_mem_expr_from_op (rtx, int *);
215 static void output_asm_operand_names (rtx *, int *, int);
216 static void output_operand (rtx, int);
217 #ifdef LEAF_REGISTERS
218 static void leaf_renumber_regs (rtx);
219 #endif
220 #ifdef HAVE_cc0
221 static int alter_cond (rtx);
222 #endif
223 #ifndef ADDR_VEC_ALIGN
224 static int final_addr_vec_align (rtx);
225 #endif
226 #ifdef HAVE_ATTR_length
227 static int align_fuzz (rtx, rtx, int, unsigned);
228 #endif
229
230 /* Initialize data in final at the beginning of a compilation. */
231
232 void
233 init_final (const char *filename ATTRIBUTE_UNUSED)
234 {
235 app_on = 0;
236 final_sequence = 0;
237
238 #ifdef ASSEMBLER_DIALECT
239 dialect_number = ASSEMBLER_DIALECT;
240 #endif
241 }
242
243 /* Default target function prologue and epilogue assembler output.
244
245 If not overridden for epilogue code, then the function body itself
246 contains return instructions wherever needed. */
247 void
248 default_function_pro_epilogue (FILE *file ATTRIBUTE_UNUSED,
249 HOST_WIDE_INT size ATTRIBUTE_UNUSED)
250 {
251 }
252
253 /* Default target hook that outputs nothing to a stream. */
254 void
255 no_asm_to_stream (FILE *file ATTRIBUTE_UNUSED)
256 {
257 }
258
259 /* Enable APP processing of subsequent output.
260 Used before the output from an `asm' statement. */
261
262 void
263 app_enable (void)
264 {
265 if (! app_on)
266 {
267 fputs (ASM_APP_ON, asm_out_file);
268 app_on = 1;
269 }
270 }
271
272 /* Disable APP processing of subsequent output.
273 Called from varasm.c before most kinds of output. */
274
275 void
276 app_disable (void)
277 {
278 if (app_on)
279 {
280 fputs (ASM_APP_OFF, asm_out_file);
281 app_on = 0;
282 }
283 }
284
285 /* Return the number of slots filled in the current
286 delayed branch sequence (we don't count the insn needing the
287 delay slot). Zero if not in a delayed branch sequence. */
288
289 #ifdef DELAY_SLOTS
290 int
291 dbr_sequence_length (void)
292 {
293 if (final_sequence != 0)
294 return XVECLEN (final_sequence, 0) - 1;
295 else
296 return 0;
297 }
298 #endif
299
300 /* The next two pages contain routines used to compute the length of an insn
301 and to shorten branches. */
302
303 /* Arrays for insn lengths, and addresses. The latter is referenced by
304 `insn_current_length'. */
305
306 static int *insn_lengths;
307
308 VEC(int,heap) *insn_addresses_;
309
310 /* Max uid for which the above arrays are valid. */
311 static int insn_lengths_max_uid;
312
313 /* Address of insn being processed. Used by `insn_current_length'. */
314 int insn_current_address;
315
316 /* Address of insn being processed in previous iteration. */
317 int insn_last_address;
318
319 /* known invariant alignment of insn being processed. */
320 int insn_current_align;
321
322 /* After shorten_branches, for any insn, uid_align[INSN_UID (insn)]
323 gives the next following alignment insn that increases the known
324 alignment, or NULL_RTX if there is no such insn.
325 For any alignment obtained this way, we can again index uid_align with
326 its uid to obtain the next following align that in turn increases the
327 alignment, till we reach NULL_RTX; the sequence obtained this way
328 for each insn we'll call the alignment chain of this insn in the following
329 comments. */
330
331 struct label_alignment
332 {
333 short alignment;
334 short max_skip;
335 };
336
337 static rtx *uid_align;
338 static int *uid_shuid;
339 static struct label_alignment *label_align;
340
341 /* Indicate that branch shortening hasn't yet been done. */
342
343 void
344 init_insn_lengths (void)
345 {
346 if (uid_shuid)
347 {
348 free (uid_shuid);
349 uid_shuid = 0;
350 }
351 if (insn_lengths)
352 {
353 free (insn_lengths);
354 insn_lengths = 0;
355 insn_lengths_max_uid = 0;
356 }
357 #ifdef HAVE_ATTR_length
358 INSN_ADDRESSES_FREE ();
359 #endif
360 if (uid_align)
361 {
362 free (uid_align);
363 uid_align = 0;
364 }
365 }
366
367 /* Obtain the current length of an insn. If branch shortening has been done,
368 get its actual length. Otherwise, use FALLBACK_FN to calculate the
369 length. */
370 static inline int
371 get_attr_length_1 (rtx insn ATTRIBUTE_UNUSED,
372 int (*fallback_fn) (rtx) ATTRIBUTE_UNUSED)
373 {
374 #ifdef HAVE_ATTR_length
375 rtx body;
376 int i;
377 int length = 0;
378
379 if (insn_lengths_max_uid > INSN_UID (insn))
380 return insn_lengths[INSN_UID (insn)];
381 else
382 switch (GET_CODE (insn))
383 {
384 case NOTE:
385 case BARRIER:
386 case CODE_LABEL:
387 return 0;
388
389 case CALL_INSN:
390 length = fallback_fn (insn);
391 break;
392
393 case JUMP_INSN:
394 body = PATTERN (insn);
395 if (GET_CODE (body) == ADDR_VEC || GET_CODE (body) == ADDR_DIFF_VEC)
396 {
397 /* Alignment is machine-dependent and should be handled by
398 ADDR_VEC_ALIGN. */
399 }
400 else
401 length = fallback_fn (insn);
402 break;
403
404 case INSN:
405 body = PATTERN (insn);
406 if (GET_CODE (body) == USE || GET_CODE (body) == CLOBBER)
407 return 0;
408
409 else if (GET_CODE (body) == ASM_INPUT || asm_noperands (body) >= 0)
410 length = asm_insn_count (body) * fallback_fn (insn);
411 else if (GET_CODE (body) == SEQUENCE)
412 for (i = 0; i < XVECLEN (body, 0); i++)
413 length += get_attr_length_1 (XVECEXP (body, 0, i), fallback_fn);
414 else
415 length = fallback_fn (insn);
416 break;
417
418 default:
419 break;
420 }
421
422 #ifdef ADJUST_INSN_LENGTH
423 ADJUST_INSN_LENGTH (insn, length);
424 #endif
425 return length;
426 #else /* not HAVE_ATTR_length */
427 return 0;
428 #define insn_default_length 0
429 #define insn_min_length 0
430 #endif /* not HAVE_ATTR_length */
431 }
432
433 /* Obtain the current length of an insn. If branch shortening has been done,
434 get its actual length. Otherwise, get its maximum length. */
435 int
436 get_attr_length (rtx insn)
437 {
438 return get_attr_length_1 (insn, insn_default_length);
439 }
440
441 /* Obtain the current length of an insn. If branch shortening has been done,
442 get its actual length. Otherwise, get its minimum length. */
443 int
444 get_attr_min_length (rtx insn)
445 {
446 return get_attr_length_1 (insn, insn_min_length);
447 }
448
449 /* Code to handle alignment inside shorten_branches. */
450
451 /* Here is an explanation how the algorithm in align_fuzz can give
452 proper results:
453
454 Call a sequence of instructions beginning with alignment point X
455 and continuing until the next alignment point `block X'. When `X'
456 is used in an expression, it means the alignment value of the
457 alignment point.
458
459 Call the distance between the start of the first insn of block X, and
460 the end of the last insn of block X `IX', for the `inner size of X'.
461 This is clearly the sum of the instruction lengths.
462
463 Likewise with the next alignment-delimited block following X, which we
464 shall call block Y.
465
466 Call the distance between the start of the first insn of block X, and
467 the start of the first insn of block Y `OX', for the `outer size of X'.
468
469 The estimated padding is then OX - IX.
470
471 OX can be safely estimated as
472
473 if (X >= Y)
474 OX = round_up(IX, Y)
475 else
476 OX = round_up(IX, X) + Y - X
477
478 Clearly est(IX) >= real(IX), because that only depends on the
479 instruction lengths, and those being overestimated is a given.
480
481 Clearly round_up(foo, Z) >= round_up(bar, Z) if foo >= bar, so
482 we needn't worry about that when thinking about OX.
483
484 When X >= Y, the alignment provided by Y adds no uncertainty factor
485 for branch ranges starting before X, so we can just round what we have.
486 But when X < Y, we don't know anything about the, so to speak,
487 `middle bits', so we have to assume the worst when aligning up from an
488 address mod X to one mod Y, which is Y - X. */
489
490 #ifndef LABEL_ALIGN
491 #define LABEL_ALIGN(LABEL) align_labels_log
492 #endif
493
494 #ifndef LABEL_ALIGN_MAX_SKIP
495 #define LABEL_ALIGN_MAX_SKIP align_labels_max_skip
496 #endif
497
498 #ifndef LOOP_ALIGN
499 #define LOOP_ALIGN(LABEL) align_loops_log
500 #endif
501
502 #ifndef LOOP_ALIGN_MAX_SKIP
503 #define LOOP_ALIGN_MAX_SKIP align_loops_max_skip
504 #endif
505
506 #ifndef LABEL_ALIGN_AFTER_BARRIER
507 #define LABEL_ALIGN_AFTER_BARRIER(LABEL) 0
508 #endif
509
510 #ifndef LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP
511 #define LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP 0
512 #endif
513
514 #ifndef JUMP_ALIGN
515 #define JUMP_ALIGN(LABEL) align_jumps_log
516 #endif
517
518 #ifndef JUMP_ALIGN_MAX_SKIP
519 #define JUMP_ALIGN_MAX_SKIP align_jumps_max_skip
520 #endif
521
522 #ifndef ADDR_VEC_ALIGN
523 static int
524 final_addr_vec_align (rtx addr_vec)
525 {
526 int align = GET_MODE_SIZE (GET_MODE (PATTERN (addr_vec)));
527
528 if (align > BIGGEST_ALIGNMENT / BITS_PER_UNIT)
529 align = BIGGEST_ALIGNMENT / BITS_PER_UNIT;
530 return exact_log2 (align);
531
532 }
533
534 #define ADDR_VEC_ALIGN(ADDR_VEC) final_addr_vec_align (ADDR_VEC)
535 #endif
536
537 #ifndef INSN_LENGTH_ALIGNMENT
538 #define INSN_LENGTH_ALIGNMENT(INSN) length_unit_log
539 #endif
540
541 #define INSN_SHUID(INSN) (uid_shuid[INSN_UID (INSN)])
542
543 static int min_labelno, max_labelno;
544
545 #define LABEL_TO_ALIGNMENT(LABEL) \
546 (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno].alignment)
547
548 #define LABEL_TO_MAX_SKIP(LABEL) \
549 (label_align[CODE_LABEL_NUMBER (LABEL) - min_labelno].max_skip)
550
551 /* For the benefit of port specific code do this also as a function. */
552
553 int
554 label_to_alignment (rtx label)
555 {
556 return LABEL_TO_ALIGNMENT (label);
557 }
558
559 #ifdef HAVE_ATTR_length
560 /* The differences in addresses
561 between a branch and its target might grow or shrink depending on
562 the alignment the start insn of the range (the branch for a forward
563 branch or the label for a backward branch) starts out on; if these
564 differences are used naively, they can even oscillate infinitely.
565 We therefore want to compute a 'worst case' address difference that
566 is independent of the alignment the start insn of the range end
567 up on, and that is at least as large as the actual difference.
568 The function align_fuzz calculates the amount we have to add to the
569 naively computed difference, by traversing the part of the alignment
570 chain of the start insn of the range that is in front of the end insn
571 of the range, and considering for each alignment the maximum amount
572 that it might contribute to a size increase.
573
574 For casesi tables, we also want to know worst case minimum amounts of
575 address difference, in case a machine description wants to introduce
576 some common offset that is added to all offsets in a table.
577 For this purpose, align_fuzz with a growth argument of 0 computes the
578 appropriate adjustment. */
579
580 /* Compute the maximum delta by which the difference of the addresses of
581 START and END might grow / shrink due to a different address for start
582 which changes the size of alignment insns between START and END.
583 KNOWN_ALIGN_LOG is the alignment known for START.
584 GROWTH should be ~0 if the objective is to compute potential code size
585 increase, and 0 if the objective is to compute potential shrink.
586 The return value is undefined for any other value of GROWTH. */
587
588 static int
589 align_fuzz (rtx start, rtx end, int known_align_log, unsigned int growth)
590 {
591 int uid = INSN_UID (start);
592 rtx align_label;
593 int known_align = 1 << known_align_log;
594 int end_shuid = INSN_SHUID (end);
595 int fuzz = 0;
596
597 for (align_label = uid_align[uid]; align_label; align_label = uid_align[uid])
598 {
599 int align_addr, new_align;
600
601 uid = INSN_UID (align_label);
602 align_addr = INSN_ADDRESSES (uid) - insn_lengths[uid];
603 if (uid_shuid[uid] > end_shuid)
604 break;
605 known_align_log = LABEL_TO_ALIGNMENT (align_label);
606 new_align = 1 << known_align_log;
607 if (new_align < known_align)
608 continue;
609 fuzz += (-align_addr ^ growth) & (new_align - known_align);
610 known_align = new_align;
611 }
612 return fuzz;
613 }
614
615 /* Compute a worst-case reference address of a branch so that it
616 can be safely used in the presence of aligned labels. Since the
617 size of the branch itself is unknown, the size of the branch is
618 not included in the range. I.e. for a forward branch, the reference
619 address is the end address of the branch as known from the previous
620 branch shortening pass, minus a value to account for possible size
621 increase due to alignment. For a backward branch, it is the start
622 address of the branch as known from the current pass, plus a value
623 to account for possible size increase due to alignment.
624 NB.: Therefore, the maximum offset allowed for backward branches needs
625 to exclude the branch size. */
626
627 int
628 insn_current_reference_address (rtx branch)
629 {
630 rtx dest, seq;
631 int seq_uid;
632
633 if (! INSN_ADDRESSES_SET_P ())
634 return 0;
635
636 seq = NEXT_INSN (PREV_INSN (branch));
637 seq_uid = INSN_UID (seq);
638 if (!JUMP_P (branch))
639 /* This can happen for example on the PA; the objective is to know the
640 offset to address something in front of the start of the function.
641 Thus, we can treat it like a backward branch.
642 We assume here that FUNCTION_BOUNDARY / BITS_PER_UNIT is larger than
643 any alignment we'd encounter, so we skip the call to align_fuzz. */
644 return insn_current_address;
645 dest = JUMP_LABEL (branch);
646
647 /* BRANCH has no proper alignment chain set, so use SEQ.
648 BRANCH also has no INSN_SHUID. */
649 if (INSN_SHUID (seq) < INSN_SHUID (dest))
650 {
651 /* Forward branch. */
652 return (insn_last_address + insn_lengths[seq_uid]
653 - align_fuzz (seq, dest, length_unit_log, ~0));
654 }
655 else
656 {
657 /* Backward branch. */
658 return (insn_current_address
659 + align_fuzz (dest, seq, length_unit_log, ~0));
660 }
661 }
662 #endif /* HAVE_ATTR_length */
663
664 /* Compute branch alignments based on frequency information in the
665 CFG. */
666
667 unsigned int
668 compute_alignments (void)
669 {
670 int log, max_skip, max_log;
671 basic_block bb;
672 int freq_max = 0;
673 int freq_threshold = 0;
674
675 if (label_align)
676 {
677 free (label_align);
678 label_align = 0;
679 }
680
681 max_labelno = max_label_num ();
682 min_labelno = get_first_label_num ();
683 label_align = XCNEWVEC (struct label_alignment, max_labelno - min_labelno + 1);
684
685 /* If not optimizing or optimizing for size, don't assign any alignments. */
686 if (! optimize || optimize_function_for_size_p (cfun))
687 return 0;
688
689 if (dump_file)
690 {
691 dump_flow_info (dump_file, TDF_DETAILS);
692 flow_loops_dump (dump_file, NULL, 1);
693 loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
694 }
695 FOR_EACH_BB (bb)
696 if (bb->frequency > freq_max)
697 freq_max = bb->frequency;
698 freq_threshold = freq_max / PARAM_VALUE (PARAM_ALIGN_THRESHOLD);
699
700 if (dump_file)
701 fprintf(dump_file, "freq_max: %i\n",freq_max);
702 FOR_EACH_BB (bb)
703 {
704 rtx label = BB_HEAD (bb);
705 int fallthru_frequency = 0, branch_frequency = 0, has_fallthru = 0;
706 edge e;
707 edge_iterator ei;
708
709 if (!LABEL_P (label)
710 || optimize_bb_for_size_p (bb))
711 {
712 if (dump_file)
713 fprintf(dump_file, "BB %4i freq %4i loop %2i loop_depth %2i skipped.\n",
714 bb->index, bb->frequency, bb->loop_father->num, bb->loop_depth);
715 continue;
716 }
717 max_log = LABEL_ALIGN (label);
718 max_skip = LABEL_ALIGN_MAX_SKIP;
719
720 FOR_EACH_EDGE (e, ei, bb->preds)
721 {
722 if (e->flags & EDGE_FALLTHRU)
723 has_fallthru = 1, fallthru_frequency += EDGE_FREQUENCY (e);
724 else
725 branch_frequency += EDGE_FREQUENCY (e);
726 }
727 if (dump_file)
728 {
729 fprintf(dump_file, "BB %4i freq %4i loop %2i loop_depth %2i fall %4i branch %4i",
730 bb->index, bb->frequency, bb->loop_father->num,
731 bb->loop_depth,
732 fallthru_frequency, branch_frequency);
733 if (!bb->loop_father->inner && bb->loop_father->num)
734 fprintf (dump_file, " inner_loop");
735 if (bb->loop_father->header == bb)
736 fprintf (dump_file, " loop_header");
737 fprintf (dump_file, "\n");
738 }
739
740 /* There are two purposes to align block with no fallthru incoming edge:
741 1) to avoid fetch stalls when branch destination is near cache boundary
742 2) to improve cache efficiency in case the previous block is not executed
743 (so it does not need to be in the cache).
