comparison gcc/predict.c @ 0:a06113de4d67

first commit
author kent <kent@cr.ie.u-ryukyu.ac.jp>
date Fri, 17 Jul 2009 14:47:48 +0900
parents
children 77e2b8dfacca
comparison
equal deleted inserted replaced
-1:000000000000 0:a06113de4d67
1 /* Branch prediction routines for the GNU compiler.
2 Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2007, 2008
3 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 /* References:
22
23 [1] "Branch Prediction for Free"
24 Ball and Larus; PLDI '93.
25 [2] "Static Branch Frequency and Program Profile Analysis"
26 Wu and Larus; MICRO-27.
27 [3] "Corpus-based Static Branch Prediction"
28 Calder, Grunwald, Lindsay, Martin, Mozer, and Zorn; PLDI '95. */
29
30
31 #include "config.h"
32 #include "system.h"
33 #include "coretypes.h"
34 #include "tm.h"
35 #include "tree.h"
36 #include "rtl.h"
37 #include "tm_p.h"
38 #include "hard-reg-set.h"
39 #include "basic-block.h"
40 #include "insn-config.h"
41 #include "regs.h"
42 #include "flags.h"
43 #include "output.h"
44 #include "function.h"
45 #include "except.h"
46 #include "toplev.h"
47 #include "recog.h"
48 #include "expr.h"
49 #include "predict.h"
50 #include "coverage.h"
51 #include "sreal.h"
52 #include "params.h"
53 #include "target.h"
54 #include "cfgloop.h"
55 #include "tree-flow.h"
56 #include "ggc.h"
57 #include "tree-dump.h"
58 #include "tree-pass.h"
59 #include "timevar.h"
60 #include "tree-scalar-evolution.h"
61 #include "cfgloop.h"
62 #include "pointer-set.h"
63
64 /* real constants: 0, 1, 1-1/REG_BR_PROB_BASE, REG_BR_PROB_BASE,
65 1/REG_BR_PROB_BASE, 0.5, BB_FREQ_MAX. */
66 static sreal real_zero, real_one, real_almost_one, real_br_prob_base,
67 real_inv_br_prob_base, real_one_half, real_bb_freq_max;
68
69 /* Random guesstimation given names.
70 PROV_VERY_UNLIKELY should be small enough so basic block predicted
71 by it gets bellow HOT_BB_FREQUENCY_FRANCTION. */
72 #define PROB_VERY_UNLIKELY (REG_BR_PROB_BASE / 2000 - 1)
73 #define PROB_EVEN (REG_BR_PROB_BASE / 2)
74 #define PROB_VERY_LIKELY (REG_BR_PROB_BASE - PROB_VERY_UNLIKELY)
75 #define PROB_ALWAYS (REG_BR_PROB_BASE)
76
77 static void combine_predictions_for_insn (rtx, basic_block);
78 static void dump_prediction (FILE *, enum br_predictor, int, basic_block, int);
79 static void predict_paths_leading_to (basic_block, enum br_predictor, enum prediction);
80 static void compute_function_frequency (void);
81 static void choose_function_section (void);
82 static bool can_predict_insn_p (const_rtx);
83
84 /* Information we hold about each branch predictor.
85 Filled using information from predict.def. */
86
87 struct predictor_info
88 {
89 const char *const name; /* Name used in the debugging dumps. */
90 const int hitrate; /* Expected hitrate used by
91 predict_insn_def call. */
92 const int flags;
93 };
94
95 /* Use given predictor without Dempster-Shaffer theory if it matches
96 using first_match heuristics. */
97 #define PRED_FLAG_FIRST_MATCH 1
98
99 /* Recompute hitrate in percent to our representation. */
100
101 #define HITRATE(VAL) ((int) ((VAL) * REG_BR_PROB_BASE + 50) / 100)
102
103 #define DEF_PREDICTOR(ENUM, NAME, HITRATE, FLAGS) {NAME, HITRATE, FLAGS},
104 static const struct predictor_info predictor_info[]= {
105 #include "predict.def"
106
107 /* Upper bound on predictors. */
108 {NULL, 0, 0}
109 };
110 #undef DEF_PREDICTOR
111
112 /* Return TRUE if frequency FREQ is considered to be hot. */
113
114 static inline bool
115 maybe_hot_frequency_p (int freq)
116 {
117 if (!profile_info || !flag_branch_probabilities)
118 {
119 if (cfun->function_frequency == FUNCTION_FREQUENCY_UNLIKELY_EXECUTED)
120 return false;
121 if (cfun->function_frequency == FUNCTION_FREQUENCY_HOT)
122 return true;
123 }
124 if (profile_status == PROFILE_ABSENT)
125 return true;
126 if (freq < BB_FREQ_MAX / PARAM_VALUE (HOT_BB_FREQUENCY_FRACTION))
127 return false;
128 return true;
129 }
130
131 /* Return TRUE if frequency FREQ is considered to be hot. */
132
133 static inline bool
134 maybe_hot_count_p (gcov_type count)
135 {
136 if (profile_status != PROFILE_READ)
137 return true;
138 /* Code executed at most once is not hot. */
139 if (profile_info->runs >= count)
140 return false;
141 return (count
142 > profile_info->sum_max / PARAM_VALUE (HOT_BB_COUNT_FRACTION));
143 }
144
145 /* Return true in case BB can be CPU intensive and should be optimized
146 for maximal performance. */
147
148 bool
149 maybe_hot_bb_p (const_basic_block bb)
150 {
151 if (profile_status == PROFILE_READ)
152 return maybe_hot_count_p (bb->count);
153 return maybe_hot_frequency_p (bb->frequency);
154 }
155
156 /* Return true if the call can be hot. */
157
158 bool
159 cgraph_maybe_hot_edge_p (struct cgraph_edge *edge)
160 {
161 if (profile_info && flag_branch_probabilities
162 && (edge->count
163 <= profile_info->sum_max / PARAM_VALUE (HOT_BB_COUNT_FRACTION)))
164 return false;
165 if (lookup_attribute ("cold", DECL_ATTRIBUTES (edge->callee->decl))
166 || lookup_attribute ("cold", DECL_ATTRIBUTES (edge->caller->decl)))
167 return false;
168 if (lookup_attribute ("hot", DECL_ATTRIBUTES (edge->caller->decl)))
169 return true;
170 if (flag_guess_branch_prob
171 && edge->frequency < (CGRAPH_FREQ_MAX
172 / PARAM_VALUE (HOT_BB_FREQUENCY_FRACTION)))
173 return false;
174 return true;
175 }
176
177 /* Return true in case BB can be CPU intensive and should be optimized
178 for maximal performance. */
179
180 bool
181 maybe_hot_edge_p (edge e)
182 {
183 if (profile_status == PROFILE_READ)
184 return maybe_hot_count_p (e->count);
185 return maybe_hot_frequency_p (EDGE_FREQUENCY (e));
186 }
187
188 /* Return true in case BB is probably never executed. */
189 bool
190 probably_never_executed_bb_p (const_basic_block bb)
191 {
192 if (profile_info && flag_branch_probabilities)
193 return ((bb->count + profile_info->runs / 2) / profile_info->runs) == 0;
194 if ((!profile_info || !flag_branch_probabilities)
195 && cfun->function_frequency == FUNCTION_FREQUENCY_UNLIKELY_EXECUTED)
196 return true;
197 return false;
198 }
199
200 /* Return true when current function should always be optimized for size. */
201
202 bool
203 optimize_function_for_size_p (struct function *fun)
204 {
205 return (optimize_size
206 || (fun && (fun->function_frequency
207 == FUNCTION_FREQUENCY_UNLIKELY_EXECUTED)));
208 }
209
210 /* Return true when current function should always be optimized for speed. */
211
212 bool
213 optimize_function_for_speed_p (struct function *fun)
214 {
215 return !optimize_function_for_size_p (fun);
216 }
217
218 /* Return TRUE when BB should be optimized for size. */
219
220 bool
221 optimize_bb_for_size_p (const_basic_block bb)
222 {
223 return optimize_function_for_size_p (cfun) || !maybe_hot_bb_p (bb);
224 }
225
226 /* Return TRUE when BB should be optimized for speed. */
227
228 bool
229 optimize_bb_for_speed_p (const_basic_block bb)
230 {
231 return !optimize_bb_for_size_p (bb);
232 }
233
234 /* Return TRUE when BB should be optimized for size. */
235
236 bool
237 optimize_edge_for_size_p (edge e)
238 {
239 return optimize_function_for_size_p (cfun) || !maybe_hot_edge_p (e);
240 }
241
242 /* Return TRUE when BB should be optimized for speed. */
243
244 bool
245 optimize_edge_for_speed_p (edge e)
246 {
247 return !optimize_edge_for_size_p (e);
248 }
249
250 /* Return TRUE when BB should be optimized for size. */
251
252 bool
253 optimize_insn_for_size_p (void)
254 {
255 return optimize_function_for_size_p (cfun) || !crtl->maybe_hot_insn_p;
256 }
257
258 /* Return TRUE when BB should be optimized for speed. */
259
260 bool
261 optimize_insn_for_speed_p (void)
262 {
263 return !optimize_insn_for_size_p ();
264 }
265
266 /* Return TRUE when LOOP should be optimized for size. */
267
268 bool
