comparison gcc/jump.c @ 0:a06113de4d67

first commit
author kent <kent@cr.ie.u-ryukyu.ac.jp>
date Fri, 17 Jul 2009 14:47:48 +0900
parents
children 77e2b8dfacca
comparison
equal deleted inserted replaced
-1:000000000000 0:a06113de4d67
1 /* Optimize jump instructions, for GNU compiler.
2 Copyright (C) 1987, 1988, 1989, 1991, 1992, 1993, 1994, 1995, 1996, 1997
3 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2007, 2008, 2009
4 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 /* This is the pathetic reminder of old fame of the jump-optimization pass
23 of the compiler. Now it contains basically a set of utility functions to
24 operate with jumps.
25
26 Each CODE_LABEL has a count of the times it is used
27 stored in the LABEL_NUSES internal field, and each JUMP_INSN
28 has one label that it refers to stored in the
29 JUMP_LABEL internal field. With this we can detect labels that
30 become unused because of the deletion of all the jumps that
31 formerly used them. The JUMP_LABEL info is sometimes looked
32 at by later passes.
33
34 The subroutines redirect_jump and invert_jump are used
35 from other passes as well. */
36
37 #include "config.h"
38 #include "system.h"
39 #include "coretypes.h"
40 #include "tm.h"
41 #include "rtl.h"
42 #include "tm_p.h"
43 #include "flags.h"
44 #include "hard-reg-set.h"
45 #include "regs.h"
46 #include "insn-config.h"
47 #include "insn-attr.h"
48 #include "recog.h"
49 #include "function.h"
50 #include "expr.h"
51 #include "real.h"
52 #include "except.h"
53 #include "diagnostic.h"
54 #include "toplev.h"
55 #include "reload.h"
56 #include "predict.h"
57 #include "timevar.h"
58 #include "tree-pass.h"
59 #include "target.h"
60
61 /* Optimize jump y; x: ... y: jumpif... x?
62 Don't know if it is worth bothering with. */
63 /* Optimize two cases of conditional jump to conditional jump?
64 This can never delete any instruction or make anything dead,
65 or even change what is live at any point.
66 So perhaps let combiner do it. */
67
68 static void init_label_info (rtx);
69 static void mark_all_labels (rtx);
70 static void mark_jump_label_1 (rtx, rtx, bool, bool);
71 static void redirect_exp_1 (rtx *, rtx, rtx, rtx);
72 static int invert_exp_1 (rtx, rtx);
73 static int returnjump_p_1 (rtx *, void *);
74
75 /* This function rebuilds the JUMP_LABEL field and REG_LABEL_TARGET
76 notes in jumping insns and REG_LABEL_OPERAND notes in non-jumping
77 instructions and jumping insns that have labels as operands
78 (e.g. cbranchsi4). */
79 void
80 rebuild_jump_labels (rtx f)
81 {
82 rtx insn;
83
84 timevar_push (TV_REBUILD_JUMP);
85 init_label_info (f);
86 mark_all_labels (f);
87
88 /* Keep track of labels used from static data; we don't track them
89 closely enough to delete them here, so make sure their reference
90 count doesn't drop to zero. */
91
92 for (insn = forced_labels; insn; insn = XEXP (insn, 1))
93 if (LABEL_P (XEXP (insn, 0)))
94 LABEL_NUSES (XEXP (insn, 0))++;
95 timevar_pop (TV_REBUILD_JUMP);
96 }
97
98 /* Some old code expects exactly one BARRIER as the NEXT_INSN of a
99 non-fallthru insn. This is not generally true, as multiple barriers
100 may have crept in, or the BARRIER may be separated from the last
101 real insn by one or more NOTEs.
102
103 This simple pass moves barriers and removes duplicates so that the
104 old code is happy.
105 */
106 unsigned int
107 cleanup_barriers (void)
108 {
109 rtx insn, next, prev;
110 for (insn = get_insns (); insn; insn = next)
111 {
112 next = NEXT_INSN (insn);
113 if (BARRIER_P (insn))
114 {
115 prev = prev_nonnote_insn (insn);
116 if (BARRIER_P (prev))
117 delete_insn (insn);
118 else if (prev != PREV_INSN (insn))
119 reorder_insns (insn, insn, prev);
120 }
121 }
122 return 0;
123 }
124
125 struct rtl_opt_pass pass_cleanup_barriers =
126 {
127 {
128 RTL_PASS,
129 "barriers", /* name */
130 NULL, /* gate */
131 cleanup_barriers, /* execute */
132 NULL, /* sub */
133 NULL, /* next */
134 0, /* static_pass_number */
135 0, /* tv_id */
136 0, /* properties_required */
137 0, /* properties_provided */
138 0, /* properties_destroyed */
139 0, /* todo_flags_start */
140 TODO_dump_func /* todo_flags_finish */
141 }
142 };
143
144
145 /* Initialize LABEL_NUSES and JUMP_LABEL fields, add REG_LABEL_TARGET
146 for remaining targets for JUMP_P. Delete any REG_LABEL_OPERAND
147 notes whose labels don't occur in the insn any more. */
148
149 static void
150 init_label_info (rtx f)
151 {
152 rtx insn;
153
154 for (insn = f; insn; insn = NEXT_INSN (insn))
155 {
156 if (LABEL_P (insn))
157 LABEL_NUSES (insn) = (LABEL_PRESERVE_P (insn) != 0);
158
159 /* REG_LABEL_TARGET notes (including the JUMP_LABEL field) are
160 sticky and not reset here; that way we won't lose association
161 with a label when e.g. the source for a target register
162 disappears out of reach for targets that may use jump-target
163 registers. Jump transformations are supposed to transform
164 any REG_LABEL_TARGET notes. The target label reference in a
165 branch may disappear from the branch (and from the
166 instruction before it) for other reasons, like register
167 allocation. */
168
169 if (INSN_P (insn))
170 {
171 rtx note, next;
172
173 for (note = REG_NOTES (insn); note; note = next)
174 {
175 next = XEXP (note, 1);
176 if (REG_NOTE_KIND (note) == REG_LABEL_OPERAND
177 && ! reg_mentioned_p (XEXP (note, 0), PATTERN (insn)))
178 remove_note (insn, note);
179 }
180 }
181 }
182 }
183
184 /* Mark the label each jump jumps to.
185 Combine consecutive labels, and count uses of labels. */
186
187 static void
188 mark_all_labels (rtx f)
189 {
190 rtx insn;
191 rtx prev_nonjump_insn = NULL;
192
193 for (insn = f; insn; insn = NEXT_INSN (insn))
194 if (INSN_P (insn))
195 {
196 mark_jump_label (PATTERN (insn), insn, 0);
197
198 /* If the previous non-jump insn sets something to a label,
199 something that this jump insn uses, make that label the primary
200 target of this insn if we don't yet have any. That previous
201 insn must be a single_set and not refer to more than one label.
