comparison gcc/ggc-page.c @ 0:a06113de4d67

first commit
author kent <kent@cr.ie.u-ryukyu.ac.jp>
date Fri, 17 Jul 2009 14:47:48 +0900
parents
children 77e2b8dfacca
comparison
equal deleted inserted replaced
-1:000000000000 0:a06113de4d67
1 /* "Bag-of-pages" garbage collector for the GNU compiler.
2 Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2007, 2008
3 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "tree.h"
26 #include "rtl.h"
27 #include "tm_p.h"
28 #include "toplev.h"
29 #include "flags.h"
30 #include "ggc.h"
31 #include "timevar.h"
32 #include "params.h"
33 #include "tree-flow.h"
34
35 /* Prefer MAP_ANON(YMOUS) to /dev/zero, since we don't need to keep a
36 file open. Prefer either to valloc. */
37 #ifdef HAVE_MMAP_ANON
38 # undef HAVE_MMAP_DEV_ZERO
39
40 # include <sys/mman.h>
41 # ifndef MAP_FAILED
42 # define MAP_FAILED -1
43 # endif
44 # if !defined (MAP_ANONYMOUS) && defined (MAP_ANON)
45 # define MAP_ANONYMOUS MAP_ANON
46 # endif
47 # define USING_MMAP
48
49 #endif
50
51 #ifdef HAVE_MMAP_DEV_ZERO
52
53 # include <sys/mman.h>
54 # ifndef MAP_FAILED
55 # define MAP_FAILED -1
56 # endif
57 # define USING_MMAP
58
59 #endif
60
61 #ifndef USING_MMAP
62 #define USING_MALLOC_PAGE_GROUPS
63 #endif
64
65 /* Strategy:
66
67 This garbage-collecting allocator allocates objects on one of a set
68 of pages. Each page can allocate objects of a single size only;
69 available sizes are powers of two starting at four bytes. The size
70 of an allocation request is rounded up to the next power of two
71 (`order'), and satisfied from the appropriate page.
72
73 Each page is recorded in a page-entry, which also maintains an
74 in-use bitmap of object positions on the page. This allows the
75 allocation state of a particular object to be flipped without
76 touching the page itself.
77
78 Each page-entry also has a context depth, which is used to track
79 pushing and popping of allocation contexts. Only objects allocated
80 in the current (highest-numbered) context may be collected.
81
82 Page entries are arranged in an array of singly-linked lists. The
83 array is indexed by the allocation size, in bits, of the pages on
84 it; i.e. all pages on a list allocate objects of the same size.
85 Pages are ordered on the list such that all non-full pages precede
86 all full pages, with non-full pages arranged in order of decreasing
87 context depth.
88
89 Empty pages (of all orders) are kept on a single page cache list,
90 and are considered first when new pages are required; they are
91 deallocated at the start of the next collection if they haven't
92 been recycled by then. */
93
94 /* Define GGC_DEBUG_LEVEL to print debugging information.
95 0: No debugging output.
96 1: GC statistics only.
97 2: Page-entry allocations/deallocations as well.
98 3: Object allocations as well.
99 4: Object marks as well. */
100 #define GGC_DEBUG_LEVEL (0)
101
102 #ifndef HOST_BITS_PER_PTR
103 #define HOST_BITS_PER_PTR HOST_BITS_PER_LONG
104 #endif
105
106
107 /* A two-level tree is used to look up the page-entry for a given
108 pointer. Two chunks of the pointer's bits are extracted to index
109 the first and second levels of the tree, as follows:
110
111 HOST_PAGE_SIZE_BITS
112 32 | |
113 msb +----------------+----+------+------+ lsb
114 | | |
115 PAGE_L1_BITS |
116 | |
117 PAGE_L2_BITS
118
119 The bottommost HOST_PAGE_SIZE_BITS are ignored, since page-entry
120 pages are aligned on system page boundaries. The next most
121 significant PAGE_L2_BITS and PAGE_L1_BITS are the second and first
122 index values in the lookup table, respectively.
123
124 For 32-bit architectures and the settings below, there are no
125 leftover bits. For architectures with wider pointers, the lookup
126 tree points to a list of pages, which must be scanned to find the
127 correct one. */
128
129 #define PAGE_L1_BITS (8)
130 #define PAGE_L2_BITS (32 - PAGE_L1_BITS - G.lg_pagesize)
131 #define PAGE_L1_SIZE ((size_t) 1 << PAGE_L1_BITS)
132 #define PAGE_L2_SIZE ((size_t) 1 << PAGE_L2_BITS)
133
134 #define LOOKUP_L1(p) \
135 (((size_t) (p) >> (32 - PAGE_L1_BITS)) & ((1 << PAGE_L1_BITS) - 1))
136
137 #define LOOKUP_L2(p) \
138 (((size_t) (p) >> G.lg_pagesize) & ((1 << PAGE_L2_BITS) - 1))
139
140 /* The number of objects per allocation page, for objects on a page of
141 the indicated ORDER. */
142 #define OBJECTS_PER_PAGE(ORDER) objects_per_page_table[ORDER]
143
144 /* The number of objects in P. */
145 #define OBJECTS_IN_PAGE(P) ((P)->bytes / OBJECT_SIZE ((P)->order))
146
147 /* The size of an object on a page of the indicated ORDER. */
148 #define OBJECT_SIZE(ORDER) object_size_table[ORDER]
149
150 /* For speed, we avoid doing a general integer divide to locate the
151 offset in the allocation bitmap, by precalculating numbers M, S
152 such that (O * M) >> S == O / Z (modulo 2^32), for any offset O
153 within the page which is evenly divisible by the object size Z. */
154 #define DIV_MULT(ORDER) inverse_table[ORDER].mult
155 #define DIV_SHIFT(ORDER) inverse_table[ORDER].shift
156 #define OFFSET_TO_BIT(OFFSET, ORDER) \
157 (((OFFSET) * DIV_MULT (ORDER)) >> DIV_SHIFT (ORDER))
158
159 /* The number of extra orders, not corresponding to power-of-two sized
160 objects. */
161
162 #define NUM_EXTRA_ORDERS ARRAY_SIZE (extra_order_size_table)
163
164 #define RTL_SIZE(NSLOTS) \
165 (RTX_HDR_SIZE + (NSLOTS) * sizeof (rtunion))
166
167 #define TREE_EXP_SIZE(OPS) \
168 (sizeof (struct tree_exp) + ((OPS) - 1) * sizeof (tree))
169
170 /* The Ith entry is the maximum size of an object to be stored in the
171 Ith extra order. Adding a new entry to this array is the *only*
172 thing you need to do to add a new special allocation size. */
173
174 static const size_t extra_order_size_table[] = {
175 sizeof (struct var_ann_d),
176 sizeof (struct tree_decl_non_common),
177 sizeof (struct tree_field_decl),
178 sizeof (struct tree_parm_decl),
179 sizeof (struct tree_var_decl),
180 sizeof (struct tree_list),
181 sizeof (struct tree_ssa_name),
182 sizeof (struct function),
183 sizeof (struct basic_block_def),
184 sizeof (bitmap_element),
185 sizeof (bitmap_head),
186 TREE_EXP_SIZE (2),
187 RTL_SIZE (2), /* MEM, PLUS, etc. */
188 RTL_SIZE (9), /* INSN */
189 };
190
191 /* The total number of orders. */
192
193 #define NUM_ORDERS (HOST_BITS_PER_PTR + NUM_EXTRA_ORDERS)
194
195 /* We use this structure to determine the alignment required for
196 allocations. For power-of-two sized allocations, that's not a
197 problem, but it does matter for odd-sized allocations. */
198
199 struct max_alignment {
200 char c;
201 union {
202 HOST_WIDEST_INT i;
203 long double d;
204 } u;
205 };
206
207 /* The biggest alignment required. */
208
209 #define MAX_ALIGNMENT (offsetof (struct max_alignment, u))
210
211 /* Compute the smallest nonnegative number which when added to X gives
212 a multiple of F. */
213
214 #define ROUND_UP_VALUE(x, f) ((f) - 1 - ((f) - 1 + (x)) % (f))
215
216 /* Compute the smallest multiple of F that is >= X. */
217
218 #define ROUND_UP(x, f) (CEIL (x, f) * (f))
219
220 /* The Ith entry is the number of objects on a page or order I. */
221
222 static unsigned objects_per_page_table[NUM_ORDERS];
223
224 /* The Ith entry is the size of an object on a page of order I. */
225
226 static size_t object_size_table[NUM_ORDERS];
227
228 /* The Ith entry is a pair of numbers (mult, shift) such that
229 ((k * mult) >> shift) mod 2^32 == (k / OBJECT_SIZE(I)) mod 2^32,
230 for all k evenly divisible by OBJECT_SIZE(I). */
231
232 static struct
233 {
234 size_t mult;
235 unsigned int shift;
236 }
237 inverse_table[NUM_ORDERS];
238
239 /* A page_entry records the status of an allocation page. This
240 structure is dynamically sized to fit the bitmap in_use_p. */
241 typedef struct page_entry
242 {
243 /* The next page-entry with objects of the same size, or NULL if
244 this is the last page-entry. */
245 struct page_entry *next;
246
247 /* The previous page-entry with objects of the same size, or NULL if
248 this is the first page-entry. The PREV pointer exists solely to
249 keep the cost of ggc_free manageable. */
250 struct page_entry *prev;
251
252 /* The number of bytes allocated. (This will always be a multiple
253 of the host system page size.) */
254 size_t bytes;
255
256 /* The address at which the memory is allocated. */
257 char *page;
258
259 #ifdef USING_MALLOC_PAGE_GROUPS
260 /* Back pointer to the page group this page came from. */
261 struct page_group *group;
262 #endif
263
264 /* This is the index in the by_depth varray where this page table
265 can be found. */
266 unsigned long index_by_depth;
267
268 /* Context depth of this page. */
269 unsigned short context_depth;
270
271 /* The number of free objects remaining on this page. */
272 unsigned short num_free_objects;
273
274 /* A likely candidate for the bit position of a free object for the
275 next allocation from this page. */
276 unsigned short next_bit_hint;
277
278 /* The lg of size of objects allocated from this page. */
279 unsigned char order;
280
281 /* A bit vector indicating whether or not objects are in use. The
282 Nth bit is one if the Nth object on this page is allocated. This
283 array is dynamically sized. */
284 unsigned long in_use_p[1];
285 } page_entry;
286
287 #ifdef USING_MALLOC_PAGE_GROUPS
288 /* A page_group describes a large allocation from malloc, from which
289 we parcel out aligned pages. */
290 typedef struct page_group
291 {
292 /* A linked list of all extant page groups. */
293 struct page_group *next;
294
295 /* The address we received from malloc. */
296 char *allocation;
297
298 /* The size of the block. */
299 size_t alloc_size;
300
301 /* A bitmask of pages in use. */
302 unsigned int in_use;
303 } page_group;
304 #endif
305
306 #if HOST_BITS_PER_PTR <= 32
307
308 /* On 32-bit hosts, we use a two level page table, as pictured above. */
309 typedef page_entry **page_table[PAGE_L1_SIZE];
310
311 #else
312
313 /* On 64-bit hosts, we use the same two level page tables plus a linked
314 list that disambiguates the top 32-bits. There will almost always be
315 exactly one entry in the list. */
316 typedef struct page_table_chain
317 {
318 struct page_table_chain *next;
319 size_t high_bits;
320 page_entry **table[PAGE_L1_SIZE];
321 } *page_table;
322
323 #endif
324
325 /* The rest of the global variables. */
326 static struct globals
327 {
328 /* The Nth element in this array is a page with objects of size 2^N.