269 optimize_loop_for_size_p (struct loop *loop)
270 {
271 return optimize_bb_for_size_p (loop->header);
272 }
273
274 /* Return TRUE when LOOP should be optimized for speed. */
275
276 bool
277 optimize_loop_for_speed_p (struct loop *loop)
278 {
279 return optimize_bb_for_speed_p (loop->header);
280 }
281
282 /* Return TRUE when LOOP nest should be optimized for speed. */
283
284 bool
285 optimize_loop_nest_for_speed_p (struct loop *loop)
286 {
287 struct loop *l = loop;
288 if (optimize_loop_for_speed_p (loop))
289 return true;
290 l = loop->inner;
291 while (l && l != loop)
292 {
293 if (optimize_loop_for_speed_p (l))
294 return true;
295 if (l->inner)
296 l = l->inner;
297 else if (l->next)
298 l = l->next;
299 else
300 {
301 while (l != loop && !l->next)
302 l = loop_outer (l);
303 if (l != loop)
304 l = l->next;
305 }
306 }
307 return false;
308 }
309
310 /* Return TRUE when LOOP nest should be optimized for size. */
311
312 bool
313 optimize_loop_nest_for_size_p (struct loop *loop)
314 {
315 return !optimize_loop_nest_for_speed_p (loop);
316 }
317
318 /* Return true when edge E is likely to be well predictable by branch
319 predictor. */
320
321 bool
322 predictable_edge_p (edge e)
323 {
324 if (profile_status == PROFILE_ABSENT)
325 return false;
326 if ((e->probability
327 <= PARAM_VALUE (PARAM_PREDICTABLE_BRANCH_OUTCOME) * REG_BR_PROB_BASE / 100)
328 || (REG_BR_PROB_BASE - e->probability
329 <= PARAM_VALUE (PARAM_PREDICTABLE_BRANCH_OUTCOME) * REG_BR_PROB_BASE / 100))
330 return true;
331 return false;
332 }
333
334
335 /* Set RTL expansion for BB profile. */
336
337 void
338 rtl_profile_for_bb (basic_block bb)
339 {
340 crtl->maybe_hot_insn_p = maybe_hot_bb_p (bb);
341 }
342
343 /* Set RTL expansion for edge profile. */
344
345 void
346 rtl_profile_for_edge (edge e)
347 {
348 crtl->maybe_hot_insn_p = maybe_hot_edge_p (e);
349 }
350
351 /* Set RTL expansion to default mode (i.e. when profile info is not known). */
352 void
353 default_rtl_profile (void)
354 {
355 crtl->maybe_hot_insn_p = true;
356 }
357
358 /* Return true if the one of outgoing edges is already predicted by
359 PREDICTOR. */
360
361 bool
362 rtl_predicted_by_p (const_basic_block bb, enum br_predictor predictor)
363 {
364 rtx note;
365 if (!INSN_P (BB_END (bb)))
366 return false;
367 for (note = REG_NOTES (BB_END (bb)); note; note = XEXP (note, 1))
368 if (REG_NOTE_KIND (note) == REG_BR_PRED
369 && INTVAL (XEXP (XEXP (note, 0), 0)) == (int)predictor)
370 return true;
371 return false;
372 }
373
374 /* This map contains for a basic block the list of predictions for the
375 outgoing edges. */
376
377 static struct pointer_map_t *bb_predictions;
378
379 /* Return true if the one of outgoing edges is already predicted by
380 PREDICTOR. */
381
382 bool
383 gimple_predicted_by_p (const_basic_block bb, enum br_predictor predictor)
384 {
385 struct edge_prediction *i;
386 void **preds = pointer_map_contains (bb_predictions, bb);
387
388 if (!preds)
389 return false;
390
391 for (i = (struct edge_prediction *) *preds; i; i = i->ep_next)
392 if (i->ep_predictor == predictor)
393 return true;
394 return false;
395 }
396
397 /* Return true when the probability of edge is reliable.
398
399 The profile guessing code is good at predicting branch outcome (ie.
400 taken/not taken), that is predicted right slightly over 75% of time.
401 It is however notoriously poor on predicting the probability itself.
402 In general the profile appear a lot flatter (with probabilities closer
403 to 50%) than the reality so it is bad idea to use it to drive optimization
404 such as those disabling dynamic branch prediction for well predictable
405 branches.
406
407 There are two exceptions - edges leading to noreturn edges and edges
408 predicted by number of iterations heuristics are predicted well. This macro
409 should be able to distinguish those, but at the moment it simply check for
410 noreturn heuristic that is only one giving probability over 99% or bellow
411 1%. In future we might want to propagate reliability information across the
412 CFG if we find this information useful on multiple places. */
413 static bool
414 probability_reliable_p (int prob)
415 {
416 return (profile_status == PROFILE_READ
417 || (profile_status == PROFILE_GUESSED
418 && (prob <= HITRATE (1) || prob >= HITRATE (99))));
419 }
420
421 /* Same predicate as above, working on edges. */
422 bool
423 edge_probability_reliable_p (const_edge e)
424 {
425 return probability_reliable_p (e->probability);
426 }
427
428 /* Same predicate as edge_probability_reliable_p, working on notes. */
429 bool
430 br_prob_note_reliable_p (const_rtx note)
431 {
432 gcc_assert (REG_NOTE_KIND (note) == REG_BR_PROB);
433 return probability_reliable_p (INTVAL (XEXP (note, 0)));
434 }
435
436 static void
437 predict_insn (rtx insn, enum br_predictor predictor, int probability)
438 {
439 gcc_assert (any_condjump_p (insn));
440 if (!flag_guess_branch_prob)
441 return;
442
443 add_reg_note (insn, REG_BR_PRED,
444 gen_rtx_CONCAT (VOIDmode,
445 GEN_INT ((int) predictor),
446 GEN_INT ((int) probability)));
447 }
448
449 /* Predict insn by given predictor. */
450
451 void
452 predict_insn_def (rtx insn, enum br_predictor predictor,
453 enum prediction taken)
454 {
455 int probability = predictor_info[(int) predictor].hitrate;
456
457 if (taken != TAKEN)
458 probability = REG_BR_PROB_BASE - probability;
459
460 predict_insn (insn, predictor, probability);
461 }
462
463 /* Predict edge E with given probability if possible. */
464
465 void
466 rtl_predict_edge (edge e, enum br_predictor predictor, int probability)
467 {
468 rtx last_insn;
469 last_insn = BB_END (e->src);
470
471 /* We can store the branch prediction information only about
472 conditional jumps. */
473 if (!any_condjump_p (last_insn))
474 return;
475
476 /* We always store probability of branching. */
477 if (e->flags & EDGE_FALLTHRU)
478 probability = REG_BR_PROB_BASE - probability;
479
480 predict_insn (last_insn, predictor, probability);
481 }
482
483 /* Predict edge E with the given PROBABILITY. */
484 void
485 gimple_predict_edge (edge e, enum br_predictor predictor, int probability)
486 {
487 gcc_assert (profile_status != PROFILE_GUESSED);
488 if ((e->src != ENTRY_BLOCK_PTR && EDGE_COUNT (e->src->succs) > 1)
489 && flag_guess_branch_prob && optimize)
490 {
491 struct edge_prediction *i = XNEW (struct edge_prediction);
492 void **preds = pointer_map_insert (bb_predictions, e->src);
493
494 i->ep_next = (struct edge_prediction *) *preds;
495 *preds = i;
496 i->ep_probability = probability;
497 i->ep_predictor = predictor;
498 i->ep_edge = e;
499 }
500 }
501
502 /* Remove all predictions on given basic block that are attached
503 to edge E. */
504 void
505 remove_predictions_associated_with_edge (edge e)
506 {
507 void **preds;
508
509 if (!bb_predictions)
510 return;
511
512 preds = pointer_map_contains (bb_predictions, e->src);
513
514 if (preds)
515 {
516 struct edge_prediction **prediction = (struct edge_prediction **) preds;
517 struct edge_prediction *next;
518
519 while (*prediction)
520 {
521 if ((*prediction)->ep_edge == e)
522 {
523 next = (*prediction)->ep_next;
524 free (*prediction);
525 *prediction = next;
526 }
527 else
528 prediction = &((*prediction)->ep_next);
529 }
530 }
531 }
532
533 /* Clears the list of predictions stored for BB. */
534
535 static void
536 clear_bb_predictions (basic_block bb)
537 {
538 void **preds = pointer_map_contains (bb_predictions, bb);
539 struct edge_prediction *pred, *next;
540
541 if (!preds)
542 return;
543
544 for (pred = (struct edge_prediction *) *preds; pred; pred = next)
545 {
546 next = pred->ep_next;
547 free (pred);
548 }
549 *preds = NULL;
550 }
551
552 /* Return true when we can store prediction on insn INSN.