744
745 We to catch first case, we align frequently executed blocks.
746 To catch the second, we align blocks that are executed more frequently
747 than the predecessor and the predecessor is likely to not be executed
748 when function is called. */
749
750 if (!has_fallthru
751 && (branch_frequency > freq_threshold
752 || (bb->frequency > bb->prev_bb->frequency * 10
753 && (bb->prev_bb->frequency
754 <= ENTRY_BLOCK_PTR->frequency / 2))))
755 {
756 log = JUMP_ALIGN (label);
757 if (dump_file)
758 fprintf(dump_file, " jump alignment added.\n");
759 if (max_log < log)
760 {
761 max_log = log;
762 max_skip = JUMP_ALIGN_MAX_SKIP;
763 }
764 }
765 /* In case block is frequent and reached mostly by non-fallthru edge,
766 align it. It is most likely a first block of loop. */
767 if (has_fallthru
768 && optimize_bb_for_speed_p (bb)
769 && branch_frequency + fallthru_frequency > freq_threshold
770 && (branch_frequency
771 > fallthru_frequency * PARAM_VALUE (PARAM_ALIGN_LOOP_ITERATIONS)))
772 {
773 log = LOOP_ALIGN (label);
774 if (dump_file)
775 fprintf(dump_file, " internal loop alignment added.\n");
776 if (max_log < log)
777 {
778 max_log = log;
779 max_skip = LOOP_ALIGN_MAX_SKIP;
780 }
781 }
782 LABEL_TO_ALIGNMENT (label) = max_log;
783 LABEL_TO_MAX_SKIP (label) = max_skip;
784 }
785
786 if (dump_file)
787 {
788 loop_optimizer_finalize ();
789 free_dominance_info (CDI_DOMINATORS);
790 }
791 return 0;
792 }
793
794 struct rtl_opt_pass pass_compute_alignments =
795 {
796 {
797 RTL_PASS,
798 "alignments", /* name */
799 NULL, /* gate */
800 compute_alignments, /* execute */
801 NULL, /* sub */
802 NULL, /* next */
803 0, /* static_pass_number */
804 0, /* tv_id */
805 0, /* properties_required */
806 0, /* properties_provided */
807 0, /* properties_destroyed */
808 0, /* todo_flags_start */
809 TODO_dump_func | TODO_verify_rtl_sharing
810 | TODO_ggc_collect /* todo_flags_finish */
811 }
812 };
813
814
815 /* Make a pass over all insns and compute their actual lengths by shortening
816 any branches of variable length if possible. */
817
818 /* shorten_branches might be called multiple times: for example, the SH
819 port splits out-of-range conditional branches in MACHINE_DEPENDENT_REORG.
820 In order to do this, it needs proper length information, which it obtains
821 by calling shorten_branches. This cannot be collapsed with
822 shorten_branches itself into a single pass unless we also want to integrate
823 reorg.c, since the branch splitting exposes new instructions with delay
824 slots. */
825
826 void
827 shorten_branches (rtx first ATTRIBUTE_UNUSED)
828 {
829 rtx insn;
830 int max_uid;
831 int i;
832 int max_log;
833 int max_skip;
834 #ifdef HAVE_ATTR_length
835 #define MAX_CODE_ALIGN 16
836 rtx seq;
837 int something_changed = 1;
838 char *varying_length;
839 rtx body;
840 int uid;
841 rtx align_tab[MAX_CODE_ALIGN];
842
843 #endif
844
845 /* Compute maximum UID and allocate label_align / uid_shuid. */
846 max_uid = get_max_uid ();
847
848 /* Free uid_shuid before reallocating it. */
849 free (uid_shuid);
850
851 uid_shuid = XNEWVEC (int, max_uid);
852
853 if (max_labelno != max_label_num ())
854 {
855 int old = max_labelno;
856 int n_labels;
857 int n_old_labels;
858
859 max_labelno = max_label_num ();
860
861 n_labels = max_labelno - min_labelno + 1;
862 n_old_labels = old - min_labelno + 1;
863
864 label_align = XRESIZEVEC (struct label_alignment, label_align, n_labels);
865
866 /* Range of labels grows monotonically in the function. Failing here
867 means that the initialization of array got lost. */
868 gcc_assert (n_old_labels <= n_labels);
869
870 memset (label_align + n_old_labels, 0,
871 (n_labels - n_old_labels) * sizeof (struct label_alignment));
872 }
873
874 /* Initialize label_align and set up uid_shuid to be strictly
875 monotonically rising with insn order. */
876 /* We use max_log here to keep track of the maximum alignment we want to
877 impose on the next CODE_LABEL (or the current one if we are processing
878 the CODE_LABEL itself). */
879
880 max_log = 0;
881 max_skip = 0;
882
883 for (insn = get_insns (), i = 1; insn; insn = NEXT_INSN (insn))
884 {
885 int log;
886
887 INSN_SHUID (insn) = i++;
888 if (INSN_P (insn))
889 continue;
890
891 if (LABEL_P (insn))
892 {
893 rtx next;
894
895 /* Merge in alignments computed by compute_alignments. */
896 log = LABEL_TO_ALIGNMENT (insn);
897 if (max_log < log)
898 {
899 max_log = log;
900 max_skip = LABEL_TO_MAX_SKIP (insn);
901 }
902
903 log = LABEL_ALIGN (insn);
904 if (max_log < log)
905 {
906 max_log = log;
907 max_skip = LABEL_ALIGN_MAX_SKIP;
908 }
909 next = next_nonnote_insn (insn);
910 /* ADDR_VECs only take room if read-only data goes into the text
911 section. */
912 if (JUMP_TABLES_IN_TEXT_SECTION
913 || readonly_data_section == text_section)
914 if (next && JUMP_P (next))
915 {
916 rtx nextbody = PATTERN (next);
917 if (GET_CODE (nextbody) == ADDR_VEC
918 || GET_CODE (nextbody) == ADDR_DIFF_VEC)
919 {
920 log = ADDR_VEC_ALIGN (next);
921 if (max_log < log)
922 {
923 max_log = log;
924 max_skip = LABEL_ALIGN_MAX_SKIP;
925 }
926 }
927 }
928 LABEL_TO_ALIGNMENT (insn) = max_log;
929 LABEL_TO_MAX_SKIP (insn) = max_skip;
930 max_log = 0;
931 max_skip = 0;
932 }
933 else if (BARRIER_P (insn))
934 {
935 rtx label;
936
937 for (label = insn; label && ! INSN_P (label);
938 label = NEXT_INSN (label))
939 if (LABEL_P (label))
940 {
941 log = LABEL_ALIGN_AFTER_BARRIER (insn);
942 if (max_log < log)
943 {
944 max_log = log;
945 max_skip = LABEL_ALIGN_AFTER_BARRIER_MAX_SKIP;
946 }
947 break;
948 }
949 }
950 }
951 #ifdef HAVE_ATTR_length
952
953 /* Allocate the rest of the arrays. */
954 insn_lengths = XNEWVEC (int, max_uid);
955 insn_lengths_max_uid = max_uid;
956 /* Syntax errors can lead to labels being outside of the main insn stream.
957 Initialize insn_addresses, so that we get reproducible results. */
958 INSN_ADDRESSES_ALLOC (max_uid);
959
960 varying_length = XCNEWVEC (char, max_uid);
961
962 /* Initialize uid_align. We scan instructions
963 from end to start, and keep in align_tab[n] the last seen insn
964 that does an alignment of at least n+1, i.e. the successor
965 in the alignment chain for an insn that does / has a known
966 alignment of n. */
967 uid_align = XCNEWVEC (rtx, max_uid);
968
969 for (i = MAX_CODE_ALIGN; --i >= 0;)
970 align_tab[i] = NULL_RTX;
971 seq = get_last_insn ();
972 for (; seq; seq = PREV_INSN (seq))
973 {
974 int uid = INSN_UID (seq);
975 int log;
976 log = (LABEL_P (seq) ? LABEL_TO_ALIGNMENT (seq) : 0);
977 uid_align[uid] = align_tab[0];
978 if (log)
979 {
980 /* Found an alignment label. */
981 uid_align[uid] = align_tab[log];
982 for (i = log - 1; i >= 0; i--)
983 align_tab[i] = seq;
984 }
985 }
986 #ifdef CASE_VECTOR_SHORTEN_MODE
987 if (optimize)
988 {
989 /* Look for ADDR_DIFF_VECs, and initialize their minimum and maximum
990 label fields. */
991
992 int min_shuid = INSN_SHUID (get_insns ()) - 1;
993 int max_shuid = INSN_SHUID (get_last_insn ()) + 1;
994 int rel;
995
996 for (insn = first; insn != 0; insn = NEXT_INSN (insn))
997 {
998 rtx min_lab = NULL_RTX, max_lab = NULL_RTX, pat;
999 int len, i, min, max, insn_shuid;
1000 int min_align;
1001 addr_diff_vec_flags flags;
1002
1003 if (!JUMP_P (insn)
1004 || GET_CODE (PATTERN (insn)) != ADDR_DIFF_VEC)
1005 continue;
1006 pat = PATTERN (insn);
1007 len = XVECLEN (pat, 1);
1008 gcc_assert (len > 0);
1009 min_align = MAX_CODE_ALIGN;
1010 for (min = max_shuid, max = min_shuid, i = len - 1; i >= 0; i--)
1011 {
1012 rtx lab = XEXP (XVECEXP (pat, 1, i), 0);
1013 int shuid = INSN_SHUID (lab);
1014 if (shuid < min)
1015 {
1016 min = shuid;
1017 min_lab = lab;
1018 }
1019 if (shuid > max)
1020 {
1021 max = shuid;
1022 max_lab = lab;
1023 }
1024 if (min_align > LABEL_TO_ALIGNMENT (lab))
1025 min_align = LABEL_TO_ALIGNMENT (lab);
1026 }
1027 XEXP (pat, 2) = gen_rtx_LABEL_REF (Pmode, min_lab);
1028 XEXP (pat, 3) = gen_rtx_LABEL_REF (Pmode, max_lab);
1029 insn_shuid = INSN_SHUID (insn);
1030 rel = INSN_SHUID (XEXP (XEXP (pat, 0), 0));
1031 memset (&flags, 0, sizeof (flags));
1032 flags.min_align = min_align;
1033 flags.base_after_vec = rel > insn_shuid;
1034 flags.min_after_vec = min > insn_shuid;
1035 flags.max_after_vec = max > insn_shuid;
1036 flags.min_after_base = min > rel;
1037 flags.max_after_base = max > rel;
1038 ADDR_DIFF_VEC_FLAGS (pat) = flags;
1039 }
1040 }
1041 #endif /* CASE_VECTOR_SHORTEN_MODE */
1042
1043 /* Compute initial lengths, addresses, and varying flags for each insn. */
1044 for (insn_current_address = 0, insn = first;
1045 insn != 0;
1046 insn_current_address += insn_lengths[uid], insn = NEXT_INSN (insn))
1047 {
1048 uid = INSN_UID (insn);
1049
1050 insn_lengths[uid] = 0;
1051
1052 if (LABEL_P (insn))
1053 {
1054 int log = LABEL_TO_ALIGNMENT (insn);
1055 if (log)
1056 {
1057 int align = 1 << log;
1058 int new_address = (insn_current_address + align - 1) & -align;
1059 insn_lengths[uid] = new_address - insn_current_address;
1060 }
1061 }
1062
1063 INSN_ADDRESSES (uid) = insn_current_address + insn_lengths[uid];
1064
1065 if (NOTE_P (insn) || BARRIER_P (insn)
1066 || LABEL_P (insn))
1067 continue;
1068 if (INSN_DELETED_P (insn))
1069 continue;
1070
1071 body = PATTERN (insn);
1072 if (GET_CODE (body) == ADDR_VEC || GET_CODE (body) == ADDR_DIFF_VEC)
1073 {
1074 /* This only takes room if read-only data goes into the text
1075 section. */
1076 if (JUMP_TABLES_IN_TEXT_SECTION
1077 || readonly_data_section == text_section)
1078 insn_lengths[uid] = (XVECLEN (body,
1079 GET_CODE (body) == ADDR_DIFF_VEC)
1080 * GET_MODE_SIZE (GET_MODE (body)));
1081 /* Alignment is handled by ADDR_VEC_ALIGN. */
1082 }
1083 else if (GET_CODE (body) == ASM_INPUT || asm_noperands (body) >= 0)
1084 insn_lengths[uid] = asm_insn_count (body) * insn_default_length (insn);
1085 else if (GET_CODE (body) == SEQUENCE)
1086 {
1087 int i;
1088 int const_delay_slots;
1089 #ifdef DELAY_SLOTS
1090 const_delay_slots = const_num_delay_slots (XVECEXP (body, 0, 0));
1091 #else
1092 const_delay_slots = 0;
1093 #endif
1094 /* Inside a delay slot sequence, we do not do any branch shortening
1095 if the shortening could change the number of delay slots
1096 of the branch. */
1097 for (i = 0; i < XVECLEN (body, 0); i++)
1098 {
1099 rtx inner_insn = XVECEXP (body, 0, i);
1100 int inner_uid = INSN_UID (inner_insn);
1101 int inner_length;
1102
1103 if (GET_CODE (body) == ASM_INPUT
1104 || asm_noperands (PATTERN (XVECEXP (body, 0, i))) >= 0)
1105 inner_length = (asm_insn_count (PATTERN (inner_insn))
1106 * insn_default_length (inner_insn));
1107 else
1108 inner_length = insn_default_length (inner_insn);
1109
1110 insn_lengths[inner_uid] = inner_length;
1111 if (const_delay_slots)
1112 {
1113 if ((varying_length[inner_uid]
1114 = insn_variable_length_p (inner_insn)) != 0)
1115 varying_length[uid] = 1;
1116 INSN_ADDRESSES (inner_uid) = (insn_current_address
1117 + insn_lengths[uid]);
1118 }
1119 else
1120 varying_length[inner_uid] = 0;
1121 insn_lengths[uid] += inner_length;
1122 }
1123 }
1124 else if (GET_CODE (body) != USE && GET_CODE (body) != CLOBBER)
1125 {
1126 insn_lengths[uid] = insn_default_length (insn);
1127 varying_length[uid] = insn_variable_length_p (insn);
1128 }
1129
1130 /* If needed, do any adjustment. */
1131 #ifdef ADJUST_INSN_LENGTH
1132 ADJUST_INSN_LENGTH (insn, insn_lengths[uid]);
1133 if (insn_lengths[uid] < 0)
1134 fatal_insn ("negative insn length", insn);
1135 #endif
1136 }
1137
1138 /* Now loop over all the insns finding varying length insns. For each,
1139 get the current insn length. If it has changed, reflect the change.
