comparison gcc/ira.c @ 0:a06113de4d67

first commit
author kent <kent@cr.ie.u-ryukyu.ac.jp>
date Fri, 17 Jul 2009 14:47:48 +0900
parents
children 58ad6c70ea60
comparison
equal deleted inserted replaced
-1:000000000000 0:a06113de4d67
1 /* Integrated Register Allocator (IRA) entry point.
2 Copyright (C) 2006, 2007, 2008, 2009
3 Free Software Foundation, Inc.
4 Contributed by Vladimir Makarov <vmakarov@redhat.com>.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 /* The integrated register allocator (IRA) is a
23 regional register allocator performing graph coloring on a top-down
24 traversal of nested regions. Graph coloring in a region is based
25 on Chaitin-Briggs algorithm. It is called integrated because
26 register coalescing, register live range splitting, and choosing a
27 better hard register are done on-the-fly during coloring. Register
28 coalescing and choosing a cheaper hard register is done by hard
29 register preferencing during hard register assigning. The live
30 range splitting is a byproduct of the regional register allocation.
31
32 Major IRA notions are:
33
34 o *Region* is a part of CFG where graph coloring based on
35 Chaitin-Briggs algorithm is done. IRA can work on any set of
36 nested CFG regions forming a tree. Currently the regions are
37 the entire function for the root region and natural loops for
38 the other regions. Therefore data structure representing a
39 region is called loop_tree_node.
40
41 o *Cover class* is a register class belonging to a set of
42 non-intersecting register classes containing all of the
43 hard-registers available for register allocation. The set of
44 all cover classes for a target is defined in the corresponding
45 machine-description file according some criteria. Such notion
46 is needed because Chaitin-Briggs algorithm works on
47 non-intersected register classes.
48
49 o *Allocno* represents the live range of a pseudo-register in a
50 region. Besides the obvious attributes like the corresponding
51 pseudo-register number, cover class, conflicting allocnos and
52 conflicting hard-registers, there are a few allocno attributes
53 which are important for understanding the allocation algorithm:
54
55 - *Live ranges*. This is a list of ranges of *program
56 points* where the allocno lives. Program points represent
57 places where a pseudo can be born or become dead (there are
58 approximately two times more program points than the insns)
59 and they are represented by integers starting with 0. The
60 live ranges are used to find conflicts between allocnos of
61 different cover classes. They also play very important role
62 for the transformation of the IRA internal representation of
63 several regions into a one region representation. The later is
64 used during the reload pass work because each allocno
65 represents all of the corresponding pseudo-registers.
66
67 - *Hard-register costs*. This is a vector of size equal to the
68 number of available hard-registers of the allocno's cover
69 class. The cost of a callee-clobbered hard-register for an
70 allocno is increased by the cost of save/restore code around
71 the calls through the given allocno's life. If the allocno
72 is a move instruction operand and another operand is a
73 hard-register of the allocno's cover class, the cost of the
74 hard-register is decreased by the move cost.
75
76 When an allocno is assigned, the hard-register with minimal
77 full cost is used. Initially, a hard-register's full cost is
78 the corresponding value from the hard-register's cost vector.
79 If the allocno is connected by a *copy* (see below) to
80 another allocno which has just received a hard-register, the
81 cost of the hard-register is decreased. Before choosing a
82 hard-register for an allocno, the allocno's current costs of
83 the hard-registers are modified by the conflict hard-register
84 costs of all of the conflicting allocnos which are not
85 assigned yet.
86
87 - *Conflict hard-register costs*. This is a vector of the same
88 size as the hard-register costs vector. To permit an
89 unassigned allocno to get a better hard-register, IRA uses
90 this vector to calculate the final full cost of the
91 available hard-registers. Conflict hard-register costs of an
92 unassigned allocno are also changed with a change of the
93 hard-register cost of the allocno when a copy involving the
94 allocno is processed as described above. This is done to
95 show other unassigned allocnos that a given allocno prefers
96 some hard-registers in order to remove the move instruction
97 corresponding to the copy.
98
99 o *Cap*. If a pseudo-register does not live in a region but
100 lives in a nested region, IRA creates a special allocno called
101 a cap in the outer region. A region cap is also created for a
102 subregion cap.
103
104 o *Copy*. Allocnos can be connected by copies. Copies are used
105 to modify hard-register costs for allocnos during coloring.
106 Such modifications reflects a preference to use the same
107 hard-register for the allocnos connected by copies. Usually
108 copies are created for move insns (in this case it results in
109 register coalescing). But IRA also creates copies for operands
110 of an insn which should be assigned to the same hard-register
111 due to constraints in the machine description (it usually
112 results in removing a move generated in reload to satisfy
113 the constraints) and copies referring to the allocno which is
114 the output operand of an instruction and the allocno which is
115 an input operand dying in the instruction (creation of such
116 copies results in less register shuffling). IRA *does not*
117 create copies between the same register allocnos from different
118 regions because we use another technique for propagating
119 hard-register preference on the borders of regions.
120
121 Allocnos (including caps) for the upper region in the region tree
122 *accumulate* information important for coloring from allocnos with
123 the same pseudo-register from nested regions. This includes
124 hard-register and memory costs, conflicts with hard-registers,
125 allocno conflicts, allocno copies and more. *Thus, attributes for
126 allocnos in a region have the same values as if the region had no
127 subregions*. It means that attributes for allocnos in the
128 outermost region corresponding to the function have the same values
129 as though the allocation used only one region which is the entire
130 function. It also means that we can look at IRA work as if the
131 first IRA did allocation for all function then it improved the
132 allocation for loops then their subloops and so on.
133
134 IRA major passes are:
135
136 o Building IRA internal representation which consists of the
137 following subpasses:
138
139 * First, IRA builds regions and creates allocnos (file
140 ira-build.c) and initializes most of their attributes.
141
142 * Then IRA finds a cover class for each allocno and calculates
143 its initial (non-accumulated) cost of memory and each
144 hard-register of its cover class (file ira-cost.c).
145
146 * IRA creates live ranges of each allocno, calulates register
147 pressure for each cover class in each region, sets up
148 conflict hard registers for each allocno and info about calls
149 the allocno lives through (file ira-lives.c).
150
151 * IRA removes low register pressure loops from the regions
152 mostly to speed IRA up (file ira-build.c).
153
154 * IRA propagates accumulated allocno info from lower region
155 allocnos to corresponding upper region allocnos (file
156 ira-build.c).
157
158 * IRA creates all caps (file ira-build.c).
159
160 * Having live-ranges of allocnos and their cover classes, IRA
161 creates conflicting allocnos of the same cover class for each
162 allocno. Conflicting allocnos are stored as a bit vector or
163 array of pointers to the conflicting allocnos whatever is
164 more profitable (file ira-conflicts.c). At this point IRA
165 creates allocno copies.
166
167 o Coloring. Now IRA has all necessary info to start graph coloring
168 process. It is done in each region on top-down traverse of the
169 region tree (file ira-color.c). There are following subpasses:
170
171 * Optional aggressive coalescing of allocnos in the region.
172
173 * Putting allocnos onto the coloring stack. IRA uses Briggs
174 optimistic coloring which is a major improvement over
175 Chaitin's coloring. Therefore IRA does not spill allocnos at
176 this point. There is some freedom in the order of putting
177 allocnos on the stack which can affect the final result of
178 the allocation. IRA uses some heuristics to improve the order.
179
180 * Popping the allocnos from the stack and assigning them hard
181 registers. If IRA can not assign a hard register to an
182 allocno and the allocno is coalesced, IRA undoes the
183 coalescing and puts the uncoalesced allocnos onto the stack in
184 the hope that some such allocnos will get a hard register
185 separately. If IRA fails to assign hard register or memory
186 is more profitable for it, IRA spills the allocno. IRA
187 assigns the allocno the hard-register with minimal full
188 allocation cost which reflects the cost of usage of the
189 hard-register for the allocno and cost of usage of the
190 hard-register for allocnos conflicting with given allocno.
191
192 * After allono assigning in the region, IRA modifies the hard
193 register and memory costs for the corresponding allocnos in
194 the subregions to reflect the cost of possible loads, stores,
195 or moves on the border of the region and its subregions.
196 When default regional allocation algorithm is used
197 (-fira-algorithm=mixed), IRA just propagates the assignment
198 for allocnos if the register pressure in the region for the
199 corresponding cover class is less than number of available
200 hard registers for given cover class.
201
202 o Spill/restore code moving. When IRA performs an allocation
203 by traversing regions in top-down order, it does not know what
204 happens below in the region tree. Therefore, sometimes IRA
205 misses opportunities to perform a better allocation. A simple
206 optimization tries to improve allocation in a region having
207 subregions and containing in another region. If the
208 corresponding allocnos in the subregion are spilled, it spills
209 the region allocno if it is profitable. The optimization
210 implements a simple iterative algorithm performing profitable
211 transformations while they are still possible. It is fast in
212 practice, so there is no real need for a better time complexity
213 algorithm.
214
215 o Code change. After coloring, two allocnos representing the same
216 pseudo-register outside and inside a region respectively may be
217 assigned to different locations (hard-registers or memory). In
218 this case IRA creates and uses a new pseudo-register inside the
219 region and adds code to move allocno values on the region's
220 borders. This is done during top-down traversal of the regions
221 (file ira-emit.c). In some complicated cases IRA can create a
222 new allocno to move allocno values (e.g. when a swap of values
223 stored in two hard-registers is needed). At this stage, the
224 new allocno is marked as spilled. IRA still creates the
225 pseudo-register and the moves on the region borders even when
226 both allocnos were assigned to the same hard-register. If the
227 reload pass spills a pseudo-register for some reason, the
228 effect will be smaller because another allocno will still be in
229 the hard-register. In most cases, this is better then spilling
230 both allocnos. If reload does not change the allocation
231 for the two pseudo-registers, the trivial move will be removed
232 by post-reload optimizations. IRA does not generate moves for
233 allocnos assigned to the same hard register when the default
234 regional allocation algorithm is used and the register pressure
235 in the region for the corresponding allocno cover class is less
236 than number of available hard registers for given cover class.
237 IRA also does some optimizations to remove redundant stores and
238 to reduce code duplication on the region borders.
239
240 o Flattening internal representation. After changing code, IRA
241 transforms its internal representation for several regions into
242 one region representation (file ira-build.c). This process is
243 called IR flattening. Such process is more complicated than IR
244 rebuilding would be, but is much faster.
245
246 o After IR flattening, IRA tries to assign hard registers to all
247 spilled allocnos. This is impelemented by a simple and fast
248 priority coloring algorithm (see function
249 ira_reassign_conflict_allocnos::ira-color.c). Here new allocnos
250 created during the code change pass can be assigned to hard
251 registers.
252
253 o At the end IRA calls the reload pass. The reload pass
254 communicates with IRA through several functions in file
255 ira-color.c to improve its decisions in
256
257 * sharing stack slots for the spilled pseudos based on IRA info
258 about pseudo-register conflicts.
259
260 * reassigning hard-registers to all spilled pseudos at the end
261 of each reload iteration.
262
263 * choosing a better hard-register to spill based on IRA info
264 about pseudo-register live ranges and the register pressure
265 in places where the pseudo-register lives.
266
267 IRA uses a lot of data representing the target processors. These
268 data are initilized in file ira.c.
269
270 If function has no loops (or the loops are ignored when
271 -fira-algorithm=CB is used), we have classic Chaitin-Briggs
272 coloring (only instead of separate pass of coalescing, we use hard
273 register preferencing). In such case, IRA works much faster
274 because many things are not made (like IR flattening, the
275 spill/restore optimization, and the code change).
276
277 Literature is worth to read for better understanding the code:
278
279 o Preston Briggs, Keith D. Cooper, Linda Torczon. Improvements to
280 Graph Coloring Register Allocation.
281
282 o David Callahan, Brian Koblenz. Register allocation via
283 hierarchical graph coloring.
284
285 o Keith Cooper, Anshuman Dasgupta, Jason Eckhardt. Revisiting Graph
286 Coloring Register Allocation: A Study of the Chaitin-Briggs and
287 Callahan-Koblenz Algorithms.
288
289 o Guei-Yuan Lueh, Thomas Gross, and Ali-Reza Adl-Tabatabai. Global
290 Register Allocation Based on Graph Fusion.
291
292 o Vladimir Makarov. The Integrated Register Allocator for GCC.
293
294 o Vladimir Makarov. The top-down register allocator for irregular
295 register file architectures.