553 At the moment we represent predictions only on conditional
554 jumps, not at computed jump or other complicated cases. */
555 static bool
556 can_predict_insn_p (const_rtx insn)
557 {
558 return (JUMP_P (insn)
559 && any_condjump_p (insn)
560 && EDGE_COUNT (BLOCK_FOR_INSN (insn)->succs) >= 2);
561 }
562
563 /* Predict edge E by given predictor if possible. */
564
565 void
566 predict_edge_def (edge e, enum br_predictor predictor,
567 enum prediction taken)
568 {
569 int probability = predictor_info[(int) predictor].hitrate;
570
571 if (taken != TAKEN)
572 probability = REG_BR_PROB_BASE - probability;
573
574 predict_edge (e, predictor, probability);
575 }
576
577 /* Invert all branch predictions or probability notes in the INSN. This needs
578 to be done each time we invert the condition used by the jump. */
579
580 void
581 invert_br_probabilities (rtx insn)
582 {
583 rtx note;
584
585 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
586 if (REG_NOTE_KIND (note) == REG_BR_PROB)
587 XEXP (note, 0) = GEN_INT (REG_BR_PROB_BASE - INTVAL (XEXP (note, 0)));
588 else if (REG_NOTE_KIND (note) == REG_BR_PRED)
589 XEXP (XEXP (note, 0), 1)
590 = GEN_INT (REG_BR_PROB_BASE - INTVAL (XEXP (XEXP (note, 0), 1)));
591 }
592
593 /* Dump information about the branch prediction to the output file. */
594
595 static void
596 dump_prediction (FILE *file, enum br_predictor predictor, int probability,
597 basic_block bb, int used)
598 {
599 edge e;
600 edge_iterator ei;
601
602 if (!file)
603 return;
604
605 FOR_EACH_EDGE (e, ei, bb->succs)
606 if (! (e->flags & EDGE_FALLTHRU))
607 break;
608
609 fprintf (file, " %s heuristics%s: %.1f%%",
610 predictor_info[predictor].name,
611 used ? "" : " (ignored)", probability * 100.0 / REG_BR_PROB_BASE);
612
613 if (bb->count)
614 {
615 fprintf (file, " exec ");
616 fprintf (file, HOST_WIDEST_INT_PRINT_DEC, bb->count);
617 if (e)
618 {
619 fprintf (file, " hit ");
620 fprintf (file, HOST_WIDEST_INT_PRINT_DEC, e->count);
621 fprintf (file, " (%.1f%%)", e->count * 100.0 / bb->count);
622 }
623 }
624
625 fprintf (file, "\n");
626 }
627
628 /* We can not predict the probabilities of outgoing edges of bb. Set them
629 evenly and hope for the best. */
630 static void
631 set_even_probabilities (basic_block bb)
632 {
633 int nedges = 0;
634 edge e;
635 edge_iterator ei;
636
637 FOR_EACH_EDGE (e, ei, bb->succs)
638 if (!(e->flags & (EDGE_EH | EDGE_FAKE)))
639 nedges ++;
640 FOR_EACH_EDGE (e, ei, bb->succs)
641 if (!(e->flags & (EDGE_EH | EDGE_FAKE)))
642 e->probability = (REG_BR_PROB_BASE + nedges / 2) / nedges;
643 else
644 e->probability = 0;
645 }
646
647 /* Combine all REG_BR_PRED notes into single probability and attach REG_BR_PROB
648 note if not already present. Remove now useless REG_BR_PRED notes. */
649
650 static void
651 combine_predictions_for_insn (rtx insn, basic_block bb)
652 {
653 rtx prob_note;
654 rtx *pnote;
655 rtx note;
656 int best_probability = PROB_EVEN;
657 int best_predictor = END_PREDICTORS;
658 int combined_probability = REG_BR_PROB_BASE / 2;
659 int d;
660 bool first_match = false;
661 bool found = false;
662
663 if (!can_predict_insn_p (insn))
664 {
665 set_even_probabilities (bb);
666 return;
667 }
668
669 prob_note = find_reg_note (insn, REG_BR_PROB, 0);
670 pnote = &REG_NOTES (insn);
671 if (dump_file)
672 fprintf (dump_file, "Predictions for insn %i bb %i\n", INSN_UID (insn),
673 bb->index);
674
675 /* We implement "first match" heuristics and use probability guessed
676 by predictor with smallest index. */
677 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
678 if (REG_NOTE_KIND (note) == REG_BR_PRED)
679 {
680 int predictor = INTVAL (XEXP (XEXP (note, 0), 0));
681 int probability = INTVAL (XEXP (XEXP (note, 0), 1));
682
683 found = true;
684 if (best_predictor > predictor)
685 best_probability = probability, best_predictor = predictor;
686
687 d = (combined_probability * probability
688 + (REG_BR_PROB_BASE - combined_probability)
689 * (REG_BR_PROB_BASE - probability));
690
691 /* Use FP math to avoid overflows of 32bit integers. */
692 if (d == 0)
693 /* If one probability is 0% and one 100%, avoid division by zero. */
694 combined_probability = REG_BR_PROB_BASE / 2;
695 else
696 combined_probability = (((double) combined_probability) * probability
697 * REG_BR_PROB_BASE / d + 0.5);
698 }
699
700 /* Decide which heuristic to use. In case we didn't match anything,
701 use no_prediction heuristic, in case we did match, use either
702 first match or Dempster-Shaffer theory depending on the flags. */
703
704 if (predictor_info [best_predictor].flags & PRED_FLAG_FIRST_MATCH)
705 first_match = true;
706
707 if (!found)
708 dump_prediction (dump_file, PRED_NO_PREDICTION,
709 combined_probability, bb, true);
710 else
711 {
712 dump_prediction (dump_file, PRED_DS_THEORY, combined_probability,
713 bb, !first_match);
714 dump_prediction (dump_file, PRED_FIRST_MATCH, best_probability,
715 bb, first_match);
716 }
717
718 if (first_match)
719 combined_probability = best_probability;
720 dump_prediction (dump_file, PRED_COMBINED, combined_probability, bb, true);
721
722 while (*pnote)
723 {
724 if (REG_NOTE_KIND (*pnote) == REG_BR_PRED)
725 {
726 int predictor = INTVAL (XEXP (XEXP (*pnote, 0), 0));
727 int probability = INTVAL (XEXP (XEXP (*pnote, 0), 1));
728
729 dump_prediction (dump_file, predictor, probability, bb,
730 !first_match || best_predictor == predictor);
731 *pnote = XEXP (*pnote, 1);
732 }
733 else
734 pnote = &XEXP (*pnote, 1);
735 }
736
737 if (!prob_note)
738 {
739 add_reg_note (insn, REG_BR_PROB, GEN_INT (combined_probability));
740
741 /* Save the prediction into CFG in case we are seeing non-degenerated
742 conditional jump. */
743 if (!single_succ_p (bb))
744 {
745 BRANCH_EDGE (bb)->probability = combined_probability;
746 FALLTHRU_EDGE (bb)->probability
747 = REG_BR_PROB_BASE - combined_probability;
748 }
749 }
750 else if (!single_succ_p (bb))
751 {
752 int prob = INTVAL (XEXP (prob_note, 0));
753
754 BRANCH_EDGE (bb)->probability = prob;
755 FALLTHRU_EDGE (bb)->probability = REG_BR_PROB_BASE - prob;
756 }
757 else
758 single_succ_edge (bb)->probability = REG_BR_PROB_BASE;
759 }
760
761 /* Combine predictions into single probability and store them into CFG.
762 Remove now useless prediction entries. */
763
764 static void
765 combine_predictions_for_bb (basic_block bb)
766 {
767 int best_probability = PROB_EVEN;
768 int best_predictor = END_PREDICTORS;
769 int combined_probability = REG_BR_PROB_BASE / 2;
770 int d;
771 bool first_match = false;
772 bool found = false;
773 struct edge_prediction *pred;
774 int nedges = 0;
775 edge e, first = NULL, second = NULL;
776 edge_iterator ei;
777 void **preds;
778
779 FOR_EACH_EDGE (e, ei, bb->succs)
780 if (!(e->flags & (EDGE_EH | EDGE_FAKE)))
781 {
782 nedges ++;
783 if (first && !second)
784 second = e;
785 if (!first)
786 first = e;
787 }
788
789 /* When there is no successor or only one choice, prediction is easy.
790
791 We are lazy for now and predict only basic blocks with two outgoing
792 edges. It is possible to predict generic case too, but we have to
793 ignore first match heuristics and do more involved combining. Implement
794 this later. */
795 if (nedges != 2)
796 {
797 if (!bb->count)
798 set_even_probabilities (bb);
799 clear_bb_predictions (bb);
800 if (dump_file)
801 fprintf (dump_file, "%i edges in bb %i predicted to even probabilities\n",
802 nedges, bb->index);
803 return;
804 }
805
806 if (dump_file)
807 fprintf (dump_file, "Predictions for bb %i\n", bb->index);
808
809 preds = pointer_map_contains (bb_predictions, bb);
810 if (preds)
811 {
812 /* We implement "first match" heuristics and use probability guessed
813 by predictor with smallest index. */
814 for (pred = (struct edge_prediction *) *preds; pred; pred = pred->ep_next)
815 {
816 int predictor = pred->ep_predictor;
817 int probability = pred->ep_probability;
818
819 if (pred->ep_edge != first)
820 probability = REG_BR_PROB_BASE - probability;
821
822 found = true;
823 /* First match heuristics would be widly confused if we predicted
824 both directions. */
825 if (best_predictor > predictor)
826 {
827 struct edge_prediction *pred2;
828 int prob = probability;
829
830 for (pred2 = (struct edge_prediction *) *preds; pred2; pred2 = pred2->ep_next)
831 if (pred2 != pred && pred2->ep_predictor == pred->ep_predictor)
832 {
833 int probability2 = pred->ep_probability;
834
835 if (pred2->ep_edge != first)
836 probability2 = REG_BR_PROB_BASE - probability2;
837
838 if ((probability < REG_BR_PROB_BASE / 2) !=
839 (probability2 < REG_BR_PROB_BASE / 2))
840 break;
841
842 /* If the same predictor later gave better result, go for it! */
843 if ((probability >= REG_BR_PROB_BASE / 2 && (probability2 > probability))
844 || (probability <= REG_BR_PROB_BASE / 2 && (probability2 < probability)))
845 prob = probability2;
846 }
847 if (!pred2)
848 best_probability = prob, best_predictor = predictor;
849 }
850
851 d = (combined_probability * probability
852 + (REG_BR_PROB_BASE - combined_probability)
853 * (REG_BR_PROB_BASE - probability));
854