329 If there are any pages with free objects, they will be at the
330 head of the list. NULL if there are no page-entries for this
331 object size. */
332 page_entry *pages[NUM_ORDERS];
333
334 /* The Nth element in this array is the last page with objects of
335 size 2^N. NULL if there are no page-entries for this object
336 size. */
337 page_entry *page_tails[NUM_ORDERS];
338
339 /* Lookup table for associating allocation pages with object addresses. */
340 page_table lookup;
341
342 /* The system's page size. */
343 size_t pagesize;
344 size_t lg_pagesize;
345
346 /* Bytes currently allocated. */
347 size_t allocated;
348
349 /* Bytes currently allocated at the end of the last collection. */
350 size_t allocated_last_gc;
351
352 /* Total amount of memory mapped. */
353 size_t bytes_mapped;
354
355 /* Bit N set if any allocations have been done at context depth N. */
356 unsigned long context_depth_allocations;
357
358 /* Bit N set if any collections have been done at context depth N. */
359 unsigned long context_depth_collections;
360
361 /* The current depth in the context stack. */
362 unsigned short context_depth;
363
364 /* A file descriptor open to /dev/zero for reading. */
365 #if defined (HAVE_MMAP_DEV_ZERO)
366 int dev_zero_fd;
367 #endif
368
369 /* A cache of free system pages. */
370 page_entry *free_pages;
371
372 #ifdef USING_MALLOC_PAGE_GROUPS
373 page_group *page_groups;
374 #endif
375
376 /* The file descriptor for debugging output. */
377 FILE *debug_file;
378
379 /* Current number of elements in use in depth below. */
380 unsigned int depth_in_use;
381
382 /* Maximum number of elements that can be used before resizing. */
383 unsigned int depth_max;
384
385 /* Each element of this array is an index in by_depth where the given
386 depth starts. This structure is indexed by that given depth we
387 are interested in. */
388 unsigned int *depth;
389
390 /* Current number of elements in use in by_depth below. */
391 unsigned int by_depth_in_use;
392
393 /* Maximum number of elements that can be used before resizing. */
394 unsigned int by_depth_max;
395
396 /* Each element of this array is a pointer to a page_entry, all
397 page_entries can be found in here by increasing depth.
398 index_by_depth in the page_entry is the index into this data
399 structure where that page_entry can be found. This is used to
400 speed up finding all page_entries at a particular depth. */
401 page_entry **by_depth;
402
403 /* Each element is a pointer to the saved in_use_p bits, if any,
404 zero otherwise. We allocate them all together, to enable a
405 better runtime data access pattern. */
406 unsigned long **save_in_use;
407
408 #ifdef ENABLE_GC_ALWAYS_COLLECT
409 /* List of free objects to be verified as actually free on the
410 next collection. */
411 struct free_object
412 {
413 void *object;
414 struct free_object *next;
415 } *free_object_list;
416 #endif
417
418 #ifdef GATHER_STATISTICS
419 struct
420 {
421 /* Total memory allocated with ggc_alloc. */
422 unsigned long long total_allocated;
423 /* Total overhead for memory to be allocated with ggc_alloc. */
424 unsigned long long total_overhead;
425
426 /* Total allocations and overhead for sizes less than 32, 64 and 128.
427 These sizes are interesting because they are typical cache line
428 sizes. */
429
430 unsigned long long total_allocated_under32;
431 unsigned long long total_overhead_under32;
432
433 unsigned long long total_allocated_under64;
434 unsigned long long total_overhead_under64;
435
436 unsigned long long total_allocated_under128;
437 unsigned long long total_overhead_under128;
438
439 /* The allocations for each of the allocation orders. */
440 unsigned long long total_allocated_per_order[NUM_ORDERS];
441
442 /* The overhead for each of the allocation orders. */
443 unsigned long long total_overhead_per_order[NUM_ORDERS];
444 } stats;
445 #endif
446 } G;
447
448 /* The size in bytes required to maintain a bitmap for the objects
449 on a page-entry. */
450 #define BITMAP_SIZE(Num_objects) \
451 (CEIL ((Num_objects), HOST_BITS_PER_LONG) * sizeof(long))
452
453 /* Allocate pages in chunks of this size, to throttle calls to memory
454 allocation routines. The first page is used, the rest go onto the
455 free list. This cannot be larger than HOST_BITS_PER_INT for the
456 in_use bitmask for page_group. Hosts that need a different value
457 can override this by defining GGC_QUIRE_SIZE explicitly. */
458 #ifndef GGC_QUIRE_SIZE
459 # ifdef USING_MMAP
460 # define GGC_QUIRE_SIZE 256
461 # else
462 # define GGC_QUIRE_SIZE 16
463 # endif
464 #endif
465
466 /* Initial guess as to how many page table entries we might need. */
467 #define INITIAL_PTE_COUNT 128
468
469 static int ggc_allocated_p (const void *);
470 static page_entry *lookup_page_table_entry (const void *);
471 static void set_page_table_entry (void *, page_entry *);
472 #ifdef USING_MMAP
473 static char *alloc_anon (char *, size_t);
474 #endif
475 #ifdef USING_MALLOC_PAGE_GROUPS
476 static size_t page_group_index (char *, char *);
477 static void set_page_group_in_use (page_group *, char *);
478 static void clear_page_group_in_use (page_group *, char *);
479 #endif
480 static struct page_entry * alloc_page (unsigned);
481 static void free_page (struct page_entry *);
482 static void release_pages (void);
483 static void clear_marks (void);
484 static void sweep_pages (void);
485 static void ggc_recalculate_in_use_p (page_entry *);
486 static void compute_inverse (unsigned);
487 static inline void adjust_depth (void);
488 static void move_ptes_to_front (int, int);
489
490 void debug_print_page_list (int);
491 static void push_depth (unsigned int);
492 static void push_by_depth (page_entry *, unsigned long *);
493
494 /* Push an entry onto G.depth. */
495
496 inline static void
497 push_depth (unsigned int i)
498 {
499 if (G.depth_in_use >= G.depth_max)
500 {
501 G.depth_max *= 2;
502 G.depth = XRESIZEVEC (unsigned int, G.depth, G.depth_max);
503 }
504 G.depth[G.depth_in_use++] = i;
505 }
506
507 /* Push an entry onto G.by_depth and G.save_in_use. */
508
509 inline static void
510 push_by_depth (page_entry *p, unsigned long *s)
511 {
512 if (G.by_depth_in_use >= G.by_depth_max)
513 {
514 G.by_depth_max *= 2;
515 G.by_depth = XRESIZEVEC (page_entry *, G.by_depth, G.by_depth_max);
516 G.save_in_use = XRESIZEVEC (unsigned long *, G.save_in_use,
517 G.by_depth_max);
518 }
519 G.by_depth[G.by_depth_in_use] = p;
520 G.save_in_use[G.by_depth_in_use++] = s;
521 }
522
523 #if (GCC_VERSION < 3001)
524 #define prefetch(X) ((void) X)
525 #else
526 #define prefetch(X) __builtin_prefetch (X)
527 #endif
528
529 #define save_in_use_p_i(__i) \
530 (G.save_in_use[__i])
531 #define save_in_use_p(__p) \
532 (save_in_use_p_i (__p->index_by_depth))
533
534 /* Returns nonzero if P was allocated in GC'able memory. */
535
536 static inline int
537 ggc_allocated_p (const void *p)
538 {
539 page_entry ***base;
540 size_t L1, L2;
541
542 #if HOST_BITS_PER_PTR <= 32
543 base = &G.lookup[0];
544 #else
545 page_table table = G.lookup;
546 size_t high_bits = (size_t) p & ~ (size_t) 0xffffffff;
547 while (1)
548 {
549 if (table == NULL)
550 return 0;
551 if (table->high_bits == high_bits)
552 break;
553 table = table->next;
554 }
555 base = &table->table[0];
556 #endif
557
558 /* Extract the level 1 and 2 indices. */
559 L1 = LOOKUP_L1 (p);
560 L2 = LOOKUP_L2 (p);
561
562 return base[L1] && base[L1][L2];
563 }
564
565 /* Traverse the page table and find the entry for a page.