202 The jump insn must not refer to other labels as jump targets
203 and must be a plain (set (pc) ...), maybe in a parallel, and
204 may refer to the item being set only directly or as one of the
205 arms in an IF_THEN_ELSE. */
206 if (! INSN_DELETED_P (insn)
207 && JUMP_P (insn)
208 && JUMP_LABEL (insn) == NULL)
209 {
210 rtx label_note = NULL;
211 rtx pc = pc_set (insn);
212 rtx pc_src = pc != NULL ? SET_SRC (pc) : NULL;
213
214 if (prev_nonjump_insn != NULL)
215 label_note
216 = find_reg_note (prev_nonjump_insn, REG_LABEL_OPERAND, NULL);
217
218 if (label_note != NULL && pc_src != NULL)
219 {
220 rtx label_set = single_set (prev_nonjump_insn);
221 rtx label_dest
222 = label_set != NULL ? SET_DEST (label_set) : NULL;
223
224 if (label_set != NULL
225 /* The source must be the direct LABEL_REF, not a
226 PLUS, UNSPEC, IF_THEN_ELSE etc. */
227 && GET_CODE (SET_SRC (label_set)) == LABEL_REF
228 && (rtx_equal_p (label_dest, pc_src)
229 || (GET_CODE (pc_src) == IF_THEN_ELSE
230 && (rtx_equal_p (label_dest, XEXP (pc_src, 1))
231 || rtx_equal_p (label_dest,
232 XEXP (pc_src, 2))))))
233
234 {
235 /* The CODE_LABEL referred to in the note must be the
236 CODE_LABEL in the LABEL_REF of the "set". We can
237 conveniently use it for the marker function, which
238 requires a LABEL_REF wrapping. */
239 gcc_assert (XEXP (label_note, 0)
240 == XEXP (SET_SRC (label_set), 0));
241
242 mark_jump_label_1 (label_set, insn, false, true);
243 gcc_assert (JUMP_LABEL (insn)
244 == XEXP (SET_SRC (label_set), 0));
245 }
246 }
247 }
248 else if (! INSN_DELETED_P (insn))
249 prev_nonjump_insn = insn;
250 }
251 else if (LABEL_P (insn))
252 prev_nonjump_insn = NULL;
253
254 /* If we are in cfglayout mode, there may be non-insns between the
255 basic blocks. If those non-insns represent tablejump data, they
256 contain label references that we must record. */
257 if (current_ir_type () == IR_RTL_CFGLAYOUT)
258 {
259 basic_block bb;
260 rtx insn;
261 FOR_EACH_BB (bb)
262 {
263 for (insn = bb->il.rtl->header; insn; insn = NEXT_INSN (insn))
264 if (INSN_P (insn))
265 {
266 gcc_assert (JUMP_TABLE_DATA_P (insn));
267 mark_jump_label (PATTERN (insn), insn, 0);
268 }
269
270 for (insn = bb->il.rtl->footer; insn; insn = NEXT_INSN (insn))
271 if (INSN_P (insn))
272 {
273 gcc_assert (JUMP_TABLE_DATA_P (insn));
274 mark_jump_label (PATTERN (insn), insn, 0);
275 }
276 }
277 }
278 }
279
280 /* Given a comparison (CODE ARG0 ARG1), inside an insn, INSN, return a code
281 of reversed comparison if it is possible to do so. Otherwise return UNKNOWN.
282 UNKNOWN may be returned in case we are having CC_MODE compare and we don't
283 know whether it's source is floating point or integer comparison. Machine
284 description should define REVERSIBLE_CC_MODE and REVERSE_CONDITION macros
285 to help this function avoid overhead in these cases. */
286 enum rtx_code
287 reversed_comparison_code_parts (enum rtx_code code, const_rtx arg0,
288 const_rtx arg1, const_rtx insn)
289 {
290 enum machine_mode mode;
291
292 /* If this is not actually a comparison, we can't reverse it. */
293 if (GET_RTX_CLASS (code) != RTX_COMPARE
294 && GET_RTX_CLASS (code) != RTX_COMM_COMPARE)
295 return UNKNOWN;
296
297 mode = GET_MODE (arg0);
298 if (mode == VOIDmode)
299 mode = GET_MODE (arg1);
300
301 /* First see if machine description supplies us way to reverse the
302 comparison. Give it priority over everything else to allow
303 machine description to do tricks. */
304 if (GET_MODE_CLASS (mode) == MODE_CC
305 && REVERSIBLE_CC_MODE (mode))
306 {
307 #ifdef REVERSE_CONDITION
308 return REVERSE_CONDITION (code, mode);
309 #endif
310 return reverse_condition (code);
311 }
312
313 /* Try a few special cases based on the comparison code. */
314 switch (code)
315 {
316 case GEU:
317 case GTU:
318 case LEU:
319 case LTU:
320 case NE:
321 case EQ:
322 /* It is always safe to reverse EQ and NE, even for the floating
323 point. Similarly the unsigned comparisons are never used for
324 floating point so we can reverse them in the default way. */
325 return reverse_condition (code);
326 case ORDERED:
327 case UNORDERED:
328 case LTGT:
329 case UNEQ:
330 /* In case we already see unordered comparison, we can be sure to
331 be dealing with floating point so we don't need any more tests. */
332 return reverse_condition_maybe_unordered (code);
333 case UNLT:
334 case UNLE:
335 case UNGT:
336 case UNGE:
337 /* We don't have safe way to reverse these yet. */
338 return UNKNOWN;
339 default:
340 break;
341 }
342
343 if (GET_MODE_CLASS (mode) == MODE_CC || CC0_P (arg0))
344 {
345 const_rtx prev;
346 /* Try to search for the comparison to determine the real mode.
347 This code is expensive, but with sane machine description it
348 will be never used, since REVERSIBLE_CC_MODE will return true
349 in all cases. */
350 if (! insn)
351 return UNKNOWN;
352
353 /* These CONST_CAST's are okay because prev_nonnote_insn just
354 returns its argument and we assign it to a const_rtx
355 variable. */
356 for (prev = prev_nonnote_insn (CONST_CAST_RTX(insn));
357 prev != 0 && !LABEL_P (prev);
358 prev = prev_nonnote_insn (CONST_CAST_RTX(prev)))
359 {
360 const_rtx set = set_of (arg0, prev);
361 if (set && GET_CODE (set) == SET
362 && rtx_equal_p (SET_DEST (set), arg0))
363 {
364 rtx src = SET_SRC (set);
365
366 if (GET_CODE (src) == COMPARE)
367 {
368 rtx comparison = src;
369 arg0 = XEXP (src, 0);
370 mode = GET_MODE (arg0);
371 if (mode == VOIDmode)
372 mode = GET_MODE (XEXP (comparison, 1));
373 break;
374 }
375 /* We can get past reg-reg moves. This may be useful for model
376 of i387 comparisons that first move flag registers around. */
377 if (REG_P (src))
378 {
379 arg0 = src;
380 continue;
381 }
382 }
383 /* If register is clobbered in some ununderstandable way,
384 give up. */
385 if (set)
386 return UNKNOWN;
387 }
388 }
389
390 /* Test for an integer condition, or a floating-point comparison
391 in which NaNs can be ignored. */
392 if (GET_CODE (arg0) == CONST_INT
393 || (GET_MODE (arg0) != VOIDmode
394 && GET_MODE_CLASS (mode) != MODE_CC
395 && !HONOR_NANS (mode)))
396 return reverse_condition (code);
397
398 return UNKNOWN;
399 }
400
401 /* A wrapper around the previous function to take COMPARISON as rtx
402 expression. This simplifies many callers. */
403 enum rtx_code
404 reversed_comparison_code (const_rtx comparison, const_rtx insn)
405 {
406 if (!COMPARISON_P (comparison))
407 return UNKNOWN;
408 return reversed_comparison_code_parts (GET_CODE (comparison),
409 XEXP (comparison, 0),
410 XEXP (comparison, 1), insn);
411 }
412
413 /* Return comparison with reversed code of EXP.
