comparison gcc/ipa-struct-reorg.c @ 0:a06113de4d67

first commit
author kent <kent@cr.ie.u-ryukyu.ac.jp>
date Fri, 17 Jul 2009 14:47:48 +0900
parents
children 77e2b8dfacca
comparison
equal deleted inserted replaced
-1:000000000000 0:a06113de4d67
1 /* Struct-reorg optimization.
2 Copyright (C) 2007, 2008, 2009 Free Software Foundation, Inc.
3 Contributed by Olga Golovanevsky <olga@il.ibm.com>
4 (Initial version of this code was developed
5 by Caroline Tice and Mostafa Hagog.)
6
7 This file is part of GCC.
8
9 GCC is free software; you can redistribute it and/or modify it under
10 the terms of the GNU General Public License as published by the Free
11 Software Foundation; either version 3, or (at your option) any later
12 version.
13
14 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15 WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3. If not see
21 <http://www.gnu.org/licenses/>. */
22
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "ggc.h"
28 #include "tree.h"
29 #include "rtl.h"
30 #include "gimple.h"
31 #include "tree-inline.h"
32 #include "tree-flow.h"
33 #include "tree-flow-inline.h"
34 #include "langhooks.h"
35 #include "pointer-set.h"
36 #include "hashtab.h"
37 #include "c-tree.h"
38 #include "toplev.h"
39 #include "flags.h"
40 #include "debug.h"
41 #include "target.h"
42 #include "cgraph.h"
43 #include "diagnostic.h"
44 #include "timevar.h"
45 #include "params.h"
46 #include "fibheap.h"
47 #include "intl.h"
48 #include "function.h"
49 #include "basic-block.h"
50 #include "tree-iterator.h"
51 #include "tree-pass.h"
52 #include "ipa-struct-reorg.h"
53 #include "opts.h"
54 #include "ipa-type-escape.h"
55 #include "tree-dump.h"
56 #include "c-common.h"
57 #include "gimple.h"
58
59 /* This optimization implements structure peeling.
60
61 For example, given a structure type:
62 typedef struct
63 {
64 int a;
65 float b;
66 int c;
67 }str_t;
68
69 it can be peeled into two structure types as follows:
70
71 typedef struct and typedef struct
72 { {
73 int a; float b;
74 int c; } str_t_1;
75 }str_t_0;
76
77 or can be fully peeled:
78
79 typedef struct
80 {
81 int a;
82 }str_t_0;
83
84 typedef struct
85 {
86 float b;
87 }str_t_1;
88
89 typedef struct
90 {
91 int c;
92 }str_t_2;
93
94 When structure type is peeled all instances and their accesses
95 in the program are updated accordingly. For example, if there is
96 array of structures:
97
98 str_t A[N];
99
100 and structure type str_t was peeled into two structures str_t_0
101 and str_t_1 as it was shown above, then array A will be replaced
102 by two arrays as follows:
103
104 str_t_0 A_0[N];
105 str_t_1 A_1[N];
106
107 The field access of field a of element i of array A: A[i].a will be
108 replaced by an access to field a of element i of array A_0: A_0[i].a.
109
110 This optimization also supports dynamically allocated arrays.
111 If array of structures was allocated by malloc function:
112
113 str_t * p = (str_t *) malloc (sizeof (str_t) * N)
114
115 the allocation site will be replaced to reflect new structure types:
116
117 str_t_0 * p_0 = (str_t_0 *) malloc (sizeof (str_t_0) * N)
118 str_t_1 * p_1 = (str_t_1 *) malloc (sizeof (str_t_1) * N)
119
120 The field access through the pointer p[i].a will be changed by p_0[i].a.
121
122 The goal of structure peeling is to improve spatial locality.
123 For example, if one of the fields of a structure is accessed frequently
124 in the loop:
125
126 for (i = 0; i < N; i++)
127 {
128 ... = A[i].a;
129 }
130
131 the allocation of field a of str_t contiguously in memory will
132 increase the chances of fetching the field from cache.
133
134 The analysis part of this optimization is based on the frequency of
135 field accesses, which are collected all over the program.
136 Then the fields with the frequencies that satisfy the following condition
137 get peeled out of the structure:
138
139 freq(f) > C * max_field_freq_in_struct
140
141 where max_field_freq_in_struct is the maximum field frequency
142 in the structure. C is a constant defining which portion of
143 max_field_freq_in_struct the fields should have in order to be peeled.
144
145 If profiling information is provided, it is used to calculate the
146 frequency of field accesses. Otherwise, the structure is fully peeled.
147
148 IPA type-escape analysis is used to determine when it is safe
149 to peel a structure.
150
151 The optimization is activated by flag -fipa-struct-reorg. */
152
153 /* New variables created by this optimization.
154 When doing struct peeling, each variable of
155 the original struct type will be replaced by
156 the set of new variables corresponding to
157 the new structure types. */
158 struct new_var_data {
159 /* VAR_DECL for original struct type. */
160 tree orig_var;
161 /* Vector of new variables. */
162 VEC(tree, heap) *new_vars;
163 };
164
165 typedef struct new_var_data *new_var;
166 typedef const struct new_var_data *const_new_var;
167
168 /* This structure represents allocation site of the structure. */
169 typedef struct alloc_site
170 {
171 gimple stmt;
172 d_str str;
173 } alloc_site_t;
174
175 DEF_VEC_O (alloc_site_t);
176 DEF_VEC_ALLOC_O (alloc_site_t, heap);
177
178 /* Allocation sites that belong to the same function. */
179 struct func_alloc_sites
180 {
181 tree func;
182 /* Vector of allocation sites for function. */
183 VEC (alloc_site_t, heap) *allocs;
184 };
185
186 typedef struct func_alloc_sites *fallocs_t;
187 typedef const struct func_alloc_sites *const_fallocs_t;
188
189 /* All allocation sites in the program. */
190 htab_t alloc_sites = NULL;
191
192 /* New global variables. Generated once for whole program. */
193 htab_t new_global_vars;
194
195 /* New local variables. Generated per-function. */
196 htab_t new_local_vars;
197
198 /* Vector of structures to be transformed. */
199 typedef struct data_structure structure;
200 DEF_VEC_O (structure);
201 DEF_VEC_ALLOC_O (structure, heap);
202 VEC (structure, heap) *structures;
203
204 /* Forward declarations. */
205 static bool is_equal_types (tree, tree);
206
207 /* Strip structure TYPE from pointers and arrays. */
208
209 static inline tree
210 strip_type (tree type)
211 {
212 gcc_assert (TYPE_P (type));
213
214 while (POINTER_TYPE_P (type)
215 || TREE_CODE (type) == ARRAY_TYPE)
216 type = TREE_TYPE (type);
217
218 return type;
219 }
220
221 /* This function returns type of VAR. */
222
223 static inline tree
224 get_type_of_var (tree var)
225 {
226 if (!var)
227 return NULL;
228
229 if (TREE_CODE (var) == PARM_DECL)
230 return DECL_ARG_TYPE (var);
231 else
232 return TREE_TYPE (var);
233 }
234
235 /* Set of actions we do for each newly generated STMT. */
236
237 static inline void
238 finalize_stmt (gimple stmt)
239 {
240 update_stmt (stmt);
241 mark_symbols_for_renaming (stmt);
242 }
243
244 /* This function finalizes STMT and appends it to the list STMTS. */
245
246 static inline void
247 finalize_stmt_and_append (gimple_seq *stmts, gimple stmt)
248 {
249 gimple_seq_add_stmt (stmts, stmt);
250 finalize_stmt (stmt);
251 }
252
253 /* Given structure type SRT_TYPE and field FIELD,
254 this function is looking for a field with the same name
255 and type as FIELD in STR_TYPE. It returns it if found,
256 or NULL_TREE otherwise. */
257
258 static tree
259 find_field_in_struct_1 (tree str_type, tree field)
260 {
261 tree str_field;
262
263 for (str_field = TYPE_FIELDS (str_type); str_field;
264 str_field = TREE_CHAIN (str_field))
265 {
266 const char * str_field_name;
267 const char * field_name;
268
269 str_field_name = IDENTIFIER_POINTER (DECL_NAME (str_field));
270 field_name = IDENTIFIER_POINTER (DECL_NAME (field));
271
272 gcc_assert (str_field_name);
273 gcc_assert (field_name);
274
275 if (!strcmp (str_field_name, field_name))
276 {
277 /* Check field types. */
278 if (is_equal_types (TREE_TYPE (str_field), TREE_TYPE (field)))
279 return str_field;
280 }
281 }
282
283 return NULL_TREE;
284 }
285
286 /* Given a field declaration FIELD_DECL, this function
287 returns corresponding field entry in structure STR. */
288
289 static struct field_entry *
290 find_field_in_struct (d_str str, tree field_decl)
291 {
292 int i;
293
294 tree field = find_field_in_struct_1 (str->decl, field_decl);
295
296 for (i = 0; i < str->num_fields; i++)
297 if (str->fields[i].decl == field)
298 return &(str->fields[i]);
299
300 return NULL;
301 }
302
303 /* This function checks whether ARG is a result of multiplication
304 of some number by STRUCT_SIZE. If yes, the function returns true
305 and this number is filled into NUM. */
306
307 static bool
308 is_result_of_mult (tree arg, tree *num, tree struct_size)
309 {
310 gimple size_def_stmt = SSA_NAME_DEF_STMT (arg);
311
312 /* If the allocation statement was of the form
313 D.2229_10 = <alloc_func> (D.2228_9);
314 then size_def_stmt can be D.2228_9 = num.3_8 * 8; */
315
316 if (size_def_stmt && is_gimple_assign (size_def_stmt))
317 {
318 tree lhs = gimple_assign_lhs (size_def_stmt);
319
320 /* We expect temporary here. */
321 if (!is_gimple_reg (lhs))
322 return false;
323
324 if (gimple_assign_rhs_code (size_def_stmt) == MULT_EXPR)
325 {
326 tree arg0 = gimple_assign_rhs1 (size_def_stmt);
327 tree arg1 = gimple_assign_rhs2 (size_def_stmt);
328
329 if (operand_equal_p (arg0, struct_size, OEP_ONLY_CONST))
330 {
331 *num = arg1;
332 return true;
333 }
334
335 if (operand_equal_p (arg1, struct_size, OEP_ONLY_CONST))
336 {
337 *num = arg0;
338 return true;
339 }
340 }
341 }
342
343 *num = NULL_TREE;
344 return false;
345 }
346
347
348 /* This function returns true if access ACC corresponds to the pattern
349 generated by compiler when an address of element i of an array
350 of structures STR_DECL (pointed by p) is calculated (p[i]). If this
351 pattern is recognized correctly, this function returns true
352 and fills missing fields in ACC. Otherwise it returns false. */
353
354 static bool
355 decompose_indirect_ref_acc (tree str_decl, struct field_access_site *acc)
356 {
357 tree ref_var;
358 tree struct_size, op0, op1;
359 tree before_cast;
360 enum tree_code rhs_code;
361
362 ref_var = TREE_OPERAND (acc->ref, 0);
363
364 if (TREE_CODE (ref_var) != SSA_NAME)
365 return false;
366
367 acc->ref_def_stmt = SSA_NAME_DEF_STMT (ref_var);
368 if (!(acc->ref_def_stmt)
369 || (gimple_code (acc->ref_def_stmt) != GIMPLE_ASSIGN))
370 return false;
371
372 rhs_code = gimple_assign_rhs_code (acc->ref_def_stmt);
373
374 if (rhs_code != PLUS_EXPR
375 && rhs_code != MINUS_EXPR
376 && rhs_code != POINTER_PLUS_EXPR)
377 return false;
378
379 op0 = gimple_assign_rhs1 (acc->ref_def_stmt);
380 op1 = gimple_assign_rhs2 (acc->ref_def_stmt);
381
382 if (!is_array_access_through_pointer_and_index (rhs_code, op0, op1,
383 &acc->base, &acc->offset,
384 &acc->cast_stmt))
385 return false;
386
387 if (acc->cast_stmt)
388 before_cast = SINGLE_SSA_TREE_OPERAND (acc->cast_stmt, SSA_OP_USE);
389 else
390 before_cast = acc->offset;
391
392 if (!before_cast)
393 return false;
394
395
396 if (SSA_NAME_IS_DEFAULT_DEF (before_cast))
397 return false;
398
399 struct_size = TYPE_SIZE_UNIT (str_decl);
400
401 if (!is_result_of_mult (before_cast, &acc->num, struct_size))
402 return false;
403
404 return true;
405 }
406
407
408 /* This function checks whether the access ACC of structure type STR
409 is of the form suitable for transformation. If yes, it returns true.
410 False otherwise. */
411
412 static bool
413 decompose_access (tree str_decl, struct field_access_site *acc)
414 {
415 gcc_assert (acc->ref);
416
417 if (TREE_CODE (acc->ref) == INDIRECT_REF)
418 return decompose_indirect_ref_acc (str_decl, acc);
419 else if (TREE_CODE (acc->ref) == ARRAY_REF)
420 return true;
421 else if (TREE_CODE (acc->ref) == VAR_DECL)
422 return true;
423
424 return false;
425 }
426
427 /* This function creates empty field_access_site node. */
428
429 static inline struct field_access_site *
430 make_field_acc_node (void)
431 {
432 int size = sizeof (struct field_access_site);
433
434 return (struct field_access_site *) xcalloc (1, size);
435 }
436
437 /* This function returns the structure field access, defined by STMT,
438 if it is already in hashtable of function accesses F_ACCS. */
439
440 static struct field_access_site *
441 is_in_field_accs (gimple stmt, htab_t f_accs)
442 {
443 return (struct field_access_site *)
444 htab_find_with_hash (f_accs, stmt, htab_hash_pointer (stmt));
445 }
446
447 /* This function adds an access ACC to the hashtable
448 F_ACCS of field accesses. */
449
450 static void
451 add_field_acc_to_acc_sites (struct field_access_site *acc,
452 htab_t f_accs)
453 {
454 void **slot;
455
456 gcc_assert (!is_in_field_accs (acc->stmt, f_accs));
457 slot = htab_find_slot_with_hash (f_accs, acc->stmt,
458 htab_hash_pointer (acc->stmt),
459 INSERT);
460 *slot = acc;
461 }
462
463 /* This function adds the VAR to vector of variables of
464 an access site defined by statement STMT. If access entry
465 with statement STMT does not exist in hashtable of
466 accesses ACCS, this function creates it. */
467
468 static void
469 add_access_to_acc_sites (gimple stmt, tree var, htab_t accs)
470 {
471 struct access_site *acc;
472
473 acc = (struct access_site *)
474 htab_find_with_hash (accs, stmt, htab_hash_pointer (stmt));
475
476 if (!acc)
477 {
478 void **slot;
479
480 acc = (struct access_site *) xmalloc (sizeof (struct access_site));
481 acc->stmt = stmt;
482 acc->vars = VEC_alloc (tree, heap, 10);
483 slot = htab_find_slot_with_hash (accs, stmt,
484 htab_hash_pointer (stmt), INSERT);
485 *slot = acc;
486
487 }
488 VEC_safe_push (tree, heap, acc->vars, var);
489 }
490
491 /* This function adds NEW_DECL to function
492 referenced vars, and marks it for renaming. */
493
494 static void
495 finalize_var_creation (tree new_decl)
496 {
497 add_referenced_var (new_decl);
498 if (is_global_var (new_decl))
499 mark_call_clobbered (new_decl, ESCAPE_UNKNOWN);
500 mark_sym_for_renaming (new_decl);
501 }
502
503 /* This function finalizes VAR creation if it is a global VAR_DECL. */
504
505 static void
506 finalize_global_creation (tree var)
507 {
508 if (TREE_CODE (var) == VAR_DECL
509 && is_global_var (var))
510 finalize_var_creation (var);
511 }
512
513 /* This function inserts NEW_DECL to varpool. */
514
515 static inline void
516 insert_global_to_varpool (tree new_decl)
517 {
518 struct varpool_node *new_node;
519
520 new_node = varpool_node (new_decl);
521 notice_global_symbol (new_decl);
522 varpool_mark_needed_node (new_node);
523 varpool_finalize_decl (new_decl);
524 }
525
526 /* This function finalizes the creation of new variables,
527 defined by *SLOT->new_vars. */
528
529 static int
530 finalize_new_vars_creation (void **slot, void *data ATTRIBUTE_UNUSED)
531 {
532 new_var n_var = *(new_var *) slot;
533 unsigned i;
534 tree var;
535
536 for (i = 0; VEC_iterate (tree, n_var->new_vars, i, var); i++)
537 finalize_var_creation (var);
538 return 1;
539 }
540
541 /* This function looks for the variable of NEW_TYPE type, stored in VAR.