296
297 */
298
299
300 #include "config.h"
301 #include "system.h"
302 #include "coretypes.h"
303 #include "tm.h"
304 #include "regs.h"
305 #include "rtl.h"
306 #include "tm_p.h"
307 #include "target.h"
308 #include "flags.h"
309 #include "obstack.h"
310 #include "bitmap.h"
311 #include "hard-reg-set.h"
312 #include "basic-block.h"
313 #include "expr.h"
314 #include "recog.h"
315 #include "params.h"
316 #include "timevar.h"
317 #include "tree-pass.h"
318 #include "output.h"
319 #include "except.h"
320 #include "reload.h"
321 #include "errors.h"
322 #include "integrate.h"
323 #include "df.h"
324 #include "ggc.h"
325 #include "ira-int.h"
326
327
328 /* A modified value of flag `-fira-verbose' used internally. */
329 int internal_flag_ira_verbose;
330
331 /* Dump file of the allocator if it is not NULL. */
332 FILE *ira_dump_file;
333
334 /* Pools for allocnos, copies, allocno live ranges. */
335 alloc_pool allocno_pool, copy_pool, allocno_live_range_pool;
336
337 /* The number of elements in the following array. */
338 int ira_spilled_reg_stack_slots_num;
339
340 /* The following array contains info about spilled pseudo-registers
341 stack slots used in current function so far. */
342 struct ira_spilled_reg_stack_slot *ira_spilled_reg_stack_slots;
343
344 /* Correspondingly overall cost of the allocation, cost of the
345 allocnos assigned to hard-registers, cost of the allocnos assigned
346 to memory, cost of loads, stores and register move insns generated
347 for pseudo-register live range splitting (see ira-emit.c). */
348 int ira_overall_cost;
349 int ira_reg_cost, ira_mem_cost;
350 int ira_load_cost, ira_store_cost, ira_shuffle_cost;
351 int ira_move_loops_num, ira_additional_jumps_num;
352
353 /* All registers that can be eliminated. */
354
355 HARD_REG_SET eliminable_regset;
356
357 /* Map: hard regs X modes -> set of hard registers for storing value
358 of given mode starting with given hard register. */
359 HARD_REG_SET ira_reg_mode_hard_regset[FIRST_PSEUDO_REGISTER][NUM_MACHINE_MODES];
360
361 /* The following two variables are array analogs of the macros
362 MEMORY_MOVE_COST and REGISTER_MOVE_COST. */
363 short int ira_memory_move_cost[MAX_MACHINE_MODE][N_REG_CLASSES][2];
364 move_table *ira_register_move_cost[MAX_MACHINE_MODE];
365
366 /* Similar to may_move_in_cost but it is calculated in IRA instead of
367 regclass. Another difference is that we take only available hard
368 registers into account to figure out that one register class is a
369 subset of the another one. */
370 move_table *ira_may_move_in_cost[MAX_MACHINE_MODE];
371
372 /* Similar to may_move_out_cost but it is calculated in IRA instead of
373 regclass. Another difference is that we take only available hard
374 registers into account to figure out that one register class is a
375 subset of the another one. */
376 move_table *ira_may_move_out_cost[MAX_MACHINE_MODE];
377
378 /* Register class subset relation: TRUE if the first class is a subset
379 of the second one considering only hard registers available for the
380 allocation. */
381 int ira_class_subset_p[N_REG_CLASSES][N_REG_CLASSES];
382
383 /* Temporary hard reg set used for a different calculation. */
384 static HARD_REG_SET temp_hard_regset;
385
386
387
388 /* The function sets up the map IRA_REG_MODE_HARD_REGSET. */
389 static void
390 setup_reg_mode_hard_regset (void)
391 {
392 int i, m, hard_regno;
393
394 for (m = 0; m < NUM_MACHINE_MODES; m++)
395 for (hard_regno = 0; hard_regno < FIRST_PSEUDO_REGISTER; hard_regno++)
396 {
397 CLEAR_HARD_REG_SET (ira_reg_mode_hard_regset[hard_regno][m]);
398 for (i = hard_regno_nregs[hard_regno][m] - 1; i >= 0; i--)
399 if (hard_regno + i < FIRST_PSEUDO_REGISTER)
400 SET_HARD_REG_BIT (ira_reg_mode_hard_regset[hard_regno][m],
401 hard_regno + i);
402 }
403 }
404
405
406
407 /* Hard registers that can not be used for the register allocator for
408 all functions of the current compilation unit. */
409 static HARD_REG_SET no_unit_alloc_regs;
410
411 /* Array of the number of hard registers of given class which are
412 available for allocation. The order is defined by the
413 allocation order. */
414 short ira_class_hard_regs[N_REG_CLASSES][FIRST_PSEUDO_REGISTER];
415
416 /* The number of elements of the above array for given register
417 class. */
418 int ira_class_hard_regs_num[N_REG_CLASSES];
419
420 /* Index (in ira_class_hard_regs) for given register class and hard
421 register (in general case a hard register can belong to several
422 register classes). The index is negative for hard registers
423 unavailable for the allocation. */
424 short ira_class_hard_reg_index[N_REG_CLASSES][FIRST_PSEUDO_REGISTER];
425
426 /* The function sets up the three arrays declared above. */
427 static void
428 setup_class_hard_regs (void)
429 {
430 int cl, i, hard_regno, n;
431 HARD_REG_SET processed_hard_reg_set;
432
433 ira_assert (SHRT_MAX >= FIRST_PSEUDO_REGISTER);
434 /* We could call ORDER_REGS_FOR_LOCAL_ALLOC here (it is usually
435 putting hard callee-used hard registers first). But our
436 heuristics work better. */
437 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
438 {
439 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
440 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
441 CLEAR_HARD_REG_SET (processed_hard_reg_set);
442 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
443 ira_class_hard_reg_index[cl][0] = -1;
444 for (n = 0, i = 0; i < FIRST_PSEUDO_REGISTER; i++)
445 {
446 #ifdef REG_ALLOC_ORDER
447 hard_regno = reg_alloc_order[i];
448 #else
449 hard_regno = i;
450 #endif
451 if (TEST_HARD_REG_BIT (processed_hard_reg_set, hard_regno))
452 continue;
453 SET_HARD_REG_BIT (processed_hard_reg_set, hard_regno);
454 if (! TEST_HARD_REG_BIT (temp_hard_regset, hard_regno))
455 ira_class_hard_reg_index[cl][hard_regno] = -1;
456 else
457 {
458 ira_class_hard_reg_index[cl][hard_regno] = n;
459 ira_class_hard_regs[cl][n++] = hard_regno;
460 }
461 }
462 ira_class_hard_regs_num[cl] = n;
463 }
464 }
465
466 /* Number of given class hard registers available for the register
467 allocation for given classes. */
468 int ira_available_class_regs[N_REG_CLASSES];
469
470 /* Set up IRA_AVAILABLE_CLASS_REGS. */
471 static void
472 setup_available_class_regs (void)
473 {
474 int i, j;
475
476 memset (ira_available_class_regs, 0, sizeof (ira_available_class_regs));
477 for (i = 0; i < N_REG_CLASSES; i++)
478 {
479 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[i]);
480 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
481 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
482 if (TEST_HARD_REG_BIT (temp_hard_regset, j))
483 ira_available_class_regs[i]++;
484 }
485 }
486
487 /* Set up global variables defining info about hard registers for the
488 allocation. These depend on USE_HARD_FRAME_P whose TRUE value means
489 that we can use the hard frame pointer for the allocation. */
490 static void
491 setup_alloc_regs (bool use_hard_frame_p)
492 {
493 COPY_HARD_REG_SET (no_unit_alloc_regs, fixed_reg_set);
494 if (! use_hard_frame_p)
495 SET_HARD_REG_BIT (no_unit_alloc_regs, HARD_FRAME_POINTER_REGNUM);
496 setup_class_hard_regs ();
497 setup_available_class_regs ();
498 }
499
500
501
502 /* Set up IRA_MEMORY_MOVE_COST, IRA_REGISTER_MOVE_COST. */
503 static void
504 setup_class_subset_and_memory_move_costs (void)
505 {
506 int cl, cl2;
507 enum machine_mode mode;
508 HARD_REG_SET temp_hard_regset2;
509
510 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
511 ira_memory_move_cost[mode][NO_REGS][0]
512 = ira_memory_move_cost[mode][NO_REGS][1] = SHRT_MAX;
513 for (cl = (int) N_REG_CLASSES - 1; cl >= 0; cl--)
514 {
515 if (cl != (int) NO_REGS)
516 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
517 {
518 ira_memory_move_cost[mode][cl][0] = MEMORY_MOVE_COST (mode, cl, 0);
519 ira_memory_move_cost[mode][cl][1] = MEMORY_MOVE_COST (mode, cl, 1);
520 /* Costs for NO_REGS are used in cost calculation on the
521 1st pass when the preferred register classes are not
522 known yet. In this case we take the best scenario. */
523 if (ira_memory_move_cost[mode][NO_REGS][0]
524 > ira_memory_move_cost[mode][cl][0])
525 ira_memory_move_cost[mode][NO_REGS][0]
526 = ira_memory_move_cost[mode][cl][0];
527 if (ira_memory_move_cost[mode][NO_REGS][1]
528 > ira_memory_move_cost[mode][cl][1])
529 ira_memory_move_cost[mode][NO_REGS][1]
530 = ira_memory_move_cost[mode][cl][1];
531 }
532 for (cl2 = (int) N_REG_CLASSES - 1; cl2 >= 0; cl2--)
533 {
534 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
535 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
536 COPY_HARD_REG_SET (temp_hard_regset2, reg_class_contents[cl2]);
537 AND_COMPL_HARD_REG_SET (temp_hard_regset2, no_unit_alloc_regs);
538 ira_class_subset_p[cl][cl2]
539 = hard_reg_set_subset_p (temp_hard_regset, temp_hard_regset2);
540 }
541 }
542 }
543
544
545
546 /* Define the following macro if allocation through malloc if
547 preferable. */
548 #define IRA_NO_OBSTACK
549
550 #ifndef IRA_NO_OBSTACK
551 /* Obstack used for storing all dynamic data (except bitmaps) of the
552 IRA. */
553 static struct obstack ira_obstack;
554 #endif
555
556 /* Obstack used for storing all bitmaps of the IRA. */
557 static struct bitmap_obstack ira_bitmap_obstack;
558
559 /* Allocate memory of size LEN for IRA data. */
560 void *
561 ira_allocate (size_t len)
562 {
563 void *res;
564
565 #ifndef IRA_NO_OBSTACK
566 res = obstack_alloc (&ira_obstack, len);
567 #else
568 res = xmalloc (len);
569 #endif
570 return res;
571 }
572
573 /* Reallocate memory PTR of size LEN for IRA data. */
574 void *
575 ira_reallocate (void *ptr, size_t len)
576 {
577 void *res;
578
579 #ifndef IRA_NO_OBSTACK
580 res = obstack_alloc (&ira_obstack, len);
581 #else
582 res = xrealloc (ptr, len);
583 #endif
584 return res;
585 }
586
587 /* Free memory ADDR allocated for IRA data. */
588 void
589 ira_free (void *addr ATTRIBUTE_UNUSED)
590 {
591 #ifndef IRA_NO_OBSTACK
592 /* do nothing */
593 #else
594 free (addr);
595 #endif
596 }
597
598
599 /* Allocate and returns bitmap for IRA. */
600 bitmap
601 ira_allocate_bitmap (void)
602 {
603 return BITMAP_ALLOC (&ira_bitmap_obstack);
604 }
605
606 /* Free bitmap B allocated for IRA. */
607 void
608 ira_free_bitmap (bitmap b ATTRIBUTE_UNUSED)
609 {
610 /* do nothing */
611 }
612
613
614
615 /* Output information about allocation of all allocnos (except for
616 caps) into file F. */
617 void
618 ira_print_disposition (FILE *f)
619 {
620 int i, n, max_regno;
621 ira_allocno_t a;
622 basic_block bb;
623
624 fprintf (f, "Disposition:");
625 max_regno = max_reg_num ();
626 for (n = 0, i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
627 for (a = ira_regno_allocno_map[i];
628 a != NULL;
629 a = ALLOCNO_NEXT_REGNO_ALLOCNO (a))
630 {
631 if (n % 4 == 0)
632 fprintf (f, "\n");
633 n++;
634 fprintf (f, " %4d:r%-4d", ALLOCNO_NUM (a), ALLOCNO_REGNO (a));
635 if ((bb = ALLOCNO_LOOP_TREE_NODE (a)->bb) != NULL)
636 fprintf (f, "b%-3d", bb->index);
637 else
638 fprintf (f, "l%-3d", ALLOCNO_LOOP_TREE_NODE (a)->loop->num);
639 if (ALLOCNO_HARD_REGNO (a) >= 0)
640 fprintf (f, " %3d", ALLOCNO_HARD_REGNO (a));
641 else
642 fprintf (f, " mem");
643 }
644 fprintf (f, "\n");
645 }
646
647 /* Outputs information about allocation of all allocnos into
648 stderr. */
649 void
650 ira_debug_disposition (void)
651 {
652 ira_print_disposition (stderr);
653 }
654
655
656
657 /* For each reg class, table listing all the classes contained in it
658 (excluding the class itself. Non-allocatable registers are
659 excluded from the consideration). */
660 static enum reg_class alloc_reg_class_subclasses[N_REG_CLASSES][N_REG_CLASSES];
661
662 /* Initialize the table of subclasses of each reg class. */
663 static void
664 setup_reg_subclasses (void)
665 {
666 int i, j;
667 HARD_REG_SET temp_hard_regset2;
668
669 for (i = 0; i < N_REG_CLASSES; i++)
670 for (j = 0; j < N_REG_CLASSES; j++)
671 alloc_reg_class_subclasses[i][j] = LIM_REG_CLASSES;
672
673 for (i = 0; i < N_REG_CLASSES; i++)
674 {
675 if (i == (int) NO_REGS)
676 continue;
677
678 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[i]);
679 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
680 if (hard_reg_set_empty_p (temp_hard_regset))
681 continue;
682 for (j = 0; j < N_REG_CLASSES; j++)
683 if (i != j)
684 {
685 enum reg_class *p;
686
687 COPY_HARD_REG_SET (temp_hard_regset2, reg_class_contents[j]);
688 AND_COMPL_HARD_REG_SET (temp_hard_regset2, no_unit_alloc_regs);
689 if (! hard_reg_set_subset_p (temp_hard_regset,
690 temp_hard_regset2))
691 continue;
692 p = &alloc_reg_class_subclasses[j][0];
693 while (*p != LIM_REG_CLASSES) p++;
694 *p = (enum reg_class) i;
695 }
696 }
697 }
698
699
700
701 /* Number of cover classes. Cover classes is non-intersected register
702 classes containing all hard-registers available for the
703 allocation. */
704 int ira_reg_class_cover_size;
705
706 /* The array containing cover classes (see also comments for macro
707 IRA_COVER_CLASSES). Only first IRA_REG_CLASS_COVER_SIZE elements are
708 used for this. */
709 enum reg_class ira_reg_class_cover[N_REG_CLASSES];
710
711 /* The number of elements in the subsequent array. */
712 int ira_important_classes_num;
713
714 /* The array containing non-empty classes (including non-empty cover