855 /* Use FP math to avoid overflows of 32bit integers. */
856 if (d == 0)
857 /* If one probability is 0% and one 100%, avoid division by zero. */
858 combined_probability = REG_BR_PROB_BASE / 2;
859 else
860 combined_probability = (((double) combined_probability)
861 * probability
862 * REG_BR_PROB_BASE / d + 0.5);
863 }
864 }
865
866 /* Decide which heuristic to use. In case we didn't match anything,
867 use no_prediction heuristic, in case we did match, use either
868 first match or Dempster-Shaffer theory depending on the flags. */
869
870 if (predictor_info [best_predictor].flags & PRED_FLAG_FIRST_MATCH)
871 first_match = true;
872
873 if (!found)
874 dump_prediction (dump_file, PRED_NO_PREDICTION, combined_probability, bb, true);
875 else
876 {
877 dump_prediction (dump_file, PRED_DS_THEORY, combined_probability, bb,
878 !first_match);
879 dump_prediction (dump_file, PRED_FIRST_MATCH, best_probability, bb,
880 first_match);
881 }
882
883 if (first_match)
884 combined_probability = best_probability;
885 dump_prediction (dump_file, PRED_COMBINED, combined_probability, bb, true);
886
887 if (preds)
888 {
889 for (pred = (struct edge_prediction *) *preds; pred; pred = pred->ep_next)
890 {
891 int predictor = pred->ep_predictor;
892 int probability = pred->ep_probability;
893
894 if (pred->ep_edge != EDGE_SUCC (bb, 0))
895 probability = REG_BR_PROB_BASE - probability;
896 dump_prediction (dump_file, predictor, probability, bb,
897 !first_match || best_predictor == predictor);
898 }
899 }
900 clear_bb_predictions (bb);
901
902 if (!bb->count)
903 {
904 first->probability = combined_probability;
905 second->probability = REG_BR_PROB_BASE - combined_probability;
906 }
907 }
908
909 /* Predict edge probabilities by exploiting loop structure. */
910
911 static void
912 predict_loops (void)
913 {
914 loop_iterator li;
915 struct loop *loop;
916
917 scev_initialize ();
918
919 /* Try to predict out blocks in a loop that are not part of a
920 natural loop. */
921 FOR_EACH_LOOP (li, loop, 0)
922 {
923 basic_block bb, *bbs;
924 unsigned j, n_exits;
925 VEC (edge, heap) *exits;
926 struct tree_niter_desc niter_desc;
927 edge ex;
928
929 exits = get_loop_exit_edges (loop);
930 n_exits = VEC_length (edge, exits);
931
932 for (j = 0; VEC_iterate (edge, exits, j, ex); j++)
933 {
934 tree niter = NULL;
935 HOST_WIDE_INT nitercst;
936 int max = PARAM_VALUE (PARAM_MAX_PREDICTED_ITERATIONS);
937 int probability;
938 enum br_predictor predictor;
939
940 if (number_of_iterations_exit (loop, ex, &niter_desc, false))
941 niter = niter_desc.niter;
942 if (!niter || TREE_CODE (niter_desc.niter) != INTEGER_CST)
943 niter = loop_niter_by_eval (loop, ex);
944
945 if (TREE_CODE (niter) == INTEGER_CST)
946 {
947 if (host_integerp (niter, 1)
948 && compare_tree_int (niter, max-1) == -1)
949 nitercst = tree_low_cst (niter, 1) + 1;
950 else
951 nitercst = max;
952 predictor = PRED_LOOP_ITERATIONS;
953 }
954 /* If we have just one exit and we can derive some information about
955 the number of iterations of the loop from the statements inside
956 the loop, use it to predict this exit. */
957 else if (n_exits == 1)
958 {
959 nitercst = estimated_loop_iterations_int (loop, false);
960 if (nitercst < 0)
961 continue;
962 if (nitercst > max)
963 nitercst = max;
964
965 predictor = PRED_LOOP_ITERATIONS_GUESSED;
966 }
967 else
968 continue;
969
970 probability = ((REG_BR_PROB_BASE + nitercst / 2) / nitercst);
971 predict_edge (ex, predictor, probability);
972 }
973 VEC_free (edge, heap, exits);
974
975 bbs = get_loop_body (loop);
976
977 for (j = 0; j < loop->num_nodes; j++)
978 {
979 int header_found = 0;
980 edge e;
981 edge_iterator ei;
982
983 bb = bbs[j];
984
985 /* Bypass loop heuristics on continue statement. These
986 statements construct loops via "non-loop" constructs
987 in the source language and are better to be handled
988 separately. */
989 if (predicted_by_p (bb, PRED_CONTINUE))
990 continue;
991
992 /* Loop branch heuristics - predict an edge back to a
993 loop's head as taken. */
994 if (bb == loop->latch)
995 {
996 e = find_edge (loop->latch, loop->header);
997 if (e)
998 {
999 header_found = 1;
1000 predict_edge_def (e, PRED_LOOP_BRANCH, TAKEN);
1001 }
1002 }
1003
1004 /* Loop exit heuristics - predict an edge exiting the loop if the
1005 conditional has no loop header successors as not taken. */
1006 if (!header_found
1007 /* If we already used more reliable loop exit predictors, do not
1008 bother with PRED_LOOP_EXIT. */
1009 && !predicted_by_p (bb, PRED_LOOP_ITERATIONS_GUESSED)
1010 && !predicted_by_p (bb, PRED_LOOP_ITERATIONS))
1011 {
1012 /* For loop with many exits we don't want to predict all exits
1013 with the pretty large probability, because if all exits are
1014 considered in row, the loop would be predicted to iterate
1015 almost never. The code to divide probability by number of
1016 exits is very rough. It should compute the number of exits
1017 taken in each patch through function (not the overall number
1018 of exits that might be a lot higher for loops with wide switch
1019 statements in them) and compute n-th square root.
1020
1021 We limit the minimal probability by 2% to avoid
1022 EDGE_PROBABILITY_RELIABLE from trusting the branch prediction
1023 as this was causing regression in perl benchmark containing such
1024 a wide loop. */
1025
1026 int probability = ((REG_BR_PROB_BASE
1027 - predictor_info [(int) PRED_LOOP_EXIT].hitrate)
1028 / n_exits);
1029 if (probability < HITRATE (2))
1030 probability = HITRATE (2);
1031 FOR_EACH_EDGE (e, ei, bb->succs)
1032 if (e->dest->index < NUM_FIXED_BLOCKS
1033 || !flow_bb_inside_loop_p (loop, e->dest))
1034 predict_edge (e, PRED_LOOP_EXIT, probability);
1035 }
1036 }
1037
1038 /* Free basic blocks from get_loop_body. */
1039 free (bbs);
1040 }
1041
1042 scev_finalize ();
1043 }
1044
1045 /* Attempt to predict probabilities of BB outgoing edges using local
1046 properties. */
1047 static void
1048 bb_estimate_probability_locally (basic_block bb)
1049 {
1050 rtx last_insn = BB_END (bb);
1051 rtx cond;
1052
1053 if (! can_predict_insn_p (last_insn))
1054 return;
1055 cond = get_condition (last_insn, NULL, false, false);
1056 if (! cond)
1057 return;
1058
1059 /* Try "pointer heuristic."
1060 A comparison ptr == 0 is predicted as false.
1061 Similarly, a comparison ptr1 == ptr2 is predicted as false. */
1062 if (COMPARISON_P (cond)
1063 && ((REG_P (XEXP (cond, 0)) && REG_POINTER (XEXP (cond, 0)))
1064 || (REG_P (XEXP (cond, 1)) && REG_POINTER (XEXP (cond, 1)))))
1065 {
1066 if (GET_CODE (cond) == EQ)
1067 predict_insn_def (last_insn, PRED_POINTER, NOT_TAKEN);
1068 else if (GET_CODE (cond) == NE)
1069 predict_insn_def (last_insn, PRED_POINTER, TAKEN);
1070 }
1071 else
1072
1073 /* Try "opcode heuristic."
1074 EQ tests are usually false and NE tests are usually true. Also,
1075 most quantities are positive, so we can make the appropriate guesses
1076 about signed comparisons against zero. */
1077 switch (GET_CODE (cond))
1078 {
1079 case CONST_INT:
1080 /* Unconditional branch. */
1081 predict_insn_def (last_insn, PRED_UNCONDITIONAL,
1082 cond == const0_rtx ? NOT_TAKEN : TAKEN);
1083 break;
1084
1085 case EQ:
1086 case UNEQ:
1087 /* Floating point comparisons appears to behave in a very
1088 unpredictable way because of special role of = tests in
1089 FP code. */
1090 if (FLOAT_MODE_P (GET_MODE (XEXP (cond, 0))))
1091 ;
1092 /* Comparisons with 0 are often used for booleans and there is
1093 nothing useful to predict about them. */
1094 else if (XEXP (cond, 1) == const0_rtx
1095 || XEXP (cond, 0) == const0_rtx)
1096 ;
1097 else
1098 predict_insn_def (last_insn, PRED_OPCODE_NONEQUAL, NOT_TAKEN);
1099 break;
1100
1101 case NE:
1102 case LTGT:
1103 /* Floating point comparisons appears to behave in a very
1104 unpredictable way because of special role of = tests in
1105 FP code. */
1106 if (FLOAT_MODE_P (GET_MODE (XEXP (cond, 0))))
1107 ;
1108 /* Comparisons with 0 are often used for booleans and there is
1109 nothing useful to predict about them. */
1110 else if (XEXP (cond, 1) == const0_rtx
1111 || XEXP (cond, 0) == const0_rtx)
1112 ;
1113 else
1114 predict_insn_def (last_insn, PRED_OPCODE_NONEQUAL, TAKEN);
1115 break;
1116
1117 case ORDERED:
1118 predict_insn_def (last_insn, PRED_FPOPCODE, TAKEN);
1119 break;
1120
1121 case UNORDERED:
1122 predict_insn_def (last_insn, PRED_FPOPCODE, NOT_TAKEN);
1123 break;
1124
1125 case LE:
1126 case LT:
1127 if (XEXP (cond, 1) == const0_rtx || XEXP (cond, 1) == const1_rtx
1128 || XEXP (cond, 1) == constm1_rtx)
1129 predict_insn_def (last_insn, PRED_OPCODE_POSITIVE, NOT_TAKEN);
1130 break;
1131
1132 case GE:
1133 case GT:
1134 if (XEXP (cond, 1) == const0_rtx || XEXP (cond, 1) == const1_rtx
1135 || XEXP (cond, 1) == constm1_rtx)
1136 predict_insn_def (last_insn, PRED_OPCODE_POSITIVE, TAKEN);
1137 break;
1138
1139 default:
1140 break;
1141 }
1142 }
1143
1144 /* Set edge->probability for each successor edge of BB. */
1145 void
1146 guess_outgoing_edge_probabilities (basic_block bb)
1147 {
1148 bb_estimate_probability_locally (bb);
1149 combine_predictions_for_insn (BB_END (bb), bb);