542 It returns it, if found, and NULL_TREE otherwise. */
543
544 static tree
545 find_var_in_new_vars_vec (new_var var, tree new_type)
546 {
547 tree n_var;
548 unsigned i;
549
550 for (i = 0; VEC_iterate (tree, var->new_vars, i, n_var); i++)
551 {
552 tree type = strip_type(get_type_of_var (n_var));
553 gcc_assert (type);
554
555 if (type == new_type)
556 return n_var;
557 }
558
559 return NULL_TREE;
560 }
561
562 /* This function returns new_var node, the orig_var of which is DECL.
563 It looks for new_var's in NEW_VARS_HTAB. If not found,
564 the function returns NULL. */
565
566 static new_var
567 is_in_new_vars_htab (tree decl, htab_t new_vars_htab)
568 {
569 return (new_var) htab_find_with_hash (new_vars_htab, decl,
570 htab_hash_pointer (decl));
571 }
572
573 /* Given original variable ORIG_VAR, this function returns
574 new variable corresponding to it of NEW_TYPE type. */
575
576 static tree
577 find_new_var_of_type (tree orig_var, tree new_type)
578 {
579 new_var var;
580 gcc_assert (orig_var && new_type);
581
582 if (TREE_CODE (orig_var) == SSA_NAME)
583 orig_var = SSA_NAME_VAR (orig_var);
584
585 var = is_in_new_vars_htab (orig_var, new_global_vars);
586 if (!var)
587 var = is_in_new_vars_htab (orig_var, new_local_vars);
588 gcc_assert (var);
589 return find_var_in_new_vars_vec (var, new_type);
590 }
591
592 /* This function generates stmt:
593 res = NUM * sizeof(TYPE) and returns it.
594 res is filled into RES. */
595
596 static gimple
597 gen_size (tree num, tree type, tree *res)
598 {
599 tree struct_size = TYPE_SIZE_UNIT (type);
600 HOST_WIDE_INT struct_size_int = TREE_INT_CST_LOW (struct_size);
601 gimple new_stmt;
602
603 *res = create_tmp_var (TREE_TYPE (num), NULL);
604
605 if (*res)
606 add_referenced_var (*res);
607
608 if (exact_log2 (struct_size_int) == -1)
609 {
610 tree size = build_int_cst (TREE_TYPE (num), struct_size_int);
611 new_stmt = gimple_build_assign_with_ops (MULT_EXPR, *res, num, size);
612 }
613 else
614 {
615 tree C = build_int_cst (TREE_TYPE (num), exact_log2 (struct_size_int));
616
617 new_stmt = gimple_build_assign_with_ops (LSHIFT_EXPR, *res, num, C);
618 }
619
620 finalize_stmt (new_stmt);
621 return new_stmt;
622 }
623
624 /* This function generates and returns a statement, that cast variable
625 BEFORE_CAST to NEW_TYPE. The cast result variable is stored
626 into RES_P. ORIG_CAST_STMT is the original cast statement. */
627
628 static gimple
629 gen_cast_stmt (tree before_cast, tree new_type, gimple orig_cast_stmt,
630 tree *res_p)
631 {
632 tree lhs, new_lhs;
633 gimple new_stmt;
634
635 lhs = gimple_assign_lhs (orig_cast_stmt);
636 new_lhs = find_new_var_of_type (lhs, new_type);
637 gcc_assert (new_lhs);
638
639 new_stmt = gimple_build_assign_with_ops (NOP_EXPR, new_lhs, before_cast, 0);
640 finalize_stmt (new_stmt);
641 *res_p = new_lhs;
642 return new_stmt;
643 }
644
645 /* This function builds an edge between BB and E->dest and updates
646 phi nodes of E->dest. It returns newly created edge. */
647
648 static edge
649 make_edge_and_fix_phis_of_dest (basic_block bb, edge e)
650 {
651 edge new_e;
652 tree arg;
653 gimple_stmt_iterator si;
654
655 new_e = make_edge (bb, e->dest, e->flags);
656
657 for (si = gsi_start_phis (new_e->dest); !gsi_end_p (si); gsi_next (&si))
658 {
659 gimple phi = gsi_stmt (si);
660 arg = PHI_ARG_DEF_FROM_EDGE (phi, e);
661 add_phi_arg (phi, arg, new_e);
662 }
663
664 return new_e;
665 }
666
667 /* This function inserts NEW_STMT before STMT. */
668
669 static void
670 insert_before_stmt (gimple stmt, gimple new_stmt)
671 {
672 gimple_stmt_iterator bsi;
673
674 if (!stmt || !new_stmt)
675 return;
676
677 bsi = gsi_for_stmt (stmt);
678 gsi_insert_before (&bsi, new_stmt, GSI_SAME_STMT);
679 }
680
681 /* Insert NEW_STMTS after STMT. */
682
683 static void
684 insert_seq_after_stmt (gimple stmt, gimple_seq new_stmts)
685 {
686 gimple_stmt_iterator bsi;
687
688 if (!stmt || !new_stmts)
689 return;
690
691 bsi = gsi_for_stmt (stmt);
692 gsi_insert_seq_after (&bsi, new_stmts, GSI_SAME_STMT);
693 }
694
695 /* Insert NEW_STMT after STMT. */
696
697 static void
698 insert_after_stmt (gimple stmt, gimple new_stmt)
699 {
700 gimple_stmt_iterator bsi;
701
702 if (!stmt || !new_stmt)
703 return;
704
705 bsi = gsi_for_stmt (stmt);
706 gsi_insert_after (&bsi, new_stmt, GSI_SAME_STMT);
707 }
708
709 /* This function returns vector of allocation sites
710 that appear in function FN_DECL. */
711
712 static fallocs_t
713 get_fallocs (tree fn_decl)
714 {
715 return (fallocs_t) htab_find_with_hash (alloc_sites, fn_decl,
716 htab_hash_pointer (fn_decl));
717 }
718
719 /* If ALLOC_STMT is D.2225_7 = <alloc_func> (D.2224_6);
720 and it is a part of allocation of a structure,
721 then it is usually followed by a cast stmt
722 p_8 = (struct str_t *) D.2225_7;
723 which is returned by this function. */
724
725 static gimple
726 get_final_alloc_stmt (gimple alloc_stmt)
727 {
728 gimple final_stmt;
729 use_operand_p use_p;
730 tree alloc_res;
731
732 if (!alloc_stmt)
733 return NULL;
734
735 if (!is_gimple_call (alloc_stmt))
736 return NULL;
737
738 alloc_res = gimple_get_lhs (alloc_stmt);
739
740 if (TREE_CODE (alloc_res) != SSA_NAME)
741 return NULL;
742
743 if (!single_imm_use (alloc_res, &use_p, &final_stmt))
744 return NULL;
745 else
746 return final_stmt;
747 }
748
749 /* This function returns true if STMT is one of allocation
750 sites of function FN_DECL. It returns false otherwise. */
751
752 static bool
753 is_part_of_malloc (gimple stmt, tree fn_decl)
754 {
755 fallocs_t fallocs = get_fallocs (fn_decl);
756
757 if (fallocs)
758 {
759 alloc_site_t *call;
760 unsigned i;
761
762 for (i = 0; VEC_iterate (alloc_site_t, fallocs->allocs, i, call); i++)
763 if (call->stmt == stmt
764 || get_final_alloc_stmt (call->stmt) == stmt)
765 return true;
766 }
767 return false;
768 }
769
770 /* Auxiliary structure for a lookup over field accesses. */
771 struct find_stmt_data
772 {
773 bool found;
774 gimple stmt;
775 };
776
777 /* This function looks for DATA->stmt among
778 the statements involved in the field access,
779 defined by SLOT. It stops when it's found. */
780
781 static int
782 find_in_field_accs (void **slot, void *data)
783 {
784 struct field_access_site *f_acc = *(struct field_access_site **) slot;
785 gimple stmt = ((struct find_stmt_data *)data)->stmt;
786
787 if (f_acc->stmt == stmt
788 || f_acc->ref_def_stmt == stmt
789 || f_acc->cast_stmt == stmt)
790 {
791 ((struct find_stmt_data *)data)->found = true;
792 return 0;
793 }
794 else
795 return 1;
796 }
797
798 /* This function checks whether STMT is part of field
799 accesses of structure STR. It returns true, if found,
800 and false otherwise. */
801
802 static bool
803 is_part_of_field_access (gimple stmt, d_str str)
804 {
805 int i;
806
807 for (i = 0; i < str->num_fields; i++)
808 {
809 struct find_stmt_data data;
810 data.found = false;
811 data.stmt = stmt;
812
813 if (str->fields[i].acc_sites)
814 htab_traverse (str->fields[i].acc_sites, find_in_field_accs, &data);
815
816 if (data.found)
817 return true;
818 }
819
820 return false;
821 }
822
823 /* Auxiliary data for exclude_from_accs function. */
824
825 struct exclude_data
826 {
827 tree fn_decl;
828 d_str str;
829 };
830
831 /* This function returns component_ref with the BASE and
832 field named FIELD_ID from structure TYPE. */
833
834 static inline tree
835 build_comp_ref (tree base, tree field_id, tree type)
836 {
837 tree field;
838 bool found = false;
839
840
841 /* Find field of structure type with the same name as field_id. */
842 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
843 {
844 if (DECL_NAME (field) == field_id)
845 {
846 found = true;
847 break;
848 }
849 }
850
851 gcc_assert (found);
852
853 return build3 (COMPONENT_REF, TREE_TYPE (field), base, field, NULL_TREE);
854 }
855
856
857 /* This struct represent data used for walk_tree
858 called from function find_pos_in_stmt.
859 - ref is a tree to be found,
860 - and pos is a pointer that points to ref in stmt. */
861 struct ref_pos
862 {
863 tree *pos;
864 tree ref;
865 };
866
867
868 /* This is a callback function for walk_tree, called from
869 collect_accesses_in_bb function. DATA is a pointer to ref_pos structure.
870 When *TP is equal to DATA->ref, the walk_tree stops,
871 and found position, equal to TP, is assigned to DATA->pos. */
872
873 static tree
874 find_pos_in_stmt_1 (tree *tp, int *walk_subtrees, void * data)
875 {
876 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
877 struct ref_pos *r_pos = (struct ref_pos *) wi->info;
878 tree ref = r_pos->ref;
879 tree t = *tp;
880
881 if (t == ref || (TREE_CODE (t) == SSA_NAME && SSA_NAME_VAR (t) == ref))
882 {
883 r_pos->pos = tp;
884 return t;
885 }
886
887 *walk_subtrees = 1;
888 return NULL_TREE;
889 }
890
891
892 /* This function looks for the pointer of REF in STMT,
893 It returns it, if found, and NULL otherwise. */
894
895 static tree *
896 find_pos_in_stmt (gimple stmt, tree ref)
897 {
898 struct ref_pos r_pos;
899 struct walk_stmt_info wi;
900
901 r_pos.ref = ref;
902 r_pos.pos = NULL;
903 memset (&wi, 0, sizeof (wi));
904 wi.info = &r_pos;
905 walk_gimple_op (stmt, find_pos_in_stmt_1, &wi);
906
907 return r_pos.pos;
908 }
909
910 /* This structure is used to represent array
911 or pointer-to wrappers of structure type.
912 For example, if type1 is structure type,
913 then for type1 ** we generate two type_wrapper
914 structures with wrap = 0 each one.