414 Return NULL_RTX in case we fail to do the reversal. */
415 rtx
416 reversed_comparison (const_rtx exp, enum machine_mode mode)
417 {
418 enum rtx_code reversed_code = reversed_comparison_code (exp, NULL_RTX);
419 if (reversed_code == UNKNOWN)
420 return NULL_RTX;
421 else
422 return simplify_gen_relational (reversed_code, mode, VOIDmode,
423 XEXP (exp, 0), XEXP (exp, 1));
424 }
425
426
427 /* Given an rtx-code for a comparison, return the code for the negated
428 comparison. If no such code exists, return UNKNOWN.
429
430 WATCH OUT! reverse_condition is not safe to use on a jump that might
431 be acting on the results of an IEEE floating point comparison, because
432 of the special treatment of non-signaling nans in comparisons.
433 Use reversed_comparison_code instead. */
434
435 enum rtx_code
436 reverse_condition (enum rtx_code code)
437 {
438 switch (code)
439 {
440 case EQ:
441 return NE;
442 case NE:
443 return EQ;
444 case GT:
445 return LE;
446 case GE:
447 return LT;
448 case LT:
449 return GE;
450 case LE:
451 return GT;
452 case GTU:
453 return LEU;
454 case GEU:
455 return LTU;
456 case LTU:
457 return GEU;
458 case LEU:
459 return GTU;
460 case UNORDERED:
461 return ORDERED;
462 case ORDERED:
463 return UNORDERED;
464
465 case UNLT:
466 case UNLE:
467 case UNGT:
468 case UNGE:
469 case UNEQ:
470 case LTGT:
471 return UNKNOWN;
472
473 default:
474 gcc_unreachable ();
475 }
476 }
477
478 /* Similar, but we're allowed to generate unordered comparisons, which
479 makes it safe for IEEE floating-point. Of course, we have to recognize
480 that the target will support them too... */
481
482 enum rtx_code
483 reverse_condition_maybe_unordered (enum rtx_code code)
484 {
485 switch (code)
486 {
487 case EQ:
488 return NE;
489 case NE:
490 return EQ;
491 case GT:
492 return UNLE;
493 case GE:
494 return UNLT;
495 case LT:
496 return UNGE;
497 case LE:
498 return UNGT;
499 case LTGT:
500 return UNEQ;
501 case UNORDERED:
502 return ORDERED;
503 case ORDERED:
504 return UNORDERED;
505 case UNLT:
506 return GE;
507 case UNLE:
508 return GT;
509 case UNGT:
510 return LE;
511 case UNGE:
512 return LT;
513 case UNEQ:
514 return LTGT;
515
516 default:
517 gcc_unreachable ();
518 }
519 }
520
521 /* Similar, but return the code when two operands of a comparison are swapped.
522 This IS safe for IEEE floating-point. */
523
524 enum rtx_code
525 swap_condition (enum rtx_code code)
526 {
527 switch (code)
528 {
529 case EQ:
530 case NE:
531 case UNORDERED:
532 case ORDERED:
533 case UNEQ:
534 case LTGT:
535 return code;
536
537 case GT:
538 return LT;
539 case GE:
540 return LE;
541 case LT:
542 return GT;
543 case LE:
544 return GE;
545 case GTU:
546 return LTU;
547 case GEU:
548 return LEU;
549 case LTU:
550 return GTU;
551 case LEU:
552 return GEU;
553 case UNLT:
554 return UNGT;
555 case UNLE:
556 return UNGE;
557 case UNGT:
558 return UNLT;
559 case UNGE:
560 return UNLE;
561
562 default:
563 gcc_unreachable ();
564 }
565 }
566
567 /* Given a comparison CODE, return the corresponding unsigned comparison.
568 If CODE is an equality comparison or already an unsigned comparison,
569 CODE is returned. */
570
571 enum rtx_code
572 unsigned_condition (enum rtx_code code)
573 {
574 switch (code)
575 {
576 case EQ:
577 case NE:
578 case GTU:
579 case GEU:
580 case LTU:
581 case LEU:
582 return code;
583
584 case GT:
585 return GTU;
586 case GE:
587 return GEU;
588 case LT:
589 return LTU;
590 case LE:
591 return LEU;
592
593 default:
594 gcc_unreachable ();
595 }
596 }
597
598 /* Similarly, return the signed version of a comparison. */
599
600 enum rtx_code
601 signed_condition (enum rtx_code code)
602 {
603 switch (code)
604 {
605 case EQ:
606 case NE:
607 case GT:
608 case GE:
609 case LT:
610 case LE:
611 return code;
612
613 case GTU:
614 return GT;
615 case GEU:
616 return GE;
617 case LTU:
618 return LT;
619 case LEU:
620 return LE;
621
622 default:
623 gcc_unreachable ();
624 }
625 }
626
627 /* Return nonzero if CODE1 is more strict than CODE2, i.e., if the
628 truth of CODE1 implies the truth of CODE2. */
629
630 int
631 comparison_dominates_p (enum rtx_code code1, enum rtx_code code2)
632 {
633 /* UNKNOWN comparison codes can happen as a result of trying to revert
634 comparison codes.
635 They can't match anything, so we have to reject them here. */
636 if (code1 == UNKNOWN || code2 == UNKNOWN)
637 return 0;
638
639 if (code1 == code2)
640 return 1;
641
642 switch (code1)
643 {
644 case UNEQ:
645 if (code2 == UNLE || code2 == UNGE)
646 return 1;
647 break;
648
649 case EQ:
650 if (code2 == LE || code2 == LEU || code2 == GE || code2 == GEU
651 || code2 == ORDERED)
652 return 1;
653 break;
654
655 case UNLT:
656 if (code2 == UNLE || code2 == NE)
657 return 1;
658 break;
659
660 case LT:
661 if (code2 == LE || code2 == NE || code2 == ORDERED || code2 == LTGT)
662 return 1;
663 break;
664
665 case UNGT:
666 if (code2 == UNGE || code2 == NE)
667 return 1;
668 break;
669
670 case GT:
671 if (code2 == GE || code2 == NE || code2 == ORDERED || code2 == LTGT)
672 return 1;
673 break;
674
675 case GE:
676 case LE:
677 if (code2 == ORDERED)
678 return 1;
679 break;
680
681 case LTGT:
682 if (code2 == NE || code2 == ORDERED)
683 return 1;
684 break;
685
686 case LTU:
687 if (code2 == LEU || code2 == NE)
688 return 1;
689 break;
690
691 case GTU:
692 if (code2 == GEU || code2 == NE)
693 return 1;
694 break;
695
696 case UNORDERED:
697 if (code2 == NE || code2 == UNEQ || code2 == UNLE || code2 == UNLT
698 || code2 == UNGE || code2 == UNGT)
699 return 1;
700 break;
701
702 default:
703 break;
704 }
705
706 return 0;
707 }
708
709 /* Return 1 if INSN is an unconditional jump and nothing else. */
710
711 int
712 simplejump_p (const_rtx insn)
713 {
714 return (JUMP_P (insn)
715 && GET_CODE (PATTERN (insn)) == SET
716 && GET_CODE (SET_DEST (PATTERN (insn))) == PC
717 && GET_CODE (SET_SRC (PATTERN (insn))) == LABEL_REF);
718 }
719
720 /* Return nonzero if INSN is a (possibly) conditional jump
721 and nothing more.
