comparison gcc/ifcvt.c @ 0:a06113de4d67

first commit
author kent <kent@cr.ie.u-ryukyu.ac.jp>
date Fri, 17 Jul 2009 14:47:48 +0900
parents
children 3bfb6c00c1e0
comparison
equal deleted inserted replaced
-1:000000000000 0:a06113de4d67
1 /* If-conversion support.
2 Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
3 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
15 License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25
26 #include "rtl.h"
27 #include "regs.h"
28 #include "function.h"
29 #include "flags.h"
30 #include "insn-config.h"
31 #include "recog.h"
32 #include "except.h"
33 #include "hard-reg-set.h"
34 #include "basic-block.h"
35 #include "expr.h"
36 #include "real.h"
37 #include "output.h"
38 #include "optabs.h"
39 #include "toplev.h"
40 #include "tm_p.h"
41 #include "cfgloop.h"
42 #include "target.h"
43 #include "timevar.h"
44 #include "tree-pass.h"
45 #include "df.h"
46 #include "vec.h"
47 #include "vecprim.h"
48 #include "dbgcnt.h"
49
50 #ifndef HAVE_conditional_execution
51 #define HAVE_conditional_execution 0
52 #endif
53 #ifndef HAVE_conditional_move
54 #define HAVE_conditional_move 0
55 #endif
56 #ifndef HAVE_incscc
57 #define HAVE_incscc 0
58 #endif
59 #ifndef HAVE_decscc
60 #define HAVE_decscc 0
61 #endif
62 #ifndef HAVE_trap
63 #define HAVE_trap 0
64 #endif
65 #ifndef HAVE_conditional_trap
66 #define HAVE_conditional_trap 0
67 #endif
68
69 #ifndef MAX_CONDITIONAL_EXECUTE
70 #define MAX_CONDITIONAL_EXECUTE \
71 (BRANCH_COST (optimize_function_for_speed_p (cfun), false) \
72 + 1)
73 #endif
74
75 #define IFCVT_MULTIPLE_DUMPS 1
76
77 #define NULL_BLOCK ((basic_block) NULL)
78
79 /* # of IF-THEN or IF-THEN-ELSE blocks we looked at */
80 static int num_possible_if_blocks;
81
82 /* # of IF-THEN or IF-THEN-ELSE blocks were converted to conditional
83 execution. */
84 static int num_updated_if_blocks;
85
86 /* # of changes made. */
87 static int num_true_changes;
88
89 /* Whether conditional execution changes were made. */
90 static int cond_exec_changed_p;
91
92 /* Forward references. */
93 static int count_bb_insns (const_basic_block);
94 static bool cheap_bb_rtx_cost_p (const_basic_block, int);
95 static rtx first_active_insn (basic_block);
96 static rtx last_active_insn (basic_block, int);
97 static basic_block block_fallthru (basic_block);
98 static int cond_exec_process_insns (ce_if_block_t *, rtx, rtx, rtx, rtx, int);
99 static rtx cond_exec_get_condition (rtx);
100 static rtx noce_get_condition (rtx, rtx *, bool);
101 static int noce_operand_ok (const_rtx);
102 static void merge_if_block (ce_if_block_t *);
103 static int find_cond_trap (basic_block, edge, edge);
104 static basic_block find_if_header (basic_block, int);
105 static int block_jumps_and_fallthru_p (basic_block, basic_block);
106 static int noce_find_if_block (basic_block, edge, edge, int);
107 static int cond_exec_find_if_block (ce_if_block_t *);
108 static int find_if_case_1 (basic_block, edge, edge);
109 static int find_if_case_2 (basic_block, edge, edge);
110 static int find_memory (rtx *, void *);
111 static int dead_or_predicable (basic_block, basic_block, basic_block,
112 basic_block, int);
113 static void noce_emit_move_insn (rtx, rtx);
114 static rtx block_has_only_trap (basic_block);
115
116 /* Count the number of non-jump active insns in BB. */
117
118 static int
119 count_bb_insns (const_basic_block bb)
120 {
121 int count = 0;
122 rtx insn = BB_HEAD (bb);
123
124 while (1)
125 {
126 if (CALL_P (insn) || NONJUMP_INSN_P (insn))
127 count++;
128
129 if (insn == BB_END (bb))
130 break;
131 insn = NEXT_INSN (insn);
132 }
133
134 return count;
135 }
136
137 /* Determine whether the total insn_rtx_cost on non-jump insns in
138 basic block BB is less than MAX_COST. This function returns
139 false if the cost of any instruction could not be estimated. */
140
141 static bool
142 cheap_bb_rtx_cost_p (const_basic_block bb, int max_cost)
143 {
144 int count = 0;
145 rtx insn = BB_HEAD (bb);
146 bool speed = optimize_bb_for_speed_p (bb);
147
148 while (1)
149 {
150 if (NONJUMP_INSN_P (insn))
151 {
152 int cost = insn_rtx_cost (PATTERN (insn), speed);
153 if (cost == 0)
154 return false;
155
156 /* If this instruction is the load or set of a "stack" register,
157 such as a floating point register on x87, then the cost of
158 speculatively executing this insn may need to include
159 the additional cost of popping its result off of the
160 register stack. Unfortunately, correctly recognizing and
161 accounting for this additional overhead is tricky, so for
162 now we simply prohibit such speculative execution. */
163 #ifdef STACK_REGS
164 {
165 rtx set = single_set (insn);
166 if (set && STACK_REG_P (SET_DEST (set)))
167 return false;
168 }
169 #endif
170
171 count += cost;
172 if (count >= max_cost)
173 return false;
174 }
175 else if (CALL_P (insn))
176 return false;
177
178 if (insn == BB_END (bb))
179 break;
180 insn = NEXT_INSN (insn);
181 }
182
183 return true;
184 }
185
186 /* Return the first non-jump active insn in the basic block. */
187
188 static rtx
189 first_active_insn (basic_block bb)
190 {
191 rtx insn = BB_HEAD (bb);
192
193 if (LABEL_P (insn))
194 {
195 if (insn == BB_END (bb))
196 return NULL_RTX;
197 insn = NEXT_INSN (insn);
198 }
199
200 while (NOTE_P (insn))
201 {
202 if (insn == BB_END (bb))
203 return NULL_RTX;
204 insn = NEXT_INSN (insn);
205 }
206
207 if (JUMP_P (insn))
208 return NULL_RTX;
209
210 return insn;
211 }
212
213 /* Return the last non-jump active (non-jump) insn in the basic block. */
214
215 static rtx
216 last_active_insn (basic_block bb, int skip_use_p)
217 {
218 rtx insn = BB_END (bb);
219 rtx head = BB_HEAD (bb);
220
221 while (NOTE_P (insn)
222 || JUMP_P (insn)
223 || (skip_use_p
224 && NONJUMP_INSN_P (insn)
225 && GET_CODE (PATTERN (insn)) == USE))
226 {
227 if (insn == head)
228 return NULL_RTX;
229 insn = PREV_INSN (insn);
230 }
231
232 if (LABEL_P (insn))
233 return NULL_RTX;
234
235 return insn;
236 }
237
238 /* Return the basic block reached by falling though the basic block BB. */
239
240 static basic_block
241 block_fallthru (basic_block bb)
242 {
243 edge e;
244 edge_iterator ei;
245
246 FOR_EACH_EDGE (e, ei, bb->succs)
247 if (e->flags & EDGE_FALLTHRU)
248 break;
249
250 return (e) ? e->dest : NULL_BLOCK;
251 }
252
253 /* Go through a bunch of insns, converting them to conditional
254 execution format if possible. Return TRUE if all of the non-note
255 insns were processed. */
256
257 static int
258 cond_exec_process_insns (ce_if_block_t *ce_info ATTRIBUTE_UNUSED,
259 /* if block information */rtx start,
260 /* first insn to look at */rtx end,
261 /* last insn to look at */rtx test,
262 /* conditional execution test */rtx prob_val,
263 /* probability of branch taken. */int mod_ok)
264 {
265 int must_be_last = FALSE;
266 rtx insn;
267 rtx xtest;
268 rtx pattern;
269
270 if (!start || !end)
271 return FALSE;
272
273 for (insn = start; ; insn = NEXT_INSN (insn))
274 {
275 if (NOTE_P (insn))
276 goto insn_done;
277
278 gcc_assert(NONJUMP_INSN_P (insn) || CALL_P (insn));
279
280 /* Remove USE insns that get in the way. */
281 if (reload_completed && GET_CODE (PATTERN (insn)) == USE)
282 {
283 /* ??? Ug. Actually unlinking the thing is problematic,
284 given what we'd have to coordinate with our callers. */
285 SET_INSN_DELETED (insn);
286 goto insn_done;
287 }
288
289 /* Last insn wasn't last? */
290 if (must_be_last)
291 return FALSE;
292
293 if (modified_in_p (test, insn))
294 {
295 if (!mod_ok)
296 return FALSE;
297 must_be_last = TRUE;
298 }
299
300 /* Now build the conditional form of the instruction. */
301 pattern = PATTERN (insn);
302 xtest = copy_rtx (test);
303
304 /* If this is already a COND_EXEC, rewrite the test to be an AND of the
305 two conditions. */
306 if (GET_CODE (pattern) == COND_EXEC)
307 {
308 if (GET_MODE (xtest) != GET_MODE (COND_EXEC_TEST (pattern)))
309 return FALSE;
310
311 xtest = gen_rtx_AND (GET_MODE (xtest), xtest,
312 COND_EXEC_TEST (pattern));
313 pattern = COND_EXEC_CODE (pattern);
314 }
315
316 pattern = gen_rtx_COND_EXEC (VOIDmode, xtest, pattern);
317
318 /* If the machine needs to modify the insn being conditionally executed,
319 say for example to force a constant integer operand into a temp
320 register, do so here. */
321 #ifdef IFCVT_MODIFY_INSN
322 IFCVT_MODIFY_INSN (ce_info, pattern, insn);
323 if (! pattern)
324 return FALSE;
325 #endif
326
327 validate_change (insn, &PATTERN (insn), pattern, 1);
328
329 if (CALL_P (insn) && prob_val)
330 validate_change (insn, &REG_NOTES (insn),
331 alloc_EXPR_LIST (REG_BR_PROB, prob_val,
332 REG_NOTES (insn)), 1);
333
334 insn_done:
335 if (insn == end)
336 break;
337 }
338
339 return TRUE;
340 }
341
342 /* Return the condition for a jump. Do not do any special processing. */
343
344 static rtx
345 cond_exec_get_condition (rtx jump)
346 {
347 rtx test_if, cond;
348
349 if (any_condjump_p (jump))
350 test_if = SET_SRC (pc_set (jump));
351 else
352 return NULL_RTX;
353 cond = XEXP (test_if, 0);
354
355 /* If this branches to JUMP_LABEL when the condition is false,
356 reverse the condition. */
357 if (GET_CODE (XEXP (test_if, 2)) == LABEL_REF
358 && XEXP (XEXP (test_if, 2), 0) == JUMP_LABEL (jump))
359 {
360 enum rtx_code rev = reversed_comparison_code (cond, jump);
361 if (rev == UNKNOWN)
362 return NULL_RTX;
363
364 cond = gen_rtx_fmt_ee (rev, GET_MODE (cond), XEXP (cond, 0),
365 XEXP (cond, 1));
366 }
367
368 return cond;
369 }
370
371 /* Given a simple IF-THEN or IF-THEN-ELSE block, attempt to convert it
372 to conditional execution. Return TRUE if we were successful at
373 converting the block. */
374
375 static int
376 cond_exec_process_if_block (ce_if_block_t * ce_info,
377 /* if block information */int do_multiple_p)
378 {
379 basic_block test_bb = ce_info->test_bb; /* last test block */
380 basic_block then_bb = ce_info->then_bb; /* THEN */
381 basic_block else_bb = ce_info->else_bb; /* ELSE or NULL */
382 rtx test_expr; /* expression in IF_THEN_ELSE that is tested */
383 rtx then_start; /* first insn in THEN block */
384 rtx then_end; /* last insn + 1 in THEN block */
385 rtx else_start = NULL_RTX; /* first insn in ELSE block or NULL */
386 rtx else_end = NULL_RTX; /* last insn + 1 in ELSE block */
387 int max; /* max # of insns to convert. */
388 int then_mod_ok; /* whether conditional mods are ok in THEN */
389 rtx true_expr; /* test for else block insns */
390 rtx false_expr; /* test for then block insns */
391 rtx true_prob_val; /* probability of else block */
392 rtx false_prob_val; /* probability of then block */
393 int n_insns;
394 enum rtx_code false_code;
395
396 /* If test is comprised of && or || elements, and we've failed at handling
397 all of them together, just use the last test if it is the special case of
398 && elements without an ELSE block. */
399 if (!do_multiple_p && ce_info->num_multiple_test_blocks)
400 {
401 if (else_bb || ! ce_info->and_and_p)
402 return FALSE;
403
404 ce_info->test_bb = test_bb = ce_info->last_test_bb;
405 ce_info->num_multiple_test_blocks = 0;
406 ce_info->num_and_and_blocks = 0;
407 ce_info->num_or_or_blocks = 0;
408 }
409
410 /* Find the conditional jump to the ELSE or JOIN part, and isolate
411 the test. */
412 test_expr = cond_exec_get_condition (BB_END (test_bb));
413 if (! test_expr)
414 return FALSE;
415
416 /* If the conditional jump is more than just a conditional jump,
417 then we can not do conditional execution conversion on this block. */
418 if (! onlyjump_p (BB_END (test_bb)))
419 return FALSE;
420
421 /* Collect the bounds of where we're to search, skipping any labels, jumps
422 and notes at the beginning and end of the block. Then count the total
423 number of insns and see if it is small enough to convert. */
424 then_start = first_active_insn (then_bb);
425 then_end = last_active_insn (then_bb, TRUE);
426 n_insns = ce_info->num_then_insns = count_bb_insns (then_bb);
427 max = MAX_CONDITIONAL_EXECUTE;
428
429 if (else_bb)
430 {
431 max *= 2;
432 else_start = first_active_insn (else_bb);
433 else_end = last_active_insn (else_bb, TRUE);
434 n_insns += ce_info->num_else_insns = count_bb_insns (else_bb);
435 }
436
437 if (n_insns > max)
438 return FALSE;
439
440 /* Map test_expr/test_jump into the appropriate MD tests to use on
441 the conditionally executed code. */
442
443 true_expr = test_expr;
444
445 false_code = reversed_comparison_code (true_expr, BB_END (test_bb));
446 if (false_code != UNKNOWN)
447 false_expr = gen_rtx_fmt_ee (false_code, GET_MODE (true_expr),
448 XEXP (true_expr, 0), XEXP (true_expr, 1));
449 else
450 false_expr = NULL_RTX;
451
452 #ifdef IFCVT_MODIFY_TESTS
453 /* If the machine description needs to modify the tests, such as setting a
454 conditional execution register from a comparison, it can do so here. */
455 IFCVT_MODIFY_TESTS (ce_info, true_expr, false_expr);
456
457 /* See if the conversion failed. */
458 if (!true_expr || !false_expr)
459 goto fail;
460 #endif
461
462 true_prob_val = find_reg_note (BB_END (test_bb), REG_BR_PROB, NULL_RTX);
463 if (true_prob_val)
464 {
465 true_prob_val = XEXP (true_prob_val, 0);
466 false_prob_val = GEN_INT (REG_BR_PROB_BASE - INTVAL (true_prob_val));
467 }
468 else
469 false_prob_val = NULL_RTX;
470
471 /* If we have && or || tests, do them here. These tests are in the adjacent
472 blocks after the first block containing the test. */
473 if (ce_info->num_multiple_test_blocks > 0)
474 {
475 basic_block bb = test_bb;
476 basic_block last_test_bb = ce_info->last_test_bb;
477
478 if (! false_expr)
479 goto fail;
480
481 do
482 {
483 rtx start, end;
484 rtx t, f;
485 enum rtx_code f_code;
486
487 bb = block_fallthru (bb);
488 start = first_active_insn (bb);
489 end = last_active_insn (bb, TRUE);
490 if (start
491 && ! cond_exec_process_insns (ce_info, start, end, false_expr,
492 false_prob_val, FALSE))
493 goto fail;
494
495 /* If the conditional jump is more than just a conditional jump, then
496 we can not do conditional execution conversion on this block. */
497 if (! onlyjump_p (BB_END (bb)))
498 goto fail;
499
500 /* Find the conditional jump and isolate the test. */
501 t = cond_exec_get_condition (BB_END (bb));
502 if (! t)
503 goto fail;
504
505 f_code = reversed_comparison_code (t, BB_END (bb));
506 if (f_code == UNKNOWN)
507 goto fail;
508
509 f = gen_rtx_fmt_ee (f_code, GET_MODE (t), XEXP (t, 0), XEXP (t, 1));
510 if (ce_info->and_and_p)
511 {
512 t = gen_rtx_AND (GET_MODE (t), true_expr, t);
513 f = gen_rtx_IOR (GET_MODE (t), false_expr, f);
514 }
515 else
516 {
517 t = gen_rtx_IOR (GET_MODE (t), true_expr, t);
518 f = gen_rtx_AND (GET_MODE (t), false_expr, f);
519 }
520
521 /* If the machine description needs to modify the tests, such as
522 setting a conditional execution register from a comparison, it can
523 do so here. */
524 #ifdef IFCVT_MODIFY_MULTIPLE_TESTS
525 IFCVT_MODIFY_MULTIPLE_TESTS (ce_info, bb, t, f);
526
527 /* See if the conversion failed. */
528 if (!t || !f)
529 goto fail;
530 #endif
531
532 true_expr = t;
533 false_expr = f;
534 }
535 while (bb != last_test_bb);
536 }
537
538 /* For IF-THEN-ELSE blocks, we don't allow modifications of the test
539 on then THEN block. */
540 then_mod_ok = (else_bb == NULL_BLOCK);
541
542 /* Go through the THEN and ELSE blocks converting the insns if possible
543 to conditional execution. */
544
545 if (then_end
546 && (! false_expr
547 || ! cond_exec_process_insns (ce_info, then_start, then_end,
548 false_expr, false_prob_val,
549 then_mod_ok)))
550 goto fail;
551
552 if (else_bb && else_end
553 && ! cond_exec_process_insns (ce_info, else_start, else_end,
554 true_expr, true_prob_val, TRUE))
555 goto fail;
556
557 /* If we cannot apply the changes, fail. Do not go through the normal fail
558 processing, since apply_change_group will call cancel_changes. */
559 if (! apply_change_group ())
560 {
561 #ifdef IFCVT_MODIFY_CANCEL
562 /* Cancel any machine dependent changes. */
563 IFCVT_MODIFY_CANCEL (ce_info);
564 #endif
565 return FALSE;
566 }
567
568 #ifdef IFCVT_MODIFY_FINAL
569 /* Do any machine dependent final modifications. */
570 IFCVT_MODIFY_FINAL (ce_info);
571 #endif
572
573 /* Conversion succeeded. */
574 if (dump_file)
575 fprintf (dump_file, "%d insn%s converted to conditional execution.\n",
576 n_insns, (n_insns == 1) ? " was" : "s were");
577
578 /* Merge the blocks! */
579 merge_if_block (ce_info);
580 cond_exec_changed_p = TRUE;
581 return TRUE;
582
583 fail:
584 #ifdef IFCVT_MODIFY_CANCEL
585 /* Cancel any machine dependent changes. */
586 IFCVT_MODIFY_CANCEL (ce_info);
587 #endif
588
589 cancel_changes (0);
590 return FALSE;
591 }
592
593 /* Used by noce_process_if_block to communicate with its subroutines.