715 classes) which are subclasses of cover classes. Such classes is
716 important for calculation of the hard register usage costs. */
717 enum reg_class ira_important_classes[N_REG_CLASSES];
718
719 /* The array containing indexes of important classes in the previous
720 array. The array elements are defined only for important
721 classes. */
722 int ira_important_class_nums[N_REG_CLASSES];
723
724 /* Set the four global variables defined above. */
725 static void
726 setup_cover_and_important_classes (void)
727 {
728 int i, j, n;
729 bool set_p, eq_p;
730 enum reg_class cl;
731 const enum reg_class *cover_classes;
732 HARD_REG_SET temp_hard_regset2;
733 static enum reg_class classes[LIM_REG_CLASSES + 1];
734
735 if (targetm.ira_cover_classes == NULL)
736 cover_classes = NULL;
737 else
738 cover_classes = targetm.ira_cover_classes ();
739 if (cover_classes == NULL)
740 ira_assert (flag_ira_algorithm == IRA_ALGORITHM_PRIORITY);
741 else
742 {
743 for (i = 0; (cl = cover_classes[i]) != LIM_REG_CLASSES; i++)
744 classes[i] = cl;
745 classes[i] = LIM_REG_CLASSES;
746 }
747
748 if (flag_ira_algorithm == IRA_ALGORITHM_PRIORITY)
749 {
750 n = 0;
751 for (i = 0; i <= LIM_REG_CLASSES; i++)
752 {
753 if (i == NO_REGS)
754 continue;
755 #ifdef CONSTRAINT__LIMIT
756 for (j = 0; j < CONSTRAINT__LIMIT; j++)
757 if ((int) regclass_for_constraint (j) == i)
758 break;
759 if (j < CONSTRAINT__LIMIT)
760 {
761 classes[n++] = i;
762 continue;
763 }
764 #endif
765 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[i]);
766 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
767 for (j = 0; j < LIM_REG_CLASSES; j++)
768 {
769 if (i == j)
770 continue;
771 COPY_HARD_REG_SET (temp_hard_regset2, reg_class_contents[j]);
772 AND_COMPL_HARD_REG_SET (temp_hard_regset2,
773 no_unit_alloc_regs);
774 if (hard_reg_set_equal_p (temp_hard_regset,
775 temp_hard_regset2))
776 break;
777 }
778 if (j >= i)
779 classes[n++] = i;
780 }
781 classes[n] = LIM_REG_CLASSES;
782 }
783
784 ira_reg_class_cover_size = 0;
785 for (i = 0; (cl = classes[i]) != LIM_REG_CLASSES; i++)
786 {
787 for (j = 0; j < i; j++)
788 if (flag_ira_algorithm != IRA_ALGORITHM_PRIORITY
789 && reg_classes_intersect_p (cl, classes[j]))
790 gcc_unreachable ();
791 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
792 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
793 if (! hard_reg_set_empty_p (temp_hard_regset))
794 ira_reg_class_cover[ira_reg_class_cover_size++] = cl;
795 }
796 ira_important_classes_num = 0;
797 for (cl = 0; cl < N_REG_CLASSES; cl++)
798 {
799 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
800 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
801 if (! hard_reg_set_empty_p (temp_hard_regset))
802 {
803 set_p = eq_p = false;
804 for (j = 0; j < ira_reg_class_cover_size; j++)
805 {
806 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
807 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
808 COPY_HARD_REG_SET (temp_hard_regset2,
809 reg_class_contents[ira_reg_class_cover[j]]);
810 AND_COMPL_HARD_REG_SET (temp_hard_regset2, no_unit_alloc_regs);
811 if (cl == ira_reg_class_cover[j])
812 {
813 eq_p = false;
814 set_p = true;
815 break;
816 }
817 else if (hard_reg_set_equal_p (temp_hard_regset,
818 temp_hard_regset2))
819 eq_p = true;
820 else if (hard_reg_set_subset_p (temp_hard_regset,
821 temp_hard_regset2))
822 set_p = true;
823 }
824 if (set_p && ! eq_p)
825 {
826 ira_important_class_nums[cl] = ira_important_classes_num;
827 ira_important_classes[ira_important_classes_num++] = cl;
828 }
829 }
830 }
831 }
832
833 /* Map of all register classes to corresponding cover class containing
834 the given class. If given class is not a subset of a cover class,
835 we translate it into the cheapest cover class. */
836 enum reg_class ira_class_translate[N_REG_CLASSES];
837
838 /* Set up array IRA_CLASS_TRANSLATE. */
839 static void
840 setup_class_translate (void)
841 {
842 enum reg_class cl, cover_class, best_class, *cl_ptr;
843 enum machine_mode mode;
844 int i, cost, min_cost, best_cost;
845
846 for (cl = 0; cl < N_REG_CLASSES; cl++)
847 ira_class_translate[cl] = NO_REGS;
848
849 if (flag_ira_algorithm == IRA_ALGORITHM_PRIORITY)
850 for (cl = 0; cl < LIM_REG_CLASSES; cl++)
851 {
852 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
853 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
854 for (i = 0; i < ira_reg_class_cover_size; i++)
855 {
856 HARD_REG_SET temp_hard_regset2;
857
858 cover_class = ira_reg_class_cover[i];
859 COPY_HARD_REG_SET (temp_hard_regset2,
860 reg_class_contents[cover_class]);
861 AND_COMPL_HARD_REG_SET (temp_hard_regset2, no_unit_alloc_regs);
862 if (hard_reg_set_equal_p (temp_hard_regset, temp_hard_regset2))
863 ira_class_translate[cl] = cover_class;
864 }
865 }
866 for (i = 0; i < ira_reg_class_cover_size; i++)
867 {
868 cover_class = ira_reg_class_cover[i];
869 if (flag_ira_algorithm != IRA_ALGORITHM_PRIORITY)
870 for (cl_ptr = &alloc_reg_class_subclasses[cover_class][0];
871 (cl = *cl_ptr) != LIM_REG_CLASSES;
872 cl_ptr++)
873 {
874 if (ira_class_translate[cl] == NO_REGS)
875 ira_class_translate[cl] = cover_class;
876 #ifdef ENABLE_IRA_CHECKING
877 else
878 {
879 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
880 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
881 if (! hard_reg_set_empty_p (temp_hard_regset))
882 gcc_unreachable ();
883 }
884 #endif
885 }
886 ira_class_translate[cover_class] = cover_class;
887 }
888 /* For classes which are not fully covered by a cover class (in
889 other words covered by more one cover class), use the cheapest
890 cover class. */
891 for (cl = 0; cl < N_REG_CLASSES; cl++)
892 {
893 if (cl == NO_REGS || ira_class_translate[cl] != NO_REGS)
894 continue;
895 best_class = NO_REGS;
896 best_cost = INT_MAX;
897 for (i = 0; i < ira_reg_class_cover_size; i++)
898 {
899 cover_class = ira_reg_class_cover[i];
900 COPY_HARD_REG_SET (temp_hard_regset,
901 reg_class_contents[cover_class]);
902 AND_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl]);
903 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
904 if (! hard_reg_set_empty_p (temp_hard_regset))
905 {
906 min_cost = INT_MAX;
907 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
908 {
909 cost = (ira_memory_move_cost[mode][cl][0]
910 + ira_memory_move_cost[mode][cl][1]);
911 if (min_cost > cost)
912 min_cost = cost;
913 }
914 if (best_class == NO_REGS || best_cost > min_cost)
915 {
916 best_class = cover_class;
917 best_cost = min_cost;
918 }
919 }
920 }
921 ira_class_translate[cl] = best_class;
922 }
923 }
924
925 /* The biggest important reg_class inside of intersection of the two
926 reg_classes (that is calculated taking only hard registers
927 available for allocation into account). If the both reg_classes
928 contain no hard registers available for allocation, the value is
929 calculated by taking all hard-registers including fixed ones into
930 account. */
931 enum reg_class ira_reg_class_intersect[N_REG_CLASSES][N_REG_CLASSES];
932
933 /* True if the two classes (that is calculated taking only hard
934 registers available for allocation into account) are
935 intersected. */
936 bool ira_reg_classes_intersect_p[N_REG_CLASSES][N_REG_CLASSES];
937
938 /* Important classes with end marker LIM_REG_CLASSES which are
939 supersets with given important class (the first index). That
940 includes given class itself. This is calculated taking only hard
941 registers available for allocation into account. */
942 enum reg_class ira_reg_class_super_classes[N_REG_CLASSES][N_REG_CLASSES];
943
944 /* The biggest important reg_class inside of union of the two
945 reg_classes (that is calculated taking only hard registers
946 available for allocation into account). If the both reg_classes
947 contain no hard registers available for allocation, the value is
948 calculated by taking all hard-registers including fixed ones into
949 account. In other words, the value is the corresponding
950 reg_class_subunion value. */
951 enum reg_class ira_reg_class_union[N_REG_CLASSES][N_REG_CLASSES];
952
953 /* Set up the above reg class relations. */
954 static void
955 setup_reg_class_relations (void)
956 {
957 int i, cl1, cl2, cl3;
958 HARD_REG_SET intersection_set, union_set, temp_set2;
959 bool important_class_p[N_REG_CLASSES];
960
961 memset (important_class_p, 0, sizeof (important_class_p));
962 for (i = 0; i < ira_important_classes_num; i++)
963 important_class_p[ira_important_classes[i]] = true;
964 for (cl1 = 0; cl1 < N_REG_CLASSES; cl1++)
965 {
966 ira_reg_class_super_classes[cl1][0] = LIM_REG_CLASSES;
967 for (cl2 = 0; cl2 < N_REG_CLASSES; cl2++)
968 {
969 ira_reg_classes_intersect_p[cl1][cl2] = false;
970 ira_reg_class_intersect[cl1][cl2] = NO_REGS;
971 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl1]);
972 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
973 COPY_HARD_REG_SET (temp_set2, reg_class_contents[cl2]);
974 AND_COMPL_HARD_REG_SET (temp_set2, no_unit_alloc_regs);
975 if (hard_reg_set_empty_p (temp_hard_regset)
976 && hard_reg_set_empty_p (temp_set2))
977 {
978 for (i = 0;; i++)
979 {
980 cl3 = reg_class_subclasses[cl1][i];
981 if (cl3 == LIM_REG_CLASSES)
982 break;
983 if (reg_class_subset_p (ira_reg_class_intersect[cl1][cl2],
984 cl3))
985 ira_reg_class_intersect[cl1][cl2] = cl3;
986 }
987 ira_reg_class_union[cl1][cl2] = reg_class_subunion[cl1][cl2];
988 continue;
989 }
990 ira_reg_classes_intersect_p[cl1][cl2]
991 = hard_reg_set_intersect_p (temp_hard_regset, temp_set2);
992 if (important_class_p[cl1] && important_class_p[cl2]
993 && hard_reg_set_subset_p (temp_hard_regset, temp_set2))
994 {
995 enum reg_class *p;
996
997 p = &ira_reg_class_super_classes[cl1][0];
998 while (*p != LIM_REG_CLASSES)
999 p++;
1000 *p++ = (enum reg_class) cl2;
1001 *p = LIM_REG_CLASSES;
1002 }
1003 ira_reg_class_union[cl1][cl2] = NO_REGS;
1004 COPY_HARD_REG_SET (intersection_set, reg_class_contents[cl1]);
1005 AND_HARD_REG_SET (intersection_set, reg_class_contents[cl2]);
1006 AND_COMPL_HARD_REG_SET (intersection_set, no_unit_alloc_regs);
1007 COPY_HARD_REG_SET (union_set, reg_class_contents[cl1]);
1008 IOR_HARD_REG_SET (union_set, reg_class_contents[cl2]);
1009 AND_COMPL_HARD_REG_SET (union_set, no_unit_alloc_regs);
1010 for (i = 0; i < ira_important_classes_num; i++)
1011 {
1012 cl3 = ira_important_classes[i];
1013 COPY_HARD_REG_SET (temp_hard_regset, reg_class_contents[cl3]);
1014 AND_COMPL_HARD_REG_SET (temp_hard_regset, no_unit_alloc_regs);
1015 if (hard_reg_set_subset_p (temp_hard_regset, intersection_set))
1016 {
1017 COPY_HARD_REG_SET
1018 (temp_set2,
1019 reg_class_contents[(int)
1020 ira_reg_class_intersect[cl1][cl2]]);
1021 AND_COMPL_HARD_REG_SET (temp_set2, no_unit_alloc_regs);
1022 if (! hard_reg_set_subset_p (temp_hard_regset, temp_set2)
1023 /* Ignore unavailable hard registers and prefer
1024 smallest class for debugging purposes. */
1025 || (hard_reg_set_equal_p (temp_hard_regset, temp_set2)
1026 && hard_reg_set_subset_p
1027 (reg_class_contents[cl3],
1028 reg_class_contents
1029 [(int) ira_reg_class_intersect[cl1][cl2]])))
1030 ira_reg_class_intersect[cl1][cl2] = (enum reg_class) cl3;
1031 }
1032 if (hard_reg_set_subset_p (temp_hard_regset, union_set))
1033 {
1034 COPY_HARD_REG_SET
1035 (temp_set2,
1036 reg_class_contents[(int) ira_reg_class_union[cl1][cl2]]);
1037 AND_COMPL_HARD_REG_SET (temp_set2, no_unit_alloc_regs);
1038 if (ira_reg_class_union[cl1][cl2] == NO_REGS
1039 || (hard_reg_set_subset_p (temp_set2, temp_hard_regset)
1040
1041 && (! hard_reg_set_equal_p (temp_set2,
1042 temp_hard_regset)
1043 /* Ignore unavailable hard registers and
1044 prefer smallest class for debugging
1045 purposes. */
1046 || hard_reg_set_subset_p
1047 (reg_class_contents[cl3],
1048 reg_class_contents
1049 [(int) ira_reg_class_union[cl1][cl2]]))))
1050 ira_reg_class_union[cl1][cl2] = (enum reg_class) cl3;
1051 }
1052 }
1053 }
1054 }
1055 }
1056
1057 /* Output all cover classes and the translation map into file F. */
1058 static void
1059 print_class_cover (FILE *f)
1060 {
1061 static const char *const reg_class_names[] = REG_CLASS_NAMES;
1062 int i;
1063
1064 fprintf (f, "Class cover:\n");
1065 for (i = 0; i < ira_reg_class_cover_size; i++)
1066 fprintf (f, " %s", reg_class_names[ira_reg_class_cover[i]]);
1067 fprintf (f, "\nClass translation:\n");
1068 for (i = 0; i < N_REG_CLASSES; i++)
1069 fprintf (f, " %s -> %s\n", reg_class_names[i],
1070 reg_class_names[ira_class_translate[i]]);
1071 }
1072
1073 /* Output all cover classes and the translation map into
1074 stderr. */
1075 void
1076 ira_debug_class_cover (void)
1077 {
1078 print_class_cover (stderr);
1079 }
1080
1081 /* Set up different arrays concerning class subsets, cover and
1082 important classes. */
1083 static void
1084 find_reg_class_closure (void)
1085 {
1086 setup_reg_subclasses ();
1087 setup_cover_and_important_classes ();
1088 setup_class_translate ();
1089 setup_reg_class_relations ();
1090 }
1091
1092
1093
1094 /* Map: hard register number -> cover class it belongs to. If the
1095 corresponding class is NO_REGS, the hard register is not available
1096 for allocation. */
1097 enum reg_class ira_hard_regno_cover_class[FIRST_PSEUDO_REGISTER];
1098
1099 /* Set up the array above. */
1100 static void
1101 setup_hard_regno_cover_class (void)
