comparison gcc/reorg.c @ 0:a06113de4d67

first commit
author kent <kent@cr.ie.u-ryukyu.ac.jp>
date Fri, 17 Jul 2009 14:47:48 +0900
parents
children 77e2b8dfacca
comparison
equal deleted inserted replaced
-1:000000000000 0:a06113de4d67
1 /* Perform instruction reorganizations for delay slot filling.
2 Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
3 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
4 Free Software Foundation, Inc.
5 Contributed by Richard Kenner (kenner@vlsi1.ultra.nyu.edu).
6 Hacked by Michael Tiemann (tiemann@cygnus.com).
7
8 This file is part of GCC.
9
10 GCC is free software; you can redistribute it and/or modify it under
11 the terms of the GNU General Public License as published by the Free
12 Software Foundation; either version 3, or (at your option) any later
13 version.
14
15 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
16 WARRANTY; without even the implied warranty of MERCHANTABILITY or
17 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with GCC; see the file COPYING3. If not see
22 <http://www.gnu.org/licenses/>. */
23
24 /* Instruction reorganization pass.
25
26 This pass runs after register allocation and final jump
27 optimization. It should be the last pass to run before peephole.
28 It serves primarily to fill delay slots of insns, typically branch
29 and call insns. Other insns typically involve more complicated
30 interactions of data dependencies and resource constraints, and
31 are better handled by scheduling before register allocation (by the
32 function `schedule_insns').
33
34 The Branch Penalty is the number of extra cycles that are needed to
35 execute a branch insn. On an ideal machine, branches take a single
36 cycle, and the Branch Penalty is 0. Several RISC machines approach
37 branch delays differently:
38
39 The MIPS has a single branch delay slot. Most insns
40 (except other branches) can be used to fill this slot. When the
41 slot is filled, two insns execute in two cycles, reducing the
42 branch penalty to zero.
43
44 The SPARC always has a branch delay slot, but its effects can be
45 annulled when the branch is not taken. This means that failing to
46 find other sources of insns, we can hoist an insn from the branch
47 target that would only be safe to execute knowing that the branch
48 is taken.
49
50 The HP-PA always has a branch delay slot. For unconditional branches
51 its effects can be annulled when the branch is taken. The effects
52 of the delay slot in a conditional branch can be nullified for forward
53 taken branches, or for untaken backward branches. This means
54 we can hoist insns from the fall-through path for forward branches or
55 steal insns from the target of backward branches.
56
57 The TMS320C3x and C4x have three branch delay slots. When the three
58 slots are filled, the branch penalty is zero. Most insns can fill the
59 delay slots except jump insns.
60
61 Three techniques for filling delay slots have been implemented so far:
62
63 (1) `fill_simple_delay_slots' is the simplest, most efficient way
64 to fill delay slots. This pass first looks for insns which come
65 from before the branch and which are safe to execute after the
66 branch. Then it searches after the insn requiring delay slots or,
67 in the case of a branch, for insns that are after the point at
68 which the branch merges into the fallthrough code, if such a point
69 exists. When such insns are found, the branch penalty decreases
70 and no code expansion takes place.
71
72 (2) `fill_eager_delay_slots' is more complicated: it is used for
73 scheduling conditional jumps, or for scheduling jumps which cannot
74 be filled using (1). A machine need not have annulled jumps to use
75 this strategy, but it helps (by keeping more options open).
76 `fill_eager_delay_slots' tries to guess the direction the branch
77 will go; if it guesses right 100% of the time, it can reduce the
78 branch penalty as much as `fill_simple_delay_slots' does. If it
79 guesses wrong 100% of the time, it might as well schedule nops. When
80 `fill_eager_delay_slots' takes insns from the fall-through path of
81 the jump, usually there is no code expansion; when it takes insns
82 from the branch target, there is code expansion if it is not the
83 only way to reach that target.
84
85 (3) `relax_delay_slots' uses a set of rules to simplify code that
86 has been reorganized by (1) and (2). It finds cases where
87 conditional test can be eliminated, jumps can be threaded, extra
88 insns can be eliminated, etc. It is the job of (1) and (2) to do a
89 good job of scheduling locally; `relax_delay_slots' takes care of
90 making the various individual schedules work well together. It is
91 especially tuned to handle the control flow interactions of branch
92 insns. It does nothing for insns with delay slots that do not
93 branch.
94
95 On machines that use CC0, we are very conservative. We will not make
96 a copy of an insn involving CC0 since we want to maintain a 1-1
97 correspondence between the insn that sets and uses CC0. The insns are
98 allowed to be separated by placing an insn that sets CC0 (but not an insn
99 that uses CC0; we could do this, but it doesn't seem worthwhile) in a
100 delay slot. In that case, we point each insn at the other with REG_CC_USER
101 and REG_CC_SETTER notes. Note that these restrictions affect very few
102 machines because most RISC machines with delay slots will not use CC0
103 (the RT is the only known exception at this point).
104
105 Not yet implemented:
106
107 The Acorn Risc Machine can conditionally execute most insns, so
108 it is profitable to move single insns into a position to execute
109 based on the condition code of the previous insn.
110
111 The HP-PA can conditionally nullify insns, providing a similar
112 effect to the ARM, differing mostly in which insn is "in charge". */
113
114 #include "config.h"
115 #include "system.h"
116 #include "coretypes.h"
117 #include "tm.h"
118 #include "toplev.h"
119 #include "rtl.h"
120 #include "tm_p.h"
121 #include "expr.h"
122 #include "function.h"
123 #include "insn-config.h"
124 #include "conditions.h"
125 #include "hard-reg-set.h"
126 #include "basic-block.h"
127 #include "regs.h"
128 #include "recog.h"
129 #include "flags.h"
130 #include "output.h"
131 #include "obstack.h"
132 #include "insn-attr.h"
133 #include "resource.h"
134 #include "except.h"
135 #include "params.h"
136 #include "timevar.h"
137 #include "target.h"
138 #include "tree-pass.h"
139
140 #ifdef DELAY_SLOTS
141
142 #ifndef ANNUL_IFTRUE_SLOTS
143 #define eligible_for_annul_true(INSN, SLOTS, TRIAL, FLAGS) 0
144 #endif
145 #ifndef ANNUL_IFFALSE_SLOTS
146 #define eligible_for_annul_false(INSN, SLOTS, TRIAL, FLAGS) 0
147 #endif
148
149 /* Insns which have delay slots that have not yet been filled. */
150
151 static struct obstack unfilled_slots_obstack;
152 static rtx *unfilled_firstobj;
153
154 /* Define macros to refer to the first and last slot containing unfilled
155 insns. These are used because the list may move and its address
156 should be recomputed at each use. */
157
158 #define unfilled_slots_base \
159 ((rtx *) obstack_base (&unfilled_slots_obstack))
160
161 #define unfilled_slots_next \
162 ((rtx *) obstack_next_free (&unfilled_slots_obstack))
163
164 /* Points to the label before the end of the function. */
165 static rtx end_of_function_label;
166
167 /* Mapping between INSN_UID's and position in the code since INSN_UID's do
168 not always monotonically increase. */
169 static int *uid_to_ruid;
170
171 /* Highest valid index in `uid_to_ruid'. */
172 static int max_uid;
173
174 static int stop_search_p (rtx, int);
175 static int resource_conflicts_p (struct resources *, struct resources *);
176 static int insn_references_resource_p (rtx, struct resources *, int);
177 static int insn_sets_resource_p (rtx, struct resources *, int);
178 static rtx find_end_label (void);
179 static rtx emit_delay_sequence (rtx, rtx, int);
180 static rtx add_to_delay_list (rtx, rtx);
181 static rtx delete_from_delay_slot (rtx);
182 static void delete_scheduled_jump (rtx);
183 static void note_delay_statistics (int, int);
184 #if defined(ANNUL_IFFALSE_SLOTS) || defined(ANNUL_IFTRUE_SLOTS)
185 static rtx optimize_skip (rtx);
186 #endif
187 static int get_jump_flags (rtx, rtx);
188 static int rare_destination (rtx);
189 static int mostly_true_jump (rtx, rtx);
190 static rtx get_branch_condition (rtx, rtx);
191 static int condition_dominates_p (rtx, rtx);
192 static int redirect_with_delay_slots_safe_p (rtx, rtx, rtx);
193 static int redirect_with_delay_list_safe_p (rtx, rtx, rtx);
194 static int check_annul_list_true_false (int, rtx);
195 static rtx steal_delay_list_from_target (rtx, rtx, rtx, rtx,
196 struct resources *,
197 struct resources *,
198 struct resources *,
199 int, int *, int *, rtx *);
200 static rtx steal_delay_list_from_fallthrough (rtx, rtx, rtx, rtx,
201 struct resources *,
202 struct resources *,
203 struct resources *,
204 int, int *, int *);
205 static void try_merge_delay_insns (rtx, rtx);
206 static rtx redundant_insn (rtx, rtx, rtx);
207 static int own_thread_p (rtx, rtx, int);
208 static void update_block (rtx, rtx);
209 static int reorg_redirect_jump (rtx, rtx);
210 static void update_reg_dead_notes (rtx, rtx);
211 static void fix_reg_dead_note (rtx, rtx);
212 static void update_reg_unused_notes (rtx, rtx);
213 static void fill_simple_delay_slots (int);
214 static rtx fill_slots_from_thread (rtx, rtx, rtx, rtx,
215 int, int, int, int,
216 int *, rtx);
217 static void fill_eager_delay_slots (void);
218 static void relax_delay_slots (rtx);
219 #ifdef HAVE_return
220 static void make_return_insns (rtx);
221 #endif
222
223 /* Return TRUE if this insn should stop the search for insn to fill delay
224 slots. LABELS_P indicates that labels should terminate the search.
225 In all cases, jumps terminate the search. */
226
227 static int
228 stop_search_p (rtx insn, int labels_p)
229 {
230 if (insn == 0)
231 return 1;
232
233 /* If the insn can throw an exception that is caught within the function,
234 it may effectively perform a jump from the viewpoint of the function.
235 Therefore act like for a jump. */
236 if (can_throw_internal (insn))
237 return 1;
238
239 switch (GET_CODE (insn))
240 {
241 case NOTE:
242 case CALL_INSN:
243 return 0;
244
245 case CODE_LABEL:
246 return labels_p;
247
248 case JUMP_INSN:
249 case BARRIER:
250 return 1;
251
252 case INSN:
253 /* OK unless it contains a delay slot or is an `asm' insn of some type.
254 We don't know anything about these. */
255 return (GET_CODE (PATTERN (insn)) == SEQUENCE
256 || GET_CODE (PATTERN (insn)) == ASM_INPUT
257 || asm_noperands (PATTERN (insn)) >= 0);
258
259 default:
260 gcc_unreachable ();
261 }
262 }
263
264 /* Return TRUE if any resources are marked in both RES1 and RES2 or if either
265 resource set contains a volatile memory reference. Otherwise, return FALSE. */
266
267 static int
268 resource_conflicts_p (struct resources *res1, struct resources *res2)
269 {
270 if ((res1->cc && res2->cc) || (res1->memory && res2->memory)
271 || (res1->unch_memory && res2->unch_memory)
272 || res1->volatil || res2->volatil)
273 return 1;
274
275 #ifdef HARD_REG_SET
276 return (res1->regs & res2->regs) != HARD_CONST (0);
277 #else
278 {
279 int i;
280
281 for (i = 0; i < HARD_REG_SET_LONGS; i++)
282 if ((res1->regs[i] & res2->regs[i]) != 0)
283 return 1;
284 return 0;
285 }
286 #endif
287 }
288
289 /* Return TRUE if any resource marked in RES, a `struct resources', is
290 referenced by INSN. If INCLUDE_DELAYED_EFFECTS is set, return if the called
291 routine is using those resources.
292
293 We compute this by computing all the resources referenced by INSN and
294 seeing if this conflicts with RES. It might be faster to directly check
295 ourselves, and this is the way it used to work, but it means duplicating
296 a large block of complex code. */
297
298 static int
299 insn_references_resource_p (rtx insn, struct resources *res,
300 int include_delayed_effects)
301 {
302 struct resources insn_res;
303
304 CLEAR_RESOURCE (&insn_res);
305 mark_referenced_resources (insn, &insn_res, include_delayed_effects);
306 return resource_conflicts_p (&insn_res, res);
307 }
308
309 /* Return TRUE if INSN modifies resources that are marked in RES.
310 INCLUDE_DELAYED_EFFECTS is set if the actions of that routine should be
311 included. CC0 is only modified if it is explicitly set; see comments
312 in front of mark_set_resources for details. */
313
314 static int
315 insn_sets_resource_p (rtx insn, struct resources *res,
316 int include_delayed_effects)
317 {
318 struct resources insn_sets;
319
320 CLEAR_RESOURCE (&insn_sets);
321 mark_set_resources (insn, &insn_sets, 0, include_delayed_effects);
322 return resource_conflicts_p (&insn_sets, res);
323 }
324
325 /* Find a label at the end of the function or before a RETURN. If there
326 is none, try to make one. If that fails, returns 0.
327
328 The property of such a label is that it is placed just before the
329 epilogue or a bare RETURN insn, so that another bare RETURN can be
330 turned into a jump to the label unconditionally. In particular, the
331 label cannot be placed before a RETURN insn with a filled delay slot.