1140 When nothing changes for a full pass, we are done. */
1141
1142 while (something_changed)
1143 {
1144 something_changed = 0;
1145 insn_current_align = MAX_CODE_ALIGN - 1;
1146 for (insn_current_address = 0, insn = first;
1147 insn != 0;
1148 insn = NEXT_INSN (insn))
1149 {
1150 int new_length;
1151 #ifdef ADJUST_INSN_LENGTH
1152 int tmp_length;
1153 #endif
1154 int length_align;
1155
1156 uid = INSN_UID (insn);
1157
1158 if (LABEL_P (insn))
1159 {
1160 int log = LABEL_TO_ALIGNMENT (insn);
1161 if (log > insn_current_align)
1162 {
1163 int align = 1 << log;
1164 int new_address= (insn_current_address + align - 1) & -align;
1165 insn_lengths[uid] = new_address - insn_current_address;
1166 insn_current_align = log;
1167 insn_current_address = new_address;
1168 }
1169 else
1170 insn_lengths[uid] = 0;
1171 INSN_ADDRESSES (uid) = insn_current_address;
1172 continue;
1173 }
1174
1175 length_align = INSN_LENGTH_ALIGNMENT (insn);
1176 if (length_align < insn_current_align)
1177 insn_current_align = length_align;
1178
1179 insn_last_address = INSN_ADDRESSES (uid);
1180 INSN_ADDRESSES (uid) = insn_current_address;
1181
1182 #ifdef CASE_VECTOR_SHORTEN_MODE
1183 if (optimize && JUMP_P (insn)
1184 && GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
1185 {
1186 rtx body = PATTERN (insn);
1187 int old_length = insn_lengths[uid];
1188 rtx rel_lab = XEXP (XEXP (body, 0), 0);
1189 rtx min_lab = XEXP (XEXP (body, 2), 0);
1190 rtx max_lab = XEXP (XEXP (body, 3), 0);
1191 int rel_addr = INSN_ADDRESSES (INSN_UID (rel_lab));
1192 int min_addr = INSN_ADDRESSES (INSN_UID (min_lab));
1193 int max_addr = INSN_ADDRESSES (INSN_UID (max_lab));
1194 rtx prev;
1195 int rel_align = 0;
1196 addr_diff_vec_flags flags;
1197
1198 /* Avoid automatic aggregate initialization. */
1199 flags = ADDR_DIFF_VEC_FLAGS (body);
1200
1201 /* Try to find a known alignment for rel_lab. */
1202 for (prev = rel_lab;
1203 prev
1204 && ! insn_lengths[INSN_UID (prev)]
1205 && ! (varying_length[INSN_UID (prev)] & 1);
1206 prev = PREV_INSN (prev))
1207 if (varying_length[INSN_UID (prev)] & 2)
1208 {
1209 rel_align = LABEL_TO_ALIGNMENT (prev);
1210 break;
1211 }
1212
1213 /* See the comment on addr_diff_vec_flags in rtl.h for the
1214 meaning of the flags values. base: REL_LAB vec: INSN */
1215 /* Anything after INSN has still addresses from the last
1216 pass; adjust these so that they reflect our current
1217 estimate for this pass. */
1218 if (flags.base_after_vec)
1219 rel_addr += insn_current_address - insn_last_address;
1220 if (flags.min_after_vec)
1221 min_addr += insn_current_address - insn_last_address;
1222 if (flags.max_after_vec)
1223 max_addr += insn_current_address - insn_last_address;
1224 /* We want to know the worst case, i.e. lowest possible value
1225 for the offset of MIN_LAB. If MIN_LAB is after REL_LAB,
1226 its offset is positive, and we have to be wary of code shrink;
1227 otherwise, it is negative, and we have to be vary of code
1228 size increase. */
1229 if (flags.min_after_base)
1230 {
1231 /* If INSN is between REL_LAB and MIN_LAB, the size
1232 changes we are about to make can change the alignment
1233 within the observed offset, therefore we have to break
1234 it up into two parts that are independent. */
1235 if (! flags.base_after_vec && flags.min_after_vec)
1236 {
1237 min_addr -= align_fuzz (rel_lab, insn, rel_align, 0);
1238 min_addr -= align_fuzz (insn, min_lab, 0, 0);
1239 }
1240 else
1241 min_addr -= align_fuzz (rel_lab, min_lab, rel_align, 0);
1242 }
1243 else
1244 {
1245 if (flags.base_after_vec && ! flags.min_after_vec)
1246 {
1247 min_addr -= align_fuzz (min_lab, insn, 0, ~0);
1248 min_addr -= align_fuzz (insn, rel_lab, 0, ~0);
1249 }
1250 else
1251 min_addr -= align_fuzz (min_lab, rel_lab, 0, ~0);
1252 }
1253 /* Likewise, determine the highest lowest possible value
1254 for the offset of MAX_LAB. */
1255 if (flags.max_after_base)
1256 {
1257 if (! flags.base_after_vec && flags.max_after_vec)
1258 {
1259 max_addr += align_fuzz (rel_lab, insn, rel_align, ~0);
1260 max_addr += align_fuzz (insn, max_lab, 0, ~0);
1261 }
1262 else
1263 max_addr += align_fuzz (rel_lab, max_lab, rel_align, ~0);
1264 }
1265 else
1266 {
1267 if (flags.base_after_vec && ! flags.max_after_vec)
1268 {
1269 max_addr += align_fuzz (max_lab, insn, 0, 0);
1270 max_addr += align_fuzz (insn, rel_lab, 0, 0);
1271 }
1272 else
1273 max_addr += align_fuzz (max_lab, rel_lab, 0, 0);
1274 }
1275 PUT_MODE (body, CASE_VECTOR_SHORTEN_MODE (min_addr - rel_addr,
1276 max_addr - rel_addr,
1277 body));
1278 if (JUMP_TABLES_IN_TEXT_SECTION
1279 || readonly_data_section == text_section)
1280 {
1281 insn_lengths[uid]
1282 = (XVECLEN (body, 1) * GET_MODE_SIZE (GET_MODE (body)));
1283 insn_current_address += insn_lengths[uid];
1284 if (insn_lengths[uid] != old_length)
1285 something_changed = 1;
1286 }
1287
1288 continue;
1289 }
1290 #endif /* CASE_VECTOR_SHORTEN_MODE */
1291
1292 if (! (varying_length[uid]))
1293 {
1294 if (NONJUMP_INSN_P (insn)
1295 && GET_CODE (PATTERN (insn)) == SEQUENCE)
1296 {
1297 int i;
1298
1299 body = PATTERN (insn);
1300 for (i = 0; i < XVECLEN (body, 0); i++)
1301 {
1302 rtx inner_insn = XVECEXP (body, 0, i);
1303 int inner_uid = INSN_UID (inner_insn);
1304
1305 INSN_ADDRESSES (inner_uid) = insn_current_address;
1306
1307 insn_current_address += insn_lengths[inner_uid];
1308 }
1309 }
1310 else
1311 insn_current_address += insn_lengths[uid];
1312
1313 continue;
1314 }
1315
1316 if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
1317 {
1318 int i;
1319
1320 body = PATTERN (insn);
1321 new_length = 0;
1322 for (i = 0; i < XVECLEN (body, 0); i++)
1323 {
1324 rtx inner_insn = XVECEXP (body, 0, i);
1325 int inner_uid = INSN_UID (inner_insn);
1326 int inner_length;
1327
1328 INSN_ADDRESSES (inner_uid) = insn_current_address;
1329
1330 /* insn_current_length returns 0 for insns with a
1331 non-varying length. */
1332 if (! varying_length[inner_uid])
1333 inner_length = insn_lengths[inner_uid];
1334 else
1335 inner_length = insn_current_length (inner_insn);
1336
1337 if (inner_length != insn_lengths[inner_uid])
1338 {
1339 insn_lengths[inner_uid] = inner_length;
1340 something_changed = 1;
1341 }
1342 insn_current_address += insn_lengths[inner_uid];
1343 new_length += inner_length;
1344 }
1345 }
1346 else
1347 {
1348 new_length = insn_current_length (insn);
1349 insn_current_address += new_length;
1350 }
1351
1352 #ifdef ADJUST_INSN_LENGTH
1353 /* If needed, do any adjustment. */
1354 tmp_length = new_length;
1355 ADJUST_INSN_LENGTH (insn, new_length);
1356 insn_current_address += (new_length - tmp_length);
1357 #endif
1358
1359 if (new_length != insn_lengths[uid])
1360 {
1361 insn_lengths[uid] = new_length;
1362 something_changed = 1;
1363 }
1364 }
1365 /* For a non-optimizing compile, do only a single pass. */
1366 if (!optimize)
1367 break;
1368 }
1369
1370 free (varying_length);
1371
1372 #endif /* HAVE_ATTR_length */
1373 }
1374
1375 #ifdef HAVE_ATTR_length
1376 /* Given the body of an INSN known to be generated by an ASM statement, return
1377 the number of machine instructions likely to be generated for this insn.
1378 This is used to compute its length. */
1379
1380 static int
1381 asm_insn_count (rtx body)
1382 {
1383 const char *templ;
1384 int count = 1;
1385
1386 if (GET_CODE (body) == ASM_INPUT)
1387 templ = XSTR (body, 0);
1388 else
1389 templ = decode_asm_operands (body, NULL, NULL, NULL, NULL, NULL);
1390
1391 if (!*templ)
1392 return 0;
1393
1394 for (; *templ; templ++)
1395 if (IS_ASM_LOGICAL_LINE_SEPARATOR (*templ, templ)
1396 || *templ == '\n')
1397 count++;
1398
1399 return count;
1400 }
1401 #endif
1402
1403 /* ??? This is probably the wrong place for these. */
1404 /* Structure recording the mapping from source file and directory
1405 names at compile time to those to be embedded in debug
1406 information. */
1407 typedef struct debug_prefix_map
1408 {
1409 const char *old_prefix;
1410 const char *new_prefix;
1411 size_t old_len;
1412 size_t new_len;
1413 struct debug_prefix_map *next;
1414 } debug_prefix_map;
1415
1416 /* Linked list of such structures. */
1417 debug_prefix_map *debug_prefix_maps;
1418
1419
1420 /* Record a debug file prefix mapping. ARG is the argument to
1421 -fdebug-prefix-map and must be of the form OLD=NEW. */
1422
1423 void
1424 add_debug_prefix_map (const char *arg)
1425 {
1426 debug_prefix_map *map;
1427 const char *p;
1428
1429 p = strchr (arg, '=');
1430 if (!p)
1431 {
1432 error ("invalid argument %qs to -fdebug-prefix-map", arg);
1433 return;
1434 }
1435 map = XNEW (debug_prefix_map);
1436 map->old_prefix = ggc_alloc_string (arg, p - arg);
1437 map->old_len = p - arg;
1438 p++;
1439 map->new_prefix = ggc_strdup (p);
1440 map->new_len = strlen (p);
1441 map->next = debug_prefix_maps;
1442 debug_prefix_maps = map;
1443 }
1444
1445 /* Perform user-specified mapping of debug filename prefixes. Return
1446 the new name corresponding to FILENAME. */
1447
1448 const char *
1449 remap_debug_filename (const char *filename)
1450 {
1451 debug_prefix_map *map;
1452 char *s;
1453 const char *name;
1454 size_t name_len;
1455
1456 for (map = debug_prefix_maps; map; map = map->next)
1457 if (strncmp (filename, map->old_prefix, map->old_len) == 0)
1458 break;
1459 if (!map)
1460 return filename;
1461 name = filename + map->old_len;
1462 name_len = strlen (name) + 1;
1463 s = (char *) alloca (name_len + map->new_len);
1464 memcpy (s, map->new_prefix, map->new_len);
1465 memcpy (s + map->new_len, name, name_len);
1466 return ggc_strdup (s);
1467 }
1468
1469 /* Output assembler code for the start of a function,
1470 and initialize some of the variables in this file
1471 for the new function. The label for the function and associated
1472 assembler pseudo-ops have already been output in `assemble_start_function'.
1473
1474 FIRST is the first insn of the rtl for the function being compiled.
1475 FILE is the file to write assembler code to.
1476 OPTIMIZE is nonzero if we should eliminate redundant
1477 test and compare insns. */
1478
1479 void
1480 final_start_function (rtx first ATTRIBUTE_UNUSED, FILE *file,
1481 int optimize ATTRIBUTE_UNUSED)
1482 {
1483 block_depth = 0;
1484
1485 this_is_asm_operands = 0;
1486
1487 last_filename = locator_file (prologue_locator);
1488 last_linenum = locator_line (prologue_locator);
1489
1490 high_block_linenum = high_function_linenum = last_linenum;
1491
1492 (*debug_hooks->begin_prologue) (last_linenum, last_filename);
1493
1494 #if defined (DWARF2_UNWIND_INFO) || defined (TARGET_UNWIND_INFO)
1495 if (write_symbols != DWARF2_DEBUG && write_symbols != VMS_AND_DWARF2_DEBUG)
1496 dwarf2out_begin_prologue (0, NULL);
1497 #endif
1498
1499 #ifdef LEAF_REG_REMAP
1500 if (current_function_uses_only_leaf_regs)
1501 leaf_renumber_regs (first);
1502 #endif
1503
1504 /* The Sun386i and perhaps other machines don't work right
1505 if the profiling code comes after the prologue. */
1506 #ifdef PROFILE_BEFORE_PROLOGUE
1507 if (crtl->profile)
1508 profile_function (file);
1509 #endif /* PROFILE_BEFORE_PROLOGUE */
1510
1511 #if defined (DWARF2_UNWIND_INFO) && defined (HAVE_prologue)
1512 if (dwarf2out_do_frame ())
1513 dwarf2out_frame_debug (NULL_RTX, false);
1514 #endif
1515
1516 /* If debugging, assign block numbers to all of the blocks in this
1517 function. */
1518 if (write_symbols)
1519 {
1520 reemit_insn_block_notes ();
1521 number_blocks (current_function_decl);
1522 /* We never actually put out begin/end notes for the top-level
1523 block in the function. But, conceptually, that block is
1524 always needed. */
1525 TREE_ASM_WRITTEN (DECL_INITIAL (current_function_decl)) = 1;
1526 }
1527
1528 if (warn_frame_larger_than
1529 && get_frame_size () > frame_larger_than_size)
1530 {
1531 /* Issue a warning */
1532 warning (OPT_Wframe_larger_than_,
1533 "the frame size of %wd bytes is larger than %wd bytes",
1534 get_frame_size (), frame_larger_than_size);
1535 }
1536
1537 /* First output the function prologue: code to set up the stack frame. */
1538 targetm.asm_out.function_prologue (file, get_frame_size ());
1539
1540 /* If the machine represents the prologue as RTL, the profiling code must
1541 be emitted when NOTE_INSN_PROLOGUE_END is scanned. */
1542 #ifdef HAVE_prologue
1543 if (! HAVE_prologue)
1544 #endif
1545 profile_after_prologue (file);
1546 }
1547
1548 static void
1549 profile_after_prologue (FILE *file ATTRIBUTE_UNUSED)
1550 {
1551 #ifndef PROFILE_BEFORE_PROLOGUE
1552 if (crtl->profile)
1553 profile_function (file);
1554 #endif /* not PROFILE_BEFORE_PROLOGUE */
1555 }
1556
1557 static void
1558 profile_function (FILE *file ATTRIBUTE_UNUSED)
1559 {
1560 #ifndef NO_PROFILE_COUNTERS
1561 # define NO_PROFILE_COUNTERS 0
1562 #endif
1563 #if defined(ASM_OUTPUT_REG_PUSH)
1564 int sval = cfun->returns_struct;
1565 rtx svrtx = targetm.calls.struct_value_rtx (TREE_TYPE (current_function_decl), 1);
1566 #if defined(STATIC_CHAIN_INCOMING_REGNUM) || defined(STATIC_CHAIN_REGNUM)
1567 int cxt = cfun->static_chain_decl != NULL;
1568 #endif
1569 #endif /* ASM_OUTPUT_REG_PUSH */
1570
1571 if (! NO_PROFILE_COUNTERS)
1572 {
1573 int align = MIN (BIGGEST_ALIGNMENT, LONG_TYPE_SIZE);
1574 switch_to_section (data_section);
1575 ASM_OUTPUT_ALIGN (file, floor_log2 (align / BITS_PER_UNIT));
1576 targetm.asm_out.internal_label (file, "LP", current_function_funcdef_no);
1577 assemble_integer (const0_rtx, LONG_TYPE_SIZE / BITS_PER_UNIT, align, 1);
1578 }
1579
1580 switch_to_section (current_function_section ());
1581
1582 #if defined(ASM_OUTPUT_REG_PUSH)
1583 if (sval && svrtx != NULL_RTX && REG_P (svrtx))
1584 {
1585 ASM_OUTPUT_REG_PUSH (file, REGNO (svrtx));
1586 }
1587 #endif
1588
1589 #if defined(STATIC_CHAIN_INCOMING_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1590 if (cxt)
1591 ASM_OUTPUT_REG_PUSH (file, STATIC_CHAIN_INCOMING_REGNUM);
1592 #else
1593 #if defined(STATIC_CHAIN_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1594 if (cxt)
1595 {
1596 ASM_OUTPUT_REG_PUSH (file, STATIC_CHAIN_REGNUM);
1597 }
1598 #endif
1599 #endif
1600
1601 FUNCTION_PROFILER (file, current_function_funcdef_no);
1602
1603 #if defined(STATIC_CHAIN_INCOMING_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1604 if (cxt)
1605 ASM_OUTPUT_REG_POP (file, STATIC_CHAIN_INCOMING_REGNUM);
1606 #else
1607 #if defined(STATIC_CHAIN_REGNUM) && defined(ASM_OUTPUT_REG_PUSH)
1608 if (cxt)
1609 {
1610 ASM_OUTPUT_REG_POP (file, STATIC_CHAIN_REGNUM);
1611 }
1612 #endif
1613 #endif
1614
1615 #if defined(ASM_OUTPUT_REG_PUSH)
1616 if (sval && svrtx != NULL_RTX && REG_P (svrtx))
1617 {
1618 ASM_OUTPUT_REG_POP (file, REGNO (svrtx));
1619 }
1620 #endif
1621 }
1622
1623 /* Output assembler code for the end of a function.
1624 For clarity, args are same as those of `final_start_function'
1625 even though not all of them are needed. */
1626
1627 void
1628 final_end_function (void)
1629 {
1630 app_disable ();
1631
1632 (*debug_hooks->end_function) (high_function_linenum);
1633
1634 /* Finally, output the function epilogue:
1635 code to restore the stack frame and return to the caller. */
1636 targetm.asm_out.function_epilogue (asm_out_file, get_frame_size ());
1637
1638 /* And debug output. */
1639 (*debug_hooks->end_epilogue) (last_linenum, last_filename);
1640
1641 #if defined (DWARF2_UNWIND_INFO)
1642 if (write_symbols != DWARF2_DEBUG && write_symbols != VMS_AND_DWARF2_DEBUG
1643 && dwarf2out_do_frame ())
1644 dwarf2out_end_epilogue (last_linenum, last_filename);
1645 #endif
1646 }
1647
1648 /* Output assembler code for some insns: all or part of a function.
1649 For description of args, see `final_start_function', above. */
1650
1651 void
1652 final (rtx first, FILE *file, int optimize)
1653 {
1654 rtx insn;
1655 int max_uid = 0;
1656 int seen = 0;
1657
1658 last_ignored_compare = 0;
1659
1660 for (insn = first; insn; insn = NEXT_INSN (insn))
1661 {
1662 if (INSN_UID (insn) > max_uid) /* Find largest UID. */
1663 max_uid = INSN_UID (insn);
1664 #ifdef HAVE_cc0
1665 /* If CC tracking across branches is enabled, record the insn which
1666 jumps to each branch only reached from one place. */
1667 if (optimize && JUMP_P (insn))
1668 {
1669 rtx lab = JUMP_LABEL (insn);
1670 if (lab && LABEL_NUSES (lab) == 1)
1671 {
1672 LABEL_REFS (lab) = insn;
1673 }
1674 }
1675 #endif
1676 }
1677
1678 init_recog ();
1679
1680 CC_STATUS_INIT;
1681
1682 /* Output the insns. */
1683 for (insn = first; insn;)
1684 {
1685 #ifdef HAVE_ATTR_length
1686 if ((unsigned) INSN_UID (insn) >= INSN_ADDRESSES_SIZE ())
1687 {
1688 /* This can be triggered by bugs elsewhere in the compiler if
1689 new insns are created after init_insn_lengths is called. */
1690 gcc_assert (NOTE_P (insn));
1691 insn_current_address = -1;
1692 }
1693 else
1694 insn_current_address = INSN_ADDRESSES (INSN_UID (insn));
1695 #endif /* HAVE_ATTR_length */
1696
1697 insn = final_scan_insn (insn, file, optimize, 0, &seen);
1698 }
1699 }
1700
1701 const char *
1702 get_insn_template (int code, rtx insn)
1703 {
1704 switch (insn_data[code].output_format)
1705 {
1706 case INSN_OUTPUT_FORMAT_SINGLE:
1707 return insn_data[code].output.single;
1708 case INSN_OUTPUT_FORMAT_MULTI:
1709 return insn_data[code].output.multi[which_alternative];
1710 case INSN_OUTPUT_FORMAT_FUNCTION:
1711 gcc_assert (insn);
1712 return (*insn_data[code].output.function) (recog_data.operand, insn);
1713
1714 default:
1715 gcc_unreachable ();
1716 }
1717 }
1718
1719 /* Emit the appropriate declaration for an alternate-entry-point
1720 symbol represented by INSN, to FILE. INSN is a CODE_LABEL with
1721 LABEL_KIND != LABEL_NORMAL.
1722
1723 The case fall-through in this function is intentional. */
1724 static void
1725 output_alternate_entry_point (FILE *file, rtx insn)
1726 {
1727 const char *name = LABEL_NAME (insn);
1728
1729 switch (LABEL_KIND (insn))
1730 {
1731 case LABEL_WEAK_ENTRY:
1732 #ifdef ASM_WEAKEN_LABEL
1733 ASM_WEAKEN_LABEL (file, name);
1734 #endif
1735 case LABEL_GLOBAL_ENTRY:
1736 targetm.asm_out.globalize_label (file, name);
1737 case LABEL_STATIC_ENTRY:
1738 #ifdef ASM_OUTPUT_TYPE_DIRECTIVE
1739 ASM_OUTPUT_TYPE_DIRECTIVE (file, name, "function");
1740 #endif
1741 ASM_OUTPUT_LABEL (file, name);
1742 break;
1743
1744 case LABEL_NORMAL:
1745 default:
1746 gcc_unreachable ();
1747 }
1748 }
1749
1750 /* Given a CALL_INSN, find and return the nested CALL. */
1751 static rtx
1752 call_from_call_insn (rtx insn)
1753 {
1754 rtx x;
1755 gcc_assert (CALL_P (insn));
1756 x = PATTERN (insn);
1757
1758 while (GET_CODE (x) != CALL)
1759 {
1760 switch (GET_CODE (x))
1761 {
1762 default:
1763 gcc_unreachable ();
1764 case COND_EXEC:
1765 x = COND_EXEC_CODE (x);
1766 break;
1767 case PARALLEL:
1768 x = XVECEXP (x, 0, 0);
1769 break;
1770 case SET:
1771 x = XEXP (x, 1);
1772 break;
1773 }
1774 }
1775 return x;
1776 }
1777
1778 /* The final scan for one insn, INSN.