915 It's used to unwind the original type up to
916 structure type, replace it with the new structure type
917 and wrap it back in the opposite order. */
918
919 typedef struct type_wrapper
920 {
921 /* 0 stand for pointer wrapper, and 1 for array wrapper. */
922 bool wrap;
923
924 /* Relevant for arrays as domain or index. */
925 tree domain;
926 }type_wrapper_t;
927
928 DEF_VEC_O (type_wrapper_t);
929 DEF_VEC_ALLOC_O (type_wrapper_t, heap);
930
931 /* This function replace field access ACC by the new
932 field access of structure type NEW_TYPE. */
933
934 static void
935 replace_field_acc (struct field_access_site *acc, tree new_type)
936 {
937 tree ref_var = acc->ref;
938 tree new_ref;
939 tree lhs, rhs;
940 tree *pos;
941 tree new_acc;
942 tree field_id = DECL_NAME (acc->field_decl);
943 VEC (type_wrapper_t, heap) *wrapper = VEC_alloc (type_wrapper_t, heap, 10);
944 type_wrapper_t *wr_p = NULL;
945
946 while (TREE_CODE (ref_var) == INDIRECT_REF
947 || TREE_CODE (ref_var) == ARRAY_REF)
948 {
949 type_wrapper_t wr;
950
951 if ( TREE_CODE (ref_var) == INDIRECT_REF)
952 {
953 wr.wrap = 0;
954 wr.domain = 0;
955 }
956 else
957 {
958 wr.wrap = 1;
959 wr.domain = TREE_OPERAND (ref_var, 1);
960 }
961
962 VEC_safe_push (type_wrapper_t, heap, wrapper, &wr);
963 ref_var = TREE_OPERAND (ref_var, 0);
964 }
965
966 new_ref = find_new_var_of_type (ref_var, new_type);
967 finalize_global_creation (new_ref);
968
969 while (VEC_length (type_wrapper_t, wrapper) != 0)
970 {
971 tree type = TREE_TYPE (TREE_TYPE (new_ref));
972
973 wr_p = VEC_last (type_wrapper_t, wrapper);
974 if (wr_p->wrap) /* Array. */
975 new_ref = build4 (ARRAY_REF, type, new_ref,
976 wr_p->domain, NULL_TREE, NULL_TREE);
977 else /* Pointer. */
978 new_ref = build1 (INDIRECT_REF, type, new_ref);
979 VEC_pop (type_wrapper_t, wrapper);
980 }
981
982 new_acc = build_comp_ref (new_ref, field_id, new_type);
983 VEC_free (type_wrapper_t, heap, wrapper);
984
985 if (is_gimple_assign (acc->stmt))
986 {
987 lhs = gimple_assign_lhs (acc->stmt);
988 rhs = gimple_assign_rhs1 (acc->stmt);
989
990 if (lhs == acc->comp_ref)
991 gimple_assign_set_lhs (acc->stmt, new_acc);
992 else if (rhs == acc->comp_ref)
993 gimple_assign_set_rhs1 (acc->stmt, new_acc);
994 else
995 {
996 pos = find_pos_in_stmt (acc->stmt, acc->comp_ref);
997 gcc_assert (pos);
998 *pos = new_acc;
999 }
1000 }
1001 else
1002 {
1003 pos = find_pos_in_stmt (acc->stmt, acc->comp_ref);
1004 gcc_assert (pos);
1005 *pos = new_acc;
1006 }
1007
1008 finalize_stmt (acc->stmt);
1009 }
1010
1011 /* This function replace field access ACC by a new field access
1012 of structure type NEW_TYPE. */
1013
1014 static void
1015 replace_field_access_stmt (struct field_access_site *acc, tree new_type)
1016 {
1017
1018 if (TREE_CODE (acc->ref) == INDIRECT_REF
1019 ||TREE_CODE (acc->ref) == ARRAY_REF
1020 ||TREE_CODE (acc->ref) == VAR_DECL)
1021 replace_field_acc (acc, new_type);
1022 else
1023 gcc_unreachable ();
1024 }
1025
1026 /* This function looks for d_str, represented by TYPE, in the structures
1027 vector. If found, it returns an index of found structure. Otherwise
1028 it returns a length of the structures vector. */
1029
1030 static unsigned
1031 find_structure (tree type)
1032 {
1033 d_str str;
1034 unsigned i;
1035
1036 type = TYPE_MAIN_VARIANT (type);
1037
1038 for (i = 0; VEC_iterate (structure, structures, i, str); i++)
1039 if (is_equal_types (str->decl, type))
1040 return i;
1041
1042 return VEC_length (structure, structures);
1043 }
1044
1045 /* In this function we create new statements that have the same
1046 form as ORIG_STMT, but of type NEW_TYPE. The statements
1047 treated by this function are simple assignments,
1048 like assignments: p.8_7 = p; or statements with rhs of
1049 tree codes PLUS_EXPR and MINUS_EXPR. */
1050
1051 static gimple
1052 create_base_plus_offset (gimple orig_stmt, tree new_type, tree offset)
1053 {
1054 tree lhs;
1055 tree new_lhs;
1056 gimple new_stmt;
1057 tree new_op0 = NULL_TREE, new_op1 = NULL_TREE;
1058
1059 lhs = gimple_assign_lhs (orig_stmt);
1060
1061 gcc_assert (TREE_CODE (lhs) == VAR_DECL
1062 || TREE_CODE (lhs) == SSA_NAME);
1063
1064 new_lhs = find_new_var_of_type (lhs, new_type);
1065 gcc_assert (new_lhs);
1066 finalize_var_creation (new_lhs);
1067
1068 switch (gimple_assign_rhs_code (orig_stmt))
1069 {
1070 case PLUS_EXPR:
1071 case MINUS_EXPR:
1072 case POINTER_PLUS_EXPR:
1073 {
1074 tree op0 = gimple_assign_rhs1 (orig_stmt);
1075 tree op1 = gimple_assign_rhs2 (orig_stmt);
1076 unsigned str0, str1;
1077 unsigned length = VEC_length (structure, structures);
1078
1079
1080 str0 = find_structure (strip_type (get_type_of_var (op0)));
1081 str1 = find_structure (strip_type (get_type_of_var (op1)));
1082 gcc_assert ((str0 != length) || (str1 != length));
1083
1084 if (str0 != length)
1085 new_op0 = find_new_var_of_type (op0, new_type);
1086 if (str1 != length)
1087 new_op1 = find_new_var_of_type (op1, new_type);
1088
1089 if (!new_op0)
1090 new_op0 = offset;
1091 if (!new_op1)
1092 new_op1 = offset;
1093 }
1094 break;
1095
1096 default:
1097 gcc_unreachable();
1098 }
1099
1100 new_stmt = gimple_build_assign_with_ops (gimple_assign_rhs_code (orig_stmt),
1101 new_lhs, new_op0, new_op1);
1102 finalize_stmt (new_stmt);
1103
1104 return new_stmt;
1105 }
1106
1107 /* Given a field access F_ACC of the FIELD, this function
1108 replaces it by the new field access. */
1109
1110 static void
1111 create_new_field_access (struct field_access_site *f_acc,
1112 struct field_entry field)
1113 {
1114 tree new_type = field.field_mapping;
1115 gimple new_stmt;
1116 tree size_res;
1117 gimple mult_stmt;
1118 gimple cast_stmt;
1119 tree cast_res = NULL;
1120
1121 if (f_acc->num)
1122 {
1123 mult_stmt = gen_size (f_acc->num, new_type, &size_res);
1124 insert_before_stmt (f_acc->ref_def_stmt, mult_stmt);
1125 }
1126
1127 if (f_acc->cast_stmt)
1128 {
1129 cast_stmt = gen_cast_stmt (size_res, new_type,
1130 f_acc->cast_stmt, &cast_res);
1131 insert_after_stmt (f_acc->cast_stmt, cast_stmt);
1132 }
1133
1134 if (f_acc->ref_def_stmt)
1135 {
1136 tree offset;
1137 if (cast_res)
1138 offset = cast_res;
1139 else
1140 offset = size_res;
1141
1142 new_stmt = create_base_plus_offset (f_acc->ref_def_stmt,
1143 new_type, offset);
1144 insert_after_stmt (f_acc->ref_def_stmt, new_stmt);
1145 }
1146
1147 /* In stmt D.2163_19 = D.2162_18->b; we replace variable
1148 D.2162_18 by an appropriate variable of new_type type. */
1149 replace_field_access_stmt (f_acc, new_type);
1150 }
1151
1152 /* This function creates a new condition statement
1153 corresponding to the original COND_STMT, adds new basic block
1154 and redirects condition edges. NEW_VAR is a new condition
1155 variable located in the condition statement at the position POS. */
1156
1157 static void
1158 create_new_stmts_for_cond_expr_1 (tree new_var, gimple cond_stmt, unsigned pos)
1159 {
1160 gimple new_stmt;
1161 edge true_e = NULL, false_e = NULL;
1162 basic_block new_bb;
1163 gimple_stmt_iterator si;
1164
1165 extract_true_false_edges_from_block (gimple_bb (cond_stmt),
1166 &true_e, &false_e);
1167
1168 new_stmt = gimple_build_cond (gimple_cond_code (cond_stmt),
1169 pos == 0 ? new_var : gimple_cond_lhs (cond_stmt),
1170 pos == 1 ? new_var : gimple_cond_rhs (cond_stmt),
1171 NULL_TREE,
1172 NULL_TREE);
1173
1174 finalize_stmt (new_stmt);
1175
1176 /* Create new basic block after bb. */
1177 new_bb = create_empty_bb (gimple_bb (cond_stmt));
1178
1179 /* Add new condition stmt to the new_bb. */
1180 si = gsi_start_bb (new_bb);
1181 gsi_insert_after (&si, new_stmt, GSI_NEW_STMT);
1182
1183 /* Create false and true edges from new_bb. */
1184 make_edge_and_fix_phis_of_dest (new_bb, true_e);
1185 make_edge_and_fix_phis_of_dest (new_bb, false_e);
1186
1187 /* Redirect one of original edges to point to new_bb. */
1188 if (gimple_cond_code (cond_stmt) == NE_EXPR)
1189 redirect_edge_succ (true_e, new_bb);
1190 else
1191 redirect_edge_succ (false_e, new_bb);
1192 }
1193
1194 /* This function creates new condition statements corresponding
1195 to original condition STMT, one for each new type, and
1196 recursively redirect edges to newly generated basic blocks. */
1197
1198 static void
1199 create_new_stmts_for_cond_expr (gimple stmt)
1200 {
1201 tree arg0, arg1, arg;
1202 unsigned str0, str1;
1203 bool s0, s1;
1204 d_str str;
1205 tree type;
1206 unsigned pos;
1207 int i;
1208 unsigned length = VEC_length (structure, structures);
1209
1210 gcc_assert (gimple_cond_code (stmt) == EQ_EXPR
1211 || gimple_cond_code (stmt) == NE_EXPR);
1212
1213 arg0 = gimple_cond_lhs (stmt);
1214 arg1 = gimple_cond_rhs (stmt);
1215
1216 str0 = find_structure (strip_type (get_type_of_var (arg0)));
1217 str1 = find_structure (strip_type (get_type_of_var (arg1)));
1218
1219 s0 = (str0 != length) ? true : false;
1220 s1 = (str1 != length) ? true : false;
1221
1222 gcc_assert (s0 || s1);
1223 /* For now we allow only comparison with 0 or NULL. */
1224 gcc_assert (integer_zerop (arg0) || integer_zerop (arg1));
1225
1226 str = integer_zerop (arg0) ?
1227 VEC_index (structure, structures, str1):
1228 VEC_index (structure, structures, str0);
1229 arg = integer_zerop (arg0) ? arg1 : arg0;
1230 pos = integer_zerop (arg0) ? 1 : 0;
1231
1232 for (i = 0; VEC_iterate (tree, str->new_types, i, type); i++)
1233 {
1234 tree new_arg;
1235
1236 new_arg = find_new_var_of_type (arg, type);
1237 create_new_stmts_for_cond_expr_1 (new_arg, stmt, pos);
1238 }
1239 }
1240
1241 /* Create a new general access to replace original access ACC
1242 for structure type NEW_TYPE. */
1243
1244 static gimple
1245 create_general_new_stmt (struct access_site *acc, tree new_type)
1246 {
1247 gimple old_stmt = acc->stmt;
1248 tree var;
1249 gimple new_stmt = gimple_copy (old_stmt);
1250 unsigned i;
1251
1252 for (i = 0; VEC_iterate (tree, acc->vars, i, var); i++)
1253 {
1254 tree *pos;
1255 tree new_var = find_new_var_of_type (var, new_type);
1256 tree lhs, rhs = NULL_TREE;
1257
1258 gcc_assert (new_var);
1259 finalize_var_creation (new_var);
1260
1261 if (is_gimple_assign (new_stmt))
1262 {
1263 lhs = gimple_assign_lhs (new_stmt);
1264
1265 if (TREE_CODE (lhs) == SSA_NAME)
1266 lhs = SSA_NAME_VAR (lhs);
1267 if (gimple_assign_rhs_code (new_stmt) == SSA_NAME)
1268 rhs = SSA_NAME_VAR (gimple_assign_rhs1 (new_stmt));
1269
1270 /* It can happen that rhs is a constructor.
1271 Then we have to replace it to be of new_type. */
1272 if (gimple_assign_rhs_code (new_stmt) == CONSTRUCTOR)
1273 {
1274 /* Dealing only with empty constructors right now. */
1275 gcc_assert (VEC_empty (constructor_elt,
1276 CONSTRUCTOR_ELTS (rhs)));
1277 rhs = build_constructor (new_type, 0);
1278 gimple_assign_set_rhs1 (new_stmt, rhs);
1279 }
1280
1281 if (lhs == var)
1282 gimple_assign_set_lhs (new_stmt, new_var);
1283 else if (rhs == var)
1284 gimple_assign_set_rhs1 (new_stmt, new_var);
1285 else
1286 {
1287 pos = find_pos_in_stmt (new_stmt, var);
1288 gcc_assert (pos);
1289 *pos = new_var;
1290 }
1291 }
1292 else
1293 {
1294 pos = find_pos_in_stmt (new_stmt, var);
1295 gcc_assert (pos);
1296 *pos = new_var;
1297 }
1298 }
1299
1300 finalize_stmt (new_stmt);
1301 return new_stmt;
1302 }
1303
1304 /* For each new type in STR this function creates new general accesses
1305 corresponding to the original access ACC. */
1306
1307 static void
1308 create_new_stmts_for_general_acc (struct access_site *acc, d_str str)
1309 {
1310 tree type;
1311 gimple stmt = acc->stmt;
1312 unsigned i;
1313
1314 for (i = 0; VEC_iterate (tree, str->new_types, i, type); i++)
1315 {
1316 gimple new_stmt;
1317
1318 new_stmt = create_general_new_stmt (acc, type);
1319 insert_after_stmt (stmt, new_stmt);
1320 }
1321 }
1322
1323 /* This function creates a new general access of structure STR
1324 to replace the access ACC. */
1325
1326 static void
1327 create_new_general_access (struct access_site *acc, d_str str)
1328 {
1329 gimple stmt = acc->stmt;
1330 switch (gimple_code (stmt))
1331 {
1332 case GIMPLE_COND:
1333 create_new_stmts_for_cond_expr (stmt);
1334 break;
1335
1336 default:
1337 create_new_stmts_for_general_acc (acc, str);
1338 }
1339 }
1340
1341 /* Auxiliary data for creation of accesses. */
1342 struct create_acc_data
1343 {
1344 basic_block bb;
1345 d_str str;
1346 int field_index;
1347 };
1348
1349 /* This function creates a new general access, defined by SLOT.
1350 DATA is a pointer to create_acc_data structure. */
1351
1352 static int
1353 create_new_acc (void **slot, void *data)
1354 {
1355 struct access_site *acc = *(struct access_site **) slot;
1356 basic_block bb = ((struct create_acc_data *)data)->bb;
1357 d_str str = ((struct create_acc_data *)data)->str;
1358
1359 if (gimple_bb (acc->stmt) == bb)
1360 create_new_general_access (acc, str);
1361 return 1;
1362 }
1363
1364 /* This function creates a new field access, defined by SLOT.
1365 DATA is a pointer to create_acc_data structure. */
1366
1367 static int
1368 create_new_field_acc (void **slot, void *data)
1369 {
1370 struct field_access_site *f_acc = *(struct field_access_site **) slot;
1371 basic_block bb = ((struct create_acc_data *)data)->bb;
1372 d_str str = ((struct create_acc_data *)data)->str;
1373 int i = ((struct create_acc_data *)data)->field_index;
1374
1375 if (gimple_bb (f_acc->stmt) == bb)
1376 create_new_field_access (f_acc, str->fields[i]);
1377 return 1;
1378 }
1379
1380 /* This function creates new accesses for the structure
1381 type STR in basic block BB. */
1382
1383 static void
1384 create_new_accs_for_struct (d_str str, basic_block bb)
1385 {
1386 int i;
1387 struct create_acc_data dt;
1388
1389 dt.str = str;
1390 dt.bb = bb;
1391 dt.field_index = -1;
1392
1393 for (i = 0; i < str->num_fields; i++)
1394 {
1395 dt.field_index = i;
1396
1397 if (str->fields[i].acc_sites)
1398 htab_traverse (str->fields[i].acc_sites,
1399 create_new_field_acc, &dt);
1400 }
1401 if (str->accs)
1402 htab_traverse (str->accs, create_new_acc, &dt);
1403 }
1404
1405 /* This function inserts new variables from new_var,
1406 defined by SLOT, into varpool. */
1407
1408 static int
1409 update_varpool_with_new_var (void **slot, void *data ATTRIBUTE_UNUSED)
1410 {
1411 new_var n_var = *(new_var *) slot;
1412 tree var;
1413 unsigned i;
1414
1415 for (i = 0; VEC_iterate (tree, n_var->new_vars, i, var); i++)
1416 insert_global_to_varpool (var);
1417 return 1;
1418 }
1419
1420 /* This function prints a field access site, defined by SLOT. */
1421
1422 static int
1423 dump_field_acc (void **slot, void *data ATTRIBUTE_UNUSED)
1424 {
1425 struct field_access_site *f_acc =
1426 *(struct field_access_site **) slot;
1427
1428 fprintf(dump_file, "\n");
1429 if (f_acc->stmt)
1430 print_gimple_stmt (dump_file, f_acc->stmt, 0, 0);
1431 if (f_acc->ref_def_stmt)
1432 print_gimple_stmt (dump_file, f_acc->ref_def_stmt, 0, 0);
1433 if (f_acc->cast_stmt)
1434 print_gimple_stmt (dump_file, f_acc->cast_stmt, 0, 0);
1435 return 1;
1436 }
1437
1438 /* Print field accesses from hashtable F_ACCS. */
1439
1440 static void
1441 dump_field_acc_sites (htab_t f_accs)
1442 {
1443 if (!dump_file)
1444 return;
1445
1446 if (f_accs)
1447 htab_traverse (f_accs, dump_field_acc, NULL);
1448 }
1449
1450 /* Hash value for fallocs_t. */
1451
1452 static hashval_t
1453 malloc_hash (const void *x)
1454 {
1455 return htab_hash_pointer (((const_fallocs_t)x)->func);
1456 }
1457
1458 /* This function returns nonzero if function of func_alloc_sites' X
1459 is equal to Y. */
1460
1461 static int
1462 malloc_eq (const void *x, const void *y)
1463 {
1464 return ((const_fallocs_t)x)->func == (const_tree)y;
1465 }
1466
1467 /* This function is a callback for traversal over a structure accesses.
1468 It frees an access represented by SLOT. */
1469
1470 static int
1471 free_accs (void **slot, void *data ATTRIBUTE_UNUSED)
1472 {
1473 struct access_site * acc = *(struct access_site **) slot;
1474
1475 VEC_free (tree, heap, acc->vars);
1476 free (acc);
1477 return 1;
1478 }
1479
1480 /* This is a callback function for traversal over field accesses.
1481 It frees a field access represented by SLOT. */
1482
1483 static int
1484 free_field_accs (void **slot, void *data ATTRIBUTE_UNUSED)
1485 {
1486 struct field_access_site *f_acc = *(struct field_access_site **) slot;
1487
1488 free (f_acc);
1489 return 1;
1490 }
1491
1492 /* This function inserts TYPE into vector of UNSUITABLE_TYPES,
1493 if it is not there yet. */
1494
1495 static void
1496 add_unsuitable_type (VEC (tree, heap) **unsuitable_types, tree type)
1497 {
1498 unsigned i;
1499 tree t;
1500
1501 if (!type)
1502 return;
1503
1504 type = TYPE_MAIN_VARIANT (type);
1505
1506 for (i = 0; VEC_iterate (tree, *unsuitable_types, i, t); i++)
1507 if (is_equal_types (t, type))
1508 break;
1509
1510 if (i == VEC_length (tree, *unsuitable_types))
1511 VEC_safe_push (tree, heap, *unsuitable_types, type);
1512 }
1513
1514 /* Given a type TYPE, this function returns the name of the type. */
1515
1516 static const char *
1517 get_type_name (tree type)
1518 {
1519 if (! TYPE_NAME (type))
1520 return NULL;
1521
1522 if (TREE_CODE (TYPE_NAME (type)) == IDENTIFIER_NODE)
1523 return IDENTIFIER_POINTER (TYPE_NAME (type));
1524 else if (TREE_CODE (TYPE_NAME (type)) == TYPE_DECL
1525 && DECL_NAME (TYPE_NAME (type)))
1526 return IDENTIFIER_POINTER (DECL_NAME (TYPE_NAME (type)));
1527 else
1528 return NULL;
1529 }
1530
1531 /* This function is a temporary hack to overcome the types problem.