722
723 Use of this function is deprecated, since we need to support combined
724 branch and compare insns. Use any_condjump_p instead whenever possible. */
725
726 int
727 condjump_p (const_rtx insn)
728 {
729 const_rtx x = PATTERN (insn);
730
731 if (GET_CODE (x) != SET
732 || GET_CODE (SET_DEST (x)) != PC)
733 return 0;
734
735 x = SET_SRC (x);
736 if (GET_CODE (x) == LABEL_REF)
737 return 1;
738 else
739 return (GET_CODE (x) == IF_THEN_ELSE
740 && ((GET_CODE (XEXP (x, 2)) == PC
741 && (GET_CODE (XEXP (x, 1)) == LABEL_REF
742 || GET_CODE (XEXP (x, 1)) == RETURN))
743 || (GET_CODE (XEXP (x, 1)) == PC
744 && (GET_CODE (XEXP (x, 2)) == LABEL_REF
745 || GET_CODE (XEXP (x, 2)) == RETURN))));
746 }
747
748 /* Return nonzero if INSN is a (possibly) conditional jump inside a
749 PARALLEL.
750
751 Use this function is deprecated, since we need to support combined
752 branch and compare insns. Use any_condjump_p instead whenever possible. */
753
754 int
755 condjump_in_parallel_p (const_rtx insn)
756 {
757 const_rtx x = PATTERN (insn);
758
759 if (GET_CODE (x) != PARALLEL)
760 return 0;
761 else
762 x = XVECEXP (x, 0, 0);
763
764 if (GET_CODE (x) != SET)
765 return 0;
766 if (GET_CODE (SET_DEST (x)) != PC)
767 return 0;
768 if (GET_CODE (SET_SRC (x)) == LABEL_REF)
769 return 1;
770 if (GET_CODE (SET_SRC (x)) != IF_THEN_ELSE)
771 return 0;
772 if (XEXP (SET_SRC (x), 2) == pc_rtx
773 && (GET_CODE (XEXP (SET_SRC (x), 1)) == LABEL_REF
774 || GET_CODE (XEXP (SET_SRC (x), 1)) == RETURN))
775 return 1;
776 if (XEXP (SET_SRC (x), 1) == pc_rtx
777 && (GET_CODE (XEXP (SET_SRC (x), 2)) == LABEL_REF
778 || GET_CODE (XEXP (SET_SRC (x), 2)) == RETURN))
779 return 1;
780 return 0;
781 }
782
783 /* Return set of PC, otherwise NULL. */
784
785 rtx
786 pc_set (const_rtx insn)
787 {
788 rtx pat;
789 if (!JUMP_P (insn))
790 return NULL_RTX;
791 pat = PATTERN (insn);
792
793 /* The set is allowed to appear either as the insn pattern or
794 the first set in a PARALLEL. */
795 if (GET_CODE (pat) == PARALLEL)
796 pat = XVECEXP (pat, 0, 0);
797 if (GET_CODE (pat) == SET && GET_CODE (SET_DEST (pat)) == PC)
798 return pat;
799
800 return NULL_RTX;
801 }
802
803 /* Return true when insn is an unconditional direct jump,
804 possibly bundled inside a PARALLEL. */
805
806 int
807 any_uncondjump_p (const_rtx insn)
808 {
809 const_rtx x = pc_set (insn);
810 if (!x)
811 return 0;
812 if (GET_CODE (SET_SRC (x)) != LABEL_REF)
813 return 0;
814 if (find_reg_note (insn, REG_NON_LOCAL_GOTO, NULL_RTX))
815 return 0;
816 return 1;
817 }
818
819 /* Return true when insn is a conditional jump. This function works for
820 instructions containing PC sets in PARALLELs. The instruction may have
821 various other effects so before removing the jump you must verify
822 onlyjump_p.
823
824 Note that unlike condjump_p it returns false for unconditional jumps. */
825
826 int
827 any_condjump_p (const_rtx insn)
828 {
829 const_rtx x = pc_set (insn);
830 enum rtx_code a, b;
831
832 if (!x)
833 return 0;
834 if (GET_CODE (SET_SRC (x)) != IF_THEN_ELSE)
835 return 0;
836
837 a = GET_CODE (XEXP (SET_SRC (x), 1));
838 b = GET_CODE (XEXP (SET_SRC (x), 2));
839
840 return ((b == PC && (a == LABEL_REF || a == RETURN))
841 || (a == PC && (b == LABEL_REF || b == RETURN)));
842 }
843
844 /* Return the label of a conditional jump. */
845
846 rtx
847 condjump_label (const_rtx insn)
848 {
849 rtx x = pc_set (insn);
850
851 if (!x)
852 return NULL_RTX;
853 x = SET_SRC (x);
854 if (GET_CODE (x) == LABEL_REF)
855 return x;
856 if (GET_CODE (x) != IF_THEN_ELSE)
857 return NULL_RTX;
858 if (XEXP (x, 2) == pc_rtx && GET_CODE (XEXP (x, 1)) == LABEL_REF)
859 return XEXP (x, 1);
860 if (XEXP (x, 1) == pc_rtx && GET_CODE (XEXP (x, 2)) == LABEL_REF)
861 return XEXP (x, 2);
862 return NULL_RTX;
863 }
864
865 /* Return true if INSN is a (possibly conditional) return insn. */
866
867 static int
868 returnjump_p_1 (rtx *loc, void *data ATTRIBUTE_UNUSED)
869 {
870 rtx x = *loc;
871
872 return x && (GET_CODE (x) == RETURN
873 || (GET_CODE (x) == SET && SET_IS_RETURN_P (x)));
874 }
875
876 int
877 returnjump_p (rtx insn)
878 {
879 if (!JUMP_P (insn))
880 return 0;
881 return for_each_rtx (&PATTERN (insn), returnjump_p_1, NULL);
882 }
883
884 /* Return true if INSN is a jump that only transfers control and
885 nothing more. */
886
887 int
888 onlyjump_p (const_rtx insn)
889 {
890 rtx set;
891
892 if (!JUMP_P (insn))
893 return 0;
894
895 set = single_set (insn);
896 if (set == NULL)
897 return 0;
898 if (GET_CODE (SET_DEST (set)) != PC)
899 return 0;
900 if (side_effects_p (SET_SRC (set)))
901 return 0;
902
903 return 1;
904 }
905
906 #ifdef HAVE_cc0
907
908 /* Return nonzero if X is an RTX that only sets the condition codes
909 and has no side effects. */
910
911 int
912 only_sets_cc0_p (const_rtx x)
913 {
914 if (! x)
915 return 0;
916
917 if (INSN_P (x))
918 x = PATTERN (x);
919
920 return sets_cc0_p (x) == 1 && ! side_effects_p (x);
921 }
922
923 /* Return 1 if X is an RTX that does nothing but set the condition codes
924 and CLOBBER or USE registers.