1150 }
1151
1152 static tree expr_expected_value (tree, bitmap);
1153
1154 /* Helper function for expr_expected_value. */
1155
1156 static tree
1157 expr_expected_value_1 (tree type, tree op0, enum tree_code code, tree op1, bitmap visited)
1158 {
1159 gimple def;
1160
1161 if (get_gimple_rhs_class (code) == GIMPLE_SINGLE_RHS)
1162 {
1163 if (TREE_CONSTANT (op0))
1164 return op0;
1165
1166 if (code != SSA_NAME)
1167 return NULL_TREE;
1168
1169 def = SSA_NAME_DEF_STMT (op0);
1170
1171 /* If we were already here, break the infinite cycle. */
1172 if (bitmap_bit_p (visited, SSA_NAME_VERSION (op0)))
1173 return NULL;
1174 bitmap_set_bit (visited, SSA_NAME_VERSION (op0));
1175
1176 if (gimple_code (def) == GIMPLE_PHI)
1177 {
1178 /* All the arguments of the PHI node must have the same constant
1179 length. */
1180 int i, n = gimple_phi_num_args (def);
1181 tree val = NULL, new_val;
1182
1183 for (i = 0; i < n; i++)
1184 {
1185 tree arg = PHI_ARG_DEF (def, i);
1186
1187 /* If this PHI has itself as an argument, we cannot
1188 determine the string length of this argument. However,
1189 if we can find an expected constant value for the other
1190 PHI args then we can still be sure that this is
1191 likely a constant. So be optimistic and just
1192 continue with the next argument. */
1193 if (arg == PHI_RESULT (def))
1194 continue;
1195
1196 new_val = expr_expected_value (arg, visited);
1197 if (!new_val)
1198 return NULL;
1199 if (!val)
1200 val = new_val;
1201 else if (!operand_equal_p (val, new_val, false))
1202 return NULL;
1203 }
1204 return val;
1205 }
1206 if (is_gimple_assign (def))
1207 {
1208 if (gimple_assign_lhs (def) != op0)
1209 return NULL;
1210
1211 return expr_expected_value_1 (TREE_TYPE (gimple_assign_lhs (def)),
1212 gimple_assign_rhs1 (def),
1213 gimple_assign_rhs_code (def),
1214 gimple_assign_rhs2 (def),
1215 visited);
1216 }
1217
1218 if (is_gimple_call (def))
1219 {
1220 tree decl = gimple_call_fndecl (def);
1221 if (!decl)
1222 return NULL;
1223 if (DECL_BUILT_IN_CLASS (decl) == BUILT_IN_NORMAL
1224 && DECL_FUNCTION_CODE (decl) == BUILT_IN_EXPECT)
1225 {
1226 tree val;
1227
1228 if (gimple_call_num_args (def) != 2)
1229 return NULL;
1230 val = gimple_call_arg (def, 0);
1231 if (TREE_CONSTANT (val))
1232 return val;
1233 return gimple_call_arg (def, 1);
1234 }
1235 }
1236
1237 return NULL;
1238 }
1239
1240 if (get_gimple_rhs_class (code) == GIMPLE_BINARY_RHS)
1241 {
1242 tree res;
1243 op0 = expr_expected_value (op0, visited);
1244 if (!op0)
1245 return NULL;
1246 op1 = expr_expected_value (op1, visited);
1247 if (!op1)
1248 return NULL;
1249 res = fold_build2 (code, type, op0, op1);
1250 if (TREE_CONSTANT (res))
1251 return res;
1252 return NULL;
1253 }
1254 if (get_gimple_rhs_class (code) == GIMPLE_UNARY_RHS)
1255 {
1256 tree res;
1257 op0 = expr_expected_value (op0, visited);
1258 if (!op0)
1259 return NULL;
1260 res = fold_build1 (code, type, op0);
1261 if (TREE_CONSTANT (res))
1262 return res;
1263 return NULL;
1264 }
1265 return NULL;
1266 }
1267
1268 /* Return constant EXPR will likely have at execution time, NULL if unknown.
1269 The function is used by builtin_expect branch predictor so the evidence
1270 must come from this construct and additional possible constant folding.
1271
1272 We may want to implement more involved value guess (such as value range
1273 propagation based prediction), but such tricks shall go to new
1274 implementation. */
1275
1276 static tree
1277 expr_expected_value (tree expr, bitmap visited)
1278 {
1279 enum tree_code code;
1280 tree op0, op1;
1281
1282 if (TREE_CONSTANT (expr))
1283 return expr;
1284
1285 extract_ops_from_tree (expr, &code, &op0, &op1);
1286 return expr_expected_value_1 (TREE_TYPE (expr),
1287 op0, code, op1, visited);
1288 }
1289
1290
1291 /* Get rid of all builtin_expect calls and GIMPLE_PREDICT statements
1292 we no longer need. */
1293 static unsigned int
1294 strip_predict_hints (void)
1295 {
1296 basic_block bb;
1297 gimple ass_stmt;
1298 tree var;
1299
1300 FOR_EACH_BB (bb)
1301 {
1302 gimple_stmt_iterator bi;
1303 for (bi = gsi_start_bb (bb); !gsi_end_p (bi);)
1304 {
1305 gimple stmt = gsi_stmt (bi);
1306
1307 if (gimple_code (stmt) == GIMPLE_PREDICT)
1308 {
1309 gsi_remove (&bi, true);
1310 continue;
1311 }
1312 else if (gimple_code (stmt) == GIMPLE_CALL)
1313 {
1314 tree fndecl = gimple_call_fndecl (stmt);
1315
1316 if (fndecl
1317 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
1318 && DECL_FUNCTION_CODE (fndecl) == BUILT_IN_EXPECT
1319 && gimple_call_num_args (stmt) == 2)
1320 {
1321 var = gimple_call_lhs (stmt);
1322 ass_stmt = gimple_build_assign (var, gimple_call_arg (stmt, 0));
1323
1324 gsi_replace (&bi, ass_stmt, true);
1325 }
1326 }
1327 gsi_next (&bi);
1328 }
1329 }
1330 return 0;
1331 }
1332
1333 /* Predict using opcode of the last statement in basic block. */
1334 static void
1335 tree_predict_by_opcode (basic_block bb)
1336 {
1337 gimple stmt = last_stmt (bb);
1338 edge then_edge;
1339 tree op0, op1;
1340 tree type;
1341 tree val;
1342 enum tree_code cmp;
1343 bitmap visited;
1344 edge_iterator ei;
1345
1346 if (!stmt || gimple_code (stmt) != GIMPLE_COND)
1347 return;
1348 FOR_EACH_EDGE (then_edge, ei, bb->succs)
1349 if (then_edge->flags & EDGE_TRUE_VALUE)
1350 break;
1351 op0 = gimple_cond_lhs (stmt);
1352 op1 = gimple_cond_rhs (stmt);
1353 cmp = gimple_cond_code (stmt);
1354 type = TREE_TYPE (op0);
1355 visited = BITMAP_ALLOC (NULL);
1356 val = expr_expected_value_1 (boolean_type_node, op0, cmp, op1, visited);
1357 BITMAP_FREE (visited);
1358 if (val)
1359 {
1360 if (integer_zerop (val))
1361 predict_edge_def (then_edge, PRED_BUILTIN_EXPECT, NOT_TAKEN);
1362 else
1363 predict_edge_def (then_edge, PRED_BUILTIN_EXPECT, TAKEN);
1364 return;
1365 }
1366 /* Try "pointer heuristic."
1367 A comparison ptr == 0 is predicted as false.
1368 Similarly, a comparison ptr1 == ptr2 is predicted as false. */
1369 if (POINTER_TYPE_P (type))
1370 {
1371 if (cmp == EQ_EXPR)
1372 predict_edge_def (then_edge, PRED_TREE_POINTER, NOT_TAKEN);
1373 else if (cmp == NE_EXPR)
1374 predict_edge_def (then_edge, PRED_TREE_POINTER, TAKEN);
1375 }
1376 else
1377
1378 /* Try "opcode heuristic."
1379 EQ tests are usually false and NE tests are usually true. Also,
1380 most quantities are positive, so we can make the appropriate guesses
1381 about signed comparisons against zero. */
1382 switch (cmp)
1383 {
1384 case EQ_EXPR:
1385 case UNEQ_EXPR:
1386 /* Floating point comparisons appears to behave in a very
1387 unpredictable way because of special role of = tests in
1388 FP code. */
1389 if (FLOAT_TYPE_P (type))
1390 ;
1391 /* Comparisons with 0 are often used for booleans and there is
1392 nothing useful to predict about them. */
1393 else if (integer_zerop (op0) || integer_zerop (op1))
1394 ;
1395 else
1396 predict_edge_def (then_edge, PRED_TREE_OPCODE_NONEQUAL, NOT_TAKEN);
1397 break;
1398
1399 case NE_EXPR:
1400 case LTGT_EXPR:
1401 /* Floating point comparisons appears to behave in a very
1402 unpredictable way because of special role of = tests in
1403 FP code. */
1404 if (FLOAT_TYPE_P (type))
1405 ;
1406 /* Comparisons with 0 are often used for booleans and there is
1407 nothing useful to predict about them. */
1408 else if (integer_zerop (op0)
1409 || integer_zerop (op1))
1410 ;
1411 else
1412 predict_edge_def (then_edge, PRED_TREE_OPCODE_NONEQUAL, TAKEN);
1413 break;
1414
1415 case ORDERED_EXPR:
1416 predict_edge_def (then_edge, PRED_TREE_FPOPCODE, TAKEN);
1417 break;
1418
1419 case UNORDERED_EXPR:
1420 predict_edge_def (then_edge, PRED_TREE_FPOPCODE, NOT_TAKEN);
1421 break;
1422
1423 case LE_EXPR:
1424 case LT_EXPR:
1425 if (integer_zerop (op1)
1426 || integer_onep (op1)
1427 || integer_all_onesp (op1)
1428 || real_zerop (op1)
1429 || real_onep (op1)
1430 || real_minus_onep (op1))
1431 predict_edge_def (then_edge, PRED_TREE_OPCODE_POSITIVE, NOT_TAKEN);
1432 break;
1433
1434 case GE_EXPR:
1435 case GT_EXPR:
1436 if (integer_zerop (op1)
1437 || integer_onep (op1)
1438 || integer_all_onesp (op1)
1439 || real_zerop (op1)
1440 || real_onep (op1)
1441 || real_minus_onep (op1))
1442 predict_edge_def (then_edge, PRED_TREE_OPCODE_POSITIVE, TAKEN);
1443 break;
1444
1445 default:
1446 break;
1447 }
1448 }
1449
1450 /* Try to guess whether the value of return means error code. */
1451
1452 static enum br_predictor
1453 return_prediction (tree val, enum prediction *prediction)
1454 {
1455 /* VOID. */
1456 if (!val)
1457 return PRED_NO_PREDICTION;
1458 /* Different heuristics for pointers and scalars. */
1459 if (POINTER_TYPE_P (TREE_TYPE (val)))
1460 {
1461 /* NULL is usually not returned. */
1462 if (integer_zerop (val))
1463 {
1464 *prediction = NOT_TAKEN;
1465 return PRED_NULL_RETURN;
1466 }
1467 }
1468 else if (INTEGRAL_TYPE_P (TREE_TYPE (val)))
1469 {
1470 /* Negative return values are often used to indicate
1471 errors. */
1472 if (TREE_CODE (val) == INTEGER_CST
1473 && tree_int_cst_sgn (val) < 0)
1474 {
1475 *prediction = NOT_TAKEN;
1476 return PRED_NEGATIVE_RETURN;
1477 }
1478 /* Constant return values seems to be commonly taken.