1532 When several compilation units are compiled together
1533 with -combine, the TYPE_MAIN_VARIANT of the same type
1534 can appear differently in different compilation units.
1535 Therefore this function first compares type names.
1536 If there are no names, structure bodies are recursively
1537 compared. */
1538
1539 static bool
1540 is_equal_types (tree type1, tree type2)
1541 {
1542 const char * name1,* name2;
1543
1544 if ((!type1 && type2)
1545 ||(!type2 && type1))
1546 return false;
1547
1548 if (!type1 && !type2)
1549 return true;
1550
1551 if (TREE_CODE (type1) != TREE_CODE (type2))
1552 return false;
1553
1554 if (type1 == type2)
1555 return true;
1556
1557 if (TYPE_MAIN_VARIANT (type1) == TYPE_MAIN_VARIANT (type2))
1558 return true;
1559
1560 name1 = get_type_name (type1);
1561 name2 = get_type_name (type2);
1562
1563 if (name1 && name2 && !strcmp (name1, name2))
1564 return true;
1565
1566 if (name1 && name2 && strcmp (name1, name2))
1567 return false;
1568
1569 switch (TREE_CODE (type1))
1570 {
1571 case POINTER_TYPE:
1572 case REFERENCE_TYPE:
1573 {
1574 return is_equal_types (TREE_TYPE (type1), TREE_TYPE (type2));
1575 }
1576 break;
1577
1578 case RECORD_TYPE:
1579 case UNION_TYPE:
1580 case QUAL_UNION_TYPE:
1581 case ENUMERAL_TYPE:
1582 {
1583 tree field1;
1584 /* Compare fields of structure. */
1585 for (field1 = TYPE_FIELDS (type1); field1;
1586 field1 = TREE_CHAIN (field1))
1587 {
1588 tree field2 = find_field_in_struct_1 (type2, field1);
1589 if (!field2)
1590 return false;
1591 }
1592 return true;
1593 }
1594 break;
1595
1596 case INTEGER_TYPE:
1597 {
1598 if (TYPE_UNSIGNED (type1) == TYPE_UNSIGNED (type2)
1599 && TYPE_PRECISION (type1) == TYPE_PRECISION (type2))
1600 return true;
1601 }
1602 break;
1603
1604 case ARRAY_TYPE:
1605 {
1606 tree d1, d2;
1607 tree max1, min1, max2, min2;
1608
1609 if (!is_equal_types (TREE_TYPE (type1), TREE_TYPE (type2)))
1610 return false;
1611
1612 d1 = TYPE_DOMAIN (type1);
1613 d2 = TYPE_DOMAIN (type2);
1614
1615 if (!d1 || !d2)
1616 return false;
1617
1618 max1 = TYPE_MAX_VALUE (d1);
1619 max2 = TYPE_MAX_VALUE (d2);
1620 min1 = TYPE_MIN_VALUE (d1);
1621 min2 = TYPE_MIN_VALUE (d2);
1622
1623 if (max1 && max2 && min1 && min2
1624 && TREE_CODE (max1) == TREE_CODE (max2)
1625 && TREE_CODE (max1) == INTEGER_CST
1626 && TREE_CODE (min1) == TREE_CODE (min2)
1627 && TREE_CODE (min1) == INTEGER_CST
1628 && tree_int_cst_equal (max1, max2)
1629 && tree_int_cst_equal (min1, min2))
1630 return true;
1631 }
1632 break;
1633
1634 default:
1635 gcc_unreachable();
1636 }
1637
1638 return false;
1639 }
1640
1641 /* This function free non-field accesses from hashtable ACCS. */
1642
1643 static void
1644 free_accesses (htab_t accs)
1645 {
1646 if (accs)
1647 htab_traverse (accs, free_accs, NULL);
1648 htab_delete (accs);
1649 }
1650
1651 /* This function free field accesses hashtable F_ACCS. */
1652
1653 static void
1654 free_field_accesses (htab_t f_accs)
1655 {
1656 if (f_accs)
1657 htab_traverse (f_accs, free_field_accs, NULL);
1658 htab_delete (f_accs);
1659 }
1660
1661 /* Update call graph with new edge generated by new MALLOC_STMT.
1662 The edge origin is CONTEXT function. */
1663
1664 static void
1665 update_cgraph_with_malloc_call (gimple malloc_stmt, tree context)
1666 {
1667 struct cgraph_node *src, *dest;
1668 tree malloc_fn_decl;
1669
1670 if (!malloc_stmt)
1671 return;
1672
1673 malloc_fn_decl = gimple_call_fndecl (malloc_stmt);
1674
1675 src = cgraph_node (context);
1676 dest = cgraph_node (malloc_fn_decl);
1677 cgraph_create_edge (src, dest, malloc_stmt,
1678 0, 0, gimple_bb (malloc_stmt)->loop_depth);
1679 }
1680
1681 /* This function generates set of statements required
1682 to allocate number NUM of structures of type NEW_TYPE.
1683 The statements are stored in NEW_STMTS. The statement that contain
1684 call to malloc is returned. MALLOC_STMT is an original call to malloc. */
1685
1686 static gimple
1687 create_new_malloc (gimple malloc_stmt, tree new_type, gimple_seq *new_stmts,
1688 tree num)
1689 {
1690 tree new_malloc_size;
1691 tree malloc_fn_decl;
1692 gimple new_stmt;
1693 tree malloc_res;
1694 gimple call_stmt, final_stmt;
1695 tree cast_res;
1696
1697 gcc_assert (num && malloc_stmt && new_type);
1698 *new_stmts = gimple_seq_alloc ();
1699
1700 /* Generate argument to malloc as multiplication of num
1701 and size of new_type. */
1702 new_stmt = gen_size (num, new_type, &new_malloc_size);
1703 gimple_seq_add_stmt (new_stmts, new_stmt);
1704
1705 /* Generate new call for malloc. */
1706 malloc_res = create_tmp_var (ptr_type_node, NULL);
1707 add_referenced_var (malloc_res);
1708
1709 malloc_fn_decl = gimple_call_fndecl (malloc_stmt);
1710 call_stmt = gimple_build_call (malloc_fn_decl, 1, new_malloc_size);
1711 gimple_call_set_lhs (call_stmt, malloc_res);
1712 finalize_stmt_and_append (new_stmts, call_stmt);
1713
1714 /* Create new cast statement. */
1715 final_stmt = get_final_alloc_stmt (malloc_stmt);
1716 gcc_assert (final_stmt);
1717 new_stmt = gen_cast_stmt (malloc_res, new_type, final_stmt, &cast_res);
1718 gimple_seq_add_stmt (new_stmts, new_stmt);
1719
1720 return call_stmt;
1721 }
1722
1723 /* This function returns a tree representing
1724 the number of instances of structure STR_DECL allocated
1725 by allocation STMT. If new statements are generated,
1726 they are filled into NEW_STMTS_P. */
1727
1728 static tree
1729 gen_num_of_structs_in_malloc (gimple stmt, tree str_decl,
1730 gimple_seq *new_stmts_p)
1731 {
1732 tree arg;
1733 tree struct_size;
1734 HOST_WIDE_INT struct_size_int;
1735
1736 if (!stmt)
1737 return NULL_TREE;
1738
1739 /* Get malloc argument. */
1740 if (!is_gimple_call (stmt))
1741 return NULL_TREE;
1742
1743 arg = gimple_call_arg (stmt, 0);
1744
1745 if (TREE_CODE (arg) != SSA_NAME
1746 && !TREE_CONSTANT (arg))
1747 return NULL_TREE;
1748
1749 struct_size = TYPE_SIZE_UNIT (str_decl);
1750 struct_size_int = TREE_INT_CST_LOW (struct_size);
1751
1752 gcc_assert (struct_size);
1753
1754 if (TREE_CODE (arg) == SSA_NAME)
1755 {
1756 tree num;
1757 gimple div_stmt;
1758
1759 if (is_result_of_mult (arg, &num, struct_size))
1760 return num;
1761
1762 num = create_tmp_var (integer_type_node, NULL);
1763
1764 if (num)
1765 add_referenced_var (num);
1766
1767 if (exact_log2 (struct_size_int) == -1)
1768 div_stmt = gimple_build_assign_with_ops (TRUNC_DIV_EXPR, num, arg,
1769 struct_size);
1770 else
1771 {
1772 tree C = build_int_cst (integer_type_node,
1773 exact_log2 (struct_size_int));
1774
1775 div_stmt = gimple_build_assign_with_ops (RSHIFT_EXPR, num, arg, C);
1776 }
1777 gimple_seq_add_stmt (new_stmts_p, div_stmt);
1778 finalize_stmt (div_stmt);
1779 return num;
1780 }
1781
1782 if (CONSTANT_CLASS_P (arg)
1783 && multiple_of_p (TREE_TYPE (struct_size), arg, struct_size))
1784 return int_const_binop (TRUNC_DIV_EXPR, arg, struct_size, 0);
1785
1786 return NULL_TREE;
1787 }
1788
1789 /* This function is a callback for traversal on new_var's hashtable.
1790 SLOT is a pointer to new_var. This function prints to dump_file
1791 an original variable and all new variables from the new_var
1792 pointed by *SLOT. */
1793
1794 static int
1795 dump_new_var (void **slot, void *data ATTRIBUTE_UNUSED)
1796 {
1797 new_var n_var = *(new_var *) slot;
1798 tree var_type;
1799 tree var;
1800 unsigned i;
1801
1802 var_type = get_type_of_var (n_var->orig_var);
1803
1804 fprintf (dump_file, "\nOrig var: ");
1805 print_generic_expr (dump_file, n_var->orig_var, 0);
1806 fprintf (dump_file, " of type ");
1807 print_generic_expr (dump_file, var_type, 0);
1808 fprintf (dump_file, "\n");
1809
1810 for (i = 0;
1811 VEC_iterate (tree, n_var->new_vars, i, var); i++)
1812 {
1813 var_type = get_type_of_var (var);
1814
1815 fprintf (dump_file, " ");
1816 print_generic_expr (dump_file, var, 0);
1817 fprintf (dump_file, " of type ");
1818 print_generic_expr (dump_file, var_type, 0);
1819 fprintf (dump_file, "\n");
1820 }
1821 return 1;
1822 }
1823
1824 /* This function copies attributes form ORIG_DECL to NEW_DECL. */
1825
1826 static inline void
1827 copy_decl_attributes (tree new_decl, tree orig_decl)
1828 {
1829
1830 DECL_ARTIFICIAL (new_decl) = 1;
1831 DECL_EXTERNAL (new_decl) = DECL_EXTERNAL (orig_decl);
1832 TREE_STATIC (new_decl) = TREE_STATIC (orig_decl);
1833 TREE_PUBLIC (new_decl) = TREE_PUBLIC (orig_decl);
1834 TREE_USED (new_decl) = TREE_USED (orig_decl);
1835 DECL_CONTEXT (new_decl) = DECL_CONTEXT (orig_decl);
1836 TREE_THIS_VOLATILE (new_decl) = TREE_THIS_VOLATILE (orig_decl);
1837 TREE_ADDRESSABLE (new_decl) = TREE_ADDRESSABLE (orig_decl);
1838
1839 if (TREE_CODE (orig_decl) == VAR_DECL)
1840 {
1841 TREE_READONLY (new_decl) = TREE_READONLY (orig_decl);
1842 DECL_TLS_MODEL (new_decl) = DECL_TLS_MODEL (orig_decl);
1843 }
1844 }
1845
1846 /* This function wraps NEW_STR_TYPE in pointers or arrays wrapper
1847 the same way as a structure type is wrapped in DECL.
1848 It returns the generated type. */
1849
1850 static inline tree
1851 gen_struct_type (tree decl, tree new_str_type)
1852 {
1853 tree type_orig = get_type_of_var (decl);
1854 tree new_type = new_str_type;
1855 VEC (type_wrapper_t, heap) *wrapper = VEC_alloc (type_wrapper_t, heap, 10);
1856 type_wrapper_t wr;
1857 type_wrapper_t *wr_p;
1858
1859 while (POINTER_TYPE_P (type_orig)
1860 || TREE_CODE (type_orig) == ARRAY_TYPE)
1861 {
1862 if (POINTER_TYPE_P (type_orig))
1863 {
1864 wr.wrap = 0;
1865 wr.domain = NULL_TREE;
1866 }
1867 else
1868 {
1869 gcc_assert (TREE_CODE (type_orig) == ARRAY_TYPE);
1870 wr.wrap = 1;
1871 wr.domain = TYPE_DOMAIN (type_orig);
1872 }
1873 VEC_safe_push (type_wrapper_t, heap, wrapper, &wr);
1874 type_orig = TREE_TYPE (type_orig);
1875 }
1876
1877 while (VEC_length (type_wrapper_t, wrapper) != 0)
1878 {
1879 wr_p = VEC_last (type_wrapper_t, wrapper);
1880
1881 if (wr_p->wrap) /* Array. */
1882 new_type = build_array_type (new_type, wr_p->domain);
1883 else /* Pointer. */
1884 new_type = build_pointer_type (new_type);
1885
1886 VEC_pop (type_wrapper_t, wrapper);
1887 }
1888
1889 VEC_free (type_wrapper_t, heap, wrapper);
1890 return new_type;
1891 }
1892
1893 /* This function generates and returns new variable name based on
1894 ORIG_DECL name, combined with index I.
1895 The form of the new name is <orig_name>.<I> . */
1896
1897 static tree
1898 gen_var_name (tree orig_decl, unsigned HOST_WIDE_INT i)
1899 {
1900 const char *old_name;
1901 char *prefix;
1902 char *new_name;
1903
1904 if (!DECL_NAME (orig_decl)
1905 || !IDENTIFIER_POINTER (DECL_NAME (orig_decl)))
1906 return NULL;
1907
1908 /* If the original variable has a name, create an
1909 appropriate new name for the new variable. */
1910
1911 old_name = IDENTIFIER_POINTER (DECL_NAME (orig_decl));
1912 prefix = XALLOCAVEC (char, strlen (old_name) + 1);
1913 strcpy (prefix, old_name);
1914 ASM_FORMAT_PRIVATE_NAME (new_name, prefix, i);
1915 return get_identifier (new_name);
1916 }
1917
1918 /* This function adds NEW_NODE to hashtable of new_var's NEW_VARS_HTAB. */
1919
1920 static void
1921 add_to_new_vars_htab (new_var new_node, htab_t new_vars_htab)
1922 {
1923 void **slot;
1924
1925 slot = htab_find_slot_with_hash (new_vars_htab, new_node->orig_var,
1926 htab_hash_pointer (new_node->orig_var),
1927 INSERT);
1928 *slot = new_node;
1929 }
1930
1931 /* This function creates and returns new_var_data node
1932 with empty new_vars and orig_var equal to VAR. */
1933
1934 static new_var
1935 create_new_var_node (tree var, d_str str)
1936 {
1937 new_var node;
1938
1939 node = (new_var) xmalloc (sizeof (struct new_var_data));
1940 node->orig_var = var;
1941 node->new_vars = VEC_alloc (tree, heap, VEC_length (tree, str->new_types));
1942 return node;
1943 }
1944
1945 /* Check whether the type of VAR is potential candidate for peeling.