1102 {
1103 int i, j;
1104 enum reg_class cl;
1105
1106 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1107 {
1108 ira_hard_regno_cover_class[i] = NO_REGS;
1109 for (j = 0; j < ira_reg_class_cover_size; j++)
1110 {
1111 cl = ira_reg_class_cover[j];
1112 if (ira_class_hard_reg_index[cl][i] >= 0)
1113 {
1114 ira_hard_regno_cover_class[i] = cl;
1115 break;
1116 }
1117 }
1118
1119 }
1120 }
1121
1122
1123
1124 /* Map: register class x machine mode -> number of hard registers of
1125 given class needed to store value of given mode. If the number is
1126 different, the size will be negative. */
1127 int ira_reg_class_nregs[N_REG_CLASSES][MAX_MACHINE_MODE];
1128
1129 /* Maximal value of the previous array elements. */
1130 int ira_max_nregs;
1131
1132 /* Form IRA_REG_CLASS_NREGS map. */
1133 static void
1134 setup_reg_class_nregs (void)
1135 {
1136 int m;
1137 enum reg_class cl;
1138
1139 ira_max_nregs = -1;
1140 for (cl = 0; cl < N_REG_CLASSES; cl++)
1141 for (m = 0; m < MAX_MACHINE_MODE; m++)
1142 {
1143 ira_reg_class_nregs[cl][m] = CLASS_MAX_NREGS (cl, m);
1144 if (ira_max_nregs < ira_reg_class_nregs[cl][m])
1145 ira_max_nregs = ira_reg_class_nregs[cl][m];
1146 }
1147 }
1148
1149
1150
1151 /* Array whose values are hard regset of hard registers available for
1152 the allocation of given register class whose HARD_REGNO_MODE_OK
1153 values for given mode are zero. */
1154 HARD_REG_SET prohibited_class_mode_regs[N_REG_CLASSES][NUM_MACHINE_MODES];
1155
1156 /* Set up PROHIBITED_CLASS_MODE_REGS. */
1157 static void
1158 setup_prohibited_class_mode_regs (void)
1159 {
1160 int i, j, k, hard_regno;
1161 enum reg_class cl;
1162
1163 for (i = 0; i < ira_reg_class_cover_size; i++)
1164 {
1165 cl = ira_reg_class_cover[i];
1166 for (j = 0; j < NUM_MACHINE_MODES; j++)
1167 {
1168 CLEAR_HARD_REG_SET (prohibited_class_mode_regs[cl][j]);
1169 for (k = ira_class_hard_regs_num[cl] - 1; k >= 0; k--)
1170 {
1171 hard_regno = ira_class_hard_regs[cl][k];
1172 if (! HARD_REGNO_MODE_OK (hard_regno, j))
1173 SET_HARD_REG_BIT (prohibited_class_mode_regs[cl][j],
1174 hard_regno);
1175 }
1176 }
1177 }
1178 }
1179
1180
1181
1182 /* Allocate and initialize IRA_REGISTER_MOVE_COST,
1183 IRA_MAY_MOVE_IN_COST, and IRA_MAY_MOVE_OUT_COST for MODE if it is
1184 not done yet. */
1185 void
1186 ira_init_register_move_cost (enum machine_mode mode)
1187 {
1188 int cl1, cl2;
1189
1190 ira_assert (ira_register_move_cost[mode] == NULL
1191 && ira_may_move_in_cost[mode] == NULL
1192 && ira_may_move_out_cost[mode] == NULL);
1193 if (move_cost[mode] == NULL)
1194 init_move_cost (mode);
1195 ira_register_move_cost[mode] = move_cost[mode];
1196 /* Don't use ira_allocate because the tables exist out of scope of a
1197 IRA call. */
1198 ira_may_move_in_cost[mode]
1199 = (move_table *) xmalloc (sizeof (move_table) * N_REG_CLASSES);
1200 memcpy (ira_may_move_in_cost[mode], may_move_in_cost[mode],
1201 sizeof (move_table) * N_REG_CLASSES);
1202 ira_may_move_out_cost[mode]
1203 = (move_table *) xmalloc (sizeof (move_table) * N_REG_CLASSES);
1204 memcpy (ira_may_move_out_cost[mode], may_move_out_cost[mode],
1205 sizeof (move_table) * N_REG_CLASSES);
1206 for (cl1 = 0; cl1 < N_REG_CLASSES; cl1++)
1207 {
1208 for (cl2 = 0; cl2 < N_REG_CLASSES; cl2++)
1209 {
1210 if (ira_class_subset_p[cl1][cl2])
1211 ira_may_move_in_cost[mode][cl1][cl2] = 0;
1212 if (ira_class_subset_p[cl2][cl1])
1213 ira_may_move_out_cost[mode][cl1][cl2] = 0;
1214 }
1215 }
1216 }
1217
1218
1219
1220 /* This is called once during compiler work. It sets up
1221 different arrays whose values don't depend on the compiled
1222 function. */
1223 void
1224 ira_init_once (void)
1225 {
1226 enum machine_mode mode;
1227
1228 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
1229 {
1230 ira_register_move_cost[mode] = NULL;
1231 ira_may_move_in_cost[mode] = NULL;
1232 ira_may_move_out_cost[mode] = NULL;
1233 }
1234 ira_init_costs_once ();
1235 }
1236
1237 /* Free ira_register_move_cost, ira_may_move_in_cost, and
1238 ira_may_move_out_cost for each mode. */
1239 static void
1240 free_register_move_costs (void)
1241 {
1242 enum machine_mode mode;
1243
1244 for (mode = 0; mode < MAX_MACHINE_MODE; mode++)
1245 {
1246 if (ira_may_move_in_cost[mode] != NULL)
1247 free (ira_may_move_in_cost[mode]);
1248 if (ira_may_move_out_cost[mode] != NULL)
1249 free (ira_may_move_out_cost[mode]);
1250 ira_register_move_cost[mode] = NULL;
1251 ira_may_move_in_cost[mode] = NULL;
1252 ira_may_move_out_cost[mode] = NULL;
1253 }
1254 }
1255
1256 /* This is called every time when register related information is
1257 changed. */
1258 void
1259 ira_init (void)
1260 {
1261 free_register_move_costs ();
1262 setup_reg_mode_hard_regset ();
1263 setup_alloc_regs (flag_omit_frame_pointer != 0);
1264 setup_class_subset_and_memory_move_costs ();
1265 find_reg_class_closure ();
1266 setup_hard_regno_cover_class ();
1267 setup_reg_class_nregs ();
1268 setup_prohibited_class_mode_regs ();
1269 ira_init_costs ();
1270 }
1271
1272 /* Function called once at the end of compiler work. */
1273 void
1274 ira_finish_once (void)
1275 {
1276 ira_finish_costs_once ();
1277 free_register_move_costs ();
1278 }
1279
1280
1281
1282 /* Array whose values are hard regset of hard registers for which
1283 move of the hard register in given mode into itself is
1284 prohibited. */
1285 HARD_REG_SET ira_prohibited_mode_move_regs[NUM_MACHINE_MODES];
1286
1287 /* Flag of that the above array has been initialized. */
1288 static bool ira_prohibited_mode_move_regs_initialized_p = false;
1289
1290 /* Set up IRA_PROHIBITED_MODE_MOVE_REGS. */
1291 static void
1292 setup_prohibited_mode_move_regs (void)
1293 {
1294 int i, j;
1295 rtx test_reg1, test_reg2, move_pat, move_insn;
1296
1297 if (ira_prohibited_mode_move_regs_initialized_p)
1298 return;
1299 ira_prohibited_mode_move_regs_initialized_p = true;
1300 test_reg1 = gen_rtx_REG (VOIDmode, 0);
1301 test_reg2 = gen_rtx_REG (VOIDmode, 0);
1302 move_pat = gen_rtx_SET (VOIDmode, test_reg1, test_reg2);
1303 move_insn = gen_rtx_INSN (VOIDmode, 0, 0, 0, 0, 0, move_pat, -1, 0);
1304 for (i = 0; i < NUM_MACHINE_MODES; i++)
1305 {
1306 SET_HARD_REG_SET (ira_prohibited_mode_move_regs[i]);
1307 for (j = 0; j < FIRST_PSEUDO_REGISTER; j++)
1308 {
1309 if (! HARD_REGNO_MODE_OK (j, i))
1310 continue;
1311 SET_REGNO (test_reg1, j);
1312 PUT_MODE (test_reg1, i);
1313 SET_REGNO (test_reg2, j);
1314 PUT_MODE (test_reg2, i);
1315 INSN_CODE (move_insn) = -1;
1316 recog_memoized (move_insn);
1317 if (INSN_CODE (move_insn) < 0)
1318 continue;
1319 extract_insn (move_insn);
1320 if (! constrain_operands (1))
1321 continue;
1322 CLEAR_HARD_REG_BIT (ira_prohibited_mode_move_regs[i], j);
1323 }
1324 }
1325 }
1326
1327
1328
1329 /* Function specific hard registers that can not be used for the
1330 register allocation. */
1331 HARD_REG_SET ira_no_alloc_regs;
1332
1333 /* Return TRUE if *LOC contains an asm. */
1334 static int
1335 insn_contains_asm_1 (rtx *loc, void *data ATTRIBUTE_UNUSED)
1336 {
1337 if ( !*loc)
1338 return FALSE;
1339 if (GET_CODE (*loc) == ASM_OPERANDS)
1340 return TRUE;
1341 return FALSE;
1342 }
1343
1344
1345 /* Return TRUE if INSN contains an ASM. */
1346 static bool
1347 insn_contains_asm (rtx insn)
1348 {
1349 return for_each_rtx (&insn, insn_contains_asm_1, NULL);
1350 }
1351
1352 /* Set up regs_asm_clobbered. */
1353 static void
1354 compute_regs_asm_clobbered (char *regs_asm_clobbered)
1355 {
1356 basic_block bb;
1357
1358 memset (regs_asm_clobbered, 0, sizeof (char) * FIRST_PSEUDO_REGISTER);
1359
1360 FOR_EACH_BB (bb)
1361 {
1362 rtx insn;
1363 FOR_BB_INSNS_REVERSE (bb, insn)
1364 {
1365 df_ref *def_rec;
1366
1367 if (insn_contains_asm (insn))
1368 for (def_rec = DF_INSN_DEFS (insn); *def_rec; def_rec++)
1369 {
1370 df_ref def = *def_rec;
1371 unsigned int dregno = DF_REF_REGNO (def);
1372 if (dregno < FIRST_PSEUDO_REGISTER)
1373 {
1374 unsigned int i;
1375 enum machine_mode mode = GET_MODE (DF_REF_REAL_REG (def));
1376 unsigned int end = dregno
1377 + hard_regno_nregs[dregno][mode] - 1;
1378
1379 for (i = dregno; i <= end; ++i)
1380 regs_asm_clobbered[i] = 1;
1381 }
1382 }
1383 }
1384 }
1385 }
1386
1387
1388 /* Set up ELIMINABLE_REGSET, IRA_NO_ALLOC_REGS, and REGS_EVER_LIVE. */
1389 static void
1390 setup_eliminable_regset (void)
1391 {
1392 /* Like regs_ever_live, but 1 if a reg is set or clobbered from an
1393 asm. Unlike regs_ever_live, elements of this array corresponding
1394 to eliminable regs (like the frame pointer) are set if an asm
1395 sets them. */
1396 char *regs_asm_clobbered
1397 = (char *) alloca (FIRST_PSEUDO_REGISTER * sizeof (char));
1398 #ifdef ELIMINABLE_REGS
1399 int i;
1400 static const struct {const int from, to; } eliminables[] = ELIMINABLE_REGS;
1401 #endif
1402 /* FIXME: If EXIT_IGNORE_STACK is set, we will not save and restore
1403 sp for alloca. So we can't eliminate the frame pointer in that
1404 case. At some point, we should improve this by emitting the
1405 sp-adjusting insns for this case. */
1406 int need_fp
1407 = (! flag_omit_frame_pointer
1408 || (cfun->calls_alloca && EXIT_IGNORE_STACK)
1409 || crtl->accesses_prior_frames
1410 || crtl->stack_realign_needed
1411 || FRAME_POINTER_REQUIRED);
1412
1413 frame_pointer_needed = need_fp;
1414
1415 COPY_HARD_REG_SET (ira_no_alloc_regs, no_unit_alloc_regs);
1416 CLEAR_HARD_REG_SET (eliminable_regset);
1417
1418 compute_regs_asm_clobbered (regs_asm_clobbered);
1419 /* Build the regset of all eliminable registers and show we can't
1420 use those that we already know won't be eliminated. */
1421 #ifdef ELIMINABLE_REGS
1422 for (i = 0; i < (int) ARRAY_SIZE (eliminables); i++)
1423 {
1424 bool cannot_elim
1425 = (! CAN_ELIMINATE (eliminables[i].from, eliminables[i].to)
1426 || (eliminables[i].to == STACK_POINTER_REGNUM && need_fp));
1427
1428 if (! regs_asm_clobbered[eliminables[i].from])
1429 {
1430 SET_HARD_REG_BIT (eliminable_regset, eliminables[i].from);
1431
1432 if (cannot_elim)
1433 SET_HARD_REG_BIT (ira_no_alloc_regs, eliminables[i].from);
1434 }
1435 else if (cannot_elim)
1436 error ("%s cannot be used in asm here",
1437 reg_names[eliminables[i].from]);
1438 else
1439 df_set_regs_ever_live (eliminables[i].from, true);
1440 }
1441 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
1442 if (! regs_asm_clobbered[HARD_FRAME_POINTER_REGNUM])
1443 {
1444 SET_HARD_REG_BIT (eliminable_regset, HARD_FRAME_POINTER_REGNUM);
1445 if (need_fp)
1446 SET_HARD_REG_BIT (ira_no_alloc_regs, HARD_FRAME_POINTER_REGNUM);
1447 }
1448 else if (need_fp)
1449 error ("%s cannot be used in asm here",
1450 reg_names[HARD_FRAME_POINTER_REGNUM]);
1451 else
1452 df_set_regs_ever_live (HARD_FRAME_POINTER_REGNUM, true);
1453 #endif
1454
1455 #else
1456 if (! regs_asm_clobbered[FRAME_POINTER_REGNUM])
1457 {
1458 SET_HARD_REG_BIT (eliminable_regset, FRAME_POINTER_REGNUM);
1459 if (need_fp)
1460 SET_HARD_REG_BIT (ira_no_alloc_regs, FRAME_POINTER_REGNUM);
1461 }
1462 else if (need_fp)
1463 error ("%s cannot be used in asm here", reg_names[FRAME_POINTER_REGNUM]);
1464 else
1465 df_set_regs_ever_live (FRAME_POINTER_REGNUM, true);
1466 #endif
1467 }
1468
1469
1470
1471 /* The length of the following two arrays. */
1472 int ira_reg_equiv_len;
1473
1474 /* The element value is TRUE if the corresponding regno value is
1475 invariant. */
1476 bool *ira_reg_equiv_invariant_p;
1477
1478 /* The element value is equiv constant of given pseudo-register or
1479 NULL_RTX. */
1480 rtx *ira_reg_equiv_const;
1481
1482 /* Set up the two arrays declared above. */
1483 static void
1484 find_reg_equiv_invariant_const (void)
1485 {
1486 int i;
1487 bool invariant_p;
1488 rtx list, insn, note, constant, x;
1489
1490 for (i = FIRST_PSEUDO_REGISTER; i < reg_equiv_init_size; i++)
1491 {
1492 constant = NULL_RTX;
1493 invariant_p = false;
1494 for (list = reg_equiv_init[i]; list != NULL_RTX; list = XEXP (list, 1))
1495 {
1496 insn = XEXP (list, 0);
1497 note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
1498
1499 if (note == NULL_RTX)
1500 continue;
1501
1502 x = XEXP (note, 0);
1503
1504 if (! function_invariant_p (x)
1505 || ! flag_pic
1506 /* A function invariant is often CONSTANT_P but may
1507 include a register. We promise to only pass CONSTANT_P
1508 objects to LEGITIMATE_PIC_OPERAND_P. */
1509 || (CONSTANT_P (x) && LEGITIMATE_PIC_OPERAND_P (x)))
1510 {
1511 /* It can happen that a REG_EQUIV note contains a MEM
1512 that is not a legitimate memory operand. As later
1513 stages of the reload assume that all addresses found
1514 in the reg_equiv_* arrays were originally legitimate,
1515 we ignore such REG_EQUIV notes. */
1516 if (memory_operand (x, VOIDmode))
1517 invariant_p = MEM_READONLY_P (x);
1518 else if (function_invariant_p (x))
1519 {
1520 if (GET_CODE (x) == PLUS
1521 || x == frame_pointer_rtx || x == arg_pointer_rtx)
1522 invariant_p = true;
1523 else
1524 constant = x;
1525 }
1526 }
1527 }
1528 ira_reg_equiv_invariant_p[i] = invariant_p;
1529 ira_reg_equiv_const[i] = constant;
1530 }
1531 }
1532
1533
1534
1535 /* Vector of substitutions of register numbers,
1536 used to map pseudo regs into hardware regs.
1537 This is set up as a result of register allocation.
1538 Element N is the hard reg assigned to pseudo reg N,
1539 or is -1 if no hard reg was assigned.