594
595 The subroutines know that A and B may be evaluated freely. They
596 know that X is a register. They should insert new instructions
597 before cond_earliest. */
598
599 struct noce_if_info
600 {
601 /* The basic blocks that make up the IF-THEN-{ELSE-,}JOIN block. */
602 basic_block test_bb, then_bb, else_bb, join_bb;
603
604 /* The jump that ends TEST_BB. */
605 rtx jump;
606
607 /* The jump condition. */
608 rtx cond;
609
610 /* New insns should be inserted before this one. */
611 rtx cond_earliest;
612
613 /* Insns in the THEN and ELSE block. There is always just this
614 one insns in those blocks. The insns are single_set insns.
615 If there was no ELSE block, INSN_B is the last insn before
616 COND_EARLIEST, or NULL_RTX. In the former case, the insn
617 operands are still valid, as if INSN_B was moved down below
618 the jump. */
619 rtx insn_a, insn_b;
620
621 /* The SET_SRC of INSN_A and INSN_B. */
622 rtx a, b;
623
624 /* The SET_DEST of INSN_A. */
625 rtx x;
626
627 /* True if this if block is not canonical. In the canonical form of
628 if blocks, the THEN_BB is the block reached via the fallthru edge
629 from TEST_BB. For the noce transformations, we allow the symmetric
630 form as well. */
631 bool then_else_reversed;
632
633 /* Estimated cost of the particular branch instruction. */
634 int branch_cost;
635 };
636
637 static rtx noce_emit_store_flag (struct noce_if_info *, rtx, int, int);
638 static int noce_try_move (struct noce_if_info *);
639 static int noce_try_store_flag (struct noce_if_info *);
640 static int noce_try_addcc (struct noce_if_info *);
641 static int noce_try_store_flag_constants (struct noce_if_info *);
642 static int noce_try_store_flag_mask (struct noce_if_info *);
643 static rtx noce_emit_cmove (struct noce_if_info *, rtx, enum rtx_code, rtx,
644 rtx, rtx, rtx);
645 static int noce_try_cmove (struct noce_if_info *);
646 static int noce_try_cmove_arith (struct noce_if_info *);
647 static rtx noce_get_alt_condition (struct noce_if_info *, rtx, rtx *);
648 static int noce_try_minmax (struct noce_if_info *);
649 static int noce_try_abs (struct noce_if_info *);
650 static int noce_try_sign_mask (struct noce_if_info *);
651
652 /* Helper function for noce_try_store_flag*. */
653
654 static rtx
655 noce_emit_store_flag (struct noce_if_info *if_info, rtx x, int reversep,
656 int normalize)
657 {
658 rtx cond = if_info->cond;
659 int cond_complex;
660 enum rtx_code code;
661
662 cond_complex = (! general_operand (XEXP (cond, 0), VOIDmode)
663 || ! general_operand (XEXP (cond, 1), VOIDmode));
664
665 /* If earliest == jump, or when the condition is complex, try to
666 build the store_flag insn directly. */
667
668 if (cond_complex)
669 {
670 rtx set = pc_set (if_info->jump);
671 cond = XEXP (SET_SRC (set), 0);
672 if (GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
673 && XEXP (XEXP (SET_SRC (set), 2), 0) == JUMP_LABEL (if_info->jump))
674 reversep = !reversep;
675 if (if_info->then_else_reversed)
676 reversep = !reversep;
677 }
678
679 if (reversep)
680 code = reversed_comparison_code (cond, if_info->jump);
681 else
682 code = GET_CODE (cond);
683
684 if ((if_info->cond_earliest == if_info->jump || cond_complex)
685 && (normalize == 0 || STORE_FLAG_VALUE == normalize))
686 {
687 rtx tmp;
688
689 tmp = gen_rtx_fmt_ee (code, GET_MODE (x), XEXP (cond, 0),
690 XEXP (cond, 1));
691 tmp = gen_rtx_SET (VOIDmode, x, tmp);
692
693 start_sequence ();
694 tmp = emit_insn (tmp);
695
696 if (recog_memoized (tmp) >= 0)
697 {
698 tmp = get_insns ();
699 end_sequence ();
700 emit_insn (tmp);
701
702 if_info->cond_earliest = if_info->jump;
703
704 return x;
705 }
706
707 end_sequence ();
708 }
709
710 /* Don't even try if the comparison operands or the mode of X are weird. */
711 if (cond_complex || !SCALAR_INT_MODE_P (GET_MODE (x)))
712 return NULL_RTX;
713
714 return emit_store_flag (x, code, XEXP (cond, 0),
715 XEXP (cond, 1), VOIDmode,
716 (code == LTU || code == LEU
717 || code == GEU || code == GTU), normalize);
718 }
719
720 /* Emit instruction to move an rtx, possibly into STRICT_LOW_PART.
721 X is the destination/target and Y is the value to copy. */
722
723 static void
724 noce_emit_move_insn (rtx x, rtx y)
725 {
726 enum machine_mode outmode;
727 rtx outer, inner;
728 int bitpos;
729
730 if (GET_CODE (x) != STRICT_LOW_PART)
731 {
732 rtx seq, insn, target;
733 optab ot;
734
735 start_sequence ();
736 /* Check that the SET_SRC is reasonable before calling emit_move_insn,
737 otherwise construct a suitable SET pattern ourselves. */
738 insn = (OBJECT_P (y) || CONSTANT_P (y) || GET_CODE (y) == SUBREG)
739 ? emit_move_insn (x, y)
740 : emit_insn (gen_rtx_SET (VOIDmode, x, y));
741 seq = get_insns ();
742 end_sequence ();
743
744 if (recog_memoized (insn) <= 0)
745 {
746 if (GET_CODE (x) == ZERO_EXTRACT)
747 {
748 rtx op = XEXP (x, 0);
749 unsigned HOST_WIDE_INT size = INTVAL (XEXP (x, 1));
750 unsigned HOST_WIDE_INT start = INTVAL (XEXP (x, 2));
751
752 /* store_bit_field expects START to be relative to
753 BYTES_BIG_ENDIAN and adjusts this value for machines with
754 BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN. In order to be able to
755 invoke store_bit_field again it is necessary to have the START
756 value from the first call. */
757 if (BITS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
758 {
759 if (MEM_P (op))
760 start = BITS_PER_UNIT - start - size;
761 else
762 {
763 gcc_assert (REG_P (op));
764 start = BITS_PER_WORD - start - size;
765 }
766 }
767
768 gcc_assert (start < (MEM_P (op) ? BITS_PER_UNIT : BITS_PER_WORD));
769 store_bit_field (op, size, start, GET_MODE (x), y);
770 return;
771 }
772
773 switch (GET_RTX_CLASS (GET_CODE (y)))
774 {
775 case RTX_UNARY:
776 ot = code_to_optab[GET_CODE (y)];
777 if (ot)
778 {
779 start_sequence ();
780 target = expand_unop (GET_MODE (y), ot, XEXP (y, 0), x, 0);
781 if (target != NULL_RTX)
782 {
783 if (target != x)
784 emit_move_insn (x, target);
785 seq = get_insns ();
786 }
787 end_sequence ();
788 }
789 break;
790
791 case RTX_BIN_ARITH:
792 case RTX_COMM_ARITH:
793 ot = code_to_optab[GET_CODE (y)];
794 if (ot)
795 {
796 start_sequence ();
797 target = expand_binop (GET_MODE (y), ot,
798 XEXP (y, 0), XEXP (y, 1),
799 x, 0, OPTAB_DIRECT);
800 if (target != NULL_RTX)
801 {
802 if (target != x)
803 emit_move_insn (x, target);
804 seq = get_insns ();
805 }
806 end_sequence ();
807 }
808 break;
809
810 default:
811 break;
812 }
813 }
814
815 emit_insn (seq);
816 return;
817 }
818
819 outer = XEXP (x, 0);
820 inner = XEXP (outer, 0);
821 outmode = GET_MODE (outer);
822 bitpos = SUBREG_BYTE (outer) * BITS_PER_UNIT;
823 store_bit_field (inner, GET_MODE_BITSIZE (outmode), bitpos, outmode, y);
824 }
825
826 /* Return sequence of instructions generated by if conversion. This
827 function calls end_sequence() to end the current stream, ensures
828 that are instructions are unshared, recognizable non-jump insns.
829 On failure, this function returns a NULL_RTX. */
830
831 static rtx
832 end_ifcvt_sequence (struct noce_if_info *if_info)
833 {
834 rtx insn;
835 rtx seq = get_insns ();
836
837 set_used_flags (if_info->x);
838 set_used_flags (if_info->cond);
839 unshare_all_rtl_in_chain (seq);
840 end_sequence ();
841
842 /* Make sure that all of the instructions emitted are recognizable,
843 and that we haven't introduced a new jump instruction.
844 As an exercise for the reader, build a general mechanism that
845 allows proper placement of required clobbers. */
846 for (insn = seq; insn; insn = NEXT_INSN (insn))
847 if (JUMP_P (insn)
848 || recog_memoized (insn) == -1)
849 return NULL_RTX;
850
851 return seq;
852 }
853
854 /* Convert "if (a != b) x = a; else x = b" into "x = a" and
855 "if (a == b) x = a; else x = b" into "x = b". */
856
857 static int
858 noce_try_move (struct noce_if_info *if_info)
859 {
860 rtx cond = if_info->cond;
861 enum rtx_code code = GET_CODE (cond);
862 rtx y, seq;
863
864 if (code != NE && code != EQ)
865 return FALSE;
866
867 /* This optimization isn't valid if either A or B could be a NaN
868 or a signed zero. */
869 if (HONOR_NANS (GET_MODE (if_info->x))
870 || HONOR_SIGNED_ZEROS (GET_MODE (if_info->x)))
871 return FALSE;
872
873 /* Check whether the operands of the comparison are A and in
874 either order. */
875 if ((rtx_equal_p (if_info->a, XEXP (cond, 0))
876 && rtx_equal_p (if_info->b, XEXP (cond, 1)))
877 || (rtx_equal_p (if_info->a, XEXP (cond, 1))
878 && rtx_equal_p (if_info->b, XEXP (cond, 0))))
879 {
880 y = (code == EQ) ? if_info->a : if_info->b;
881
882 /* Avoid generating the move if the source is the destination. */
883 if (! rtx_equal_p (if_info->x, y))
884 {
885 start_sequence ();
886 noce_emit_move_insn (if_info->x, y);
887 seq = end_ifcvt_sequence (if_info);
888 if (!seq)
889 return FALSE;
890
891 emit_insn_before_setloc (seq, if_info->jump,
892 INSN_LOCATOR (if_info->insn_a));
893 }
894 return TRUE;
895 }
896 return FALSE;
897 }
898
899 /* Convert "if (test) x = 1; else x = 0".
900
901 Only try 0 and STORE_FLAG_VALUE here. Other combinations will be
902 tried in noce_try_store_flag_constants after noce_try_cmove has had
903 a go at the conversion. */
904
905 static int
906 noce_try_store_flag (struct noce_if_info *if_info)
907 {
908 int reversep;
909 rtx target, seq;
910
911 if (GET_CODE (if_info->b) == CONST_INT
912 && INTVAL (if_info->b) == STORE_FLAG_VALUE
913 && if_info->a == const0_rtx)
914 reversep = 0;
915 else if (if_info->b == const0_rtx
916 && GET_CODE (if_info->a) == CONST_INT
917 && INTVAL (if_info->a) == STORE_FLAG_VALUE
918 && (reversed_comparison_code (if_info->cond, if_info->jump)
919 != UNKNOWN))
920 reversep = 1;
921 else
922 return FALSE;
923
924 start_sequence ();
925
926 target = noce_emit_store_flag (if_info, if_info->x, reversep, 0);
927 if (target)
928 {
929 if (target != if_info->x)
930 noce_emit_move_insn (if_info->x, target);
931
932 seq = end_ifcvt_sequence (if_info);
933 if (! seq)
934 return FALSE;
935
936 emit_insn_before_setloc (seq, if_info->jump,
937 INSN_LOCATOR (if_info->insn_a));
938 return TRUE;
939 }
940 else
941 {
942 end_sequence ();
943 return FALSE;
944 }
945 }
946
947 /* Convert "if (test) x = a; else x = b", for A and B constant. */
948
949 static int
950 noce_try_store_flag_constants (struct noce_if_info *if_info)
951 {
952 rtx target, seq;
953 int reversep;
954 HOST_WIDE_INT itrue, ifalse, diff, tmp;
955 int normalize, can_reverse;
956 enum machine_mode mode;
957
958 if (GET_CODE (if_info->a) == CONST_INT
959 && GET_CODE (if_info->b) == CONST_INT)
960 {
961 mode = GET_MODE (if_info->x);
962 ifalse = INTVAL (if_info->a);
963 itrue = INTVAL (if_info->b);
964
965 /* Make sure we can represent the difference between the two values. */
966 if ((itrue - ifalse > 0)
967 != ((ifalse < 0) != (itrue < 0) ? ifalse < 0 : ifalse < itrue))
968 return FALSE;
969
970 diff = trunc_int_for_mode (itrue - ifalse, mode);
971
972 can_reverse = (reversed_comparison_code (if_info->cond, if_info->jump)
973 != UNKNOWN);
974
975 reversep = 0;
976 if (diff == STORE_FLAG_VALUE || diff == -STORE_FLAG_VALUE)
977 normalize = 0;
978 else if (ifalse == 0 && exact_log2 (itrue) >= 0
979 && (STORE_FLAG_VALUE == 1
980 || if_info->branch_cost >= 2))
981 normalize = 1;
982 else if (itrue == 0 && exact_log2 (ifalse) >= 0 && can_reverse
983 && (STORE_FLAG_VALUE == 1 || if_info->branch_cost >= 2))
984 normalize = 1, reversep = 1;
985 else if (itrue == -1
986 && (STORE_FLAG_VALUE == -1
987 || if_info->branch_cost >= 2))
988 normalize = -1;
989 else if (ifalse == -1 && can_reverse
990 && (STORE_FLAG_VALUE == -1 || if_info->branch_cost >= 2))
991 normalize = -1, reversep = 1;
992 else if ((if_info->branch_cost >= 2 && STORE_FLAG_VALUE == -1)
993 || if_info->branch_cost >= 3)
994 normalize = -1;
995 else
996 return FALSE;
997
998 if (reversep)
999 {
1000 tmp = itrue; itrue = ifalse; ifalse = tmp;
1001 diff = trunc_int_for_mode (-diff, mode);
1002 }
1003
1004 start_sequence ();
1005 target = noce_emit_store_flag (if_info, if_info->x, reversep, normalize);
1006 if (! target)
1007 {
1008 end_sequence ();
1009 return FALSE;
1010 }
1011
1012 /* if (test) x = 3; else x = 4;
1013 => x = 3 + (test == 0); */
1014 if (diff == STORE_FLAG_VALUE || diff == -STORE_FLAG_VALUE)
1015 {
1016 target = expand_simple_binop (mode,
1017 (diff == STORE_FLAG_VALUE
1018 ? PLUS : MINUS),
1019 GEN_INT (ifalse), target, if_info->x, 0,
1020 OPTAB_WIDEN);
1021 }
1022
1023 /* if (test) x = 8; else x = 0;
1024 => x = (test != 0) << 3; */
1025 else if (ifalse == 0 && (tmp = exact_log2 (itrue)) >= 0)
1026 {
1027 target = expand_simple_binop (mode, ASHIFT,
1028 target, GEN_INT (tmp), if_info->x, 0,
1029 OPTAB_WIDEN);
1030 }
1031
1032 /* if (test) x = -1; else x = b;
1033 => x = -(test != 0) | b; */
1034 else if (itrue == -1)
1035 {
1036 target = expand_simple_binop (mode, IOR,
1037 target, GEN_INT (ifalse), if_info->x, 0,
1038 OPTAB_WIDEN);
1039 }
1040
1041 /* if (test) x = a; else x = b;
1042 => x = (-(test != 0) & (b - a)) + a; */
1043 else
1044 {
1045 target = expand_simple_binop (mode, AND,
1046 target, GEN_INT (diff), if_info->x, 0,
1047 OPTAB_WIDEN);
1048 if (target)
1049 target = expand_simple_binop (mode, PLUS,
1050 target, GEN_INT (ifalse),
1051 if_info->x, 0, OPTAB_WIDEN);
1052 }
1053
1054 if (! target)
1055 {
1056 end_sequence ();
1057 return FALSE;
1058 }
1059
1060 if (target != if_info->x)
1061 noce_emit_move_insn (if_info->x, target);
1062
1063 seq = end_ifcvt_sequence (if_info);
1064 if (!seq)
1065 return FALSE;
1066
1067 emit_insn_before_setloc (seq, if_info->jump,
1068 INSN_LOCATOR (if_info->insn_a));
1069 return TRUE;
1070 }
1071
1072 return FALSE;
1073 }
1074
1075 /* Convert "if (test) foo++" into "foo += (test != 0)", and
1076 similarly for "foo--". */
1077
1078 static int
1079 noce_try_addcc (struct noce_if_info *if_info)
1080 {
1081 rtx target, seq;
1082 int subtract, normalize;
1083
1084 if (GET_CODE (if_info->a) == PLUS
1085 && rtx_equal_p (XEXP (if_info->a, 0), if_info->b)
1086 && (reversed_comparison_code (if_info->cond, if_info->jump)
1087 != UNKNOWN))
1088 {
1089 rtx cond = if_info->cond;
1090 enum rtx_code code = reversed_comparison_code (cond, if_info->jump);
1091
1092 /* First try to use addcc pattern. */
1093 if (general_operand (XEXP (cond, 0), VOIDmode)
1094 && general_operand (XEXP (cond, 1), VOIDmode))
1095 {
1096 start_sequence ();
1097 target = emit_conditional_add (if_info->x, code,
1098 XEXP (cond, 0),
1099 XEXP (cond, 1),
1100 VOIDmode,
1101 if_info->b,
1102 XEXP (if_info->a, 1),
1103 GET_MODE (if_info->x),
1104 (code == LTU || code == GEU
1105 || code == LEU || code == GTU));
1106 if (target)
1107 {
1108 if (target != if_info->x)
1109 noce_emit_move_insn (if_info->x, target);
1110
1111 seq = end_ifcvt_sequence (if_info);
1112 if (!seq)
1113 return FALSE;
1114
1115 emit_insn_before_setloc (seq, if_info->jump,
1116 INSN_LOCATOR (if_info->insn_a));
1117 return TRUE;
1118 }
1119 end_sequence ();
1120 }
1121
1122 /* If that fails, construct conditional increment or decrement using
1123 setcc. */
1124 if (if_info->branch_cost >= 2
1125 && (XEXP (if_info->a, 1) == const1_rtx
1126 || XEXP (if_info->a, 1) == constm1_rtx))
1127 {
1128 start_sequence ();
1129 if (STORE_FLAG_VALUE == INTVAL (XEXP (if_info->a, 1)))
1130 subtract = 0, normalize = 0;
1131 else if (-STORE_FLAG_VALUE == INTVAL (XEXP (if_info->a, 1)))
1132 subtract = 1, normalize = 0;
1133 else
1134 subtract = 0, normalize = INTVAL (XEXP (if_info->a, 1));
1135
1136
1137 target = noce_emit_store_flag (if_info,
1138 gen_reg_rtx (GET_MODE (if_info->x)),
1139 1, normalize);
1140
1141 if (target)
1142 target = expand_simple_binop (GET_MODE (if_info->x),
1143 subtract ? MINUS : PLUS,
1144 if_info->b, target, if_info->x,
1145 0, OPTAB_WIDEN);
1146 if (target)
1147 {
1148 if (target != if_info->x)
1149 noce_emit_move_insn (if_info->x, target);
1150
1151 seq = end_ifcvt_sequence (if_info);
1152 if (!seq)
1153 return FALSE;
1154
1155 emit_insn_before_setloc (seq, if_info->jump,
1156 INSN_LOCATOR (if_info->insn_a));
1157 return TRUE;
1158 }
1159 end_sequence ();
1160 }
1161 }
1162
1163 return FALSE;
1164 }
1165
1166 /* Convert "if (test) x = 0;" to "x &= -(test == 0);" */
1167
1168 static int
1169 noce_try_store_flag_mask (struct noce_if_info *if_info)
1170 {
1171 rtx target, seq;
1172 int reversep;
1173
1174 reversep = 0;
1175 if ((if_info->branch_cost >= 2
1176 || STORE_FLAG_VALUE == -1)
1177 && ((if_info->a == const0_rtx
1178 && rtx_equal_p (if_info->b, if_info->x))
1179 || ((reversep = (reversed_comparison_code (if_info->cond,
1180 if_info->jump)
1181 != UNKNOWN))
1182 && if_info->b == const0_rtx
1183 && rtx_equal_p (if_info->a, if_info->x))))
1184 {
1185 start_sequence ();
1186 target = noce_emit_store_flag (if_info,
1187 gen_reg_rtx (GET_MODE (if_info->x)),
1188 reversep, -1);
1189 if (target)
1190 target = expand_simple_binop (GET_MODE (if_info->x), AND,
1191 if_info->x,
1192 target, if_info->x, 0,
1193 OPTAB_WIDEN);
1194
1195 if (target)
1196 {
1197 if (target != if_info->x)
1198 noce_emit_move_insn (if_info->x, target);
1199
1200 seq = end_ifcvt_sequence (if_info);
1201 if (!seq)
1202 return FALSE;
1203
1204 emit_insn_before_setloc (seq, if_info->jump,
1205 INSN_LOCATOR (if_info->insn_a));
1206 return TRUE;
1207 }
1208
1209 end_sequence ();
1210 }
1211
1212 return FALSE;
1213 }
1214
1215 /* Helper function for noce_try_cmove and noce_try_cmove_arith. */
1216
1217 static rtx
1218 noce_emit_cmove (struct noce_if_info *if_info, rtx x, enum rtx_code code,
1219 rtx cmp_a, rtx cmp_b, rtx vfalse, rtx vtrue)
1220 {
1221 /* If earliest == jump, try to build the cmove insn directly.