1946 Returns true if yes, false otherwise. If yes, TYPE_P will contain
1947 candidate type. If VAR is initialized, the type of VAR will be added
1948 to UNSUITABLE_TYPES. */
1949
1950 static bool
1951 is_candidate (tree var, tree *type_p, VEC (tree, heap) **unsuitable_types)
1952 {
1953 tree type;
1954 bool initialized = false;
1955
1956 *type_p = NULL;
1957
1958 if (!var)
1959 return false;
1960
1961 /* There is no support of initialized vars. */
1962 if (TREE_CODE (var) == VAR_DECL
1963 && DECL_INITIAL (var) != NULL_TREE)
1964 initialized = true;
1965
1966 type = get_type_of_var (var);
1967
1968 if (type)
1969 {
1970 type = TYPE_MAIN_VARIANT (strip_type (type));
1971 if (TREE_CODE (type) != RECORD_TYPE)
1972 return false;
1973 else
1974 {
1975 if (initialized && unsuitable_types && *unsuitable_types)
1976 {
1977 if (dump_file)
1978 {
1979 fprintf (dump_file, "The type ");
1980 print_generic_expr (dump_file, type, 0);
1981 fprintf (dump_file, " is initialized...Excluded.");
1982 }
1983 add_unsuitable_type (unsuitable_types, type);
1984 }
1985 *type_p = type;
1986 return true;
1987 }
1988 }
1989 else
1990 return false;
1991 }
1992
1993 /* Hash value for field_access_site. */
1994
1995 static hashval_t
1996 field_acc_hash (const void *x)
1997 {
1998 return htab_hash_pointer (((const struct field_access_site *)x)->stmt);
1999 }
2000
2001 /* This function returns nonzero if stmt of field_access_site X
2002 is equal to Y. */
2003
2004 static int
2005 field_acc_eq (const void *x, const void *y)
2006 {
2007 return ((const struct field_access_site *)x)->stmt == (const_gimple)y;
2008 }
2009
2010 /* This function prints an access site, defined by SLOT. */
2011
2012 static int
2013 dump_acc (void **slot, void *data ATTRIBUTE_UNUSED)
2014 {
2015 struct access_site *acc = *(struct access_site **) slot;
2016 tree var;
2017 unsigned i;
2018
2019 fprintf(dump_file, "\n");
2020 if (acc->stmt)
2021 print_gimple_stmt (dump_file, acc->stmt, 0, 0);
2022 fprintf(dump_file, " : ");
2023
2024 for (i = 0; VEC_iterate (tree, acc->vars, i, var); i++)
2025 {
2026 print_generic_expr (dump_file, var, 0);
2027 fprintf(dump_file, ", ");
2028 }
2029 return 1;
2030 }
2031
2032 /* This function frees memory allocated for structure clusters,
2033 starting from CLUSTER. */
2034
2035 static void
2036 free_struct_cluster (struct field_cluster* cluster)
2037 {
2038 if (cluster)
2039 {
2040 if (cluster->fields_in_cluster)
2041 sbitmap_free (cluster->fields_in_cluster);
2042 if (cluster->sibling)
2043 free_struct_cluster (cluster->sibling);
2044 free (cluster);
2045 }
2046 }
2047
2048 /* Free all allocated memory under the structure node pointed by D_NODE. */
2049
2050 static void
2051 free_data_struct (d_str d_node)
2052 {
2053 int i;
2054
2055 if (!d_node)
2056 return;
2057
2058 if (dump_file)
2059 {
2060 fprintf (dump_file, "\nRemoving data structure \"");
2061 print_generic_expr (dump_file, d_node->decl, 0);
2062 fprintf (dump_file, "\" from data_struct_list.");
2063 }
2064
2065 /* Free all space under d_node. */
2066 if (d_node->fields)
2067 {
2068 for (i = 0; i < d_node->num_fields; i++)
2069 free_field_accesses (d_node->fields[i].acc_sites);
2070 free (d_node->fields);
2071 }
2072
2073 if (d_node->accs)
2074 free_accesses (d_node->accs);
2075
2076 if (d_node->struct_clustering)
2077 free_struct_cluster (d_node->struct_clustering);
2078
2079 if (d_node->new_types)
2080 VEC_free (tree, heap, d_node->new_types);
2081 }
2082
2083 /* This function creates new general and field accesses in BB. */
2084
2085 static void
2086 create_new_accesses_in_bb (basic_block bb)
2087 {
2088 d_str str;
2089 unsigned i;
2090
2091 for (i = 0; VEC_iterate (structure, structures, i, str); i++)
2092 create_new_accs_for_struct (str, bb);
2093 }
2094
2095 /* This function adds allocation sites for peeled structures.
2096 M_DATA is vector of allocation sites of function CONTEXT. */
2097
2098 static void
2099 create_new_alloc_sites (fallocs_t m_data, tree context)
2100 {
2101 alloc_site_t *call;
2102 unsigned j;
2103
2104 for (j = 0; VEC_iterate (alloc_site_t, m_data->allocs, j, call); j++)
2105 {
2106 gimple stmt = call->stmt;
2107 d_str str = call->str;
2108 tree num;
2109 gimple_seq new_stmts = NULL;
2110 gimple last_stmt = get_final_alloc_stmt (stmt);
2111 unsigned i;
2112 tree type;
2113
2114 num = gen_num_of_structs_in_malloc (stmt, str->decl, &new_stmts);
2115 if (new_stmts)
2116 {
2117 gimple last_stmt_tmp = gimple_seq_last_stmt (new_stmts);
2118 insert_seq_after_stmt (last_stmt, new_stmts);
2119 last_stmt = last_stmt_tmp;
2120 }
2121
2122 /* Generate an allocation sites for each new structure type. */
2123 for (i = 0; VEC_iterate (tree, str->new_types, i, type); i++)
2124 {
2125 gimple new_malloc_stmt = NULL;
2126 gimple last_stmt_tmp = NULL;
2127
2128 new_stmts = NULL;
2129 new_malloc_stmt = create_new_malloc (stmt, type, &new_stmts, num);
2130 last_stmt_tmp = gimple_seq_last_stmt (new_stmts);
2131 insert_seq_after_stmt (last_stmt, new_stmts);
2132 update_cgraph_with_malloc_call (new_malloc_stmt, context);
2133 last_stmt = last_stmt_tmp;
2134 }
2135 }
2136 }
2137
2138 /* This function prints new variables from hashtable
2139 NEW_VARS_HTAB to dump_file. */
2140
2141 static void
2142 dump_new_vars (htab_t new_vars_htab)
2143 {
2144 if (!dump_file)
2145 return;
2146
2147 if (new_vars_htab)
2148 htab_traverse (new_vars_htab, dump_new_var, NULL);
2149 }
2150
2151 /* Given an original variable ORIG_DECL of structure type STR,
2152 this function generates new variables of the types defined
2153 by STR->new_type. Generated types are saved in new_var node NODE.
2154 ORIG_DECL should has VAR_DECL tree_code. */
2155
2156 static void
2157 create_new_var_1 (tree orig_decl, d_str str, new_var node)
2158 {
2159 unsigned i;
2160 tree type;
2161
2162 for (i = 0;
2163 VEC_iterate (tree, str->new_types, i, type); i++)
2164 {
2165 tree new_decl = NULL;
2166 tree new_name;
2167
2168 new_name = gen_var_name (orig_decl, i);
2169 type = gen_struct_type (orig_decl, type);
2170
2171 if (is_global_var (orig_decl))
2172 new_decl = build_decl (VAR_DECL, new_name, type);
2173 else
2174 {
2175 const char *name = new_name ? IDENTIFIER_POINTER (new_name) : NULL;
2176 new_decl = create_tmp_var (type, name);
2177 }
2178
2179 copy_decl_attributes (new_decl, orig_decl);
2180 VEC_safe_push (tree, heap, node->new_vars, new_decl);
2181 }
2182 }
2183
2184 /* This function creates new variables to
2185 substitute the original variable VAR_DECL and adds
2186 them to the new_var's hashtable NEW_VARS_HTAB. */
2187
2188 static void
2189 create_new_var (tree var_decl, htab_t new_vars_htab)
2190 {
2191 new_var node;
2192 d_str str;
2193 tree type;
2194 unsigned i;
2195
2196 if (!var_decl || is_in_new_vars_htab (var_decl, new_vars_htab))
2197 return;
2198
2199 if (!is_candidate (var_decl, &type, NULL))
2200 return;
2201
2202 i = find_structure (type);
2203 if (i == VEC_length (structure, structures))
2204 return;
2205
2206 str = VEC_index (structure, structures, i);
2207 node = create_new_var_node (var_decl, str);
2208 create_new_var_1 (var_decl, str, node);
2209 add_to_new_vars_htab (node, new_vars_htab);
2210 }
2211
2212 /* Hash value for new_var. */
2213
2214 static hashval_t
2215 new_var_hash (const void *x)
2216 {
2217 return htab_hash_pointer (((const_new_var)x)->orig_var);
2218 }
2219
2220 /* This function returns nonzero if orig_var of new_var X is equal to Y. */
2221
2222 static int
2223 new_var_eq (const void *x, const void *y)
2224 {
2225 return ((const_new_var)x)->orig_var == (const_tree)y;
2226 }
2227
2228 /* This function check whether a structure type represented by STR
2229 escapes due to ipa-type-escape analysis. If yes, this type is added
2230 to UNSUITABLE_TYPES vector. */
2231
2232 static void
2233 check_type_escape (d_str str, VEC (tree, heap) **unsuitable_types)
2234 {
2235 tree type = str->decl;
2236
2237 if (!ipa_type_escape_type_contained_p (type))
2238 {
2239 if (dump_file)
2240 {
2241 fprintf (dump_file, "\nEscaping type is ");
2242 print_generic_expr (dump_file, type, 0);
2243 }
2244 add_unsuitable_type (unsuitable_types, type);
2245 }
2246 }
2247
2248 /* Hash value for access_site. */
2249
2250 static hashval_t
2251 acc_hash (const void *x)
2252 {
2253 return htab_hash_pointer (((const struct access_site *)x)->stmt);
2254 }
2255
2256 /* Return nonzero if stmt of access_site X is equal to Y. */
2257
2258 static int
2259 acc_eq (const void *x, const void *y)
2260 {
2261 return ((const struct access_site *)x)->stmt == (const_gimple)y;
2262 }
2263
2264 /* Given a structure declaration STRUCT_DECL, and number of fields
2265 in the structure NUM_FIELDS, this function creates and returns
2266 corresponding field_entry's. */
2267
2268 static struct field_entry *
2269 get_fields (tree struct_decl, int num_fields)
2270 {
2271 struct field_entry *list;
2272 tree t = TYPE_FIELDS (struct_decl);
2273 int idx = 0;
2274
2275 list =
2276 (struct field_entry *) xmalloc (num_fields * sizeof (struct field_entry));
2277
2278 for (idx = 0 ; t; t = TREE_CHAIN (t), idx++)
2279 if (TREE_CODE (t) == FIELD_DECL)
2280 {
2281 list[idx].index = idx;
2282 list[idx].decl = t;
2283 list[idx].acc_sites =
2284 htab_create (32, field_acc_hash, field_acc_eq, NULL);
2285 list[idx].count = 0;
2286 list[idx].field_mapping = NULL_TREE;
2287 }
2288
2289 return list;
2290 }
2291
2292 /* Print non-field accesses from hashtable ACCS of structure. */
2293
2294 static void
2295 dump_access_sites (htab_t accs)
2296 {
2297 if (!dump_file)
2298 return;
2299
2300 if (accs)
2301 htab_traverse (accs, dump_acc, NULL);
2302 }
2303
2304 /* This function is a callback for alloc_sites hashtable
2305 traversal. SLOT is a pointer to fallocs_t. This function
2306 removes all allocations of the structure defined by DATA. */
2307
2308 static int
2309 remove_str_allocs_in_func (void **slot, void *data)
2310 {
2311 fallocs_t fallocs = *(fallocs_t *) slot;
2312 unsigned i = 0;
2313 alloc_site_t *call;
2314
2315 while (VEC_iterate (alloc_site_t, fallocs->allocs, i, call))
2316 {
2317 if (call->str == (d_str) data)
2318 VEC_ordered_remove (alloc_site_t, fallocs->allocs, i);
2319 else
2320 i++;
2321 }
2322
2323 return 1;
2324 }
2325
2326 /* This function remove all entries corresponding to the STR structure
2327 from alloc_sites hashtable. */
2328
2329 static void
2330 remove_str_allocs (d_str str)
2331 {
2332 if (!str)
2333 return;
2334
2335 if (alloc_sites)
2336 htab_traverse (alloc_sites, remove_str_allocs_in_func, str);
2337 }
2338
2339 /* This function removes the structure with index I from structures vector. */
2340
2341 static void
2342 remove_structure (unsigned i)
2343 {
2344 d_str str;
2345
2346 if (i >= VEC_length (structure, structures))
2347 return;
2348
2349 str = VEC_index (structure, structures, i);
2350
2351 /* Before removing the structure str, we have to remove its
2352 allocations from alloc_sites hashtable. */
2353 remove_str_allocs (str);
2354 free_data_struct (str);
2355 VEC_ordered_remove (structure, structures, i);
2356 }
2357
2358 /* Currently we support only EQ_EXPR or NE_EXPR conditions.
2359 COND_STMT is a condition statement to check. */
2360
2361 static bool
2362 is_safe_cond_expr (gimple cond_stmt)
2363 {
2364 tree arg0, arg1;
2365 unsigned str0, str1;
2366 bool s0, s1;
2367 unsigned length = VEC_length (structure, structures);
2368
2369 if (gimple_cond_code (cond_stmt) != EQ_EXPR
2370 && gimple_cond_code (cond_stmt) != NE_EXPR)
2371 return false;
2372
2373 arg0 = gimple_cond_lhs (cond_stmt);
2374 arg1 = gimple_cond_rhs (cond_stmt);
2375
2376 str0 = find_structure (strip_type (get_type_of_var (arg0)));
2377 str1 = find_structure (strip_type (get_type_of_var (arg1)));
2378
2379 s0 = (str0 != length) ? true : false;
2380 s1 = (str1 != length) ? true : false;
2381
2382 if (!s0 && !s1)
2383 return false;
2384
2385 /* For now we allow only comparison with 0 or NULL. */
2386 if (!integer_zerop (arg0) && !integer_zerop (arg1))
2387 return false;
2388
2389 return true;
2390 }
2391
2392 /* This function excludes statements, that are
2393 part of allocation sites or field accesses, from the
2394 hashtable of general accesses. SLOT represents general
2395 access that will be checked. DATA is a pointer to
2396 exclude_data structure. */
2397
2398 static int
2399 exclude_from_accs (void **slot, void *data)
2400 {
2401 struct access_site *acc = *(struct access_site **) slot;
2402 tree fn_decl = ((struct exclude_data *)data)->fn_decl;
2403 d_str str = ((struct exclude_data *)data)->str;
2404
2405 if (is_part_of_malloc (acc->stmt, fn_decl)
2406 || is_part_of_field_access (acc->stmt, str))
2407 {
2408 VEC_free (tree, heap, acc->vars);
2409 free (acc);
2410 htab_clear_slot (str->accs, slot);
2411 }
2412 return 1;
2413 }
2414
2415 /* Callback function for walk_tree called from collect_accesses_in_bb
2416 function. DATA is the statement which is analyzed. */
2417
2418 static tree
2419 get_stmt_accesses (tree *tp, int *walk_subtrees, void *data)
2420 {
2421 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
2422 gimple stmt = (gimple) wi->info;
2423 tree t = *tp;
2424
2425 if (!t)
2426 return NULL;
2427
2428 switch (TREE_CODE (t))
2429 {
2430 case BIT_FIELD_REF:
2431 {
2432 tree var = TREE_OPERAND(t, 0);
2433 tree type = TYPE_MAIN_VARIANT (strip_type (get_type_of_var (var)));
2434 unsigned i = find_structure (type);
2435
2436 if (i != VEC_length (structure, structures))
2437 {
2438 if (dump_file)
2439 {
2440 fprintf (dump_file, "\nThe type ");
2441 print_generic_expr (dump_file, type, 0);
2442 fprintf (dump_file, " has bitfield.");
2443 }
2444 remove_structure (i);
2445 }
2446 }
2447 break;
2448
2449 case COMPONENT_REF:
2450 {
2451 tree ref = TREE_OPERAND (t, 0);
2452 tree field_decl = TREE_OPERAND (t, 1);
2453
2454
2455 if ((TREE_CODE (ref) == INDIRECT_REF
2456 || TREE_CODE (ref) == ARRAY_REF
2457 || TREE_CODE (ref) == VAR_DECL)
2458 && TREE_CODE (field_decl) == FIELD_DECL)
2459 {
2460 tree type = TYPE_MAIN_VARIANT (TREE_TYPE (ref));
2461 unsigned i = find_structure (type);
2462
2463 if (i != VEC_length (structure, structures))
2464 {
2465 d_str str = VEC_index (structure, structures, i);
2466 struct field_entry * field =
2467 find_field_in_struct (str, field_decl);
2468
2469 if (field)
2470 {
2471 struct field_access_site *acc = make_field_acc_node ();
2472
2473 gcc_assert (acc);
2474
2475 acc->stmt = stmt;
2476 acc->comp_ref = t;
2477 acc->ref = ref;
2478 acc->field_decl = field_decl;
2479
2480 /* Check whether the access is of the form
2481 we can deal with. */
2482 if (!decompose_access (str->decl, acc))
2483 {
2484 if (dump_file)
2485 {
2486 fprintf (dump_file, "\nThe type ");
2487 print_generic_expr (dump_file, type, 0);
2488 fprintf (dump_file,
2489 " has complicate access in statement ");
2490 print_gimple_stmt (dump_file, stmt, 0, 0);
2491 }
2492
2493 remove_structure (i);
2494 free (acc);
2495 }
2496 else
2497 {
2498 /* Increase count of field. */
2499 basic_block bb = gimple_bb (stmt);
2500 field->count += bb->count;
2501
2502 /* Add stmt to the acc_sites of field. */
2503 add_field_acc_to_acc_sites (acc, field->acc_sites);
2504 }
2505 *walk_subtrees = 0;
2506 }
2507 }
2508 }
2509 }
2510 break;
2511
2512 case COND_EXPR:
2513 {
2514 tree cond = COND_EXPR_COND (t);
2515 int i;
2516 for (i = 0; i < TREE_CODE_LENGTH (TREE_CODE (cond)); i++)
2517 {
2518 tree t = TREE_OPERAND (cond, i);
2519
2520 *walk_subtrees = 1;
2521 walk_tree (&t, get_stmt_accesses, data, NULL);
2522 }
2523 *walk_subtrees = 0;
2524 }
2525 break;
2526
2527 case VAR_DECL:
2528 case SSA_NAME:
2529 {
2530 unsigned i;
2531
2532 if (TREE_CODE (t) == SSA_NAME)
2533 t = SSA_NAME_VAR (t);
2534
2535 i = find_structure (strip_type (get_type_of_var (t)));
2536 if (i != VEC_length (structure, structures))
2537 {
2538 d_str str;
2539
2540 str = VEC_index (structure, structures, i);
2541 add_access_to_acc_sites (stmt, t, str->accs);
2542 }
2543 *walk_subtrees = 0;
2544 }
2545 break;
2546
2547 default:
2548 return NULL;
2549 }
2550
2551 return NULL;
2552 }
2553
2554 /* Free structures hashtable. */
2555
2556 static void
2557 free_structures (void)
2558 {
2559 d_str str;
2560 unsigned i;
2561
2562 for (i = 0; VEC_iterate (structure, structures, i, str); i++)
2563 free_data_struct (str);
2564
2565 VEC_free (structure, heap, structures);
2566 structures = NULL;
2567 }
2568
2569 /* This function is a callback for traversal over new_var's hashtable.