1779 Args are same as in `final', except that INSN
1780 is the insn being scanned.
1781 Value returned is the next insn to be scanned.
1782
1783 NOPEEPHOLES is the flag to disallow peephole processing (currently
1784 used for within delayed branch sequence output).
1785
1786 SEEN is used to track the end of the prologue, for emitting
1787 debug information. We force the emission of a line note after
1788 both NOTE_INSN_PROLOGUE_END and NOTE_INSN_FUNCTION_BEG, or
1789 at the beginning of the second basic block, whichever comes
1790 first. */
1791
1792 rtx
1793 final_scan_insn (rtx insn, FILE *file, int optimize ATTRIBUTE_UNUSED,
1794 int nopeepholes ATTRIBUTE_UNUSED, int *seen)
1795 {
1796 #ifdef HAVE_cc0
1797 rtx set;
1798 #endif
1799 rtx next;
1800
1801 insn_counter++;
1802
1803 /* Ignore deleted insns. These can occur when we split insns (due to a
1804 template of "#") while not optimizing. */
1805 if (INSN_DELETED_P (insn))
1806 return NEXT_INSN (insn);
1807
1808 switch (GET_CODE (insn))
1809 {
1810 case NOTE:
1811 switch (NOTE_KIND (insn))
1812 {
1813 case NOTE_INSN_DELETED:
1814 break;
1815
1816 case NOTE_INSN_SWITCH_TEXT_SECTIONS:
1817 in_cold_section_p = !in_cold_section_p;
1818 #ifdef DWARF2_UNWIND_INFO
1819 if (dwarf2out_do_frame ())
1820 dwarf2out_switch_text_section ();
1821 else
1822 #endif
1823 (*debug_hooks->switch_text_section) ();
1824
1825 switch_to_section (current_function_section ());
1826 break;
1827
1828 case NOTE_INSN_BASIC_BLOCK:
1829 #ifdef TARGET_UNWIND_INFO
1830 targetm.asm_out.unwind_emit (asm_out_file, insn);
1831 #endif
1832
1833 if (flag_debug_asm)
1834 fprintf (asm_out_file, "\t%s basic block %d\n",
1835 ASM_COMMENT_START, NOTE_BASIC_BLOCK (insn)->index);
1836
1837 if ((*seen & (SEEN_EMITTED | SEEN_BB)) == SEEN_BB)
1838 {
1839 *seen |= SEEN_EMITTED;
1840 force_source_line = true;
1841 }
1842 else
1843 *seen |= SEEN_BB;
1844
1845 break;
1846
1847 case NOTE_INSN_EH_REGION_BEG:
1848 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LEHB",
1849 NOTE_EH_HANDLER (insn));
1850 break;
1851
1852 case NOTE_INSN_EH_REGION_END:
1853 ASM_OUTPUT_DEBUG_LABEL (asm_out_file, "LEHE",
1854 NOTE_EH_HANDLER (insn));
1855 break;
1856
1857 case NOTE_INSN_PROLOGUE_END:
1858 targetm.asm_out.function_end_prologue (file);
1859 profile_after_prologue (file);
1860
1861 if ((*seen & (SEEN_EMITTED | SEEN_NOTE)) == SEEN_NOTE)
1862 {
1863 *seen |= SEEN_EMITTED;
1864 force_source_line = true;
1865 }
1866 else
1867 *seen |= SEEN_NOTE;
1868
1869 break;
1870
1871 case NOTE_INSN_EPILOGUE_BEG:
1872 targetm.asm_out.function_begin_epilogue (file);
1873 break;
1874
1875 case NOTE_INSN_FUNCTION_BEG:
1876 app_disable ();
1877 (*debug_hooks->end_prologue) (last_linenum, last_filename);
1878
1879 if ((*seen & (SEEN_EMITTED | SEEN_NOTE)) == SEEN_NOTE)
1880 {
1881 *seen |= SEEN_EMITTED;
1882 force_source_line = true;
1883 }
1884 else
1885 *seen |= SEEN_NOTE;
1886
1887 break;
1888
1889 case NOTE_INSN_BLOCK_BEG:
1890 if (debug_info_level == DINFO_LEVEL_NORMAL
1891 || debug_info_level == DINFO_LEVEL_VERBOSE
1892 || write_symbols == DWARF2_DEBUG
1893 || write_symbols == VMS_AND_DWARF2_DEBUG
1894 || write_symbols == VMS_DEBUG)
1895 {
1896 int n = BLOCK_NUMBER (NOTE_BLOCK (insn));
1897
1898 app_disable ();
1899 ++block_depth;
1900 high_block_linenum = last_linenum;
1901
1902 /* Output debugging info about the symbol-block beginning. */
1903 (*debug_hooks->begin_block) (last_linenum, n);
1904
1905 /* Mark this block as output. */
1906 TREE_ASM_WRITTEN (NOTE_BLOCK (insn)) = 1;
1907 }
1908 if (write_symbols == DBX_DEBUG
1909 || write_symbols == SDB_DEBUG)
1910 {
1911 location_t *locus_ptr
1912 = block_nonartificial_location (NOTE_BLOCK (insn));
1913
1914 if (locus_ptr != NULL)
1915 {
1916 override_filename = LOCATION_FILE (*locus_ptr);
1917 override_linenum = LOCATION_LINE (*locus_ptr);
1918 }
1919 }
1920 break;
1921
1922 case NOTE_INSN_BLOCK_END:
1923 if (debug_info_level == DINFO_LEVEL_NORMAL
1924 || debug_info_level == DINFO_LEVEL_VERBOSE
1925 || write_symbols == DWARF2_DEBUG
1926 || write_symbols == VMS_AND_DWARF2_DEBUG
1927 || write_symbols == VMS_DEBUG)
1928 {
1929 int n = BLOCK_NUMBER (NOTE_BLOCK (insn));
1930
1931 app_disable ();
1932
1933 /* End of a symbol-block. */
1934 --block_depth;
1935 gcc_assert (block_depth >= 0);
1936
1937 (*debug_hooks->end_block) (high_block_linenum, n);
1938 }
1939 if (write_symbols == DBX_DEBUG
1940 || write_symbols == SDB_DEBUG)
1941 {
1942 tree outer_block = BLOCK_SUPERCONTEXT (NOTE_BLOCK (insn));
1943 location_t *locus_ptr
1944 = block_nonartificial_location (outer_block);
1945
1946 if (locus_ptr != NULL)
1947 {
1948 override_filename = LOCATION_FILE (*locus_ptr);
1949 override_linenum = LOCATION_LINE (*locus_ptr);
1950 }
1951 else
1952 {
1953 override_filename = NULL;
1954 override_linenum = 0;
1955 }
1956 }
1957 break;
1958
1959 case NOTE_INSN_DELETED_LABEL:
1960 /* Emit the label. We may have deleted the CODE_LABEL because
1961 the label could be proved to be unreachable, though still
1962 referenced (in the form of having its address taken. */
1963 ASM_OUTPUT_DEBUG_LABEL (file, "L", CODE_LABEL_NUMBER (insn));
1964 break;
1965
1966 case NOTE_INSN_VAR_LOCATION:
1967 (*debug_hooks->var_location) (insn);
1968 break;
1969
1970 default:
1971 gcc_unreachable ();
1972 break;
1973 }
1974 break;
1975
1976 case BARRIER:
1977 #if defined (DWARF2_UNWIND_INFO)
1978 if (dwarf2out_do_frame ())
1979 dwarf2out_frame_debug (insn, false);
1980 #endif
1981 break;
1982
1983 case CODE_LABEL:
1984 /* The target port might emit labels in the output function for
1985 some insn, e.g. sh.c output_branchy_insn. */
1986 if (CODE_LABEL_NUMBER (insn) <= max_labelno)
1987 {
1988 int align = LABEL_TO_ALIGNMENT (insn);
1989 #ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
1990 int max_skip = LABEL_TO_MAX_SKIP (insn);
1991 #endif
1992
1993 if (align && NEXT_INSN (insn))
1994 {
1995 #ifdef ASM_OUTPUT_MAX_SKIP_ALIGN
1996 ASM_OUTPUT_MAX_SKIP_ALIGN (file, align, max_skip);
1997 #else
1998 #ifdef ASM_OUTPUT_ALIGN_WITH_NOP
1999 ASM_OUTPUT_ALIGN_WITH_NOP (file, align);
2000 #else
2001 ASM_OUTPUT_ALIGN (file, align);
2002 #endif
2003 #endif
2004 }
2005 }
2006 #ifdef HAVE_cc0
2007 CC_STATUS_INIT;
2008 #endif
2009
2010 if (LABEL_NAME (insn))
2011 (*debug_hooks->label) (insn);
2012
2013 app_disable ();
2014
2015 next = next_nonnote_insn (insn);
2016 if (next != 0 && JUMP_P (next))
2017 {
2018 rtx nextbody = PATTERN (next);
2019
2020 /* If this label is followed by a jump-table,
2021 make sure we put the label in the read-only section. Also
2022 possibly write the label and jump table together. */
2023
2024 if (GET_CODE (nextbody) == ADDR_VEC
2025 || GET_CODE (nextbody) == ADDR_DIFF_VEC)
2026 {
2027 #if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
2028 /* In this case, the case vector is being moved by the
2029 target, so don't output the label at all. Leave that
2030 to the back end macros. */
2031 #else
2032 if (! JUMP_TABLES_IN_TEXT_SECTION)
2033 {
2034 int log_align;
2035
2036 switch_to_section (targetm.asm_out.function_rodata_section
2037 (current_function_decl));
2038
2039 #ifdef ADDR_VEC_ALIGN
2040 log_align = ADDR_VEC_ALIGN (next);
2041 #else
2042 log_align = exact_log2 (BIGGEST_ALIGNMENT / BITS_PER_UNIT);
2043 #endif
2044 ASM_OUTPUT_ALIGN (file, log_align);
2045 }
2046 else
2047 switch_to_section (current_function_section ());
2048
2049 #ifdef ASM_OUTPUT_CASE_LABEL
2050 ASM_OUTPUT_CASE_LABEL (file, "L", CODE_LABEL_NUMBER (insn),
2051 next);
2052 #else
2053 targetm.asm_out.internal_label (file, "L", CODE_LABEL_NUMBER (insn));
2054 #endif
2055 #endif
2056 break;
2057 }
2058 }
2059 if (LABEL_ALT_ENTRY_P (insn))
2060 output_alternate_entry_point (file, insn);
2061 else
2062 targetm.asm_out.internal_label (file, "L", CODE_LABEL_NUMBER (insn));
2063 break;
2064
2065 default:
2066 {
2067 rtx body = PATTERN (insn);
2068 int insn_code_number;
2069 const char *templ;
2070
2071 #ifdef HAVE_conditional_execution
2072 /* Reset this early so it is correct for ASM statements. */
2073 current_insn_predicate = NULL_RTX;
2074 #endif
2075 /* An INSN, JUMP_INSN or CALL_INSN.
2076 First check for special kinds that recog doesn't recognize. */
2077
2078 if (GET_CODE (body) == USE /* These are just declarations. */
2079 || GET_CODE (body) == CLOBBER)
2080 break;
2081
2082 #ifdef HAVE_cc0
2083 {
2084 /* If there is a REG_CC_SETTER note on this insn, it means that
2085 the setting of the condition code was done in the delay slot
2086 of the insn that branched here. So recover the cc status
2087 from the insn that set it. */
2088
2089 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
2090 if (note)
2091 {
2092 NOTICE_UPDATE_CC (PATTERN (XEXP (note, 0)), XEXP (note, 0));
2093 cc_prev_status = cc_status;
2094 }
2095 }
2096 #endif
2097
2098 /* Detect insns that are really jump-tables
2099 and output them as such. */
2100
2101 if (GET_CODE (body) == ADDR_VEC || GET_CODE (body) == ADDR_DIFF_VEC)
2102 {
2103 #if !(defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC))
2104 int vlen, idx;
2105 #endif
2106
2107 if (! JUMP_TABLES_IN_TEXT_SECTION)
2108 switch_to_section (targetm.asm_out.function_rodata_section
2109 (current_function_decl));
2110 else
2111 switch_to_section (current_function_section ());
2112
2113 app_disable ();
2114
2115 #if defined(ASM_OUTPUT_ADDR_VEC) || defined(ASM_OUTPUT_ADDR_DIFF_VEC)
2116 if (GET_CODE (body) == ADDR_VEC)
2117 {
2118 #ifdef ASM_OUTPUT_ADDR_VEC
2119 ASM_OUTPUT_ADDR_VEC (PREV_INSN (insn), body);
2120 #else
2121 gcc_unreachable ();
2122 #endif
2123 }
2124 else
2125 {
2126 #ifdef ASM_OUTPUT_ADDR_DIFF_VEC
2127 ASM_OUTPUT_ADDR_DIFF_VEC (PREV_INSN (insn), body);
2128 #else
2129 gcc_unreachable ();
2130 #endif
2131 }
2132 #else
2133 vlen = XVECLEN (body, GET_CODE (body) == ADDR_DIFF_VEC);
2134 for (idx = 0; idx < vlen; idx++)
2135 {
2136 if (GET_CODE (body) == ADDR_VEC)
2137 {
2138 #ifdef ASM_OUTPUT_ADDR_VEC_ELT
2139 ASM_OUTPUT_ADDR_VEC_ELT
2140 (file, CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 0, idx), 0)));
2141 #else
2142 gcc_unreachable ();
2143 #endif
2144 }
2145 else
2146 {
2147 #ifdef ASM_OUTPUT_ADDR_DIFF_ELT
2148 ASM_OUTPUT_ADDR_DIFF_ELT
2149 (file,
2150 body,
2151 CODE_LABEL_NUMBER (XEXP (XVECEXP (body, 1, idx), 0)),
2152 CODE_LABEL_NUMBER (XEXP (XEXP (body, 0), 0)));
2153 #else
2154 gcc_unreachable ();
2155 #endif
2156 }
2157 }
2158 #ifdef ASM_OUTPUT_CASE_END
2159 ASM_OUTPUT_CASE_END (file,
2160 CODE_LABEL_NUMBER (PREV_INSN (insn)),
2161 insn);
2162 #endif
2163 #endif
2164
2165 switch_to_section (current_function_section ());
2166
2167 break;
2168 }
2169 /* Output this line note if it is the first or the last line
2170 note in a row. */
2171 if (notice_source_line (insn))
2172 {
2173 (*debug_hooks->source_line) (last_linenum, last_filename);
2174 }
2175
2176 if (GET_CODE (body) == ASM_INPUT)
2177 {
2178 const char *string = XSTR (body, 0);
2179
2180 /* There's no telling what that did to the condition codes. */
2181 CC_STATUS_INIT;
2182
2183 if (string[0])
2184 {
2185 expanded_location loc;
2186
2187 app_enable ();
2188 loc = expand_location (ASM_INPUT_SOURCE_LOCATION (body));
2189 if (*loc.file && loc.line)
2190 fprintf (asm_out_file, "%s %i \"%s\" 1\n",
2191 ASM_COMMENT_START, loc.line, loc.file);
2192 fprintf (asm_out_file, "\t%s\n", string);
2193 #if HAVE_AS_LINE_ZERO
2194 if (*loc.file && loc.line)
2195 fprintf (asm_out_file, "%s 0 \"\" 2\n", ASM_COMMENT_START);
2196 #endif
2197 }
2198 break;
2199 }
2200
2201 /* Detect `asm' construct with operands. */
2202 if (asm_noperands (body) >= 0)
2203 {
2204 unsigned int noperands = asm_noperands (body);
2205 rtx *ops = XALLOCAVEC (rtx, noperands);
2206 const char *string;
2207 location_t loc;
2208 expanded_location expanded;
2209
2210 /* There's no telling what that did to the condition codes. */
2211 CC_STATUS_INIT;
2212
2213 /* Get out the operand values. */
2214 string = decode_asm_operands (body, ops, NULL, NULL, NULL, &loc);
2215 /* Inhibit dying on what would otherwise be compiler bugs. */
2216 insn_noperands = noperands;
2217 this_is_asm_operands = insn;
2218 expanded = expand_location (loc);
2219
2220 #ifdef FINAL_PRESCAN_INSN
2221 FINAL_PRESCAN_INSN (insn, ops, insn_noperands);
2222 #endif
2223
2224 /* Output the insn using them. */
2225 if (string[0])
2226 {
2227 app_enable ();
2228 if (expanded.file && expanded.line)
2229 fprintf (asm_out_file, "%s %i \"%s\" 1\n",
2230 ASM_COMMENT_START, expanded.line, expanded.file);
2231 output_asm_insn (string, ops);
2232 #if HAVE_AS_LINE_ZERO
2233 if (expanded.file && expanded.line)
2234 fprintf (asm_out_file, "%s 0 \"\" 2\n", ASM_COMMENT_START);
2235 #endif
2236 }
2237
2238 this_is_asm_operands = 0;
2239 break;
2240 }
2241
2242 app_disable ();
2243
2244 if (GET_CODE (body) == SEQUENCE)
2245 {
2246 /* A delayed-branch sequence */
2247 int i;
2248
2249 final_sequence = body;
2250
2251 /* Record the delay slots' frame information before the branch.