1222 This is helpful when combine has created some complex condition
1223 (like for alpha's cmovlbs) that we can't hope to regenerate
1224 through the normal interface. */
1225
1226 if (if_info->cond_earliest == if_info->jump)
1227 {
1228 rtx tmp;
1229
1230 tmp = gen_rtx_fmt_ee (code, GET_MODE (if_info->cond), cmp_a, cmp_b);
1231 tmp = gen_rtx_IF_THEN_ELSE (GET_MODE (x), tmp, vtrue, vfalse);
1232 tmp = gen_rtx_SET (VOIDmode, x, tmp);
1233
1234 start_sequence ();
1235 tmp = emit_insn (tmp);
1236
1237 if (recog_memoized (tmp) >= 0)
1238 {
1239 tmp = get_insns ();
1240 end_sequence ();
1241 emit_insn (tmp);
1242
1243 return x;
1244 }
1245
1246 end_sequence ();
1247 }
1248
1249 /* Don't even try if the comparison operands are weird. */
1250 if (! general_operand (cmp_a, GET_MODE (cmp_a))
1251 || ! general_operand (cmp_b, GET_MODE (cmp_b)))
1252 return NULL_RTX;
1253
1254 #if HAVE_conditional_move
1255 return emit_conditional_move (x, code, cmp_a, cmp_b, VOIDmode,
1256 vtrue, vfalse, GET_MODE (x),
1257 (code == LTU || code == GEU
1258 || code == LEU || code == GTU));
1259 #else
1260 /* We'll never get here, as noce_process_if_block doesn't call the
1261 functions involved. Ifdef code, however, should be discouraged
1262 because it leads to typos in the code not selected. However,
1263 emit_conditional_move won't exist either. */
1264 return NULL_RTX;
1265 #endif
1266 }
1267
1268 /* Try only simple constants and registers here. More complex cases
1269 are handled in noce_try_cmove_arith after noce_try_store_flag_arith
1270 has had a go at it. */
1271
1272 static int
1273 noce_try_cmove (struct noce_if_info *if_info)
1274 {
1275 enum rtx_code code;
1276 rtx target, seq;
1277
1278 if ((CONSTANT_P (if_info->a) || register_operand (if_info->a, VOIDmode))
1279 && (CONSTANT_P (if_info->b) || register_operand (if_info->b, VOIDmode)))
1280 {
1281 start_sequence ();
1282
1283 code = GET_CODE (if_info->cond);
1284 target = noce_emit_cmove (if_info, if_info->x, code,
1285 XEXP (if_info->cond, 0),
1286 XEXP (if_info->cond, 1),
1287 if_info->a, if_info->b);
1288
1289 if (target)
1290 {
1291 if (target != if_info->x)
1292 noce_emit_move_insn (if_info->x, target);
1293
1294 seq = end_ifcvt_sequence (if_info);
1295 if (!seq)
1296 return FALSE;
1297
1298 emit_insn_before_setloc (seq, if_info->jump,
1299 INSN_LOCATOR (if_info->insn_a));
1300 return TRUE;
1301 }
1302 else
1303 {
1304 end_sequence ();
1305 return FALSE;
1306 }
1307 }
1308
1309 return FALSE;
1310 }
1311
1312 /* Try more complex cases involving conditional_move. */
1313
1314 static int
1315 noce_try_cmove_arith (struct noce_if_info *if_info)
1316 {
1317 rtx a = if_info->a;
1318 rtx b = if_info->b;
1319 rtx x = if_info->x;
1320 rtx orig_a, orig_b;
1321 rtx insn_a, insn_b;
1322 rtx tmp, target;
1323 int is_mem = 0;
1324 int insn_cost;
1325 enum rtx_code code;
1326
1327 /* A conditional move from two memory sources is equivalent to a
1328 conditional on their addresses followed by a load. Don't do this
1329 early because it'll screw alias analysis. Note that we've
1330 already checked for no side effects. */
1331 /* ??? FIXME: Magic number 5. */
1332 if (cse_not_expected
1333 && MEM_P (a) && MEM_P (b)
1334 && if_info->branch_cost >= 5)
1335 {
1336 a = XEXP (a, 0);
1337 b = XEXP (b, 0);
1338 x = gen_reg_rtx (Pmode);
1339 is_mem = 1;
1340 }
1341
1342 /* ??? We could handle this if we knew that a load from A or B could
1343 not fault. This is also true if we've already loaded
1344 from the address along the path from ENTRY. */
1345 else if (may_trap_p (a) || may_trap_p (b))
1346 return FALSE;
1347
1348 /* if (test) x = a + b; else x = c - d;
1349 => y = a + b;
1350 x = c - d;
1351 if (test)
1352 x = y;
1353 */
1354
1355 code = GET_CODE (if_info->cond);
1356 insn_a = if_info->insn_a;
1357 insn_b = if_info->insn_b;
1358
1359 /* Total insn_rtx_cost should be smaller than branch cost. Exit
1360 if insn_rtx_cost can't be estimated. */
1361 if (insn_a)
1362 {
1363 insn_cost = insn_rtx_cost (PATTERN (insn_a),
1364 optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn_a)));
1365 if (insn_cost == 0 || insn_cost > COSTS_N_INSNS (if_info->branch_cost))
1366 return FALSE;
1367 }
1368 else
1369 insn_cost = 0;
1370
1371 if (insn_b)
1372 {
1373 insn_cost += insn_rtx_cost (PATTERN (insn_b),
1374 optimize_bb_for_speed_p (BLOCK_FOR_INSN (insn_b)));
1375 if (insn_cost == 0 || insn_cost > COSTS_N_INSNS (if_info->branch_cost))
1376 return FALSE;
1377 }
1378
1379 /* Possibly rearrange operands to make things come out more natural. */
1380 if (reversed_comparison_code (if_info->cond, if_info->jump) != UNKNOWN)
1381 {
1382 int reversep = 0;
1383 if (rtx_equal_p (b, x))
1384 reversep = 1;
1385 else if (general_operand (b, GET_MODE (b)))
1386 reversep = 1;
1387
1388 if (reversep)
1389 {
1390 code = reversed_comparison_code (if_info->cond, if_info->jump);
1391 tmp = a, a = b, b = tmp;
1392 tmp = insn_a, insn_a = insn_b, insn_b = tmp;
1393 }
1394 }
1395
1396 start_sequence ();
1397
1398 orig_a = a;
1399 orig_b = b;
1400
1401 /* If either operand is complex, load it into a register first.
1402 The best way to do this is to copy the original insn. In this
1403 way we preserve any clobbers etc that the insn may have had.
1404 This is of course not possible in the IS_MEM case. */
1405 if (! general_operand (a, GET_MODE (a)))
1406 {
1407 rtx set;
1408
1409 if (is_mem)
1410 {
1411 tmp = gen_reg_rtx (GET_MODE (a));
1412 tmp = emit_insn (gen_rtx_SET (VOIDmode, tmp, a));
1413 }
1414 else if (! insn_a)
1415 goto end_seq_and_fail;
1416 else
1417 {
1418 a = gen_reg_rtx (GET_MODE (a));
1419 tmp = copy_rtx (insn_a);
1420 set = single_set (tmp);
1421 SET_DEST (set) = a;
1422 tmp = emit_insn (PATTERN (tmp));
1423 }
1424 if (recog_memoized (tmp) < 0)
1425 goto end_seq_and_fail;
1426 }
1427 if (! general_operand (b, GET_MODE (b)))
1428 {
1429 rtx set, last;
1430
1431 if (is_mem)
1432 {
1433 tmp = gen_reg_rtx (GET_MODE (b));
1434 tmp = gen_rtx_SET (VOIDmode, tmp, b);
1435 }
1436 else if (! insn_b)
1437 goto end_seq_and_fail;
1438 else
1439 {
1440 b = gen_reg_rtx (GET_MODE (b));
1441 tmp = copy_rtx (insn_b);
1442 set = single_set (tmp);
1443 SET_DEST (set) = b;
1444 tmp = PATTERN (tmp);
1445 }
1446
1447 /* If insn to set up A clobbers any registers B depends on, try to
1448 swap insn that sets up A with the one that sets up B. If even
1449 that doesn't help, punt. */
1450 last = get_last_insn ();
1451 if (last && modified_in_p (orig_b, last))
1452 {
1453 tmp = emit_insn_before (tmp, get_insns ());
1454 if (modified_in_p (orig_a, tmp))
1455 goto end_seq_and_fail;
1456 }
1457 else
1458 tmp = emit_insn (tmp);
1459
1460 if (recog_memoized (tmp) < 0)
1461 goto end_seq_and_fail;
1462 }
1463
1464 target = noce_emit_cmove (if_info, x, code, XEXP (if_info->cond, 0),
1465 XEXP (if_info->cond, 1), a, b);
1466
1467 if (! target)
1468 goto end_seq_and_fail;
1469
1470 /* If we're handling a memory for above, emit the load now. */
1471 if (is_mem)
1472 {
1473 tmp = gen_rtx_MEM (GET_MODE (if_info->x), target);
1474
1475 /* Copy over flags as appropriate. */
1476 if (MEM_VOLATILE_P (if_info->a) || MEM_VOLATILE_P (if_info->b))
1477 MEM_VOLATILE_P (tmp) = 1;
1478 if (MEM_IN_STRUCT_P (if_info->a) && MEM_IN_STRUCT_P (if_info->b))
1479 MEM_IN_STRUCT_P (tmp) = 1;
1480 if (MEM_SCALAR_P (if_info->a) && MEM_SCALAR_P (if_info->b))
1481 MEM_SCALAR_P (tmp) = 1;
1482 if (MEM_ALIAS_SET (if_info->a) == MEM_ALIAS_SET (if_info->b))
1483 set_mem_alias_set (tmp, MEM_ALIAS_SET (if_info->a));
1484 set_mem_align (tmp,
1485 MIN (MEM_ALIGN (if_info->a), MEM_ALIGN (if_info->b)));
1486
1487 noce_emit_move_insn (if_info->x, tmp);
1488 }
1489 else if (target != x)
1490 noce_emit_move_insn (x, target);
1491
1492 tmp = end_ifcvt_sequence (if_info);
1493 if (!tmp)
1494 return FALSE;
1495
1496 emit_insn_before_setloc (tmp, if_info->jump, INSN_LOCATOR (if_info->insn_a));
1497 return TRUE;
1498
1499 end_seq_and_fail:
1500 end_sequence ();
1501 return FALSE;
1502 }
1503
1504 /* For most cases, the simplified condition we found is the best
1505 choice, but this is not the case for the min/max/abs transforms.
1506 For these we wish to know that it is A or B in the condition. */
1507
1508 static rtx
1509 noce_get_alt_condition (struct noce_if_info *if_info, rtx target,
1510 rtx *earliest)
1511 {
1512 rtx cond, set, insn;
1513 int reverse;
1514
1515 /* If target is already mentioned in the known condition, return it. */
1516 if (reg_mentioned_p (target, if_info->cond))
1517 {
1518 *earliest = if_info->cond_earliest;
1519 return if_info->cond;
1520 }
1521
1522 set = pc_set (if_info->jump);
1523 cond = XEXP (SET_SRC (set), 0);
1524 reverse
1525 = GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
1526 && XEXP (XEXP (SET_SRC (set), 2), 0) == JUMP_LABEL (if_info->jump);
1527 if (if_info->then_else_reversed)
1528 reverse = !reverse;
1529
1530 /* If we're looking for a constant, try to make the conditional
1531 have that constant in it. There are two reasons why it may
1532 not have the constant we want:
1533
1534 1. GCC may have needed to put the constant in a register, because
1535 the target can't compare directly against that constant. For
1536 this case, we look for a SET immediately before the comparison
1537 that puts a constant in that register.
1538
1539 2. GCC may have canonicalized the conditional, for example
1540 replacing "if x < 4" with "if x <= 3". We can undo that (or
1541 make equivalent types of changes) to get the constants we need
1542 if they're off by one in the right direction. */
1543
1544 if (GET_CODE (target) == CONST_INT)
1545 {
1546 enum rtx_code code = GET_CODE (if_info->cond);
1547 rtx op_a = XEXP (if_info->cond, 0);
1548 rtx op_b = XEXP (if_info->cond, 1);
1549 rtx prev_insn;
1550
1551 /* First, look to see if we put a constant in a register. */
1552 prev_insn = prev_nonnote_insn (if_info->cond_earliest);
1553 if (prev_insn
1554 && BLOCK_NUM (prev_insn) == BLOCK_NUM (if_info->cond_earliest)
1555 && INSN_P (prev_insn)
1556 && GET_CODE (PATTERN (prev_insn)) == SET)
1557 {
1558 rtx src = find_reg_equal_equiv_note (prev_insn);
1559 if (!src)
1560 src = SET_SRC (PATTERN (prev_insn));
1561 if (GET_CODE (src) == CONST_INT)
1562 {
1563 if (rtx_equal_p (op_a, SET_DEST (PATTERN (prev_insn))))
1564 op_a = src;
1565 else if (rtx_equal_p (op_b, SET_DEST (PATTERN (prev_insn))))
1566 op_b = src;
1567
1568 if (GET_CODE (op_a) == CONST_INT)
1569 {
1570 rtx tmp = op_a;
1571 op_a = op_b;
1572 op_b = tmp;
1573 code = swap_condition (code);
1574 }
1575 }
1576 }
1577
1578 /* Now, look to see if we can get the right constant by
1579 adjusting the conditional. */
1580 if (GET_CODE (op_b) == CONST_INT)
1581 {
1582 HOST_WIDE_INT desired_val = INTVAL (target);
1583 HOST_WIDE_INT actual_val = INTVAL (op_b);
1584
1585 switch (code)
1586 {
1587 case LT:
1588 if (actual_val == desired_val + 1)
1589 {
1590 code = LE;
1591 op_b = GEN_INT (desired_val);
1592 }
1593 break;
1594 case LE:
1595 if (actual_val == desired_val - 1)
1596 {
1597 code = LT;
1598 op_b = GEN_INT (desired_val);
1599 }
1600 break;
1601 case GT:
1602 if (actual_val == desired_val - 1)
1603 {
1604 code = GE;
1605 op_b = GEN_INT (desired_val);
1606 }
1607 break;
1608 case GE:
1609 if (actual_val == desired_val + 1)
1610 {
1611 code = GT;
1612 op_b = GEN_INT (desired_val);
1613 }
1614 break;
1615 default:
1616 break;
1617 }
1618 }
1619
1620 /* If we made any changes, generate a new conditional that is
1621 equivalent to what we started with, but has the right
1622 constants in it. */
1623 if (code != GET_CODE (if_info->cond)
1624 || op_a != XEXP (if_info->cond, 0)
1625 || op_b != XEXP (if_info->cond, 1))
1626 {
1627 cond = gen_rtx_fmt_ee (code, GET_MODE (cond), op_a, op_b);
1628 *earliest = if_info->cond_earliest;
1629 return cond;
1630 }
1631 }
1632
1633 cond = canonicalize_condition (if_info->jump, cond, reverse,
1634 earliest, target, false, true);
1635 if (! cond || ! reg_mentioned_p (target, cond))
1636 return NULL;
1637
1638 /* We almost certainly searched back to a different place.