925 Return -1 if X does explicitly set the condition codes,
926 but also does other things. */
927
928 int
929 sets_cc0_p (const_rtx x)
930 {
931 if (! x)
932 return 0;
933
934 if (INSN_P (x))
935 x = PATTERN (x);
936
937 if (GET_CODE (x) == SET && SET_DEST (x) == cc0_rtx)
938 return 1;
939 if (GET_CODE (x) == PARALLEL)
940 {
941 int i;
942 int sets_cc0 = 0;
943 int other_things = 0;
944 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
945 {
946 if (GET_CODE (XVECEXP (x, 0, i)) == SET
947 && SET_DEST (XVECEXP (x, 0, i)) == cc0_rtx)
948 sets_cc0 = 1;
949 else if (GET_CODE (XVECEXP (x, 0, i)) == SET)
950 other_things = 1;
951 }
952 return ! sets_cc0 ? 0 : other_things ? -1 : 1;
953 }
954 return 0;
955 }
956 #endif
957
958 /* Find all CODE_LABELs referred to in X, and increment their use
959 counts. If INSN is a JUMP_INSN and there is at least one
960 CODE_LABEL referenced in INSN as a jump target, then store the last
961 one in JUMP_LABEL (INSN). For a tablejump, this must be the label
962 for the ADDR_VEC. Store any other jump targets as REG_LABEL_TARGET
963 notes. If INSN is an INSN or a CALL_INSN or non-target operands of
964 a JUMP_INSN, and there is at least one CODE_LABEL referenced in
965 INSN, add a REG_LABEL_OPERAND note containing that label to INSN.
966
967 Note that two labels separated by a loop-beginning note
968 must be kept distinct if we have not yet done loop-optimization,
969 because the gap between them is where loop-optimize
970 will want to move invariant code to. CROSS_JUMP tells us
971 that loop-optimization is done with. */
972
973 void
974 mark_jump_label (rtx x, rtx insn, int in_mem)
975 {
976 mark_jump_label_1 (x, insn, in_mem != 0,
977 (insn != NULL && x == PATTERN (insn) && JUMP_P (insn)));
978 }
979
980 /* Worker function for mark_jump_label. IN_MEM is TRUE when X occurs
981 within a (MEM ...). IS_TARGET is TRUE when X is to be treated as a
982 jump-target; when the JUMP_LABEL field of INSN should be set or a
983 REG_LABEL_TARGET note should be added, not a REG_LABEL_OPERAND
984 note. */
985
986 static void
987 mark_jump_label_1 (rtx x, rtx insn, bool in_mem, bool is_target)
988 {
989 RTX_CODE code = GET_CODE (x);
990 int i;
991 const char *fmt;
992
993 switch (code)
994 {
995 case PC:
996 case CC0:
997 case REG:
998 case CONST_INT:
999 case CONST_DOUBLE:
1000 case CLOBBER:
1001 case CALL:
1002 return;
1003
1004 case MEM:
1005 in_mem = true;
1006 break;
1007
1008 case SEQUENCE:
1009 for (i = 0; i < XVECLEN (x, 0); i++)
1010 mark_jump_label (PATTERN (XVECEXP (x, 0, i)),
1011 XVECEXP (x, 0, i), 0);
1012 return;
1013
1014 case SYMBOL_REF:
1015 if (!in_mem)
1016 return;
1017
1018 /* If this is a constant-pool reference, see if it is a label. */
1019 if (CONSTANT_POOL_ADDRESS_P (x))
1020 mark_jump_label_1 (get_pool_constant (x), insn, in_mem, is_target);
1021 break;
1022
1023 /* Handle operands in the condition of an if-then-else as for a
1024 non-jump insn. */
1025 case IF_THEN_ELSE:
1026 if (!is_target)
1027 break;
1028 mark_jump_label_1 (XEXP (x, 0), insn, in_mem, false);
1029 mark_jump_label_1 (XEXP (x, 1), insn, in_mem, true);
1030 mark_jump_label_1 (XEXP (x, 2), insn, in_mem, true);
1031 return;
1032
1033 case LABEL_REF:
1034 {
1035 rtx label = XEXP (x, 0);
1036
1037 /* Ignore remaining references to unreachable labels that
1038 have been deleted. */
1039 if (NOTE_P (label)
1040 && NOTE_KIND (label) == NOTE_INSN_DELETED_LABEL)
1041 break;
1042
1043 gcc_assert (LABEL_P (label));
1044
1045 /* Ignore references to labels of containing functions. */
1046 if (LABEL_REF_NONLOCAL_P (x))
1047 break;
1048
1049 XEXP (x, 0) = label;
1050 if (! insn || ! INSN_DELETED_P (insn))
1051 ++LABEL_NUSES (label);
1052
1053 if (insn)
1054 {
1055 if (is_target
1056 /* Do not change a previous setting of JUMP_LABEL. If the
1057 JUMP_LABEL slot is occupied by a different label,
1058 create a note for this label. */
1059 && (JUMP_LABEL (insn) == NULL || JUMP_LABEL (insn) == label))
1060 JUMP_LABEL (insn) = label;
1061 else
1062 {
1063 enum reg_note kind
1064 = is_target ? REG_LABEL_TARGET : REG_LABEL_OPERAND;
1065
1066 /* Add a REG_LABEL_OPERAND or REG_LABEL_TARGET note
1067 for LABEL unless there already is one. All uses of
1068 a label, except for the primary target of a jump,
1069 must have such a note. */
1070 if (! find_reg_note (insn, kind, label))
1071 add_reg_note (insn, kind, label);
1072 }
1073 }
1074 return;
1075 }
1076
1077 /* Do walk the labels in a vector, but not the first operand of an
1078 ADDR_DIFF_VEC. Don't set the JUMP_LABEL of a vector. */
1079 case ADDR_VEC:
1080 case ADDR_DIFF_VEC:
1081 if (! INSN_DELETED_P (insn))
1082 {
1083 int eltnum = code == ADDR_DIFF_VEC ? 1 : 0;
1084
1085 for (i = 0; i < XVECLEN (x, eltnum); i++)
1086 mark_jump_label_1 (XVECEXP (x, eltnum, i), NULL_RTX, in_mem,
1087 is_target);
1088 }
1089 return;
1090
1091 default:
1092 break;
1093 }
1094
1095 fmt = GET_RTX_FORMAT (code);
1096
1097 /* The primary target of a tablejump is the label of the ADDR_VEC,
1098 which is canonically mentioned *last* in the insn. To get it
1099 marked as JUMP_LABEL, we iterate over items in reverse order. */
1100 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1101 {
1102 if (fmt[i] == 'e')
1103 mark_jump_label_1 (XEXP (x, i), insn, in_mem, is_target);
1104 else if (fmt[i] == 'E')
1105 {
1106 int j;
1107
1108 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1109 mark_jump_label_1 (XVECEXP (x, i, j), insn, in_mem,
1110 is_target);
1111 }
1112 }
1113 }
1114
1115
1116 /* Delete insn INSN from the chain of insns and update label ref counts
1117 and delete insns now unreachable.
1118
1119 Returns the first insn after INSN that was not deleted.
1120
1121 Usage of this instruction is deprecated. Use delete_insn instead and
1122 subsequent cfg_cleanup pass to delete unreachable code if needed. */
1123
1124 rtx
1125 delete_related_insns (rtx insn)
1126 {
1127 int was_code_label = (LABEL_P (insn));
1128 rtx note;
1129 rtx next = NEXT_INSN (insn), prev = PREV_INSN (insn);
1130
1131 while (next && INSN_DELETED_P (next))
1132 next = NEXT_INSN (next);
1133
1134 /* This insn is already deleted => return first following nondeleted. */
1135 if (INSN_DELETED_P (insn))
1136 return next;
1137
1138 delete_insn (insn);
1139
1140 /* If instruction is followed by a barrier,
1141 delete the barrier too. */
1142
1143 if (next != 0 && BARRIER_P (next))
1144 delete_insn (next);
1145
1146 /* If deleting a jump, decrement the count of the label,
1147 and delete the label if it is now unused. */
1148
1149 if (JUMP_P (insn) && JUMP_LABEL (insn))
1150 {
1151 rtx lab = JUMP_LABEL (insn), lab_next;
1152
1153 if (LABEL_NUSES (lab) == 0)
1154 /* This can delete NEXT or PREV,
1155 either directly if NEXT is JUMP_LABEL (INSN),
1156 or indirectly through more levels of jumps. */
1157 delete_related_insns (lab);
1158 else if (tablejump_p (insn, NULL, &lab_next))
1159 {
1160 /* If we're deleting the tablejump, delete the dispatch table.