1540 If N is a hard reg number, element N is N. */
1541 short *reg_renumber;
1542
1543 /* Set up REG_RENUMBER and CALLER_SAVE_NEEDED (used by reload) from
1544 the allocation found by IRA. */
1545 static void
1546 setup_reg_renumber (void)
1547 {
1548 int regno, hard_regno;
1549 ira_allocno_t a;
1550 ira_allocno_iterator ai;
1551
1552 caller_save_needed = 0;
1553 FOR_EACH_ALLOCNO (a, ai)
1554 {
1555 /* There are no caps at this point. */
1556 ira_assert (ALLOCNO_CAP_MEMBER (a) == NULL);
1557 if (! ALLOCNO_ASSIGNED_P (a))
1558 /* It can happen if A is not referenced but partially anticipated
1559 somewhere in a region. */
1560 ALLOCNO_ASSIGNED_P (a) = true;
1561 ira_free_allocno_updated_costs (a);
1562 hard_regno = ALLOCNO_HARD_REGNO (a);
1563 regno = (int) REGNO (ALLOCNO_REG (a));
1564 reg_renumber[regno] = (hard_regno < 0 ? -1 : hard_regno);
1565 if (hard_regno >= 0 && ALLOCNO_CALLS_CROSSED_NUM (a) != 0
1566 && ! ira_hard_reg_not_in_set_p (hard_regno, ALLOCNO_MODE (a),
1567 call_used_reg_set))
1568 {
1569 ira_assert (!optimize || flag_caller_saves
1570 || regno >= ira_reg_equiv_len
1571 || ira_reg_equiv_const[regno]
1572 || ira_reg_equiv_invariant_p[regno]);
1573 caller_save_needed = 1;
1574 }
1575 }
1576 }
1577
1578 /* Set up allocno assignment flags for further allocation
1579 improvements. */
1580 static void
1581 setup_allocno_assignment_flags (void)
1582 {
1583 int hard_regno;
1584 ira_allocno_t a;
1585 ira_allocno_iterator ai;
1586
1587 FOR_EACH_ALLOCNO (a, ai)
1588 {
1589 if (! ALLOCNO_ASSIGNED_P (a))
1590 /* It can happen if A is not referenced but partially anticipated
1591 somewhere in a region. */
1592 ira_free_allocno_updated_costs (a);
1593 hard_regno = ALLOCNO_HARD_REGNO (a);
1594 /* Don't assign hard registers to allocnos which are destination
1595 of removed store at the end of loop. It has no sense to keep
1596 the same value in different hard registers. It is also
1597 impossible to assign hard registers correctly to such
1598 allocnos because the cost info and info about intersected
1599 calls are incorrect for them. */
1600 ALLOCNO_ASSIGNED_P (a) = (hard_regno >= 0
1601 || ALLOCNO_MEM_OPTIMIZED_DEST_P (a)
1602 || (ALLOCNO_MEMORY_COST (a)
1603 - ALLOCNO_COVER_CLASS_COST (a)) < 0);
1604 ira_assert (hard_regno < 0
1605 || ! ira_hard_reg_not_in_set_p (hard_regno, ALLOCNO_MODE (a),
1606 reg_class_contents
1607 [ALLOCNO_COVER_CLASS (a)]));
1608 }
1609 }
1610
1611 /* Evaluate overall allocation cost and the costs for using hard
1612 registers and memory for allocnos. */
1613 static void
1614 calculate_allocation_cost (void)
1615 {
1616 int hard_regno, cost;
1617 ira_allocno_t a;
1618 ira_allocno_iterator ai;
1619
1620 ira_overall_cost = ira_reg_cost = ira_mem_cost = 0;
1621 FOR_EACH_ALLOCNO (a, ai)
1622 {
1623 hard_regno = ALLOCNO_HARD_REGNO (a);
1624 ira_assert (hard_regno < 0
1625 || ! ira_hard_reg_not_in_set_p
1626 (hard_regno, ALLOCNO_MODE (a),
1627 reg_class_contents[ALLOCNO_COVER_CLASS (a)]));
1628 if (hard_regno < 0)
1629 {
1630 cost = ALLOCNO_MEMORY_COST (a);
1631 ira_mem_cost += cost;
1632 }
1633 else if (ALLOCNO_HARD_REG_COSTS (a) != NULL)
1634 {
1635 cost = (ALLOCNO_HARD_REG_COSTS (a)
1636 [ira_class_hard_reg_index
1637 [ALLOCNO_COVER_CLASS (a)][hard_regno]]);
1638 ira_reg_cost += cost;
1639 }
1640 else
1641 {
1642 cost = ALLOCNO_COVER_CLASS_COST (a);
1643 ira_reg_cost += cost;
1644 }
1645 ira_overall_cost += cost;
1646 }
1647
1648 if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL)
1649 {
1650 fprintf (ira_dump_file,
1651 "+++Costs: overall %d, reg %d, mem %d, ld %d, st %d, move %d\n",
1652 ira_overall_cost, ira_reg_cost, ira_mem_cost,
1653 ira_load_cost, ira_store_cost, ira_shuffle_cost);
1654 fprintf (ira_dump_file, "+++ move loops %d, new jumps %d\n",
1655 ira_move_loops_num, ira_additional_jumps_num);
1656 }
1657
1658 }
1659
1660 #ifdef ENABLE_IRA_CHECKING
1661 /* Check the correctness of the allocation. We do need this because
1662 of complicated code to transform more one region internal
1663 representation into one region representation. */
1664 static void
1665 check_allocation (void)
1666 {
1667 ira_allocno_t a, conflict_a;
1668 int hard_regno, conflict_hard_regno, nregs, conflict_nregs;
1669 ira_allocno_conflict_iterator aci;
1670 ira_allocno_iterator ai;
1671
1672 FOR_EACH_ALLOCNO (a, ai)
1673 {
1674 if (ALLOCNO_CAP_MEMBER (a) != NULL
1675 || (hard_regno = ALLOCNO_HARD_REGNO (a)) < 0)
1676 continue;
1677 nregs = hard_regno_nregs[hard_regno][ALLOCNO_MODE (a)];
1678 FOR_EACH_ALLOCNO_CONFLICT (a, conflict_a, aci)
1679 if ((conflict_hard_regno = ALLOCNO_HARD_REGNO (conflict_a)) >= 0)
1680 {
1681 conflict_nregs
1682 = (hard_regno_nregs
1683 [conflict_hard_regno][ALLOCNO_MODE (conflict_a)]);
1684 if ((conflict_hard_regno <= hard_regno
1685 && hard_regno < conflict_hard_regno + conflict_nregs)
1686 || (hard_regno <= conflict_hard_regno
1687 && conflict_hard_regno < hard_regno + nregs))
1688 {
1689 fprintf (stderr, "bad allocation for %d and %d\n",
1690 ALLOCNO_REGNO (a), ALLOCNO_REGNO (conflict_a));
1691 gcc_unreachable ();
1692 }
1693 }
1694 }
1695 }
1696 #endif
1697
1698 /* Fix values of array REG_EQUIV_INIT after live range splitting done
1699 by IRA. */
1700 static void
1701 fix_reg_equiv_init (void)
1702 {
1703 int max_regno = max_reg_num ();
1704 int i, new_regno;
1705 rtx x, prev, next, insn, set;
1706
1707 if (reg_equiv_init_size < max_regno)
1708 {
1709 reg_equiv_init
1710 = (rtx *) ggc_realloc (reg_equiv_init, max_regno * sizeof (rtx));
1711 while (reg_equiv_init_size < max_regno)
1712 reg_equiv_init[reg_equiv_init_size++] = NULL_RTX;
1713 for (i = FIRST_PSEUDO_REGISTER; i < reg_equiv_init_size; i++)
1714 for (prev = NULL_RTX, x = reg_equiv_init[i]; x != NULL_RTX; x = next)
1715 {
1716 next = XEXP (x, 1);
1717 insn = XEXP (x, 0);
1718 set = single_set (insn);
1719 ira_assert (set != NULL_RTX
1720 && (REG_P (SET_DEST (set)) || REG_P (SET_SRC (set))));
1721 if (REG_P (SET_DEST (set))
1722 && ((int) REGNO (SET_DEST (set)) == i
1723 || (int) ORIGINAL_REGNO (SET_DEST (set)) == i))
1724 new_regno = REGNO (SET_DEST (set));
1725 else if (REG_P (SET_SRC (set))
1726 && ((int) REGNO (SET_SRC (set)) == i
1727 || (int) ORIGINAL_REGNO (SET_SRC (set)) == i))
1728 new_regno = REGNO (SET_SRC (set));
1729 else
1730 gcc_unreachable ();
1731 if (new_regno == i)
1732 prev = x;
1733 else
1734 {
1735 if (prev == NULL_RTX)
1736 reg_equiv_init[i] = next;
1737 else
1738 XEXP (prev, 1) = next;
1739 XEXP (x, 1) = reg_equiv_init[new_regno];
1740 reg_equiv_init[new_regno] = x;
1741 }
1742 }
1743 }
1744 }
1745
1746 #ifdef ENABLE_IRA_CHECKING
1747 /* Print redundant memory-memory copies. */
1748 static void
1749 print_redundant_copies (void)
1750 {
1751 int hard_regno;
1752 ira_allocno_t a;
1753 ira_copy_t cp, next_cp;
1754 ira_allocno_iterator ai;
1755
1756 FOR_EACH_ALLOCNO (a, ai)
1757 {
1758 if (ALLOCNO_CAP_MEMBER (a) != NULL)
1759 /* It is a cap. */
1760 continue;
1761 hard_regno = ALLOCNO_HARD_REGNO (a);
1762 if (hard_regno >= 0)
1763 continue;
1764 for (cp = ALLOCNO_COPIES (a); cp != NULL; cp = next_cp)
1765 if (cp->first == a)
1766 next_cp = cp->next_first_allocno_copy;
1767 else
1768 {
1769 next_cp = cp->next_second_allocno_copy;
1770 if (internal_flag_ira_verbose > 4 && ira_dump_file != NULL
1771 && cp->insn != NULL_RTX
1772 && ALLOCNO_HARD_REGNO (cp->first) == hard_regno)
1773 fprintf (ira_dump_file,
1774 " Redundant move from %d(freq %d):%d\n",
1775 INSN_UID (cp->insn), cp->freq, hard_regno);
1776 }
1777 }
1778 }
1779 #endif
1780
1781 /* Setup preferred and alternative classes for new pseudo-registers
1782 created by IRA starting with START. */
1783 static void
1784 setup_preferred_alternate_classes_for_new_pseudos (int start)
1785 {
1786 int i, old_regno;
1787 int max_regno = max_reg_num ();
1788
1789 for (i = start; i < max_regno; i++)
1790 {
1791 old_regno = ORIGINAL_REGNO (regno_reg_rtx[i]);
1792 ira_assert (i != old_regno);
1793 setup_reg_classes (i, reg_preferred_class (old_regno),
1794 reg_alternate_class (old_regno));
1795 if (internal_flag_ira_verbose > 2 && ira_dump_file != NULL)
1796 fprintf (ira_dump_file,
1797 " New r%d: setting preferred %s, alternative %s\n",
1798 i, reg_class_names[reg_preferred_class (old_regno)],
1799 reg_class_names[reg_alternate_class (old_regno)]);
1800 }
1801 }
1802
1803
1804
1805 /* Regional allocation can create new pseudo-registers. This function
1806 expands some arrays for pseudo-registers. */
1807 static void
1808 expand_reg_info (int old_size)
1809 {
1810 int i;
1811 int size = max_reg_num ();
1812
1813 resize_reg_info ();
1814 for (i = old_size; i < size; i++)
1815 {
1816 reg_renumber[i] = -1;
1817 setup_reg_classes (i, GENERAL_REGS, ALL_REGS);
1818 }
1819 }
1820
1821 /* Return TRUE if there is too high register pressure in the function.
1822 It is used to decide when stack slot sharing is worth to do. */
1823 static bool
1824 too_high_register_pressure_p (void)
1825 {
1826 int i;
1827 enum reg_class cover_class;
1828
1829 for (i = 0; i < ira_reg_class_cover_size; i++)
1830 {
1831 cover_class = ira_reg_class_cover[i];
1832 if (ira_loop_tree_root->reg_pressure[cover_class] > 10000)
1833 return true;
1834 }
1835 return false;
1836 }
1837
1838
1839
1840 /* Indicate that hard register number FROM was eliminated and replaced with
1841 an offset from hard register number TO. The status of hard registers live
1842 at the start of a basic block is updated by replacing a use of FROM with
1843 a use of TO. */
1844
1845 void
1846 mark_elimination (int from, int to)
1847 {
1848 basic_block bb;
1849
1850 FOR_EACH_BB (bb)
1851 {
1852 /* We don't use LIVE info in IRA. */
1853 regset r = DF_LR_IN (bb);
1854
1855 if (REGNO_REG_SET_P (r, from))
1856 {
1857 CLEAR_REGNO_REG_SET (r, from);
1858 SET_REGNO_REG_SET (r, to);
1859 }
1860 }
1861 }
1862
1863
1864
1865 struct equivalence
1866 {
1867 /* Set when a REG_EQUIV note is found or created. Use to
1868 keep track of what memory accesses might be created later,
1869 e.g. by reload. */
1870 rtx replacement;
1871 rtx *src_p;
1872 /* The list of each instruction which initializes this register. */
1873 rtx init_insns;
1874 /* Loop depth is used to recognize equivalences which appear
1875 to be present within the same loop (or in an inner loop). */
1876 int loop_depth;
1877 /* Nonzero if this had a preexisting REG_EQUIV note. */
1878 int is_arg_equivalence;
1879 /* Set when an attempt should be made to replace a register
1880 with the associated src_p entry. */
1881 char replace;
1882 };
1883
1884 /* reg_equiv[N] (where N is a pseudo reg number) is the equivalence
1885 structure for that register. */
1886 static struct equivalence *reg_equiv;
1887
1888 /* Used for communication between the following two functions: contains
1889 a MEM that we wish to ensure remains unchanged. */
1890 static rtx equiv_mem;
1891
1892 /* Set nonzero if EQUIV_MEM is modified. */
1893 static int equiv_mem_modified;
1894
1895 /* If EQUIV_MEM is modified by modifying DEST, indicate that it is modified.
1896 Called via note_stores. */
1897 static void
1898 validate_equiv_mem_from_store (rtx dest, const_rtx set ATTRIBUTE_UNUSED,
1899 void *data ATTRIBUTE_UNUSED)
1900 {
1901 if ((REG_P (dest)
1902 && reg_overlap_mentioned_p (dest, equiv_mem))
1903 || (MEM_P (dest)
1904 && true_dependence (dest, VOIDmode, equiv_mem, rtx_varies_p)))
1905 equiv_mem_modified = 1;
1906 }
1907
1908 /* Verify that no store between START and the death of REG invalidates
1909 MEMREF. MEMREF is invalidated by modifying a register used in MEMREF,
1910 by storing into an overlapping memory location, or with a non-const
1911 CALL_INSN.
1912
1913 Return 1 if MEMREF remains valid. */
1914 static int
1915 validate_equiv_mem (rtx start, rtx reg, rtx memref)
1916 {
1917 rtx insn;
1918 rtx note;
1919
1920 equiv_mem = memref;
1921 equiv_mem_modified = 0;
1922
1923 /* If the memory reference has side effects or is volatile, it isn't a
1924 valid equivalence. */
1925 if (side_effects_p (memref))
1926 return 0;
1927
1928 for (insn = start; insn && ! equiv_mem_modified; insn = NEXT_INSN (insn))
1929 {
1930 if (! INSN_P (insn))
1931 continue;
1932
1933 if (find_reg_note (insn, REG_DEAD, reg))
1934 return 1;
1935
1936 if (CALL_P (insn) && ! MEM_READONLY_P (memref)
1937 && ! RTL_CONST_OR_PURE_CALL_P (insn))
1938 return 0;
1939
1940 note_stores (PATTERN (insn), validate_equiv_mem_from_store, NULL);
1941
1942 /* If a register mentioned in MEMREF is modified via an
1943 auto-increment, we lose the equivalence. Do the same if one
1944 dies; although we could extend the life, it doesn't seem worth
1945 the trouble. */
1946
1947 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
1948 if ((REG_NOTE_KIND (note) == REG_INC
1949 || REG_NOTE_KIND (note) == REG_DEAD)
1950 && REG_P (XEXP (note, 0))
1951 && reg_overlap_mentioned_p (XEXP (note, 0), memref))
1952 return 0;
1953 }
1954
1955 return 0;
1956 }
1957
1958 /* Returns zero if X is known to be invariant. */
1959 static int
1960 equiv_init_varies_p (rtx x)
1961 {
1962 RTX_CODE code = GET_CODE (x);
1963 int i;
1964 const char *fmt;
1965
1966 switch (code)
1967 {
1968 case MEM:
1969 return !MEM_READONLY_P (x) || equiv_init_varies_p (XEXP (x, 0));
1970
1971 case CONST:
1972 case CONST_INT:
1973 case CONST_DOUBLE:
1974 case CONST_FIXED:
1975 case CONST_VECTOR:
1976 case SYMBOL_REF:
1977 case LABEL_REF:
1978 return 0;
1979
1980 case REG:
1981 return reg_equiv[REGNO (x)].replace == 0 && rtx_varies_p (x, 0);
1982
1983 case ASM_OPERANDS:
1984 if (MEM_VOLATILE_P (x))
1985 return 1;
1986
1987 /* Fall through. */
1988
1989 default:
1990 break;
1991 }
1992
1993 fmt = GET_RTX_FORMAT (code);
1994 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1995 if (fmt[i] == 'e')
1996 {
1997 if (equiv_init_varies_p (XEXP (x, i)))
1998 return 1;
1999 }
2000 else if (fmt[i] == 'E')
2001 {
2002 int j;
2003 for (j = 0; j < XVECLEN (x, i); j++)
2004 if (equiv_init_varies_p (XVECEXP (x, i, j)))
2005 return 1;
2006 }
2007
2008 return 0;
2009 }
2010
2011 /* Returns nonzero if X (used to initialize register REGNO) is movable.