2570 SLOT is a pointer to new_var. This function frees memory allocated
2571 for new_var and pointed by *SLOT. */
2572
2573 static int
2574 free_new_var (void **slot, void *data ATTRIBUTE_UNUSED)
2575 {
2576 new_var n_var = *(new_var *) slot;
2577
2578 /* Free vector of new_vars. */
2579 VEC_free (tree, heap, n_var->new_vars);
2580 free (n_var);
2581 return 1;
2582 }
2583
2584 /* Free new_vars hashtable NEW_VARS_HTAB. */
2585
2586 static void
2587 free_new_vars_htab (htab_t new_vars_htab)
2588 {
2589 if (new_vars_htab)
2590 htab_traverse (new_vars_htab, free_new_var, NULL);
2591 htab_delete (new_vars_htab);
2592 new_vars_htab = NULL;
2593 }
2594
2595 /* This function creates new general and field accesses that appear in cfun. */
2596
2597 static void
2598 create_new_accesses_for_func (void)
2599 {
2600 basic_block bb;
2601
2602 FOR_EACH_BB_FN (bb, cfun)
2603 create_new_accesses_in_bb (bb);
2604 }
2605
2606 /* Create new allocation sites for the function represented by NODE. */
2607
2608 static void
2609 create_new_alloc_sites_for_func (struct cgraph_node *node)
2610 {
2611 fallocs_t fallocs = get_fallocs (node->decl);
2612
2613 if (fallocs)
2614 create_new_alloc_sites (fallocs, node->decl);
2615 }
2616
2617 /* For each local variable of structure type from the vector of structures
2618 this function generates new variable(s) to replace it. */
2619
2620 static void
2621 create_new_local_vars (void)
2622 {
2623 tree var;
2624 referenced_var_iterator rvi;
2625
2626 new_local_vars = htab_create (num_referenced_vars,
2627 new_var_hash, new_var_eq, NULL);
2628
2629 FOR_EACH_REFERENCED_VAR (var, rvi)
2630 {
2631 if (!is_global_var (var))
2632 create_new_var (var, new_local_vars);
2633 }
2634
2635 if (new_local_vars)
2636 htab_traverse (new_local_vars, finalize_new_vars_creation, NULL);
2637 dump_new_vars (new_local_vars);
2638 }
2639
2640 /* This function prints the SHIFT number of spaces to the DUMP_FILE. */
2641
2642 static inline void
2643 print_shift (unsigned HOST_WIDE_INT shift)
2644 {
2645 unsigned HOST_WIDE_INT sh = shift;
2646
2647 while (sh--)
2648 fprintf (dump_file, " ");
2649 }
2650
2651 /* This function updates field_mapping of FIELDS in CLUSTER with NEW_TYPE. */
2652
2653 static inline void
2654 update_fields_mapping (struct field_cluster *cluster, tree new_type,
2655 struct field_entry * fields, int num_fields)
2656 {
2657 int i;
2658
2659 for (i = 0; i < num_fields; i++)
2660 if (TEST_BIT (cluster->fields_in_cluster, i))
2661 fields[i].field_mapping = new_type;
2662 }
2663
2664 /* This functions builds structure with FIELDS,
2665 NAME and attributes similar to ORIG_STRUCT.
2666 It returns the newly created structure. */
2667
2668 static tree
2669 build_basic_struct (tree fields, tree name, tree orig_struct)
2670 {
2671 tree attributes = NULL_TREE;
2672 tree ref = 0;
2673 tree x;
2674
2675 if (TYPE_ATTRIBUTES (orig_struct))
2676 attributes = unshare_expr (TYPE_ATTRIBUTES (orig_struct));
2677 ref = make_node (RECORD_TYPE);
2678 TYPE_SIZE (ref) = 0;
2679 decl_attributes (&ref, attributes, (int) ATTR_FLAG_TYPE_IN_PLACE);
2680 TYPE_PACKED (ref) = TYPE_PACKED (orig_struct);
2681 for (x = fields; x; x = TREE_CHAIN (x))
2682 {
2683 DECL_CONTEXT (x) = ref;
2684 DECL_PACKED (x) |= TYPE_PACKED (ref);
2685 }
2686 TYPE_FIELDS (ref) = fields;
2687 layout_type (ref);
2688 TYPE_NAME (ref) = name;
2689
2690 return ref;
2691 }
2692
2693 /* This function copies FIELDS from CLUSTER into TREE_CHAIN as part
2694 of preparation for new structure building. NUM_FIELDS is a total
2695 number of fields in the structure. The function returns newly
2696 generated fields. */
2697
2698 static tree
2699 create_fields (struct field_cluster * cluster,
2700 struct field_entry * fields, int num_fields)
2701 {
2702 int i;
2703 tree new_types = NULL_TREE;
2704 tree last = NULL_TREE;
2705
2706 for (i = 0; i < num_fields; i++)
2707 if (TEST_BIT (cluster->fields_in_cluster, i))
2708 {
2709 tree new_decl = unshare_expr (fields[i].decl);
2710
2711 if (!new_types)
2712 new_types = new_decl;
2713 else
2714 TREE_CHAIN (last) = new_decl;
2715 last = new_decl;
2716 }
2717
2718 TREE_CHAIN (last) = NULL_TREE;
2719 return new_types;
2720
2721 }
2722
2723 /* This function creates a cluster name. The name is based on
2724 the original structure name, if it is present. It has a form:
2725
2726 <original_struct_name>_sub.<CLUST_NUM>
2727
2728 The original structure name is taken from the type of DECL.
2729 If an original structure name is not present, it's generated to be:
2730
2731 struct.<STR_NUM>
2732
2733 The function returns identifier of the new cluster name. */
2734
2735 static inline tree
2736 gen_cluster_name (tree decl, int clust_num, int str_num)
2737 {
2738 const char * orig_name = get_type_name (decl);
2739 char * tmp_name = NULL;
2740 char * prefix;
2741 char * new_name;
2742 size_t len;
2743
2744 if (!orig_name)
2745 ASM_FORMAT_PRIVATE_NAME(tmp_name, "struct", str_num);
2746
2747 len = strlen (tmp_name ? tmp_name : orig_name) + strlen ("_sub");
2748 prefix = XALLOCAVEC (char, len + 1);
2749 memcpy (prefix, tmp_name ? tmp_name : orig_name,
2750 strlen (tmp_name ? tmp_name : orig_name));
2751 strcpy (prefix + strlen (tmp_name ? tmp_name : orig_name), "_sub");
2752
2753 ASM_FORMAT_PRIVATE_NAME (new_name, prefix, clust_num);
2754 return get_identifier (new_name);
2755 }
2756
2757 /* This function checks whether the structure STR has bitfields.
2758 If yes, this structure type is added to UNSUITABLE_TYPES vector. */
2759
2760 static void
2761 check_bitfields (d_str str, VEC (tree, heap) **unsuitable_types)
2762 {
2763 tree type = str->decl;
2764 int i;
2765
2766 for (i = 0; i < str->num_fields; i++)
2767 if (DECL_BIT_FIELD (str->fields[i].decl))
2768 {
2769 add_unsuitable_type (unsuitable_types, type);
2770 if (dump_file)
2771 {
2772 fprintf (dump_file, "\nType ");
2773 print_generic_expr (dump_file, type, 0);
2774 fprintf (dump_file, "\nescapes due to bitfield ");
2775 print_generic_expr (dump_file, str->fields[i].decl, 0);
2776 }
2777 break;
2778 }
2779 }
2780
2781 /* This function adds to UNSUITABLE_TYPES those types that escape
2782 due to results of ipa-type-escape analysis. See ipa-type-escape.[c,h]. */
2783
2784 static void
2785 exclude_escaping_types_1 (VEC (tree, heap) **unsuitable_types)
2786 {
2787 d_str str;
2788 unsigned i;
2789
2790 for (i = 0; VEC_iterate (structure, structures, i, str); i++)
2791 check_type_escape (str, unsuitable_types);
2792 }
2793
2794 /* If a structure type is a return type of any function,
2795 we cannot transform it. Such type is added to UNSUITABLE_TYPES vector. */
2796
2797 static void
2798 exclude_returned_types (VEC (tree, heap) **unsuitable_types)
2799 {
2800 struct cgraph_node *c_node;
2801
2802 for (c_node = cgraph_nodes; c_node; c_node = c_node->next)
2803 {
2804 tree ret_t = TREE_TYPE (TREE_TYPE (c_node->decl));
2805
2806 if (ret_t)
2807 {
2808 ret_t = strip_type (ret_t);
2809 if (TREE_CODE (ret_t) == RECORD_TYPE)
2810 {
2811 add_unsuitable_type (unsuitable_types, TYPE_MAIN_VARIANT (ret_t));
2812 if (dump_file)
2813 {
2814 fprintf (dump_file, "\nThe type \"");
2815 print_generic_expr (dump_file, ret_t, 0);
2816 fprintf (dump_file,
2817 "\" is return type of function...Excluded.");
2818 }
2819 }
2820 }
2821 }
2822 }
2823
2824 /* This function looks for parameters of local functions
2825 which are of structure types, or derived from them (arrays
2826 of structures, pointers to structures, or their combinations).
2827 We are not handling peeling of such structures right now.
2828 The found structures types are added to UNSUITABLE_TYPES vector. */
2829
2830 static void
2831 exclude_types_passed_to_local_func (VEC (tree, heap) **unsuitable_types)
2832 {
2833 struct cgraph_node *c_node;
2834
2835 for (c_node = cgraph_nodes; c_node; c_node = c_node->next)
2836 if (cgraph_function_body_availability (c_node) == AVAIL_LOCAL)
2837 {
2838 tree fn = c_node->decl;
2839 tree arg;
2840
2841 for (arg = DECL_ARGUMENTS (fn); arg; arg = TREE_CHAIN (arg))
2842 {
2843 tree type = TREE_TYPE (arg);
2844
2845 type = strip_type (type);
2846 if (TREE_CODE (type) == RECORD_TYPE)
2847 {
2848 add_unsuitable_type (unsuitable_types,
2849 TYPE_MAIN_VARIANT (type));
2850 if (dump_file)
2851 {
2852 fprintf (dump_file, "\nPointer to type \"");
2853 print_generic_expr (dump_file, type, 0);
2854 fprintf (dump_file,
2855 "\" is passed to local function...Excluded.");
2856 }
2857 }
2858 }
2859 }
2860 }
2861
2862 /* This function analyzes structure form of structures
2863 potential for transformation. If we are not capable to transform
2864 structure of some form, we remove it from the structures hashtable.
2865 Right now we cannot handle nested structs, when nesting is
2866 through any level of pointers or arrays.
2867
2868 TBD: release these constrains in future.
2869
2870 Note, that in this function we suppose that all structures
2871 in the program are members of the structures hashtable right now,
2872 without excluding escaping types. */
2873
2874 static void
2875 check_struct_form (d_str str, VEC (tree, heap) **unsuitable_types)
2876 {
2877 int i;
2878
2879 for (i = 0; i < str->num_fields; i++)
2880 {
2881 tree f_type = strip_type(TREE_TYPE (str->fields[i].decl));
2882
2883 if (TREE_CODE (f_type) == RECORD_TYPE)
2884 {
2885 add_unsuitable_type (unsuitable_types, TYPE_MAIN_VARIANT (f_type));
2886 add_unsuitable_type (unsuitable_types, str->decl);
2887 if (dump_file)
2888 {
2889 fprintf (dump_file, "\nType ");
2890 print_generic_expr (dump_file, f_type, 0);
2891 fprintf (dump_file, " is a field in the structure ");
2892 print_generic_expr (dump_file, str->decl, 0);
2893 fprintf (dump_file, ". Escaping...");
2894 }
2895 }
2896 }
2897 }
2898
2899 /* This function adds a structure TYPE to the vector of structures,
2900 if it's not already there. */
2901
2902 static void
2903 add_structure (tree type)
2904 {
2905 struct data_structure node;
2906 unsigned i;
2907 int num_fields;
2908
2909 type = TYPE_MAIN_VARIANT (type);
2910
2911 i = find_structure (type);
2912
2913 if (i != VEC_length (structure, structures))
2914 return;
2915
2916 num_fields = fields_length (type);
2917 node.decl = type;
2918 node.num_fields = num_fields;
2919 node.fields = get_fields (type, num_fields);
2920 node.struct_clustering = NULL;
2921 node.accs = htab_create (32, acc_hash, acc_eq, NULL);
2922 node.new_types = VEC_alloc (tree, heap, num_fields);
2923 node.count = 0;
2924
2925 VEC_safe_push (structure, heap, structures, &node);
2926
2927 if (dump_file)
2928 {
2929 fprintf (dump_file, "\nAdding data structure \"");
2930 print_generic_expr (dump_file, type, 0);
2931 fprintf (dump_file, "\" to data_struct_list.");
2932 }
2933 }
2934
2935 /* This function adds an allocation site to alloc_sites hashtable.