1639 Need to re-verify correct lifetimes. */
1640
1641 /* X may not be mentioned in the range (cond_earliest, jump]. */
1642 for (insn = if_info->jump; insn != *earliest; insn = PREV_INSN (insn))
1643 if (INSN_P (insn) && reg_overlap_mentioned_p (if_info->x, PATTERN (insn)))
1644 return NULL;
1645
1646 /* A and B may not be modified in the range [cond_earliest, jump). */
1647 for (insn = *earliest; insn != if_info->jump; insn = NEXT_INSN (insn))
1648 if (INSN_P (insn)
1649 && (modified_in_p (if_info->a, insn)
1650 || modified_in_p (if_info->b, insn)))
1651 return NULL;
1652
1653 return cond;
1654 }
1655
1656 /* Convert "if (a < b) x = a; else x = b;" to "x = min(a, b);", etc. */
1657
1658 static int
1659 noce_try_minmax (struct noce_if_info *if_info)
1660 {
1661 rtx cond, earliest, target, seq;
1662 enum rtx_code code, op;
1663 int unsignedp;
1664
1665 /* ??? Reject modes with NaNs or signed zeros since we don't know how
1666 they will be resolved with an SMIN/SMAX. It wouldn't be too hard
1667 to get the target to tell us... */
1668 if (HONOR_SIGNED_ZEROS (GET_MODE (if_info->x))
1669 || HONOR_NANS (GET_MODE (if_info->x)))
1670 return FALSE;
1671
1672 cond = noce_get_alt_condition (if_info, if_info->a, &earliest);
1673 if (!cond)
1674 return FALSE;
1675
1676 /* Verify the condition is of the form we expect, and canonicalize
1677 the comparison code. */
1678 code = GET_CODE (cond);
1679 if (rtx_equal_p (XEXP (cond, 0), if_info->a))
1680 {
1681 if (! rtx_equal_p (XEXP (cond, 1), if_info->b))
1682 return FALSE;
1683 }
1684 else if (rtx_equal_p (XEXP (cond, 1), if_info->a))
1685 {
1686 if (! rtx_equal_p (XEXP (cond, 0), if_info->b))
1687 return FALSE;
1688 code = swap_condition (code);
1689 }
1690 else
1691 return FALSE;
1692
1693 /* Determine what sort of operation this is. Note that the code is for
1694 a taken branch, so the code->operation mapping appears backwards. */
1695 switch (code)
1696 {
1697 case LT:
1698 case LE:
1699 case UNLT:
1700 case UNLE:
1701 op = SMAX;
1702 unsignedp = 0;
1703 break;
1704 case GT:
1705 case GE:
1706 case UNGT:
1707 case UNGE:
1708 op = SMIN;
1709 unsignedp = 0;
1710 break;
1711 case LTU:
1712 case LEU:
1713 op = UMAX;
1714 unsignedp = 1;
1715 break;
1716 case GTU:
1717 case GEU:
1718 op = UMIN;
1719 unsignedp = 1;
1720 break;
1721 default:
1722 return FALSE;
1723 }
1724
1725 start_sequence ();
1726
1727 target = expand_simple_binop (GET_MODE (if_info->x), op,
1728 if_info->a, if_info->b,
1729 if_info->x, unsignedp, OPTAB_WIDEN);
1730 if (! target)
1731 {
1732 end_sequence ();
1733 return FALSE;
1734 }
1735 if (target != if_info->x)
1736 noce_emit_move_insn (if_info->x, target);
1737
1738 seq = end_ifcvt_sequence (if_info);
1739 if (!seq)
1740 return FALSE;
1741
1742 emit_insn_before_setloc (seq, if_info->jump, INSN_LOCATOR (if_info->insn_a));
1743 if_info->cond = cond;
1744 if_info->cond_earliest = earliest;
1745
1746 return TRUE;
1747 }
1748
1749 /* Convert "if (a < 0) x = -a; else x = a;" to "x = abs(a);", etc. */
1750
1751 static int
1752 noce_try_abs (struct noce_if_info *if_info)
1753 {
1754 rtx cond, earliest, target, seq, a, b, c;
1755 int negate;
1756
1757 /* Reject modes with signed zeros. */
1758 if (HONOR_SIGNED_ZEROS (GET_MODE (if_info->x)))
1759 return FALSE;
1760
1761 /* Recognize A and B as constituting an ABS or NABS. The canonical
1762 form is a branch around the negation, taken when the object is the
1763 first operand of a comparison against 0 that evaluates to true. */
1764 a = if_info->a;
1765 b = if_info->b;
1766 if (GET_CODE (a) == NEG && rtx_equal_p (XEXP (a, 0), b))
1767 negate = 0;
1768 else if (GET_CODE (b) == NEG && rtx_equal_p (XEXP (b, 0), a))
1769 {
1770 c = a; a = b; b = c;
1771 negate = 1;
1772 }
1773 else
1774 return FALSE;
1775
1776 cond = noce_get_alt_condition (if_info, b, &earliest);
1777 if (!cond)
1778 return FALSE;
1779
1780 /* Verify the condition is of the form we expect. */
1781 if (rtx_equal_p (XEXP (cond, 0), b))
1782 c = XEXP (cond, 1);
1783 else if (rtx_equal_p (XEXP (cond, 1), b))
1784 {
1785 c = XEXP (cond, 0);
1786 negate = !negate;
1787 }
1788 else
1789 return FALSE;
1790
1791 /* Verify that C is zero. Search one step backward for a
1792 REG_EQUAL note or a simple source if necessary. */
1793 if (REG_P (c))
1794 {
1795 rtx set, insn = prev_nonnote_insn (earliest);
1796 if (insn
1797 && BLOCK_NUM (insn) == BLOCK_NUM (earliest)
1798 && (set = single_set (insn))
1799 && rtx_equal_p (SET_DEST (set), c))
1800 {
1801 rtx note = find_reg_equal_equiv_note (insn);
1802 if (note)
1803 c = XEXP (note, 0);
1804 else
1805 c = SET_SRC (set);
1806 }
1807 else
1808 return FALSE;
1809 }
1810 if (MEM_P (c)
1811 && GET_CODE (XEXP (c, 0)) == SYMBOL_REF
1812 && CONSTANT_POOL_ADDRESS_P (XEXP (c, 0)))
1813 c = get_pool_constant (XEXP (c, 0));
1814
1815 /* Work around funny ideas get_condition has wrt canonicalization.
1816 Note that these rtx constants are known to be CONST_INT, and
1817 therefore imply integer comparisons. */
1818 if (c == constm1_rtx && GET_CODE (cond) == GT)
1819 ;
1820 else if (c == const1_rtx && GET_CODE (cond) == LT)
1821 ;
1822 else if (c != CONST0_RTX (GET_MODE (b)))
1823 return FALSE;
1824
1825 /* Determine what sort of operation this is. */
1826 switch (GET_CODE (cond))
1827 {
1828 case LT:
1829 case LE:
1830 case UNLT:
1831 case UNLE:
1832 negate = !negate;
1833 break;
1834 case GT:
1835 case GE:
1836 case UNGT:
1837 case UNGE:
1838 break;
1839 default:
1840 return FALSE;
1841 }
1842
1843 start_sequence ();
1844
1845 target = expand_abs_nojump (GET_MODE (if_info->x), b, if_info->x, 1);
1846
1847 /* ??? It's a quandary whether cmove would be better here, especially
1848 for integers. Perhaps combine will clean things up. */
1849 if (target && negate)
1850 target = expand_simple_unop (GET_MODE (target), NEG, target, if_info->x, 0);
1851
1852 if (! target)
1853 {
1854 end_sequence ();
1855 return FALSE;
1856 }
1857
1858 if (target != if_info->x)
1859 noce_emit_move_insn (if_info->x, target);
1860
1861 seq = end_ifcvt_sequence (if_info);
1862 if (!seq)
1863 return FALSE;
1864
1865 emit_insn_before_setloc (seq, if_info->jump, INSN_LOCATOR (if_info->insn_a));
1866 if_info->cond = cond;
1867 if_info->cond_earliest = earliest;
1868
1869 return TRUE;
1870 }
1871
1872 /* Convert "if (m < 0) x = b; else x = 0;" to "x = (m >> C) & b;". */
1873
1874 static int
1875 noce_try_sign_mask (struct noce_if_info *if_info)
1876 {
1877 rtx cond, t, m, c, seq;
1878 enum machine_mode mode;
1879 enum rtx_code code;
1880 bool t_unconditional;
1881
1882 cond = if_info->cond;
1883 code = GET_CODE (cond);
1884 m = XEXP (cond, 0);
1885 c = XEXP (cond, 1);
1886
1887 t = NULL_RTX;
1888 if (if_info->a == const0_rtx)
1889 {
1890 if ((code == LT && c == const0_rtx)
1891 || (code == LE && c == constm1_rtx))
1892 t = if_info->b;
1893 }
1894 else if (if_info->b == const0_rtx)
1895 {
1896 if ((code == GE && c == const0_rtx)
1897 || (code == GT && c == constm1_rtx))
1898 t = if_info->a;
1899 }
1900
1901 if (! t || side_effects_p (t))
1902 return FALSE;
1903
1904 /* We currently don't handle different modes. */
1905 mode = GET_MODE (t);
1906 if (GET_MODE (m) != mode)
1907 return FALSE;
1908
1909 /* This is only profitable if T is unconditionally executed/evaluated in the
1910 original insn sequence or T is cheap. The former happens if B is the
1911 non-zero (T) value and if INSN_B was taken from TEST_BB, or there was no
1912 INSN_B which can happen for e.g. conditional stores to memory. For the
1913 cost computation use the block TEST_BB where the evaluation will end up
1914 after the transformation. */
1915 t_unconditional =
1916 (t == if_info->b
1917 && (if_info->insn_b == NULL_RTX
1918 || BLOCK_FOR_INSN (if_info->insn_b) == if_info->test_bb));
1919 if (!(t_unconditional
1920 || (rtx_cost (t, SET, optimize_bb_for_speed_p (if_info->test_bb))
1921 < COSTS_N_INSNS (2))))
1922 return FALSE;
1923
1924 start_sequence ();
1925 /* Use emit_store_flag to generate "m < 0 ? -1 : 0" instead of expanding
1926 "(signed) m >> 31" directly. This benefits targets with specialized
1927 insns to obtain the signmask, but still uses ashr_optab otherwise. */
1928 m = emit_store_flag (gen_reg_rtx (mode), LT, m, const0_rtx, mode, 0, -1);
1929 t = m ? expand_binop (mode, and_optab, m, t, NULL_RTX, 0, OPTAB_DIRECT)
1930 : NULL_RTX;
1931
1932 if (!t)
1933 {
1934 end_sequence ();
1935 return FALSE;
1936 }
1937
1938 noce_emit_move_insn (if_info->x, t);
1939
1940 seq = end_ifcvt_sequence (if_info);
1941 if (!seq)
1942 return FALSE;
1943
1944 emit_insn_before_setloc (seq, if_info->jump, INSN_LOCATOR (if_info->insn_a));
1945 return TRUE;
1946 }
1947
1948
1949 /* Optimize away "if (x & C) x |= C" and similar bit manipulation
1950 transformations. */
1951
1952 static int
1953 noce_try_bitop (struct noce_if_info *if_info)
1954 {
1955 rtx cond, x, a, result, seq;
1956 enum machine_mode mode;
1957 enum rtx_code code;
1958 int bitnum;
1959
1960 x = if_info->x;
1961 cond = if_info->cond;
1962 code = GET_CODE (cond);
1963
1964 /* Check for no else condition. */
1965 if (! rtx_equal_p (x, if_info->b))
1966 return FALSE;
1967
1968 /* Check for a suitable condition. */
1969 if (code != NE && code != EQ)
1970 return FALSE;
1971 if (XEXP (cond, 1) != const0_rtx)
1972 return FALSE;
1973 cond = XEXP (cond, 0);
1974
1975 /* ??? We could also handle AND here. */
1976 if (GET_CODE (cond) == ZERO_EXTRACT)
1977 {
1978 if (XEXP (cond, 1) != const1_rtx
1979 || GET_CODE (XEXP (cond, 2)) != CONST_INT
1980 || ! rtx_equal_p (x, XEXP (cond, 0)))
1981 return FALSE;
1982 bitnum = INTVAL (XEXP (cond, 2));
1983 mode = GET_MODE (x);
1984 if (BITS_BIG_ENDIAN)
1985 bitnum = GET_MODE_BITSIZE (mode) - 1 - bitnum;
1986 if (bitnum < 0 || bitnum >= HOST_BITS_PER_WIDE_INT)
1987 return FALSE;
1988 }
1989 else
1990 return FALSE;
1991
1992 a = if_info->a;
1993 if (GET_CODE (a) == IOR || GET_CODE (a) == XOR)
1994 {
1995 /* Check for "if (X & C) x = x op C". */
1996 if (! rtx_equal_p (x, XEXP (a, 0))
1997 || GET_CODE (XEXP (a, 1)) != CONST_INT
1998 || (INTVAL (XEXP (a, 1)) & GET_MODE_MASK (mode))
1999 != (unsigned HOST_WIDE_INT) 1 << bitnum)
2000 return FALSE;
2001
2002 /* if ((x & C) == 0) x |= C; is transformed to x |= C. */
2003 /* if ((x & C) != 0) x |= C; is transformed to nothing. */
2004 if (GET_CODE (a) == IOR)
2005 result = (code == NE) ? a : NULL_RTX;
2006 else if (code == NE)
2007 {
2008 /* if ((x & C) == 0) x ^= C; is transformed to x |= C. */
2009 result = gen_int_mode ((HOST_WIDE_INT) 1 << bitnum, mode);
2010 result = simplify_gen_binary (IOR, mode, x, result);
2011 }
2012 else
2013 {
2014 /* if ((x & C) != 0) x ^= C; is transformed to x &= ~C. */
2015 result = gen_int_mode (~((HOST_WIDE_INT) 1 << bitnum), mode);
2016 result = simplify_gen_binary (AND, mode, x, result);
2017 }
2018 }
2019 else if (GET_CODE (a) == AND)
2020 {
2021 /* Check for "if (X & C) x &= ~C". */
2022 if (! rtx_equal_p (x, XEXP (a, 0))
2023 || GET_CODE (XEXP (a, 1)) != CONST_INT
2024 || (INTVAL (XEXP (a, 1)) & GET_MODE_MASK (mode))
2025 != (~((HOST_WIDE_INT) 1 << bitnum) & GET_MODE_MASK (mode)))
2026 return FALSE;
2027
2028 /* if ((x & C) == 0) x &= ~C; is transformed to nothing. */
2029 /* if ((x & C) != 0) x &= ~C; is transformed to x &= ~C. */
2030 result = (code == EQ) ? a : NULL_RTX;
2031 }
2032 else
2033 return FALSE;
2034
2035 if (result)
2036 {
2037 start_sequence ();
2038 noce_emit_move_insn (x, result);
2039 seq = end_ifcvt_sequence (if_info);
2040 if (!seq)
2041 return FALSE;
2042
2043 emit_insn_before_setloc (seq, if_info->jump,
2044 INSN_LOCATOR (if_info->insn_a));
2045 }
2046 return TRUE;
2047 }
2048
2049
2050 /* Similar to get_condition, only the resulting condition must be
2051 valid at JUMP, instead of at EARLIEST.
2052
2053 If THEN_ELSE_REVERSED is true, the fallthrough does not go to the
2054 THEN block of the caller, and we have to reverse the condition. */
2055
2056 static rtx
2057 noce_get_condition (rtx jump, rtx *earliest, bool then_else_reversed)
2058 {
2059 rtx cond, set, tmp;
2060 bool reverse;
2061
2062 if (! any_condjump_p (jump))
2063 return NULL_RTX;
2064
2065 set = pc_set (jump);
2066
2067 /* If this branches to JUMP_LABEL when the condition is false,
2068 reverse the condition. */
2069 reverse = (GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
2070 && XEXP (XEXP (SET_SRC (set), 2), 0) == JUMP_LABEL (jump));
2071
2072 /* We may have to reverse because the caller's if block is not canonical,
2073 i.e. the THEN block isn't the fallthrough block for the TEST block
2074 (see find_if_header). */
2075 if (then_else_reversed)
2076 reverse = !reverse;
2077
2078 /* If the condition variable is a register and is MODE_INT, accept it. */
2079
2080 cond = XEXP (SET_SRC (set), 0);
2081 tmp = XEXP (cond, 0);
2082 if (REG_P (tmp) && GET_MODE_CLASS (GET_MODE (tmp)) == MODE_INT)
2083 {
2084 *earliest = jump;
2085
2086 if (reverse)
2087 cond = gen_rtx_fmt_ee (reverse_condition (GET_CODE (cond)),
2088 GET_MODE (cond), tmp, XEXP (cond, 1));
2089 return cond;
2090 }
2091
2092 /* Otherwise, fall back on canonicalize_condition to do the dirty
2093 work of manipulating MODE_CC values and COMPARE rtx codes. */
2094 return canonicalize_condition (jump, cond, reverse, earliest,
2095 NULL_RTX, false, true);
2096 }
2097
2098 /* Return true if OP is ok for if-then-else processing. */
2099
2100 static int
2101 noce_operand_ok (const_rtx op)
2102 {
2103 /* We special-case memories, so handle any of them with
2104 no address side effects. */
2105 if (MEM_P (op))
2106 return ! side_effects_p (XEXP (op, 0));
2107
2108 if (side_effects_p (op))
2109 return FALSE;
2110
2111 return ! may_trap_p (op);
2112 }
2113
2114 /* Return true if a write into MEM may trap or fault. */
2115
2116 static bool
2117 noce_mem_write_may_trap_or_fault_p (const_rtx mem)
2118 {
2119 rtx addr;
2120
2121 if (MEM_READONLY_P (mem))
2122 return true;
2123
2124 if (may_trap_or_fault_p (mem))
2125 return true;
2126
2127 addr = XEXP (mem, 0);
2128
2129 /* Call target hook to avoid the effects of -fpic etc.... */
2130 addr = targetm.delegitimize_address (addr);
2131
2132 while (addr)
2133 switch (GET_CODE (addr))
2134 {
2135 case CONST:
2136 case PRE_DEC:
2137 case PRE_INC:
2138 case POST_DEC:
2139 case POST_INC:
2140 case POST_MODIFY:
2141 addr = XEXP (addr, 0);
2142 break;
2143 case LO_SUM:
2144 case PRE_MODIFY:
2145 addr = XEXP (addr, 1);
2146 break;
2147 case PLUS:
2148 if (GET_CODE (XEXP (addr, 1)) == CONST_INT)
2149 addr = XEXP (addr, 0);
2150 else
2151 return false;
2152 break;
2153 case LABEL_REF:
2154 return true;
2155 case SYMBOL_REF:
2156 if (SYMBOL_REF_DECL (addr)
2157 && decl_readonly_section (SYMBOL_REF_DECL (addr), 0))
2158 return true;
2159 return false;
2160 default:
2161 return false;
2162 }
2163
2164 return false;
2165 }
2166
2167 /* Return whether we can use store speculation for MEM. TOP_BB is the
2168 basic block above the conditional block where we are considering
2169 doing the speculative store. We look for whether MEM is set
2170 unconditionally later in the function. */
2171
2172 static bool
2173 noce_can_store_speculate_p (basic_block top_bb, const_rtx mem)
2174 {
2175 basic_block dominator;
2176
2177 for (dominator = get_immediate_dominator (CDI_POST_DOMINATORS, top_bb);
2178 dominator != NULL;
2179 dominator = get_immediate_dominator (CDI_POST_DOMINATORS, dominator))
2180 {
2181 rtx insn;
2182
2183 FOR_BB_INSNS (dominator, insn)
2184 {
2185 /* If we see something that might be a memory barrier, we
2186 have to stop looking. Even if the MEM is set later in
2187 the function, we still don't want to set it
2188 unconditionally before the barrier. */
2189 if (INSN_P (insn)
2190 && (volatile_insn_p (PATTERN (insn))
2191 || (CALL_P (insn) && (!RTL_CONST_CALL_P (insn)))))
2192 return false;
2193
2194 if (memory_modified_in_insn_p (mem, insn))
2195 return true;
2196 if (modified_in_p (XEXP (mem, 0), insn))
2197 return false;
2198
2199 }
2200 }
2201
2202 return false;
2203 }
2204
2205 /* Given a simple IF-THEN-JOIN or IF-THEN-ELSE-JOIN block, attempt to convert
2206 it without using conditional execution. Return TRUE if we were successful
2207 at converting the block. */
2208
2209 static int
2210 noce_process_if_block (struct noce_if_info *if_info)
2211 {
2212 basic_block test_bb = if_info->test_bb; /* test block */
2213 basic_block then_bb = if_info->then_bb; /* THEN */
2214 basic_block else_bb = if_info->else_bb; /* ELSE or NULL */
2215 basic_block join_bb = if_info->join_bb; /* JOIN */
2216 rtx jump = if_info->jump;
2217 rtx cond = if_info->cond;
2218 rtx insn_a, insn_b;
2219 rtx set_a, set_b;
2220 rtx orig_x, x, a, b;
2221
2222 /* We're looking for patterns of the form
2223
2224 (1) if (...) x = a; else x = b;
2225 (2) x = b; if (...) x = a;
2226 (3) if (...) x = a; // as if with an initial x = x.