2012 X is only movable if the registers it uses have equivalent initializations
2013 which appear to be within the same loop (or in an inner loop) and movable
2014 or if they are not candidates for local_alloc and don't vary. */
2015 static int
2016 equiv_init_movable_p (rtx x, int regno)
2017 {
2018 int i, j;
2019 const char *fmt;
2020 enum rtx_code code = GET_CODE (x);
2021
2022 switch (code)
2023 {
2024 case SET:
2025 return equiv_init_movable_p (SET_SRC (x), regno);
2026
2027 case CC0:
2028 case CLOBBER:
2029 return 0;
2030
2031 case PRE_INC:
2032 case PRE_DEC:
2033 case POST_INC:
2034 case POST_DEC:
2035 case PRE_MODIFY:
2036 case POST_MODIFY:
2037 return 0;
2038
2039 case REG:
2040 return (reg_equiv[REGNO (x)].loop_depth >= reg_equiv[regno].loop_depth
2041 && reg_equiv[REGNO (x)].replace)
2042 || (REG_BASIC_BLOCK (REGNO (x)) < NUM_FIXED_BLOCKS && ! rtx_varies_p (x, 0));
2043
2044 case UNSPEC_VOLATILE:
2045 return 0;
2046
2047 case ASM_OPERANDS:
2048 if (MEM_VOLATILE_P (x))
2049 return 0;
2050
2051 /* Fall through. */
2052
2053 default:
2054 break;
2055 }
2056
2057 fmt = GET_RTX_FORMAT (code);
2058 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2059 switch (fmt[i])
2060 {
2061 case 'e':
2062 if (! equiv_init_movable_p (XEXP (x, i), regno))
2063 return 0;
2064 break;
2065 case 'E':
2066 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2067 if (! equiv_init_movable_p (XVECEXP (x, i, j), regno))
2068 return 0;
2069 break;
2070 }
2071
2072 return 1;
2073 }
2074
2075 /* TRUE if X uses any registers for which reg_equiv[REGNO].replace is true. */
2076 static int
2077 contains_replace_regs (rtx x)
2078 {
2079 int i, j;
2080 const char *fmt;
2081 enum rtx_code code = GET_CODE (x);
2082
2083 switch (code)
2084 {
2085 case CONST_INT:
2086 case CONST:
2087 case LABEL_REF:
2088 case SYMBOL_REF:
2089 case CONST_DOUBLE:
2090 case CONST_FIXED:
2091 case CONST_VECTOR:
2092 case PC:
2093 case CC0:
2094 case HIGH:
2095 return 0;
2096
2097 case REG:
2098 return reg_equiv[REGNO (x)].replace;
2099
2100 default:
2101 break;
2102 }
2103
2104 fmt = GET_RTX_FORMAT (code);
2105 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2106 switch (fmt[i])
2107 {
2108 case 'e':
2109 if (contains_replace_regs (XEXP (x, i)))
2110 return 1;
2111 break;
2112 case 'E':
2113 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2114 if (contains_replace_regs (XVECEXP (x, i, j)))
2115 return 1;
2116 break;
2117 }
2118
2119 return 0;
2120 }
2121
2122 /* TRUE if X references a memory location that would be affected by a store
2123 to MEMREF. */
2124 static int
2125 memref_referenced_p (rtx memref, rtx x)
2126 {
2127 int i, j;
2128 const char *fmt;
2129 enum rtx_code code = GET_CODE (x);
2130
2131 switch (code)
2132 {
2133 case CONST_INT:
2134 case CONST:
2135 case LABEL_REF:
2136 case SYMBOL_REF:
2137 case CONST_DOUBLE:
2138 case CONST_FIXED:
2139 case CONST_VECTOR:
2140 case PC:
2141 case CC0:
2142 case HIGH:
2143 case LO_SUM:
2144 return 0;
2145
2146 case REG:
2147 return (reg_equiv[REGNO (x)].replacement
2148 && memref_referenced_p (memref,
2149 reg_equiv[REGNO (x)].replacement));
2150
2151 case MEM:
2152 if (true_dependence (memref, VOIDmode, x, rtx_varies_p))
2153 return 1;
2154 break;
2155
2156 case SET:
2157 /* If we are setting a MEM, it doesn't count (its address does), but any
2158 other SET_DEST that has a MEM in it is referencing the MEM. */
2159 if (MEM_P (SET_DEST (x)))
2160 {
2161 if (memref_referenced_p (memref, XEXP (SET_DEST (x), 0)))
2162 return 1;
2163 }
2164 else if (memref_referenced_p (memref, SET_DEST (x)))
2165 return 1;
2166
2167 return memref_referenced_p (memref, SET_SRC (x));
2168
2169 default:
2170 break;
2171 }
2172
2173 fmt = GET_RTX_FORMAT (code);
2174 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2175 switch (fmt[i])
2176 {
2177 case 'e':
2178 if (memref_referenced_p (memref, XEXP (x, i)))
2179 return 1;
2180 break;
2181 case 'E':
2182 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2183 if (memref_referenced_p (memref, XVECEXP (x, i, j)))
2184 return 1;
2185 break;
2186 }
2187
2188 return 0;
2189 }
2190
2191 /* TRUE if some insn in the range (START, END] references a memory location
2192 that would be affected by a store to MEMREF. */
2193 static int
2194 memref_used_between_p (rtx memref, rtx start, rtx end)
2195 {
2196 rtx insn;
2197
2198 for (insn = NEXT_INSN (start); insn != NEXT_INSN (end);
2199 insn = NEXT_INSN (insn))
2200 {
2201 if (!INSN_P (insn))
2202 continue;
2203
2204 if (memref_referenced_p (memref, PATTERN (insn)))
2205 return 1;
2206
2207 /* Nonconst functions may access memory. */
2208 if (CALL_P (insn) && (! RTL_CONST_CALL_P (insn)))
2209 return 1;
2210 }
2211
2212 return 0;
2213 }
2214
2215 /* Mark REG as having no known equivalence.
2216 Some instructions might have been processed before and furnished
2217 with REG_EQUIV notes for this register; these notes will have to be
2218 removed.
2219 STORE is the piece of RTL that does the non-constant / conflicting
2220 assignment - a SET, CLOBBER or REG_INC note. It is currently not used,
2221 but needs to be there because this function is called from note_stores. */
2222 static void
2223 no_equiv (rtx reg, const_rtx store ATTRIBUTE_UNUSED, void *data ATTRIBUTE_UNUSED)
2224 {
2225 int regno;
2226 rtx list;
2227
2228 if (!REG_P (reg))
2229 return;
2230 regno = REGNO (reg);
2231 list = reg_equiv[regno].init_insns;
2232 if (list == const0_rtx)
2233 return;
2234 reg_equiv[regno].init_insns = const0_rtx;
2235 reg_equiv[regno].replacement = NULL_RTX;
2236 /* This doesn't matter for equivalences made for argument registers, we
2237 should keep their initialization insns. */
2238 if (reg_equiv[regno].is_arg_equivalence)
2239 return;
2240 reg_equiv_init[regno] = NULL_RTX;
2241 for (; list; list = XEXP (list, 1))
2242 {
2243 rtx insn = XEXP (list, 0);
2244 remove_note (insn, find_reg_note (insn, REG_EQUIV, NULL_RTX));
2245 }
2246 }
2247
2248 /* Nonzero if we recorded an equivalence for a LABEL_REF. */
2249 static int recorded_label_ref;
2250
2251 /* Find registers that are equivalent to a single value throughout the
2252 compilation (either because they can be referenced in memory or are set once
2253 from a single constant). Lower their priority for a register.
2254
2255 If such a register is only referenced once, try substituting its value
2256 into the using insn. If it succeeds, we can eliminate the register
2257 completely.
2258
2259 Initialize the REG_EQUIV_INIT array of initializing insns.
2260
2261 Return non-zero if jump label rebuilding should be done. */
2262 static int
2263 update_equiv_regs (void)
2264 {
2265 rtx insn;
2266 basic_block bb;
2267 int loop_depth;
2268 bitmap cleared_regs;
2269
2270 /* We need to keep track of whether or not we recorded a LABEL_REF so
2271 that we know if the jump optimizer needs to be rerun. */
2272 recorded_label_ref = 0;
2273
2274 reg_equiv = XCNEWVEC (struct equivalence, max_regno);
2275 reg_equiv_init = GGC_CNEWVEC (rtx, max_regno);
2276 reg_equiv_init_size = max_regno;
2277
2278 init_alias_analysis ();
2279
2280 /* Scan the insns and find which registers have equivalences. Do this
2281 in a separate scan of the insns because (due to -fcse-follow-jumps)
2282 a register can be set below its use. */
2283 FOR_EACH_BB (bb)
2284 {
2285 loop_depth = bb->loop_depth;
2286
2287 for (insn = BB_HEAD (bb);
2288 insn != NEXT_INSN (BB_END (bb));
2289 insn = NEXT_INSN (insn))
2290 {
2291 rtx note;
2292 rtx set;
2293 rtx dest, src;
2294 int regno;
2295
2296 if (! INSN_P (insn))
2297 continue;
2298
2299 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
2300 if (REG_NOTE_KIND (note) == REG_INC)
2301 no_equiv (XEXP (note, 0), note, NULL);
2302
2303 set = single_set (insn);
2304
2305 /* If this insn contains more (or less) than a single SET,
2306 only mark all destinations as having no known equivalence. */
2307 if (set == 0)
2308 {
2309 note_stores (PATTERN (insn), no_equiv, NULL);
2310 continue;
2311 }
2312 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
2313 {
2314 int i;
2315
2316 for (i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
2317 {
2318 rtx part = XVECEXP (PATTERN (insn), 0, i);
2319 if (part != set)
2320 note_stores (part, no_equiv, NULL);
2321 }
2322 }
2323
2324 dest = SET_DEST (set);
2325 src = SET_SRC (set);
2326
2327 /* See if this is setting up the equivalence between an argument
2328 register and its stack slot. */
2329 note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
2330 if (note)
2331 {
2332 gcc_assert (REG_P (dest));
2333 regno = REGNO (dest);
2334
2335 /* Note that we don't want to clear reg_equiv_init even if there
2336 are multiple sets of this register. */
2337 reg_equiv[regno].is_arg_equivalence = 1;
2338
2339 /* Record for reload that this is an equivalencing insn. */
2340 if (rtx_equal_p (src, XEXP (note, 0)))
2341 reg_equiv_init[regno]
2342 = gen_rtx_INSN_LIST (VOIDmode, insn, reg_equiv_init[regno]);
2343
2344 /* Continue normally in case this is a candidate for
2345 replacements. */
2346 }
2347
2348 if (!optimize)
2349 continue;
2350
2351 /* We only handle the case of a pseudo register being set
2352 once, or always to the same value. */
2353 /* ??? The mn10200 port breaks if we add equivalences for
2354 values that need an ADDRESS_REGS register and set them equivalent
2355 to a MEM of a pseudo. The actual problem is in the over-conservative
2356 handling of INPADDR_ADDRESS / INPUT_ADDRESS / INPUT triples in
2357 calculate_needs, but we traditionally work around this problem
2358 here by rejecting equivalences when the destination is in a register
2359 that's likely spilled. This is fragile, of course, since the
2360 preferred class of a pseudo depends on all instructions that set
2361 or use it. */
2362
2363 if (!REG_P (dest)
2364 || (regno = REGNO (dest)) < FIRST_PSEUDO_REGISTER
2365 || reg_equiv[regno].init_insns == const0_rtx
2366 || (CLASS_LIKELY_SPILLED_P (reg_preferred_class (regno))
2367 && MEM_P (src) && ! reg_equiv[regno].is_arg_equivalence))
2368 {
2369 /* This might be setting a SUBREG of a pseudo, a pseudo that is
2370 also set somewhere else to a constant. */
2371 note_stores (set, no_equiv, NULL);
2372 continue;
2373 }
2374
2375 note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
2376
2377 /* cse sometimes generates function invariants, but doesn't put a
2378 REG_EQUAL note on the insn. Since this note would be redundant,
2379 there's no point creating it earlier than here. */
2380 if (! note && ! rtx_varies_p (src, 0))
2381 note = set_unique_reg_note (insn, REG_EQUAL, copy_rtx (src));
2382
2383 /* Don't bother considering a REG_EQUAL note containing an EXPR_LIST
2384 since it represents a function call */
2385 if (note && GET_CODE (XEXP (note, 0)) == EXPR_LIST)
2386 note = NULL_RTX;
2387
2388 if (DF_REG_DEF_COUNT (regno) != 1
2389 && (! note
2390 || rtx_varies_p (XEXP (note, 0), 0)
2391 || (reg_equiv[regno].replacement
2392 && ! rtx_equal_p (XEXP (note, 0),
2393 reg_equiv[regno].replacement))))
2394 {
2395 no_equiv (dest, set, NULL);
2396 continue;
2397 }
2398 /* Record this insn as initializing this register. */
2399 reg_equiv[regno].init_insns
2400 = gen_rtx_INSN_LIST (VOIDmode, insn, reg_equiv[regno].init_insns);
2401
2402 /* If this register is known to be equal to a constant, record that
2403 it is always equivalent to the constant. */
2404 if (DF_REG_DEF_COUNT (regno) == 1
2405 && note && ! rtx_varies_p (XEXP (note, 0), 0))
2406 {
2407 rtx note_value = XEXP (note, 0);
2408 remove_note (insn, note);
2409 set_unique_reg_note (insn, REG_EQUIV, note_value);
2410 }
2411
2412 /* If this insn introduces a "constant" register, decrease the priority
2413 of that register. Record this insn if the register is only used once
2414 more and the equivalence value is the same as our source.
2415
2416 The latter condition is checked for two reasons: First, it is an
2417 indication that it may be more efficient to actually emit the insn
2418 as written (if no registers are available, reload will substitute
2419 the equivalence). Secondly, it avoids problems with any registers
2420 dying in this insn whose death notes would be missed.
2421
2422 If we don't have a REG_EQUIV note, see if this insn is loading
2423 a register used only in one basic block from a MEM. If so, and the
2424 MEM remains unchanged for the life of the register, add a REG_EQUIV
2425 note. */
2426
2427 note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
2428
2429 if (note == 0 && REG_BASIC_BLOCK (regno) >= NUM_FIXED_BLOCKS
2430 && MEM_P (SET_SRC (set))
2431 && validate_equiv_mem (insn, dest, SET_SRC (set)))
2432 note = set_unique_reg_note (insn, REG_EQUIV, copy_rtx (SET_SRC (set)));
2433
2434 if (note)
2435 {
2436 int regno = REGNO (dest);
2437 rtx x = XEXP (note, 0);
2438
2439 /* If we haven't done so, record for reload that this is an
2440 equivalencing insn. */
2441 if (!reg_equiv[regno].is_arg_equivalence)
2442 reg_equiv_init[regno]
2443 = gen_rtx_INSN_LIST (VOIDmode, insn, reg_equiv_init[regno]);
2444
2445 /* Record whether or not we created a REG_EQUIV note for a LABEL_REF.
2446 We might end up substituting the LABEL_REF for uses of the
2447 pseudo here or later. That kind of transformation may turn an
2448 indirect jump into a direct jump, in which case we must rerun the
2449 jump optimizer to ensure that the JUMP_LABEL fields are valid. */
2450 if (GET_CODE (x) == LABEL_REF
2451 || (GET_CODE (x) == CONST
2452 && GET_CODE (XEXP (x, 0)) == PLUS
2453 && (GET_CODE (XEXP (XEXP (x, 0), 0)) == LABEL_REF)))
2454 recorded_label_ref = 1;
2455
2456 reg_equiv[regno].replacement = x;
2457 reg_equiv[regno].src_p = &SET_SRC (set);
2458 reg_equiv[regno].loop_depth = loop_depth;
2459
2460 /* Don't mess with things live during setjmp. */
2461 if (REG_LIVE_LENGTH (regno) >= 0 && optimize)
2462 {
2463 /* Note that the statement below does not affect the priority
2464 in local-alloc! */
2465 REG_LIVE_LENGTH (regno) *= 2;
2466
2467 /* If the register is referenced exactly twice, meaning it is
2468 set once and used once, indicate that the reference may be
2469 replaced by the equivalence we computed above. Do this
2470 even if the register is only used in one block so that
2471 dependencies can be handled where the last register is
2472 used in a different block (i.e. HIGH / LO_SUM sequences)
2473 and to reduce the number of registers alive across
2474 calls. */
2475
2476 if (REG_N_REFS (regno) == 2
2477 && (rtx_equal_p (x, src)
2478 || ! equiv_init_varies_p (src))
2479 && NONJUMP_INSN_P (insn)
2480 && equiv_init_movable_p (PATTERN (insn), regno))
2481 reg_equiv[regno].replace = 1;
2482 }
2483 }
2484 }
2485 }
2486
2487 if (!optimize)
2488 goto out;
2489
2490 /* A second pass, to gather additional equivalences with memory. This needs
2491 to be done after we know which registers we are going to replace. */
2492
2493 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
2494 {
2495 rtx set, src, dest;
2496 unsigned regno;
2497
2498 if (! INSN_P (insn))
2499 continue;
2500
2501 set = single_set (insn);
2502 if (! set)
2503 continue;
2504
2505 dest = SET_DEST (set);
2506 src = SET_SRC (set);
2507
2508 /* If this sets a MEM to the contents of a REG that is only used
2509 in a single basic block, see if the register is always equivalent
2510 to that memory location and if moving the store from INSN to the
2511 insn that set REG is safe. If so, put a REG_EQUIV note on the
2512 initializing insn.