2252 This is needed for delayed calls: see execute_cfa_program(). */
2253 #if defined (DWARF2_UNWIND_INFO)
2254 if (dwarf2out_do_frame ())
2255 for (i = 1; i < XVECLEN (body, 0); i++)
2256 dwarf2out_frame_debug (XVECEXP (body, 0, i), false);
2257 #endif
2258
2259 /* The first insn in this SEQUENCE might be a JUMP_INSN that will
2260 force the restoration of a comparison that was previously
2261 thought unnecessary. If that happens, cancel this sequence
2262 and cause that insn to be restored. */
2263
2264 next = final_scan_insn (XVECEXP (body, 0, 0), file, 0, 1, seen);
2265 if (next != XVECEXP (body, 0, 1))
2266 {
2267 final_sequence = 0;
2268 return next;
2269 }
2270
2271 for (i = 1; i < XVECLEN (body, 0); i++)
2272 {
2273 rtx insn = XVECEXP (body, 0, i);
2274 rtx next = NEXT_INSN (insn);
2275 /* We loop in case any instruction in a delay slot gets
2276 split. */
2277 do
2278 insn = final_scan_insn (insn, file, 0, 1, seen);
2279 while (insn != next);
2280 }
2281 #ifdef DBR_OUTPUT_SEQEND
2282 DBR_OUTPUT_SEQEND (file);
2283 #endif
2284 final_sequence = 0;
2285
2286 /* If the insn requiring the delay slot was a CALL_INSN, the
2287 insns in the delay slot are actually executed before the
2288 called function. Hence we don't preserve any CC-setting
2289 actions in these insns and the CC must be marked as being
2290 clobbered by the function. */
2291 if (CALL_P (XVECEXP (body, 0, 0)))
2292 {
2293 CC_STATUS_INIT;
2294 }
2295 break;
2296 }
2297
2298 /* We have a real machine instruction as rtl. */
2299
2300 body = PATTERN (insn);
2301
2302 #ifdef HAVE_cc0
2303 set = single_set (insn);
2304
2305 /* Check for redundant test and compare instructions
2306 (when the condition codes are already set up as desired).
2307 This is done only when optimizing; if not optimizing,
2308 it should be possible for the user to alter a variable
2309 with the debugger in between statements
2310 and the next statement should reexamine the variable
2311 to compute the condition codes. */
2312
2313 if (optimize)
2314 {
2315 if (set
2316 && GET_CODE (SET_DEST (set)) == CC0
2317 && insn != last_ignored_compare)
2318 {
2319 if (GET_CODE (SET_SRC (set)) == SUBREG)
2320 SET_SRC (set) = alter_subreg (&SET_SRC (set));
2321 else if (GET_CODE (SET_SRC (set)) == COMPARE)
2322 {
2323 if (GET_CODE (XEXP (SET_SRC (set), 0)) == SUBREG)
2324 XEXP (SET_SRC (set), 0)
2325 = alter_subreg (&XEXP (SET_SRC (set), 0));
2326 if (GET_CODE (XEXP (SET_SRC (set), 1)) == SUBREG)
2327 XEXP (SET_SRC (set), 1)
2328 = alter_subreg (&XEXP (SET_SRC (set), 1));
2329 }
2330 if ((cc_status.value1 != 0
2331 && rtx_equal_p (SET_SRC (set), cc_status.value1))
2332 || (cc_status.value2 != 0
2333 && rtx_equal_p (SET_SRC (set), cc_status.value2)))
2334 {
2335 /* Don't delete insn if it has an addressing side-effect. */
2336 if (! FIND_REG_INC_NOTE (insn, NULL_RTX)
2337 /* or if anything in it is volatile. */
2338 && ! volatile_refs_p (PATTERN (insn)))
2339 {
2340 /* We don't really delete the insn; just ignore it. */
2341 last_ignored_compare = insn;
2342 break;
2343 }
2344 }
2345 }
2346 }
2347 #endif
2348
2349 #ifdef HAVE_cc0
2350 /* If this is a conditional branch, maybe modify it
2351 if the cc's are in a nonstandard state
2352 so that it accomplishes the same thing that it would
2353 do straightforwardly if the cc's were set up normally. */
2354
2355 if (cc_status.flags != 0
2356 && JUMP_P (insn)
2357 && GET_CODE (body) == SET
2358 && SET_DEST (body) == pc_rtx
2359 && GET_CODE (SET_SRC (body)) == IF_THEN_ELSE
2360 && COMPARISON_P (XEXP (SET_SRC (body), 0))
2361 && XEXP (XEXP (SET_SRC (body), 0), 0) == cc0_rtx)
2362 {
2363 /* This function may alter the contents of its argument
2364 and clear some of the cc_status.flags bits.
2365 It may also return 1 meaning condition now always true
2366 or -1 meaning condition now always false
2367 or 2 meaning condition nontrivial but altered. */
2368 int result = alter_cond (XEXP (SET_SRC (body), 0));
2369 /* If condition now has fixed value, replace the IF_THEN_ELSE
2370 with its then-operand or its else-operand. */
2371 if (result == 1)
2372 SET_SRC (body) = XEXP (SET_SRC (body), 1);
2373 if (result == -1)
2374 SET_SRC (body) = XEXP (SET_SRC (body), 2);
2375
2376 /* The jump is now either unconditional or a no-op.
2377 If it has become a no-op, don't try to output it.
2378 (It would not be recognized.) */
2379 if (SET_SRC (body) == pc_rtx)
2380 {
2381 delete_insn (insn);
2382 break;
2383 }
2384 else if (GET_CODE (SET_SRC (body)) == RETURN)
2385 /* Replace (set (pc) (return)) with (return). */
2386 PATTERN (insn) = body = SET_SRC (body);
2387
2388 /* Rerecognize the instruction if it has changed. */
2389 if (result != 0)
2390 INSN_CODE (insn) = -1;
2391 }
2392
2393 /* If this is a conditional trap, maybe modify it if the cc's
2394 are in a nonstandard state so that it accomplishes the same
2395 thing that it would do straightforwardly if the cc's were
2396 set up normally. */
2397 if (cc_status.flags != 0
2398 && NONJUMP_INSN_P (insn)
2399 && GET_CODE (body) == TRAP_IF
2400 && COMPARISON_P (TRAP_CONDITION (body))
2401 && XEXP (TRAP_CONDITION (body), 0) == cc0_rtx)
2402 {
2403 /* This function may alter the contents of its argument
2404 and clear some of the cc_status.flags bits.
2405 It may also return 1 meaning condition now always true
2406 or -1 meaning condition now always false
2407 or 2 meaning condition nontrivial but altered. */
2408 int result = alter_cond (TRAP_CONDITION (body));
2409
2410 /* If TRAP_CONDITION has become always false, delete the
2411 instruction. */
2412 if (result == -1)
2413 {
2414 delete_insn (insn);
2415 break;
2416 }
2417
2418 /* If TRAP_CONDITION has become always true, replace
2419 TRAP_CONDITION with const_true_rtx. */
2420 if (result == 1)
2421 TRAP_CONDITION (body) = const_true_rtx;
2422
2423 /* Rerecognize the instruction if it has changed. */
2424 if (result != 0)
2425 INSN_CODE (insn) = -1;
2426 }
2427
2428 /* Make same adjustments to instructions that examine the
2429 condition codes without jumping and instructions that
2430 handle conditional moves (if this machine has either one). */
2431
2432 if (cc_status.flags != 0
2433 && set != 0)
2434 {
2435 rtx cond_rtx, then_rtx, else_rtx;
2436
2437 if (!JUMP_P (insn)
2438 && GET_CODE (SET_SRC (set)) == IF_THEN_ELSE)
2439 {
2440 cond_rtx = XEXP (SET_SRC (set), 0);
2441 then_rtx = XEXP (SET_SRC (set), 1);
2442 else_rtx = XEXP (SET_SRC (set), 2);
2443 }
2444 else
2445 {
2446 cond_rtx = SET_SRC (set);
2447 then_rtx = const_true_rtx;
2448 else_rtx = const0_rtx;
2449 }
2450
2451 switch (GET_CODE (cond_rtx))
2452 {
2453 case GTU:
2454 case GT:
2455 case LTU:
2456 case LT:
2457 case GEU:
2458 case GE:
2459 case LEU:
2460 case LE:
2461 case EQ:
2462 case NE:
2463 {
2464 int result;
2465 if (XEXP (cond_rtx, 0) != cc0_rtx)
2466 break;
2467 result = alter_cond (cond_rtx);
2468 if (result == 1)
2469 validate_change (insn, &SET_SRC (set), then_rtx, 0);
2470 else if (result == -1)
2471 validate_change (insn, &SET_SRC (set), else_rtx, 0);
2472 else if (result == 2)
2473 INSN_CODE (insn) = -1;
2474 if (SET_DEST (set) == SET_SRC (set))
2475 delete_insn (insn);
2476 }
2477 break;
2478
2479 default:
2480 break;
2481 }
2482 }
2483
2484 #endif
2485
2486 #ifdef HAVE_peephole
2487 /* Do machine-specific peephole optimizations if desired. */
2488
2489 if (optimize && !flag_no_peephole && !nopeepholes)
2490 {
2491 rtx next = peephole (insn);
2492 /* When peepholing, if there were notes within the peephole,
2493 emit them before the peephole. */
2494 if (next != 0 && next != NEXT_INSN (insn))
2495 {
2496 rtx note, prev = PREV_INSN (insn);
2497
2498 for (note = NEXT_INSN (insn); note != next;
2499 note = NEXT_INSN (note))
2500 final_scan_insn (note, file, optimize, nopeepholes, seen);
2501
2502 /* Put the notes in the proper position for a later
2503 rescan. For example, the SH target can do this
2504 when generating a far jump in a delayed branch
2505 sequence. */
2506 note = NEXT_INSN (insn);
2507 PREV_INSN (note) = prev;
2508 NEXT_INSN (prev) = note;
2509 NEXT_INSN (PREV_INSN (next)) = insn;
2510 PREV_INSN (insn) = PREV_INSN (next);
2511 NEXT_INSN (insn) = next;
2512 PREV_INSN (next) = insn;
2513 }
2514
2515 /* PEEPHOLE might have changed this. */
2516 body = PATTERN (insn);
2517 }
2518 #endif
2519
2520 /* Try to recognize the instruction.
2521 If successful, verify that the operands satisfy the
2522 constraints for the instruction. Crash if they don't,
2523 since `reload' should have changed them so that they do. */
2524
2525 insn_code_number = recog_memoized (insn);
2526 cleanup_subreg_operands (insn);
2527
2528 /* Dump the insn in the assembly for debugging. */
2529 if (flag_dump_rtl_in_asm)
2530 {
2531 print_rtx_head = ASM_COMMENT_START;
2532 print_rtl_single (asm_out_file, insn);
2533 print_rtx_head = "";
2534 }
2535
2536 if (! constrain_operands_cached (1))
2537 fatal_insn_not_found (insn);
2538
2539 /* Some target machines need to prescan each insn before
2540 it is output. */
2541
2542 #ifdef FINAL_PRESCAN_INSN
2543 FINAL_PRESCAN_INSN (insn, recog_data.operand, recog_data.n_operands);
2544 #endif
2545
2546 #ifdef HAVE_conditional_execution
2547 if (GET_CODE (PATTERN (insn)) == COND_EXEC)
2548 current_insn_predicate = COND_EXEC_TEST (PATTERN (insn));
2549 #endif
2550
2551 #ifdef HAVE_cc0
2552 cc_prev_status = cc_status;
2553
2554 /* Update `cc_status' for this instruction.
2555 The instruction's output routine may change it further.
2556 If the output routine for a jump insn needs to depend
2557 on the cc status, it should look at cc_prev_status. */
2558
2559 NOTICE_UPDATE_CC (body, insn);
2560 #endif
2561
2562 current_output_insn = debug_insn = insn;
2563
2564 #if defined (DWARF2_UNWIND_INFO)
2565 if (CALL_P (insn) && dwarf2out_do_frame ())
2566 dwarf2out_frame_debug (insn, false);
2567 #endif
2568
2569 /* Find the proper template for this insn. */
2570 templ = get_insn_template (insn_code_number, insn);
2571
2572 /* If the C code returns 0, it means that it is a jump insn
2573 which follows a deleted test insn, and that test insn
2574 needs to be reinserted. */
2575 if (templ == 0)
2576 {
2577 rtx prev;
2578
2579 gcc_assert (prev_nonnote_insn (insn) == last_ignored_compare);
2580
2581 /* We have already processed the notes between the setter and
2582 the user. Make sure we don't process them again, this is
2583 particularly important if one of the notes is a block
2584 scope note or an EH note. */
2585 for (prev = insn;
2586 prev != last_ignored_compare;
2587 prev = PREV_INSN (prev))
2588 {
2589 if (NOTE_P (prev))
2590 delete_insn (prev); /* Use delete_note. */
2591 }
2592
2593 return prev;
2594 }
2595
2596 /* If the template is the string "#", it means that this insn must
2597 be split. */
2598 if (templ[0] == '#' && templ[1] == '\0')
2599 {
2600 rtx new_rtx = try_split (body, insn, 0);
2601
2602 /* If we didn't split the insn, go away. */
2603 if (new_rtx == insn && PATTERN (new_rtx) == body)
2604 fatal_insn ("could not split insn", insn);
2605
2606 #ifdef HAVE_ATTR_length
2607 /* This instruction should have been split in shorten_branches,
2608 to ensure that we would have valid length info for the
2609 splitees. */
2610 gcc_unreachable ();
2611 #endif
2612
2613 return new_rtx;
2614 }
2615
2616 #ifdef TARGET_UNWIND_INFO
2617 /* ??? This will put the directives in the wrong place if
2618 get_insn_template outputs assembly directly. However calling it
2619 before get_insn_template breaks if the insns is split. */
2620 targetm.asm_out.unwind_emit (asm_out_file, insn);
2621 #endif
2622
2623 if (CALL_P (insn))
2624 {
2625 rtx x = call_from_call_insn (insn);
2626 x = XEXP (x, 0);
2627 if (x && MEM_P (x) && GET_CODE (XEXP (x, 0)) == SYMBOL_REF)
2628 {
2629 tree t;
2630 x = XEXP (x, 0);
2631 t = SYMBOL_REF_DECL (x);
2632 if (t)
2633 assemble_external (t);
2634 }
2635 }
2636
2637 /* Output assembler code from the template. */
2638 output_asm_insn (templ, recog_data.operand);
2639
2640 /* If necessary, report the effect that the instruction has on
2641 the unwind info. We've already done this for delay slots
2642 and call instructions. */
2643 #if defined (DWARF2_UNWIND_INFO)
2644 if (final_sequence == 0
2645 #if !defined (HAVE_prologue)
2646 && !ACCUMULATE_OUTGOING_ARGS
2647 #endif
2648 && dwarf2out_do_frame ())
2649 dwarf2out_frame_debug (insn, true);
2650 #endif
2651
2652 current_output_insn = debug_insn = 0;
2653 }
2654 }
2655 return NEXT_INSN (insn);
2656 }
2657
2658 /* Return whether a source line note needs to be emitted before INSN. */
2659
2660 static bool
2661 notice_source_line (rtx insn)
2662 {
2663 const char *filename;
2664 int linenum;
2665
2666 if (override_filename)
2667 {
2668 filename = override_filename;
2669 linenum = override_linenum;
2670 }
2671 else
2672 {
2673 filename = insn_file (insn);
2674 linenum = insn_line (insn);
2675 }
2676
2677 if (filename
2678 && (force_source_line
2679 || filename != last_filename
2680 || last_linenum != linenum))
2681 {
2682 force_source_line = false;
2683 last_filename = filename;
2684 last_linenum = linenum;
2685 high_block_linenum = MAX (last_linenum, high_block_linenum);
2686 high_function_linenum = MAX (last_linenum, high_function_linenum);
2687 return true;
2688 }
2689 return false;
2690 }
2691
2692 /* For each operand in INSN, simplify (subreg (reg)) so that it refers
2693 directly to the desired hard register. */
2694
2695 void
2696 cleanup_subreg_operands (rtx insn)
2697 {
2698 int i;
2699 bool changed = false;
2700 extract_insn_cached (insn);
2701 for (i = 0; i < recog_data.n_operands; i++)
2702 {
2703 /* The following test cannot use recog_data.operand when testing
2704 for a SUBREG: the underlying object might have been changed
2705 already if we are inside a match_operator expression that
2706 matches the else clause. Instead we test the underlying
2707 expression directly. */
2708 if (GET_CODE (*recog_data.operand_loc[i]) == SUBREG)
2709 {
2710 recog_data.operand[i] = alter_subreg (recog_data.operand_loc[i]);
2711 changed = true;
2712 }
2713 else if (GET_CODE (recog_data.operand[i]) == PLUS
2714 || GET_CODE (recog_data.operand[i]) == MULT
2715 || MEM_P (recog_data.operand[i]))
2716 recog_data.operand[i] = walk_alter_subreg (recog_data.operand_loc[i], &changed);
2717 }
2718
2719 for (i = 0; i < recog_data.n_dups; i++)
2720 {
2721 if (GET_CODE (*recog_data.dup_loc[i]) == SUBREG)
2722 {
2723 *recog_data.dup_loc[i] = alter_subreg (recog_data.dup_loc[i]);
2724 changed = true;
2725 }
2726 else if (GET_CODE (*recog_data.dup_loc[i]) == PLUS
2727 || GET_CODE (*recog_data.dup_loc[i]) == MULT
2728 || MEM_P (*recog_data.dup_loc[i]))
2729 *recog_data.dup_loc[i] = walk_alter_subreg (recog_data.dup_loc[i], &changed);
2730 }
2731 if (changed)
2732 df_insn_rescan (insn);
2733 }
2734
2735 /* If X is a SUBREG, replace it with a REG or a MEM,
2736 based on the thing it is a subreg of. */
2737
2738 rtx
2739 alter_subreg (rtx *xp)
2740 {
2741 rtx x = *xp;
2742 rtx y = SUBREG_REG (x);
2743
2744 /* simplify_subreg does not remove subreg from volatile references.