332
333 ??? There may be a problem with the current implementation. Suppose
334 we start with a bare RETURN insn and call find_end_label. It may set
335 end_of_function_label just before the RETURN. Suppose the machinery
336 is able to fill the delay slot of the RETURN insn afterwards. Then
337 end_of_function_label is no longer valid according to the property
338 described above and find_end_label will still return it unmodified.
339 Note that this is probably mitigated by the following observation:
340 once end_of_function_label is made, it is very likely the target of
341 a jump, so filling the delay slot of the RETURN will be much more
342 difficult. */
343
344 static rtx
345 find_end_label (void)
346 {
347 rtx insn;
348
349 /* If we found one previously, return it. */
350 if (end_of_function_label)
351 return end_of_function_label;
352
353 /* Otherwise, see if there is a label at the end of the function. If there
354 is, it must be that RETURN insns aren't needed, so that is our return
355 label and we don't have to do anything else. */
356
357 insn = get_last_insn ();
358 while (NOTE_P (insn)
359 || (NONJUMP_INSN_P (insn)
360 && (GET_CODE (PATTERN (insn)) == USE
361 || GET_CODE (PATTERN (insn)) == CLOBBER)))
362 insn = PREV_INSN (insn);
363
364 /* When a target threads its epilogue we might already have a
365 suitable return insn. If so put a label before it for the
366 end_of_function_label. */
367 if (BARRIER_P (insn)
368 && JUMP_P (PREV_INSN (insn))
369 && GET_CODE (PATTERN (PREV_INSN (insn))) == RETURN)
370 {
371 rtx temp = PREV_INSN (PREV_INSN (insn));
372 end_of_function_label = gen_label_rtx ();
373 LABEL_NUSES (end_of_function_label) = 0;
374
375 /* Put the label before an USE insns that may precede the RETURN insn. */
376 while (GET_CODE (temp) == USE)
377 temp = PREV_INSN (temp);
378
379 emit_label_after (end_of_function_label, temp);
380 }
381
382 else if (LABEL_P (insn))
383 end_of_function_label = insn;
384 else
385 {
386 end_of_function_label = gen_label_rtx ();
387 LABEL_NUSES (end_of_function_label) = 0;
388 /* If the basic block reorder pass moves the return insn to
389 some other place try to locate it again and put our
390 end_of_function_label there. */
391 while (insn && ! (JUMP_P (insn)
392 && (GET_CODE (PATTERN (insn)) == RETURN)))
393 insn = PREV_INSN (insn);
394 if (insn)
395 {
396 insn = PREV_INSN (insn);
397
398 /* Put the label before an USE insns that may proceed the
399 RETURN insn. */
400 while (GET_CODE (insn) == USE)
401 insn = PREV_INSN (insn);
402
403 emit_label_after (end_of_function_label, insn);
404 }
405 else
406 {
407 #ifdef HAVE_epilogue
408 if (HAVE_epilogue
409 #ifdef HAVE_return
410 && ! HAVE_return
411 #endif
412 )
413 {
414 /* The RETURN insn has its delay slot filled so we cannot
415 emit the label just before it. Since we already have
416 an epilogue and cannot emit a new RETURN, we cannot
417 emit the label at all. */
418 end_of_function_label = NULL_RTX;
419 return end_of_function_label;
420 }
421 #endif /* HAVE_epilogue */
422
423 /* Otherwise, make a new label and emit a RETURN and BARRIER,
424 if needed. */
425 emit_label (end_of_function_label);
426 #ifdef HAVE_return
427 /* We don't bother trying to create a return insn if the
428 epilogue has filled delay-slots; we would have to try and
429 move the delay-slot fillers to the delay-slots for the new
430 return insn or in front of the new return insn. */
431 if (crtl->epilogue_delay_list == NULL
432 && HAVE_return)
433 {
434 /* The return we make may have delay slots too. */
435 rtx insn = gen_return ();
436 insn = emit_jump_insn (insn);
437 emit_barrier ();
438 if (num_delay_slots (insn) > 0)
439 obstack_ptr_grow (&unfilled_slots_obstack, insn);
440 }
441 #endif
442 }
443 }
444
445 /* Show one additional use for this label so it won't go away until
446 we are done. */
447 ++LABEL_NUSES (end_of_function_label);
448
449 return end_of_function_label;
450 }
451
452 /* Put INSN and LIST together in a SEQUENCE rtx of LENGTH, and replace
453 the pattern of INSN with the SEQUENCE.
454
455 Chain the insns so that NEXT_INSN of each insn in the sequence points to
456 the next and NEXT_INSN of the last insn in the sequence points to
457 the first insn after the sequence. Similarly for PREV_INSN. This makes
458 it easier to scan all insns.
459
460 Returns the SEQUENCE that replaces INSN. */
461
462 static rtx
463 emit_delay_sequence (rtx insn, rtx list, int length)
464 {
465 int i = 1;
466 rtx li;
467 int had_barrier = 0;
468
469 /* Allocate the rtvec to hold the insns and the SEQUENCE. */
470 rtvec seqv = rtvec_alloc (length + 1);
471 rtx seq = gen_rtx_SEQUENCE (VOIDmode, seqv);
472 rtx seq_insn = make_insn_raw (seq);
473 rtx first = get_insns ();
474 rtx last = get_last_insn ();
475
476 /* Make a copy of the insn having delay slots. */
477 rtx delay_insn = copy_rtx (insn);
478
479 /* If INSN is followed by a BARRIER, delete the BARRIER since it will only
480 confuse further processing. Update LAST in case it was the last insn.
481 We will put the BARRIER back in later. */
482 if (NEXT_INSN (insn) && BARRIER_P (NEXT_INSN (insn)))
483 {
484 delete_related_insns (NEXT_INSN (insn));
485 last = get_last_insn ();
486 had_barrier = 1;
487 }
488
489 /* Splice our SEQUENCE into the insn stream where INSN used to be. */
490 NEXT_INSN (seq_insn) = NEXT_INSN (insn);
491 PREV_INSN (seq_insn) = PREV_INSN (insn);
492
493 if (insn != last)
494 PREV_INSN (NEXT_INSN (seq_insn)) = seq_insn;
495
496 if (insn != first)
497 NEXT_INSN (PREV_INSN (seq_insn)) = seq_insn;
498
499 /* Note the calls to set_new_first_and_last_insn must occur after
500 SEQ_INSN has been completely spliced into the insn stream.
501
502 Otherwise CUR_INSN_UID will get set to an incorrect value because
503 set_new_first_and_last_insn will not find SEQ_INSN in the chain. */
504 if (insn == last)
505 set_new_first_and_last_insn (first, seq_insn);
506
507 if (insn == first)
508 set_new_first_and_last_insn (seq_insn, last);
509
510 /* Build our SEQUENCE and rebuild the insn chain. */
511 XVECEXP (seq, 0, 0) = delay_insn;
512 INSN_DELETED_P (delay_insn) = 0;
513 PREV_INSN (delay_insn) = PREV_INSN (seq_insn);
514
515 INSN_LOCATOR (seq_insn) = INSN_LOCATOR (delay_insn);
516
517 for (li = list; li; li = XEXP (li, 1), i++)
518 {
519 rtx tem = XEXP (li, 0);
520 rtx note, next;
521
522 /* Show that this copy of the insn isn't deleted. */
523 INSN_DELETED_P (tem) = 0;
524
525 XVECEXP (seq, 0, i) = tem;
526 PREV_INSN (tem) = XVECEXP (seq, 0, i - 1);
527 NEXT_INSN (XVECEXP (seq, 0, i - 1)) = tem;
528
529 /* SPARC assembler, for instance, emit warning when debug info is output
530 into the delay slot. */
531 if (INSN_LOCATOR (tem) && !INSN_LOCATOR (seq_insn))
532 INSN_LOCATOR (seq_insn) = INSN_LOCATOR (tem);
533 INSN_LOCATOR (tem) = 0;
534
535 for (note = REG_NOTES (tem); note; note = next)
536 {
537 next = XEXP (note, 1);
538 switch (REG_NOTE_KIND (note))
539 {
540 case REG_DEAD:
541 /* Remove any REG_DEAD notes because we can't rely on them now
542 that the insn has been moved. */
543 remove_note (tem, note);
544 break;
545
546 case REG_LABEL_OPERAND:
547 case REG_LABEL_TARGET:
548 /* Keep the label reference count up to date. */
549 if (LABEL_P (XEXP (note, 0)))
550 LABEL_NUSES (XEXP (note, 0)) ++;
551 break;
552
553 default:
554 break;
555 }
556 }
557 }
558
559 NEXT_INSN (XVECEXP (seq, 0, length)) = NEXT_INSN (seq_insn);
560
561 /* If the previous insn is a SEQUENCE, update the NEXT_INSN pointer on the
562 last insn in that SEQUENCE to point to us. Similarly for the first
563 insn in the following insn if it is a SEQUENCE. */
564
565 if (PREV_INSN (seq_insn) && NONJUMP_INSN_P (PREV_INSN (seq_insn))
566 && GET_CODE (PATTERN (PREV_INSN (seq_insn))) == SEQUENCE)
567 NEXT_INSN (XVECEXP (PATTERN (PREV_INSN (seq_insn)), 0,
568 XVECLEN (PATTERN (PREV_INSN (seq_insn)), 0) - 1))
569 = seq_insn;
570
571 if (NEXT_INSN (seq_insn) && NONJUMP_INSN_P (NEXT_INSN (seq_insn))
572 && GET_CODE (PATTERN (NEXT_INSN (seq_insn))) == SEQUENCE)
573 PREV_INSN (XVECEXP (PATTERN (NEXT_INSN (seq_insn)), 0, 0)) = seq_insn;
574
575 /* If there used to be a BARRIER, put it back. */
576 if (had_barrier)
577 emit_barrier_after (seq_insn);
578
579 gcc_assert (i == length + 1);
580
581 return seq_insn;
582 }
583
584 /* Add INSN to DELAY_LIST and return the head of the new list. The list must
585 be in the order in which the insns are to be executed. */
586
587 static rtx
588 add_to_delay_list (rtx insn, rtx delay_list)
589 {
590 /* If we have an empty list, just make a new list element. If
591 INSN has its block number recorded, clear it since we may
592 be moving the insn to a new block. */
593
594 if (delay_list == 0)
595 {
596 clear_hashed_info_for_insn (insn);
597 return gen_rtx_INSN_LIST (VOIDmode, insn, NULL_RTX);
598 }
599
600 /* Otherwise this must be an INSN_LIST. Add INSN to the end of the
601 list. */
602 XEXP (delay_list, 1) = add_to_delay_list (insn, XEXP (delay_list, 1));
603
604 return delay_list;
605 }
606
607 /* Delete INSN from the delay slot of the insn that it is in, which may
608 produce an insn with no delay slots. Return the new insn. */
609
610 static rtx
611 delete_from_delay_slot (rtx insn)
612 {
613 rtx trial, seq_insn, seq, prev;
614 rtx delay_list = 0;
615 int i;
616 int had_barrier = 0;
617
618 /* We first must find the insn containing the SEQUENCE with INSN in its
619 delay slot. Do this by finding an insn, TRIAL, where
620 PREV_INSN (NEXT_INSN (TRIAL)) != TRIAL. */
621
622 for (trial = insn;
623 PREV_INSN (NEXT_INSN (trial)) == trial;
624 trial = NEXT_INSN (trial))
625 ;
626
627 seq_insn = PREV_INSN (NEXT_INSN (trial));
628 seq = PATTERN (seq_insn);
629
630 if (NEXT_INSN (seq_insn) && BARRIER_P (NEXT_INSN (seq_insn)))
631 had_barrier = 1;
632
633 /* Create a delay list consisting of all the insns other than the one
634 we are deleting (unless we were the only one). */
635 if (XVECLEN (seq, 0) > 2)
636 for (i = 1; i < XVECLEN (seq, 0); i++)
637 if (XVECEXP (seq, 0, i) != insn)
638 delay_list = add_to_delay_list (XVECEXP (seq, 0, i), delay_list);
639
640 /* Delete the old SEQUENCE, re-emit the insn that used to have the delay
641 list, and rebuild the delay list if non-empty. */
642 prev = PREV_INSN (seq_insn);
643 trial = XVECEXP (seq, 0, 0);
644 delete_related_insns (seq_insn);
645 add_insn_after (trial, prev, NULL);
646
647 /* If there was a barrier after the old SEQUENCE, remit it. */
648 if (had_barrier)
649 emit_barrier_after (trial);
650
651 /* If there are any delay insns, remit them. Otherwise clear the
652 annul flag. */
653 if (delay_list)
654 trial = emit_delay_sequence (trial, delay_list, XVECLEN (seq, 0) - 2);
655 else if (INSN_P (trial))
656 INSN_ANNULLED_BRANCH_P (trial) = 0;
657
658 INSN_FROM_TARGET_P (insn) = 0;
659
660 /* Show we need to fill this insn again. */
661 obstack_ptr_grow (&unfilled_slots_obstack, trial);
662
663 return trial;
664 }
665
666 /* Delete INSN, a JUMP_INSN. If it is a conditional jump, we must track down
667 the insn that sets CC0 for it and delete it too. */
668
669 static void
670 delete_scheduled_jump (rtx insn)
671 {
672 /* Delete the insn that sets cc0 for us. On machines without cc0, we could
673 delete the insn that sets the condition code, but it is hard to find it.