2513
2514 Don't add a REG_EQUIV note if the insn already has one. The existing
2515 REG_EQUIV is likely more useful than the one we are adding.
2516
2517 If one of the regs in the address has reg_equiv[REGNO].replace set,
2518 then we can't add this REG_EQUIV note. The reg_equiv[REGNO].replace
2519 optimization may move the set of this register immediately before
2520 insn, which puts it after reg_equiv[REGNO].init_insns, and hence
2521 the mention in the REG_EQUIV note would be to an uninitialized
2522 pseudo. */
2523
2524 if (MEM_P (dest) && REG_P (src)
2525 && (regno = REGNO (src)) >= FIRST_PSEUDO_REGISTER
2526 && REG_BASIC_BLOCK (regno) >= NUM_FIXED_BLOCKS
2527 && DF_REG_DEF_COUNT (regno) == 1
2528 && reg_equiv[regno].init_insns != 0
2529 && reg_equiv[regno].init_insns != const0_rtx
2530 && ! find_reg_note (XEXP (reg_equiv[regno].init_insns, 0),
2531 REG_EQUIV, NULL_RTX)
2532 && ! contains_replace_regs (XEXP (dest, 0)))
2533 {
2534 rtx init_insn = XEXP (reg_equiv[regno].init_insns, 0);
2535 if (validate_equiv_mem (init_insn, src, dest)
2536 && ! memref_used_between_p (dest, init_insn, insn)
2537 /* Attaching a REG_EQUIV note will fail if INIT_INSN has
2538 multiple sets. */
2539 && set_unique_reg_note (init_insn, REG_EQUIV, copy_rtx (dest)))
2540 {
2541 /* This insn makes the equivalence, not the one initializing
2542 the register. */
2543 reg_equiv_init[regno]
2544 = gen_rtx_INSN_LIST (VOIDmode, insn, NULL_RTX);
2545 df_notes_rescan (init_insn);
2546 }
2547 }
2548 }
2549
2550 cleared_regs = BITMAP_ALLOC (NULL);
2551 /* Now scan all regs killed in an insn to see if any of them are
2552 registers only used that once. If so, see if we can replace the
2553 reference with the equivalent form. If we can, delete the
2554 initializing reference and this register will go away. If we
2555 can't replace the reference, and the initializing reference is
2556 within the same loop (or in an inner loop), then move the register
2557 initialization just before the use, so that they are in the same
2558 basic block. */
2559 FOR_EACH_BB_REVERSE (bb)
2560 {
2561 loop_depth = bb->loop_depth;
2562 for (insn = BB_END (bb);
2563 insn != PREV_INSN (BB_HEAD (bb));
2564 insn = PREV_INSN (insn))
2565 {
2566 rtx link;
2567
2568 if (! INSN_P (insn))
2569 continue;
2570
2571 /* Don't substitute into a non-local goto, this confuses CFG. */
2572 if (JUMP_P (insn)
2573 && find_reg_note (insn, REG_NON_LOCAL_GOTO, NULL_RTX))
2574 continue;
2575
2576 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2577 {
2578 if (REG_NOTE_KIND (link) == REG_DEAD
2579 /* Make sure this insn still refers to the register. */
2580 && reg_mentioned_p (XEXP (link, 0), PATTERN (insn)))
2581 {
2582 int regno = REGNO (XEXP (link, 0));
2583 rtx equiv_insn;
2584
2585 if (! reg_equiv[regno].replace
2586 || reg_equiv[regno].loop_depth < loop_depth)
2587 continue;
2588
2589 /* reg_equiv[REGNO].replace gets set only when
2590 REG_N_REFS[REGNO] is 2, i.e. the register is set
2591 once and used once. (If it were only set, but not used,
2592 flow would have deleted the setting insns.) Hence
2593 there can only be one insn in reg_equiv[REGNO].init_insns. */
2594 gcc_assert (reg_equiv[regno].init_insns
2595 && !XEXP (reg_equiv[regno].init_insns, 1));
2596 equiv_insn = XEXP (reg_equiv[regno].init_insns, 0);
2597
2598 /* We may not move instructions that can throw, since
2599 that changes basic block boundaries and we are not
2600 prepared to adjust the CFG to match. */
2601 if (can_throw_internal (equiv_insn))
2602 continue;
2603
2604 if (asm_noperands (PATTERN (equiv_insn)) < 0
2605 && validate_replace_rtx (regno_reg_rtx[regno],
2606 *(reg_equiv[regno].src_p), insn))
2607 {
2608 rtx equiv_link;
2609 rtx last_link;
2610 rtx note;
2611
2612 /* Find the last note. */
2613 for (last_link = link; XEXP (last_link, 1);
2614 last_link = XEXP (last_link, 1))
2615 ;
2616
2617 /* Append the REG_DEAD notes from equiv_insn. */
2618 equiv_link = REG_NOTES (equiv_insn);
2619 while (equiv_link)
2620 {
2621 note = equiv_link;
2622 equiv_link = XEXP (equiv_link, 1);
2623 if (REG_NOTE_KIND (note) == REG_DEAD)
2624 {
2625 remove_note (equiv_insn, note);
2626 XEXP (last_link, 1) = note;
2627 XEXP (note, 1) = NULL_RTX;
2628 last_link = note;
2629 }
2630 }
2631
2632 remove_death (regno, insn);
2633 SET_REG_N_REFS (regno, 0);
2634 REG_FREQ (regno) = 0;
2635 delete_insn (equiv_insn);
2636
2637 reg_equiv[regno].init_insns
2638 = XEXP (reg_equiv[regno].init_insns, 1);
2639
2640 reg_equiv_init[regno] = NULL_RTX;
2641 bitmap_set_bit (cleared_regs, regno);
2642 }
2643 /* Move the initialization of the register to just before
2644 INSN. Update the flow information. */
2645 else if (PREV_INSN (insn) != equiv_insn)
2646 {
2647 rtx new_insn;
2648
2649 new_insn = emit_insn_before (PATTERN (equiv_insn), insn);
2650 REG_NOTES (new_insn) = REG_NOTES (equiv_insn);
2651 REG_NOTES (equiv_insn) = 0;
2652 /* Rescan it to process the notes. */
2653 df_insn_rescan (new_insn);
2654
2655 /* Make sure this insn is recognized before
2656 reload begins, otherwise
2657 eliminate_regs_in_insn will die. */
2658 INSN_CODE (new_insn) = INSN_CODE (equiv_insn);
2659
2660 delete_insn (equiv_insn);
2661
2662 XEXP (reg_equiv[regno].init_insns, 0) = new_insn;
2663
2664 REG_BASIC_BLOCK (regno) = bb->index;
2665 REG_N_CALLS_CROSSED (regno) = 0;
2666 REG_FREQ_CALLS_CROSSED (regno) = 0;
2667 REG_N_THROWING_CALLS_CROSSED (regno) = 0;
2668 REG_LIVE_LENGTH (regno) = 2;
2669
2670 if (insn == BB_HEAD (bb))
2671 BB_HEAD (bb) = PREV_INSN (insn);
2672
2673 reg_equiv_init[regno]
2674 = gen_rtx_INSN_LIST (VOIDmode, new_insn, NULL_RTX);
2675 bitmap_set_bit (cleared_regs, regno);
2676 }
2677 }
2678 }
2679 }
2680 }
2681
2682 if (!bitmap_empty_p (cleared_regs))
2683 FOR_EACH_BB (bb)
2684 {
2685 bitmap_and_compl_into (DF_LIVE_IN (bb), cleared_regs);
2686 bitmap_and_compl_into (DF_LIVE_OUT (bb), cleared_regs);
2687 bitmap_and_compl_into (DF_LR_IN (bb), cleared_regs);
2688 bitmap_and_compl_into (DF_LR_OUT (bb), cleared_regs);
2689 }
2690
2691 BITMAP_FREE (cleared_regs);
2692
2693 out:
2694 /* Clean up. */
2695
2696 end_alias_analysis ();
2697 free (reg_equiv);
2698 return recorded_label_ref;
2699 }
2700
2701
2702
2703 /* Print chain C to FILE. */
2704 static void
2705 print_insn_chain (FILE *file, struct insn_chain *c)
2706 {
2707 fprintf (file, "insn=%d, ", INSN_UID(c->insn));
2708 bitmap_print (file, &c->live_throughout, "live_throughout: ", ", ");
2709 bitmap_print (file, &c->dead_or_set, "dead_or_set: ", "\n");
2710 }
2711
2712
2713 /* Print all reload_insn_chains to FILE. */
2714 static void
2715 print_insn_chains (FILE *file)
2716 {
2717 struct insn_chain *c;
2718 for (c = reload_insn_chain; c ; c = c->next)
2719 print_insn_chain (file, c);
2720 }
2721
2722 /* Return true if pseudo REGNO should be added to set live_throughout
2723 or dead_or_set of the insn chains for reload consideration. */
2724 static bool
2725 pseudo_for_reload_consideration_p (int regno)
2726 {
2727 /* Consider spilled pseudos too for IRA because they still have a
2728 chance to get hard-registers in the reload when IRA is used. */
2729 return (reg_renumber[regno] >= 0
2730 || (ira_conflicts_p && flag_ira_share_spill_slots));
2731 }
2732
2733 /* Init LIVE_SUBREGS[ALLOCNUM] and LIVE_SUBREGS_USED[ALLOCNUM] using
2734 REG to the number of nregs, and INIT_VALUE to get the
2735 initialization. ALLOCNUM need not be the regno of REG. */
2736 static void
2737 init_live_subregs (bool init_value, sbitmap *live_subregs,
2738 int *live_subregs_used, int allocnum, rtx reg)
2739 {
2740 unsigned int regno = REGNO (SUBREG_REG (reg));
2741 int size = GET_MODE_SIZE (GET_MODE (regno_reg_rtx[regno]));
2742
2743 gcc_assert (size > 0);
2744
2745 /* Been there, done that. */
2746 if (live_subregs_used[allocnum])
2747 return;
2748
2749 /* Create a new one with zeros. */
2750 if (live_subregs[allocnum] == NULL)
2751 live_subregs[allocnum] = sbitmap_alloc (size);
2752
2753 /* If the entire reg was live before blasting into subregs, we need
2754 to init all of the subregs to ones else init to 0. */
2755 if (init_value)
2756 sbitmap_ones (live_subregs[allocnum]);
2757 else
2758 sbitmap_zero (live_subregs[allocnum]);
2759
2760 /* Set the number of bits that we really want. */
2761 live_subregs_used[allocnum] = size;
2762 }
2763
2764 /* Walk the insns of the current function and build reload_insn_chain,
2765 and record register life information. */
2766 static void
2767 build_insn_chain (void)
2768 {
2769 unsigned int i;
2770 struct insn_chain **p = &reload_insn_chain;
2771 basic_block bb;
2772 struct insn_chain *c = NULL;
2773 struct insn_chain *next = NULL;
2774 bitmap live_relevant_regs = BITMAP_ALLOC (NULL);
2775 bitmap elim_regset = BITMAP_ALLOC (NULL);
2776 /* live_subregs is a vector used to keep accurate information about
2777 which hardregs are live in multiword pseudos. live_subregs and
2778 live_subregs_used are indexed by pseudo number. The live_subreg
2779 entry for a particular pseudo is only used if the corresponding
2780 element is non zero in live_subregs_used. The value in
2781 live_subregs_used is number of bytes that the pseudo can
2782 occupy. */
2783 sbitmap *live_subregs = XCNEWVEC (sbitmap, max_regno);
2784 int *live_subregs_used = XNEWVEC (int, max_regno);
2785
2786 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2787 if (TEST_HARD_REG_BIT (eliminable_regset, i))
2788 bitmap_set_bit (elim_regset, i);
2789 FOR_EACH_BB_REVERSE (bb)
2790 {
2791 bitmap_iterator bi;
2792 rtx insn;
2793
2794 CLEAR_REG_SET (live_relevant_regs);
2795 memset (live_subregs_used, 0, max_regno * sizeof (int));
2796
2797 EXECUTE_IF_SET_IN_BITMAP (df_get_live_out (bb), 0, i, bi)
2798 {
2799 if (i >= FIRST_PSEUDO_REGISTER)
2800 break;
2801 bitmap_set_bit (live_relevant_regs, i);
2802 }
2803
2804 EXECUTE_IF_SET_IN_BITMAP (df_get_live_out (bb),
2805 FIRST_PSEUDO_REGISTER, i, bi)
2806 {
2807 if (pseudo_for_reload_consideration_p (i))
2808 bitmap_set_bit (live_relevant_regs, i);
2809 }
2810
2811 FOR_BB_INSNS_REVERSE (bb, insn)
2812 {
2813 if (!NOTE_P (insn) && !BARRIER_P (insn))
2814 {
2815 unsigned int uid = INSN_UID (insn);
2816 df_ref *def_rec;
2817 df_ref *use_rec;
2818
2819 c = new_insn_chain ();
2820 c->next = next;
2821 next = c;
2822 *p = c;
2823 p = &c->prev;
2824
2825 c->insn = insn;
2826 c->block = bb->index;
2827
2828 if (INSN_P (insn))
2829 for (def_rec = DF_INSN_UID_DEFS (uid); *def_rec; def_rec++)
2830 {
2831 df_ref def = *def_rec;
2832 unsigned int regno = DF_REF_REGNO (def);
2833
2834 /* Ignore may clobbers because these are generated
2835 from calls. However, every other kind of def is
2836 added to dead_or_set. */
2837 if (!DF_REF_FLAGS_IS_SET (def, DF_REF_MAY_CLOBBER))
2838 {
2839 if (regno < FIRST_PSEUDO_REGISTER)
2840 {
2841 if (!fixed_regs[regno])
2842 bitmap_set_bit (&c->dead_or_set, regno);
2843 }
2844 else if (pseudo_for_reload_consideration_p (regno))
2845 bitmap_set_bit (&c->dead_or_set, regno);
2846 }
2847
2848 if ((regno < FIRST_PSEUDO_REGISTER
2849 || reg_renumber[regno] >= 0
2850 || ira_conflicts_p)
2851 && (!DF_REF_FLAGS_IS_SET (def, DF_REF_CONDITIONAL)))
2852 {
2853 rtx reg = DF_REF_REG (def);
2854
2855 /* We can model subregs, but not if they are
2856 wrapped in ZERO_EXTRACTS. */
2857 if (GET_CODE (reg) == SUBREG
2858 && !DF_REF_FLAGS_IS_SET (def, DF_REF_ZERO_EXTRACT))
2859 {
2860 unsigned int start = SUBREG_BYTE (reg);
2861 unsigned int last = start
2862 + GET_MODE_SIZE (GET_MODE (reg));
2863
2864 init_live_subregs
2865 (bitmap_bit_p (live_relevant_regs, regno),
2866 live_subregs, live_subregs_used, regno, reg);
2867
2868 if (!DF_REF_FLAGS_IS_SET
2869 (def, DF_REF_STRICT_LOW_PART))
2870 {
2871 /* Expand the range to cover entire words.