2227
2228 The later patterns require jumps to be more expensive.
2229
2230 ??? For future expansion, look for multiple X in such patterns. */
2231
2232 /* Look for one of the potential sets. */
2233 insn_a = first_active_insn (then_bb);
2234 if (! insn_a
2235 || insn_a != last_active_insn (then_bb, FALSE)
2236 || (set_a = single_set (insn_a)) == NULL_RTX)
2237 return FALSE;
2238
2239 x = SET_DEST (set_a);
2240 a = SET_SRC (set_a);
2241
2242 /* Look for the other potential set. Make sure we've got equivalent
2243 destinations. */
2244 /* ??? This is overconservative. Storing to two different mems is
2245 as easy as conditionally computing the address. Storing to a
2246 single mem merely requires a scratch memory to use as one of the
2247 destination addresses; often the memory immediately below the
2248 stack pointer is available for this. */
2249 set_b = NULL_RTX;
2250 if (else_bb)
2251 {
2252 insn_b = first_active_insn (else_bb);
2253 if (! insn_b
2254 || insn_b != last_active_insn (else_bb, FALSE)
2255 || (set_b = single_set (insn_b)) == NULL_RTX
2256 || ! rtx_equal_p (x, SET_DEST (set_b)))
2257 return FALSE;
2258 }
2259 else
2260 {
2261 insn_b = prev_nonnote_insn (if_info->cond_earliest);
2262 /* We're going to be moving the evaluation of B down from above
2263 COND_EARLIEST to JUMP. Make sure the relevant data is still
2264 intact. */
2265 if (! insn_b
2266 || BLOCK_NUM (insn_b) != BLOCK_NUM (if_info->cond_earliest)
2267 || !NONJUMP_INSN_P (insn_b)
2268 || (set_b = single_set (insn_b)) == NULL_RTX
2269 || ! rtx_equal_p (x, SET_DEST (set_b))
2270 || ! noce_operand_ok (SET_SRC (set_b))
2271 || reg_overlap_mentioned_p (x, SET_SRC (set_b))
2272 || modified_between_p (SET_SRC (set_b),
2273 PREV_INSN (if_info->cond_earliest), jump)
2274 /* Likewise with X. In particular this can happen when
2275 noce_get_condition looks farther back in the instruction
2276 stream than one might expect. */
2277 || reg_overlap_mentioned_p (x, cond)
2278 || reg_overlap_mentioned_p (x, a)
2279 || modified_between_p (x, PREV_INSN (if_info->cond_earliest), jump))
2280 insn_b = set_b = NULL_RTX;
2281 }
2282
2283 /* If x has side effects then only the if-then-else form is safe to
2284 convert. But even in that case we would need to restore any notes
2285 (such as REG_INC) at then end. That can be tricky if
2286 noce_emit_move_insn expands to more than one insn, so disable the
2287 optimization entirely for now if there are side effects. */
2288 if (side_effects_p (x))
2289 return FALSE;
2290
2291 b = (set_b ? SET_SRC (set_b) : x);
2292
2293 /* Only operate on register destinations, and even then avoid extending
2294 the lifetime of hard registers on small register class machines. */
2295 orig_x = x;
2296 if (!REG_P (x)
2297 || (SMALL_REGISTER_CLASSES
2298 && REGNO (x) < FIRST_PSEUDO_REGISTER))
2299 {
2300 if (GET_MODE (x) == BLKmode)
2301 return FALSE;
2302
2303 if (GET_CODE (x) == ZERO_EXTRACT
2304 && (GET_CODE (XEXP (x, 1)) != CONST_INT
2305 || GET_CODE (XEXP (x, 2)) != CONST_INT))
2306 return FALSE;
2307
2308 x = gen_reg_rtx (GET_MODE (GET_CODE (x) == STRICT_LOW_PART
2309 ? XEXP (x, 0) : x));
2310 }
2311
2312 /* Don't operate on sources that may trap or are volatile. */
2313 if (! noce_operand_ok (a) || ! noce_operand_ok (b))
2314 return FALSE;
2315
2316 retry:
2317 /* Set up the info block for our subroutines. */
2318 if_info->insn_a = insn_a;
2319 if_info->insn_b = insn_b;
2320 if_info->x = x;
2321 if_info->a = a;
2322 if_info->b = b;
2323
2324 /* Try optimizations in some approximation of a useful order. */
2325 /* ??? Should first look to see if X is live incoming at all. If it
2326 isn't, we don't need anything but an unconditional set. */
2327
2328 /* Look and see if A and B are really the same. Avoid creating silly
2329 cmove constructs that no one will fix up later. */
2330 if (rtx_equal_p (a, b))
2331 {
2332 /* If we have an INSN_B, we don't have to create any new rtl. Just
2333 move the instruction that we already have. If we don't have an
2334 INSN_B, that means that A == X, and we've got a noop move. In
2335 that case don't do anything and let the code below delete INSN_A. */
2336 if (insn_b && else_bb)
2337 {
2338 rtx note;
2339
2340 if (else_bb && insn_b == BB_END (else_bb))
2341 BB_END (else_bb) = PREV_INSN (insn_b);
2342 reorder_insns (insn_b, insn_b, PREV_INSN (jump));
2343
2344 /* If there was a REG_EQUAL note, delete it since it may have been
2345 true due to this insn being after a jump. */
2346 if ((note = find_reg_note (insn_b, REG_EQUAL, NULL_RTX)) != 0)
2347 remove_note (insn_b, note);
2348
2349 insn_b = NULL_RTX;
2350 }
2351 /* If we have "x = b; if (...) x = a;", and x has side-effects, then
2352 x must be executed twice. */
2353 else if (insn_b && side_effects_p (orig_x))
2354 return FALSE;
2355
2356 x = orig_x;
2357 goto success;
2358 }
2359
2360 if (!set_b && MEM_P (orig_x))
2361 {
2362 /* Disallow the "if (...) x = a;" form (implicit "else x = x;")
2363 for optimizations if writing to x may trap or fault,
2364 i.e. it's a memory other than a static var or a stack slot,
2365 is misaligned on strict aligned machines or is read-only. If
2366 x is a read-only memory, then the program is valid only if we
2367 avoid the store into it. If there are stores on both the
2368 THEN and ELSE arms, then we can go ahead with the conversion;
2369 either the program is broken, or the condition is always
2370 false such that the other memory is selected. */
2371 if (noce_mem_write_may_trap_or_fault_p (orig_x))
2372 return FALSE;
2373
2374 /* Avoid store speculation: given "if (...) x = a" where x is a
2375 MEM, we only want to do the store if x is always set
2376 somewhere in the function. This avoids cases like
2377 if (pthread_mutex_trylock(mutex))
2378 ++global_variable;
2379 where we only want global_variable to be changed if the mutex
2380 is held. FIXME: This should ideally be expressed directly in
2381 RTL somehow. */
2382 if (!noce_can_store_speculate_p (test_bb, orig_x))
2383 return FALSE;
2384 }
2385
2386 if (noce_try_move (if_info))
2387 goto success;
2388 if (noce_try_store_flag (if_info))
2389 goto success;
2390 if (noce_try_bitop (if_info))
2391 goto success;
2392 if (noce_try_minmax (if_info))
2393 goto success;
2394 if (noce_try_abs (if_info))
2395 goto success;
2396 if (HAVE_conditional_move
2397 && noce_try_cmove (if_info))
2398 goto success;
2399 if (! HAVE_conditional_execution)
2400 {
2401 if (noce_try_store_flag_constants (if_info))
2402 goto success;
2403 if (noce_try_addcc (if_info))
2404 goto success;
2405 if (noce_try_store_flag_mask (if_info))
2406 goto success;
2407 if (HAVE_conditional_move
2408 && noce_try_cmove_arith (if_info))
2409 goto success;
2410 if (noce_try_sign_mask (if_info))
2411 goto success;
2412 }
2413
2414 if (!else_bb && set_b)
2415 {
2416 insn_b = set_b = NULL_RTX;
2417 b = orig_x;
2418 goto retry;
2419 }
2420
2421 return FALSE;
2422
2423 success:
2424
2425 /* If we used a temporary, fix it up now. */
2426 if (orig_x != x)
2427 {
2428 rtx seq;
2429
2430 start_sequence ();
2431 noce_emit_move_insn (orig_x, x);
2432 seq = get_insns ();
2433 set_used_flags (orig_x);
2434 unshare_all_rtl_in_chain (seq);
2435 end_sequence ();
2436
2437 emit_insn_before_setloc (seq, BB_END (test_bb), INSN_LOCATOR (insn_a));
2438 }
2439
2440 /* The original THEN and ELSE blocks may now be removed. The test block
2441 must now jump to the join block. If the test block and the join block
2442 can be merged, do so. */
2443 if (else_bb)
2444 {
2445 delete_basic_block (else_bb);
2446 num_true_changes++;
2447 }
2448 else
2449 remove_edge (find_edge (test_bb, join_bb));
2450
2451 remove_edge (find_edge (then_bb, join_bb));
2452 redirect_edge_and_branch_force (single_succ_edge (test_bb), join_bb);
2453 delete_basic_block (then_bb);
2454 num_true_changes++;
2455
2456 if (can_merge_blocks_p (test_bb, join_bb))
2457 {
2458 merge_blocks (test_bb, join_bb);
2459 num_true_changes++;
2460 }
2461
2462 num_updated_if_blocks++;
2463 return TRUE;
2464 }
2465
2466 /* Check whether a block is suitable for conditional move conversion.
2467 Every insn must be a simple set of a register to a constant or a
2468 register. For each assignment, store the value in the array VALS,
2469 indexed by register number, then store the register number in
2470 REGS. COND is the condition we will test. */
2471
2472 static int
2473 check_cond_move_block (basic_block bb, rtx *vals, VEC (int, heap) **regs, rtx cond)
2474 {
2475 rtx insn;
2476
2477 /* We can only handle simple jumps at the end of the basic block.
2478 It is almost impossible to update the CFG otherwise. */
2479 insn = BB_END (bb);
2480 if (JUMP_P (insn) && !onlyjump_p (insn))
2481 return FALSE;
2482
2483 FOR_BB_INSNS (bb, insn)
2484 {
2485 rtx set, dest, src;
2486
2487 if (!INSN_P (insn) || JUMP_P (insn))
2488 continue;
2489 set = single_set (insn);
2490 if (!set)
2491 return FALSE;
2492
2493 dest = SET_DEST (set);
2494 src = SET_SRC (set);
2495 if (!REG_P (dest)
2496 || (SMALL_REGISTER_CLASSES && HARD_REGISTER_P (dest)))
2497 return FALSE;
2498
2499 if (!CONSTANT_P (src) && !register_operand (src, VOIDmode))
2500 return FALSE;
2501
2502 if (side_effects_p (src) || side_effects_p (dest))
2503 return FALSE;
2504
2505 if (may_trap_p (src) || may_trap_p (dest))
2506 return FALSE;
2507
2508 /* Don't try to handle this if the source register was
2509 modified earlier in the block. */
2510 if ((REG_P (src)
2511 && vals[REGNO (src)] != NULL)
2512 || (GET_CODE (src) == SUBREG && REG_P (SUBREG_REG (src))
2513 && vals[REGNO (SUBREG_REG (src))] != NULL))
2514 return FALSE;
2515
2516 /* Don't try to handle this if the destination register was
2517 modified earlier in the block. */
2518 if (vals[REGNO (dest)] != NULL)
2519 return FALSE;
2520
2521 /* Don't try to handle this if the condition uses the
2522 destination register. */
2523 if (reg_overlap_mentioned_p (dest, cond))
2524 return FALSE;
2525
2526 /* Don't try to handle this if the source register is modified
2527 later in the block. */
2528 if (!CONSTANT_P (src)
2529 && modified_between_p (src, insn, NEXT_INSN (BB_END (bb))))
2530 return FALSE;
2531
2532 vals[REGNO (dest)] = src;
2533
2534 VEC_safe_push (int, heap, *regs, REGNO (dest));
2535 }
2536
2537 return TRUE;
2538 }
2539
2540 /* Given a basic block BB suitable for conditional move conversion,
2541 a condition COND, and arrays THEN_VALS and ELSE_VALS containing the
2542 register values depending on COND, emit the insns in the block as
2543 conditional moves. If ELSE_BLOCK is true, THEN_BB was already
2544 processed. The caller has started a sequence for the conversion.
2545 Return true if successful, false if something goes wrong. */
2546
2547 static bool
2548 cond_move_convert_if_block (struct noce_if_info *if_infop,
2549 basic_block bb, rtx cond,
2550 rtx *then_vals, rtx *else_vals,
2551 bool else_block_p)
2552 {
2553 enum rtx_code code;
2554 rtx insn, cond_arg0, cond_arg1;
2555
2556 code = GET_CODE (cond);
2557 cond_arg0 = XEXP (cond, 0);
2558 cond_arg1 = XEXP (cond, 1);
2559
2560 FOR_BB_INSNS (bb, insn)
2561 {
2562 rtx set, target, dest, t, e;
2563 unsigned int regno;
2564
2565 if (!INSN_P (insn) || JUMP_P (insn))
2566 continue;
2567 set = single_set (insn);
2568 gcc_assert (set && REG_P (SET_DEST (set)));
2569
2570 dest = SET_DEST (set);
2571 regno = REGNO (dest);
2572
2573 t = then_vals[regno];
2574 e = else_vals[regno];
2575
2576 if (else_block_p)
2577 {
2578 /* If this register was set in the then block, we already
2579 handled this case there. */
2580 if (t)
2581 continue;
2582 t = dest;
2583 gcc_assert (e);
2584 }
2585 else
2586 {
2587 gcc_assert (t);
2588 if (!e)
2589 e = dest;
2590 }
2591
2592 target = noce_emit_cmove (if_infop, dest, code, cond_arg0, cond_arg1,
2593 t, e);
2594 if (!target)
2595 return false;
2596
2597 if (target != dest)
2598 noce_emit_move_insn (dest, target);
2599 }
2600
2601 return true;
2602 }
2603
2604 /* Given a simple IF-THEN-JOIN or IF-THEN-ELSE-JOIN block, attempt to convert
2605 it using only conditional moves. Return TRUE if we were successful at
2606 converting the block. */
2607
2608 static int
2609 cond_move_process_if_block (struct noce_if_info *if_info)
2610 {
2611 basic_block test_bb = if_info->test_bb;
2612 basic_block then_bb = if_info->then_bb;
2613 basic_block else_bb = if_info->else_bb;
2614 basic_block join_bb = if_info->join_bb;
2615 rtx jump = if_info->jump;
2616 rtx cond = if_info->cond;
2617 rtx seq, loc_insn;
2618 int max_reg, size, c, reg;
2619 rtx *then_vals;
2620 rtx *else_vals;
2621 VEC (int, heap) *then_regs = NULL;
2622 VEC (int, heap) *else_regs = NULL;
2623 unsigned int i;
2624
2625 /* Build a mapping for each block to the value used for each
2626 register. */
2627 max_reg = max_reg_num ();
2628 size = (max_reg + 1) * sizeof (rtx);
2629 then_vals = (rtx *) alloca (size);
2630 else_vals = (rtx *) alloca (size);
2631 memset (then_vals, 0, size);
2632 memset (else_vals, 0, size);
2633
2634 /* Make sure the blocks are suitable. */
2635 if (!check_cond_move_block (then_bb, then_vals, &then_regs, cond)
2636 || (else_bb && !check_cond_move_block (else_bb, else_vals, &else_regs, cond)))
2637 {
2638 VEC_free (int, heap, then_regs);
2639 VEC_free (int, heap, else_regs);
2640 return FALSE;
2641 }
2642
2643 /* Make sure the blocks can be used together. If the same register
2644 is set in both blocks, and is not set to a constant in both
2645 cases, then both blocks must set it to the same register. We
2646 have already verified that if it is set to a register, that the
2647 source register does not change after the assignment. Also count
2648 the number of registers set in only one of the blocks. */
2649 c = 0;
2650 for (i = 0; VEC_iterate (int, then_regs, i, reg); i++)
2651 {
2652 if (!then_vals[reg] && !else_vals[reg])
2653 continue;
2654
2655 if (!else_vals[reg])
2656 ++c;
2657 else
2658 {
2659 if (!CONSTANT_P (then_vals[reg])
2660 && !CONSTANT_P (else_vals[reg])
2661 && !rtx_equal_p (then_vals[reg], else_vals[reg]))
2662 {
2663 VEC_free (int, heap, then_regs);
2664 VEC_free (int, heap, else_regs);
2665 return FALSE;
2666 }
2667 }
2668 }
2669
2670 /* Finish off c for MAX_CONDITIONAL_EXECUTE. */
2671 for (i = 0; VEC_iterate (int, else_regs, i, reg); ++i)
2672 if (!then_vals[reg])
2673 ++c;
2674
2675 /* Make sure it is reasonable to convert this block. What matters
2676 is the number of assignments currently made in only one of the
2677 branches, since if we convert we are going to always execute
2678 them. */
2679 if (c > MAX_CONDITIONAL_EXECUTE)
2680 {
2681 VEC_free (int, heap, then_regs);
2682 VEC_free (int, heap, else_regs);
2683 return FALSE;
2684 }
2685
2686 /* Try to emit the conditional moves. First do the then block,
2687 then do anything left in the else blocks. */
2688 start_sequence ();
2689 if (!cond_move_convert_if_block (if_info, then_bb, cond,
2690 then_vals, else_vals, false)
2691 || (else_bb
2692 && !cond_move_convert_if_block (if_info, else_bb, cond,
2693 then_vals, else_vals, true)))
2694 {
2695 end_sequence ();
2696 VEC_free (int, heap, then_regs);
2697 VEC_free (int, heap, else_regs);
2698 return FALSE;
2699 }
2700 seq = end_ifcvt_sequence (if_info);
2701 if (!seq)
2702 {
2703 VEC_free (int, heap, then_regs);
2704 VEC_free (int, heap, else_regs);
2705 return FALSE;
2706 }
2707
2708 loc_insn = first_active_insn (then_bb);
2709 if (!loc_insn)
2710 {
2711 loc_insn = first_active_insn (else_bb);
2712 gcc_assert (loc_insn);
2713 }
2714 emit_insn_before_setloc (seq, jump, INSN_LOCATOR (loc_insn));
2715
2716 if (else_bb)
2717 {
2718 delete_basic_block (else_bb);
2719 num_true_changes++;
2720 }
2721 else
2722 remove_edge (find_edge (test_bb, join_bb));
2723
2724 remove_edge (find_edge (then_bb, join_bb));
2725 redirect_edge_and_branch_force (single_succ_edge (test_bb), join_bb);
2726 delete_basic_block (then_bb);
2727 num_true_changes++;
2728
2729 if (can_merge_blocks_p (test_bb, join_bb))
2730 {
2731 merge_blocks (test_bb, join_bb);
2732 num_true_changes++;
2733 }
2734
2735 num_updated_if_blocks++;
2736
2737 VEC_free (int, heap, then_regs);
2738 VEC_free (int, heap, else_regs);
2739 return TRUE;
2740 }
2741
2742
2743 /* Determine if a given basic block heads a simple IF-THEN-JOIN or an
2744 IF-THEN-ELSE-JOIN block.
2745
2746 If so, we'll try to convert the insns to not require the branch,
2747 using only transformations that do not require conditional execution.