2936 The allocation site appears in STMT of function FN_DECL and
2937 allocates the structure represented by STR. */
2938
2939 static void
2940 add_alloc_site (tree fn_decl, gimple stmt, d_str str)
2941 {
2942 fallocs_t fallocs = NULL;
2943 alloc_site_t m_call;
2944
2945 m_call.stmt = stmt;
2946 m_call.str = str;
2947
2948 fallocs =
2949 (fallocs_t) htab_find_with_hash (alloc_sites,
2950 fn_decl, htab_hash_pointer (fn_decl));
2951
2952 if (!fallocs)
2953 {
2954 void **slot;
2955
2956 fallocs = (fallocs_t)
2957 xmalloc (sizeof (struct func_alloc_sites));
2958 fallocs->func = fn_decl;
2959 fallocs->allocs = VEC_alloc (alloc_site_t, heap, 1);
2960 slot = htab_find_slot_with_hash (alloc_sites, fn_decl,
2961 htab_hash_pointer (fn_decl), INSERT);
2962 *slot = fallocs;
2963 }
2964 VEC_safe_push (alloc_site_t, heap,
2965 fallocs->allocs, &m_call);
2966
2967 if (dump_file)
2968 {
2969 fprintf (dump_file, "\nAdding stmt ");
2970 print_gimple_stmt (dump_file, stmt, 0, 0);
2971 fprintf (dump_file, " to list of mallocs.");
2972 }
2973 }
2974
2975 /* This function returns true if the result of STMT, that contains a call
2976 to an allocation function, is cast to one of the structure types.
2977 STMT should be of the form: T.2 = <alloc_func> (T.1);
2978 If true, I_P contains an index of an allocated structure.
2979 Otherwise I_P contains the length of the vector of structures. */
2980
2981 static bool
2982 is_alloc_of_struct (gimple stmt, unsigned *i_p)
2983 {
2984 tree lhs;
2985 tree type;
2986 gimple final_stmt;
2987
2988 final_stmt = get_final_alloc_stmt (stmt);
2989
2990 if (!final_stmt)
2991 return false;
2992
2993 /* final_stmt should be of the form:
2994 T.3 = (struct_type *) T.2; */
2995
2996 if (gimple_code (final_stmt) != GIMPLE_ASSIGN)
2997 return false;
2998
2999 lhs = gimple_assign_lhs (final_stmt);
3000
3001 type = get_type_of_var (lhs);
3002
3003 if (!type)
3004 return false;
3005
3006 if (!POINTER_TYPE_P (type)
3007 || TREE_CODE (strip_type (type)) != RECORD_TYPE)
3008 return false;
3009
3010 *i_p = find_structure (strip_type (type));
3011
3012 if (*i_p == VEC_length (structure, structures))
3013 return false;
3014
3015 return true;
3016 }
3017
3018 /* This function prints non-field and field accesses
3019 of the structure STR. */
3020
3021 static void
3022 dump_accs (d_str str)
3023 {
3024 int i;
3025
3026 fprintf (dump_file, "\nAccess sites of struct ");
3027 print_generic_expr (dump_file, str->decl, 0);
3028
3029 for (i = 0; i < str->num_fields; i++)
3030 {
3031 fprintf (dump_file, "\nAccess site of field ");
3032 print_generic_expr (dump_file, str->fields[i].decl, 0);
3033 dump_field_acc_sites (str->fields[i].acc_sites);
3034 fprintf (dump_file, ":\n");
3035 }
3036 fprintf (dump_file, "\nGeneral access sites\n");
3037 dump_access_sites (str->accs);
3038 }
3039
3040 /* This function checks whether an access statement, pointed by SLOT,
3041 is a condition we are capable to transform. It returns false if not,
3042 setting bool *DATA to false. */
3043
3044 static int
3045 safe_cond_expr_check (void **slot, void *data)
3046 {
3047 struct access_site *acc = *(struct access_site **) slot;
3048
3049 if (gimple_code (acc->stmt) == GIMPLE_COND
3050 && !is_safe_cond_expr (acc->stmt))
3051 {
3052 if (dump_file)
3053 {
3054 fprintf (dump_file, "\nUnsafe conditional statement ");
3055 print_gimple_stmt (dump_file, acc->stmt, 0, 0);
3056 }
3057 *(bool *) data = false;
3058 return 0;
3059 }
3060 return 1;
3061 }
3062
3063 /* This function excludes statements that are part of allocation sites and
3064 field accesses from the hashtable of general accesses of the structure
3065 type STR. Only accesses that belong to the function represented by
3066 NODE are treated. */
3067
3068 static void
3069 exclude_alloc_and_field_accs_1 (d_str str, struct cgraph_node *node)
3070 {
3071 struct exclude_data dt;
3072 dt.str = str;
3073 dt.fn_decl = node->decl;
3074
3075 if (dt.str->accs)
3076 htab_traverse (dt.str->accs, exclude_from_accs, &dt);
3077 }
3078
3079 /* Collect accesses to the structure types that appear in basic block BB. */
3080
3081 static void
3082 collect_accesses_in_bb (basic_block bb)
3083 {
3084 gimple_stmt_iterator bsi;
3085 struct walk_stmt_info wi;
3086
3087 memset (&wi, 0, sizeof (wi));
3088
3089 for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
3090 {
3091 gimple stmt = gsi_stmt (bsi);
3092
3093 /* In asm stmt we cannot always track the arguments,
3094 so we just give up. */
3095 if (gimple_code (stmt) == GIMPLE_ASM)
3096 {
3097 free_structures ();
3098 break;
3099 }
3100
3101 wi.info = (void *) stmt;
3102 walk_gimple_op (stmt, get_stmt_accesses, &wi);
3103 }
3104 }
3105
3106 /* This function generates cluster substructure that contains FIELDS.
3107 The cluster added to the set of clusters of the structure STR. */
3108
3109 static void
3110 gen_cluster (sbitmap fields, d_str str)
3111 {
3112 struct field_cluster *crr_cluster = NULL;
3113
3114 crr_cluster =
3115 (struct field_cluster *) xcalloc (1, sizeof (struct field_cluster));
3116 crr_cluster->sibling = str->struct_clustering;
3117 str->struct_clustering = crr_cluster;
3118 crr_cluster->fields_in_cluster = fields;
3119 }
3120
3121 /* This function peels a field with the index I from the structure DS. */
3122
3123 static void
3124 peel_field (int i, d_str ds)
3125 {
3126 struct field_cluster *crr_cluster = NULL;
3127
3128 crr_cluster =
3129 (struct field_cluster *) xcalloc (1, sizeof (struct field_cluster));
3130 crr_cluster->sibling = ds->struct_clustering;
3131 ds->struct_clustering = crr_cluster;
3132 crr_cluster->fields_in_cluster =
3133 sbitmap_alloc ((unsigned int) ds->num_fields);
3134 sbitmap_zero (crr_cluster->fields_in_cluster);
3135 SET_BIT (crr_cluster->fields_in_cluster, i);
3136 }
3137
3138 /* This function calculates maximum field count in
3139 the structure STR. */
3140
3141 static gcov_type
3142 get_max_field_count (d_str str)
3143 {
3144 gcov_type max = 0;
3145 int i;
3146
3147 for (i = 0; i < str->num_fields; i++)
3148 if (str->fields[i].count > max)
3149 max = str->fields[i].count;
3150
3151 return max;
3152 }
3153
3154 /* Do struct-reorg transformation for individual function
3155 represented by NODE. All structure types relevant
3156 for this function are transformed. */
3157
3158 static void
3159 do_reorg_for_func (struct cgraph_node *node)
3160 {
3161 create_new_local_vars ();
3162 create_new_alloc_sites_for_func (node);
3163 create_new_accesses_for_func ();
3164 update_ssa (TODO_update_ssa);
3165 cleanup_tree_cfg ();
3166
3167 /* Free auxiliary data representing local variables. */
3168 free_new_vars_htab (new_local_vars);
3169 }
3170
3171 /* Print structure TYPE, its name, if it exists, and body.
3172 INDENT defines the level of indentation (similar
3173 to the option -i of indent command). SHIFT parameter
3174 defines a number of spaces by which a structure will
3175 be shifted right. */
3176
3177 static void
3178 dump_struct_type (tree type, unsigned HOST_WIDE_INT indent,
3179 unsigned HOST_WIDE_INT shift)
3180 {
3181 const char *struct_name;
3182 tree field;
3183
3184 if (!type || !dump_file)
3185 return;
3186
3187 if (TREE_CODE (type) != RECORD_TYPE)
3188 {
3189 print_generic_expr (dump_file, type, 0);
3190 return;
3191 }
3192
3193 print_shift (shift);
3194 struct_name = get_type_name (type);
3195 fprintf (dump_file, "struct ");
3196 if (struct_name)
3197 fprintf (dump_file, "%s\n",struct_name);
3198 print_shift (shift);
3199 fprintf (dump_file, "{\n");
3200
3201 for (field = TYPE_FIELDS (type); field;
3202 field = TREE_CHAIN (field))
3203 {
3204 unsigned HOST_WIDE_INT s = indent;
3205 tree f_type = TREE_TYPE (field);
3206
3207 print_shift (shift);
3208 while (s--)
3209 fprintf (dump_file, " ");
3210 dump_struct_type (f_type, indent, shift + indent);
3211 fprintf(dump_file, " ");
3212 print_generic_expr (dump_file, field, 0);
3213 fprintf(dump_file, ";\n");
3214 }
3215 print_shift (shift);
3216 fprintf (dump_file, "}\n");
3217 }
3218
3219 /* This function creates new structure types to replace original type,
3220 indicated by STR->decl. The names of the new structure types are
3221 derived from the original structure type. If the original structure
3222 type has no name, we assume that its name is 'struct.<STR_NUM>'. */
3223
3224 static void
3225 create_new_type (d_str str, int *str_num)
3226 {
3227 int cluster_num = 0;
3228
3229 struct field_cluster *cluster = str->struct_clustering;
3230 while (cluster)
3231 {
3232 tree name = gen_cluster_name (str->decl, cluster_num,
3233 *str_num);
3234 tree fields;
3235 tree new_type;
3236 cluster_num++;
3237
3238 fields = create_fields (cluster, str->fields,
3239 str->num_fields);
3240 new_type = build_basic_struct (fields, name, str->decl);
3241
3242 update_fields_mapping (cluster, new_type,
3243 str->fields, str->num_fields);
3244
3245 VEC_safe_push (tree, heap, str->new_types, new_type);
3246 cluster = cluster->sibling;
3247 }
3248 (*str_num)++;
3249 }
3250
3251 /* This function is a callback for alloc_sites hashtable
3252 traversal. SLOT is a pointer to fallocs_t.
3253 This function frees memory pointed by *SLOT. */
3254
3255 static int
3256 free_falloc_sites (void **slot, void *data ATTRIBUTE_UNUSED)
3257 {
3258 fallocs_t fallocs = *(fallocs_t *) slot;
3259
3260 VEC_free (alloc_site_t, heap, fallocs->allocs);
3261 free (fallocs);
3262 return 1;
3263 }
3264
3265 /* Remove structures collected in UNSUITABLE_TYPES
3266 from structures vector. */
3267
3268 static void
3269 remove_unsuitable_types (VEC (tree, heap) *unsuitable_types)
3270 {
3271 d_str str;
3272 tree type;
3273 unsigned i, j;
3274
3275 for (j = 0; VEC_iterate (tree, unsuitable_types, j, type); j++)
3276 for (i = 0; VEC_iterate (structure, structures, i, str); i++)
3277 if (is_equal_types (str->decl, type))
3278 {
3279 remove_structure (i);
3280 break;
3281 }
3282 }
3283
3284 /* Exclude structure types with bitfields.
3285 We would not want to interfere with other optimizations
3286 that can be done in this case. The structure types with
3287 bitfields are added to UNSUITABLE_TYPES vector. */
3288
3289 static void
3290 exclude_types_with_bit_fields (VEC (tree, heap) **unsuitable_types)
3291 {
3292 d_str str;
3293 unsigned i;
3294
3295 for (i = 0; VEC_iterate (structure, structures, i, str); i++)
3296 check_bitfields (str, unsuitable_types);
3297 }
3298
3299 /* This function checks three types of escape. A structure type escapes:
3300
3301 1. if it's a type of parameter of a local function.
3302 2. if it's a type of function return value.
3303 3. if it escapes as a result of ipa-type-escape analysis.
3304
3305 The escaping structure types are added to UNSUITABLE_TYPES vector. */
3306
3307 static void
3308 exclude_escaping_types (VEC (tree, heap) **unsuitable_types)
3309 {
3310 exclude_types_passed_to_local_func (unsuitable_types);
3311 exclude_returned_types (unsuitable_types);
3312 exclude_escaping_types_1 (unsuitable_types);
3313 }
3314
3315 /* This function analyzes whether the form of
3316 structure is such that we are capable to transform it.
3317 Nested structures are checked here. Unsuitable structure
3318 types are added to UNSUITABLE_TYPE vector. */
3319
3320 static void
3321 analyze_struct_form (VEC (tree, heap) **unsuitable_types)
3322 {
3323 d_str str;
3324 unsigned i;
3325
3326 for (i = 0; VEC_iterate (structure, structures, i, str); i++)
3327 check_struct_form (str, unsuitable_types);
3328 }
3329
3330 /* This function looks for structure types instantiated in the program.
3331 The candidate types are added to the structures vector.
3332 Unsuitable types are collected into UNSUITABLE_TYPES vector. */
3333
3334 static void
3335 build_data_structure (VEC (tree, heap) **unsuitable_types)
3336 {
3337 tree var, type;
3338 tree var_list;
3339 struct varpool_node *current_varpool;
3340 struct cgraph_node *c_node;
3341
3342 /* Check global variables. */
3343 FOR_EACH_STATIC_VARIABLE (current_varpool)
3344 {
3345 var = current_varpool->decl;
3346 if (is_candidate (var, &type, unsuitable_types))
3347 add_structure (type);
3348 }
3349
3350 /* Now add structures that are types of function parameters and
3351 local variables. */
3352 for (c_node = cgraph_nodes; c_node; c_node = c_node->next)
3353 {
3354 enum availability avail =
3355 cgraph_function_body_availability (c_node);
3356
3357 /* We need AVAIL_AVAILABLE for main function. */
3358 if (avail == AVAIL_LOCAL || avail == AVAIL_AVAILABLE)
3359 {
3360 struct function *fn = DECL_STRUCT_FUNCTION (c_node->decl);
3361
3362 for (var = DECL_ARGUMENTS (c_node->decl); var;
3363 var = TREE_CHAIN (var))
3364 if (is_candidate (var, &type, unsuitable_types))
3365 add_structure (type);
3366
3367 /* Check function local variables. */
3368 for (var_list = fn->local_decls; var_list;
3369 var_list = TREE_CHAIN (var_list))
3370 {
3371 var = TREE_VALUE (var_list);
3372
3373 if (is_candidate (var, &type, unsuitable_types))
3374 add_structure (type);
3375 }
3376 }
3377 }
3378 }
3379
3380 /* This function returns true if the program contains
3381 a call to user defined allocation function, or other
3382 functions that can interfere with struct-reorg optimizations. */
3383
3384 static bool
3385 program_redefines_malloc_p (void)
3386 {
3387 struct cgraph_node *c_node;
3388 struct cgraph_node *c_node2;
3389 struct cgraph_edge *c_edge;
3390 tree fndecl;
3391 tree fndecl2;
3392
3393 for (c_node = cgraph_nodes; c_node; c_node = c_node->next)
3394 {
3395 fndecl = c_node->decl;
3396
3397 for (c_edge = c_node->callees; c_edge; c_edge = c_edge->next_callee)
3398 {
3399 c_node2 = c_edge->callee;
3400 fndecl2 = c_node2->decl;
3401 if (is_gimple_call (c_edge->call_stmt))
3402 {
3403 const char * fname = get_name (fndecl2);
3404
3405 if ((gimple_call_flags (c_edge->call_stmt) & ECF_MALLOC)
3406 && (DECL_FUNCTION_CODE (fndecl2) != BUILT_IN_MALLOC)
3407 && (DECL_FUNCTION_CODE (fndecl2) != BUILT_IN_CALLOC)
3408 && (DECL_FUNCTION_CODE (fndecl2) != BUILT_IN_ALLOCA))
3409 return true;
3410
3411 /* Check that there is no __builtin_object_size,
3412 __builtin_offsetof, or realloc's in the program. */
3413 if (DECL_FUNCTION_CODE (fndecl2) == BUILT_IN_OBJECT_SIZE
3414 || !strcmp (fname, "__builtin_offsetof")
3415 || !strcmp (fname, "realloc"))
3416 return true;
3417 }
3418 }
3419 }
3420
3421 return false;
3422 }
3423
3424 /* In this function we assume that an allocation statement
3425
3426 var = (type_cast) malloc (size);
3427
3428 is converted into the following set of statements:
3429
3430 T.1 = size;
3431 T.2 = malloc (T.1);
3432 T.3 = (type_cast) T.2;
3433 var = T.3;
3434
3435 In this function we collect into alloc_sites the allocation
3436 sites of variables of structure types that are present
3437 in structures vector. */
3438
3439 static void
3440 collect_alloc_sites (void)
3441 {
3442 struct cgraph_node *node;
3443 struct cgraph_edge *cs;
3444
3445 for (node = cgraph_nodes; node; node = node->next)
3446 if (node->analyzed && node->decl)
3447 {
3448 for (cs = node->callees; cs; cs = cs->next_callee)
3449 {
3450 gimple stmt = cs->call_stmt;
3451
3452 if (stmt)
3453 {
3454 tree decl;
3455
3456 if (is_gimple_call (stmt)
3457 && (decl = gimple_call_fndecl (stmt))
3458 && gimple_call_lhs (stmt))
3459 {
3460 unsigned i;
3461
3462 if (is_alloc_of_struct (stmt, &i))
3463 {
3464 /* We support only malloc now. */
3465 if (DECL_FUNCTION_CODE (decl) == BUILT_IN_MALLOC)
3466 {
3467 d_str str;
3468
3469 str = VEC_index (structure, structures, i);
3470 add_alloc_site (node->decl, stmt, str);
3471 }
3472 else
3473 {
3474 if (dump_file)
3475 {
3476 fprintf (dump_file,
3477 "\nUnsupported allocation function ");
3478 print_gimple_stmt (dump_file, stmt, 0, 0);
3479 }
3480 remove_structure (i);
3481 }
3482 }
3483 }
3484 }
3485 }
3486 }
3487 }
3488
3489 /* Print collected accesses. */
3490
3491 static void
3492 dump_accesses (void)
3493 {
3494 d_str str;
3495 unsigned i;
3496
3497 if (!dump_file)
3498 return;
3499
3500 for (i = 0; VEC_iterate (structure, structures, i, str); i++)
3501 dump_accs (str);
3502 }
3503
3504 /* This function checks whether the accesses of structures in condition
3505 expressions are of the kind we are capable to transform.