566 Die (probably) if the object wasn't allocated via GC. */
567
568 static inline page_entry *
569 lookup_page_table_entry (const void *p)
570 {
571 page_entry ***base;
572 size_t L1, L2;
573
574 #if HOST_BITS_PER_PTR <= 32
575 base = &G.lookup[0];
576 #else
577 page_table table = G.lookup;
578 size_t high_bits = (size_t) p & ~ (size_t) 0xffffffff;
579 while (table->high_bits != high_bits)
580 table = table->next;
581 base = &table->table[0];
582 #endif
583
584 /* Extract the level 1 and 2 indices. */
585 L1 = LOOKUP_L1 (p);
586 L2 = LOOKUP_L2 (p);
587
588 return base[L1][L2];
589 }
590
591 /* Set the page table entry for a page. */
592
593 static void
594 set_page_table_entry (void *p, page_entry *entry)
595 {
596 page_entry ***base;
597 size_t L1, L2;
598
599 #if HOST_BITS_PER_PTR <= 32
600 base = &G.lookup[0];
601 #else
602 page_table table;
603 size_t high_bits = (size_t) p & ~ (size_t) 0xffffffff;
604 for (table = G.lookup; table; table = table->next)
605 if (table->high_bits == high_bits)
606 goto found;
607
608 /* Not found -- allocate a new table. */
609 table = XCNEW (struct page_table_chain);
610 table->next = G.lookup;
611 table->high_bits = high_bits;
612 G.lookup = table;
613 found:
614 base = &table->table[0];
615 #endif
616
617 /* Extract the level 1 and 2 indices. */
618 L1 = LOOKUP_L1 (p);
619 L2 = LOOKUP_L2 (p);
620
621 if (base[L1] == NULL)
622 base[L1] = XCNEWVEC (page_entry *, PAGE_L2_SIZE);
623
624 base[L1][L2] = entry;
625 }
626
627 /* Prints the page-entry for object size ORDER, for debugging. */
628
629 void
630 debug_print_page_list (int order)
631 {
632 page_entry *p;
633 printf ("Head=%p, Tail=%p:\n", (void *) G.pages[order],
634 (void *) G.page_tails[order]);
635 p = G.pages[order];
636 while (p != NULL)
637 {
638 printf ("%p(%1d|%3d) -> ", (void *) p, p->context_depth,
639 p->num_free_objects);
640 p = p->next;
641 }
642 printf ("NULL\n");
643 fflush (stdout);
644 }
645
646 #ifdef USING_MMAP
647 /* Allocate SIZE bytes of anonymous memory, preferably near PREF,
648 (if non-null). The ifdef structure here is intended to cause a
649 compile error unless exactly one of the HAVE_* is defined. */
650
651 static inline char *
652 alloc_anon (char *pref ATTRIBUTE_UNUSED, size_t size)
653 {
654 #ifdef HAVE_MMAP_ANON
655 char *page = (char *) mmap (pref, size, PROT_READ | PROT_WRITE,
656 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
657 #endif
658 #ifdef HAVE_MMAP_DEV_ZERO
659 char *page = (char *) mmap (pref, size, PROT_READ | PROT_WRITE,
660 MAP_PRIVATE, G.dev_zero_fd, 0);
661 #endif
662
663 if (page == (char *) MAP_FAILED)
664 {
665 perror ("virtual memory exhausted");
666 exit (FATAL_EXIT_CODE);
667 }
668
669 /* Remember that we allocated this memory. */
670 G.bytes_mapped += size;
671
672 /* Pretend we don't have access to the allocated pages. We'll enable
673 access to smaller pieces of the area in ggc_alloc. Discard the
674 handle to avoid handle leak. */
675 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_NOACCESS (page, size));
676
677 return page;
678 }
679 #endif
680 #ifdef USING_MALLOC_PAGE_GROUPS
681 /* Compute the index for this page into the page group. */
682
683 static inline size_t
684 page_group_index (char *allocation, char *page)
685 {
686 return (size_t) (page - allocation) >> G.lg_pagesize;
687 }
688
689 /* Set and clear the in_use bit for this page in the page group. */
690
691 static inline void
692 set_page_group_in_use (page_group *group, char *page)
693 {
694 group->in_use |= 1 << page_group_index (group->allocation, page);
695 }
696
697 static inline void
698 clear_page_group_in_use (page_group *group, char *page)
699 {
700 group->in_use &= ~(1 << page_group_index (group->allocation, page));
701 }
702 #endif
703
704 /* Allocate a new page for allocating objects of size 2^ORDER,
705 and return an entry for it. The entry is not added to the
706 appropriate page_table list. */
707
708 static inline struct page_entry *
709 alloc_page (unsigned order)
710 {
711 struct page_entry *entry, *p, **pp;
712 char *page;
713 size_t num_objects;
714 size_t bitmap_size;
715 size_t page_entry_size;
716 size_t entry_size;
717 #ifdef USING_MALLOC_PAGE_GROUPS
718 page_group *group;
719 #endif
720
721 num_objects = OBJECTS_PER_PAGE (order);
722 bitmap_size = BITMAP_SIZE (num_objects + 1);
723 page_entry_size = sizeof (page_entry) - sizeof (long) + bitmap_size;
724 entry_size = num_objects * OBJECT_SIZE (order);
725 if (entry_size < G.pagesize)
726 entry_size = G.pagesize;
727
728 entry = NULL;
729 page = NULL;
730
731 /* Check the list of free pages for one we can use. */
732 for (pp = &G.free_pages, p = *pp; p; pp = &p->next, p = *pp)
733 if (p->bytes == entry_size)
734 break;
735
736 if (p != NULL)
737 {
738 /* Recycle the allocated memory from this page ... */
739 *pp = p->next;
740 page = p->page;
741
742 #ifdef USING_MALLOC_PAGE_GROUPS
743 group = p->group;
744 #endif
745
746 /* ... and, if possible, the page entry itself. */
747 if (p->order == order)
748 {
749 entry = p;
750 memset (entry, 0, page_entry_size);
751 }
752 else
753 free (p);
754 }
755 #ifdef USING_MMAP
756 else if (entry_size == G.pagesize)
757 {
758 /* We want just one page. Allocate a bunch of them and put the
759 extras on the freelist. (Can only do this optimization with
760 mmap for backing store.) */
761 struct page_entry *e, *f = G.free_pages;
762 int i;
763
764 page = alloc_anon (NULL, G.pagesize * GGC_QUIRE_SIZE);
765
766 /* This loop counts down so that the chain will be in ascending
767 memory order. */
768 for (i = GGC_QUIRE_SIZE - 1; i >= 1; i--)
769 {
770 e = XCNEWVAR (struct page_entry, page_entry_size);
771 e->order = order;
772 e->bytes = G.pagesize;
773 e->page = page + (i << G.lg_pagesize);
774 e->next = f;
775 f = e;
776 }
777
778 G.free_pages = f;
779 }
780 else
781 page = alloc_anon (NULL, entry_size);
782 #endif
783 #ifdef USING_MALLOC_PAGE_GROUPS
784 else
785 {
786 /* Allocate a large block of memory and serve out the aligned
787 pages therein. This results in much less memory wastage
788 than the traditional implementation of valloc. */
789
790 char *allocation, *a, *enda;
791 size_t alloc_size, head_slop, tail_slop;
792 int multiple_pages = (entry_size == G.pagesize);
793
794 if (multiple_pages)
795 alloc_size = GGC_QUIRE_SIZE * G.pagesize;
796 else
797 alloc_size = entry_size + G.pagesize - 1;
798 allocation = XNEWVEC (char, alloc_size);
799
800 page = (char *) (((size_t) allocation + G.pagesize - 1) & -G.pagesize);
801 head_slop = page - allocation;
802 if (multiple_pages)
803 tail_slop = ((size_t) allocation + alloc_size) & (G.pagesize - 1);
804 else
805 tail_slop = alloc_size - entry_size - head_slop;
806 enda = allocation + alloc_size - tail_slop;
807
808 /* We allocated N pages, which are likely not aligned, leaving
809 us with N-1 usable pages. We plan to place the page_group
810 structure somewhere in the slop. */
811 if (head_slop >= sizeof (page_group))
812 group = (page_group *)page - 1;
813 else
814 {
815 /* We magically got an aligned allocation. Too bad, we have
816 to waste a page anyway. */
817 if (tail_slop == 0)
818 {
819 enda -= G.pagesize;
820 tail_slop += G.pagesize;
821 }
822 gcc_assert (tail_slop >= sizeof (page_group));
823 group = (page_group *)enda;
824 tail_slop -= sizeof (page_group);
825 }
826
827 /* Remember that we allocated this memory. */
828 group->next = G.page_groups;
829 group->allocation = allocation;
830 group->alloc_size = alloc_size;
831 group->in_use = 0;
832 G.page_groups = group;
833 G.bytes_mapped += alloc_size;
834
835 /* If we allocated multiple pages, put the rest on the free list. */
836 if (multiple_pages)
837 {
838 struct page_entry *e, *f = G.free_pages;
839 for (a = enda - G.pagesize; a != page; a -= G.pagesize)
840 {
841 e = XCNEWVAR (struct page_entry, page_entry_size);
842 e->order = order;
843 e->bytes = G.pagesize;
844 e->page = a;
845 e->group = group;
846 e->next = f;
847 f = e;
848 }
849 G.free_pages = f;
850 }
851 }
852 #endif
853
854 if (entry == NULL)
855 entry = XCNEWVAR (struct page_entry, page_entry_size);
856
857 entry->bytes = entry_size;
858 entry->page = page;
859 entry->context_depth = G.context_depth;
860 entry->order = order;
861 entry->num_free_objects = num_objects;
862 entry->next_bit_hint = 1;
863
864 G.context_depth_allocations |= (unsigned long)1 << G.context_depth;
865
866 #ifdef USING_MALLOC_PAGE_GROUPS
867 entry->group = group;
868 set_page_group_in_use (group, page);
869 #endif
870
871 /* Set the one-past-the-end in-use bit. This acts as a sentry as we
872 increment the hint. */
873 entry->in_use_p[num_objects / HOST_BITS_PER_LONG]
874 = (unsigned long) 1 << (num_objects % HOST_BITS_PER_LONG);
875
876 set_page_table_entry (page, entry);
877
878 if (GGC_DEBUG_LEVEL >= 2)
879 fprintf (G.debug_file,
880 "Allocating page at %p, object size=%lu, data %p-%p\n",
881 (void *) entry, (unsigned long) OBJECT_SIZE (order), page,
882 page + entry_size - 1);
883
884 return entry;
885 }
886