2872 Bytes added here are "don't care". */
2873 start
2874 = start / UNITS_PER_WORD * UNITS_PER_WORD;
2875 last = ((last + UNITS_PER_WORD - 1)
2876 / UNITS_PER_WORD * UNITS_PER_WORD);
2877 }
2878
2879 /* Ignore the paradoxical bits. */
2880 if ((int)last > live_subregs_used[regno])
2881 last = live_subregs_used[regno];
2882
2883 while (start < last)
2884 {
2885 RESET_BIT (live_subregs[regno], start);
2886 start++;
2887 }
2888
2889 if (sbitmap_empty_p (live_subregs[regno]))
2890 {
2891 live_subregs_used[regno] = 0;
2892 bitmap_clear_bit (live_relevant_regs, regno);
2893 }
2894 else
2895 /* Set live_relevant_regs here because
2896 that bit has to be true to get us to
2897 look at the live_subregs fields. */
2898 bitmap_set_bit (live_relevant_regs, regno);
2899 }
2900 else
2901 {
2902 /* DF_REF_PARTIAL is generated for
2903 subregs, STRICT_LOW_PART, and
2904 ZERO_EXTRACT. We handle the subreg
2905 case above so here we have to keep from
2906 modeling the def as a killing def. */
2907 if (!DF_REF_FLAGS_IS_SET (def, DF_REF_PARTIAL))
2908 {
2909 bitmap_clear_bit (live_relevant_regs, regno);
2910 live_subregs_used[regno] = 0;
2911 }
2912 }
2913 }
2914 }
2915
2916 bitmap_and_compl_into (live_relevant_regs, elim_regset);
2917 bitmap_copy (&c->live_throughout, live_relevant_regs);
2918
2919 if (INSN_P (insn))
2920 for (use_rec = DF_INSN_UID_USES (uid); *use_rec; use_rec++)
2921 {
2922 df_ref use = *use_rec;
2923 unsigned int regno = DF_REF_REGNO (use);
2924 rtx reg = DF_REF_REG (use);
2925
2926 /* DF_REF_READ_WRITE on a use means that this use
2927 is fabricated from a def that is a partial set
2928 to a multiword reg. Here, we only model the
2929 subreg case that is not wrapped in ZERO_EXTRACT
2930 precisely so we do not need to look at the
2931 fabricated use. */
2932 if (DF_REF_FLAGS_IS_SET (use, DF_REF_READ_WRITE)
2933 && !DF_REF_FLAGS_IS_SET (use, DF_REF_ZERO_EXTRACT)
2934 && DF_REF_FLAGS_IS_SET (use, DF_REF_SUBREG))
2935 continue;
2936
2937 /* Add the last use of each var to dead_or_set. */
2938 if (!bitmap_bit_p (live_relevant_regs, regno))
2939 {
2940 if (regno < FIRST_PSEUDO_REGISTER)
2941 {
2942 if (!fixed_regs[regno])
2943 bitmap_set_bit (&c->dead_or_set, regno);
2944 }
2945 else if (pseudo_for_reload_consideration_p (regno))
2946 bitmap_set_bit (&c->dead_or_set, regno);
2947 }
2948
2949 if (regno < FIRST_PSEUDO_REGISTER
2950 || pseudo_for_reload_consideration_p (regno))
2951 {
2952 if (GET_CODE (reg) == SUBREG
2953 && !DF_REF_FLAGS_IS_SET (use,
2954 DF_REF_SIGN_EXTRACT
2955 | DF_REF_ZERO_EXTRACT))
2956 {
2957 unsigned int start = SUBREG_BYTE (reg);
2958 unsigned int last = start
2959 + GET_MODE_SIZE (GET_MODE (reg));
2960
2961 init_live_subregs
2962 (bitmap_bit_p (live_relevant_regs, regno),
2963 live_subregs, live_subregs_used, regno, reg);
2964
2965 /* Ignore the paradoxical bits. */
2966 if ((int)last > live_subregs_used[regno])
2967 last = live_subregs_used[regno];
2968
2969 while (start < last)
2970 {
2971 SET_BIT (live_subregs[regno], start);
2972 start++;
2973 }
2974 }
2975 else
2976 /* Resetting the live_subregs_used is
2977 effectively saying do not use the subregs
2978 because we are reading the whole
2979 pseudo. */
2980 live_subregs_used[regno] = 0;
2981 bitmap_set_bit (live_relevant_regs, regno);
2982 }
2983 }
2984 }
2985 }
2986
2987 /* FIXME!! The following code is a disaster. Reload needs to see the
2988 labels and jump tables that are just hanging out in between
2989 the basic blocks. See pr33676. */
2990 insn = BB_HEAD (bb);
2991
2992 /* Skip over the barriers and cruft. */
2993 while (insn && (BARRIER_P (insn) || NOTE_P (insn)
2994 || BLOCK_FOR_INSN (insn) == bb))
2995 insn = PREV_INSN (insn);
2996
2997 /* While we add anything except barriers and notes, the focus is
2998 to get the labels and jump tables into the
2999 reload_insn_chain. */
3000 while (insn)
3001 {
3002 if (!NOTE_P (insn) && !BARRIER_P (insn))
3003 {
3004 if (BLOCK_FOR_INSN (insn))
3005 break;
3006
3007 c = new_insn_chain ();
3008 c->next = next;
3009 next = c;
3010 *p = c;
3011 p = &c->prev;
3012
3013 /* The block makes no sense here, but it is what the old
3014 code did. */
3015 c->block = bb->index;
3016 c->insn = insn;
3017 bitmap_copy (&c->live_throughout, live_relevant_regs);
3018 }
3019 insn = PREV_INSN (insn);
3020 }
3021 }
3022
3023 for (i = 0; i < (unsigned int) max_regno; i++)
3024 if (live_subregs[i])
3025 free (live_subregs[i]);
3026
3027 reload_insn_chain = c;
3028 *p = NULL;
3029
3030 free (live_subregs);
3031 free (live_subregs_used);
3032 BITMAP_FREE (live_relevant_regs);
3033 BITMAP_FREE (elim_regset);
3034
3035 if (dump_file)
3036 print_insn_chains (dump_file);
3037 }
3038
3039
3040
3041 /* All natural loops. */
3042 struct loops ira_loops;
3043
3044 /* True if we have allocno conflicts. It is false for non-optimized
3045 mode or when the conflict table is too big. */
3046 bool ira_conflicts_p;
3047
3048 /* This is the main entry of IRA. */
3049 static void
3050 ira (FILE *f)
3051 {
3052 int overall_cost_before, allocated_reg_info_size;
3053 bool loops_p;
3054 int max_regno_before_ira, ira_max_point_before_emit;
3055 int rebuild_p;
3056 int saved_flag_ira_share_spill_slots;
3057 basic_block bb;
3058
3059 timevar_push (TV_IRA);
3060
3061 if (flag_ira_verbose < 10)
3062 {
3063 internal_flag_ira_verbose = flag_ira_verbose;
3064 ira_dump_file = f;
3065 }
3066 else
3067 {
3068 internal_flag_ira_verbose = flag_ira_verbose - 10;
3069 ira_dump_file = stderr;
3070 }
3071
3072 ira_conflicts_p = optimize > 0;
3073 setup_prohibited_mode_move_regs ();
3074
3075 df_note_add_problem ();
3076
3077 if (optimize == 1)
3078 {
3079 df_live_add_problem ();
3080 df_live_set_all_dirty ();
3081 }
3082 #ifdef ENABLE_CHECKING
3083 df->changeable_flags |= DF_VERIFY_SCHEDULED;
3084 #endif
3085 df_analyze ();
3086 df_clear_flags (DF_NO_INSN_RESCAN);
3087 regstat_init_n_sets_and_refs ();
3088 regstat_compute_ri ();
3089
3090 /* If we are not optimizing, then this is the only place before
3091 register allocation where dataflow is done. And that is needed
3092 to generate these warnings. */
3093 if (warn_clobbered)
3094 generate_setjmp_warnings ();
3095
3096 /* Determine if the current function is a leaf before running IRA
3097 since this can impact optimizations done by the prologue and
3098 epilogue thus changing register elimination offsets. */
3099 current_function_is_leaf = leaf_function_p ();
3100
3101 rebuild_p = update_equiv_regs ();
3102
3103 #ifndef IRA_NO_OBSTACK
3104 gcc_obstack_init (&ira_obstack);
3105 #endif
3106 bitmap_obstack_initialize (&ira_bitmap_obstack);
3107 if (optimize)
3108 {
3109 max_regno = max_reg_num ();
3110 ira_reg_equiv_len = max_regno;
3111 ira_reg_equiv_invariant_p
3112 = (bool *) ira_allocate (max_regno * sizeof (bool));
3113 memset (ira_reg_equiv_invariant_p, 0, max_regno * sizeof (bool));
3114 ira_reg_equiv_const = (rtx *) ira_allocate (max_regno * sizeof (rtx));
3115 memset (ira_reg_equiv_const, 0, max_regno * sizeof (rtx));
3116 find_reg_equiv_invariant_const ();
3117 if (rebuild_p)
3118 {
3119 timevar_push (TV_JUMP);
3120 rebuild_jump_labels (get_insns ());
3121 purge_all_dead_edges ();
3122 timevar_pop (TV_JUMP);
3123 }
3124 }
3125
3126 max_regno_before_ira = allocated_reg_info_size = max_reg_num ();
3127 allocate_reg_info ();
3128 setup_eliminable_regset ();
3129
3130 ira_overall_cost = ira_reg_cost = ira_mem_cost = 0;
3131 ira_load_cost = ira_store_cost = ira_shuffle_cost = 0;
3132 ira_move_loops_num = ira_additional_jumps_num = 0;
3133
3134 ira_assert (current_loops == NULL);
3135 flow_loops_find (&ira_loops);
3136 current_loops = &ira_loops;
3137
3138 if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL)
3139 fprintf (ira_dump_file, "Building IRA IR\n");
3140 loops_p = ira_build (optimize
3141 && (flag_ira_region == IRA_REGION_ALL
3142 || flag_ira_region == IRA_REGION_MIXED));
3143
3144 ira_assert (ira_conflicts_p || !loops_p);
3145
3146 saved_flag_ira_share_spill_slots = flag_ira_share_spill_slots;
3147 if (too_high_register_pressure_p ())
3148 /* It is just wasting compiler's time to pack spilled pseudos into
3149 stack slots in this case -- prohibit it. */
3150 flag_ira_share_spill_slots = FALSE;
3151
3152 ira_color ();
3153
3154 ira_max_point_before_emit = ira_max_point;
3155
3156 ira_emit (loops_p);
3157
3158 if (ira_conflicts_p)
3159 {
3160 max_regno = max_reg_num ();
3161
3162 if (! loops_p)
3163 ira_initiate_assign ();
3164 else
3165 {
3166 expand_reg_info (allocated_reg_info_size);
3167 setup_preferred_alternate_classes_for_new_pseudos
3168 (allocated_reg_info_size);
3169 allocated_reg_info_size = max_regno;
3170
3171 if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL)
3172 fprintf (ira_dump_file, "Flattening IR\n");
3173 ira_flattening (max_regno_before_ira, ira_max_point_before_emit);
3174 /* New insns were generated: add notes and recalculate live
3175 info. */
3176 df_analyze ();
3177
3178 flow_loops_find (&ira_loops);
3179 current_loops = &ira_loops;
3180
3181 setup_allocno_assignment_flags ();
3182 ira_initiate_assign ();
3183 ira_reassign_conflict_allocnos (max_regno);
3184 }
3185 }
3186
3187 setup_reg_renumber ();
3188
3189 calculate_allocation_cost ();
3190
3191 #ifdef ENABLE_IRA_CHECKING
3192 if (ira_conflicts_p)
3193 check_allocation ();
3194 #endif
3195
3196 delete_trivially_dead_insns (get_insns (), max_reg_num ());
3197 max_regno = max_reg_num ();
3198
3199 /* And the reg_equiv_memory_loc array. */
3200 VEC_safe_grow (rtx, gc, reg_equiv_memory_loc_vec, max_regno);
3201 memset (VEC_address (rtx, reg_equiv_memory_loc_vec), 0,
3202 sizeof (rtx) * max_regno);
3203 reg_equiv_memory_loc = VEC_address (rtx, reg_equiv_memory_loc_vec);
3204
3205 if (max_regno != max_regno_before_ira)
3206 {
3207 regstat_free_n_sets_and_refs ();
3208 regstat_free_ri ();
3209 regstat_init_n_sets_and_refs ();
3210 regstat_compute_ri ();
3211 }
3212
3213 allocate_initial_values (reg_equiv_memory_loc);
3214
3215 overall_cost_before = ira_overall_cost;
3216 if (ira_conflicts_p)
3217 {
3218 fix_reg_equiv_init ();
3219
3220 #ifdef ENABLE_IRA_CHECKING
3221 print_redundant_copies ();
3222 #endif
3223
3224 ira_spilled_reg_stack_slots_num = 0;
3225 ira_spilled_reg_stack_slots
3226 = ((struct ira_spilled_reg_stack_slot *)
3227 ira_allocate (max_regno
3228 * sizeof (struct ira_spilled_reg_stack_slot)));
3229 memset (ira_spilled_reg_stack_slots, 0,
3230 max_regno * sizeof (struct ira_spilled_reg_stack_slot));
3231 }
3232
3233 timevar_pop (TV_IRA);
3234
3235 timevar_push (TV_RELOAD);
3236 df_set_flags (DF_NO_INSN_RESCAN);
3237 build_insn_chain ();
3238
3239 reload_completed = !reload (get_insns (), ira_conflicts_p);
3240
3241 timevar_pop (TV_RELOAD);
3242
3243 timevar_push (TV_IRA);
3244
3245 if (ira_conflicts_p)
3246 {
3247 ira_free (ira_spilled_reg_stack_slots);
3248
3249 ira_finish_assign ();
3250
3251 }
3252 if (internal_flag_ira_verbose > 0 && ira_dump_file != NULL
3253 && overall_cost_before != ira_overall_cost)
3254 fprintf (ira_dump_file, "+++Overall after reload %d\n", ira_overall_cost);
3255 ira_destroy ();
3256
3257 flag_ira_share_spill_slots = saved_flag_ira_share_spill_slots;
3258
3259 flow_loops_free (&ira_loops);
3260 free_dominance_info (CDI_DOMINATORS);
3261 FOR_ALL_BB (bb)
3262 bb->loop_father = NULL;
3263 current_loops = NULL;
3264
3265 regstat_free_ri ();
3266 regstat_free_n_sets_and_refs ();
3267
3268 if (optimize)
3269 {
3270 cleanup_cfg (CLEANUP_EXPENSIVE);
3271
3272 ira_free (ira_reg_equiv_invariant_p);
3273 ira_free (ira_reg_equiv_const);
3274 }
3275
3276 bitmap_obstack_release (&ira_bitmap_obstack);
3277 #ifndef IRA_NO_OBSTACK
3278 obstack_free (&ira_obstack, NULL);
3279 #endif
3280
3281 /* The code after the reload has changed so much that at this point
3282 we might as well just rescan everything. Not that
3283 df_rescan_all_insns is not going to help here because it does not
3284 touch the artificial uses and defs. */
3285 df_finish_pass (true);
3286 if (optimize > 1)
3287 df_live_add_problem ();
3288 df_scan_alloc (NULL);
3289 df_scan_blocks ();
3290
3291 if (optimize)
3292 df_analyze ();
3293
3294 timevar_pop (TV_IRA);
3295 }
3296
3297
3298
3299 static bool
3300 gate_ira (void)
3301 {
3302 return true;
3303 }
3304
3305 /* Run the integrated register allocator. */
3306 static unsigned int
3307 rest_of_handle_ira (void)
3308 {
3309 ira (dump_file);
3310 return 0;
3311 }
3312
3313 struct rtl_opt_pass pass_ira =
3314 {
3315 {
3316 RTL_PASS,
3317 "ira", /* name */
3318 gate_ira, /* gate */
3319 rest_of_handle_ira, /* execute */
3320 NULL, /* sub */
3321 NULL, /* next */
3322 0, /* static_pass_number */
3323 0, /* tv_id */
3324 0, /* properties_required */
3325 0, /* properties_provided */
3326 0, /* properties_destroyed */
3327 0, /* todo_flags_start */
3328 TODO_dump_func |
3329 TODO_ggc_collect /* todo_flags_finish */
3330 }
3331 };