3506 If not, such structures are removed from the vector of structures. */
3507
3508 static void
3509 check_cond_exprs (void)
3510 {
3511 d_str str;
3512 unsigned i;
3513
3514 i = 0;
3515 while (VEC_iterate (structure, structures, i, str))
3516 {
3517 bool safe_p = true;
3518
3519 if (str->accs)
3520 htab_traverse (str->accs, safe_cond_expr_check, &safe_p);
3521 if (!safe_p)
3522 remove_structure (i);
3523 else
3524 i++;
3525 }
3526 }
3527
3528 /* We exclude from non-field accesses of the structure
3529 all statements that will be treated as part of the structure
3530 allocation sites or field accesses. */
3531
3532 static void
3533 exclude_alloc_and_field_accs (struct cgraph_node *node)
3534 {
3535 d_str str;
3536 unsigned i;
3537
3538 for (i = 0; VEC_iterate (structure, structures, i, str); i++)
3539 exclude_alloc_and_field_accs_1 (str, node);
3540 }
3541
3542 /* This function collects accesses of the fields of the structures
3543 that appear at function FN. */
3544
3545 static void
3546 collect_accesses_in_func (struct function *fn)
3547 {
3548 basic_block bb;
3549
3550 if (! fn)
3551 return;
3552
3553 /* Collect accesses for each basic blocks separately. */
3554 FOR_EACH_BB_FN (bb, fn)
3555 collect_accesses_in_bb (bb);
3556 }
3557
3558 /* This function summarizes counts of the fields into the structure count. */
3559
3560 static void
3561 sum_counts (d_str str, gcov_type *hottest)
3562 {
3563 int i;
3564
3565 str->count = 0;
3566 for (i = 0; i < str->num_fields; i++)
3567 {
3568 if (dump_file)
3569 {
3570 fprintf (dump_file, "\nCounter of field \"");
3571 print_generic_expr (dump_file, str->fields[i].decl, 0);
3572 fprintf (dump_file, "\" is " HOST_WIDEST_INT_PRINT_DEC,
3573 str->fields[i].count);
3574 }
3575 str->count += str->fields[i].count;
3576 }
3577
3578 if (dump_file)
3579 {
3580 fprintf (dump_file, "\nCounter of struct \"");
3581 print_generic_expr (dump_file, str->decl, 0);
3582 fprintf (dump_file, "\" is " HOST_WIDEST_INT_PRINT_DEC, str->count);
3583 }
3584
3585 if (str->count > *hottest)
3586 *hottest = str->count;
3587 }
3588
3589 /* This function peels the field into separate structure if it's
3590 sufficiently hot, i.e. if its count provides at least 90% of
3591 the maximum field count in the structure. */
3592
3593 static void
3594 peel_hot_fields (d_str str)
3595 {
3596 gcov_type max_field_count;
3597 sbitmap fields_left = sbitmap_alloc (str->num_fields);
3598 int i;
3599
3600 sbitmap_ones (fields_left);
3601 max_field_count =
3602 (gcov_type) (get_max_field_count (str)/100)*90;
3603
3604 str->struct_clustering = NULL;
3605
3606 for (i = 0; i < str->num_fields; i++)
3607 {
3608 if (str->count >= max_field_count)
3609 {
3610 RESET_BIT (fields_left, i);
3611 peel_field (i, str);
3612 }
3613 }
3614
3615 i = sbitmap_first_set_bit (fields_left);
3616 if (i != -1)
3617 gen_cluster (fields_left, str);
3618 else
3619 sbitmap_free (fields_left);
3620 }
3621
3622 /* This function is a helper for do_reorg. It goes over
3623 functions in call graph and performs actual transformation
3624 on them. */
3625
3626 static void
3627 do_reorg_1 (void)
3628 {
3629 struct cgraph_node *node;
3630
3631 /* Initialize the default bitmap obstack. */
3632 bitmap_obstack_initialize (NULL);
3633
3634 for (node = cgraph_nodes; node; node = node->next)
3635 if (node->analyzed && node->decl && !node->next_clone)
3636 {
3637 push_cfun (DECL_STRUCT_FUNCTION (node->decl));
3638 current_function_decl = node->decl;
3639 if (dump_file)
3640 fprintf (dump_file, "\nFunction to do reorg is %s: \n",
3641 (const char *) IDENTIFIER_POINTER (DECL_NAME (node->decl)));
3642 do_reorg_for_func (node);
3643 free_dominance_info (CDI_DOMINATORS);
3644 free_dominance_info (CDI_POST_DOMINATORS);
3645 current_function_decl = NULL;
3646 pop_cfun ();
3647 }
3648
3649 set_cfun (NULL);
3650 bitmap_obstack_release (NULL);
3651 }
3652
3653 /* This function creates new global struct variables.
3654 For each original variable, the set of new variables
3655 is created with the new structure types corresponding
3656 to the structure type of original variable.
3657 Only VAR_DECL variables are treated by this function. */
3658
3659 static void
3660 create_new_global_vars (void)
3661 {
3662 struct varpool_node *current_varpool;
3663 unsigned HOST_WIDE_INT i;
3664 unsigned HOST_WIDE_INT varpool_size = 0;
3665
3666 for (i = 0; i < 2; i++)
3667 {
3668 if (i)
3669 new_global_vars = htab_create (varpool_size,
3670 new_var_hash, new_var_eq, NULL);
3671 FOR_EACH_STATIC_VARIABLE(current_varpool)
3672 {
3673 tree var_decl = current_varpool->decl;
3674
3675 if (!var_decl || TREE_CODE (var_decl) != VAR_DECL)
3676 continue;
3677 if (!i)
3678 varpool_size++;
3679 else
3680 create_new_var (var_decl, new_global_vars);
3681 }
3682 }
3683
3684 if (new_global_vars)
3685 htab_traverse (new_global_vars, update_varpool_with_new_var, NULL);
3686 }
3687
3688 /* Dump all new types generated by this optimization. */
3689
3690 static void
3691 dump_new_types (void)
3692 {
3693 d_str str;
3694 tree type;
3695 unsigned i, j;
3696
3697 if (!dump_file)
3698 return;
3699
3700 fprintf (dump_file, "\nThe following are the new types generated by"
3701 " this optimization:\n");
3702
3703 for (i = 0; VEC_iterate (structure, structures, i, str); i++)
3704 {
3705 if (dump_file)
3706 {
3707 fprintf (dump_file, "\nFor type ");
3708 dump_struct_type (str->decl, 2, 0);
3709 fprintf (dump_file, "\nthe number of new types is %d\n",
3710 VEC_length (tree, str->new_types));
3711 }
3712 for (j = 0; VEC_iterate (tree, str->new_types, j, type); j++)
3713 dump_struct_type (type, 2, 0);
3714 }
3715 }
3716
3717 /* This function creates new types to replace old structure types. */
3718
3719 static void
3720 create_new_types (void)
3721 {
3722 d_str str;
3723 unsigned i;
3724 int str_num = 0;
3725
3726 for (i = 0; VEC_iterate (structure, structures, i, str); i++)
3727 create_new_type (str, &str_num);
3728 }
3729
3730 /* Free allocation sites hashtable. */
3731
3732 static void
3733 free_alloc_sites (void)
3734 {
3735 if (alloc_sites)
3736 htab_traverse (alloc_sites, free_falloc_sites, NULL);
3737 htab_delete (alloc_sites);
3738 alloc_sites = NULL;
3739 }
3740
3741 /* This function collects structures potential
3742 for peeling transformation, and inserts
3743 them into structures hashtable. */
3744
3745 static void
3746 collect_structures (void)
3747 {
3748 VEC (tree, heap) *unsuitable_types = VEC_alloc (tree, heap, 32);
3749
3750 structures = VEC_alloc (structure, heap, 32);
3751
3752 /* If program contains user defined mallocs, we give up. */
3753 if (program_redefines_malloc_p ())
3754 return;
3755
3756 /* Build data structures hashtable of all data structures
3757 in the program. */
3758 build_data_structure (&unsuitable_types);
3759
3760 /* This function analyzes whether the form of
3761 structure is such that we are capable to transform it.
3762 Nested structures are checked here. */
3763 analyze_struct_form (&unsuitable_types);
3764
3765 /* This function excludes those structure types
3766 that escape compilation unit. */
3767 exclude_escaping_types (&unsuitable_types);
3768
3769 /* We do not want to change data layout of the structures with bitfields. */
3770 exclude_types_with_bit_fields (&unsuitable_types);
3771
3772 remove_unsuitable_types (unsuitable_types);
3773 VEC_free (tree, heap, unsuitable_types);
3774 }
3775
3776 /* Collect structure allocation sites. In case of arrays
3777 we have nothing to do. */
3778
3779 static void
3780 collect_allocation_sites (void)
3781 {
3782 alloc_sites = htab_create (32, malloc_hash, malloc_eq, NULL);
3783 collect_alloc_sites ();
3784 }
3785
3786 /* This function collects data accesses for the
3787 structures to be transformed. For each structure
3788 field it updates the count field in field_entry. */
3789
3790 static void
3791 collect_data_accesses (void)
3792 {
3793 struct cgraph_node *c_node;
3794
3795 for (c_node = cgraph_nodes; c_node; c_node = c_node->next)
3796 {
3797 enum availability avail = cgraph_function_body_availability (c_node);
3798
3799 if (avail == AVAIL_LOCAL || avail == AVAIL_AVAILABLE)
3800 {
3801 struct function *func = DECL_STRUCT_FUNCTION (c_node->decl);
3802
3803 if (!c_node->next_clone)
3804 collect_accesses_in_func (func);
3805 exclude_alloc_and_field_accs (c_node);
3806 }
3807 }
3808
3809 check_cond_exprs ();
3810 /* Print collected accesses. */
3811 dump_accesses ();
3812 }
3813
3814 /* We do not bother to transform cold structures.
3815 Coldness of the structure is defined relatively
3816 to the highest structure count among the structures
3817 to be transformed. It's triggered by the compiler parameter
3818
3819 --param struct-reorg-cold-struct-ratio=<value>
3820
3821 where <value> ranges from 0 to 100. Structures with count ratios
3822 that are less than this parameter are considered to be cold. */
3823
3824 static void
3825 exclude_cold_structs (void)
3826 {
3827 gcov_type hottest = 0;
3828 unsigned i;
3829 d_str str;
3830
3831 /* We summarize counts of fields of a structure into the structure count. */
3832 for (i = 0; VEC_iterate (structure, structures, i, str); i++)
3833 sum_counts (str, &hottest);
3834
3835 /* Remove cold structures from structures vector. */
3836 i = 0;
3837 while (VEC_iterate (structure, structures, i, str))
3838 if (str->count * 100 < (hottest * STRUCT_REORG_COLD_STRUCT_RATIO))
3839 {
3840 if (dump_file)
3841 {
3842 fprintf (dump_file, "\nThe structure ");
3843 print_generic_expr (dump_file, str->decl, 0);
3844 fprintf (dump_file, " is cold.");
3845 }
3846 remove_structure (i);
3847 }
3848 else
3849 i++;
3850 }
3851
3852 /* This function decomposes original structure into substructures,
3853 i.e.clusters. */
3854
3855 static void
3856 peel_structs (void)
3857 {
3858 d_str str;
3859 unsigned i;
3860
3861 for (i = 0; VEC_iterate (structure, structures, i, str); i++)
3862 peel_hot_fields (str);
3863 }
3864
3865 /* Stage 3. */
3866 /* Do the actual transformation for each structure
3867 from the structures hashtable. */
3868
3869 static void
3870 do_reorg (void)
3871 {
3872 /* Check that there is a work to do. */
3873 if (!VEC_length (structure, structures))
3874 {
3875 if (dump_file)
3876 fprintf (dump_file, "\nNo structures to transform. Exiting...");
3877 return;
3878 }
3879 else
3880 {
3881 if (dump_file)
3882 {
3883 fprintf (dump_file, "\nNumber of structures to transform is %d",
3884 VEC_length (structure, structures));
3885 }
3886 }
3887
3888 /* Generate new types. */
3889 create_new_types ();
3890 dump_new_types ();
3891
3892 /* Create new global variables. */
3893 create_new_global_vars ();
3894 dump_new_vars (new_global_vars);
3895
3896 /* Decompose structures for each function separately. */
3897 do_reorg_1 ();
3898
3899 /* Free auxiliary data collected for global variables. */
3900 free_new_vars_htab (new_global_vars);
3901 }
3902
3903 /* Free all auxiliary data used by this optimization. */
3904
3905 static void
3906 free_data_structs (void)
3907 {
3908 free_structures ();
3909 free_alloc_sites ();
3910 }
3911
3912 /* Perform structure decomposition (peeling). */
3913
3914 static void
3915 reorg_structs (void)
3916 {
3917
3918 /* Stage1. */
3919 /* Collect structure types. */
3920 collect_structures ();
3921
3922 /* Collect structure allocation sites. */
3923 collect_allocation_sites ();
3924
3925 /* Collect structure accesses. */
3926 collect_data_accesses ();
3927
3928 /* We transform only hot structures. */
3929 exclude_cold_structs ();
3930
3931 /* Stage2. */
3932 /* Decompose structures into substructures, i.e. clusters. */
3933 peel_structs ();
3934
3935 /* Stage3. */
3936 /* Do the actual transformation for each structure
3937 from the structures hashtable. */
3938 do_reorg ();
3939
3940 /* Free all auxiliary data used by this optimization. */
3941 free_data_structs ();
3942 }
3943
3944 /* Struct-reorg optimization entry point function. */
3945
3946 static unsigned int
3947 reorg_structs_drive (void)
3948 {
3949 reorg_structs ();
3950 return 0;
3951 }
3952
3953 /* Struct-reorg optimization gate function. */
3954
3955 static bool
3956 struct_reorg_gate (void)
3957 {
3958 return flag_ipa_struct_reorg
3959 && flag_whole_program
3960 && (optimize > 0);
3961 }
3962
3963 struct simple_ipa_opt_pass pass_ipa_struct_reorg =
3964 {
3965 {
3966 SIMPLE_IPA_PASS,
3967 "ipa_struct_reorg", /* name */
3968 struct_reorg_gate, /* gate */
3969 reorg_structs_drive, /* execute */
3970 NULL, /* sub */
3971 NULL, /* next */
3972 0, /* static_pass_number */
3973 TV_INTEGRATION, /* tv_id */
3974 0, /* properties_required */
3975 0, /* properties_provided */
3976 0, /* properties_destroyed */
3977 TODO_verify_ssa, /* todo_flags_start */
3978 TODO_dump_func | TODO_verify_ssa /* todo_flags_finish */
3979 }
3980 };