887 /* Adjust the size of G.depth so that no index greater than the one
888 used by the top of the G.by_depth is used. */
889
890 static inline void
891 adjust_depth (void)
892 {
893 page_entry *top;
894
895 if (G.by_depth_in_use)
896 {
897 top = G.by_depth[G.by_depth_in_use-1];
898
899 /* Peel back indices in depth that index into by_depth, so that
900 as new elements are added to by_depth, we note the indices
901 of those elements, if they are for new context depths. */
902 while (G.depth_in_use > (size_t)top->context_depth+1)
903 --G.depth_in_use;
904 }
905 }
906
907 /* For a page that is no longer needed, put it on the free page list. */
908
909 static void
910 free_page (page_entry *entry)
911 {
912 if (GGC_DEBUG_LEVEL >= 2)
913 fprintf (G.debug_file,
914 "Deallocating page at %p, data %p-%p\n", (void *) entry,
915 entry->page, entry->page + entry->bytes - 1);
916
917 /* Mark the page as inaccessible. Discard the handle to avoid handle
918 leak. */
919 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_NOACCESS (entry->page, entry->bytes));
920
921 set_page_table_entry (entry->page, NULL);
922
923 #ifdef USING_MALLOC_PAGE_GROUPS
924 clear_page_group_in_use (entry->group, entry->page);
925 #endif
926
927 if (G.by_depth_in_use > 1)
928 {
929 page_entry *top = G.by_depth[G.by_depth_in_use-1];
930 int i = entry->index_by_depth;
931
932 /* We cannot free a page from a context deeper than the current
933 one. */
934 gcc_assert (entry->context_depth == top->context_depth);
935
936 /* Put top element into freed slot. */
937 G.by_depth[i] = top;
938 G.save_in_use[i] = G.save_in_use[G.by_depth_in_use-1];
939 top->index_by_depth = i;
940 }
941 --G.by_depth_in_use;
942
943 adjust_depth ();
944
945 entry->next = G.free_pages;
946 G.free_pages = entry;
947 }
948
949 /* Release the free page cache to the system. */
950
951 static void
952 release_pages (void)
953 {
954 #ifdef USING_MMAP
955 page_entry *p, *next;
956 char *start;
957 size_t len;
958
959 /* Gather up adjacent pages so they are unmapped together. */
960 p = G.free_pages;
961
962 while (p)
963 {
964 start = p->page;
965 next = p->next;
966 len = p->bytes;
967 free (p);
968 p = next;
969
970 while (p && p->page == start + len)
971 {
972 next = p->next;
973 len += p->bytes;
974 free (p);
975 p = next;
976 }
977
978 munmap (start, len);
979 G.bytes_mapped -= len;
980 }
981
982 G.free_pages = NULL;
983 #endif
984 #ifdef USING_MALLOC_PAGE_GROUPS
985 page_entry **pp, *p;
986 page_group **gp, *g;
987
988 /* Remove all pages from free page groups from the list. */
989 pp = &G.free_pages;
990 while ((p = *pp) != NULL)
991 if (p->group->in_use == 0)
992 {
993 *pp = p->next;
994 free (p);
995 }
996 else
997 pp = &p->next;
998
999 /* Remove all free page groups, and release the storage. */
1000 gp = &G.page_groups;
1001 while ((g = *gp) != NULL)
1002 if (g->in_use == 0)
1003 {
1004 *gp = g->next;
1005 G.bytes_mapped -= g->alloc_size;
1006 free (g->allocation);
1007 }
1008 else
1009 gp = &g->next;
1010 #endif
1011 }
1012
1013 /* This table provides a fast way to determine ceil(log_2(size)) for
1014 allocation requests. The minimum allocation size is eight bytes. */
1015 #define NUM_SIZE_LOOKUP 512
1016 static unsigned char size_lookup[NUM_SIZE_LOOKUP] =
1017 {
1018 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4,
1019 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
1020 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
1021 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
1022 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
1023 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
1024 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
1025 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
1026 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1027 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1028 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1029 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1030 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1031 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1032 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1033 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,
1034 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1035 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1036 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1037 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1038 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1039 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1040 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1041 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1042 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1043 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1044 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1045 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1046 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1047 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1048 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9,
1049 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9
1050 };
1051
1052 /* Typed allocation function. Does nothing special in this collector. */
1053
1054 void *
1055 ggc_alloc_typed_stat (enum gt_types_enum type ATTRIBUTE_UNUSED, size_t size
1056 MEM_STAT_DECL)
1057 {
1058 return ggc_alloc_stat (size PASS_MEM_STAT);
1059 }
1060
1061 /* Allocate a chunk of memory of SIZE bytes. Its contents are undefined. */
1062
1063 void *
1064 ggc_alloc_stat (size_t size MEM_STAT_DECL)
1065 {
1066 size_t order, word, bit, object_offset, object_size;
1067 struct page_entry *entry;
1068 void *result;
1069
1070 if (size < NUM_SIZE_LOOKUP)
1071 {
1072 order = size_lookup[size];
1073 object_size = OBJECT_SIZE (order);
1074 }
1075 else
1076 {
1077 order = 10;
1078 while (size > (object_size = OBJECT_SIZE (order)))
1079 order++;
1080 }
1081
1082 /* If there are non-full pages for this size allocation, they are at
1083 the head of the list. */
1084 entry = G.pages[order];
1085
1086 /* If there is no page for this object size, or all pages in this
1087 context are full, allocate a new page. */
1088 if (entry == NULL || entry->num_free_objects == 0)
1089 {
1090 struct page_entry *new_entry;
1091 new_entry = alloc_page (order);
1092
1093 new_entry->index_by_depth = G.by_depth_in_use;
1094 push_by_depth (new_entry, 0);
1095
1096 /* We can skip context depths, if we do, make sure we go all the
1097 way to the new depth. */
1098 while (new_entry->context_depth >= G.depth_in_use)
1099 push_depth (G.by_depth_in_use-1);
1100
1101 /* If this is the only entry, it's also the tail. If it is not
1102 the only entry, then we must update the PREV pointer of the
1103 ENTRY (G.pages[order]) to point to our new page entry. */
1104 if (entry == NULL)
1105 G.page_tails[order] = new_entry;
1106 else
1107 entry->prev = new_entry;
1108
1109 /* Put new pages at the head of the page list. By definition the
1110 entry at the head of the list always has a NULL pointer. */
1111 new_entry->next = entry;
1112 new_entry->prev = NULL;
1113 entry = new_entry;
1114 G.pages[order] = new_entry;
1115
1116 /* For a new page, we know the word and bit positions (in the
1117 in_use bitmap) of the first available object -- they're zero. */
1118 new_entry->next_bit_hint = 1;
1119 word = 0;
1120 bit = 0;
1121 object_offset = 0;
1122 }
1123 else
1124 {
1125 /* First try to use the hint left from the previous allocation
1126 to locate a clear bit in the in-use bitmap. We've made sure
1127 that the one-past-the-end bit is always set, so if the hint
1128 has run over, this test will fail. */
1129 unsigned hint = entry->next_bit_hint;
1130 word = hint / HOST_BITS_PER_LONG;
1131 bit = hint % HOST_BITS_PER_LONG;
1132
1133 /* If the hint didn't work, scan the bitmap from the beginning. */
1134 if ((entry->in_use_p[word] >> bit) & 1)
1135 {
1136 word = bit = 0;
1137 while (~entry->in_use_p[word] == 0)
1138 ++word;
1139
1140 #if GCC_VERSION >= 3004
1141 bit = __builtin_ctzl (~entry->in_use_p[word]);
1142 #else
1143 while ((entry->in_use_p[word] >> bit) & 1)
1144 ++bit;
1145 #endif
1146
1147 hint = word * HOST_BITS_PER_LONG + bit;
1148 }
1149
1150 /* Next time, try the next bit. */
1151 entry->next_bit_hint = hint + 1;
1152
1153 object_offset = hint * object_size;
1154 }
1155
1156 /* Set the in-use bit. */
1157 entry->in_use_p[word] |= ((unsigned long) 1 << bit);
1158
1159 /* Keep a running total of the number of free objects. If this page
1160 fills up, we may have to move it to the end of the list if the
1161 next page isn't full. If the next page is full, all subsequent
1162 pages are full, so there's no need to move it. */
1163 if (--entry->num_free_objects == 0
1164 && entry->next != NULL
1165 && entry->next->num_free_objects > 0)
1166 {
1167 /* We have a new head for the list. */
1168 G.pages[order] = entry->next;
1169
1170 /* We are moving ENTRY to the end of the page table list.