2748
2749 Return TRUE if we were successful at converting the block. */
2750
2751 static int
2752 noce_find_if_block (basic_block test_bb,
2753 edge then_edge, edge else_edge,
2754 int pass)
2755 {
2756 basic_block then_bb, else_bb, join_bb;
2757 bool then_else_reversed = false;
2758 rtx jump, cond;
2759 rtx cond_earliest;
2760 struct noce_if_info if_info;
2761
2762 /* We only ever should get here before reload. */
2763 gcc_assert (!reload_completed);
2764
2765 /* Recognize an IF-THEN-ELSE-JOIN block. */
2766 if (single_pred_p (then_edge->dest)
2767 && single_succ_p (then_edge->dest)
2768 && single_pred_p (else_edge->dest)
2769 && single_succ_p (else_edge->dest)
2770 && single_succ (then_edge->dest) == single_succ (else_edge->dest))
2771 {
2772 then_bb = then_edge->dest;
2773 else_bb = else_edge->dest;
2774 join_bb = single_succ (then_bb);
2775 }
2776 /* Recognize an IF-THEN-JOIN block. */
2777 else if (single_pred_p (then_edge->dest)
2778 && single_succ_p (then_edge->dest)
2779 && single_succ (then_edge->dest) == else_edge->dest)
2780 {
2781 then_bb = then_edge->dest;
2782 else_bb = NULL_BLOCK;
2783 join_bb = else_edge->dest;
2784 }
2785 /* Recognize an IF-ELSE-JOIN block. We can have those because the order
2786 of basic blocks in cfglayout mode does not matter, so the fallthrough
2787 edge can go to any basic block (and not just to bb->next_bb, like in
2788 cfgrtl mode). */
2789 else if (single_pred_p (else_edge->dest)
2790 && single_succ_p (else_edge->dest)
2791 && single_succ (else_edge->dest) == then_edge->dest)
2792 {
2793 /* The noce transformations do not apply to IF-ELSE-JOIN blocks.
2794 To make this work, we have to invert the THEN and ELSE blocks
2795 and reverse the jump condition. */
2796 then_bb = else_edge->dest;
2797 else_bb = NULL_BLOCK;
2798 join_bb = single_succ (then_bb);
2799 then_else_reversed = true;
2800 }
2801 else
2802 /* Not a form we can handle. */
2803 return FALSE;
2804
2805 /* The edges of the THEN and ELSE blocks cannot have complex edges. */
2806 if (single_succ_edge (then_bb)->flags & EDGE_COMPLEX)
2807 return FALSE;
2808 if (else_bb
2809 && single_succ_edge (else_bb)->flags & EDGE_COMPLEX)
2810 return FALSE;
2811
2812 num_possible_if_blocks++;
2813
2814 if (dump_file)
2815 {
2816 fprintf (dump_file,
2817 "\nIF-THEN%s-JOIN block found, pass %d, test %d, then %d",
2818 (else_bb) ? "-ELSE" : "",
2819 pass, test_bb->index, then_bb->index);
2820
2821 if (else_bb)
2822 fprintf (dump_file, ", else %d", else_bb->index);
2823
2824 fprintf (dump_file, ", join %d\n", join_bb->index);
2825 }
2826
2827 /* If the conditional jump is more than just a conditional
2828 jump, then we can not do if-conversion on this block. */
2829 jump = BB_END (test_bb);
2830 if (! onlyjump_p (jump))
2831 return FALSE;
2832
2833 /* If this is not a standard conditional jump, we can't parse it. */
2834 cond = noce_get_condition (jump,
2835 &cond_earliest,
2836 then_else_reversed);
2837 if (!cond)
2838 return FALSE;
2839
2840 /* We must be comparing objects whose modes imply the size. */
2841 if (GET_MODE (XEXP (cond, 0)) == BLKmode)
2842 return FALSE;
2843
2844 /* Initialize an IF_INFO struct to pass around. */
2845 memset (&if_info, 0, sizeof if_info);
2846 if_info.test_bb = test_bb;
2847 if_info.then_bb = then_bb;
2848 if_info.else_bb = else_bb;
2849 if_info.join_bb = join_bb;
2850 if_info.cond = cond;
2851 if_info.cond_earliest = cond_earliest;
2852 if_info.jump = jump;
2853 if_info.then_else_reversed = then_else_reversed;
2854 if_info.branch_cost = BRANCH_COST (optimize_bb_for_speed_p (test_bb),
2855 predictable_edge_p (then_edge));
2856
2857 /* Do the real work. */
2858
2859 if (noce_process_if_block (&if_info))
2860 return TRUE;
2861
2862 if (HAVE_conditional_move
2863 && cond_move_process_if_block (&if_info))
2864 return TRUE;
2865
2866 return FALSE;
2867 }
2868
2869
2870 /* Merge the blocks and mark for local life update. */
2871
2872 static void
2873 merge_if_block (struct ce_if_block * ce_info)
2874 {
2875 basic_block test_bb = ce_info->test_bb; /* last test block */
2876 basic_block then_bb = ce_info->then_bb; /* THEN */
2877 basic_block else_bb = ce_info->else_bb; /* ELSE or NULL */
2878 basic_block join_bb = ce_info->join_bb; /* join block */
2879 basic_block combo_bb;
2880
2881 /* All block merging is done into the lower block numbers. */
2882
2883 combo_bb = test_bb;
2884 df_set_bb_dirty (test_bb);
2885
2886 /* Merge any basic blocks to handle && and || subtests. Each of
2887 the blocks are on the fallthru path from the predecessor block. */
2888 if (ce_info->num_multiple_test_blocks > 0)
2889 {
2890 basic_block bb = test_bb;
2891 basic_block last_test_bb = ce_info->last_test_bb;
2892 basic_block fallthru = block_fallthru (bb);
2893
2894 do
2895 {
2896 bb = fallthru;
2897 fallthru = block_fallthru (bb);
2898 merge_blocks (combo_bb, bb);
2899 num_true_changes++;
2900 }
2901 while (bb != last_test_bb);
2902 }
2903
2904 /* Merge TEST block into THEN block. Normally the THEN block won't have a
2905 label, but it might if there were || tests. That label's count should be
2906 zero, and it normally should be removed. */
2907
2908 if (then_bb)
2909 {
2910 merge_blocks (combo_bb, then_bb);
2911 num_true_changes++;
2912 }
2913
2914 /* The ELSE block, if it existed, had a label. That label count
2915 will almost always be zero, but odd things can happen when labels
2916 get their addresses taken. */
2917 if (else_bb)
2918 {
2919 merge_blocks (combo_bb, else_bb);
2920 num_true_changes++;
2921 }
2922
2923 /* If there was no join block reported, that means it was not adjacent
2924 to the others, and so we cannot merge them. */
2925
2926 if (! join_bb)
2927 {
2928 rtx last = BB_END (combo_bb);
2929
2930 /* The outgoing edge for the current COMBO block should already
2931 be correct. Verify this. */
2932 if (EDGE_COUNT (combo_bb->succs) == 0)
2933 gcc_assert (find_reg_note (last, REG_NORETURN, NULL)
2934 || (NONJUMP_INSN_P (last)
2935 && GET_CODE (PATTERN (last)) == TRAP_IF
2936 && (TRAP_CONDITION (PATTERN (last))
2937 == const_true_rtx)));
2938
2939 else
2940 /* There should still be something at the end of the THEN or ELSE
2941 blocks taking us to our final destination. */
2942 gcc_assert (JUMP_P (last)
2943 || (EDGE_SUCC (combo_bb, 0)->dest == EXIT_BLOCK_PTR
2944 && CALL_P (last)
2945 && SIBLING_CALL_P (last))
2946 || ((EDGE_SUCC (combo_bb, 0)->flags & EDGE_EH)
2947 && can_throw_internal (last)));
2948 }
2949
2950 /* The JOIN block may have had quite a number of other predecessors too.
2951 Since we've already merged the TEST, THEN and ELSE blocks, we should
2952 have only one remaining edge from our if-then-else diamond. If there
2953 is more than one remaining edge, it must come from elsewhere. There
2954 may be zero incoming edges if the THEN block didn't actually join
2955 back up (as with a call to a non-return function). */
2956 else if (EDGE_COUNT (join_bb->preds) < 2
2957 && join_bb != EXIT_BLOCK_PTR)
2958 {
2959 /* We can merge the JOIN cleanly and update the dataflow try
2960 again on this pass.*/
2961 merge_blocks (combo_bb, join_bb);
2962 num_true_changes++;
2963 }
2964 else
2965 {
2966 /* We cannot merge the JOIN. */
2967
2968 /* The outgoing edge for the current COMBO block should already
2969 be correct. Verify this. */
2970 gcc_assert (single_succ_p (combo_bb)
2971 && single_succ (combo_bb) == join_bb);
2972
2973 /* Remove the jump and cruft from the end of the COMBO block. */
2974 if (join_bb != EXIT_BLOCK_PTR)
2975 tidy_fallthru_edge (single_succ_edge (combo_bb));
2976 }
2977
2978 num_updated_if_blocks++;
2979 }
2980
2981 /* Find a block ending in a simple IF condition and try to transform it
2982 in some way. When converting a multi-block condition, put the new code
2983 in the first such block and delete the rest. Return a pointer to this
2984 first block if some transformation was done. Return NULL otherwise. */
2985
2986 static basic_block
2987 find_if_header (basic_block test_bb, int pass)
2988 {
2989 ce_if_block_t ce_info;
2990 edge then_edge;
2991 edge else_edge;
2992
2993 /* The kind of block we're looking for has exactly two successors. */
2994 if (EDGE_COUNT (test_bb->succs) != 2)
2995 return NULL;
2996
2997 then_edge = EDGE_SUCC (test_bb, 0);
2998 else_edge = EDGE_SUCC (test_bb, 1);
2999
3000 if (df_get_bb_dirty (then_edge->dest))
3001 return NULL;
3002 if (df_get_bb_dirty (else_edge->dest))
3003 return NULL;
3004
3005 /* Neither edge should be abnormal. */
3006 if ((then_edge->flags & EDGE_COMPLEX)
3007 || (else_edge->flags & EDGE_COMPLEX))
3008 return NULL;
3009
3010 /* Nor exit the loop. */
3011 if ((then_edge->flags & EDGE_LOOP_EXIT)
3012 || (else_edge->flags & EDGE_LOOP_EXIT))
3013 return NULL;
3014
3015 /* The THEN edge is canonically the one that falls through. */
3016 if (then_edge->flags & EDGE_FALLTHRU)
3017 ;
3018 else if (else_edge->flags & EDGE_FALLTHRU)
3019 {
3020 edge e = else_edge;
3021 else_edge = then_edge;
3022 then_edge = e;
3023 }
3024 else
3025 /* Otherwise this must be a multiway branch of some sort. */
3026 return NULL;
3027
3028 memset (&ce_info, '\0', sizeof (ce_info));
3029 ce_info.test_bb = test_bb;
3030 ce_info.then_bb = then_edge->dest;
3031 ce_info.else_bb = else_edge->dest;
3032 ce_info.pass = pass;
3033
3034 #ifdef IFCVT_INIT_EXTRA_FIELDS
3035 IFCVT_INIT_EXTRA_FIELDS (&ce_info);
3036 #endif
3037
3038 if (! reload_completed
3039 && noce_find_if_block (test_bb, then_edge, else_edge, pass))
3040 goto success;
3041
3042 if (HAVE_conditional_execution && reload_completed
3043 && cond_exec_find_if_block (&ce_info))
3044 goto success;
3045
3046 if (HAVE_trap && HAVE_conditional_trap
3047 && find_cond_trap (test_bb, then_edge, else_edge))
3048 goto success;
3049
3050 if (dom_info_state (CDI_POST_DOMINATORS) >= DOM_NO_FAST_QUERY
3051 && (! HAVE_conditional_execution || reload_completed))
3052 {
3053 if (find_if_case_1 (test_bb, then_edge, else_edge))
3054 goto success;
3055 if (find_if_case_2 (test_bb, then_edge, else_edge))
3056 goto success;
3057 }
3058
3059 return NULL;
3060
3061 success:
3062 if (dump_file)
3063 fprintf (dump_file, "Conversion succeeded on pass %d.\n", pass);
3064 /* Set this so we continue looking. */
3065 cond_exec_changed_p = TRUE;
3066 return ce_info.test_bb;
3067 }
3068
3069 /* Return true if a block has two edges, one of which falls through to the next
3070 block, and the other jumps to a specific block, so that we can tell if the
3071 block is part of an && test or an || test. Returns either -1 or the number
3072 of non-note, non-jump, non-USE/CLOBBER insns in the block. */
3073
3074 static int
3075 block_jumps_and_fallthru_p (basic_block cur_bb, basic_block target_bb)
3076 {
3077 edge cur_edge;
3078 int fallthru_p = FALSE;
3079 int jump_p = FALSE;
3080 rtx insn;
3081 rtx end;
3082 int n_insns = 0;
3083 edge_iterator ei;
3084
3085 if (!cur_bb || !target_bb)
3086 return -1;
3087
3088 /* If no edges, obviously it doesn't jump or fallthru. */
3089 if (EDGE_COUNT (cur_bb->succs) == 0)
3090 return FALSE;
3091
3092 FOR_EACH_EDGE (cur_edge, ei, cur_bb->succs)
3093 {
3094 if (cur_edge->flags & EDGE_COMPLEX)
3095 /* Anything complex isn't what we want. */
3096 return -1;
3097
3098 else if (cur_edge->flags & EDGE_FALLTHRU)
3099 fallthru_p = TRUE;
3100
3101 else if (cur_edge->dest == target_bb)
3102 jump_p = TRUE;
3103
3104 else
3105 return -1;
3106 }
3107
3108 if ((jump_p & fallthru_p) == 0)
3109 return -1;
3110
3111 /* Don't allow calls in the block, since this is used to group && and ||
3112 together for conditional execution support. ??? we should support
3113 conditional execution support across calls for IA-64 some day, but
3114 for now it makes the code simpler. */
3115 end = BB_END (cur_bb);
3116 insn = BB_HEAD (cur_bb);
3117
3118 while (insn != NULL_RTX)
3119 {
3120 if (CALL_P (insn))
3121 return -1;
3122
3123 if (INSN_P (insn)
3124 && !JUMP_P (insn)
3125 && GET_CODE (PATTERN (insn)) != USE
3126 && GET_CODE (PATTERN (insn)) != CLOBBER)
3127 n_insns++;
3128
3129 if (insn == end)
3130 break;
3131
3132 insn = NEXT_INSN (insn);
3133 }
3134
3135 return n_insns;
3136 }
3137
3138 /* Determine if a given basic block heads a simple IF-THEN or IF-THEN-ELSE
3139 block. If so, we'll try to convert the insns to not require the branch.
3140 Return TRUE if we were successful at converting the block. */
3141
3142 static int
3143 cond_exec_find_if_block (struct ce_if_block * ce_info)
3144 {
3145 basic_block test_bb = ce_info->test_bb;
3146 basic_block then_bb = ce_info->then_bb;
3147 basic_block else_bb = ce_info->else_bb;
3148 basic_block join_bb = NULL_BLOCK;
3149 edge cur_edge;
3150 basic_block next;
3151 edge_iterator ei;
3152
3153 ce_info->last_test_bb = test_bb;
3154
3155 /* We only ever should get here after reload,
3156 and only if we have conditional execution. */
3157 gcc_assert (HAVE_conditional_execution && reload_completed);
3158
3159 /* Discover if any fall through predecessors of the current test basic block
3160 were && tests (which jump to the else block) or || tests (which jump to
3161 the then block). */
3162 if (single_pred_p (test_bb)
3163 && single_pred_edge (test_bb)->flags == EDGE_FALLTHRU)
3164 {
3165 basic_block bb = single_pred (test_bb);
3166 basic_block target_bb;
3167 int max_insns = MAX_CONDITIONAL_EXECUTE;
3168 int n_insns;
3169
3170 /* Determine if the preceding block is an && or || block. */
3171 if ((n_insns = block_jumps_and_fallthru_p (bb, else_bb)) >= 0)
3172 {
3173 ce_info->and_and_p = TRUE;
3174 target_bb = else_bb;
3175 }
3176 else if ((n_insns = block_jumps_and_fallthru_p (bb, then_bb)) >= 0)
3177 {
3178 ce_info->and_and_p = FALSE;
3179 target_bb = then_bb;
3180 }
3181 else
3182 target_bb = NULL_BLOCK;
3183
3184 if (target_bb && n_insns <= max_insns)
3185 {
3186 int total_insns = 0;
3187 int blocks = 0;
3188
3189 ce_info->last_test_bb = test_bb;
3190
3191 /* Found at least one && or || block, look for more. */
3192 do
3193 {
3194 ce_info->test_bb = test_bb = bb;
3195 total_insns += n_insns;
3196 blocks++;
3197
3198 if (!single_pred_p (bb))
3199 break;
3200
3201 bb = single_pred (bb);
3202 n_insns = block_jumps_and_fallthru_p (bb, target_bb);
3203 }
3204 while (n_insns >= 0 && (total_insns + n_insns) <= max_insns);
3205
3206 ce_info->num_multiple_test_blocks = blocks;
3207 ce_info->num_multiple_test_insns = total_insns;
3208
3209 if (ce_info->and_and_p)
3210 ce_info->num_and_and_blocks = blocks;
3211 else
3212 ce_info->num_or_or_blocks = blocks;
3213 }
3214 }
3215
3216 /* The THEN block of an IF-THEN combo must have exactly one predecessor,
3217 other than any || blocks which jump to the THEN block. */
3218 if ((EDGE_COUNT (then_bb->preds) - ce_info->num_or_or_blocks) != 1)
3219 return FALSE;
3220
3221 /* The edges of the THEN and ELSE blocks cannot have complex edges. */
3222 FOR_EACH_EDGE (cur_edge, ei, then_bb->preds)
3223 {
3224 if (cur_edge->flags & EDGE_COMPLEX)
3225 return FALSE;
3226 }
3227
3228 FOR_EACH_EDGE (cur_edge, ei, else_bb->preds)
3229 {
3230 if (cur_edge->flags & EDGE_COMPLEX)
3231 return FALSE;
3232 }
3233
3234 /* The THEN block of an IF-THEN combo must have zero or one successors. */
3235 if (EDGE_COUNT (then_bb->succs) > 0
3236 && (!single_succ_p (then_bb)
3237 || (single_succ_edge (then_bb)->flags & EDGE_COMPLEX)
3238 || (epilogue_completed && tablejump_p (BB_END (then_bb), NULL, NULL))))
3239 return FALSE;
3240
3241 /* If the THEN block has no successors, conditional execution can still
3242 make a conditional call. Don't do this unless the ELSE block has
3243 only one incoming edge -- the CFG manipulation is too ugly otherwise.