1479 Zero/one often represent booleans so exclude them from the
1480 heuristics. */
1481 if (TREE_CONSTANT (val)
1482 && (!integer_zerop (val) && !integer_onep (val)))
1483 {
1484 *prediction = TAKEN;
1485 return PRED_CONST_RETURN;
1486 }
1487 }
1488 return PRED_NO_PREDICTION;
1489 }
1490
1491 /* Find the basic block with return expression and look up for possible
1492 return value trying to apply RETURN_PREDICTION heuristics. */
1493 static void
1494 apply_return_prediction (void)
1495 {
1496 gimple return_stmt = NULL;
1497 tree return_val;
1498 edge e;
1499 gimple phi;
1500 int phi_num_args, i;
1501 enum br_predictor pred;
1502 enum prediction direction;
1503 edge_iterator ei;
1504
1505 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
1506 {
1507 return_stmt = last_stmt (e->src);
1508 if (return_stmt
1509 && gimple_code (return_stmt) == GIMPLE_RETURN)
1510 break;
1511 }
1512 if (!e)
1513 return;
1514 return_val = gimple_return_retval (return_stmt);
1515 if (!return_val)
1516 return;
1517 if (TREE_CODE (return_val) != SSA_NAME
1518 || !SSA_NAME_DEF_STMT (return_val)
1519 || gimple_code (SSA_NAME_DEF_STMT (return_val)) != GIMPLE_PHI)
1520 return;
1521 phi = SSA_NAME_DEF_STMT (return_val);
1522 phi_num_args = gimple_phi_num_args (phi);
1523 pred = return_prediction (PHI_ARG_DEF (phi, 0), &direction);
1524
1525 /* Avoid the degenerate case where all return values form the function
1526 belongs to same category (ie they are all positive constants)
1527 so we can hardly say something about them. */
1528 for (i = 1; i < phi_num_args; i++)
1529 if (pred != return_prediction (PHI_ARG_DEF (phi, i), &direction))
1530 break;
1531 if (i != phi_num_args)
1532 for (i = 0; i < phi_num_args; i++)
1533 {
1534 pred = return_prediction (PHI_ARG_DEF (phi, i), &direction);
1535 if (pred != PRED_NO_PREDICTION)
1536 predict_paths_leading_to (gimple_phi_arg_edge (phi, i)->src, pred,
1537 direction);
1538 }
1539 }
1540
1541 /* Look for basic block that contains unlikely to happen events
1542 (such as noreturn calls) and mark all paths leading to execution
1543 of this basic blocks as unlikely. */
1544
1545 static void
1546 tree_bb_level_predictions (void)
1547 {
1548 basic_block bb;
1549 bool has_return_edges = false;
1550 edge e;
1551 edge_iterator ei;
1552
1553 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
1554 if (!(e->flags & (EDGE_ABNORMAL | EDGE_FAKE | EDGE_EH)))
1555 {
1556 has_return_edges = true;
1557 break;
1558 }
1559
1560 apply_return_prediction ();
1561
1562 FOR_EACH_BB (bb)
1563 {
1564 gimple_stmt_iterator gsi;
1565
1566 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1567 {
1568 gimple stmt = gsi_stmt (gsi);
1569 tree decl;
1570
1571 if (is_gimple_call (stmt))
1572 {
1573 if ((gimple_call_flags (stmt) & ECF_NORETURN)
1574 && has_return_edges)
1575 predict_paths_leading_to (bb, PRED_NORETURN,
1576 NOT_TAKEN);
1577 decl = gimple_call_fndecl (stmt);
1578 if (decl
1579 && lookup_attribute ("cold",
1580 DECL_ATTRIBUTES (decl)))
1581 predict_paths_leading_to (bb, PRED_COLD_FUNCTION,
1582 NOT_TAKEN);
1583 }
1584 else if (gimple_code (stmt) == GIMPLE_PREDICT)
1585 {
1586 predict_paths_leading_to (bb, gimple_predict_predictor (stmt),
1587 gimple_predict_outcome (stmt));
1588 /* Keep GIMPLE_PREDICT around so early inlining will propagate
1589 hints to callers. */
1590 }
1591 }
1592 }
1593 }
1594
1595 #ifdef ENABLE_CHECKING
1596
1597 /* Callback for pointer_map_traverse, asserts that the pointer map is
1598 empty. */
1599
1600 static bool
1601 assert_is_empty (const void *key ATTRIBUTE_UNUSED, void **value,
1602 void *data ATTRIBUTE_UNUSED)
1603 {
1604 gcc_assert (!*value);
1605 return false;
1606 }
1607 #endif
1608
1609 /* Predict branch probabilities and estimate profile of the tree CFG. */
1610 static unsigned int
1611 tree_estimate_probability (void)
1612 {
1613 basic_block bb;
1614
1615 loop_optimizer_init (0);
1616 if (dump_file && (dump_flags & TDF_DETAILS))
1617 flow_loops_dump (dump_file, NULL, 0);
1618
1619 add_noreturn_fake_exit_edges ();
1620 connect_infinite_loops_to_exit ();
1621 /* We use loop_niter_by_eval, which requires that the loops have
1622 preheaders. */
1623 create_preheaders (CP_SIMPLE_PREHEADERS);
1624 calculate_dominance_info (CDI_POST_DOMINATORS);
1625
1626 bb_predictions = pointer_map_create ();
1627 tree_bb_level_predictions ();
1628
1629 mark_irreducible_loops ();
1630 record_loop_exits ();
1631 if (number_of_loops () > 1)
1632 predict_loops ();
1633
1634 FOR_EACH_BB (bb)
1635 {
1636 edge e;
1637 edge_iterator ei;
1638 gimple last;
1639
1640 FOR_EACH_EDGE (e, ei, bb->succs)
1641 {
1642 /* Predict early returns to be probable, as we've already taken
1643 care for error returns and other cases are often used for
1644 fast paths through function.
1645
1646 Since we've already removed the return statements, we are
1647 looking for CFG like:
1648
1649 if (conditional)
1650 {
1651 ..