2745 We are required to. */
2746 if (MEM_P (y))
2747 {
2748 int offset = SUBREG_BYTE (x);
2749
2750 /* For paradoxical subregs on big-endian machines, SUBREG_BYTE
2751 contains 0 instead of the proper offset. See simplify_subreg. */
2752 if (offset == 0
2753 && GET_MODE_SIZE (GET_MODE (y)) < GET_MODE_SIZE (GET_MODE (x)))
2754 {
2755 int difference = GET_MODE_SIZE (GET_MODE (y))
2756 - GET_MODE_SIZE (GET_MODE (x));
2757 if (WORDS_BIG_ENDIAN)
2758 offset += (difference / UNITS_PER_WORD) * UNITS_PER_WORD;
2759 if (BYTES_BIG_ENDIAN)
2760 offset += difference % UNITS_PER_WORD;
2761 }
2762
2763 *xp = adjust_address (y, GET_MODE (x), offset);
2764 }
2765 else
2766 {
2767 rtx new_rtx = simplify_subreg (GET_MODE (x), y, GET_MODE (y),
2768 SUBREG_BYTE (x));
2769
2770 if (new_rtx != 0)
2771 *xp = new_rtx;
2772 else if (REG_P (y))
2773 {
2774 /* Simplify_subreg can't handle some REG cases, but we have to. */
2775 unsigned int regno;
2776 HOST_WIDE_INT offset;
2777
2778 regno = subreg_regno (x);
2779 if (subreg_lowpart_p (x))
2780 offset = byte_lowpart_offset (GET_MODE (x), GET_MODE (y));
2781 else
2782 offset = SUBREG_BYTE (x);
2783 *xp = gen_rtx_REG_offset (y, GET_MODE (x), regno, offset);
2784 }
2785 }
2786
2787 return *xp;
2788 }
2789
2790 /* Do alter_subreg on all the SUBREGs contained in X. */
2791
2792 static rtx
2793 walk_alter_subreg (rtx *xp, bool *changed)
2794 {
2795 rtx x = *xp;
2796 switch (GET_CODE (x))
2797 {
2798 case PLUS:
2799 case MULT:
2800 case AND:
2801 XEXP (x, 0) = walk_alter_subreg (&XEXP (x, 0), changed);
2802 XEXP (x, 1) = walk_alter_subreg (&XEXP (x, 1), changed);
2803 break;
2804
2805 case MEM:
2806 case ZERO_EXTEND:
2807 XEXP (x, 0) = walk_alter_subreg (&XEXP (x, 0), changed);
2808 break;
2809
2810 case SUBREG:
2811 *changed = true;
2812 return alter_subreg (xp);
2813
2814 default:
2815 break;
2816 }
2817
2818 return *xp;
2819 }
2820
2821 #ifdef HAVE_cc0
2822
2823 /* Given BODY, the body of a jump instruction, alter the jump condition
2824 as required by the bits that are set in cc_status.flags.
2825 Not all of the bits there can be handled at this level in all cases.
2826
2827 The value is normally 0.
2828 1 means that the condition has become always true.
2829 -1 means that the condition has become always false.
2830 2 means that COND has been altered. */
2831
2832 static int
2833 alter_cond (rtx cond)
2834 {
2835 int value = 0;
2836
2837 if (cc_status.flags & CC_REVERSED)
2838 {
2839 value = 2;
2840 PUT_CODE (cond, swap_condition (GET_CODE (cond)));
2841 }
2842
2843 if (cc_status.flags & CC_INVERTED)
2844 {
2845 value = 2;
2846 PUT_CODE (cond, reverse_condition (GET_CODE (cond)));
2847 }
2848
2849 if (cc_status.flags & CC_NOT_POSITIVE)
2850 switch (GET_CODE (cond))
2851 {
2852 case LE:
2853 case LEU:
2854 case GEU:
2855 /* Jump becomes unconditional. */
2856 return 1;
2857
2858 case GT:
2859 case GTU:
2860 case LTU:
2861 /* Jump becomes no-op. */
2862 return -1;
2863
2864 case GE:
2865 PUT_CODE (cond, EQ);
2866 value = 2;
2867 break;
2868
2869 case LT:
2870 PUT_CODE (cond, NE);
2871 value = 2;
2872 break;
2873
2874 default:
2875 break;
2876 }
2877
2878 if (cc_status.flags & CC_NOT_NEGATIVE)
2879 switch (GET_CODE (cond))
2880 {
2881 case GE:
2882 case GEU:
2883 /* Jump becomes unconditional. */
2884 return 1;
2885
2886 case LT:
2887 case LTU:
2888 /* Jump becomes no-op. */
2889 return -1;
2890
2891 case LE:
2892 case LEU:
2893 PUT_CODE (cond, EQ);
2894 value = 2;
2895 break;
2896
2897 case GT:
2898 case GTU:
2899 PUT_CODE (cond, NE);
2900 value = 2;
2901 break;
2902
2903 default:
2904 break;
2905 }
2906
2907 if (cc_status.flags & CC_NO_OVERFLOW)
2908 switch (GET_CODE (cond))
2909 {
2910 case GEU:
2911 /* Jump becomes unconditional. */
2912 return 1;
2913
2914 case LEU:
2915 PUT_CODE (cond, EQ);
2916 value = 2;
2917 break;
2918
2919 case GTU:
2920 PUT_CODE (cond, NE);
2921 value = 2;
2922 break;
2923
2924 case LTU:
2925 /* Jump becomes no-op. */
2926 return -1;
2927
2928 default:
2929 break;
2930 }
2931
2932 if (cc_status.flags & (CC_Z_IN_NOT_N | CC_Z_IN_N))
2933 switch (GET_CODE (cond))
2934 {
2935 default:
2936 gcc_unreachable ();
2937
2938 case NE:
2939 PUT_CODE (cond, cc_status.flags & CC_Z_IN_N ? GE : LT);
2940 value = 2;
2941 break;
2942
2943 case EQ:
2944 PUT_CODE (cond, cc_status.flags & CC_Z_IN_N ? LT : GE);
2945 value = 2;
2946 break;
2947 }
2948
2949 if (cc_status.flags & CC_NOT_SIGNED)
2950 /* The flags are valid if signed condition operators are converted
2951 to unsigned. */
2952 switch (GET_CODE (cond))
2953 {
2954 case LE:
2955 PUT_CODE (cond, LEU);
2956 value = 2;
2957 break;
2958
2959 case LT:
2960 PUT_CODE (cond, LTU);
2961 value = 2;
2962 break;
2963
2964 case GT:
2965 PUT_CODE (cond, GTU);
2966 value = 2;
2967 break;
2968
2969 case GE:
2970 PUT_CODE (cond, GEU);
2971 value = 2;
2972 break;
2973
2974 default:
2975 break;
2976 }
2977
2978 return value;
2979 }
2980 #endif
2981
2982 /* Report inconsistency between the assembler template and the operands.
2983 In an `asm', it's the user's fault; otherwise, the compiler's fault. */
2984
2985 void
2986 output_operand_lossage (const char *cmsgid, ...)
2987 {
2988 char *fmt_string;
2989 char *new_message;
2990 const char *pfx_str;
2991 va_list ap;
2992
2993 va_start (ap, cmsgid);
2994
2995 pfx_str = this_is_asm_operands ? _("invalid 'asm': ") : "output_operand: ";
2996 asprintf (&fmt_string, "%s%s", pfx_str, _(cmsgid));
2997 vasprintf (&new_message, fmt_string, ap);
2998
2999 if (this_is_asm_operands)
3000 error_for_asm (this_is_asm_operands, "%s", new_message);
3001 else
3002 internal_error ("%s", new_message);
3003
3004 free (fmt_string);
3005 free (new_message);
3006 va_end (ap);
3007 }
3008
3009 /* Output of assembler code from a template, and its subroutines. */
3010
3011 /* Annotate the assembly with a comment describing the pattern and
3012 alternative used. */
3013
3014 static void
3015 output_asm_name (void)
3016 {
3017 if (debug_insn)
3018 {
3019 int num = INSN_CODE (debug_insn);
3020 fprintf (asm_out_file, "\t%s %d\t%s",
3021 ASM_COMMENT_START, INSN_UID (debug_insn),
3022 insn_data[num].name);
3023 if (insn_data[num].n_alternatives > 1)
3024 fprintf (asm_out_file, "/%d", which_alternative + 1);
3025 #ifdef HAVE_ATTR_length
3026 fprintf (asm_out_file, "\t[length = %d]",
3027 get_attr_length (debug_insn));
3028 #endif
3029 /* Clear this so only the first assembler insn
3030 of any rtl insn will get the special comment for -dp. */
3031 debug_insn = 0;
3032 }
3033 }
3034
3035 /* If OP is a REG or MEM and we can find a MEM_EXPR corresponding to it
3036 or its address, return that expr . Set *PADDRESSP to 1 if the expr
3037 corresponds to the address of the object and 0 if to the object. */
3038
3039 static tree
3040 get_mem_expr_from_op (rtx op, int *paddressp)
3041 {
3042 tree expr;
3043 int inner_addressp;
3044
3045 *paddressp = 0;
3046
3047 if (REG_P (op))
3048 return REG_EXPR (op);
3049 else if (!MEM_P (op))
3050 return 0;
3051
3052 if (MEM_EXPR (op) != 0)
3053 return MEM_EXPR (op);
3054
3055 /* Otherwise we have an address, so indicate it and look at the address. */
3056 *paddressp = 1;
3057 op = XEXP (op, 0);
3058
3059 /* First check if we have a decl for the address, then look at the right side
3060 if it is a PLUS. Otherwise, strip off arithmetic and keep looking.
3061 But don't allow the address to itself be indirect. */
3062 if ((expr = get_mem_expr_from_op (op, &inner_addressp)) && ! inner_addressp)
3063 return expr;
3064 else if (GET_CODE (op) == PLUS
3065 && (expr = get_mem_expr_from_op (XEXP (op, 1), &inner_addressp)))
3066 return expr;
3067
3068 while (GET_RTX_CLASS (GET_CODE (op)) == RTX_UNARY
3069 || GET_RTX_CLASS (GET_CODE (op)) == RTX_BIN_ARITH)
3070 op = XEXP (op, 0);
3071
3072 expr = get_mem_expr_from_op (op, &inner_addressp);
3073 return inner_addressp ? 0 : expr;
3074 }
3075
3076 /* Output operand names for assembler instructions. OPERANDS is the
3077 operand vector, OPORDER is the order to write the operands, and NOPS
3078 is the number of operands to write. */
3079
3080 static void
3081 output_asm_operand_names (rtx *operands, int *oporder, int nops)
3082 {
3083 int wrote = 0;
3084 int i;
3085
3086 for (i = 0; i < nops; i++)
3087 {
3088 int addressp;
3089 rtx op = operands[oporder[i]];
3090 tree expr = get_mem_expr_from_op (op, &addressp);
3091
3092 fprintf (asm_out_file, "%c%s",
3093 wrote ? ',' : '\t', wrote ? "" : ASM_COMMENT_START);
3094 wrote = 1;
3095 if (expr)
3096 {
3097 fprintf (asm_out_file, "%s",
3098 addressp ? "*" : "");
3099 print_mem_expr (asm_out_file, expr);
3100 wrote = 1;
3101 }
3102 else if (REG_P (op) && ORIGINAL_REGNO (op)
3103 && ORIGINAL_REGNO (op) != REGNO (op))
3104 fprintf (asm_out_file, " tmp%i", ORIGINAL_REGNO (op));
3105 }
3106 }
3107
3108 /* Output text from TEMPLATE to the assembler output file,
3109 obeying %-directions to substitute operands taken from
3110 the vector OPERANDS.
3111
3112 %N (for N a digit) means print operand N in usual manner.
3113 %lN means require operand N to be a CODE_LABEL or LABEL_REF
3114 and print the label name with no punctuation.
3115 %cN means require operand N to be a constant
3116 and print the constant expression with no punctuation.
3117 %aN means expect operand N to be a memory address
3118 (not a memory reference!) and print a reference
3119 to that address.
3120 %nN means expect operand N to be a constant
3121 and print a constant expression for minus the value
3122 of the operand, with no other punctuation. */
3123
3124 void
3125 output_asm_insn (const char *templ, rtx *operands)
3126 {
3127 const char *p;
3128 int c;
3129 #ifdef ASSEMBLER_DIALECT
3130 int dialect = 0;
3131 #endif
3132 int oporder[MAX_RECOG_OPERANDS];
3133 char opoutput[MAX_RECOG_OPERANDS];
3134 int ops = 0;
3135
3136 /* An insn may return a null string template
3137 in a case where no assembler code is needed. */
3138 if (*templ == 0)
3139 return;
3140
3141 memset (opoutput, 0, sizeof opoutput);
3142 p = templ;
3143 putc ('\t', asm_out_file);
3144
3145 #ifdef ASM_OUTPUT_OPCODE
3146 ASM_OUTPUT_OPCODE (asm_out_file, p);
3147 #endif
3148
3149 while ((c = *p++))
3150 switch (c)
3151 {
3152 case '\n':
3153 if (flag_verbose_asm)
3154 output_asm_operand_names (operands, oporder, ops);
3155 if (flag_print_asm_name)
3156 output_asm_name ();
3157
3158 ops = 0;
3159 memset (opoutput, 0, sizeof opoutput);
3160
3161 putc (c, asm_out_file);
3162 #ifdef ASM_OUTPUT_OPCODE
3163 while ((c = *p) == '\t')
3164 {
3165 putc (c, asm_out_file);
3166 p++;
3167 }
3168 ASM_OUTPUT_OPCODE (asm_out_file, p);
3169 #endif
3170 break;
3171
3172 #ifdef ASSEMBLER_DIALECT
3173 case '{':
3174 {
3175 int i;
3176
3177 if (dialect)
3178 output_operand_lossage ("nested assembly dialect alternatives");
3179 else
3180 dialect = 1;
3181
3182 /* If we want the first dialect, do nothing. Otherwise, skip
3183 DIALECT_NUMBER of strings ending with '|'. */
3184 for (i = 0; i < dialect_number; i++)
3185 {
3186 while (*p && *p != '}' && *p++ != '|')
3187 ;
3188 if (*p == '}')
3189 break;
3190 if (*p == '|')
3191 p++;
3192 }
3193
3194 if (*p == '\0')
3195 output_operand_lossage ("unterminated assembly dialect alternative");
3196 }
3197 break;
3198
3199 case '|':
3200 if (dialect)
3201 {
3202 /* Skip to close brace. */
3203 do
3204 {
3205 if (*p == '\0')
3206 {
3207 output_operand_lossage ("unterminated assembly dialect alternative");
3208 break;
3209 }
3210 }
3211 while (*p++ != '}');
3212 dialect = 0;
3213 }
3214 else
3215 putc (c, asm_out_file);
3216 break;
3217
3218 case '}':
3219 if (! dialect)
3220 putc (c, asm_out_file);
3221 dialect = 0;
3222 break;
3223 #endif
3224
3225 case '%':
3226 /* %% outputs a single %. */
3227 if (*p == '%')
3228 {
3229 p++;
3230 putc (c, asm_out_file);
3231 }
3232 /* %= outputs a number which is unique to each insn in the entire
3233 compilation. This is useful for making local labels that are
3234 referred to more than once in a given insn. */
3235 else if (*p == '=')
3236 {
3237 p++;
3238 fprintf (asm_out_file, "%d", insn_counter);
3239 }
3240 /* % followed by a letter and some digits
3241 outputs an operand in a special way depending on the letter.
3242 Letters `acln' are implemented directly.
3243 Other letters are passed to `output_operand' so that
3244 the PRINT_OPERAND macro can define them. */
3245 else if (ISALPHA (*p))
3246 {
3247 int letter = *p++;
3248 unsigned long opnum;
3249 char *endptr;
3250
3251 opnum = strtoul (p, &endptr, 10);
3252
3253 if (endptr == p)
3254 output_operand_lossage ("operand number missing "
3255 "after %%-letter");
3256 else if (this_is_asm_operands && opnum >= insn_noperands)
3257 output_operand_lossage ("operand number out of range");
3258 else if (letter == 'l')
3259 output_asm_label (operands[opnum]);
3260 else if (letter == 'a')
3261 output_address (operands[opnum]);
3262 else if (letter == 'c')
3263 {
3264 if (CONSTANT_ADDRESS_P (operands[opnum]))
3265 output_addr_const (asm_out_file, operands[opnum]);
3266 else
3267 output_operand (operands[opnum], 'c');
3268 }
3269 else if (letter == 'n')
3270 {
3271 if (GET_CODE (operands[opnum]) == CONST_INT)
3272 fprintf (asm_out_file, HOST_WIDE_INT_PRINT_DEC,
3273 - INTVAL (operands[opnum]));
3274 else
3275 {
3276 putc ('-', asm_out_file);
3277 output_addr_const (asm_out_file, operands[opnum]);
3278 }
3279 }
3280 else
3281 output_operand (operands[opnum], letter);
3282
3283 if (!opoutput[opnum])
3284 oporder[ops++] = opnum;
3285 opoutput[opnum] = 1;
3286
3287 p = endptr;
3288 c = *p;
3289 }
3290 /* % followed by a digit outputs an operand the default way. */
3291 else if (ISDIGIT (*p))
3292 {
3293 unsigned long opnum;
3294 char *endptr;
3295
3296 opnum = strtoul (p, &endptr, 10);
3297 if (this_is_asm_operands && opnum >= insn_noperands)
3298 output_operand_lossage ("operand number out of range");
3299 else
3300 output_operand (operands[opnum], 0);
3301
3302 if (!opoutput[opnum])
3303 oporder[ops++] = opnum;
3304 opoutput[opnum] = 1;
3305
3306 p = endptr;
3307 c = *p;
3308 }
3309 /* % followed by punctuation: output something for that
3310 punctuation character alone, with no operand.