3244 Check for the last insn of the THEN block being an indirect jump, which
3245 is listed as not having any successors, but confuses the rest of the CE
3246 code processing. ??? we should fix this in the future. */
3247 if (EDGE_COUNT (then_bb->succs) == 0)
3248 {
3249 if (single_pred_p (else_bb))
3250 {
3251 rtx last_insn = BB_END (then_bb);
3252
3253 while (last_insn
3254 && NOTE_P (last_insn)
3255 && last_insn != BB_HEAD (then_bb))
3256 last_insn = PREV_INSN (last_insn);
3257
3258 if (last_insn
3259 && JUMP_P (last_insn)
3260 && ! simplejump_p (last_insn))
3261 return FALSE;
3262
3263 join_bb = else_bb;
3264 else_bb = NULL_BLOCK;
3265 }
3266 else
3267 return FALSE;
3268 }
3269
3270 /* If the THEN block's successor is the other edge out of the TEST block,
3271 then we have an IF-THEN combo without an ELSE. */
3272 else if (single_succ (then_bb) == else_bb)
3273 {
3274 join_bb = else_bb;
3275 else_bb = NULL_BLOCK;
3276 }
3277
3278 /* If the THEN and ELSE block meet in a subsequent block, and the ELSE
3279 has exactly one predecessor and one successor, and the outgoing edge
3280 is not complex, then we have an IF-THEN-ELSE combo. */
3281 else if (single_succ_p (else_bb)
3282 && single_succ (then_bb) == single_succ (else_bb)
3283 && single_pred_p (else_bb)
3284 && ! (single_succ_edge (else_bb)->flags & EDGE_COMPLEX)
3285 && ! (epilogue_completed && tablejump_p (BB_END (else_bb), NULL, NULL)))
3286 join_bb = single_succ (else_bb);
3287
3288 /* Otherwise it is not an IF-THEN or IF-THEN-ELSE combination. */
3289 else
3290 return FALSE;
3291
3292 num_possible_if_blocks++;
3293
3294 if (dump_file)
3295 {
3296 fprintf (dump_file,
3297 "\nIF-THEN%s block found, pass %d, start block %d "
3298 "[insn %d], then %d [%d]",
3299 (else_bb) ? "-ELSE" : "",
3300 ce_info->pass,
3301 test_bb->index,
3302 BB_HEAD (test_bb) ? (int)INSN_UID (BB_HEAD (test_bb)) : -1,
3303 then_bb->index,
3304 BB_HEAD (then_bb) ? (int)INSN_UID (BB_HEAD (then_bb)) : -1);
3305
3306 if (else_bb)
3307 fprintf (dump_file, ", else %d [%d]",
3308 else_bb->index,
3309 BB_HEAD (else_bb) ? (int)INSN_UID (BB_HEAD (else_bb)) : -1);
3310
3311 fprintf (dump_file, ", join %d [%d]",
3312 join_bb->index,
3313 BB_HEAD (join_bb) ? (int)INSN_UID (BB_HEAD (join_bb)) : -1);
3314
3315 if (ce_info->num_multiple_test_blocks > 0)
3316 fprintf (dump_file, ", %d %s block%s last test %d [%d]",
3317 ce_info->num_multiple_test_blocks,
3318 (ce_info->and_and_p) ? "&&" : "||",
3319 (ce_info->num_multiple_test_blocks == 1) ? "" : "s",
3320 ce_info->last_test_bb->index,
3321 ((BB_HEAD (ce_info->last_test_bb))
3322 ? (int)INSN_UID (BB_HEAD (ce_info->last_test_bb))
3323 : -1));
3324
3325 fputc ('\n', dump_file);
3326 }
3327
3328 /* Make sure IF, THEN, and ELSE, blocks are adjacent. Actually, we get the
3329 first condition for free, since we've already asserted that there's a
3330 fallthru edge from IF to THEN. Likewise for the && and || blocks, since
3331 we checked the FALLTHRU flag, those are already adjacent to the last IF
3332 block. */
3333 /* ??? As an enhancement, move the ELSE block. Have to deal with
3334 BLOCK notes, if by no other means than backing out the merge if they
3335 exist. Sticky enough I don't want to think about it now. */
3336 next = then_bb;
3337 if (else_bb && (next = next->next_bb) != else_bb)
3338 return FALSE;
3339 if ((next = next->next_bb) != join_bb && join_bb != EXIT_BLOCK_PTR)
3340 {
3341 if (else_bb)
3342 join_bb = NULL;
3343 else
3344 return FALSE;
3345 }
3346
3347 /* Do the real work. */
3348
3349 ce_info->else_bb = else_bb;
3350 ce_info->join_bb = join_bb;
3351
3352 /* If we have && and || tests, try to first handle combining the && and ||
3353 tests into the conditional code, and if that fails, go back and handle
3354 it without the && and ||, which at present handles the && case if there
3355 was no ELSE block. */
3356 if (cond_exec_process_if_block (ce_info, TRUE))
3357 return TRUE;
3358
3359 if (ce_info->num_multiple_test_blocks)
3360 {
3361 cancel_changes (0);
3362
3363 if (cond_exec_process_if_block (ce_info, FALSE))
3364 return TRUE;
3365 }
3366
3367 return FALSE;
3368 }
3369
3370 /* Convert a branch over a trap, or a branch
3371 to a trap, into a conditional trap. */
3372
3373 static int
3374 find_cond_trap (basic_block test_bb, edge then_edge, edge else_edge)
3375 {
3376 basic_block then_bb = then_edge->dest;
3377 basic_block else_bb = else_edge->dest;
3378 basic_block other_bb, trap_bb;
3379 rtx trap, jump, cond, cond_earliest, seq;
3380 enum rtx_code code;
3381
3382 /* Locate the block with the trap instruction. */
3383 /* ??? While we look for no successors, we really ought to allow
3384 EH successors. Need to fix merge_if_block for that to work. */
3385 if ((trap = block_has_only_trap (then_bb)) != NULL)
3386 trap_bb = then_bb, other_bb = else_bb;
3387 else if ((trap = block_has_only_trap (else_bb)) != NULL)
3388 trap_bb = else_bb, other_bb = then_bb;
3389 else
3390 return FALSE;
3391
3392 if (dump_file)
3393 {
3394 fprintf (dump_file, "\nTRAP-IF block found, start %d, trap %d\n",
3395 test_bb->index, trap_bb->index);
3396 }
3397
3398 /* If this is not a standard conditional jump, we can't parse it. */
3399 jump = BB_END (test_bb);
3400 cond = noce_get_condition (jump, &cond_earliest, false);
3401 if (! cond)
3402 return FALSE;
3403
3404 /* If the conditional jump is more than just a conditional jump, then
3405 we can not do if-conversion on this block. */
3406 if (! onlyjump_p (jump))
3407 return FALSE;
3408
3409 /* We must be comparing objects whose modes imply the size. */
3410 if (GET_MODE (XEXP (cond, 0)) == BLKmode)
3411 return FALSE;
3412
3413 /* Reverse the comparison code, if necessary. */
3414 code = GET_CODE (cond);
3415 if (then_bb == trap_bb)
3416 {
3417 code = reversed_comparison_code (cond, jump);
3418 if (code == UNKNOWN)
3419 return FALSE;
3420 }
3421
3422 /* Attempt to generate the conditional trap. */
3423 seq = gen_cond_trap (code, copy_rtx (XEXP (cond, 0)),
3424 copy_rtx (XEXP (cond, 1)),
3425 TRAP_CODE (PATTERN (trap)));
3426 if (seq == NULL)
3427 return FALSE;
3428
3429 /* Emit the new insns before cond_earliest. */
3430 emit_insn_before_setloc (seq, cond_earliest, INSN_LOCATOR (trap));
3431
3432 /* Delete the trap block if possible. */
3433 remove_edge (trap_bb == then_bb ? then_edge : else_edge);
3434 df_set_bb_dirty (test_bb);
3435 df_set_bb_dirty (then_bb);
3436 df_set_bb_dirty (else_bb);
3437
3438 if (EDGE_COUNT (trap_bb->preds) == 0)
3439 {
3440 delete_basic_block (trap_bb);
3441 num_true_changes++;
3442 }
3443
3444 /* Wire together the blocks again. */
3445 if (current_ir_type () == IR_RTL_CFGLAYOUT)
3446 single_succ_edge (test_bb)->flags |= EDGE_FALLTHRU;
3447 else
3448 {
3449 rtx lab, newjump;
3450
3451 lab = JUMP_LABEL (jump);
3452 newjump = emit_jump_insn_after (gen_jump (lab), jump);
3453 LABEL_NUSES (lab) += 1;
3454 JUMP_LABEL (newjump) = lab;
3455 emit_barrier_after (newjump);
3456 }
3457 delete_insn (jump);
3458
3459 if (can_merge_blocks_p (test_bb, other_bb))
3460 {
3461 merge_blocks (test_bb, other_bb);
3462 num_true_changes++;
3463 }
3464
3465 num_updated_if_blocks++;
3466 return TRUE;
3467 }
3468
3469 /* Subroutine of find_cond_trap: if BB contains only a trap insn,
3470 return it. */
3471
3472 static rtx
3473 block_has_only_trap (basic_block bb)
3474 {
3475 rtx trap;
3476
3477 /* We're not the exit block. */
3478 if (bb == EXIT_BLOCK_PTR)
3479 return NULL_RTX;
3480
3481 /* The block must have no successors. */
3482 if (EDGE_COUNT (bb->succs) > 0)
3483 return NULL_RTX;
3484
3485 /* The only instruction in the THEN block must be the trap. */
3486 trap = first_active_insn (bb);
3487 if (! (trap == BB_END (bb)
3488 && GET_CODE (PATTERN (trap)) == TRAP_IF
3489 && TRAP_CONDITION (PATTERN (trap)) == const_true_rtx))
3490 return NULL_RTX;
3491
3492 return trap;
3493 }
3494
3495 /* Look for IF-THEN-ELSE cases in which one of THEN or ELSE is
3496 transformable, but not necessarily the other. There need be no
3497 JOIN block.
3498
3499 Return TRUE if we were successful at converting the block.
3500
3501 Cases we'd like to look at:
3502
3503 (1)
3504 if (test) goto over; // x not live
3505 x = a;
3506 goto label;
3507 over:
3508
3509 becomes
3510
3511 x = a;
3512 if (! test) goto label;
3513
3514 (2)
3515 if (test) goto E; // x not live
3516 x = big();
3517 goto L;
3518 E:
3519 x = b;
3520 goto M;
3521
3522 becomes
3523
3524 x = b;
3525 if (test) goto M;
3526 x = big();
3527 goto L;
3528
3529 (3) // This one's really only interesting for targets that can do
3530 // multiway branching, e.g. IA-64 BBB bundles. For other targets
3531 // it results in multiple branches on a cache line, which often
3532 // does not sit well with predictors.
3533
3534 if (test1) goto E; // predicted not taken
3535 x = a;
3536 if (test2) goto F;
3537 ...
3538 E:
3539 x = b;
3540 J:
3541
3542 becomes
3543
3544 x = a;
3545 if (test1) goto E;
3546 if (test2) goto F;
3547
3548 Notes:
3549
3550 (A) Don't do (2) if the branch is predicted against the block we're
3551 eliminating. Do it anyway if we can eliminate a branch; this requires
3552 that the sole successor of the eliminated block postdominate the other
3553 side of the if.
3554
3555 (B) With CE, on (3) we can steal from both sides of the if, creating
3556
3557 if (test1) x = a;
3558 if (!test1) x = b;
3559 if (test1) goto J;
3560 if (test2) goto F;
3561 ...
3562 J:
3563
3564 Again, this is most useful if J postdominates.
3565
3566 (C) CE substitutes for helpful life information.
3567
3568 (D) These heuristics need a lot of work. */
3569
3570 /* Tests for case 1 above. */
3571
3572 static int
3573 find_if_case_1 (basic_block test_bb, edge then_edge, edge else_edge)
3574 {
3575 basic_block then_bb = then_edge->dest;
3576 basic_block else_bb = else_edge->dest;
3577 basic_block new_bb;
3578 int then_bb_index;
3579
3580 /* If we are partitioning hot/cold basic blocks, we don't want to
3581 mess up unconditional or indirect jumps that cross between hot
3582 and cold sections.
3583
3584 Basic block partitioning may result in some jumps that appear to
3585 be optimizable (or blocks that appear to be mergeable), but which really
3586 must be left untouched (they are required to make it safely across
3587 partition boundaries). See the comments at the top of
3588 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
3589
3590 if ((BB_END (then_bb)
3591 && find_reg_note (BB_END (then_bb), REG_CROSSING_JUMP, NULL_RTX))
3592 || (BB_END (test_bb)
3593 && find_reg_note (BB_END (test_bb), REG_CROSSING_JUMP, NULL_RTX))
3594 || (BB_END (else_bb)
3595 && find_reg_note (BB_END (else_bb), REG_CROSSING_JUMP,
3596 NULL_RTX)))
3597 return FALSE;
3598
3599 /* THEN has one successor. */
3600 if (!single_succ_p (then_bb))
3601 return FALSE;
3602
3603 /* THEN does not fall through, but is not strange either. */
3604 if (single_succ_edge (then_bb)->flags & (EDGE_COMPLEX | EDGE_FALLTHRU))
3605 return FALSE;
3606
3607 /* THEN has one predecessor. */
3608 if (!single_pred_p (then_bb))
3609 return FALSE;
3610
3611 /* THEN must do something. */
3612 if (forwarder_block_p (then_bb))
3613 return FALSE;
3614
3615 num_possible_if_blocks++;
3616 if (dump_file)
3617 fprintf (dump_file,
3618 "\nIF-CASE-1 found, start %d, then %d\n",
3619 test_bb->index, then_bb->index);
3620
3621 /* THEN is small. */
3622 if (! cheap_bb_rtx_cost_p (then_bb,
3623 COSTS_N_INSNS (BRANCH_COST (optimize_bb_for_speed_p (then_edge->src),
3624 predictable_edge_p (then_edge)))))
3625 return FALSE;
3626
3627 /* Registers set are dead, or are predicable. */
3628 if (! dead_or_predicable (test_bb, then_bb, else_bb,
3629 single_succ (then_bb), 1))
3630 return FALSE;
3631
3632 /* Conversion went ok, including moving the insns and fixing up the
3633 jump. Adjust the CFG to match. */
3634
3635 /* We can avoid creating a new basic block if then_bb is immediately
3636 followed by else_bb, i.e. deleting then_bb allows test_bb to fall
3637 thru to else_bb. */
3638
3639 if (then_bb->next_bb == else_bb
3640 && then_bb->prev_bb == test_bb
3641 && else_bb != EXIT_BLOCK_PTR)
3642 {
3643 redirect_edge_succ (FALLTHRU_EDGE (test_bb), else_bb);
3644 new_bb = 0;
3645 }
3646 else
3647 new_bb = redirect_edge_and_branch_force (FALLTHRU_EDGE (test_bb),
3648 else_bb);
3649
3650 df_set_bb_dirty (test_bb);
3651 df_set_bb_dirty (else_bb);
3652
3653 then_bb_index = then_bb->index;
3654 delete_basic_block (then_bb);
3655
3656 /* Make rest of code believe that the newly created block is the THEN_BB
3657 block we removed. */
3658 if (new_bb)
3659 {
3660 df_bb_replace (then_bb_index, new_bb);
3661 /* Since the fallthru edge was redirected from test_bb to new_bb,
3662 we need to ensure that new_bb is in the same partition as
3663 test bb (you can not fall through across section boundaries). */
3664 BB_COPY_PARTITION (new_bb, test_bb);
3665 }
3666
3667 num_true_changes++;
3668 num_updated_if_blocks++;
3669
3670 return TRUE;
3671 }
3672
3673 /* Test for case 2 above. */
3674
3675 static int
3676 find_if_case_2 (basic_block test_bb, edge then_edge, edge else_edge)
3677 {
3678 basic_block then_bb = then_edge->dest;
3679 basic_block else_bb = else_edge->dest;
3680 edge else_succ;
3681 rtx note;
3682
3683 /* If we are partitioning hot/cold basic blocks, we don't want to
3684 mess up unconditional or indirect jumps that cross between hot
3685 and cold sections.
3686
3687 Basic block partitioning may result in some jumps that appear to
3688 be optimizable (or blocks that appear to be mergeable), but which really
3689 must be left untouched (they are required to make it safely across
3690 partition boundaries). See the comments at the top of
3691 bb-reorder.c:partition_hot_cold_basic_blocks for complete details. */
3692
3693 if ((BB_END (then_bb)
3694 && find_reg_note (BB_END (then_bb), REG_CROSSING_JUMP, NULL_RTX))
3695 || (BB_END (test_bb)
3696 && find_reg_note (BB_END (test_bb), REG_CROSSING_JUMP, NULL_RTX))
3697 || (BB_END (else_bb)
3698 && find_reg_note (BB_END (else_bb), REG_CROSSING_JUMP,
3699 NULL_RTX)))
3700 return FALSE;
3701
3702 /* ELSE has one successor. */
3703 if (!single_succ_p (else_bb))
3704 return FALSE;
3705 else
3706 else_succ = single_succ_edge (else_bb);
3707
3708 /* ELSE outgoing edge is not complex. */
3709 if (else_succ->flags & EDGE_COMPLEX)
3710 return FALSE;
3711
3712 /* ELSE has one predecessor. */
3713 if (!single_pred_p (else_bb))
3714 return FALSE;
3715
3716 /* THEN is not EXIT. */
3717 if (then_bb->index < NUM_FIXED_BLOCKS)
3718 return FALSE;
3719
3720 /* ELSE is predicted or SUCC(ELSE) postdominates THEN. */
3721 note = find_reg_note (BB_END (test_bb), REG_BR_PROB, NULL_RTX);
3722 if (note && INTVAL (XEXP (note, 0)) >= REG_BR_PROB_BASE / 2)
3723 ;
3724 else if (else_succ->dest->index < NUM_FIXED_BLOCKS
3725 || dominated_by_p (CDI_POST_DOMINATORS, then_bb,
3726 else_succ->dest))
3727 ;
3728 else
3729 return FALSE;
3730
3731 num_possible_if_blocks++;
3732 if (dump_file)
3733 fprintf (dump_file,
3734 "\nIF-CASE-2 found, start %d, else %d\n",
3735 test_bb->index, else_bb->index);
3736
3737 /* ELSE is small. */
3738 if (! cheap_bb_rtx_cost_p (else_bb,
3739 COSTS_N_INSNS (BRANCH_COST (optimize_bb_for_speed_p (else_edge->src),
3740 predictable_edge_p (else_edge)))))
3741 return FALSE;
3742
3743 /* Registers set are dead, or are predicable. */
3744 if (! dead_or_predicable (test_bb, else_bb, then_bb, else_succ->dest, 0))
3745 return FALSE;
3746
3747 /* Conversion went ok, including moving the insns and fixing up the
3748 jump. Adjust the CFG to match. */
3749
3750 df_set_bb_dirty (test_bb);
3751 df_set_bb_dirty (then_bb);
3752 delete_basic_block (else_bb);
3753
3754 num_true_changes++;
3755 num_updated_if_blocks++;
3756
3757 /* ??? We may now fallthru from one of THEN's successors into a join
3758 block. Rerun cleanup_cfg? Examine things manually? Wait? */
3759
3760 return TRUE;
3761 }
3762
3763 /* A subroutine of dead_or_predicable called through for_each_rtx.