1171 The new page at the head of the list will have NULL in
1172 its PREV field and ENTRY will have NULL in its NEXT field. */
1173 entry->next->prev = NULL;
1174 entry->next = NULL;
1175
1176 /* Append ENTRY to the tail of the list. */
1177 entry->prev = G.page_tails[order];
1178 G.page_tails[order]->next = entry;
1179 G.page_tails[order] = entry;
1180 }
1181
1182 /* Calculate the object's address. */
1183 result = entry->page + object_offset;
1184 #ifdef GATHER_STATISTICS
1185 ggc_record_overhead (OBJECT_SIZE (order), OBJECT_SIZE (order) - size,
1186 result PASS_MEM_STAT);
1187 #endif
1188
1189 #ifdef ENABLE_GC_CHECKING
1190 /* Keep poisoning-by-writing-0xaf the object, in an attempt to keep the
1191 exact same semantics in presence of memory bugs, regardless of
1192 ENABLE_VALGRIND_CHECKING. We override this request below. Drop the
1193 handle to avoid handle leak. */
1194 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_UNDEFINED (result, object_size));
1195
1196 /* `Poison' the entire allocated object, including any padding at
1197 the end. */
1198 memset (result, 0xaf, object_size);
1199
1200 /* Make the bytes after the end of the object unaccessible. Discard the
1201 handle to avoid handle leak. */
1202 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_NOACCESS ((char *) result + size,
1203 object_size - size));
1204 #endif
1205
1206 /* Tell Valgrind that the memory is there, but its content isn't
1207 defined. The bytes at the end of the object are still marked
1208 unaccessible. */
1209 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_UNDEFINED (result, size));
1210
1211 /* Keep track of how many bytes are being allocated. This
1212 information is used in deciding when to collect. */
1213 G.allocated += object_size;
1214
1215 /* For timevar statistics. */
1216 timevar_ggc_mem_total += object_size;
1217
1218 #ifdef GATHER_STATISTICS
1219 {
1220 size_t overhead = object_size - size;
1221
1222 G.stats.total_overhead += overhead;
1223 G.stats.total_allocated += object_size;
1224 G.stats.total_overhead_per_order[order] += overhead;
1225 G.stats.total_allocated_per_order[order] += object_size;
1226
1227 if (size <= 32)
1228 {
1229 G.stats.total_overhead_under32 += overhead;
1230 G.stats.total_allocated_under32 += object_size;
1231 }
1232 if (size <= 64)
1233 {
1234 G.stats.total_overhead_under64 += overhead;
1235 G.stats.total_allocated_under64 += object_size;
1236 }
1237 if (size <= 128)
1238 {
1239 G.stats.total_overhead_under128 += overhead;
1240 G.stats.total_allocated_under128 += object_size;
1241 }
1242 }
1243 #endif
1244
1245 if (GGC_DEBUG_LEVEL >= 3)
1246 fprintf (G.debug_file,
1247 "Allocating object, requested size=%lu, actual=%lu at %p on %p\n",
1248 (unsigned long) size, (unsigned long) object_size, result,
1249 (void *) entry);
1250
1251 return result;
1252 }
1253
1254 /* Mark function for strings. */
1255
1256 void
1257 gt_ggc_m_S (const void *p)
1258 {
1259 page_entry *entry;
1260 unsigned bit, word;
1261 unsigned long mask;
1262 unsigned long offset;
1263
1264 if (!p || !ggc_allocated_p (p))
1265 return;
1266
1267 /* Look up the page on which the object is alloced. . */
1268 entry = lookup_page_table_entry (p);
1269 gcc_assert (entry);
1270
1271 /* Calculate the index of the object on the page; this is its bit
1272 position in the in_use_p bitmap. Note that because a char* might
1273 point to the middle of an object, we need special code here to
1274 make sure P points to the start of an object. */
1275 offset = ((const char *) p - entry->page) % object_size_table[entry->order];
1276 if (offset)
1277 {
1278 /* Here we've seen a char* which does not point to the beginning
1279 of an allocated object. We assume it points to the middle of
1280 a STRING_CST. */
1281 gcc_assert (offset == offsetof (struct tree_string, str));
1282 p = ((const char *) p) - offset;
1283 gt_ggc_mx_lang_tree_node (CONST_CAST (void *, p));
1284 return;
1285 }
1286
1287 bit = OFFSET_TO_BIT (((const char *) p) - entry->page, entry->order);
1288 word = bit / HOST_BITS_PER_LONG;
1289 mask = (unsigned long) 1 << (bit % HOST_BITS_PER_LONG);
1290
1291 /* If the bit was previously set, skip it. */
1292 if (entry->in_use_p[word] & mask)
1293 return;
1294
1295 /* Otherwise set it, and decrement the free object count. */
1296 entry->in_use_p[word] |= mask;
1297 entry->num_free_objects -= 1;
1298
1299 if (GGC_DEBUG_LEVEL >= 4)
1300 fprintf (G.debug_file, "Marking %p\n", p);
1301
1302 return;
1303 }
1304
1305 /* If P is not marked, marks it and return false. Otherwise return true.
1306 P must have been allocated by the GC allocator; it mustn't point to
1307 static objects, stack variables, or memory allocated with malloc. */
1308
1309 int
1310 ggc_set_mark (const void *p)
1311 {
1312 page_entry *entry;
1313 unsigned bit, word;
1314 unsigned long mask;
1315
1316 /* Look up the page on which the object is alloced. If the object
1317 wasn't allocated by the collector, we'll probably die. */
1318 entry = lookup_page_table_entry (p);
1319 gcc_assert (entry);
1320
1321 /* Calculate the index of the object on the page; this is its bit
1322 position in the in_use_p bitmap. */
1323 bit = OFFSET_TO_BIT (((const char *) p) - entry->page, entry->order);
1324 word = bit / HOST_BITS_PER_LONG;
1325 mask = (unsigned long) 1 << (bit % HOST_BITS_PER_LONG);
1326
1327 /* If the bit was previously set, skip it. */
1328 if (entry->in_use_p[word] & mask)
1329 return 1;
1330
1331 /* Otherwise set it, and decrement the free object count. */
1332 entry->in_use_p[word] |= mask;
1333 entry->num_free_objects -= 1;
1334
1335 if (GGC_DEBUG_LEVEL >= 4)
1336 fprintf (G.debug_file, "Marking %p\n", p);
1337
1338 return 0;
1339 }
1340
1341 /* Return 1 if P has been marked, zero otherwise.
1342 P must have been allocated by the GC allocator; it mustn't point to
1343 static objects, stack variables, or memory allocated with malloc. */
1344
1345 int
1346 ggc_marked_p (const void *p)
1347 {
1348 page_entry *entry;
1349 unsigned bit, word;
1350 unsigned long mask;
1351
1352 /* Look up the page on which the object is alloced. If the object
1353 wasn't allocated by the collector, we'll probably die. */
1354 entry = lookup_page_table_entry (p);
1355 gcc_assert (entry);
1356
1357 /* Calculate the index of the object on the page; this is its bit
1358 position in the in_use_p bitmap. */
1359 bit = OFFSET_TO_BIT (((const char *) p) - entry->page, entry->order);
1360 word = bit / HOST_BITS_PER_LONG;
1361 mask = (unsigned long) 1 << (bit % HOST_BITS_PER_LONG);
1362
1363 return (entry->in_use_p[word] & mask) != 0;
1364 }
1365
1366 /* Return the size of the gc-able object P. */
1367
1368 size_t
1369 ggc_get_size (const void *p)
1370 {
1371 page_entry *pe = lookup_page_table_entry (p);
1372 return OBJECT_SIZE (pe->order);
1373 }
1374
1375 /* Release the memory for object P. */
1376
1377 void
1378 ggc_free (void *p)
1379 {
1380 page_entry *pe = lookup_page_table_entry (p);
1381 size_t order = pe->order;
1382 size_t size = OBJECT_SIZE (order);
1383
1384 #ifdef GATHER_STATISTICS
1385 ggc_free_overhead (p);
1386 #endif
1387
1388 if (GGC_DEBUG_LEVEL >= 3)
1389 fprintf (G.debug_file,
1390 "Freeing object, actual size=%lu, at %p on %p\n",
1391 (unsigned long) size, p, (void *) pe);
1392
1393 #ifdef ENABLE_GC_CHECKING
1394 /* Poison the data, to indicate the data is garbage. */
1395 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_UNDEFINED (p, size));
1396 memset (p, 0xa5, size);
1397 #endif
1398 /* Let valgrind know the object is free. */
1399 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_NOACCESS (p, size));
1400
1401 #ifdef ENABLE_GC_ALWAYS_COLLECT
1402 /* In the completely-anal-checking mode, we do *not* immediately free
1403 the data, but instead verify that the data is *actually* not
1404 reachable the next time we collect. */
1405 {
1406 struct free_object *fo = XNEW (struct free_object);
1407 fo->object = p;
1408 fo->next = G.free_object_list;
1409 G.free_object_list = fo;
1410 }
1411 #else
1412 {
1413 unsigned int bit_offset, word, bit;
1414
1415 G.allocated -= size;
1416
1417 /* Mark the object not-in-use. */
1418 bit_offset = OFFSET_TO_BIT (((const char *) p) - pe->page, order);
1419 word = bit_offset / HOST_BITS_PER_LONG;
1420 bit = bit_offset % HOST_BITS_PER_LONG;
1421 pe->in_use_p[word] &= ~(1UL << bit);
1422
1423 if (pe->num_free_objects++ == 0)
1424 {
1425 page_entry *p, *q;
1426
1427 /* If the page is completely full, then it's supposed to
1428 be after all pages that aren't. Since we've freed one
1429 object from a page that was full, we need to move the
1430 page to the head of the list.
1431
1432 PE is the node we want to move. Q is the previous node
1433 and P is the next node in the list. */
1434 q = pe->prev;
1435 if (q && q->num_free_objects == 0)
1436 {
1437 p = pe->next;
1438
1439 q->next = p;
1440
1441 /* If PE was at the end of the list, then Q becomes the
1442 new end of the list. If PE was not the end of the
1443 list, then we need to update the PREV field for P. */
1444 if (!p)
1445 G.page_tails[order] = q;
1446 else
1447 p->prev = q;
1448
1449 /* Move PE to the head of the list. */
1450 pe->next = G.pages[order];
1451 pe->prev = NULL;
1452 G.pages[order]->prev = pe;
1453 G.pages[order] = pe;
1454 }
1455
1456 /* Reset the hint bit to point to the only free object. */
1457 pe->next_bit_hint = bit_offset;
1458 }
1459 }
1460 #endif
1461 }
1462
1463 /* Subroutine of init_ggc which computes the pair of numbers used to
1464 perform division by OBJECT_SIZE (order) and fills in inverse_table[].