1161 We may not be able to kill the label immediately preceding
1162 just yet, as it might be referenced in code leading up to
1163 the tablejump. */
1164 delete_related_insns (lab_next);
1165 }
1166 }
1167
1168 /* Likewise if we're deleting a dispatch table. */
1169
1170 if (JUMP_P (insn)
1171 && (GET_CODE (PATTERN (insn)) == ADDR_VEC
1172 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC))
1173 {
1174 rtx pat = PATTERN (insn);
1175 int i, diff_vec_p = GET_CODE (pat) == ADDR_DIFF_VEC;
1176 int len = XVECLEN (pat, diff_vec_p);
1177
1178 for (i = 0; i < len; i++)
1179 if (LABEL_NUSES (XEXP (XVECEXP (pat, diff_vec_p, i), 0)) == 0)
1180 delete_related_insns (XEXP (XVECEXP (pat, diff_vec_p, i), 0));
1181 while (next && INSN_DELETED_P (next))
1182 next = NEXT_INSN (next);
1183 return next;
1184 }
1185
1186 /* Likewise for any JUMP_P / INSN / CALL_INSN with a
1187 REG_LABEL_OPERAND or REG_LABEL_TARGET note. */
1188 if (INSN_P (insn))
1189 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
1190 if ((REG_NOTE_KIND (note) == REG_LABEL_OPERAND
1191 || REG_NOTE_KIND (note) == REG_LABEL_TARGET)
1192 /* This could also be a NOTE_INSN_DELETED_LABEL note. */
1193 && LABEL_P (XEXP (note, 0)))
1194 if (LABEL_NUSES (XEXP (note, 0)) == 0)
1195 delete_related_insns (XEXP (note, 0));
1196
1197 while (prev && (INSN_DELETED_P (prev) || NOTE_P (prev)))
1198 prev = PREV_INSN (prev);
1199
1200 /* If INSN was a label and a dispatch table follows it,
1201 delete the dispatch table. The tablejump must have gone already.
1202 It isn't useful to fall through into a table. */
1203
1204 if (was_code_label
1205 && NEXT_INSN (insn) != 0
1206 && JUMP_P (NEXT_INSN (insn))
1207 && (GET_CODE (PATTERN (NEXT_INSN (insn))) == ADDR_VEC
1208 || GET_CODE (PATTERN (NEXT_INSN (insn))) == ADDR_DIFF_VEC))
1209 next = delete_related_insns (NEXT_INSN (insn));
1210
1211 /* If INSN was a label, delete insns following it if now unreachable. */
1212
1213 if (was_code_label && prev && BARRIER_P (prev))
1214 {
1215 enum rtx_code code;
1216 while (next)
1217 {
1218 code = GET_CODE (next);
1219 if (code == NOTE)
1220 next = NEXT_INSN (next);
1221 /* Keep going past other deleted labels to delete what follows. */
1222 else if (code == CODE_LABEL && INSN_DELETED_P (next))
1223 next = NEXT_INSN (next);
1224 else if (code == BARRIER || INSN_P (next))
1225 /* Note: if this deletes a jump, it can cause more
1226 deletion of unreachable code, after a different label.
1227 As long as the value from this recursive call is correct,
1228 this invocation functions correctly. */
1229 next = delete_related_insns (next);
1230 else
1231 break;
1232 }
1233 }
1234
1235 /* I feel a little doubtful about this loop,
1236 but I see no clean and sure alternative way
1237 to find the first insn after INSN that is not now deleted.
1238 I hope this works. */
1239 while (next && INSN_DELETED_P (next))
1240 next = NEXT_INSN (next);
1241 return next;
1242 }
1243
1244 /* Delete a range of insns from FROM to TO, inclusive.
1245 This is for the sake of peephole optimization, so assume
1246 that whatever these insns do will still be done by a new
1247 peephole insn that will replace them. */
1248
1249 void
1250 delete_for_peephole (rtx from, rtx to)
1251 {
1252 rtx insn = from;
1253
1254 while (1)
1255 {
1256 rtx next = NEXT_INSN (insn);
1257 rtx prev = PREV_INSN (insn);
1258
1259 if (!NOTE_P (insn))
1260 {
1261 INSN_DELETED_P (insn) = 1;
1262
1263 /* Patch this insn out of the chain. */
1264 /* We don't do this all at once, because we
1265 must preserve all NOTEs. */
1266 if (prev)
1267 NEXT_INSN (prev) = next;
1268
1269 if (next)
1270 PREV_INSN (next) = prev;
1271 }
1272
1273 if (insn == to)
1274 break;
1275 insn = next;
1276 }
1277
1278 /* Note that if TO is an unconditional jump
1279 we *do not* delete the BARRIER that follows,
1280 since the peephole that replaces this sequence
1281 is also an unconditional jump in that case. */
1282 }
1283
1284 /* Throughout LOC, redirect OLABEL to NLABEL. Treat null OLABEL or
1285 NLABEL as a return. Accrue modifications into the change group. */
1286
1287 static void
1288 redirect_exp_1 (rtx *loc, rtx olabel, rtx nlabel, rtx insn)
1289 {
1290 rtx x = *loc;
1291 RTX_CODE code = GET_CODE (x);
1292 int i;
1293 const char *fmt;
1294
1295 if (code == LABEL_REF)
1296 {
1297 if (XEXP (x, 0) == olabel)
1298 {
1299 rtx n;
1300 if (nlabel)
1301 n = gen_rtx_LABEL_REF (Pmode, nlabel);
1302 else
1303 n = gen_rtx_RETURN (VOIDmode);
1304
1305 validate_change (insn, loc, n, 1);
1306 return;
1307 }
1308 }
1309 else if (code == RETURN && olabel == 0)
1310 {
1311 if (nlabel)
1312 x = gen_rtx_LABEL_REF (Pmode, nlabel);
1313 else
1314 x = gen_rtx_RETURN (VOIDmode);
1315 if (loc == &PATTERN (insn))
1316 x = gen_rtx_SET (VOIDmode, pc_rtx, x);
1317 validate_change (insn, loc, x, 1);
1318 return;
1319 }
1320
1321 if (code == SET && nlabel == 0 && SET_DEST (x) == pc_rtx
1322 && GET_CODE (SET_SRC (x)) == LABEL_REF
1323 && XEXP (SET_SRC (x), 0) == olabel)
1324 {
1325 validate_change (insn, loc, gen_rtx_RETURN (VOIDmode), 1);
1326 return;
1327 }
1328
1329 if (code == IF_THEN_ELSE)
1330 {
1331 /* Skip the condition of an IF_THEN_ELSE. We only want to
1332 change jump destinations, not eventual label comparisons. */
1333 redirect_exp_1 (&XEXP (x, 1), olabel, nlabel, insn);
1334 redirect_exp_1 (&XEXP (x, 2), olabel, nlabel, insn);
1335 return;
1336 }
1337
1338 fmt = GET_RTX_FORMAT (code);
1339 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1340 {
1341 if (fmt[i] == 'e')
1342 redirect_exp_1 (&XEXP (x, i), olabel, nlabel, insn);
1343 else if (fmt[i] == 'E')
1344 {
1345 int j;
1346 for (j = 0; j < XVECLEN (x, i); j++)
1347 redirect_exp_1 (&XVECEXP (x, i, j), olabel, nlabel, insn);
1348 }
1349 }
1350 }
1351
1352 /* Make JUMP go to NLABEL instead of where it jumps now. Accrue
1353 the modifications into the change group. Return false if we did
1354 not see how to do that. */
1355
1356 int
1357 redirect_jump_1 (rtx jump, rtx nlabel)
1358 {
1359 int ochanges = num_validated_changes ();
1360 rtx *loc;
1361
1362 if (GET_CODE (PATTERN (jump)) == PARALLEL)
1363 loc = &XVECEXP (PATTERN (jump), 0, 0);
1364 else
1365 loc = &PATTERN (jump);
1366
1367 redirect_exp_1 (loc, JUMP_LABEL (jump), nlabel, jump);
1368 return num_validated_changes () > ochanges;
1369 }
1370
1371 /* Make JUMP go to NLABEL instead of where it jumps now. If the old
1372 jump target label is unused as a result, it and the code following
1373 it may be deleted.