674 Since this case is rare anyway, don't bother trying; there would likely
675 be other insns that became dead anyway, which we wouldn't know to
676 delete. */
677
678 #ifdef HAVE_cc0
679 if (reg_mentioned_p (cc0_rtx, insn))
680 {
681 rtx note = find_reg_note (insn, REG_CC_SETTER, NULL_RTX);
682
683 /* If a reg-note was found, it points to an insn to set CC0. This
684 insn is in the delay list of some other insn. So delete it from
685 the delay list it was in. */
686 if (note)
687 {
688 if (! FIND_REG_INC_NOTE (XEXP (note, 0), NULL_RTX)
689 && sets_cc0_p (PATTERN (XEXP (note, 0))) == 1)
690 delete_from_delay_slot (XEXP (note, 0));
691 }
692 else
693 {
694 /* The insn setting CC0 is our previous insn, but it may be in
695 a delay slot. It will be the last insn in the delay slot, if
696 it is. */
697 rtx trial = previous_insn (insn);
698 if (NOTE_P (trial))
699 trial = prev_nonnote_insn (trial);
700 if (sets_cc0_p (PATTERN (trial)) != 1
701 || FIND_REG_INC_NOTE (trial, NULL_RTX))
702 return;
703 if (PREV_INSN (NEXT_INSN (trial)) == trial)
704 delete_related_insns (trial);
705 else
706 delete_from_delay_slot (trial);
707 }
708 }
709 #endif
710
711 delete_related_insns (insn);
712 }
713
714 /* Counters for delay-slot filling. */
715
716 #define NUM_REORG_FUNCTIONS 2
717 #define MAX_DELAY_HISTOGRAM 3
718 #define MAX_REORG_PASSES 2
719
720 static int num_insns_needing_delays[NUM_REORG_FUNCTIONS][MAX_REORG_PASSES];
721
722 static int num_filled_delays[NUM_REORG_FUNCTIONS][MAX_DELAY_HISTOGRAM+1][MAX_REORG_PASSES];
723
724 static int reorg_pass_number;
725
726 static void
727 note_delay_statistics (int slots_filled, int index)
728 {
729 num_insns_needing_delays[index][reorg_pass_number]++;
730 if (slots_filled > MAX_DELAY_HISTOGRAM)
731 slots_filled = MAX_DELAY_HISTOGRAM;
732 num_filled_delays[index][slots_filled][reorg_pass_number]++;
733 }
734
735 #if defined(ANNUL_IFFALSE_SLOTS) || defined(ANNUL_IFTRUE_SLOTS)
736
737 /* Optimize the following cases:
738
739 1. When a conditional branch skips over only one instruction,
740 use an annulling branch and put that insn in the delay slot.
741 Use either a branch that annuls when the condition if true or
742 invert the test with a branch that annuls when the condition is
743 false. This saves insns, since otherwise we must copy an insn
744 from the L1 target.
745
746 (orig) (skip) (otherwise)
747 Bcc.n L1 Bcc',a L1 Bcc,a L1'
748 insn insn insn2
749 L1: L1: L1:
750 insn2 insn2 insn2
751 insn3 insn3 L1':
752 insn3
753
754 2. When a conditional branch skips over only one instruction,
755 and after that, it unconditionally branches somewhere else,
756 perform the similar optimization. This saves executing the
757 second branch in the case where the inverted condition is true.
758
759 Bcc.n L1 Bcc',a L2
760 insn insn
761 L1: L1:
762 Bra L2 Bra L2
763
764 INSN is a JUMP_INSN.
765
766 This should be expanded to skip over N insns, where N is the number
767 of delay slots required. */
768
769 static rtx
770 optimize_skip (rtx insn)
771 {
772 rtx trial = next_nonnote_insn (insn);
773 rtx next_trial = next_active_insn (trial);
774 rtx delay_list = 0;
775 int flags;
776
777 flags = get_jump_flags (insn, JUMP_LABEL (insn));
778
779 if (trial == 0
780 || !NONJUMP_INSN_P (trial)
781 || GET_CODE (PATTERN (trial)) == SEQUENCE
782 || recog_memoized (trial) < 0
783 || (! eligible_for_annul_false (insn, 0, trial, flags)
784 && ! eligible_for_annul_true (insn, 0, trial, flags))
785 || can_throw_internal (trial))
786 return 0;
787
788 /* There are two cases where we are just executing one insn (we assume
789 here that a branch requires only one insn; this should be generalized
790 at some point): Where the branch goes around a single insn or where
791 we have one insn followed by a branch to the same label we branch to.
792 In both of these cases, inverting the jump and annulling the delay
793 slot give the same effect in fewer insns. */
794 if ((next_trial == next_active_insn (JUMP_LABEL (insn))
795 && ! (next_trial == 0 && crtl->epilogue_delay_list != 0))
796 || (next_trial != 0
797 && JUMP_P (next_trial)
798 && JUMP_LABEL (insn) == JUMP_LABEL (next_trial)
799 && (simplejump_p (next_trial)
800 || GET_CODE (PATTERN (next_trial)) == RETURN)))
801 {
802 if (eligible_for_annul_false (insn, 0, trial, flags))
803 {
804 if (invert_jump (insn, JUMP_LABEL (insn), 1))
805 INSN_FROM_TARGET_P (trial) = 1;
806 else if (! eligible_for_annul_true (insn, 0, trial, flags))
807 return 0;
808 }
809
810 delay_list = add_to_delay_list (trial, NULL_RTX);
811 next_trial = next_active_insn (trial);
812 update_block (trial, trial);
813 delete_related_insns (trial);
814
815 /* Also, if we are targeting an unconditional
816 branch, thread our jump to the target of that branch. Don't
817 change this into a RETURN here, because it may not accept what
818 we have in the delay slot. We'll fix this up later. */
819 if (next_trial && JUMP_P (next_trial)
820 && (simplejump_p (next_trial)
821 || GET_CODE (PATTERN (next_trial)) == RETURN))
822 {
823 rtx target_label = JUMP_LABEL (next_trial);
824 if (target_label == 0)
825 target_label = find_end_label ();
826
827 if (target_label)
828 {
829 /* Recompute the flags based on TARGET_LABEL since threading
830 the jump to TARGET_LABEL may change the direction of the
831 jump (which may change the circumstances in which the
832 delay slot is nullified). */
833 flags = get_jump_flags (insn, target_label);
834 if (eligible_for_annul_true (insn, 0, trial, flags))
835 reorg_redirect_jump (insn, target_label);
836 }
837 }
838
839 INSN_ANNULLED_BRANCH_P (insn) = 1;
840 }
841
842 return delay_list;
843 }
844 #endif
845
846 /* Encode and return branch direction and prediction information for
847 INSN assuming it will jump to LABEL.
848
849 Non conditional branches return no direction information and
850 are predicted as very likely taken. */
851
852 static int
853 get_jump_flags (rtx insn, rtx label)
854 {
855 int flags;
856
857 /* get_jump_flags can be passed any insn with delay slots, these may
858 be INSNs, CALL_INSNs, or JUMP_INSNs. Only JUMP_INSNs have branch
859 direction information, and only if they are conditional jumps.
860
861 If LABEL is zero, then there is no way to determine the branch
862 direction. */
863 if (JUMP_P (insn)
864 && (condjump_p (insn) || condjump_in_parallel_p (insn))
865 && INSN_UID (insn) <= max_uid
866 && label != 0
867 && INSN_UID (label) <= max_uid)
868 flags
869 = (uid_to_ruid[INSN_UID (label)] > uid_to_ruid[INSN_UID (insn)])
870 ? ATTR_FLAG_forward : ATTR_FLAG_backward;
871 /* No valid direction information. */
872 else
873 flags = 0;
874
875 /* If insn is a conditional branch call mostly_true_jump to get
876 determine the branch prediction.
877
878 Non conditional branches are predicted as very likely taken. */
879 if (JUMP_P (insn)
880 && (condjump_p (insn) || condjump_in_parallel_p (insn)))
881 {
882 int prediction;
883
884 prediction = mostly_true_jump (insn, get_branch_condition (insn, label));
885 switch (prediction)
886 {
887 case 2:
888 flags |= (ATTR_FLAG_very_likely | ATTR_FLAG_likely);
889 break;
890 case 1:
891 flags |= ATTR_FLAG_likely;
892 break;
893 case 0:
894 flags |= ATTR_FLAG_unlikely;
895 break;
896 case -1:
897 flags |= (ATTR_FLAG_very_unlikely | ATTR_FLAG_unlikely);
898 break;
899
900 default:
901 gcc_unreachable ();
902 }
903 }
904 else
905 flags |= (ATTR_FLAG_very_likely | ATTR_FLAG_likely);
906
907 return flags;
908 }
909
910 /* Return 1 if INSN is a destination that will be branched to rarely (the
911 return point of a function); return 2 if DEST will be branched to very
912 rarely (a call to a function that doesn't return). Otherwise,
913 return 0. */
914
915 static int
916 rare_destination (rtx insn)
917 {
918 int jump_count = 0;
919 rtx next;
920
921 for (; insn; insn = next)
922 {
923 if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
924 insn = XVECEXP (PATTERN (insn), 0, 0);
925
926 next = NEXT_INSN (insn);
927
928 switch (GET_CODE (insn))
929 {
930 case CODE_LABEL:
931 return 0;
932 case BARRIER:
933 /* A BARRIER can either be after a JUMP_INSN or a CALL_INSN. We
934 don't scan past JUMP_INSNs, so any barrier we find here must
935 have been after a CALL_INSN and hence mean the call doesn't
936 return. */
937 return 2;
938 case JUMP_INSN:
939 if (GET_CODE (PATTERN (insn)) == RETURN)
940 return 1;
941 else if (simplejump_p (insn)
942 && jump_count++ < 10)
943 next = JUMP_LABEL (insn);
944 else
945 return 0;
946
947 default:
948 break;
949 }
950 }
951
952 /* If we got here it means we hit the end of the function. So this
953 is an unlikely destination. */
954
955 return 1;
956 }
957
958 /* Return truth value of the statement that this branch
959 is mostly taken. If we think that the branch is extremely likely
960 to be taken, we return 2. If the branch is slightly more likely to be
961 taken, return 1. If the branch is slightly less likely to be taken,
962 return 0 and if the branch is highly unlikely to be taken, return -1.