1465
1466 This algorithm is taken from Granlund and Montgomery's paper
1467 "Division by Invariant Integers using Multiplication"
1468 (Proc. SIGPLAN PLDI, 1994), section 9 (Exact division by
1469 constants). */
1470
1471 static void
1472 compute_inverse (unsigned order)
1473 {
1474 size_t size, inv;
1475 unsigned int e;
1476
1477 size = OBJECT_SIZE (order);
1478 e = 0;
1479 while (size % 2 == 0)
1480 {
1481 e++;
1482 size >>= 1;
1483 }
1484
1485 inv = size;
1486 while (inv * size != 1)
1487 inv = inv * (2 - inv*size);
1488
1489 DIV_MULT (order) = inv;
1490 DIV_SHIFT (order) = e;
1491 }
1492
1493 /* Initialize the ggc-mmap allocator. */
1494 void
1495 init_ggc (void)
1496 {
1497 unsigned order;
1498
1499 G.pagesize = getpagesize();
1500 G.lg_pagesize = exact_log2 (G.pagesize);
1501
1502 #ifdef HAVE_MMAP_DEV_ZERO
1503 G.dev_zero_fd = open ("/dev/zero", O_RDONLY);
1504 if (G.dev_zero_fd == -1)
1505 internal_error ("open /dev/zero: %m");
1506 #endif
1507
1508 #if 0
1509 G.debug_file = fopen ("ggc-mmap.debug", "w");
1510 #else
1511 G.debug_file = stdout;
1512 #endif
1513
1514 #ifdef USING_MMAP
1515 /* StunOS has an amazing off-by-one error for the first mmap allocation
1516 after fiddling with RLIMIT_STACK. The result, as hard as it is to
1517 believe, is an unaligned page allocation, which would cause us to
1518 hork badly if we tried to use it. */
1519 {
1520 char *p = alloc_anon (NULL, G.pagesize);
1521 struct page_entry *e;
1522 if ((size_t)p & (G.pagesize - 1))
1523 {
1524 /* How losing. Discard this one and try another. If we still
1525 can't get something useful, give up. */
1526
1527 p = alloc_anon (NULL, G.pagesize);
1528 gcc_assert (!((size_t)p & (G.pagesize - 1)));
1529 }
1530
1531 /* We have a good page, might as well hold onto it... */
1532 e = XCNEW (struct page_entry);
1533 e->bytes = G.pagesize;
1534 e->page = p;
1535 e->next = G.free_pages;
1536 G.free_pages = e;
1537 }
1538 #endif
1539
1540 /* Initialize the object size table. */
1541 for (order = 0; order < HOST_BITS_PER_PTR; ++order)
1542 object_size_table[order] = (size_t) 1 << order;
1543 for (order = HOST_BITS_PER_PTR; order < NUM_ORDERS; ++order)
1544 {
1545 size_t s = extra_order_size_table[order - HOST_BITS_PER_PTR];
1546
1547 /* If S is not a multiple of the MAX_ALIGNMENT, then round it up
1548 so that we're sure of getting aligned memory. */
1549 s = ROUND_UP (s, MAX_ALIGNMENT);
1550 object_size_table[order] = s;
1551 }
1552
1553 /* Initialize the objects-per-page and inverse tables. */
1554 for (order = 0; order < NUM_ORDERS; ++order)
1555 {
1556 objects_per_page_table[order] = G.pagesize / OBJECT_SIZE (order);
1557 if (objects_per_page_table[order] == 0)
1558 objects_per_page_table[order] = 1;
1559 compute_inverse (order);
1560 }
1561
1562 /* Reset the size_lookup array to put appropriately sized objects in
1563 the special orders. All objects bigger than the previous power
1564 of two, but no greater than the special size, should go in the
1565 new order. */
1566 for (order = HOST_BITS_PER_PTR; order < NUM_ORDERS; ++order)
1567 {
1568 int o;
1569 int i;
1570
1571 i = OBJECT_SIZE (order);
1572 if (i >= NUM_SIZE_LOOKUP)
1573 continue;
1574
1575 for (o = size_lookup[i]; o == size_lookup [i]; --i)
1576 size_lookup[i] = order;
1577 }
1578
1579 G.depth_in_use = 0;
1580 G.depth_max = 10;
1581 G.depth = XNEWVEC (unsigned int, G.depth_max);
1582
1583 G.by_depth_in_use = 0;
1584 G.by_depth_max = INITIAL_PTE_COUNT;
1585 G.by_depth = XNEWVEC (page_entry *, G.by_depth_max);
1586 G.save_in_use = XNEWVEC (unsigned long *, G.by_depth_max);
1587 }
1588
1589 /* Start a new GGC zone. */
1590
1591 struct alloc_zone *
1592 new_ggc_zone (const char *name ATTRIBUTE_UNUSED)
1593 {
1594 return NULL;
1595 }
1596
1597 /* Destroy a GGC zone. */
1598 void
1599 destroy_ggc_zone (struct alloc_zone *zone ATTRIBUTE_UNUSED)
1600 {
1601 }
1602
1603 /* Merge the SAVE_IN_USE_P and IN_USE_P arrays in P so that IN_USE_P
1604 reflects reality. Recalculate NUM_FREE_OBJECTS as well. */
1605
1606 static void
1607 ggc_recalculate_in_use_p (page_entry *p)
1608 {
1609 unsigned int i;
1610 size_t num_objects;
1611
1612 /* Because the past-the-end bit in in_use_p is always set, we
1613 pretend there is one additional object. */
1614 num_objects = OBJECTS_IN_PAGE (p) + 1;
1615
1616 /* Reset the free object count. */
1617 p->num_free_objects = num_objects;
1618
1619 /* Combine the IN_USE_P and SAVE_IN_USE_P arrays. */
1620 for (i = 0;
1621 i < CEIL (BITMAP_SIZE (num_objects),
1622 sizeof (*p->in_use_p));
1623 ++i)
1624 {
1625 unsigned long j;
1626
1627 /* Something is in use if it is marked, or if it was in use in a
1628 context further down the context stack. */
1629 p->in_use_p[i] |= save_in_use_p (p)[i];
1630
1631 /* Decrement the free object count for every object allocated. */
1632 for (j = p->in_use_p[i]; j; j >>= 1)
1633 p->num_free_objects -= (j & 1);
1634 }
1635
1636 gcc_assert (p->num_free_objects < num_objects);
1637 }
1638
1639 /* Unmark all objects. */
1640
1641 static void
1642 clear_marks (void)
1643 {
1644 unsigned order;
1645
1646 for (order = 2; order < NUM_ORDERS; order++)
1647 {
1648 page_entry *p;
1649
1650 for (p = G.pages[order]; p != NULL; p = p->next)
1651 {
1652 size_t num_objects = OBJECTS_IN_PAGE (p);
1653 size_t bitmap_size = BITMAP_SIZE (num_objects + 1);
1654
1655 /* The data should be page-aligned. */
1656 gcc_assert (!((size_t) p->page & (G.pagesize - 1)));
1657
1658 /* Pages that aren't in the topmost context are not collected;
1659 nevertheless, we need their in-use bit vectors to store GC
1660 marks. So, back them up first. */
1661 if (p->context_depth < G.context_depth)
1662 {
1663 if (! save_in_use_p (p))
1664 save_in_use_p (p) = XNEWVAR (unsigned long, bitmap_size);
1665 memcpy (save_in_use_p (p), p->in_use_p, bitmap_size);
1666 }
1667
1668 /* Reset reset the number of free objects and clear the
1669 in-use bits. These will be adjusted by mark_obj. */
1670 p->num_free_objects = num_objects;
1671 memset (p->in_use_p, 0, bitmap_size);
1672
1673 /* Make sure the one-past-the-end bit is always set. */
1674 p->in_use_p[num_objects / HOST_BITS_PER_LONG]
1675 = ((unsigned long) 1 << (num_objects % HOST_BITS_PER_LONG));
1676 }
1677 }
1678 }
1679
1680 /* Free all empty pages. Partially empty pages need no attention
1681 because the `mark' bit doubles as an `unused' bit. */
1682
1683 static void
1684 sweep_pages (void)
1685 {
1686 unsigned order;
1687
1688 for (order = 2; order < NUM_ORDERS; order++)
1689 {
1690 /* The last page-entry to consider, regardless of entries
1691 placed at the end of the list. */
1692 page_entry * const last = G.page_tails[order];
1693
1694 size_t num_objects;
1695 size_t live_objects;
1696 page_entry *p, *previous;
1697 int done;
1698
1699 p = G.pages[order];
1700 if (p == NULL)
1701 continue;
1702
1703 previous = NULL;
1704 do
1705 {
1706 page_entry *next = p->next;
1707
1708 /* Loop until all entries have been examined. */
1709 done = (p == last);
1710
1711 num_objects = OBJECTS_IN_PAGE (p);
1712
1713 /* Add all live objects on this page to the count of
1714 allocated memory. */
1715 live_objects = num_objects - p->num_free_objects;
1716
1717 G.allocated += OBJECT_SIZE (order) * live_objects;
1718
1719 /* Only objects on pages in the topmost context should get
1720 collected. */
1721 if (p->context_depth < G.context_depth)
1722 ;
1723
1724 /* Remove the page if it's empty. */
1725 else if (live_objects == 0)
1726 {
1727 /* If P was the first page in the list, then NEXT
1728 becomes the new first page in the list, otherwise
1729 splice P out of the forward pointers. */
1730 if (! previous)
1731 G.pages[order] = next;
1732 else
1733 previous->next = next;
1734
1735 /* Splice P out of the back pointers too. */
1736 if (next)
1737 next->prev = previous;
1738
1739 /* Are we removing the last element? */
1740 if (p == G.page_tails[order])
1741 G.page_tails[order] = previous;
1742 free_page (p);
1743 p = previous;
1744 }
1745
1746 /* If the page is full, move it to the end. */
1747 else if (p->num_free_objects == 0)
1748 {
1749 /* Don't move it if it's already at the end. */
1750 if (p != G.page_tails[order])
1751 {
1752 /* Move p to the end of the list. */
1753 p->next = NULL;
1754 p->prev = G.page_tails[order];
1755 G.page_tails[order]->next = p;
1756
1757 /* Update the tail pointer... */
1758 G.page_tails[order] = p;
1759
1760 /* ... and the head pointer, if necessary. */
1761 if (! previous)
1762 G.pages[order] = next;
1763 else
1764 previous->next = next;
1765
1766 /* And update the backpointer in NEXT if necessary. */
1767 if (next)
1768 next->prev = previous;
1769
1770 p = previous;
1771 }
1772 }
1773
1774 /* If we've fallen through to here, it's a page in the