1374
1375 If NLABEL is zero, we are to turn the jump into a (possibly conditional)
1376 RETURN insn.
1377
1378 The return value will be 1 if the change was made, 0 if it wasn't
1379 (this can only occur for NLABEL == 0). */
1380
1381 int
1382 redirect_jump (rtx jump, rtx nlabel, int delete_unused)
1383 {
1384 rtx olabel = JUMP_LABEL (jump);
1385
1386 if (nlabel == olabel)
1387 return 1;
1388
1389 if (! redirect_jump_1 (jump, nlabel) || ! apply_change_group ())
1390 return 0;
1391
1392 redirect_jump_2 (jump, olabel, nlabel, delete_unused, 0);
1393 return 1;
1394 }
1395
1396 /* Fix up JUMP_LABEL and label ref counts after OLABEL has been replaced with
1397 NLABEL in JUMP.
1398 If DELETE_UNUSED is positive, delete related insn to OLABEL if its ref
1399 count has dropped to zero. */
1400 void
1401 redirect_jump_2 (rtx jump, rtx olabel, rtx nlabel, int delete_unused,
1402 int invert)
1403 {
1404 rtx note;
1405
1406 gcc_assert (JUMP_LABEL (jump) == olabel);
1407
1408 /* Negative DELETE_UNUSED used to be used to signalize behavior on
1409 moving FUNCTION_END note. Just sanity check that no user still worry
1410 about this. */
1411 gcc_assert (delete_unused >= 0);
1412 JUMP_LABEL (jump) = nlabel;
1413 if (nlabel)
1414 ++LABEL_NUSES (nlabel);
1415
1416 /* Update labels in any REG_EQUAL note. */
1417 if ((note = find_reg_note (jump, REG_EQUAL, NULL_RTX)) != NULL_RTX)
1418 {
1419 if (!nlabel || (invert && !invert_exp_1 (XEXP (note, 0), jump)))
1420 remove_note (jump, note);
1421 else
1422 {
1423 redirect_exp_1 (&XEXP (note, 0), olabel, nlabel, jump);
1424 confirm_change_group ();
1425 }
1426 }
1427
1428 if (olabel && --LABEL_NUSES (olabel) == 0 && delete_unused > 0
1429 /* Undefined labels will remain outside the insn stream. */
1430 && INSN_UID (olabel))
1431 delete_related_insns (olabel);
1432 if (invert)
1433 invert_br_probabilities (jump);
1434 }
1435
1436 /* Invert the jump condition X contained in jump insn INSN. Accrue the
1437 modifications into the change group. Return nonzero for success. */
1438 static int
1439 invert_exp_1 (rtx x, rtx insn)
1440 {
1441 RTX_CODE code = GET_CODE (x);
1442
1443 if (code == IF_THEN_ELSE)
1444 {
1445 rtx comp = XEXP (x, 0);
1446 rtx tem;
1447 enum rtx_code reversed_code;
1448
1449 /* We can do this in two ways: The preferable way, which can only
1450 be done if this is not an integer comparison, is to reverse
1451 the comparison code. Otherwise, swap the THEN-part and ELSE-part
1452 of the IF_THEN_ELSE. If we can't do either, fail. */
1453
1454 reversed_code = reversed_comparison_code (comp, insn);
1455
1456 if (reversed_code != UNKNOWN)
1457 {
1458 validate_change (insn, &XEXP (x, 0),
1459 gen_rtx_fmt_ee (reversed_code,
1460 GET_MODE (comp), XEXP (comp, 0),
1461 XEXP (comp, 1)),
1462 1);
1463 return 1;
1464 }
1465
1466 tem = XEXP (x, 1);
1467 validate_change (insn, &XEXP (x, 1), XEXP (x, 2), 1);
1468 validate_change (insn, &XEXP (x, 2), tem, 1);
1469 return 1;
1470 }
1471 else
1472 return 0;
1473 }
1474
1475 /* Invert the condition of the jump JUMP, and make it jump to label
1476 NLABEL instead of where it jumps now. Accrue changes into the
1477 change group. Return false if we didn't see how to perform the
1478 inversion and redirection. */
1479
1480 int
1481 invert_jump_1 (rtx jump, rtx nlabel)
1482 {
1483 rtx x = pc_set (jump);
1484 int ochanges;
1485 int ok;
1486
1487 ochanges = num_validated_changes ();
1488 gcc_assert (x);
1489 ok = invert_exp_1 (SET_SRC (x), jump);
1490 gcc_assert (ok);
1491
1492 if (num_validated_changes () == ochanges)
1493 return 0;
1494
1495 /* redirect_jump_1 will fail of nlabel == olabel, and the current use is
1496 in Pmode, so checking this is not merely an optimization. */
1497 return nlabel == JUMP_LABEL (jump) || redirect_jump_1 (jump, nlabel);
1498 }
1499
1500 /* Invert the condition of the jump JUMP, and make it jump to label
1501 NLABEL instead of where it jumps now. Return true if successful. */
1502
1503 int
1504 invert_jump (rtx jump, rtx nlabel, int delete_unused)
1505 {
1506 rtx olabel = JUMP_LABEL (jump);
1507
1508 if (invert_jump_1 (jump, nlabel) && apply_change_group ())
1509 {
1510 redirect_jump_2 (jump, olabel, nlabel, delete_unused, 1);
1511 return 1;
1512 }
1513 cancel_changes (0);
1514 return 0;
1515 }
1516
1517
1518 /* Like rtx_equal_p except that it considers two REGs as equal
1519 if they renumber to the same value and considers two commutative
1520 operations to be the same if the order of the operands has been
1521 reversed. */
1522
1523 int
1524 rtx_renumbered_equal_p (const_rtx x, const_rtx y)
1525 {
1526 int i;
1527 const enum rtx_code code = GET_CODE (x);
1528 const char *fmt;
1529
1530 if (x == y)
1531 return 1;
1532
1533 if ((code == REG || (code == SUBREG && REG_P (SUBREG_REG (x))))
1534 && (REG_P (y) || (GET_CODE (y) == SUBREG
1535 && REG_P (SUBREG_REG (y)))))
1536 {
1537 int reg_x = -1, reg_y = -1;
1538 int byte_x = 0, byte_y = 0;
1539
1540 if (GET_MODE (x) != GET_MODE (y))
1541 return 0;
1542
1543 /* If we haven't done any renumbering, don't
1544 make any assumptions. */
1545 if (reg_renumber == 0)
1546 return rtx_equal_p (x, y);
1547
1548 if (code == SUBREG)
1549 {
1550 reg_x = REGNO (SUBREG_REG (x));
1551 byte_x = SUBREG_BYTE (x);
1552