963
964 CONDITION, if nonzero, is the condition that JUMP_INSN is testing. */
965
966 static int
967 mostly_true_jump (rtx jump_insn, rtx condition)
968 {
969 rtx target_label = JUMP_LABEL (jump_insn);
970 rtx note;
971 int rare_dest, rare_fallthrough;
972
973 /* If branch probabilities are available, then use that number since it
974 always gives a correct answer. */
975 note = find_reg_note (jump_insn, REG_BR_PROB, 0);
976 if (note)
977 {
978 int prob = INTVAL (XEXP (note, 0));
979
980 if (prob >= REG_BR_PROB_BASE * 9 / 10)
981 return 2;
982 else if (prob >= REG_BR_PROB_BASE / 2)
983 return 1;
984 else if (prob >= REG_BR_PROB_BASE / 10)
985 return 0;
986 else
987 return -1;
988 }
989
990 /* Look at the relative rarities of the fallthrough and destination. If
991 they differ, we can predict the branch that way. */
992 rare_dest = rare_destination (target_label);
993 rare_fallthrough = rare_destination (NEXT_INSN (jump_insn));
994
995 switch (rare_fallthrough - rare_dest)
996 {
997 case -2:
998 return -1;
999 case -1:
1000 return 0;
1001 case 0:
1002 break;
1003 case 1:
1004 return 1;
1005 case 2:
1006 return 2;
1007 }
1008
1009 /* If we couldn't figure out what this jump was, assume it won't be
1010 taken. This should be rare. */
1011 if (condition == 0)
1012 return 0;
1013
1014 /* Predict backward branches usually take, forward branches usually not. If
1015 we don't know whether this is forward or backward, assume the branch
1016 will be taken, since most are. */
1017 return (target_label == 0 || INSN_UID (jump_insn) > max_uid
1018 || INSN_UID (target_label) > max_uid
1019 || (uid_to_ruid[INSN_UID (jump_insn)]
1020 > uid_to_ruid[INSN_UID (target_label)]));
1021 }
1022
1023 /* Return the condition under which INSN will branch to TARGET. If TARGET
1024 is zero, return the condition under which INSN will return. If INSN is
1025 an unconditional branch, return const_true_rtx. If INSN isn't a simple
1026 type of jump, or it doesn't go to TARGET, return 0. */
1027
1028 static rtx
1029 get_branch_condition (rtx insn, rtx target)
1030 {
1031 rtx pat = PATTERN (insn);
1032 rtx src;
1033
1034 if (condjump_in_parallel_p (insn))
1035 pat = XVECEXP (pat, 0, 0);
1036
1037 if (GET_CODE (pat) == RETURN)
1038 return target == 0 ? const_true_rtx : 0;
1039
1040 else if (GET_CODE (pat) != SET || SET_DEST (pat) != pc_rtx)
1041 return 0;
1042
1043 src = SET_SRC (pat);
1044 if (GET_CODE (src) == LABEL_REF && XEXP (src, 0) == target)
1045 return const_true_rtx;
1046
1047 else if (GET_CODE (src) == IF_THEN_ELSE
1048 && ((target == 0 && GET_CODE (XEXP (src, 1)) == RETURN)
1049 || (GET_CODE (XEXP (src, 1)) == LABEL_REF
1050 && XEXP (XEXP (src, 1), 0) == target))
1051 && XEXP (src, 2) == pc_rtx)
1052 return XEXP (src, 0);
1053
1054 else if (GET_CODE (src) == IF_THEN_ELSE
1055 && ((target == 0 && GET_CODE (XEXP (src, 2)) == RETURN)
1056 || (GET_CODE (XEXP (src, 2)) == LABEL_REF
1057 && XEXP (XEXP (src, 2), 0) == target))
1058 && XEXP (src, 1) == pc_rtx)
1059 {
1060 enum rtx_code rev;
1061 rev = reversed_comparison_code (XEXP (src, 0), insn);
1062 if (rev != UNKNOWN)
1063 return gen_rtx_fmt_ee (rev, GET_MODE (XEXP (src, 0)),
1064 XEXP (XEXP (src, 0), 0),
1065 XEXP (XEXP (src, 0), 1));
1066 }
1067
1068 return 0;
1069 }
1070
1071 /* Return nonzero if CONDITION is more strict than the condition of
1072 INSN, i.e., if INSN will always branch if CONDITION is true. */
1073
1074 static int
1075 condition_dominates_p (rtx condition, rtx insn)
1076 {
1077 rtx other_condition = get_branch_condition (insn, JUMP_LABEL (insn));
1078 enum rtx_code code = GET_CODE (condition);
1079 enum rtx_code other_code;
1080
1081 if (rtx_equal_p (condition, other_condition)
1082 || other_condition == const_true_rtx)
1083 return 1;
1084
1085 else if (condition == const_true_rtx || other_condition == 0)
1086 return 0;
1087
1088 other_code = GET_CODE (other_condition);
1089 if (GET_RTX_LENGTH (code) != 2 || GET_RTX_LENGTH (other_code) != 2
1090 || ! rtx_equal_p (XEXP (condition, 0), XEXP (other_condition, 0))
1091 || ! rtx_equal_p (XEXP (condition, 1), XEXP (other_condition, 1)))
1092 return 0;
1093
1094 return comparison_dominates_p (code, other_code);
1095 }
1096
1097 /* Return nonzero if redirecting JUMP to NEWLABEL does not invalidate
1098 any insns already in the delay slot of JUMP. */
1099
1100 static int
1101 redirect_with_delay_slots_safe_p (rtx jump, rtx newlabel, rtx seq)
1102 {
1103 int flags, i;
1104 rtx pat = PATTERN (seq);
1105
1106 /* Make sure all the delay slots of this jump would still
1107 be valid after threading the jump. If they are still
1108 valid, then return nonzero. */
1109
1110 flags = get_jump_flags (jump, newlabel);
1111 for (i = 1; i < XVECLEN (pat, 0); i++)
1112 if (! (
1113 #ifdef ANNUL_IFFALSE_SLOTS
1114 (INSN_ANNULLED_BRANCH_P (jump)
1115 && INSN_FROM_TARGET_P (XVECEXP (pat, 0, i)))
1116 ? eligible_for_annul_false (jump, i - 1,
1117 XVECEXP (pat, 0, i), flags) :
1118 #endif
1119 #ifdef ANNUL_IFTRUE_SLOTS
1120 (INSN_ANNULLED_BRANCH_P (jump)
1121 && ! INSN_FROM_TARGET_P (XVECEXP (pat, 0, i)))
1122 ? eligible_for_annul_true (jump, i - 1,
1123 XVECEXP (pat, 0, i), flags) :
1124 #endif
1125 eligible_for_delay (jump, i - 1, XVECEXP (pat, 0, i), flags)))
1126 break;
1127
1128 return (i == XVECLEN (pat, 0));
1129 }
1130
1131 /* Return nonzero if redirecting JUMP to NEWLABEL does not invalidate
1132 any insns we wish to place in the delay slot of JUMP. */
1133
1134 static int
1135 redirect_with_delay_list_safe_p (rtx jump, rtx newlabel, rtx delay_list)
1136 {
1137 int flags, i;
1138 rtx li;
1139
1140 /* Make sure all the insns in DELAY_LIST would still be
1141 valid after threading the jump. If they are still
1142 valid, then return nonzero. */
1143
1144 flags = get_jump_flags (jump, newlabel);
1145 for (li = delay_list, i = 0; li; li = XEXP (li, 1), i++)
1146 if (! (
1147 #ifdef ANNUL_IFFALSE_SLOTS
1148 (INSN_ANNULLED_BRANCH_P (jump)
1149 && INSN_FROM_TARGET_P (XEXP (li, 0)))
1150 ? eligible_for_annul_false (jump, i, XEXP (li, 0), flags) :
1151 #endif
1152 #ifdef ANNUL_IFTRUE_SLOTS
1153 (INSN_ANNULLED_BRANCH_P (jump)
1154 && ! INSN_FROM_TARGET_P (XEXP (li, 0)))
1155 ? eligible_for_annul_true (jump, i, XEXP (li, 0), flags) :
1156 #endif
1157 eligible_for_delay (jump, i, XEXP (li, 0), flags)))
1158 break;
1159
1160 return (li == NULL);
1161 }
1162
1163 /* DELAY_LIST is a list of insns that have already been placed into delay
1164 slots. See if all of them have the same annulling status as ANNUL_TRUE_P.
1165 If not, return 0; otherwise return 1. */
1166
1167 static int
1168 check_annul_list_true_false (int annul_true_p, rtx delay_list)
1169 {
1170 rtx temp;
1171
1172 if (delay_list)
1173 {
1174 for (temp = delay_list; temp; temp = XEXP (temp, 1))
1175 {
1176 rtx trial = XEXP (temp, 0);
1177
1178 if ((annul_true_p && INSN_FROM_TARGET_P (trial))
1179 || (!annul_true_p && !INSN_FROM_TARGET_P (trial)))
1180 return 0;
1181 }
1182 }
1183
1184 return 1;
1185 }
1186
1187 /* INSN branches to an insn whose pattern SEQ is a SEQUENCE. Given that
1188 the condition tested by INSN is CONDITION and the resources shown in
1189 OTHER_NEEDED are needed after INSN, see whether INSN can take all the insns
1190 from SEQ's delay list, in addition to whatever insns it may execute
1191 (in DELAY_LIST). SETS and NEEDED are denote resources already set and
1192 needed while searching for delay slot insns. Return the concatenated
1193 delay list if possible, otherwise, return 0.
1194
1195 SLOTS_TO_FILL is the total number of slots required by INSN, and
1196 PSLOTS_FILLED points to the number filled so far (also the number of
1197 insns in DELAY_LIST). It is updated with the number that have been
1198 filled from the SEQUENCE, if any.
1199
1200 PANNUL_P points to a nonzero value if we already know that we need
1201 to annul INSN. If this routine determines that annulling is needed,
1202 it may set that value nonzero.
1203
1204 PNEW_THREAD points to a location that is to receive the place at which
1205 execution should continue. */
1206
1207 static rtx
1208 steal_delay_list_from_target (rtx insn, rtx condition, rtx seq,
1209 rtx delay_list, struct resources *sets,
1210 struct resources *needed,
1211 struct resources *other_needed,
1212 int slots_to_fill, int *pslots_filled,
1213 int *pannul_p, rtx *pnew_thread)
1214 {
1215 rtx temp;
1216 int slots_remaining = slots_to_fill - *pslots_filled;
1217 int total_slots_filled = *pslots_filled;
1218 rtx new_delay_list = 0;
1219 int must_annul = *pannul_p;
1220 int used_annul = 0;
1221 int i;
1222 struct resources cc_set;
1223
1224 /* We can't do anything if there are more delay slots in SEQ than we
1225 can handle, or if we don't know that it will be a taken branch.
1226 We know that it will be a taken branch if it is either an unconditional
1227 branch or a conditional branch with a stricter branch condition.
1228
1229 Also, exit if the branch has more than one set, since then it is computing
1230 other results that can't be ignored, e.g. the HPPA mov&branch instruction.
1231 ??? It may be possible to move other sets into INSN in addition to
1232 moving the instructions in the delay slots.
1233
1234 We can not steal the delay list if one of the instructions in the
1235 current delay_list modifies the condition codes and the jump in the
1236 sequence is a conditional jump. We can not do this because we can
1237 not change the direction of the jump because the condition codes
1238 will effect the direction of the jump in the sequence. */
1239
1240 CLEAR_RESOURCE (&cc_set);
1241 for (temp = delay_list; temp; temp = XEXP (temp, 1))
1242 {
1243 rtx trial = XEXP (temp, 0);
1244
1245 mark_set_resources (trial, &cc_set, 0, MARK_SRC_DEST_CALL);
1246 if (insn_references_resource_p (XVECEXP (seq , 0, 0), &cc_set, 0))
1247 return delay_list;
1248 }
1249
1250 if (XVECLEN (seq, 0) - 1 > slots_remaining
1251 || ! condition_dominates_p (condition, XVECEXP (seq, 0, 0))
1252 || ! single_set (XVECEXP (seq, 0, 0)))
1253 return delay_list;
1254
1255 #ifdef MD_CAN_REDIRECT_BRANCH
1256 /* On some targets, branches with delay slots can have a limited
1257 displacement. Give the back end a chance to tell us we can't do
1258 this. */
1259 if (! MD_CAN_REDIRECT_BRANCH (insn, XVECEXP (seq, 0, 0)))
1260 return delay_list;
1261 #endif
1262
1263 for (i = 1; i < XVECLEN (seq, 0); i++)
1264 {
1265 rtx trial = XVECEXP (seq, 0, i);
1266 int flags;
1267
1268 if (insn_references_resource_p (trial, sets, 0)
1269 || insn_sets_resource_p (trial, needed, 0)
1270 || insn_sets_resource_p (trial, sets, 0)
1271 #ifdef HAVE_cc0
1272 /* If TRIAL sets CC0, we can't copy it, so we can't steal this
1273 delay list. */
1274 || find_reg_note (trial, REG_CC_USER, NULL_RTX)
1275 #endif
1276 /* If TRIAL is from the fallthrough code of an annulled branch insn
1277 in SEQ, we cannot use it. */
1278 || (INSN_ANNULLED_BRANCH_P (XVECEXP (seq, 0, 0))
1279 && ! INSN_FROM_TARGET_P (trial)))
1280 return delay_list;
1281
1282 /* If this insn was already done (usually in a previous delay slot),
1283 pretend we put it in our delay slot. */
1284 if (redundant_insn (trial, insn, new_delay_list))
1285 continue;
1286
1287 /* We will end up re-vectoring this branch, so compute flags
1288 based on jumping to the new label. */
1289 flags = get_jump_flags (insn, JUMP_LABEL (XVECEXP (seq, 0, 0)));
1290
1291 if (! must_annul
1292 && ((condition == const_true_rtx
1293 || (! insn_sets_resource_p (trial, other_needed, 0)
1294 && ! may_trap_or_fault_p (PATTERN (trial)))))
1295 ? eligible_for_delay (insn, total_slots_filled, trial, flags)
1296 : (must_annul || (delay_list == NULL && new_delay_list == NULL))
1297 && (must_annul = 1,
1298 check_annul_list_true_false (0, delay_list)
1299 && check_annul_list_true_false (0, new_delay_list)
1300 && eligible_for_annul_false (insn, total_slots_filled,
1301 trial, flags)))
1302 {
1303 if (must_annul)
1304 used_annul = 1;
1305 temp = copy_rtx (trial);
1306 INSN_FROM_TARGET_P (temp) = 1;
1307 new_delay_list = add_to_delay_list (temp, new_delay_list);
1308 total_slots_filled++;
1309
1310 if (--slots_remaining == 0)
1311 break;
1312 }
1313 else
1314 return delay_list;
1315 }
1316
1317 /* Show the place to which we will be branching. */
1318 *pnew_thread = next_active_insn (JUMP_LABEL (XVECEXP (seq, 0, 0)));
1319
1320 /* Add any new insns to the delay list and update the count of the
1321 number of slots filled. */
1322 *pslots_filled = total_slots_filled;
1323 if (used_annul)
1324 *pannul_p = 1;
1325
1326 if (delay_list == 0)
1327 return new_delay_list;
1328
1329 for (temp = new_delay_list; temp; temp = XEXP (temp, 1))
1330 delay_list = add_to_delay_list (XEXP (temp, 0), delay_list);
1331
1332 return delay_list;
1333 }
1334
1335 /* Similar to steal_delay_list_from_target except that SEQ is on the
1336 fallthrough path of INSN. Here we only do something if the delay insn
1337 of SEQ is an unconditional branch. In that case we steal its delay slot
1338 for INSN since unconditional branches are much easier to fill. */
1339
1340 static rtx
1341 steal_delay_list_from_fallthrough (rtx insn, rtx condition, rtx seq,
1342 rtx delay_list, struct resources *sets,
1343 struct resources *needed,
1344 struct resources *other_needed,
1345 int slots_to_fill, int *pslots_filled,
1346 int *pannul_p)
1347 {
1348 int i;
1349 int flags;
1350 int must_annul = *pannul_p;
1351 int used_annul = 0;
1352
1353 flags = get_jump_flags (insn, JUMP_LABEL (insn));
1354
1355 /* We can't do anything if SEQ's delay insn isn't an
1356 unconditional branch. */
1357
1358 if (! simplejump_p (XVECEXP (seq, 0, 0))
1359 && GET_CODE (PATTERN (XVECEXP (seq, 0, 0))) != RETURN)
1360 return delay_list;
1361
1362 for (i = 1; i < XVECLEN (seq, 0); i++)
1363 {
1364 rtx trial = XVECEXP (seq, 0, i);
1365
1366 /* If TRIAL sets CC0, stealing it will move it too far from the use
1367 of CC0. */
1368 if (insn_references_resource_p (trial, sets, 0)
1369 || insn_sets_resource_p (trial, needed, 0)
1370 || insn_sets_resource_p (trial, sets, 0)
1371 #ifdef HAVE_cc0
1372 || sets_cc0_p (PATTERN (trial))
1373 #endif
1374 )
1375
1376 break;
1377
1378 /* If this insn was already done, we don't need it. */
1379 if (redundant_insn (trial, insn, delay_list))
1380 {
1381 delete_from_delay_slot (trial);
1382 continue;
1383 }
1384
1385 if (! must_annul
1386 && ((condition == const_true_rtx
1387 || (! insn_sets_resource_p (trial, other_needed, 0)
1388 && ! may_trap_or_fault_p (PATTERN (trial)))))
1389 ? eligible_for_delay (insn, *pslots_filled, trial, flags)
1390 : (must_annul || delay_list == NULL) && (must_annul = 1,
1391 check_annul_list_true_false (1, delay_list)
1392 && eligible_for_annul_true (insn, *pslots_filled, trial, flags)))
1393 {
1394 if (must_annul)
1395 used_annul = 1;
1396 delete_from_delay_slot (trial);
1397 delay_list = add_to_delay_list (trial, delay_list);
1398
1399 if (++(*pslots_filled) == slots_to_fill)
1400 break;
1401 }
1402 else
1403 break;
1404 }
1405
1406 if (used_annul)
1407 *pannul_p = 1;
1408 return delay_list;