3311 The PRINT_OPERAND macro decides what is actually done. */
3312 #ifdef PRINT_OPERAND_PUNCT_VALID_P
3313 else if (PRINT_OPERAND_PUNCT_VALID_P ((unsigned char) *p))
3314 output_operand (NULL_RTX, *p++);
3315 #endif
3316 else
3317 output_operand_lossage ("invalid %%-code");
3318 break;
3319
3320 default:
3321 putc (c, asm_out_file);
3322 }
3323
3324 /* Write out the variable names for operands, if we know them. */
3325 if (flag_verbose_asm)
3326 output_asm_operand_names (operands, oporder, ops);
3327 if (flag_print_asm_name)
3328 output_asm_name ();
3329
3330 putc ('\n', asm_out_file);
3331 }
3332
3333 /* Output a LABEL_REF, or a bare CODE_LABEL, as an assembler symbol. */
3334
3335 void
3336 output_asm_label (rtx x)
3337 {
3338 char buf[256];
3339
3340 if (GET_CODE (x) == LABEL_REF)
3341 x = XEXP (x, 0);
3342 if (LABEL_P (x)
3343 || (NOTE_P (x)
3344 && NOTE_KIND (x) == NOTE_INSN_DELETED_LABEL))
3345 ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (x));
3346 else
3347 output_operand_lossage ("'%%l' operand isn't a label");
3348
3349 assemble_name (asm_out_file, buf);
3350 }
3351
3352 /* Helper rtx-iteration-function for mark_symbol_refs_as_used and
3353 output_operand. Marks SYMBOL_REFs as referenced through use of
3354 assemble_external. */
3355
3356 static int
3357 mark_symbol_ref_as_used (rtx *xp, void *dummy ATTRIBUTE_UNUSED)
3358 {
3359 rtx x = *xp;
3360
3361 /* If we have a used symbol, we may have to emit assembly
3362 annotations corresponding to whether the symbol is external, weak
3363 or has non-default visibility. */
3364 if (GET_CODE (x) == SYMBOL_REF)
3365 {
3366 tree t;
3367
3368 t = SYMBOL_REF_DECL (x);
3369 if (t)
3370 assemble_external (t);
3371
3372 return -1;
3373 }
3374
3375 return 0;
3376 }
3377
3378 /* Marks SYMBOL_REFs in x as referenced through use of assemble_external. */
3379
3380 void
3381 mark_symbol_refs_as_used (rtx x)
3382 {
3383 for_each_rtx (&x, mark_symbol_ref_as_used, NULL);
3384 }
3385
3386 /* Print operand X using machine-dependent assembler syntax.
3387 The macro PRINT_OPERAND is defined just to control this function.
3388 CODE is a non-digit that preceded the operand-number in the % spec,
3389 such as 'z' if the spec was `%z3'. CODE is 0 if there was no char
3390 between the % and the digits.
3391 When CODE is a non-letter, X is 0.
3392
3393 The meanings of the letters are machine-dependent and controlled
3394 by PRINT_OPERAND. */
3395
3396 static void
3397 output_operand (rtx x, int code ATTRIBUTE_UNUSED)
3398 {
3399 if (x && GET_CODE (x) == SUBREG)
3400 x = alter_subreg (&x);
3401
3402 /* X must not be a pseudo reg. */
3403 gcc_assert (!x || !REG_P (x) || REGNO (x) < FIRST_PSEUDO_REGISTER);
3404
3405 PRINT_OPERAND (asm_out_file, x, code);
3406
3407 if (x == NULL_RTX)
3408 return;
3409
3410 for_each_rtx (&x, mark_symbol_ref_as_used, NULL);
3411 }
3412
3413 /* Print a memory reference operand for address X
3414 using machine-dependent assembler syntax.
3415 The macro PRINT_OPERAND_ADDRESS exists just to control this function. */
3416
3417 void
3418 output_address (rtx x)
3419 {
3420 bool changed = false;
3421 walk_alter_subreg (&x, &changed);
3422 PRINT_OPERAND_ADDRESS (asm_out_file, x);
3423 }
3424
3425 /* Print an integer constant expression in assembler syntax.
3426 Addition and subtraction are the only arithmetic
3427 that may appear in these expressions. */
3428
3429 void
3430 output_addr_const (FILE *file, rtx x)
3431 {
3432 char buf[256];
3433
3434 restart:
3435 switch (GET_CODE (x))
3436 {
3437 case PC:
3438 putc ('.', file);
3439 break;
3440
3441 case SYMBOL_REF:
3442 if (SYMBOL_REF_DECL (x))
3443 {
3444 mark_decl_referenced (SYMBOL_REF_DECL (x));
3445 assemble_external (SYMBOL_REF_DECL (x));
3446 }
3447 #ifdef ASM_OUTPUT_SYMBOL_REF
3448 ASM_OUTPUT_SYMBOL_REF (file, x);
3449 #else
3450 assemble_name (file, XSTR (x, 0));
3451 #endif
3452 break;
3453
3454 case LABEL_REF:
3455 x = XEXP (x, 0);
3456 /* Fall through. */
3457 case CODE_LABEL:
3458 ASM_GENERATE_INTERNAL_LABEL (buf, "L", CODE_LABEL_NUMBER (x));
3459 #ifdef ASM_OUTPUT_LABEL_REF
3460 ASM_OUTPUT_LABEL_REF (file, buf);
3461 #else
3462 assemble_name (file, buf);
3463 #endif
3464 break;
3465
3466 case CONST_INT:
3467 fprintf (file, HOST_WIDE_INT_PRINT_DEC, INTVAL (x));
3468 break;
3469
3470 case CONST:
3471 /* This used to output parentheses around the expression,
3472 but that does not work on the 386 (either ATT or BSD assembler). */
3473 output_addr_const (file, XEXP (x, 0));
3474 break;
3475
3476 case CONST_DOUBLE:
3477 if (GET_MODE (x) == VOIDmode)
3478 {
3479 /* We can use %d if the number is one word and positive. */
3480 if (CONST_DOUBLE_HIGH (x))
3481 fprintf (file, HOST_WIDE_INT_PRINT_DOUBLE_HEX,
3482 (unsigned HOST_WIDE_INT) CONST_DOUBLE_HIGH (x),
3483 (unsigned HOST_WIDE_INT) CONST_DOUBLE_LOW (x));
3484 else if (CONST_DOUBLE_LOW (x) < 0)
3485 fprintf (file, HOST_WIDE_INT_PRINT_HEX,
3486 (unsigned HOST_WIDE_INT) CONST_DOUBLE_LOW (x));
3487 else
3488 fprintf (file, HOST_WIDE_INT_PRINT_DEC, CONST_DOUBLE_LOW (x));
3489 }
3490 else
3491 /* We can't handle floating point constants;
3492 PRINT_OPERAND must handle them. */
3493 output_operand_lossage ("floating constant misused");
3494 break;
3495
3496 case CONST_FIXED:
3497 fprintf (file, HOST_WIDE_INT_PRINT_HEX,
3498 (unsigned HOST_WIDE_INT) CONST_FIXED_VALUE_LOW (x));
3499 break;
3500
3501 case PLUS:
3502 /* Some assemblers need integer constants to appear last (eg masm). */
3503 if (GET_CODE (XEXP (x, 0)) == CONST_INT)
3504 {
3505 output_addr_const (file, XEXP (x, 1));
3506 if (INTVAL (XEXP (x, 0)) >= 0)
3507 fprintf (file, "+");
3508 output_addr_const (file, XEXP (x, 0));
3509 }
3510 else
3511 {
3512 output_addr_const (file, XEXP (x, 0));
3513 if (GET_CODE (XEXP (x, 1)) != CONST_INT
3514 || INTVAL (XEXP (x, 1)) >= 0)
3515 fprintf (file, "+");
3516 output_addr_const (file, XEXP (x, 1));
3517 }
3518 break;
3519
3520 case MINUS:
3521 /* Avoid outputting things like x-x or x+5-x,
3522 since some assemblers can't handle that. */
3523 x = simplify_subtraction (x);
3524 if (GET_CODE (x) != MINUS)
3525 goto restart;
3526
3527 output_addr_const (file, XEXP (x, 0));
3528 fprintf (file, "-");
3529 if ((GET_CODE (XEXP (x, 1)) == CONST_INT && INTVAL (XEXP (x, 1)) >= 0)
3530 || GET_CODE (XEXP (x, 1)) == PC
3531 || GET_CODE (XEXP (x, 1)) == SYMBOL_REF)
3532 output_addr_const (file, XEXP (x, 1));
3533 else
3534 {
3535 fputs (targetm.asm_out.open_paren, file);
3536 output_addr_const (file, XEXP (x, 1));
3537 fputs (targetm.asm_out.close_paren, file);
3538 }
3539 break;
3540
3541 case ZERO_EXTEND:
3542 case SIGN_EXTEND:
3543 case SUBREG:
3544 case TRUNCATE:
3545 output_addr_const (file, XEXP (x, 0));
3546 break;
3547
3548 default:
3549 #ifdef OUTPUT_ADDR_CONST_EXTRA
3550 OUTPUT_ADDR_CONST_EXTRA (file, x, fail);
3551 break;
3552
3553 fail:
3554 #endif
3555 output_operand_lossage ("invalid expression as operand");
3556 }
3557 }
3558
3559 /* A poor man's fprintf, with the added features of %I, %R, %L, and %U.
3560 %R prints the value of REGISTER_PREFIX.
3561 %L prints the value of LOCAL_LABEL_PREFIX.
3562 %U prints the value of USER_LABEL_PREFIX.
3563 %I prints the value of IMMEDIATE_PREFIX.
3564 %O runs ASM_OUTPUT_OPCODE to transform what follows in the string.
3565 Also supported are %d, %i, %u, %x, %X, %o, %c, %s and %%.
3566
3567 We handle alternate assembler dialects here, just like output_asm_insn. */
3568
3569 void
3570 asm_fprintf (FILE *file, const char *p, ...)
3571 {
3572 char buf[10];
3573 char *q, c;
3574 va_list argptr;
3575
3576 va_start (argptr, p);
3577
3578 buf[0] = '%';
3579
3580 while ((c = *p++))
3581 switch (c)
3582 {
3583 #ifdef ASSEMBLER_DIALECT
3584 case '{':
3585 {
3586 int i;
3587
3588 /* If we want the first dialect, do nothing. Otherwise, skip
3589 DIALECT_NUMBER of strings ending with '|'. */
3590 for (i = 0; i < dialect_number; i++)
3591 {
3592 while (*p && *p++ != '|')
3593 ;
3594
3595 if (*p == '|')
3596 p++;
3597 }
3598 }
3599 break;
3600
3601 case '|':
3602 /* Skip to close brace. */
3603 while (*p && *p++ != '}')
3604 ;
3605 break;
3606
3607 case '}':
3608 break;
3609 #endif
3610
3611 case '%':
3612 c = *p++;
3613 q = &buf[1];
3614 while (strchr ("-+ #0", c))
3615 {
3616 *q++ = c;
3617 c = *p++;
3618 }
3619 while (ISDIGIT (c) || c == '.')
3620 {
3621 *q++ = c;
3622 c = *p++;
3623 }
3624 switch (c)
3625 {
3626 case '%':
3627 putc ('%', file);
3628 break;
3629
3630 case 'd': case 'i': case 'u':
3631 case 'x': case 'X': case 'o':
3632 case 'c':
3633 *q++ = c;
3634 *q = 0;
3635 fprintf (file, buf, va_arg (argptr, int));
3636 break;
3637
3638 case 'w':
3639 /* This is a prefix to the 'd', 'i', 'u', 'x', 'X', and
3640 'o' cases, but we do not check for those cases. It
3641 means that the value is a HOST_WIDE_INT, which may be
3642 either `long' or `long long'. */
3643 memcpy (q, HOST_WIDE_INT_PRINT, strlen (HOST_WIDE_INT_PRINT));
3644 q += strlen (HOST_WIDE_INT_PRINT);
3645 *q++ = *p++;
3646 *q = 0;
3647 fprintf (file, buf, va_arg (argptr, HOST_WIDE_INT));
3648 break;
3649
3650 case 'l':
3651 *q++ = c;
3652 #ifdef HAVE_LONG_LONG
3653 if (*p == 'l')
3654 {
3655 *q++ = *p++;
3656 *q++ = *p++;
3657 *q = 0;
3658 fprintf (file, buf, va_arg (argptr, long long));
3659 }
3660 else
3661 #endif
3662 {
3663 *q++ = *p++;
3664 *q = 0;
3665 fprintf (file, buf, va_arg (argptr, long));
3666 }
3667
3668 break;
3669
3670 case 's':
3671 *q++ = c;
3672 *q = 0;
3673 fprintf (file, buf, va_arg (argptr, char *));
3674 break;
3675
3676 case 'O':
3677 #ifdef ASM_OUTPUT_OPCODE
3678 ASM_OUTPUT_OPCODE (asm_out_file, p);
3679 #endif
3680 break;
3681
3682 case 'R':
3683 #ifdef REGISTER_PREFIX
3684 fprintf (file, "%s", REGISTER_PREFIX);
3685 #endif
3686 break;
3687
3688 case 'I':
3689 #ifdef IMMEDIATE_PREFIX
3690 fprintf (file, "%s", IMMEDIATE_PREFIX);
3691 #endif
3692 break;
3693
3694 case 'L':
3695 #ifdef LOCAL_LABEL_PREFIX
3696 fprintf (file, "%s", LOCAL_LABEL_PREFIX);
3697 #endif
3698 break;
3699
3700 case 'U':
3701 fputs (user_label_prefix, file);
3702 break;
3703
3704 #ifdef ASM_FPRINTF_EXTENSIONS
3705 /* Uppercase letters are reserved for general use by asm_fprintf
3706 and so are not available to target specific code. In order to
3707 prevent the ASM_FPRINTF_EXTENSIONS macro from using them then,
3708 they are defined here. As they get turned into real extensions
3709 to asm_fprintf they should be removed from this list. */
3710 case 'A': case 'B': case 'C': case 'D': case 'E':
3711 case 'F': case 'G': case 'H': case 'J': case 'K':
3712 case 'M': case 'N': case 'P': case 'Q': case 'S':
3713 case 'T': case 'V': case 'W': case 'Y': case 'Z':
3714 break;
3715
3716 ASM_FPRINTF_EXTENSIONS (file, argptr, p)
3717 #endif
3718 default:
3719 gcc_unreachable ();
3720 }
3721 break;
3722
3723 default:
3724 putc (c, file);
3725 }
3726 va_end (argptr);
3727 }
3728
3729 /* Split up a CONST_DOUBLE or integer constant rtx
3730 into two rtx's for single words,
3731 storing in *FIRST the word that comes first in memory in the target
3732 and in *SECOND the other. */
3733
3734 void
3735 split_double (rtx value, rtx *first, rtx *second)
3736 {
3737 if (GET_CODE (value) == CONST_INT)
3738 {
3739 if (HOST_BITS_PER_WIDE_INT >= (2 * BITS_PER_WORD))
3740 {
3741 /* In this case the CONST_INT holds both target words.
3742 Extract the bits from it into two word-sized pieces.
3743 Sign extend each half to HOST_WIDE_INT. */
3744 unsigned HOST_WIDE_INT low, high;
3745 unsigned HOST_WIDE_INT mask, sign_bit, sign_extend;
3746
3747 /* Set sign_bit to the most significant bit of a word. */
3748 sign_bit = 1;
3749 sign_bit <<= BITS_PER_WORD - 1;
3750
3751 /* Set mask so that all bits of the word are set. We could
3752 have used 1 << BITS_PER_WORD instead of basing the
3753 calculation on sign_bit. However, on machines where
3754 HOST_BITS_PER_WIDE_INT == BITS_PER_WORD, it could cause a
3755 compiler warning, even though the code would never be
3756 executed. */
3757 mask = sign_bit << 1;
3758 mask--;
3759
3760 /* Set sign_extend as any remaining bits. */
3761 sign_extend = ~mask;
3762
3763 /* Pick the lower word and sign-extend it. */
3764 low = INTVAL (value);
3765 low &= mask;
3766 if (low & sign_bit)
3767 low |= sign_extend;
3768
3769 /* Pick the higher word, shifted to the least significant
3770 bits, and sign-extend it. */
3771 high = INTVAL (value);
3772 high >>= BITS_PER_WORD - 1;
3773 high >>= 1;
3774 high &= mask;
3775 if (high & sign_bit)
3776 high |= sign_extend;
3777
3778 /* Store the words in the target machine order. */
3779 if (WORDS_BIG_ENDIAN)
3780 {
3781 *first = GEN_INT (high);
3782 *second = GEN_INT (low);
3783 }
3784 else
3785 {
3786 *first = GEN_INT (low);
3787 *second = GEN_INT (high);
3788 }
3789 }
3790 else
3791 {
3792 /* The rule for using CONST_INT for a wider mode
3793 is that we regard the value as signed.
3794 So sign-extend it. */
3795 rtx high = (INTVAL (value) < 0 ? constm1_rtx : const0_rtx);
3796 if (WORDS_BIG_ENDIAN)
3797 {
3798 *first = high;
3799 *second = value;
3800 }
3801 else
3802 {
3803 *first = value;
3804 *second = high;
3805 }
3806 }
3807 }
3808 else if (GET_CODE (value) != CONST_DOUBLE)
3809 {
3810 if (WORDS_BIG_ENDIAN)
3811 {
3812 *first = const0_rtx;
3813 *second = value;
3814 }
3815 else
3816 {
3817 *first = value;
3818 *second = const0_rtx;
3819 }
3820 }
3821 else if (GET_MODE (value) == VOIDmode
3822 /* This is the old way we did CONST_DOUBLE integers. */
3823 || GET_MODE_CLASS (GET_MODE (value)) == MODE_INT)
3824 {
3825 /* In an integer, the words are defined as most and least significant.