1553 if (reg_renumber[reg_x] >= 0)
1554 {
1555 if (!subreg_offset_representable_p (reg_renumber[reg_x],
1556 GET_MODE (SUBREG_REG (x)),
1557 byte_x,
1558 GET_MODE (x)))
1559 return 0;
1560 reg_x = subreg_regno_offset (reg_renumber[reg_x],
1561 GET_MODE (SUBREG_REG (x)),
1562 byte_x,
1563 GET_MODE (x));
1564 byte_x = 0;
1565 }
1566 }
1567 else
1568 {
1569 reg_x = REGNO (x);
1570 if (reg_renumber[reg_x] >= 0)
1571 reg_x = reg_renumber[reg_x];
1572 }
1573
1574 if (GET_CODE (y) == SUBREG)
1575 {
1576 reg_y = REGNO (SUBREG_REG (y));
1577 byte_y = SUBREG_BYTE (y);
1578
1579 if (reg_renumber[reg_y] >= 0)
1580 {
1581 if (!subreg_offset_representable_p (reg_renumber[reg_y],
1582 GET_MODE (SUBREG_REG (y)),
1583 byte_y,
1584 GET_MODE (y)))
1585 return 0;
1586 reg_y = subreg_regno_offset (reg_renumber[reg_y],
1587 GET_MODE (SUBREG_REG (y)),
1588 byte_y,
1589 GET_MODE (y));
1590 byte_y = 0;
1591 }
1592 }
1593 else
1594 {
1595 reg_y = REGNO (y);
1596 if (reg_renumber[reg_y] >= 0)
1597 reg_y = reg_renumber[reg_y];
1598 }
1599
1600 return reg_x >= 0 && reg_x == reg_y && byte_x == byte_y;
1601 }
1602
1603 /* Now we have disposed of all the cases
1604 in which different rtx codes can match. */
1605 if (code != GET_CODE (y))
1606 return 0;
1607
1608 switch (code)
1609 {
1610 case PC:
1611 case CC0:
1612 case ADDR_VEC:
1613 case ADDR_DIFF_VEC:
1614 case CONST_INT:
1615 case CONST_DOUBLE:
1616 return 0;
1617
1618 case LABEL_REF:
1619 /* We can't assume nonlocal labels have their following insns yet. */
1620 if (LABEL_REF_NONLOCAL_P (x) || LABEL_REF_NONLOCAL_P (y))
1621 return XEXP (x, 0) == XEXP (y, 0);
1622
1623 /* Two label-refs are equivalent if they point at labels
1624 in the same position in the instruction stream. */
1625 return (next_real_insn (XEXP (x, 0))
1626 == next_real_insn (XEXP (y, 0)));
1627
1628 case SYMBOL_REF:
1629 return XSTR (x, 0) == XSTR (y, 0);
1630
1631 case CODE_LABEL:
1632 /* If we didn't match EQ equality above, they aren't the same. */
1633 return 0;
1634
1635 default:
1636 break;
1637 }
1638
1639 /* (MULT:SI x y) and (MULT:HI x y) are NOT equivalent. */
1640
1641 if (GET_MODE (x) != GET_MODE (y))
1642 return 0;
1643
1644 /* For commutative operations, the RTX match if the operand match in any
1645 order. Also handle the simple binary and unary cases without a loop. */
1646 if (targetm.commutative_p (x, UNKNOWN))
1647 return ((rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 0))
1648 && rtx_renumbered_equal_p (XEXP (x, 1), XEXP (y, 1)))
1649 || (rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 1))
1650 && rtx_renumbered_equal_p (XEXP (x, 1), XEXP (y, 0))));
1651 else if (NON_COMMUTATIVE_P (x))
1652 return (rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 0))
1653 && rtx_renumbered_equal_p (XEXP (x, 1), XEXP (y, 1)));
1654 else if (UNARY_P (x))
1655 return rtx_renumbered_equal_p (XEXP (x, 0), XEXP (y, 0));
1656
1657 /* Compare the elements. If any pair of corresponding elements
1658 fail to match, return 0 for the whole things. */
1659
1660 fmt = GET_RTX_FORMAT (code);
1661 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1662 {
1663 int j;
1664 switch (fmt[i])
1665 {
1666 case 'w':
1667 if (XWINT (x, i) != XWINT (y, i))
1668 return 0;
1669 break;
1670
1671 case 'i':
1672 if (XINT (x, i) != XINT (y, i))
1673 return 0;
1674 break;
1675
1676 case 't':
1677 if (XTREE (x, i) != XTREE (y, i))
1678 return 0;
1679 break;
1680
1681 case 's':
1682 if (strcmp (XSTR (x, i), XSTR (y, i)))
1683 return 0;
1684 break;
1685
1686 case 'e':
1687 if (! rtx_renumbered_equal_p (XEXP (x, i), XEXP (y, i)))
1688 return 0;
1689 break;
1690
1691 case 'u':
1692 if (XEXP (x, i) != XEXP (y, i))
1693 return 0;
1694 /* Fall through. */
1695 case '0':
1696 break;
1697
1698 case 'E':
1699 if (XVECLEN (x, i) != XVECLEN (y, i))
1700 return 0;
1701 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1702 if (!rtx_renumbered_equal_p (XVECEXP (x, i, j), XVECEXP (y, i, j)))
1703 return 0;
1704 break;
1705
1706 default:
1707 gcc_unreachable ();
1708 }
1709 }
1710 return 1;
1711 }
1712
1713 /* If X is a hard register or equivalent to one or a subregister of one,
1714 return the hard register number. If X is a pseudo register that was not
1715 assigned a hard register, return the pseudo register number. Otherwise,
1716 return -1. Any rtx is valid for X. */
1717
1718 int
1719 true_regnum (const_rtx x)
1720 {
1721 if (REG_P (x))
1722 {
1723 if (REGNO (x) >= FIRST_PSEUDO_REGISTER && reg_renumber[REGNO (x)] >= 0)
1724 return reg_renumber[REGNO (x)];
1725 return REGNO (x);
1726 }
1727 if (GET_CODE (x) == SUBREG)
1728 {
1729 int base = true_regnum (SUBREG_REG (x));
1730 if (base >= 0
1731 && base < FIRST_PSEUDO_REGISTER
1732 && subreg_offset_representable_p (REGNO (SUBREG_REG (x)),
1733 GET_MODE (SUBREG_REG (x)),
1734 SUBREG_BYTE (x), GET_MODE (x)))
1735 return base + subreg_regno_offset (REGNO (SUBREG_REG (x)),
1736 GET_MODE (SUBREG_REG (x)),
1737 SUBREG_BYTE (x), GET_MODE (x));
1738 }
1739 return -1;
1740 }
1741
1742 /* Return regno of the register REG and handle subregs too. */
1743 unsigned int
1744 reg_or_subregno (const_rtx reg)
1745 {
1746 if (GET_CODE (reg) == SUBREG)
1747 reg = SUBREG_REG (reg);
1748 gcc_assert (REG_P (reg));
1749 return REGNO (reg);
1750 }