1409 }
1410
1411 /* Try merging insns starting at THREAD which match exactly the insns in
1412 INSN's delay list.
1413
1414 If all insns were matched and the insn was previously annulling, the
1415 annul bit will be cleared.
1416
1417 For each insn that is merged, if the branch is or will be non-annulling,
1418 we delete the merged insn. */
1419
1420 static void
1421 try_merge_delay_insns (rtx insn, rtx thread)
1422 {
1423 rtx trial, next_trial;
1424 rtx delay_insn = XVECEXP (PATTERN (insn), 0, 0);
1425 int annul_p = INSN_ANNULLED_BRANCH_P (delay_insn);
1426 int slot_number = 1;
1427 int num_slots = XVECLEN (PATTERN (insn), 0);
1428 rtx next_to_match = XVECEXP (PATTERN (insn), 0, slot_number);
1429 struct resources set, needed;
1430 rtx merged_insns = 0;
1431 int i;
1432 int flags;
1433
1434 flags = get_jump_flags (delay_insn, JUMP_LABEL (delay_insn));
1435
1436 CLEAR_RESOURCE (&needed);
1437 CLEAR_RESOURCE (&set);
1438
1439 /* If this is not an annulling branch, take into account anything needed in
1440 INSN's delay slot. This prevents two increments from being incorrectly
1441 folded into one. If we are annulling, this would be the correct
1442 thing to do. (The alternative, looking at things set in NEXT_TO_MATCH
1443 will essentially disable this optimization. This method is somewhat of
1444 a kludge, but I don't see a better way.) */
1445 if (! annul_p)
1446 for (i = 1 ; i < num_slots; i++)
1447 if (XVECEXP (PATTERN (insn), 0, i))
1448 mark_referenced_resources (XVECEXP (PATTERN (insn), 0, i), &needed, 1);
1449
1450 for (trial = thread; !stop_search_p (trial, 1); trial = next_trial)
1451 {
1452 rtx pat = PATTERN (trial);
1453 rtx oldtrial = trial;
1454
1455 next_trial = next_nonnote_insn (trial);
1456
1457 /* TRIAL must be a CALL_INSN or INSN. Skip USE and CLOBBER. */
1458 if (NONJUMP_INSN_P (trial)
1459 && (GET_CODE (pat) == USE || GET_CODE (pat) == CLOBBER))
1460 continue;
1461
1462 if (GET_CODE (next_to_match) == GET_CODE (trial)
1463 #ifdef HAVE_cc0
1464 /* We can't share an insn that sets cc0. */
1465 && ! sets_cc0_p (pat)
1466 #endif
1467 && ! insn_references_resource_p (trial, &set, 1)
1468 && ! insn_sets_resource_p (trial, &set, 1)
1469 && ! insn_sets_resource_p (trial, &needed, 1)
1470 && (trial = try_split (pat, trial, 0)) != 0
1471 /* Update next_trial, in case try_split succeeded. */
1472 && (next_trial = next_nonnote_insn (trial))
1473 /* Likewise THREAD. */
1474 && (thread = oldtrial == thread ? trial : thread)
1475 && rtx_equal_p (PATTERN (next_to_match), PATTERN (trial))
1476 /* Have to test this condition if annul condition is different
1477 from (and less restrictive than) non-annulling one. */
1478 && eligible_for_delay (delay_insn, slot_number - 1, trial, flags))
1479 {
1480
1481 if (! annul_p)
1482 {
1483 update_block (trial, thread);
1484 if (trial == thread)
1485 thread = next_active_insn (thread);
1486
1487 delete_related_insns (trial);
1488 INSN_FROM_TARGET_P (next_to_match) = 0;
1489 }
1490 else
1491 merged_insns = gen_rtx_INSN_LIST (VOIDmode, trial, merged_insns);
1492
1493 if (++slot_number == num_slots)
1494 break;
1495
1496 next_to_match = XVECEXP (PATTERN (insn), 0, slot_number);
1497 }
1498
1499 mark_set_resources (trial, &set, 0, MARK_SRC_DEST_CALL);
1500 mark_referenced_resources (trial, &needed, 1);
1501 }
1502
1503 /* See if we stopped on a filled insn. If we did, try to see if its
1504 delay slots match. */
1505 if (slot_number != num_slots
1506 && trial && NONJUMP_INSN_P (trial)
1507 && GET_CODE (PATTERN (trial)) == SEQUENCE
1508 && ! INSN_ANNULLED_BRANCH_P (XVECEXP (PATTERN (trial), 0, 0)))
1509 {
1510 rtx pat = PATTERN (trial);
1511 rtx filled_insn = XVECEXP (pat, 0, 0);
1512
1513 /* Account for resources set/needed by the filled insn. */
1514 mark_set_resources (filled_insn, &set, 0, MARK_SRC_DEST_CALL);
1515 mark_referenced_resources (filled_insn, &needed, 1);
1516
1517 for (i = 1; i < XVECLEN (pat, 0); i++)
1518 {
1519 rtx dtrial = XVECEXP (pat, 0, i);
1520
1521 if (! insn_references_resource_p (dtrial, &set, 1)
1522 && ! insn_sets_resource_p (dtrial, &set, 1)
1523 && ! insn_sets_resource_p (dtrial, &needed, 1)
1524 #ifdef HAVE_cc0
1525 && ! sets_cc0_p (PATTERN (dtrial))
1526 #endif
1527 && rtx_equal_p (PATTERN (next_to_match), PATTERN (dtrial))
1528 && eligible_for_delay (delay_insn, slot_number - 1, dtrial, flags))
1529 {
1530 if (! annul_p)
1531 {
1532 rtx new_rtx;
1533
1534 update_block (dtrial, thread);
1535 new_rtx = delete_from_delay_slot (dtrial);
1536 if (INSN_DELETED_P (thread))
1537 thread = new_rtx;
1538 INSN_FROM_TARGET_P (next_to_match) = 0;
1539 }
1540 else
1541 merged_insns = gen_rtx_INSN_LIST (SImode, dtrial,
1542 merged_insns);
1543
1544 if (++slot_number == num_slots)
1545 break;
1546
1547 next_to_match = XVECEXP (PATTERN (insn), 0, slot_number);
1548 }
1549 else
1550 {
1551 /* Keep track of the set/referenced resources for the delay
1552 slots of any trial insns we encounter. */
1553 mark_set_resources (dtrial, &set, 0, MARK_SRC_DEST_CALL);
1554 mark_referenced_resources (dtrial, &needed, 1);
1555 }
1556 }
1557 }
1558
1559 /* If all insns in the delay slot have been matched and we were previously
1560 annulling the branch, we need not any more. In that case delete all the
1561 merged insns. Also clear the INSN_FROM_TARGET_P bit of each insn in
1562 the delay list so that we know that it isn't only being used at the
1563 target. */
1564 if (slot_number == num_slots && annul_p)
1565 {
1566 for (; merged_insns; merged_insns = XEXP (merged_insns, 1))
1567 {
1568 if (GET_MODE (merged_insns) == SImode)
1569 {
1570 rtx new_rtx;
1571
1572 update_block (XEXP (merged_insns, 0), thread);
1573 new_rtx = delete_from_delay_slot (XEXP (merged_insns, 0));
1574 if (INSN_DELETED_P (thread))
1575 thread = new_rtx;
1576 }
1577 else
1578 {
1579 update_block (XEXP (merged_insns, 0), thread);
1580 delete_related_insns (XEXP (merged_insns, 0));
1581 }
1582 }
1583
1584 INSN_ANNULLED_BRANCH_P (delay_insn) = 0;
1585
1586 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
1587 INSN_FROM_TARGET_P (XVECEXP (PATTERN (insn), 0, i)) = 0;
1588 }
1589 }
1590
1591 /* See if INSN is redundant with an insn in front of TARGET. Often this
1592 is called when INSN is a candidate for a delay slot of TARGET.
1593 DELAY_LIST are insns that will be placed in delay slots of TARGET in front
1594 of INSN. Often INSN will be redundant with an insn in a delay slot of
1595 some previous insn. This happens when we have a series of branches to the
1596 same label; in that case the first insn at the target might want to go
1597 into each of the delay slots.
1598
1599 If we are not careful, this routine can take up a significant fraction
1600 of the total compilation time (4%), but only wins rarely. Hence we
1601 speed this routine up by making two passes. The first pass goes back
1602 until it hits a label and sees if it finds an insn with an identical
1603 pattern. Only in this (relatively rare) event does it check for
1604 data conflicts.