1775 topmost context that is neither full nor empty. Such a
1776 page must precede pages at lesser context depth in the
1777 list, so move it to the head. */
1778 else if (p != G.pages[order])
1779 {
1780 previous->next = p->next;
1781
1782 /* Update the backchain in the next node if it exists. */
1783 if (p->next)
1784 p->next->prev = previous;
1785
1786 /* Move P to the head of the list. */
1787 p->next = G.pages[order];
1788 p->prev = NULL;
1789 G.pages[order]->prev = p;
1790
1791 /* Update the head pointer. */
1792 G.pages[order] = p;
1793
1794 /* Are we moving the last element? */
1795 if (G.page_tails[order] == p)
1796 G.page_tails[order] = previous;
1797 p = previous;
1798 }
1799
1800 previous = p;
1801 p = next;
1802 }
1803 while (! done);
1804
1805 /* Now, restore the in_use_p vectors for any pages from contexts
1806 other than the current one. */
1807 for (p = G.pages[order]; p; p = p->next)
1808 if (p->context_depth != G.context_depth)
1809 ggc_recalculate_in_use_p (p);
1810 }
1811 }
1812
1813 #ifdef ENABLE_GC_CHECKING
1814 /* Clobber all free objects. */
1815
1816 static void
1817 poison_pages (void)
1818 {
1819 unsigned order;
1820
1821 for (order = 2; order < NUM_ORDERS; order++)
1822 {
1823 size_t size = OBJECT_SIZE (order);
1824 page_entry *p;
1825
1826 for (p = G.pages[order]; p != NULL; p = p->next)
1827 {
1828 size_t num_objects;
1829 size_t i;
1830
1831 if (p->context_depth != G.context_depth)
1832 /* Since we don't do any collection for pages in pushed
1833 contexts, there's no need to do any poisoning. And
1834 besides, the IN_USE_P array isn't valid until we pop
1835 contexts. */
1836 continue;
1837
1838 num_objects = OBJECTS_IN_PAGE (p);
1839 for (i = 0; i < num_objects; i++)
1840 {
1841 size_t word, bit;
1842 word = i / HOST_BITS_PER_LONG;
1843 bit = i % HOST_BITS_PER_LONG;
1844 if (((p->in_use_p[word] >> bit) & 1) == 0)
1845 {
1846 char *object = p->page + i * size;
1847
1848 /* Keep poison-by-write when we expect to use Valgrind,
1849 so the exact same memory semantics is kept, in case
1850 there are memory errors. We override this request
1851 below. */
1852 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_UNDEFINED (object,
1853 size));
1854 memset (object, 0xa5, size);
1855
1856 /* Drop the handle to avoid handle leak. */
1857 VALGRIND_DISCARD (VALGRIND_MAKE_MEM_NOACCESS (object, size));
1858 }
1859 }
1860 }
1861 }
1862 }
1863 #else
1864 #define poison_pages()
1865 #endif
1866
1867 #ifdef ENABLE_GC_ALWAYS_COLLECT
1868 /* Validate that the reportedly free objects actually are. */
1869
1870 static void
1871 validate_free_objects (void)
1872 {
1873 struct free_object *f, *next, *still_free = NULL;
1874
1875 for (f = G.free_object_list; f ; f = next)
1876 {
1877 page_entry *pe = lookup_page_table_entry (f->object);
1878 size_t bit, word;
1879
1880 bit = OFFSET_TO_BIT ((char *)f->object - pe->page, pe->order);
1881 word = bit / HOST_BITS_PER_LONG;
1882 bit = bit % HOST_BITS_PER_LONG;
1883 next = f->next;
1884
1885 /* Make certain it isn't visible from any root. Notice that we
1886 do this check before sweep_pages merges save_in_use_p. */
1887 gcc_assert (!(pe->in_use_p[word] & (1UL << bit)));
1888
1889 /* If the object comes from an outer context, then retain the
1890 free_object entry, so that we can verify that the address
1891 isn't live on the stack in some outer context. */
1892 if (pe->context_depth != G.context_depth)
1893 {
1894 f->next = still_free;
1895 still_free = f;
1896 }
1897 else
1898 free (f);
1899 }
1900
1901 G.free_object_list = still_free;
1902 }
1903 #else
1904 #define validate_free_objects()
1905 #endif
1906
1907 /* Top level mark-and-sweep routine. */
1908
1909 void
1910 ggc_collect (void)
1911 {
1912 /* Avoid frequent unnecessary work by skipping collection if the
1913 total allocations haven't expanded much since the last
1914 collection. */
1915 float allocated_last_gc =
1916 MAX (G.allocated_last_gc, (size_t)PARAM_VALUE (GGC_MIN_HEAPSIZE) * 1024);
1917
1918 float min_expand = allocated_last_gc * PARAM_VALUE (GGC_MIN_EXPAND) / 100;
1919
1920 if (G.allocated < allocated_last_gc + min_expand && !ggc_force_collect)
1921 return;
1922
1923 timevar_push (TV_GC);
1924 if (!quiet_flag)
1925 fprintf (stderr, " {GC %luk -> ", (unsigned long) G.allocated / 1024);
1926 if (GGC_DEBUG_LEVEL >= 2)
1927 fprintf (G.debug_file, "BEGIN COLLECTING\n");
1928
1929 /* Zero the total allocated bytes. This will be recalculated in the
1930 sweep phase. */
1931 G.allocated = 0;
1932
1933 /* Release the pages we freed the last time we collected, but didn't
1934 reuse in the interim. */
1935 release_pages ();
1936
1937 /* Indicate that we've seen collections at this context depth. */
1938 G.context_depth_collections = ((unsigned long)1 << (G.context_depth + 1)) - 1;
1939
1940 clear_marks ();
1941 ggc_mark_roots ();
1942 #ifdef GATHER_STATISTICS
1943 ggc_prune_overhead_list ();
1944 #endif
1945 poison_pages ();
1946 validate_free_objects ();
1947 sweep_pages ();
1948
1949 G.allocated_last_gc = G.allocated;
1950
1951 timevar_pop (TV_GC);
1952
1953 if (!quiet_flag)
1954 fprintf (stderr, "%luk}", (unsigned long) G.allocated / 1024);
1955 if (GGC_DEBUG_LEVEL >= 2)
1956 fprintf (G.debug_file, "END COLLECTING\n");
1957 }
1958
1959 /* Print allocation statistics. */
1960 #define SCALE(x) ((unsigned long) ((x) < 1024*10 \
1961 ? (x) \
1962 : ((x) < 1024*1024*10 \
1963 ? (x) / 1024 \
1964 : (x) / (1024*1024))))
1965 #define STAT_LABEL(x) ((x) < 1024*10 ? ' ' : ((x) < 1024*1024*10 ? 'k' : 'M'))
1966
1967 void
1968 ggc_print_statistics (void)
1969 {
1970 struct ggc_statistics stats;
1971 unsigned int i;
1972 size_t total_overhead = 0;
1973
1974 /* Clear the statistics. */
1975 memset (&stats, 0, sizeof (stats));
1976
1977 /* Make sure collection will really occur. */
1978 G.allocated_last_gc = 0;
1979
1980 /* Collect and print the statistics common across collectors. */
1981 ggc_print_common_statistics (stderr, &stats);
1982
1983 /* Release free pages so that we will not count the bytes allocated
1984 there as part of the total allocated memory. */
1985 release_pages ();
1986
1987 /* Collect some information about the various sizes of
1988 allocation. */
1989 fprintf (stderr,
1990 "Memory still allocated at the end of the compilation process\n");
1991 fprintf (stderr, "%-5s %10s %10s %10s\n",
1992 "Size", "Allocated", "Used", "Overhead");
1993 for (i = 0; i < NUM_ORDERS; ++i)
1994 {
1995 page_entry *p;
1996 size_t allocated;
1997 size_t in_use;
1998 size_t overhead;
1999
2000 /* Skip empty entries. */
2001 if (!G.pages[i])
2002 continue;
2003
2004 overhead = allocated = in_use = 0;
2005
2006 /* Figure out the total number of bytes allocated for objects of
2007 this size, and how many of them are actually in use. Also figure
2008 out how much memory the page table is using. */
2009 for (p = G.pages[i]; p; p = p->next)
2010 {
2011 allocated += p->bytes;
2012 in_use +=
2013 (OBJECTS_IN_PAGE (p) - p->num_free_objects) * OBJECT_SIZE (i);
2014
2015 overhead += (sizeof (page_entry) - sizeof (long)
2016 + BITMAP_SIZE (OBJECTS_IN_PAGE (p) + 1));
2017 }
2018 fprintf (stderr, "%-5lu %10lu%c %10lu%c %10lu%c\n",
2019 (unsigned long) OBJECT_SIZE (i),
2020 SCALE (allocated), STAT_LABEL (allocated),
2021 SCALE (in_use), STAT_LABEL (in_use),
2022 SCALE (overhead), STAT_LABEL (overhead));
2023 total_overhead += overhead;
2024 }
2025 fprintf (stderr, "%-5s %10lu%c %10lu%c %10lu%c\n", "Total",
2026 SCALE (G.bytes_mapped), STAT_LABEL (G.bytes_mapped),
2027 SCALE (G.allocated), STAT_LABEL(G.allocated),
2028 SCALE (total_overhead), STAT_LABEL (total_overhead));
2029
2030 #ifdef GATHER_STATISTICS
2031 {
2032 fprintf (stderr, "\nTotal allocations and overheads during the compilation process\n");
2033
2034 fprintf (stderr, "Total Overhead: %10lld\n",
2035 G.stats.total_overhead);
2036 fprintf (stderr, "Total Allocated: %10lld\n",
2037 G.stats.total_allocated);
2038
2039 fprintf (stderr, "Total Overhead under 32B: %10lld\n",
2040 G.stats.total_overhead_under32);
2041 fprintf (stderr, "Total Allocated under 32B: %10lld\n",
2042 G.stats.total_allocated_under32);
2043 fprintf (stderr, "Total Overhead under 64B: %10lld\n",
2044 G.stats.total_overhead_under64);
2045 fprintf (stderr, "Total Allocated under 64B: %10lld\n",
2046 G.stats.total_allocated_under64);
2047 fprintf (stderr, "Total Overhead under 128B: %10lld\n",
2048 G.stats.total_overhead_under128);
2049 fprintf (stderr, "Total Allocated under 128B: %10lld\n",
2050 G.stats.total_allocated_under128);
2051
2052 for (i = 0; i < NUM_ORDERS; i++)
2053 if (G.stats.total_allocated_per_order[i])
2054 {
2055 fprintf (stderr, "Total Overhead page size %7lu: %10lld\n",
2056 (unsigned long) OBJECT_SIZE (i),