3764 Return 1 if a memory is found. */
3765
3766 static int
3767 find_memory (rtx *px, void *data ATTRIBUTE_UNUSED)
3768 {
3769 return MEM_P (*px);
3770 }
3771
3772 /* Used by the code above to perform the actual rtl transformations.
3773 Return TRUE if successful.
3774
3775 TEST_BB is the block containing the conditional branch. MERGE_BB
3776 is the block containing the code to manipulate. NEW_DEST is the
3777 label TEST_BB should be branching to after the conversion.
3778 REVERSEP is true if the sense of the branch should be reversed. */
3779
3780 static int
3781 dead_or_predicable (basic_block test_bb, basic_block merge_bb,
3782 basic_block other_bb, basic_block new_dest, int reversep)
3783 {
3784 rtx head, end, jump, earliest = NULL_RTX, old_dest, new_label = NULL_RTX;
3785
3786 jump = BB_END (test_bb);
3787
3788 /* Find the extent of the real code in the merge block. */
3789 head = BB_HEAD (merge_bb);
3790 end = BB_END (merge_bb);
3791
3792 /* If merge_bb ends with a tablejump, predicating/moving insn's
3793 into test_bb and then deleting merge_bb will result in the jumptable
3794 that follows merge_bb being removed along with merge_bb and then we
3795 get an unresolved reference to the jumptable. */
3796 if (tablejump_p (end, NULL, NULL))
3797 return FALSE;
3798
3799 if (LABEL_P (head))
3800 head = NEXT_INSN (head);
3801 if (NOTE_P (head))
3802 {
3803 if (head == end)
3804 {
3805 head = end = NULL_RTX;
3806 goto no_body;
3807 }
3808 head = NEXT_INSN (head);
3809 }
3810
3811 if (JUMP_P (end))
3812 {
3813 if (head == end)
3814 {
3815 head = end = NULL_RTX;
3816 goto no_body;
3817 }
3818 end = PREV_INSN (end);
3819 }
3820
3821 /* Disable handling dead code by conditional execution if the machine needs
3822 to do anything funny with the tests, etc. */
3823 #ifndef IFCVT_MODIFY_TESTS
3824 if (HAVE_conditional_execution)
3825 {
3826 /* In the conditional execution case, we have things easy. We know
3827 the condition is reversible. We don't have to check life info
3828 because we're going to conditionally execute the code anyway.
3829 All that's left is making sure the insns involved can actually
3830 be predicated. */
3831
3832 rtx cond, prob_val;
3833
3834 cond = cond_exec_get_condition (jump);
3835 if (! cond)
3836 return FALSE;
3837
3838 prob_val = find_reg_note (jump, REG_BR_PROB, NULL_RTX);
3839 if (prob_val)
3840 prob_val = XEXP (prob_val, 0);
3841
3842 if (reversep)
3843 {
3844 enum rtx_code rev = reversed_comparison_code (cond, jump);
3845 if (rev == UNKNOWN)
3846 return FALSE;
3847 cond = gen_rtx_fmt_ee (rev, GET_MODE (cond), XEXP (cond, 0),
3848 XEXP (cond, 1));
3849 if (prob_val)
3850 prob_val = GEN_INT (REG_BR_PROB_BASE - INTVAL (prob_val));
3851 }
3852
3853 if (! cond_exec_process_insns ((ce_if_block_t *)0, head, end, cond,
3854 prob_val, 0))
3855 goto cancel;
3856
3857 earliest = jump;
3858 }
3859 else
3860 #endif
3861 {
3862 /* In the non-conditional execution case, we have to verify that there
3863 are no trapping operations, no calls, no references to memory, and
3864 that any registers modified are dead at the branch site. */
3865
3866 rtx insn, cond, prev;
3867 bitmap merge_set, test_live, test_set;
3868 unsigned i, fail = 0;
3869 bitmap_iterator bi;
3870
3871 /* Check for no calls or trapping operations. */
3872 for (insn = head; ; insn = NEXT_INSN (insn))
3873 {
3874 if (CALL_P (insn))
3875 return FALSE;
3876 if (INSN_P (insn))
3877 {
3878 if (may_trap_p (PATTERN (insn)))
3879 return FALSE;
3880
3881 /* ??? Even non-trapping memories such as stack frame
3882 references must be avoided. For stores, we collect
3883 no lifetime info; for reads, we'd have to assert
3884 true_dependence false against every store in the
3885 TEST range. */
3886 if (for_each_rtx (&PATTERN (insn), find_memory, NULL))
3887 return FALSE;
3888 }
3889 if (insn == end)
3890 break;
3891 }
3892
3893 if (! any_condjump_p (jump))
3894 return FALSE;
3895
3896 /* Find the extent of the conditional. */
3897 cond = noce_get_condition (jump, &earliest, false);
3898 if (! cond)
3899 return FALSE;
3900
3901 /* Collect:
3902 MERGE_SET = set of registers set in MERGE_BB
3903 TEST_LIVE = set of registers live at EARLIEST
3904 TEST_SET = set of registers set between EARLIEST and the
3905 end of the block. */
3906
3907 merge_set = BITMAP_ALLOC (&reg_obstack);
3908 test_live = BITMAP_ALLOC (&reg_obstack);
3909 test_set = BITMAP_ALLOC (&reg_obstack);
3910
3911 /* ??? bb->local_set is only valid during calculate_global_regs_live,
3912 so we must recompute usage for MERGE_BB. Not so bad, I suppose,
3913 since we've already asserted that MERGE_BB is small. */
3914 /* If we allocated new pseudos (e.g. in the conditional move
3915 expander called from noce_emit_cmove), we must resize the
3916 array first. */
3917 if (max_regno < max_reg_num ())
3918 max_regno = max_reg_num ();
3919
3920 FOR_BB_INSNS (merge_bb, insn)
3921 {
3922 if (INSN_P (insn))
3923 {
3924 unsigned int uid = INSN_UID (insn);
3925 df_ref *def_rec;
3926 for (def_rec = DF_INSN_UID_DEFS (uid); *def_rec; def_rec++)
3927 {
3928 df_ref def = *def_rec;
3929 bitmap_set_bit (merge_set, DF_REF_REGNO (def));
3930 }
3931 }
3932 }
3933
3934 /* For small register class machines, don't lengthen lifetimes of
3935 hard registers before reload. */
3936 if (SMALL_REGISTER_CLASSES && ! reload_completed)
3937 {
3938 EXECUTE_IF_SET_IN_BITMAP (merge_set, 0, i, bi)
3939 {
3940 if (i < FIRST_PSEUDO_REGISTER
3941 && ! fixed_regs[i]
3942 && ! global_regs[i])
3943 fail = 1;
3944 }
3945 }
3946
3947 /* For TEST, we're interested in a range of insns, not a whole block.
3948 Moreover, we're interested in the insns live from OTHER_BB. */
3949
3950 /* The loop below takes the set of live registers
3951 after JUMP, and calculates the live set before EARLIEST. */
3952 bitmap_copy (test_live, df_get_live_in (other_bb));
3953 df_simulate_initialize_backwards (test_bb, test_live);
3954 for (insn = jump; ; insn = prev)
3955 {
3956 if (INSN_P (insn))
3957 {
3958 df_simulate_find_defs (insn, test_set);
3959 df_simulate_one_insn_backwards (test_bb, insn, test_live);
3960 }
3961 prev = PREV_INSN (insn);
3962 if (insn == earliest)
3963 break;
3964 }
3965
3966 /* We can perform the transformation if
3967 MERGE_SET & (TEST_SET | TEST_LIVE)
3968 and
3969 TEST_SET & DF_LIVE_IN (merge_bb)
3970 are empty. */
3971
3972 if (bitmap_intersect_p (test_set, merge_set)
3973 || bitmap_intersect_p (test_live, merge_set)
3974 || bitmap_intersect_p (test_set, df_get_live_in (merge_bb)))
3975 fail = 1;
3976
3977 BITMAP_FREE (merge_set);
3978 BITMAP_FREE (test_live);
3979 BITMAP_FREE (test_set);
3980
3981 if (fail)
3982 return FALSE;
3983 }
3984
3985 no_body:
3986 /* We don't want to use normal invert_jump or redirect_jump because
3987 we don't want to delete_insn called. Also, we want to do our own
3988 change group management. */
3989
3990 old_dest = JUMP_LABEL (jump);
3991 if (other_bb != new_dest)
3992 {
3993 new_label = block_label (new_dest);
3994 if (reversep
3995 ? ! invert_jump_1 (jump, new_label)
3996 : ! redirect_jump_1 (jump, new_label))
3997 goto cancel;
3998 }
3999
4000 if (! apply_change_group ())
4001 return FALSE;
4002
4003 if (other_bb != new_dest)
4004 {
4005 redirect_jump_2 (jump, old_dest, new_label, 0, reversep);
4006
4007 redirect_edge_succ (BRANCH_EDGE (test_bb), new_dest);
4008 if (reversep)
4009 {
4010 gcov_type count, probability;
4011 count = BRANCH_EDGE (test_bb)->count;
4012 BRANCH_EDGE (test_bb)->count = FALLTHRU_EDGE (test_bb)->count;
4013 FALLTHRU_EDGE (test_bb)->count = count;
4014 probability = BRANCH_EDGE (test_bb)->probability;
4015 BRANCH_EDGE (test_bb)->probability
4016 = FALLTHRU_EDGE (test_bb)->probability;
4017 FALLTHRU_EDGE (test_bb)->probability = probability;
4018 update_br_prob_note (test_bb);
4019 }
4020 }
4021
4022 /* Move the insns out of MERGE_BB to before the branch. */
4023 if (head != NULL)
4024 {
4025 rtx insn;
4026
4027 if (end == BB_END (merge_bb))
4028 BB_END (merge_bb) = PREV_INSN (head);
4029
4030 /* PR 21767: When moving insns above a conditional branch, REG_EQUAL
4031 notes might become invalid. */
4032 insn = head;
4033 do
4034 {
4035 rtx note, set;
4036
4037 if (! INSN_P (insn))
4038 continue;
4039 note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
4040 if (! note)
4041 continue;
4042 set = single_set (insn);
4043 if (!set || !function_invariant_p (SET_SRC (set)))
4044 remove_note (insn, note);
4045 } while (insn != end && (insn = NEXT_INSN (insn)));
4046
4047 reorder_insns (head, end, PREV_INSN (earliest));
4048 }
4049
4050 /* Remove the jump and edge if we can. */
4051 if (other_bb == new_dest)
4052 {
4053 delete_insn (jump);
4054 remove_edge (BRANCH_EDGE (test_bb));
4055 /* ??? Can't merge blocks here, as then_bb is still in use.
4056 At minimum, the merge will get done just before bb-reorder. */
4057 }
4058
4059 return TRUE;
4060
4061 cancel:
4062 cancel_changes (0);
4063 return FALSE;
4064 }
4065
4066 /* Main entry point for all if-conversion. */
4067
4068 static void
4069 if_convert (void)
4070 {
4071 basic_block bb;
4072 int pass;
4073
4074 if (optimize == 1)
4075 {
4076 df_live_add_problem ();
4077 df_live_set_all_dirty ();
4078 }
4079
4080 num_possible_if_blocks = 0;
4081 num_updated_if_blocks = 0;
4082 num_true_changes = 0;
4083
4084 loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
4085 mark_loop_exit_edges ();
4086 loop_optimizer_finalize ();
4087 free_dominance_info (CDI_DOMINATORS);
4088
4089 /* Compute postdominators. */
4090 calculate_dominance_info (CDI_POST_DOMINATORS);
4091
4092 df_set_flags (DF_LR_RUN_DCE);
4093
4094 /* Go through each of the basic blocks looking for things to convert. If we
4095 have conditional execution, we make multiple passes to allow us to handle
4096 IF-THEN{-ELSE} blocks within other IF-THEN{-ELSE} blocks. */
4097 pass = 0;
4098 do
4099 {
4100 df_analyze ();
4101 /* Only need to do dce on the first pass. */
4102 df_clear_flags (DF_LR_RUN_DCE);
4103 cond_exec_changed_p = FALSE;
4104 pass++;
4105
4106 #ifdef IFCVT_MULTIPLE_DUMPS
4107 if (dump_file && pass > 1)
4108 fprintf (dump_file, "\n\n========== Pass %d ==========\n", pass);
4109 #endif
4110
4111 FOR_EACH_BB (bb)
4112 {
4113 basic_block new_bb;
4114 while (!df_get_bb_dirty (bb)
4115 && (new_bb = find_if_header (bb, pass)) != NULL)
4116 bb = new_bb;
4117 }
4118
4119 #ifdef IFCVT_MULTIPLE_DUMPS
4120 if (dump_file && cond_exec_changed_p)
4121 print_rtl_with_bb (dump_file, get_insns ());
4122 #endif
4123 }
4124 while (cond_exec_changed_p);
4125
4126 #ifdef IFCVT_MULTIPLE_DUMPS
4127 if (dump_file)
4128 fprintf (dump_file, "\n\n========== no more changes\n");
4129 #endif
4130
4131 free_dominance_info (CDI_POST_DOMINATORS);
4132
4133 if (dump_file)
4134 fflush (dump_file);
4135
4136 clear_aux_for_blocks ();
4137
4138 /* If we allocated new pseudos, we must resize the array for sched1. */
4139 if (max_regno < max_reg_num ())
4140 max_regno = max_reg_num ();
4141
4142 /* Write the final stats. */
4143 if (dump_file && num_possible_if_blocks > 0)
4144 {
4145 fprintf (dump_file,
4146 "\n%d possible IF blocks searched.\n",
4147 num_possible_if_blocks);
4148 fprintf (dump_file,
4149 "%d IF blocks converted.\n",
4150 num_updated_if_blocks);
4151 fprintf (dump_file,
4152 "%d true changes made.\n\n\n",
4153 num_true_changes);
4154 }
4155
4156 if (optimize == 1)
4157 df_remove_problem (df_live);
4158
4159 #ifdef ENABLE_CHECKING
4160 verify_flow_info ();
4161 #endif
4162 }
4163
4164 static bool
4165 gate_handle_if_conversion (void)
4166 {
4167 return (optimize > 0)
4168 && dbg_cnt (if_conversion);
4169 }
4170
4171 /* If-conversion and CFG cleanup. */
4172 static unsigned int
4173 rest_of_handle_if_conversion (void)
4174 {
4175 if (flag_if_conversion)
4176 {
4177 if (dump_file)
4178 dump_flow_info (dump_file, dump_flags);
4179 cleanup_cfg (CLEANUP_EXPENSIVE);
4180 if_convert ();
4181 }
4182
4183 cleanup_cfg (0);
4184 return 0;
4185 }
4186
4187 struct rtl_opt_pass pass_rtl_ifcvt =
4188 {
4189 {
4190 RTL_PASS,
4191 "ce1", /* name */
4192 gate_handle_if_conversion, /* gate */
4193 rest_of_handle_if_conversion, /* execute */
4194 NULL, /* sub */
4195 NULL, /* next */
4196 0, /* static_pass_number */
4197 TV_IFCVT, /* tv_id */
4198 0, /* properties_required */
4199 0, /* properties_provided */
4200 0, /* properties_destroyed */
4201 0, /* todo_flags_start */
4202 TODO_df_finish | TODO_verify_rtl_sharing |
4203 TODO_dump_func /* todo_flags_finish */
4204 }
4205 };
4206
4207 static bool
4208 gate_handle_if_after_combine (void)
4209 {
4210 return optimize > 0 && flag_if_conversion
4211 && dbg_cnt (if_after_combine);
4212 }
4213
4214
4215 /* Rerun if-conversion, as combine may have simplified things enough
4216 to now meet sequence length restrictions. */
4217 static unsigned int
4218 rest_of_handle_if_after_combine (void)
4219 {
4220 if_convert ();
4221 return 0;
4222 }
4223
4224 struct rtl_opt_pass pass_if_after_combine =
4225 {
4226 {
4227 RTL_PASS,
4228 "ce2", /* name */
4229 gate_handle_if_after_combine, /* gate */
4230 rest_of_handle_if_after_combine, /* execute */
4231 NULL, /* sub */
4232 NULL, /* next */
4233 0, /* static_pass_number */
4234 TV_IFCVT, /* tv_id */
4235 0, /* properties_required */
4236 0, /* properties_provided */
4237 0, /* properties_destroyed */
4238 0, /* todo_flags_start */
4239 TODO_df_finish | TODO_verify_rtl_sharing |
4240 TODO_dump_func |
4241 TODO_ggc_collect /* todo_flags_finish */
4242 }
4243 };
4244
4245
4246 static bool
4247 gate_handle_if_after_reload (void)
4248 {
4249 return optimize > 0 && flag_if_conversion2
4250 && dbg_cnt (if_after_reload);
4251 }
4252
4253 static unsigned int
4254 rest_of_handle_if_after_reload (void)
4255 {
4256 if_convert ();
4257 return 0;
4258 }
4259
4260
4261 struct rtl_opt_pass pass_if_after_reload =
4262 {
4263 {
4264 RTL_PASS,
4265 "ce3", /* name */
4266 gate_handle_if_after_reload, /* gate */
4267 rest_of_handle_if_after_reload, /* execute */
4268 NULL, /* sub */
4269 NULL, /* next */
4270 0, /* static_pass_number */
4271 TV_IFCVT2, /* tv_id */
4272 0, /* properties_required */
4273 0, /* properties_provided */
4274 0, /* properties_destroyed */
4275 0, /* todo_flags_start */
4276 TODO_df_finish | TODO_verify_rtl_sharing |
4277 TODO_dump_func |
4278 TODO_ggc_collect /* todo_flags_finish */
4279 }
4280 };