1605
1606 We do not split insns we encounter. This could cause us not to find a
1607 redundant insn, but the cost of splitting seems greater than the possible
1608 gain in rare cases. */
1609
1610 static rtx
1611 redundant_insn (rtx insn, rtx target, rtx delay_list)
1612 {
1613 rtx target_main = target;
1614 rtx ipat = PATTERN (insn);
1615 rtx trial, pat;
1616 struct resources needed, set;
1617 int i;
1618 unsigned insns_to_search;
1619
1620 /* If INSN has any REG_UNUSED notes, it can't match anything since we
1621 are allowed to not actually assign to such a register. */
1622 if (find_reg_note (insn, REG_UNUSED, NULL_RTX) != 0)
1623 return 0;
1624
1625 /* Scan backwards looking for a match. */
1626 for (trial = PREV_INSN (target),
1627 insns_to_search = MAX_DELAY_SLOT_INSN_SEARCH;
1628 trial && insns_to_search > 0;
1629 trial = PREV_INSN (trial), --insns_to_search)
1630 {
1631 if (LABEL_P (trial))
1632 return 0;
1633
1634 if (! INSN_P (trial))
1635 continue;
1636
1637 pat = PATTERN (trial);
1638 if (GET_CODE (pat) == USE || GET_CODE (pat) == CLOBBER)
1639 continue;
1640
1641 if (GET_CODE (pat) == SEQUENCE)
1642 {
1643 /* Stop for a CALL and its delay slots because it is difficult to
1644 track its resource needs correctly. */
1645 if (CALL_P (XVECEXP (pat, 0, 0)))
1646 return 0;
1647
1648 /* Stop for an INSN or JUMP_INSN with delayed effects and its delay
1649 slots because it is difficult to track its resource needs
1650 correctly. */
1651
1652 #ifdef INSN_SETS_ARE_DELAYED
1653 if (INSN_SETS_ARE_DELAYED (XVECEXP (pat, 0, 0)))
1654 return 0;
1655 #endif
1656
1657 #ifdef INSN_REFERENCES_ARE_DELAYED
1658 if (INSN_REFERENCES_ARE_DELAYED (XVECEXP (pat, 0, 0)))
1659 return 0;
1660 #endif
1661
1662 /* See if any of the insns in the delay slot match, updating
1663 resource requirements as we go. */
1664 for (i = XVECLEN (pat, 0) - 1; i > 0; i--)
1665 if (GET_CODE (XVECEXP (pat, 0, i)) == GET_CODE (insn)
1666 && rtx_equal_p (PATTERN (XVECEXP (pat, 0, i)), ipat)
1667 && ! find_reg_note (XVECEXP (pat, 0, i), REG_UNUSED, NULL_RTX))
1668 break;
1669
1670 /* If found a match, exit this loop early. */
1671 if (i > 0)
1672 break;
1673 }
1674
1675 else if (GET_CODE (trial) == GET_CODE (insn) && rtx_equal_p (pat, ipat)
1676 && ! find_reg_note (trial, REG_UNUSED, NULL_RTX))
1677 break;
1678 }
1679
1680 /* If we didn't find an insn that matches, return 0. */
1681 if (trial == 0)
1682 return 0;
1683
1684 /* See what resources this insn sets and needs. If they overlap, or
1685 if this insn references CC0, it can't be redundant. */
1686
1687 CLEAR_RESOURCE (&needed);
1688 CLEAR_RESOURCE (&set);
1689 mark_set_resources (insn, &set, 0, MARK_SRC_DEST_CALL);
1690 mark_referenced_resources (insn, &needed, 1);
1691
1692 /* If TARGET is a SEQUENCE, get the main insn. */
1693 if (NONJUMP_INSN_P (target) && GET_CODE (PATTERN (target)) == SEQUENCE)
1694 target_main = XVECEXP (PATTERN (target), 0, 0);
1695
1696 if (resource_conflicts_p (&needed, &set)
1697 #ifdef HAVE_cc0
1698 || reg_mentioned_p (cc0_rtx, ipat)
1699 #endif
1700 /* The insn requiring the delay may not set anything needed or set by
1701 INSN. */
1702 || insn_sets_resource_p (target_main, &needed, 1)
1703 || insn_sets_resource_p (target_main, &set, 1))
1704 return 0;
1705
1706 /* Insns we pass may not set either NEEDED or SET, so merge them for
1707 simpler tests. */
1708 needed.memory |= set.memory;
1709 needed.unch_memory |= set.unch_memory;
1710 IOR_HARD_REG_SET (needed.regs, set.regs);
1711
1712 /* This insn isn't redundant if it conflicts with an insn that either is
1713 or will be in a delay slot of TARGET. */
1714
1715 while (delay_list)
1716 {
1717 if (insn_sets_resource_p (XEXP (delay_list, 0), &needed, 1))
1718 return 0;
1719 delay_list = XEXP (delay_list, 1);
1720 }
1721
1722 if (NONJUMP_INSN_P (target) && GET_CODE (PATTERN (target)) == SEQUENCE)
1723 for (i = 1; i < XVECLEN (PATTERN (target), 0); i++)
1724 if (insn_sets_resource_p (XVECEXP (PATTERN (target), 0, i), &needed, 1))
1725 return 0;
1726
1727 /* Scan backwards until we reach a label or an insn that uses something
1728 INSN sets or sets something insn uses or sets. */
1729
1730 for (trial = PREV_INSN (target),
1731 insns_to_search = MAX_DELAY_SLOT_INSN_SEARCH;
1732 trial && !LABEL_P (trial) && insns_to_search > 0;
1733 trial = PREV_INSN (trial), --insns_to_search)
1734 {
1735 if (!INSN_P (trial))
1736 continue;
1737
1738 pat = PATTERN (trial);
1739 if (GET_CODE (pat) == USE || GET_CODE (pat) == CLOBBER)
1740 continue;
1741
1742 if (GET_CODE (pat) == SEQUENCE)
1743 {
1744 /* If this is a CALL_INSN and its delay slots, it is hard to track
1745 the resource needs properly, so give up. */
1746 if (CALL_P (XVECEXP (pat, 0, 0)))
1747 return 0;
1748
1749 /* If this is an INSN or JUMP_INSN with delayed effects, it
1750 is hard to track the resource needs properly, so give up. */
1751
1752 #ifdef INSN_SETS_ARE_DELAYED
1753 if (INSN_SETS_ARE_DELAYED (XVECEXP (pat, 0, 0)))
1754 return 0;
1755 #endif
1756
1757 #ifdef INSN_REFERENCES_ARE_DELAYED
1758 if (INSN_REFERENCES_ARE_DELAYED (XVECEXP (pat, 0, 0)))
1759 return 0;
1760 #endif
1761
1762 /* See if any of the insns in the delay slot match, updating
1763 resource requirements as we go. */
1764 for (i = XVECLEN (pat, 0) - 1; i > 0; i--)
1765 {
1766 rtx candidate = XVECEXP (pat, 0, i);
1767
1768 /* If an insn will be annulled if the branch is false, it isn't
1769 considered as a possible duplicate insn. */
1770 if (rtx_equal_p (PATTERN (candidate), ipat)
1771 && ! (INSN_ANNULLED_BRANCH_P (XVECEXP (pat, 0, 0))
1772 && INSN_FROM_TARGET_P (candidate)))
1773 {
1774 /* Show that this insn will be used in the sequel. */
1775 INSN_FROM_TARGET_P (candidate) = 0;
1776 return candidate;
1777 }
1778
1779 /* Unless this is an annulled insn from the target of a branch,
1780 we must stop if it sets anything needed or set by INSN. */
1781 if ((! INSN_ANNULLED_BRANCH_P (XVECEXP (pat, 0, 0))
1782 || ! INSN_FROM_TARGET_P (candidate))
1783 && insn_sets_resource_p (candidate, &needed, 1))
1784 return 0;
1785 }
1786
1787 /* If the insn requiring the delay slot conflicts with INSN, we
1788 must stop. */
1789 if (insn_sets_resource_p (XVECEXP (pat, 0, 0), &needed, 1))
1790 return 0;
1791 }
1792 else
1793 {
1794 /* See if TRIAL is the same as INSN. */
1795 pat = PATTERN (trial);
1796 if (rtx_equal_p (pat, ipat))
1797 return trial;
1798
1799 /* Can't go any further if TRIAL conflicts with INSN. */
1800 if (insn_sets_resource_p (trial, &needed, 1))
1801 return 0;
1802 }
1803 }
1804
1805 return 0;
1806 }
1807
1808 /* Return 1 if THREAD can only be executed in one way. If LABEL is nonzero,
1809 it is the target of the branch insn being scanned. If ALLOW_FALLTHROUGH
1810 is nonzero, we are allowed to fall into this thread; otherwise, we are
1811 not.
1812
1813 If LABEL is used more than one or we pass a label other than LABEL before
1814 finding an active insn, we do not own this thread. */
1815
1816 static int
1817 own_thread_p (rtx thread, rtx label, int allow_fallthrough)
1818 {
1819 rtx active_insn;
1820 rtx insn;
1821
1822 /* We don't own the function end. */
1823 if (thread == 0)
1824 return 0;
1825
1826 /* Get the first active insn, or THREAD, if it is an active insn. */
1827 active_insn = next_active_insn (PREV_INSN (thread));
1828
1829 for (insn = thread; insn != active_insn; insn = NEXT_INSN (insn))
1830 if (LABEL_P (insn)
1831 && (insn != label || LABEL_NUSES (insn) != 1))
1832 return 0;
1833
1834 if (allow_fallthrough)
1835 return 1;
1836
1837 /* Ensure that we reach a BARRIER before any insn or label. */
1838 for (insn = prev_nonnote_insn (thread);
1839 insn == 0 || !BARRIER_P (insn);
1840 insn = prev_nonnote_insn (insn))
1841 if (insn == 0
1842 || LABEL_P (insn)
1843 || (NONJUMP_INSN_P (insn)
1844 && GET_CODE (PATTERN (insn)) != USE
1845 && GET_CODE (PATTERN (insn)) != CLOBBER))
1846 return 0;
1847
1848 return 1;
1849 }
1850
1851 /* Called when INSN is being moved from a location near the target of a jump.
1852 We leave a marker of the form (use (INSN)) immediately in front
1853 of WHERE for mark_target_live_regs. These markers will be deleted when
1854 reorg finishes.
1855
1856 We used to try to update the live status of registers if WHERE is at
1857 the start of a basic block, but that can't work since we may remove a
1858 BARRIER in relax_delay_slots. */
1859
1860 static void
1861 update_block (rtx insn, rtx where)
1862 {
1863 /* Ignore if this was in a delay slot and it came from the target of
1864 a branch. */
1865 if (INSN_FROM_TARGET_P (insn))
1866 return;
1867
1868 emit_insn_before (gen_rtx_USE (VOIDmode, insn), where);
1869
1870 /* INSN might be making a value live in a block where it didn't use to
1871 be. So recompute liveness information for this block. */
1872
1873 incr_ticks_for_insn (insn);
1874 }
1875
1876 /* Similar to REDIRECT_JUMP except that we update the BB_TICKS entry for
1877 the basic block containing the jump. */
1878
1879 static int
1880 reorg_redirect_jump (rtx jump, rtx nlabel)
1881 {
1882 incr_ticks_for_insn (jump);
1883 return redirect_jump (jump, nlabel, 1);
1884 }
1885
1886 /* Called when INSN is being moved forward into a delay slot of DELAYED_INSN.
1887 We check every instruction between INSN and DELAYED_INSN for REG_DEAD notes
1888 that reference values used in INSN. If we find one, then we move the
1889 REG_DEAD note to INSN.
1890
1891 This is needed to handle the case where a later insn (after INSN) has a
1892 REG_DEAD note for a register used by INSN, and this later insn subsequently
1893 gets moved before a CODE_LABEL because it is a redundant insn. In this
1894 case, mark_target_live_regs may be confused into thinking the register
1895 is dead because it sees a REG_DEAD note immediately before a CODE_LABEL. */
1896
1897 static void
1898 update_reg_dead_notes (rtx insn, rtx delayed_insn)
1899 {
1900 rtx p, link, next;
1901
1902 for (p = next_nonnote_insn (insn); p != delayed_insn;
1903 p = next_nonnote_insn (p))
1904 for (link = REG_NOTES (p); link; link = next)
1905 {
1906 next = XEXP (link, 1);
1907
1908 if (REG_NOTE_KIND (link) != REG_DEAD
1909 || !REG_P (XEXP (link, 0)))
1910 continue;
1911
1912 if (reg_referenced_p (XEXP (link, 0), PATTERN (insn)))
1913 {
1914 /* Move the REG_DEAD note from P to INSN. */
1915 remove_note (p, link);
1916 XEXP (link, 1) = REG_NOTES (insn);
1917 REG_NOTES (insn) = link;
1918 }
1919 }
1920 }
1921
1922 /* Called when an insn redundant with start_insn is deleted. If there
1923 is a REG_DEAD note for the target of start_insn between start_insn
1924 and stop_insn, then the REG_DEAD note needs to be deleted since the
1925 value no longer dies there.
1926
1927 If the REG_DEAD note isn't deleted, then mark_target_live_regs may be
1928 confused into thinking the register is dead. */
1929
1930 static void
1931 fix_reg_dead_note (rtx start_insn, rtx stop_insn)
1932 {
1933 rtx p, link, next;
1934
1935 for (p = next_nonnote_insn (start_insn); p != stop_insn;
1936 p = next_nonnote_insn (p))
1937 for (link = REG_NOTES (p); link; link = next)
1938 {
1939 next = XEXP (link, 1);
1940
1941 if (REG_NOTE_KIND (link) != REG_DEAD
1942 || !REG_P (XEXP (link, 0)))
1943 continue;
1944
1945 if (reg_set_p (XEXP (link, 0), PATTERN (start_insn)))
1946 {
1947 remove_note (p, link);
1948 return;
1949 }
1950 }
1951 }
1952
1953 /* Delete any REG_UNUSED notes that exist on INSN but not on REDUNDANT_INSN.
1954
1955 This handles the case of udivmodXi4 instructions which optimize their
1956 output depending on whether any REG_UNUSED notes are present.
1957 we must make sure that INSN calculates as many results as REDUNDANT_INSN
1958 does. */
1959
1960 static void
1961 update_reg_unused_notes (rtx insn, rtx redundant_insn)
1962 {
1963 rtx link, next;
1964
1965 for (link = REG_NOTES (insn); link; link = next)
1966 {
1967 next = XEXP (link, 1);
1968
1969 if (REG_NOTE_KIND (link) != REG_UNUSED
1970 || !REG_P (XEXP (link, 0)))
1971 continue;
1972
1973 if (! find_regno_note (redundant_insn, REG_UNUSED,
1974 REGNO (XEXP (link, 0))))
1975 remove_note (insn, link);
1976 }
1977 }
1978
1979 /* Return the label before INSN, or put a new label there. */
1980
1981 static rtx
1982 get_label_before (rtx insn)
1983 {
1984 rtx label;
1985
1986 /* Find an existing label at this point
1987 or make a new one if there is none. */
1988 label = prev_nonnote_insn (insn);
1989
1990 if (label == 0 || !LABEL_P (label))
1991 {
1992 rtx prev = PREV_INSN (insn);
1993
1994 label = gen_label_rtx ();
1995 emit_label_after (label, prev);
1996 LABEL_NUSES (label) = 0;
1997 }
1998 return label;
1999 }
2000
2001 /* Scan a function looking for insns that need a delay slot and find insns to
2002 put into the delay slot.
2003
2004 NON_JUMPS_P is nonzero if we are to only try to fill non-jump insns (such
2005 as calls). We do these first since we don't want jump insns (that are
2006 easier to fill) to get the only insns that could be used for non-jump insns.