1652 goto return_block
1653 }
1654 some other blocks
1655 return_block:
1656 return_stmt. */
1657 if (e->dest != bb->next_bb
1658 && e->dest != EXIT_BLOCK_PTR
1659 && single_succ_p (e->dest)
1660 && single_succ_edge (e->dest)->dest == EXIT_BLOCK_PTR
1661 && (last = last_stmt (e->dest)) != NULL
1662 && gimple_code (last) == GIMPLE_RETURN)
1663 {
1664 edge e1;
1665 edge_iterator ei1;
1666
1667 if (single_succ_p (bb))
1668 {
1669 FOR_EACH_EDGE (e1, ei1, bb->preds)
1670 if (!predicted_by_p (e1->src, PRED_NULL_RETURN)
1671 && !predicted_by_p (e1->src, PRED_CONST_RETURN)
1672 && !predicted_by_p (e1->src, PRED_NEGATIVE_RETURN))
1673 predict_edge_def (e1, PRED_TREE_EARLY_RETURN, NOT_TAKEN);
1674 }
1675 else
1676 if (!predicted_by_p (e->src, PRED_NULL_RETURN)
1677 && !predicted_by_p (e->src, PRED_CONST_RETURN)
1678 && !predicted_by_p (e->src, PRED_NEGATIVE_RETURN))
1679 predict_edge_def (e, PRED_TREE_EARLY_RETURN, NOT_TAKEN);
1680 }
1681
1682 /* Look for block we are guarding (ie we dominate it,
1683 but it doesn't postdominate us). */
1684 if (e->dest != EXIT_BLOCK_PTR && e->dest != bb
1685 && dominated_by_p (CDI_DOMINATORS, e->dest, e->src)
1686 && !dominated_by_p (CDI_POST_DOMINATORS, e->src, e->dest))
1687 {
1688 gimple_stmt_iterator bi;
1689
1690 /* The call heuristic claims that a guarded function call
1691 is improbable. This is because such calls are often used
1692 to signal exceptional situations such as printing error
1693 messages. */
1694 for (bi = gsi_start_bb (e->dest); !gsi_end_p (bi);
1695 gsi_next (&bi))
1696 {
1697 gimple stmt = gsi_stmt (bi);
1698 if (is_gimple_call (stmt)
1699 /* Constant and pure calls are hardly used to signalize
1700 something exceptional. */
1701 && gimple_has_side_effects (stmt))
1702 {
1703 predict_edge_def (e, PRED_CALL, NOT_TAKEN);
1704 break;
1705 }
1706 }
1707 }
1708 }
1709 tree_predict_by_opcode (bb);
1710 }
1711 FOR_EACH_BB (bb)
1712 combine_predictions_for_bb (bb);
1713
1714 #ifdef ENABLE_CHECKING
1715 pointer_map_traverse (bb_predictions, assert_is_empty, NULL);
1716 #endif
1717 pointer_map_destroy (bb_predictions);
1718 bb_predictions = NULL;
1719
1720 estimate_bb_frequencies ();
1721 free_dominance_info (CDI_POST_DOMINATORS);
1722 remove_fake_exit_edges ();
1723 loop_optimizer_finalize ();
1724 if (dump_file && (dump_flags & TDF_DETAILS))
1725 gimple_dump_cfg (dump_file, dump_flags);
1726 if (profile_status == PROFILE_ABSENT)
1727 profile_status = PROFILE_GUESSED;
1728 return 0;
1729 }
1730
1731 /* Predict edges to successors of CUR whose sources are not postdominated by
1732 BB by PRED and recurse to all postdominators. */
1733
1734 static void
1735 predict_paths_for_bb (basic_block cur, basic_block bb,
1736 enum br_predictor pred,
1737 enum prediction taken)
1738 {
1739 edge e;
1740 edge_iterator ei;
1741 basic_block son;
1742
1743 /* We are looking for all edges forming edge cut induced by
1744 set of all blocks postdominated by BB. */
1745 FOR_EACH_EDGE (e, ei, cur->preds)
1746 if (e->src->index >= NUM_FIXED_BLOCKS
1747 && !dominated_by_p (CDI_POST_DOMINATORS, e->src, bb))
1748 {
1749 gcc_assert (bb == cur || dominated_by_p (CDI_POST_DOMINATORS, cur, bb));
1750 predict_edge_def (e, pred, taken);
1751 }
1752 for (son = first_dom_son (CDI_POST_DOMINATORS, cur);
1753 son;
1754 son = next_dom_son (CDI_POST_DOMINATORS, son))
1755 predict_paths_for_bb (son, bb, pred, taken);
1756 }
1757
1758 /* Sets branch probabilities according to PREDiction and
1759 FLAGS. */
1760
1761 static void
1762 predict_paths_leading_to (basic_block bb, enum br_predictor pred,
1763 enum prediction taken)
1764 {
1765 predict_paths_for_bb (bb, bb, pred, taken);
1766 }
1767
1768 /* This is used to carry information about basic blocks. It is
1769 attached to the AUX field of the standard CFG block. */
1770
1771 typedef struct block_info_def
1772 {
1773 /* Estimated frequency of execution of basic_block. */
1774 sreal frequency;
1775
1776 /* To keep queue of basic blocks to process. */
1777 basic_block next;
1778
1779 /* Number of predecessors we need to visit first. */
1780 int npredecessors;
1781 } *block_info;
1782
1783 /* Similar information for edges. */
1784 typedef struct edge_info_def
1785 {
1786 /* In case edge is a loopback edge, the probability edge will be reached
1787 in case header is. Estimated number of iterations of the loop can be
1788 then computed as 1 / (1 - back_edge_prob). */
1789 sreal back_edge_prob;
1790 /* True if the edge is a loopback edge in the natural loop. */
1791 unsigned int back_edge:1;
1792 } *edge_info;
1793
1794 #define BLOCK_INFO(B) ((block_info) (B)->aux)
1795 #define EDGE_INFO(E) ((edge_info) (E)->aux)
1796
1797 /* Helper function for estimate_bb_frequencies.
1798 Propagate the frequencies in blocks marked in
1799 TOVISIT, starting in HEAD. */
1800
1801 static void
1802 propagate_freq (basic_block head, bitmap tovisit)
1803 {
1804 basic_block bb;
1805 basic_block last;
1806 unsigned i;
1807 edge e;
1808 basic_block nextbb;
1809 bitmap_iterator bi;
1810
1811 /* For each basic block we need to visit count number of his predecessors
1812 we need to visit first. */
1813 EXECUTE_IF_SET_IN_BITMAP (tovisit, 0, i, bi)
1814 {
1815 edge_iterator ei;
1816 int count = 0;
1817
1818 /* The outermost "loop" includes the exit block, which we can not
1819 look up via BASIC_BLOCK. Detect this and use EXIT_BLOCK_PTR
1820 directly. Do the same for the entry block. */
1821 bb = BASIC_BLOCK (i);
1822
1823 FOR_EACH_EDGE (e, ei, bb->preds)
1824 {
1825 bool visit = bitmap_bit_p (tovisit, e->src->index);
1826
1827 if (visit && !(e->flags & EDGE_DFS_BACK))
1828 count++;
1829 else if (visit && dump_file && !EDGE_INFO (e)->back_edge)
1830 fprintf (dump_file,
1831 "Irreducible region hit, ignoring edge to %i->%i\n",
1832 e->src->index, bb->index);
1833 }
1834 BLOCK_INFO (bb)->npredecessors = count;
1835 }
1836
1837 memcpy (&BLOCK_INFO (head)->frequency, &real_one, sizeof (real_one));
1838 last = head;
1839 for (bb = head; bb; bb = nextbb)
1840 {
1841 edge_iterator ei;
1842 sreal cyclic_probability, frequency;
1843
1844 memcpy (&cyclic_probability, &real_zero, sizeof (real_zero));
1845 memcpy (&frequency, &real_zero, sizeof (real_zero));
1846
1847 nextbb = BLOCK_INFO (bb)->next;
1848 BLOCK_INFO (bb)->next = NULL;
1849
1850 /* Compute frequency of basic block. */
1851 if (bb != head)
1852 {
1853 #ifdef ENABLE_CHECKING
1854 FOR_EACH_EDGE (e, ei, bb->preds)
1855 gcc_assert (!bitmap_bit_p (tovisit, e->src->index)
1856 || (e->flags & EDGE_DFS_BACK));
1857 #endif
1858
1859 FOR_EACH_EDGE (e, ei, bb->preds)
1860 if (EDGE_INFO (e)->back_edge)
1861 {
1862 sreal_add (&cyclic_probability, &cyclic_probability,
1863 &EDGE_INFO (e)->back_edge_prob);
1864 }
1865 else if (!(e->flags & EDGE_DFS_BACK))
1866 {
1867 sreal tmp;
1868
1869 /* frequency += (e->probability
1870 * BLOCK_INFO (e->src)->frequency /
1871 REG_BR_PROB_BASE); */
1872
1873 sreal_init (&tmp, e->probability, 0);
1874 sreal_mul (&tmp, &tmp, &BLOCK_INFO (e->src)->frequency);
1875 sreal_mul (&tmp, &tmp, &real_inv_br_prob_base);
1876 sreal_add (&frequency, &frequency, &tmp);
1877 }
1878
1879 if (sreal_compare (&cyclic_probability, &real_zero) == 0)
1880 {
1881 memcpy (&BLOCK_INFO (bb)->frequency, &frequency,
1882 sizeof (frequency));
1883 }
1884 else
1885 {
1886 if (sreal_compare (&cyclic_probability, &real_almost_one) > 0)
1887 {
1888 memcpy (&cyclic_probability, &real_almost_one,
1889 sizeof (real_almost_one));
1890 }
1891
1892 /* BLOCK_INFO (bb)->frequency = frequency
1893 / (1 - cyclic_probability) */
1894
1895 sreal_sub (&cyclic_probability, &real_one, &cyclic_probability);
1896 sreal_div (&BLOCK_INFO (bb)->frequency,
1897 &frequency, &cyclic_probability);
1898 }
1899 }
1900
1901 bitmap_clear_bit (tovisit, bb->index);
1902
1903 e = find_edge (bb, head);
1904 if (e)
1905 {
1906 sreal tmp;
1907
1908 /* EDGE_INFO (e)->back_edge_prob
1909 = ((e->probability * BLOCK_INFO (bb)->frequency)
1910 / REG_BR_PROB_BASE); */
1911
1912 sreal_init (&tmp, e->probability, 0);
1913 sreal_mul (&tmp, &tmp, &BLOCK_INFO (bb)->frequency);
1914 sreal_mul (&EDGE_INFO (e)->back_edge_prob,
1915 &tmp, &real_inv_br_prob_base);
1916 }
1917
1918 /* Propagate to successor blocks. */
1919 FOR_EACH_EDGE (e, ei, bb->succs)
1920 if (!(e->flags & EDGE_DFS_BACK)
1921 && BLOCK_INFO (e->dest)->npredecessors)
1922 {
1923 BLOCK_INFO (e->dest)->npredecessors--;
1924 if (!BLOCK_INFO (e->dest)->npredecessors)
1925 {
1926 if (!nextbb)
1927 nextbb = e->dest;
1928 else
1929 BLOCK_INFO (last)->next = e->dest;
1930
1931 last = e->dest;
1932 }
1933 }
1934 }
1935 }
1936
1937 /* Estimate probabilities of loopback edges in loops at same nest level. */
1938
1939 static void
1940 estimate_loops_at_level (struct loop *first_loop)
1941 {
1942 struct loop *loop;
1943
1944 for (loop = first_loop; loop; loop = loop->next)
1945 {
1946 edge e;
1947 basic_block *bbs;
1948 unsigned i;
1949 bitmap tovisit = BITMAP_ALLOC (NULL);
1950
1951 estimate_loops_at_level (loop->inner);
1952
1953 /* Find current loop back edge and mark it. */
1954 e = loop_latch_edge (loop);
1955 EDGE_INFO (e)->back_edge = 1;
1956
1957 bbs = get_loop_body (loop);
1958 for (i = 0; i < loop->num_nodes; i++)
1959 bitmap_set_bit (tovisit, bbs[i]->index);
1960 free (bbs);
1961 propagate_freq (loop->header, tovisit);
1962 BITMAP_FREE (tovisit);
1963 }
1964 }
1965
1966 /* Propagates frequencies through structure of loops. */
1967
1968 static void
1969 estimate_loops (void)
1970 {
1971 bitmap tovisit = BITMAP_ALLOC (NULL);
1972 basic_block bb;
1973
1974 /* Start by estimating the frequencies in the loops. */
1975 if (number_of_loops () > 1)
1976 estimate_loops_at_level (current_loops->tree_root->inner);
1977
1978 /* Now propagate the frequencies through all the blocks. */
1979 FOR_ALL_BB (bb)
1980 {
1981 bitmap_set_bit (tovisit, bb->index);
1982 }
1983 propagate_freq (ENTRY_BLOCK_PTR, tovisit);
1984 BITMAP_FREE (tovisit);
1985 }
1986
1987 /* Convert counts measured by profile driven feedback to frequencies.