2057 G.stats.total_overhead_per_order[i]);
2058 fprintf (stderr, "Total Allocated page size %7lu: %10lld\n",
2059 (unsigned long) OBJECT_SIZE (i),
2060 G.stats.total_allocated_per_order[i]);
2061 }
2062 }
2063 #endif
2064 }
2065
2066 struct ggc_pch_data
2067 {
2068 struct ggc_pch_ondisk
2069 {
2070 unsigned totals[NUM_ORDERS];
2071 } d;
2072 size_t base[NUM_ORDERS];
2073 size_t written[NUM_ORDERS];
2074 };
2075
2076 struct ggc_pch_data *
2077 init_ggc_pch (void)
2078 {
2079 return XCNEW (struct ggc_pch_data);
2080 }
2081
2082 void
2083 ggc_pch_count_object (struct ggc_pch_data *d, void *x ATTRIBUTE_UNUSED,
2084 size_t size, bool is_string ATTRIBUTE_UNUSED,
2085 enum gt_types_enum type ATTRIBUTE_UNUSED)
2086 {
2087 unsigned order;
2088
2089 if (size < NUM_SIZE_LOOKUP)
2090 order = size_lookup[size];
2091 else
2092 {
2093 order = 10;
2094 while (size > OBJECT_SIZE (order))
2095 order++;
2096 }
2097
2098 d->d.totals[order]++;
2099 }
2100
2101 size_t
2102 ggc_pch_total_size (struct ggc_pch_data *d)
2103 {
2104 size_t a = 0;
2105 unsigned i;
2106
2107 for (i = 0; i < NUM_ORDERS; i++)
2108 a += ROUND_UP (d->d.totals[i] * OBJECT_SIZE (i), G.pagesize);
2109 return a;
2110 }
2111
2112 void
2113 ggc_pch_this_base (struct ggc_pch_data *d, void *base)
2114 {
2115 size_t a = (size_t) base;
2116 unsigned i;
2117
2118 for (i = 0; i < NUM_ORDERS; i++)
2119 {
2120 d->base[i] = a;
2121 a += ROUND_UP (d->d.totals[i] * OBJECT_SIZE (i), G.pagesize);
2122 }
2123 }
2124
2125
2126 char *
2127 ggc_pch_alloc_object (struct ggc_pch_data *d, void *x ATTRIBUTE_UNUSED,
2128 size_t size, bool is_string ATTRIBUTE_UNUSED,
2129 enum gt_types_enum type ATTRIBUTE_UNUSED)
2130 {
2131 unsigned order;
2132 char *result;
2133
2134 if (size < NUM_SIZE_LOOKUP)
2135 order = size_lookup[size];
2136 else
2137 {
2138 order = 10;
2139 while (size > OBJECT_SIZE (order))
2140 order++;
2141 }
2142
2143 result = (char *) d->base[order];
2144 d->base[order] += OBJECT_SIZE (order);
2145 return result;
2146 }
2147
2148 void
2149 ggc_pch_prepare_write (struct ggc_pch_data *d ATTRIBUTE_UNUSED,
2150 FILE *f ATTRIBUTE_UNUSED)
2151 {
2152 /* Nothing to do. */
2153 }
2154
2155 void
2156 ggc_pch_write_object (struct ggc_pch_data *d ATTRIBUTE_UNUSED,
2157 FILE *f, void *x, void *newx ATTRIBUTE_UNUSED,
2158 size_t size, bool is_string ATTRIBUTE_UNUSED)
2159 {
2160 unsigned order;
2161 static const char emptyBytes[256];
2162
2163 if (size < NUM_SIZE_LOOKUP)
2164 order = size_lookup[size];
2165 else
2166 {
2167 order = 10;
2168 while (size > OBJECT_SIZE (order))
2169 order++;
2170 }
2171
2172 if (fwrite (x, size, 1, f) != 1)
2173 fatal_error ("can't write PCH file: %m");
2174
2175 /* If SIZE is not the same as OBJECT_SIZE(order), then we need to pad the
2176 object out to OBJECT_SIZE(order). This happens for strings. */
2177
2178 if (size != OBJECT_SIZE (order))
2179 {
2180 unsigned padding = OBJECT_SIZE(order) - size;
2181
2182 /* To speed small writes, we use a nulled-out array that's larger
2183 than most padding requests as the source for our null bytes. This
2184 permits us to do the padding with fwrite() rather than fseek(), and
2185 limits the chance the OS may try to flush any outstanding writes. */
2186 if (padding <= sizeof(emptyBytes))
2187 {
2188 if (fwrite (emptyBytes, 1, padding, f) != padding)
2189 fatal_error ("can't write PCH file");
2190 }
2191 else
2192 {
2193 /* Larger than our buffer? Just default to fseek. */
2194 if (fseek (f, padding, SEEK_CUR) != 0)
2195 fatal_error ("can't write PCH file");
2196 }
2197 }
2198
2199 d->written[order]++;
2200 if (d->written[order] == d->d.totals[order]
2201 && fseek (f, ROUND_UP_VALUE (d->d.totals[order] * OBJECT_SIZE (order),
2202 G.pagesize),
2203 SEEK_CUR) != 0)
2204 fatal_error ("can't write PCH file: %m");
2205 }
2206
2207 void
2208 ggc_pch_finish (struct ggc_pch_data *d, FILE *f)
2209 {
2210 if (fwrite (&d->d, sizeof (d->d), 1, f) != 1)
2211 fatal_error ("can't write PCH file: %m");
2212 free (d);
2213 }
2214
2215 /* Move the PCH PTE entries just added to the end of by_depth, to the
2216 front. */
2217
2218 static void
2219 move_ptes_to_front (int count_old_page_tables, int count_new_page_tables)
2220 {
2221 unsigned i;
2222
2223 /* First, we swap the new entries to the front of the varrays. */
2224 page_entry **new_by_depth;
2225 unsigned long **new_save_in_use;
2226
2227 new_by_depth = XNEWVEC (page_entry *, G.by_depth_max);
2228 new_save_in_use = XNEWVEC (unsigned long *, G.by_depth_max);
2229
2230 memcpy (&new_by_depth[0],
2231 &G.by_depth[count_old_page_tables],
2232 count_new_page_tables * sizeof (void *));
2233 memcpy (&new_by_depth[count_new_page_tables],
2234 &G.by_depth[0],
2235 count_old_page_tables * sizeof (void *));
2236 memcpy (&new_save_in_use[0],
2237 &G.save_in_use[count_old_page_tables],
2238 count_new_page_tables * sizeof (void *));
2239 memcpy (&new_save_in_use[count_new_page_tables],
2240 &G.save_in_use[0],
2241 count_old_page_tables * sizeof (void *));
2242
2243 free (G.by_depth);
2244 free (G.save_in_use);
2245
2246 G.by_depth = new_by_depth;
2247 G.save_in_use = new_save_in_use;
2248
2249 /* Now update all the index_by_depth fields. */
2250 for (i = G.by_depth_in_use; i > 0; --i)
2251 {
2252 page_entry *p = G.by_depth[i-1];
2253 p->index_by_depth = i-1;
2254 }
2255
2256 /* And last, we update the depth pointers in G.depth. The first
2257 entry is already 0, and context 0 entries always start at index
2258 0, so there is nothing to update in the first slot. We need a
2259 second slot, only if we have old ptes, and if we do, they start
2260 at index count_new_page_tables. */
2261 if (count_old_page_tables)
2262 push_depth (count_new_page_tables);
2263 }
2264
2265 void
2266 ggc_pch_read (FILE *f, void *addr)
2267 {
2268 struct ggc_pch_ondisk d;
2269 unsigned i;
2270 char *offs = (char *) addr;
2271 unsigned long count_old_page_tables;
2272 unsigned long count_new_page_tables;
2273
2274 count_old_page_tables = G.by_depth_in_use;
2275
2276 /* We've just read in a PCH file. So, every object that used to be
2277 allocated is now free. */
2278 clear_marks ();
2279 #ifdef ENABLE_GC_CHECKING
2280 poison_pages ();
2281 #endif
2282 /* Since we free all the allocated objects, the free list becomes
2283 useless. Validate it now, which will also clear it. */
2284 validate_free_objects();
2285
2286 /* No object read from a PCH file should ever be freed. So, set the
2287 context depth to 1, and set the depth of all the currently-allocated
2288 pages to be 1 too. PCH pages will have depth 0. */
2289 gcc_assert (!G.context_depth);
2290 G.context_depth = 1;
2291 for (i = 0; i < NUM_ORDERS; i++)
2292 {
2293 page_entry *p;
2294 for (p = G.pages[i]; p != NULL; p = p->next)
2295 p->context_depth = G.context_depth;
2296 }
2297
2298 /* Allocate the appropriate page-table entries for the pages read from
2299 the PCH file. */
2300 if (fread (&d, sizeof (d), 1, f) != 1)
2301 fatal_error ("can't read PCH file: %m");
2302
2303 for (i = 0; i < NUM_ORDERS; i++)
2304 {
2305 struct page_entry *entry;
2306 char *pte;
2307 size_t bytes;
2308 size_t num_objs;
2309 size_t j;
2310
2311 if (d.totals[i] == 0)
2312 continue;
2313
2314 bytes = ROUND_UP (d.totals[i] * OBJECT_SIZE (i), G.pagesize);
2315 num_objs = bytes / OBJECT_SIZE (i);
2316 entry = XCNEWVAR (struct page_entry, (sizeof (struct page_entry)
2317 - sizeof (long)
2318 + BITMAP_SIZE (num_objs + 1)));
2319 entry->bytes = bytes;
2320 entry->page = offs;
2321 entry->context_depth = 0;
2322 offs += bytes;
2323 entry->num_free_objects = 0;
2324 entry->order = i;
2325
2326 for (j = 0;
2327 j + HOST_BITS_PER_LONG <= num_objs + 1;
2328 j += HOST_BITS_PER_LONG)
2329 entry->in_use_p[j / HOST_BITS_PER_LONG] = -1;
2330 for (; j < num_objs + 1; j++)
2331 entry->in_use_p[j / HOST_BITS_PER_LONG]
2332 |= 1L << (j % HOST_BITS_PER_LONG);
2333
2334 for (pte = entry->page;
2335 pte < entry->page + entry->bytes;
2336 pte += G.pagesize)
2337 set_page_table_entry (pte, entry);
2338
2339 if (G.page_tails[i] != NULL)
2340 G.page_tails[i]->next = entry;
2341 else
2342 G.pages[i] = entry;
2343 G.page_tails[i] = entry;
2344
2345 /* We start off by just adding all the new information to the
2346 end of the varrays, later, we will move the new information
2347 to the front of the varrays, as the PCH page tables are at
2348 context 0. */
2349 push_by_depth (entry, 0);
2350 }
2351
2352 /* Now, we update the various data structures that speed page table
2353 handling. */
2354 count_new_page_tables = G.by_depth_in_use - count_old_page_tables;
2355
2356 move_ptes_to_front (count_old_page_tables, count_new_page_tables);
2357
2358 /* Update the statistics. */
2359 G.allocated = G.allocated_last_gc = offs - (char *)addr;
2360 }