2007 When it is zero, only try to fill JUMP_INSNs.
2008
2009 When slots are filled in this manner, the insns (including the
2010 delay_insn) are put together in a SEQUENCE rtx. In this fashion,
2011 it is possible to tell whether a delay slot has really been filled
2012 or not. `final' knows how to deal with this, by communicating
2013 through FINAL_SEQUENCE. */
2014
2015 static void
2016 fill_simple_delay_slots (int non_jumps_p)
2017 {
2018 rtx insn, pat, trial, next_trial;
2019 int i;
2020 int num_unfilled_slots = unfilled_slots_next - unfilled_slots_base;
2021 struct resources needed, set;
2022 int slots_to_fill, slots_filled;
2023 rtx delay_list;
2024
2025 for (i = 0; i < num_unfilled_slots; i++)
2026 {
2027 int flags;
2028 /* Get the next insn to fill. If it has already had any slots assigned,
2029 we can't do anything with it. Maybe we'll improve this later. */
2030
2031 insn = unfilled_slots_base[i];
2032 if (insn == 0
2033 || INSN_DELETED_P (insn)
2034 || (NONJUMP_INSN_P (insn)
2035 && GET_CODE (PATTERN (insn)) == SEQUENCE)
2036 || (JUMP_P (insn) && non_jumps_p)
2037 || (!JUMP_P (insn) && ! non_jumps_p))
2038 continue;
2039
2040 /* It may have been that this insn used to need delay slots, but
2041 now doesn't; ignore in that case. This can happen, for example,
2042 on the HP PA RISC, where the number of delay slots depends on
2043 what insns are nearby. */
2044 slots_to_fill = num_delay_slots (insn);
2045
2046 /* Some machine description have defined instructions to have
2047 delay slots only in certain circumstances which may depend on
2048 nearby insns (which change due to reorg's actions).
2049
2050 For example, the PA port normally has delay slots for unconditional
2051 jumps.
2052
2053 However, the PA port claims such jumps do not have a delay slot
2054 if they are immediate successors of certain CALL_INSNs. This
2055 allows the port to favor filling the delay slot of the call with
2056 the unconditional jump. */
2057 if (slots_to_fill == 0)
2058 continue;
2059
2060 /* This insn needs, or can use, some delay slots. SLOTS_TO_FILL
2061 says how many. After initialization, first try optimizing
2062
2063 call _foo call _foo
2064 nop add %o7,.-L1,%o7
2065 b,a L1
2066 nop
2067
2068 If this case applies, the delay slot of the call is filled with
2069 the unconditional jump. This is done first to avoid having the
2070 delay slot of the call filled in the backward scan. Also, since
2071 the unconditional jump is likely to also have a delay slot, that
2072 insn must exist when it is subsequently scanned.
2073
2074 This is tried on each insn with delay slots as some machines
2075 have insns which perform calls, but are not represented as
2076 CALL_INSNs. */
2077
2078 slots_filled = 0;
2079 delay_list = 0;
2080
2081 if (JUMP_P (insn))
2082 flags = get_jump_flags (insn, JUMP_LABEL (insn));
2083 else
2084 flags = get_jump_flags (insn, NULL_RTX);
2085
2086 if ((trial = next_active_insn (insn))
2087 && JUMP_P (trial)
2088 && simplejump_p (trial)
2089 && eligible_for_delay (insn, slots_filled, trial, flags)
2090 && no_labels_between_p (insn, trial)
2091 && ! can_throw_internal (trial))
2092 {
2093 rtx *tmp;
2094 slots_filled++;
2095 delay_list = add_to_delay_list (trial, delay_list);
2096
2097 /* TRIAL may have had its delay slot filled, then unfilled. When
2098 the delay slot is unfilled, TRIAL is placed back on the unfilled
2099 slots obstack. Unfortunately, it is placed on the end of the
2100 obstack, not in its original location. Therefore, we must search
2101 from entry i + 1 to the end of the unfilled slots obstack to
2102 try and find TRIAL. */
2103 tmp = &unfilled_slots_base[i + 1];
2104 while (*tmp != trial && tmp != unfilled_slots_next)
2105 tmp++;
2106
2107 /* Remove the unconditional jump from consideration for delay slot
2108 filling and unthread it. */
2109 if (*tmp == trial)
2110 *tmp = 0;
2111 {
2112 rtx next = NEXT_INSN (trial);
2113 rtx prev = PREV_INSN (trial);
2114 if (prev)
2115 NEXT_INSN (prev) = next;
2116 if (next)
2117 PREV_INSN (next) = prev;
2118 }
2119 }
2120
2121 /* Now, scan backwards from the insn to search for a potential
2122 delay-slot candidate. Stop searching when a label or jump is hit.
2123
2124 For each candidate, if it is to go into the delay slot (moved
2125 forward in execution sequence), it must not need or set any resources
2126 that were set by later insns and must not set any resources that
2127 are needed for those insns.
2128
2129 The delay slot insn itself sets resources unless it is a call
2130 (in which case the called routine, not the insn itself, is doing
2131 the setting). */
2132
2133 if (slots_filled < slots_to_fill)
2134 {
2135 CLEAR_RESOURCE (&needed);
2136 CLEAR_RESOURCE (&set);
2137 mark_set_resources (insn, &set, 0, MARK_SRC_DEST);
2138 mark_referenced_resources (insn, &needed, 0);
2139
2140 for (trial = prev_nonnote_insn (insn); ! stop_search_p (trial, 1);
2141 trial = next_trial)
2142 {
2143 next_trial = prev_nonnote_insn (trial);
2144
2145 /* This must be an INSN or CALL_INSN. */
2146 pat = PATTERN (trial);
2147
2148 /* USE and CLOBBER at this level was just for flow; ignore it. */
2149 if (GET_CODE (pat) == USE || GET_CODE (pat) == CLOBBER)
2150 continue;
2151
2152 /* Check for resource conflict first, to avoid unnecessary
2153 splitting. */
2154 if (! insn_references_resource_p (trial, &set, 1)
2155 && ! insn_sets_resource_p (trial, &set, 1)
2156 && ! insn_sets_resource_p (trial, &needed, 1)
2157 #ifdef HAVE_cc0
2158 /* Can't separate set of cc0 from its use. */
2159 && ! (reg_mentioned_p (cc0_rtx, pat) && ! sets_cc0_p (pat))
2160 #endif
2161 && ! can_throw_internal (trial))
2162 {
2163 trial = try_split (pat, trial, 1);
2164 next_trial = prev_nonnote_insn (trial);
2165 if (eligible_for_delay (insn, slots_filled, trial, flags))
2166 {
2167 /* In this case, we are searching backward, so if we
2168 find insns to put on the delay list, we want
2169 to put them at the head, rather than the
2170 tail, of the list. */
2171
2172 update_reg_dead_notes (trial, insn);
2173 delay_list = gen_rtx_INSN_LIST (VOIDmode,
2174 trial, delay_list);
2175 update_block (trial, trial);
2176 delete_related_insns (trial);
2177 if (slots_to_fill == ++slots_filled)
2178 break;
2179 continue;
2180 }
2181 }
2182
2183 mark_set_resources (trial, &set, 0, MARK_SRC_DEST_CALL);
2184 mark_referenced_resources (trial, &needed, 1);
2185 }
2186 }
2187
2188 /* If all needed slots haven't been filled, we come here. */
2189
2190 /* Try to optimize case of jumping around a single insn. */
2191 #if defined(ANNUL_IFFALSE_SLOTS) || defined(ANNUL_IFTRUE_SLOTS)
2192 if (slots_filled != slots_to_fill
2193 && delay_list == 0
2194 && JUMP_P (insn)
2195 && (condjump_p (insn) || condjump_in_parallel_p (insn)))
2196 {
2197 delay_list = optimize_skip (insn);
2198 if (delay_list)
2199 slots_filled += 1;
2200 }
2201 #endif
2202
2203 /* Try to get insns from beyond the insn needing the delay slot.
2204 These insns can neither set or reference resources set in insns being
2205 skipped, cannot set resources in the insn being skipped, and, if this
2206 is a CALL_INSN (or a CALL_INSN is passed), cannot trap (because the
2207 call might not return).
2208
2209 There used to be code which continued past the target label if
2210 we saw all uses of the target label. This code did not work,
2211 because it failed to account for some instructions which were
2212 both annulled and marked as from the target. This can happen as a
2213 result of optimize_skip. Since this code was redundant with
2214 fill_eager_delay_slots anyways, it was just deleted. */
2215
2216 if (slots_filled != slots_to_fill
2217 /* If this instruction could throw an exception which is
2218 caught in the same function, then it's not safe to fill
2219 the delay slot with an instruction from beyond this
2220 point. For example, consider:
2221
2222 int i = 2;
2223
2224 try {
2225 f();
2226 i = 3;
2227 } catch (...) {}
2228
2229 return i;
2230
2231 Even though `i' is a local variable, we must be sure not
2232 to put `i = 3' in the delay slot if `f' might throw an
2233 exception.
2234
2235 Presumably, we should also check to see if we could get
2236 back to this function via `setjmp'. */
2237 && ! can_throw_internal (insn)
2238 && (!JUMP_P (insn)
2239 || ((condjump_p (insn) || condjump_in_parallel_p (insn))
2240 && ! simplejump_p (insn)
2241 && JUMP_LABEL (insn) != 0)))
2242 {
2243 /* Invariant: If insn is a JUMP_INSN, the insn's jump
2244 label. Otherwise, zero. */
2245 rtx target = 0;
2246 int maybe_never = 0;
2247 rtx pat, trial_delay;
2248
2249 CLEAR_RESOURCE (&needed);
2250 CLEAR_RESOURCE (&set);
2251
2252 if (CALL_P (insn))
2253 {
2254 mark_set_resources (insn, &set, 0, MARK_SRC_DEST_CALL);
2255 mark_referenced_resources (insn, &needed, 1);
2256 maybe_never = 1;
2257 }
2258 else
2259 {
2260 mark_set_resources (insn, &set, 0, MARK_SRC_DEST_CALL);
2261 mark_referenced_resources (insn, &needed, 1);
2262 if (JUMP_P (insn))
2263 target = JUMP_LABEL (insn);
2264 }
2265
2266 if (target == 0)
2267 for (trial = next_nonnote_insn (insn); trial; trial = next_trial)
2268 {
2269 next_trial = next_nonnote_insn (trial);
2270
2271 if (LABEL_P (trial)
2272 || BARRIER_P (trial))
2273 break;
2274
2275 /* We must have an INSN, JUMP_INSN, or CALL_INSN. */
2276 pat = PATTERN (trial);
2277
2278 /* Stand-alone USE and CLOBBER are just for flow. */
2279 if (GET_CODE (pat) == USE || GET_CODE (pat) == CLOBBER)
2280 continue;
2281
2282 /* If this already has filled delay slots, get the insn needing
2283 the delay slots. */
2284 if (GET_CODE (pat) == SEQUENCE)
2285 trial_delay = XVECEXP (pat, 0, 0);
2286 else
2287 trial_delay = trial;
2288
2289 /* Stop our search when seeing an unconditional jump. */
2290 if (JUMP_P (trial_delay))
2291 break;
2292
2293 /* See if we have a resource problem before we try to
2294 split. */
2295 if (GET_CODE (pat) != SEQUENCE
2296 && ! insn_references_resource_p (trial, &set, 1)
2297 && ! insn_sets_resource_p (trial, &set, 1)
2298 && ! insn_sets_resource_p (trial, &needed, 1)
2299 #ifdef HAVE_cc0
2300 && ! (reg_mentioned_p (cc0_rtx, pat) && ! sets_cc0_p (pat))
2301 #endif
2302 && ! (maybe_never && may_trap_or_fault_p (pat))
2303 && (trial = try_split (pat, trial, 0))
2304 && eligible_for_delay (insn, slots_filled, trial, flags)
2305 && ! can_throw_internal(trial))
2306 {
2307 next_trial = next_nonnote_insn (trial);
2308 delay_list = add_to_delay_list (trial, delay_list);
2309
2310 #ifdef HAVE_cc0
2311 if (reg_mentioned_p (cc0_rtx, pat))
2312 link_cc0_insns (trial);
2313 #endif
2314
2315 delete_related_insns (trial);
2316 if (slots_to_fill == ++slots_filled)
2317 break;
2318 continue;
2319 }
2320
2321 mark_set_resources (trial, &set, 0, MARK_SRC_DEST_CALL);
2322 mark_referenced_resources (trial, &needed, 1);
2323
2324 /* Ensure we don't put insns between the setting of cc and the
2325 comparison by moving a setting of cc into an earlier delay
2326 slot since these insns could clobber the condition code. */
2327 set.cc = 1;
2328
2329 /* If this is a call or jump, we might not get here. */
2330 if (CALL_P (trial_delay)
2331 || JUMP_P (trial_delay))
2332 maybe_never = 1;
2333 }
2334
2335 /* If there are slots left to fill and our search was stopped by an
2336 unconditional branch, try the insn at the branch target. We can
2337 redirect the branch if it works.