1988 Return nonzero iff there was any nonzero execution count. */
1989
1990 int
1991 counts_to_freqs (void)
1992 {
1993 gcov_type count_max, true_count_max = 0;
1994 basic_block bb;
1995
1996 FOR_EACH_BB (bb)
1997 true_count_max = MAX (bb->count, true_count_max);
1998
1999 count_max = MAX (true_count_max, 1);
2000 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
2001 bb->frequency = (bb->count * BB_FREQ_MAX + count_max / 2) / count_max;
2002
2003 return true_count_max;
2004 }
2005
2006 /* Return true if function is likely to be expensive, so there is no point to
2007 optimize performance of prologue, epilogue or do inlining at the expense
2008 of code size growth. THRESHOLD is the limit of number of instructions
2009 function can execute at average to be still considered not expensive. */
2010
2011 bool
2012 expensive_function_p (int threshold)
2013 {
2014 unsigned int sum = 0;
2015 basic_block bb;
2016 unsigned int limit;
2017
2018 /* We can not compute accurately for large thresholds due to scaled
2019 frequencies. */
2020 gcc_assert (threshold <= BB_FREQ_MAX);
2021
2022 /* Frequencies are out of range. This either means that function contains
2023 internal loop executing more than BB_FREQ_MAX times or profile feedback
2024 is available and function has not been executed at all. */
2025 if (ENTRY_BLOCK_PTR->frequency == 0)
2026 return true;
2027
2028 /* Maximally BB_FREQ_MAX^2 so overflow won't happen. */
2029 limit = ENTRY_BLOCK_PTR->frequency * threshold;
2030 FOR_EACH_BB (bb)
2031 {
2032 rtx insn;
2033
2034 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb));
2035 insn = NEXT_INSN (insn))
2036 if (active_insn_p (insn))
2037 {
2038 sum += bb->frequency;
2039 if (sum > limit)
2040 return true;
2041 }
2042 }
2043
2044 return false;
2045 }
2046
2047 /* Estimate basic blocks frequency by given branch probabilities. */
2048
2049 void
2050 estimate_bb_frequencies (void)
2051 {
2052 basic_block bb;
2053 sreal freq_max;
2054
2055 if (profile_status != PROFILE_READ || !counts_to_freqs ())
2056 {
2057 static int real_values_initialized = 0;
2058
2059 if (!real_values_initialized)
2060 {
2061 real_values_initialized = 1;
2062 sreal_init (&real_zero, 0, 0);
2063 sreal_init (&real_one, 1, 0);
2064 sreal_init (&real_br_prob_base, REG_BR_PROB_BASE, 0);
2065 sreal_init (&real_bb_freq_max, BB_FREQ_MAX, 0);
2066 sreal_init (&real_one_half, 1, -1);
2067 sreal_div (&real_inv_br_prob_base, &real_one, &real_br_prob_base);
2068 sreal_sub (&real_almost_one, &real_one, &real_inv_br_prob_base);
2069 }
2070
2071 mark_dfs_back_edges ();
2072
2073 single_succ_edge (ENTRY_BLOCK_PTR)->probability = REG_BR_PROB_BASE;
2074
2075 /* Set up block info for each basic block. */
2076 alloc_aux_for_blocks (sizeof (struct block_info_def));
2077 alloc_aux_for_edges (sizeof (struct edge_info_def));
2078 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
2079 {
2080 edge e;
2081 edge_iterator ei;
2082
2083 FOR_EACH_EDGE (e, ei, bb->succs)
2084 {
2085 sreal_init (&EDGE_INFO (e)->back_edge_prob, e->probability, 0);
2086 sreal_mul (&EDGE_INFO (e)->back_edge_prob,
2087 &EDGE_INFO (e)->back_edge_prob,
2088 &real_inv_br_prob_base);
2089 }
2090 }
2091
2092 /* First compute probabilities locally for each loop from innermost
2093 to outermost to examine probabilities for back edges. */
2094 estimate_loops ();
2095
2096 memcpy (&freq_max, &real_zero, sizeof (real_zero));
2097 FOR_EACH_BB (bb)
2098 if (sreal_compare (&freq_max, &BLOCK_INFO (bb)->frequency) < 0)
2099 memcpy (&freq_max, &BLOCK_INFO (bb)->frequency, sizeof (freq_max));
2100
2101 sreal_div (&freq_max, &real_bb_freq_max, &freq_max);
2102 FOR_BB_BETWEEN (bb, ENTRY_BLOCK_PTR, NULL, next_bb)
2103 {
2104 sreal tmp;
2105
2106 sreal_mul (&tmp, &BLOCK_INFO (bb)->frequency, &freq_max);
2107 sreal_add (&tmp, &tmp, &real_one_half);
2108 bb->frequency = sreal_to_int (&tmp);
2109 }
2110
2111 free_aux_for_blocks ();
2112 free_aux_for_edges ();
2113 }
2114 compute_function_frequency ();
2115 if (flag_reorder_functions)
2116 choose_function_section ();
2117 }
2118
2119 /* Decide whether function is hot, cold or unlikely executed. */
2120 static void
2121 compute_function_frequency (void)
2122 {
2123 basic_block bb;
2124
2125 if (!profile_info || !flag_branch_probabilities)
2126 {
2127 if (lookup_attribute ("cold", DECL_ATTRIBUTES (current_function_decl))
2128 != NULL)
2129 cfun->function_frequency = FUNCTION_FREQUENCY_UNLIKELY_EXECUTED;
2130 else if (lookup_attribute ("hot", DECL_ATTRIBUTES (current_function_decl))
2131 != NULL)
2132 cfun->function_frequency = FUNCTION_FREQUENCY_HOT;
2133 return;
2134 }
2135 cfun->function_frequency = FUNCTION_FREQUENCY_UNLIKELY_EXECUTED;
2136 FOR_EACH_BB (bb)
2137 {
2138 if (maybe_hot_bb_p (bb))
2139 {
2140 cfun->function_frequency = FUNCTION_FREQUENCY_HOT;
2141 return;
2142 }
2143 if (!probably_never_executed_bb_p (bb))
2144 cfun->function_frequency = FUNCTION_FREQUENCY_NORMAL;
2145 }
2146 }
2147
2148 /* Choose appropriate section for the function. */
2149 static void
2150 choose_function_section (void)
2151 {
2152 if (DECL_SECTION_NAME (current_function_decl)
2153 || !targetm.have_named_sections
2154 /* Theoretically we can split the gnu.linkonce text section too,
2155 but this requires more work as the frequency needs to match
2156 for all generated objects so we need to merge the frequency
2157 of all instances. For now just never set frequency for these. */
2158 || DECL_ONE_ONLY (current_function_decl))
2159 return;
2160
2161 /* If we are doing the partitioning optimization, let the optimization
2162 choose the correct section into which to put things. */
2163
2164 if (flag_reorder_blocks_and_partition)
2165 return;
2166
2167 if (cfun->function_frequency == FUNCTION_FREQUENCY_HOT)
2168 DECL_SECTION_NAME (current_function_decl) =
2169 build_string (strlen (HOT_TEXT_SECTION_NAME), HOT_TEXT_SECTION_NAME);
2170 if (cfun->function_frequency == FUNCTION_FREQUENCY_UNLIKELY_EXECUTED)
2171 DECL_SECTION_NAME (current_function_decl) =
2172 build_string (strlen (UNLIKELY_EXECUTED_TEXT_SECTION_NAME),
2173 UNLIKELY_EXECUTED_TEXT_SECTION_NAME);
2174 }
2175
2176 static bool
2177 gate_estimate_probability (void)
2178 {
2179 return flag_guess_branch_prob;
2180 }
2181
2182 /* Build PREDICT_EXPR. */
2183 tree
2184 build_predict_expr (enum br_predictor predictor, enum prediction taken)
2185 {
2186 tree t = build1 (PREDICT_EXPR, void_type_node,
2187 build_int_cst (NULL, predictor));
2188 PREDICT_EXPR_OUTCOME (t) = taken;
2189 return t;
2190 }
2191
2192 const char *
2193 predictor_name (enum br_predictor predictor)
2194 {
2195 return predictor_info[predictor].name;
2196 }
2197
2198 struct gimple_opt_pass pass_profile =
2199 {
2200 {
2201 GIMPLE_PASS,
2202 "profile", /* name */
2203 gate_estimate_probability, /* gate */
2204 tree_estimate_probability, /* execute */
2205 NULL, /* sub */
2206 NULL, /* next */
2207 0, /* static_pass_number */
2208 TV_BRANCH_PROB, /* tv_id */
2209 PROP_cfg, /* properties_required */
2210 0, /* properties_provided */
2211 0, /* properties_destroyed */
2212 0, /* todo_flags_start */
2213 TODO_ggc_collect | TODO_verify_ssa /* todo_flags_finish */
2214 }
2215 };
2216
2217 struct gimple_opt_pass pass_strip_predict_hints =
2218 {
2219 {
2220 GIMPLE_PASS,
2221 NULL, /* name */
2222 NULL, /* gate */
2223 strip_predict_hints, /* execute */
2224 NULL, /* sub */
2225 NULL, /* next */
2226 0, /* static_pass_number */
2227 TV_BRANCH_PROB, /* tv_id */
2228 PROP_cfg, /* properties_required */
2229 0, /* properties_provided */
2230 0, /* properties_destroyed */
2231 0, /* todo_flags_start */
2232 TODO_ggc_collect | TODO_verify_ssa /* todo_flags_finish */
2233 }
2234 };