3826 So order them by the target's convention. */
3827 if (WORDS_BIG_ENDIAN)
3828 {
3829 *first = GEN_INT (CONST_DOUBLE_HIGH (value));
3830 *second = GEN_INT (CONST_DOUBLE_LOW (value));
3831 }
3832 else
3833 {
3834 *first = GEN_INT (CONST_DOUBLE_LOW (value));
3835 *second = GEN_INT (CONST_DOUBLE_HIGH (value));
3836 }
3837 }
3838 else
3839 {
3840 REAL_VALUE_TYPE r;
3841 long l[2];
3842 REAL_VALUE_FROM_CONST_DOUBLE (r, value);
3843
3844 /* Note, this converts the REAL_VALUE_TYPE to the target's
3845 format, splits up the floating point double and outputs
3846 exactly 32 bits of it into each of l[0] and l[1] --
3847 not necessarily BITS_PER_WORD bits. */
3848 REAL_VALUE_TO_TARGET_DOUBLE (r, l);
3849
3850 /* If 32 bits is an entire word for the target, but not for the host,
3851 then sign-extend on the host so that the number will look the same
3852 way on the host that it would on the target. See for instance
3853 simplify_unary_operation. The #if is needed to avoid compiler
3854 warnings. */
3855
3856 #if HOST_BITS_PER_LONG > 32
3857 if (BITS_PER_WORD < HOST_BITS_PER_LONG && BITS_PER_WORD == 32)
3858 {
3859 if (l[0] & ((long) 1 << 31))
3860 l[0] |= ((long) (-1) << 32);
3861 if (l[1] & ((long) 1 << 31))
3862 l[1] |= ((long) (-1) << 32);
3863 }
3864 #endif
3865
3866 *first = GEN_INT (l[0]);
3867 *second = GEN_INT (l[1]);
3868 }
3869 }
3870
3871 /* Return nonzero if this function has no function calls. */
3872
3873 int
3874 leaf_function_p (void)
3875 {
3876 rtx insn;
3877 rtx link;
3878
3879 if (crtl->profile || profile_arc_flag)
3880 return 0;
3881
3882 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
3883 {
3884 if (CALL_P (insn)
3885 && ! SIBLING_CALL_P (insn))
3886 return 0;
3887 if (NONJUMP_INSN_P (insn)
3888 && GET_CODE (PATTERN (insn)) == SEQUENCE
3889 && CALL_P (XVECEXP (PATTERN (insn), 0, 0))
3890 && ! SIBLING_CALL_P (XVECEXP (PATTERN (insn), 0, 0)))
3891 return 0;
3892 }
3893 for (link = crtl->epilogue_delay_list;
3894 link;
3895 link = XEXP (link, 1))
3896 {
3897 insn = XEXP (link, 0);
3898
3899 if (CALL_P (insn)
3900 && ! SIBLING_CALL_P (insn))
3901 return 0;
3902 if (NONJUMP_INSN_P (insn)
3903 && GET_CODE (PATTERN (insn)) == SEQUENCE
3904 && CALL_P (XVECEXP (PATTERN (insn), 0, 0))
3905 && ! SIBLING_CALL_P (XVECEXP (PATTERN (insn), 0, 0)))
3906 return 0;
3907 }
3908
3909 return 1;
3910 }
3911
3912 /* Return 1 if branch is a forward branch.
3913 Uses insn_shuid array, so it works only in the final pass. May be used by
3914 output templates to customary add branch prediction hints.
3915 */
3916 int
3917 final_forward_branch_p (rtx insn)
3918 {
3919 int insn_id, label_id;
3920
3921 gcc_assert (uid_shuid);
3922 insn_id = INSN_SHUID (insn);
3923 label_id = INSN_SHUID (JUMP_LABEL (insn));
3924 /* We've hit some insns that does not have id information available. */
3925 gcc_assert (insn_id && label_id);
3926 return insn_id < label_id;
3927 }
3928
3929 /* On some machines, a function with no call insns
3930 can run faster if it doesn't create its own register window.
3931 When output, the leaf function should use only the "output"
3932 registers. Ordinarily, the function would be compiled to use
3933 the "input" registers to find its arguments; it is a candidate
3934 for leaf treatment if it uses only the "input" registers.
3935 Leaf function treatment means renumbering so the function
3936 uses the "output" registers instead. */
3937
3938 #ifdef LEAF_REGISTERS
3939
3940 /* Return 1 if this function uses only the registers that can be
3941 safely renumbered. */
3942
3943 int
3944 only_leaf_regs_used (void)
3945 {
3946 int i;
3947 const char *const permitted_reg_in_leaf_functions = LEAF_REGISTERS;
3948
3949 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3950 if ((df_regs_ever_live_p (i) || global_regs[i])
3951 && ! permitted_reg_in_leaf_functions[i])
3952 return 0;
3953
3954 if (crtl->uses_pic_offset_table
3955 && pic_offset_table_rtx != 0
3956 && REG_P (pic_offset_table_rtx)
3957 && ! permitted_reg_in_leaf_functions[REGNO (pic_offset_table_rtx)])
3958 return 0;
3959
3960 return 1;
3961 }
3962
3963 /* Scan all instructions and renumber all registers into those
3964 available in leaf functions. */
3965
3966 static void
3967 leaf_renumber_regs (rtx first)
3968 {
3969 rtx insn;
3970
3971 /* Renumber only the actual patterns.
3972 The reg-notes can contain frame pointer refs,
3973 and renumbering them could crash, and should not be needed. */
3974 for (insn = first; insn; insn = NEXT_INSN (insn))
3975 if (INSN_P (insn))
3976 leaf_renumber_regs_insn (PATTERN (insn));
3977 for (insn = crtl->epilogue_delay_list;
3978 insn;
3979 insn = XEXP (insn, 1))
3980 if (INSN_P (XEXP (insn, 0)))
3981 leaf_renumber_regs_insn (PATTERN (XEXP (insn, 0)));
3982 }
3983
3984 /* Scan IN_RTX and its subexpressions, and renumber all regs into those
3985 available in leaf functions. */
3986
3987 void
3988 leaf_renumber_regs_insn (rtx in_rtx)
3989 {
3990 int i, j;
3991 const char *format_ptr;
3992
3993 if (in_rtx == 0)
3994 return;
3995
3996 /* Renumber all input-registers into output-registers.
3997 renumbered_regs would be 1 for an output-register;
3998 they */
3999
4000 if (REG_P (in_rtx))
4001 {
4002 int newreg;
4003
4004 /* Don't renumber the same reg twice. */
4005 if (in_rtx->used)
4006 return;
4007
4008 newreg = REGNO (in_rtx);
4009 /* Don't try to renumber pseudo regs. It is possible for a pseudo reg
4010 to reach here as part of a REG_NOTE. */
4011 if (newreg >= FIRST_PSEUDO_REGISTER)
4012 {
4013 in_rtx->used = 1;
4014 return;
4015 }
4016 newreg = LEAF_REG_REMAP (newreg);
4017 gcc_assert (newreg >= 0);
4018 df_set_regs_ever_live (REGNO (in_rtx), false);
4019 df_set_regs_ever_live (newreg, true);
4020 SET_REGNO (in_rtx, newreg);
4021 in_rtx->used = 1;
4022 }
4023
4024 if (INSN_P (in_rtx))
4025 {
4026 /* Inside a SEQUENCE, we find insns.
4027 Renumber just the patterns of these insns,
4028 just as we do for the top-level insns. */
4029 leaf_renumber_regs_insn (PATTERN (in_rtx));
4030 return;
4031 }
4032
4033 format_ptr = GET_RTX_FORMAT (GET_CODE (in_rtx));
4034
4035 for (i = 0; i < GET_RTX_LENGTH (GET_CODE (in_rtx)); i++)
4036 switch (*format_ptr++)
4037 {
4038 case 'e':
4039 leaf_renumber_regs_insn (XEXP (in_rtx, i));
4040 break;
4041
4042 case 'E':
4043 if (NULL != XVEC (in_rtx, i))
4044 {
4045 for (j = 0; j < XVECLEN (in_rtx, i); j++)
4046 leaf_renumber_regs_insn (XVECEXP (in_rtx, i, j));
4047 }
4048 break;
4049
4050 case 'S':
4051 case 's':
4052 case '0':
4053 case 'i':
4054 case 'w':
4055 case 'n':
4056 case 'u':
4057 break;
4058
4059 default:
4060 gcc_unreachable ();
4061 }
4062 }
4063 #endif
4064
4065
4066 /* When -gused is used, emit debug info for only used symbols. But in
4067 addition to the standard intercepted debug_hooks there are some direct
4068 calls into this file, i.e., dbxout_symbol, dbxout_parms, and dbxout_reg_params.
4069 Those routines may also be called from a higher level intercepted routine. So
4070 to prevent recording data for an inner call to one of these for an intercept,
4071 we maintain an intercept nesting counter (debug_nesting). We only save the
4072 intercepted arguments if the nesting is 1. */
4073 int debug_nesting = 0;
4074
4075 static tree *symbol_queue;
4076 int symbol_queue_index = 0;
4077 static int symbol_queue_size = 0;
4078
4079 /* Generate the symbols for any queued up type symbols we encountered
4080 while generating the type info for some originally used symbol.
4081 This might generate additional entries in the queue. Only when
4082 the nesting depth goes to 0 is this routine called. */
4083
4084 void
4085 debug_flush_symbol_queue (void)
4086 {
4087 int i;
4088
4089 /* Make sure that additionally queued items are not flushed
4090 prematurely. */
4091
4092 ++debug_nesting;
4093
4094 for (i = 0; i < symbol_queue_index; ++i)
4095 {
4096 /* If we pushed queued symbols then such symbols must be
4097 output no matter what anyone else says. Specifically,
4098 we need to make sure dbxout_symbol() thinks the symbol was
4099 used and also we need to override TYPE_DECL_SUPPRESS_DEBUG
4100 which may be set for outside reasons. */
4101 int saved_tree_used = TREE_USED (symbol_queue[i]);
4102 int saved_suppress_debug = TYPE_DECL_SUPPRESS_DEBUG (symbol_queue[i]);
4103 TREE_USED (symbol_queue[i]) = 1;
4104 TYPE_DECL_SUPPRESS_DEBUG (symbol_queue[i]) = 0;
4105
4106 #ifdef DBX_DEBUGGING_INFO
4107 dbxout_symbol (symbol_queue[i], 0);
4108 #endif
4109
4110 TREE_USED (symbol_queue[i]) = saved_tree_used;
4111 TYPE_DECL_SUPPRESS_DEBUG (symbol_queue[i]) = saved_suppress_debug;
4112 }
4113
4114 symbol_queue_index = 0;
4115 --debug_nesting;
4116 }
4117
4118 /* Queue a type symbol needed as part of the definition of a decl
4119 symbol. These symbols are generated when debug_flush_symbol_queue()
4120 is called. */
4121
4122 void
4123 debug_queue_symbol (tree decl)
4124 {
4125 if (symbol_queue_index >= symbol_queue_size)
4126 {
4127 symbol_queue_size += 10;
4128 symbol_queue = XRESIZEVEC (tree, symbol_queue, symbol_queue_size);
4129 }
4130
4131 symbol_queue[symbol_queue_index++] = decl;
4132 }
4133
4134 /* Free symbol queue. */
4135 void
4136 debug_free_queue (void)
4137 {
4138 if (symbol_queue)
4139 {
4140 free (symbol_queue);
4141 symbol_queue = NULL;
4142 symbol_queue_size = 0;
4143 }
4144 }
4145
4146 /* Turn the RTL into assembly. */
4147 static unsigned int
4148 rest_of_handle_final (void)
4149 {
4150 rtx x;
4151 const char *fnname;
4152
4153 /* Get the function's name, as described by its RTL. This may be
4154 different from the DECL_NAME name used in the source file. */
4155
4156 x = DECL_RTL (current_function_decl);
4157 gcc_assert (MEM_P (x));
4158 x = XEXP (x, 0);
4159 gcc_assert (GET_CODE (x) == SYMBOL_REF);
4160 fnname = XSTR (x, 0);
4161
4162 assemble_start_function (current_function_decl, fnname);
4163 final_start_function (get_insns (), asm_out_file, optimize);
4164 final (get_insns (), asm_out_file, optimize);
4165 final_end_function ();
4166
4167 #ifdef TARGET_UNWIND_INFO
4168 /* ??? The IA-64 ".handlerdata" directive must be issued before
4169 the ".endp" directive that closes the procedure descriptor. */
4170 output_function_exception_table (fnname);
4171 #endif
4172
4173 assemble_end_function (current_function_decl, fnname);
4174
4175 #ifndef TARGET_UNWIND_INFO
4176 /* Otherwise, it feels unclean to switch sections in the middle. */
4177 output_function_exception_table (fnname);
4178 #endif
4179
4180 user_defined_section_attribute = false;
4181
4182 /* Free up reg info memory. */
4183 free_reg_info ();
4184
4185 if (! quiet_flag)
4186 fflush (asm_out_file);
4187
4188 /* Write DBX symbols if requested. */
4189
4190 /* Note that for those inline functions where we don't initially
4191 know for certain that we will be generating an out-of-line copy,
4192 the first invocation of this routine (rest_of_compilation) will
4193 skip over this code by doing a `goto exit_rest_of_compilation;'.
4194 Later on, wrapup_global_declarations will (indirectly) call
4195 rest_of_compilation again for those inline functions that need
4196 to have out-of-line copies generated. During that call, we
4197 *will* be routed past here. */
4198
4199 timevar_push (TV_SYMOUT);
4200 (*debug_hooks->function_decl) (current_function_decl);
4201 timevar_pop (TV_SYMOUT);
4202
4203 /* Release the blocks that are linked to DECL_INITIAL() to free the memory. */
4204 DECL_INITIAL (current_function_decl) = error_mark_node;
4205
4206 if (DECL_STATIC_CONSTRUCTOR (current_function_decl)
4207 && targetm.have_ctors_dtors)
4208 targetm.asm_out.constructor (XEXP (DECL_RTL (current_function_decl), 0),
4209 decl_init_priority_lookup
4210 (current_function_decl));
4211 if (DECL_STATIC_DESTRUCTOR (current_function_decl)
4212 && targetm.have_ctors_dtors)
4213 targetm.asm_out.destructor (XEXP (DECL_RTL (current_function_decl), 0),
4214 decl_fini_priority_lookup
4215 (current_function_decl));
4216 return 0;
4217 }
4218
4219 struct rtl_opt_pass pass_final =
4220 {
4221 {
4222 RTL_PASS,
4223 NULL, /* name */
4224 NULL, /* gate */
4225 rest_of_handle_final, /* execute */
4226 NULL, /* sub */
4227 NULL, /* next */
4228 0, /* static_pass_number */
4229 TV_FINAL, /* tv_id */
4230 0, /* properties_required */
4231 0, /* properties_provided */
4232 0, /* properties_destroyed */
4233 0, /* todo_flags_start */
4234 TODO_ggc_collect /* todo_flags_finish */
4235 }
4236 };
4237
4238
4239 static unsigned int
4240 rest_of_handle_shorten_branches (void)
4241 {
4242 /* Shorten branches. */
4243 shorten_branches (get_insns ());
4244 return 0;
4245 }
4246
4247 struct rtl_opt_pass pass_shorten_branches =
4248 {
4249 {
4250 RTL_PASS,
4251 "shorten", /* name */
4252 NULL, /* gate */
4253 rest_of_handle_shorten_branches, /* execute */
4254 NULL, /* sub */
4255 NULL, /* next */
4256 0, /* static_pass_number */
4257 TV_FINAL, /* tv_id */
4258 0, /* properties_required */
4259 0, /* properties_provided */
4260 0, /* properties_destroyed */
4261 0, /* todo_flags_start */
4262 TODO_dump_func /* todo_flags_finish */
4263 }
4264 };
4265
4266
4267 static unsigned int
4268 rest_of_clean_state (void)
4269 {
4270 rtx insn, next;
4271
4272 /* It is very important to decompose the RTL instruction chain here:
4273 debug information keeps pointing into CODE_LABEL insns inside the function
4274 body. If these remain pointing to the other insns, we end up preserving
4275 whole RTL chain and attached detailed debug info in memory. */
4276 for (insn = get_insns (); insn; insn = next)
4277 {
4278 next = NEXT_INSN (insn);
4279 NEXT_INSN (insn) = NULL;
4280 PREV_INSN (insn) = NULL;
4281 }
4282
4283 /* In case the function was not output,
4284 don't leave any temporary anonymous types
4285 queued up for sdb output. */
4286 #ifdef SDB_DEBUGGING_INFO
4287 if (write_symbols == SDB_DEBUG)
4288 sdbout_types (NULL_TREE);
4289 #endif
4290
4291 reload_completed = 0;
4292 epilogue_completed = 0;
4293 #ifdef STACK_REGS
4294 regstack_completed = 0;
4295 #endif
4296
4297 /* Clear out the insn_length contents now that they are no
4298 longer valid. */
4299 init_insn_lengths ();
4300
4301 /* Show no temporary slots allocated. */
4302 init_temp_slots ();
4303
4304 free_bb_for_insn ();
4305
4306 if (targetm.binds_local_p (current_function_decl))
4307 {
4308 unsigned int pref = crtl->preferred_stack_boundary;
4309 if (crtl->stack_alignment_needed > crtl->preferred_stack_boundary)
4310 pref = crtl->stack_alignment_needed;
4311 cgraph_rtl_info (current_function_decl)->preferred_incoming_stack_boundary
4312 = pref;
4313 }
4314
4315 /* Make sure volatile mem refs aren't considered valid operands for
4316 arithmetic insns. We must call this here if this is a nested inline
4317 function, since the above code leaves us in the init_recog state,
4318 and the function context push/pop code does not save/restore volatile_ok.
4319
4320 ??? Maybe it isn't necessary for expand_start_function to call this
4321 anymore if we do it here? */
4322
4323 init_recog_no_volatile ();
4324
4325 /* We're done with this function. Free up memory if we can. */
4326 free_after_parsing (cfun);
4327 free_after_compilation (cfun);
4328 return 0;
4329 }
4330
4331 struct rtl_opt_pass pass_clean_state =
4332 {
4333 {
4334 RTL_PASS,
4335 NULL, /* name */
4336 NULL, /* gate */
4337 rest_of_clean_state, /* execute */
4338 NULL, /* sub */
4339 NULL, /* next */
4340 0, /* static_pass_number */
4341 TV_FINAL, /* tv_id */
4342 0, /* properties_required */
4343 0, /* properties_provided */
4344 PROP_rtl, /* properties_destroyed */
4345 0, /* todo_flags_start */
4346 0 /* todo_flags_finish */
4347 }
4348 };
4349