2338
2339 Don't do this if the insn at the branch target is a branch. */
2340 if (slots_to_fill != slots_filled
2341 && trial
2342 && JUMP_P (trial)
2343 && simplejump_p (trial)
2344 && (target == 0 || JUMP_LABEL (trial) == target)
2345 && (next_trial = next_active_insn (JUMP_LABEL (trial))) != 0
2346 && ! (NONJUMP_INSN_P (next_trial)
2347 && GET_CODE (PATTERN (next_trial)) == SEQUENCE)
2348 && !JUMP_P (next_trial)
2349 && ! insn_references_resource_p (next_trial, &set, 1)
2350 && ! insn_sets_resource_p (next_trial, &set, 1)
2351 && ! insn_sets_resource_p (next_trial, &needed, 1)
2352 #ifdef HAVE_cc0
2353 && ! reg_mentioned_p (cc0_rtx, PATTERN (next_trial))
2354 #endif
2355 && ! (maybe_never && may_trap_or_fault_p (PATTERN (next_trial)))
2356 && (next_trial = try_split (PATTERN (next_trial), next_trial, 0))
2357 && eligible_for_delay (insn, slots_filled, next_trial, flags)
2358 && ! can_throw_internal (trial))
2359 {
2360 /* See comment in relax_delay_slots about necessity of using
2361 next_real_insn here. */
2362 rtx new_label = next_real_insn (next_trial);
2363
2364 if (new_label != 0)
2365 new_label = get_label_before (new_label);
2366 else
2367 new_label = find_end_label ();
2368
2369 if (new_label)
2370 {
2371 delay_list
2372 = add_to_delay_list (copy_rtx (next_trial), delay_list);
2373 slots_filled++;
2374 reorg_redirect_jump (trial, new_label);
2375
2376 /* If we merged because we both jumped to the same place,
2377 redirect the original insn also. */
2378 if (target)
2379 reorg_redirect_jump (insn, new_label);
2380 }
2381 }
2382 }
2383
2384 /* If this is an unconditional jump, then try to get insns from the
2385 target of the jump. */
2386 if (JUMP_P (insn)
2387 && simplejump_p (insn)
2388 && slots_filled != slots_to_fill)
2389 delay_list
2390 = fill_slots_from_thread (insn, const_true_rtx,
2391 next_active_insn (JUMP_LABEL (insn)),
2392 NULL, 1, 1,
2393 own_thread_p (JUMP_LABEL (insn),
2394 JUMP_LABEL (insn), 0),
2395 slots_to_fill, &slots_filled,
2396 delay_list);
2397
2398 if (delay_list)
2399 unfilled_slots_base[i]
2400 = emit_delay_sequence (insn, delay_list, slots_filled);
2401
2402 if (slots_to_fill == slots_filled)
2403 unfilled_slots_base[i] = 0;
2404
2405 note_delay_statistics (slots_filled, 0);
2406 }
2407
2408 #ifdef DELAY_SLOTS_FOR_EPILOGUE
2409 /* See if the epilogue needs any delay slots. Try to fill them if so.
2410 The only thing we can do is scan backwards from the end of the
2411 function. If we did this in a previous pass, it is incorrect to do it
2412 again. */
2413 if (crtl->epilogue_delay_list)
2414 return;
2415
2416 slots_to_fill = DELAY_SLOTS_FOR_EPILOGUE;
2417 if (slots_to_fill == 0)
2418 return;
2419
2420 slots_filled = 0;
2421 CLEAR_RESOURCE (&set);
2422
2423 /* The frame pointer and stack pointer are needed at the beginning of
2424 the epilogue, so instructions setting them can not be put in the
2425 epilogue delay slot. However, everything else needed at function
2426 end is safe, so we don't want to use end_of_function_needs here. */
2427 CLEAR_RESOURCE (&needed);
2428 if (frame_pointer_needed)
2429 {
2430 SET_HARD_REG_BIT (needed.regs, FRAME_POINTER_REGNUM);
2431 #if HARD_FRAME_POINTER_REGNUM != FRAME_POINTER_REGNUM
2432 SET_HARD_REG_BIT (needed.regs, HARD_FRAME_POINTER_REGNUM);
2433 #endif
2434 if (! EXIT_IGNORE_STACK
2435 || current_function_sp_is_unchanging)
2436 SET_HARD_REG_BIT (needed.regs, STACK_POINTER_REGNUM);
2437 }
2438 else
2439 SET_HARD_REG_BIT (needed.regs, STACK_POINTER_REGNUM);
2440
2441 #ifdef EPILOGUE_USES
2442 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2443 {
2444 if (EPILOGUE_USES (i))
2445 SET_HARD_REG_BIT (needed.regs, i);
2446 }
2447 #endif
2448
2449 for (trial = get_last_insn (); ! stop_search_p (trial, 1);
2450 trial = PREV_INSN (trial))
2451 {
2452 if (NOTE_P (trial))
2453 continue;
2454 pat = PATTERN (trial);
2455 if (GET_CODE (pat) == USE || GET_CODE (pat) == CLOBBER)
2456 continue;
2457
2458 if (! insn_references_resource_p (trial, &set, 1)
2459 && ! insn_sets_resource_p (trial, &needed, 1)
2460 && ! insn_sets_resource_p (trial, &set, 1)
2461 #ifdef HAVE_cc0
2462 /* Don't want to mess with cc0 here. */
2463 && ! reg_mentioned_p (cc0_rtx, pat)
2464 #endif
2465 && ! can_throw_internal (trial))
2466 {
2467 trial = try_split (pat, trial, 1);
2468 if (ELIGIBLE_FOR_EPILOGUE_DELAY (trial, slots_filled))
2469 {
2470 /* Here as well we are searching backward, so put the
2471 insns we find on the head of the list. */
2472
2473 crtl->epilogue_delay_list
2474 = gen_rtx_INSN_LIST (VOIDmode, trial,
2475 crtl->epilogue_delay_list);
2476 mark_end_of_function_resources (trial, 1);
2477 update_block (trial, trial);
2478 delete_related_insns (trial);
2479
2480 /* Clear deleted bit so final.c will output the insn. */
2481 INSN_DELETED_P (trial) = 0;
2482
2483 if (slots_to_fill == ++slots_filled)
2484 break;
2485 continue;
2486 }
2487 }
2488
2489 mark_set_resources (trial, &set, 0, MARK_SRC_DEST_CALL);
2490 mark_referenced_resources (trial, &needed, 1);
2491 }
2492
2493 note_delay_statistics (slots_filled, 0);
2494 #endif
2495 }
2496
2497 /* Follow any unconditional jump at LABEL;
2498 return the ultimate label reached by any such chain of jumps.
2499 Return null if the chain ultimately leads to a return instruction.
2500 If LABEL is not followed by a jump, return LABEL.
2501 If the chain loops or we can't find end, return LABEL,
2502 since that tells caller to avoid changing the insn. */
2503
2504 static rtx
2505 follow_jumps (rtx label)
2506 {
2507 rtx insn;
2508 rtx next;
2509 rtx value = label;
2510 int depth;
2511
2512 for (depth = 0;
2513 (depth < 10
2514 && (insn = next_active_insn (value)) != 0
2515 && JUMP_P (insn)
2516 && ((JUMP_LABEL (insn) != 0 && any_uncondjump_p (insn)
2517 && onlyjump_p (insn))
2518 || GET_CODE (PATTERN (insn)) == RETURN)
2519 && (next = NEXT_INSN (insn))
2520 && BARRIER_P (next));
2521 depth++)
2522 {
2523 rtx tem;
2524
2525 /* If we have found a cycle, make the insn jump to itself. */
2526 if (JUMP_LABEL (insn) == label)
2527 return label;
2528
2529 tem = next_active_insn (JUMP_LABEL (insn));
2530 if (tem && (GET_CODE (PATTERN (tem)) == ADDR_VEC
2531 || GET_CODE (PATTERN (tem)) == ADDR_DIFF_VEC))
2532 break;
2533
2534 value = JUMP_LABEL (insn);
2535 }
2536 if (depth == 10)
2537 return label;
2538 return value;
2539 }
2540
2541 /* Try to find insns to place in delay slots.
2542
2543 INSN is the jump needing SLOTS_TO_FILL delay slots. It tests CONDITION
2544 or is an unconditional branch if CONDITION is const_true_rtx.
2545 *PSLOTS_FILLED is updated with the number of slots that we have filled.
2546
2547 THREAD is a flow-of-control, either the insns to be executed if the
2548 branch is true or if the branch is false, THREAD_IF_TRUE says which.
2549
2550 OPPOSITE_THREAD is the thread in the opposite direction. It is used
2551 to see if any potential delay slot insns set things needed there.
2552
2553 LIKELY is nonzero if it is extremely likely that the branch will be
2554 taken and THREAD_IF_TRUE is set. This is used for the branch at the
2555 end of a loop back up to the top.
2556
2557 OWN_THREAD and OWN_OPPOSITE_THREAD are true if we are the only user of the
2558 thread. I.e., it is the fallthrough code of our jump or the target of the
2559 jump when we are the only jump going there.
2560
2561 If OWN_THREAD is false, it must be the "true" thread of a jump. In that
2562 case, we can only take insns from the head of the thread for our delay
2563 slot. We then adjust the jump to point after the insns we have taken. */
2564
2565 static rtx
2566 fill_slots_from_thread (rtx insn, rtx condition, rtx thread,
2567 rtx opposite_thread, int likely, int thread_if_true,
2568 int own_thread, int slots_to_fill,
2569 int *pslots_filled, rtx delay_list)
2570 {
2571 rtx new_thread;
2572 struct resources opposite_needed, set, needed;
2573 rtx trial;
2574 int lose = 0;
2575 int must_annul = 0;
2576 int flags;
2577
2578 /* Validate our arguments. */
2579 gcc_assert(condition != const_true_rtx || thread_if_true);
2580 gcc_assert(own_thread || thread_if_true);
2581
2582 flags = get_jump_flags (insn, JUMP_LABEL (insn));
2583
2584 /* If our thread is the end of subroutine, we can't get any delay
2585 insns from that. */
2586 if (thread == 0)
2587 return delay_list;
2588
2589 /* If this is an unconditional branch, nothing is needed at the
2590 opposite thread. Otherwise, compute what is needed there. */
2591 if (condition == const_true_rtx)
2592 CLEAR_RESOURCE (&opposite_needed);
2593 else
2594 mark_target_live_regs (get_insns (), opposite_thread, &opposite_needed);
2595
2596 /* If the insn at THREAD can be split, do it here to avoid having to
2597 update THREAD and NEW_THREAD if it is done in the loop below. Also
2598 initialize NEW_THREAD. */
2599
2600 new_thread = thread = try_split (PATTERN (thread), thread, 0);
2601
2602 /* Scan insns at THREAD. We are looking for an insn that can be removed
2603 from THREAD (it neither sets nor references resources that were set
2604 ahead of it and it doesn't set anything needs by the insns ahead of
2605 it) and that either can be placed in an annulling insn or aren't
2606 needed at OPPOSITE_THREAD. */
2607
2608 CLEAR_RESOURCE (&needed);
2609 CLEAR_RESOURCE (&set);
2610
2611 /* If we do not own this thread, we must stop as soon as we find
2612 something that we can't put in a delay slot, since all we can do
2613 is branch into THREAD at a later point. Therefore, labels stop
2614 the search if this is not the `true' thread. */
2615
2616 for (trial = thread;
2617 ! stop_search_p (trial, ! thread_if_true) && (! lose || own_thread);
2618 trial = next_nonnote_insn (trial))
2619 {
2620 rtx pat, old_trial;
2621
2622 /* If we have passed a label, we no longer own this thread. */
2623 if (LABEL_P (trial))
2624 {
2625 own_thread = 0;
2626 continue;
2627 }
2628
2629 pat = PATTERN (trial);
2630 if (GET_CODE (pat) == USE || GET_CODE (pat) == CLOBBER)
2631 continue;
2632
2633 /* If TRIAL conflicts with the insns ahead of it, we lose. Also,
2634 don't separate or copy insns that set and use CC0. */
2635 if (! insn_references_resource_p (trial, &set, 1)
2636 && ! insn_sets_resource_p (trial, &set, 1)
2637 && ! insn_sets_resource_p (trial, &needed, 1)
2638 #ifdef HAVE_cc0
2639 && ! (reg_mentioned_p (cc0_rtx, pat)
2640 && (! own_thread || ! sets_cc0_p (pat)))
2641 #endif
2642 && ! can_throw_internal (trial))
2643 {
2644 rtx prior_insn;
2645
2646 /* If TRIAL is redundant with some insn before INSN, we don't
2647 actually need to add it to the delay list; we can merely pretend
2648 we did. */
2649 if ((prior_insn = redundant_insn (trial, insn, delay_list)))
2650 {
2651 fix_reg_dead_note (prior_insn, insn);
2652 if (own_thread)
2653 {
2654 update_block (trial, thread);
2655 if (trial == thread)
2656 {
2657 thread = next_active_insn (thread);
2658 if (new_thread == trial)
2659 new_thread = thread;
2660 }
2661
2662 delete_related_insns (trial);
2663 }
2664 else
2665 {
2666 update_reg_unused_notes (prior_insn, trial);
2667 new_thread = next_active_insn (trial);
2668 }
2669
2670 continue;
2671 }
2672
2673 /* There are two ways we can win: If TRIAL doesn't set anything
2674 needed at the opposite thread and can't trap, or if it can
2675 go into an annulled delay slot. */
2676 if (!must_annul
2677 && (condition == const_true_rtx
2678 || (! insn_sets_resource_p (trial, &opposite_needed, 1)
2679 && ! may_trap_or_fault_p (pat))))
2680 {
2681 old_trial = trial;
2682 trial = try_split (pat, trial, 0);
2683 if (new_thread == old_trial)
2684 new_thread = trial;
2685 if (thread == old_trial)
2686 thread = trial;
2687 pat = PATTERN (trial);
2688 if (eligible_for_delay (insn, *pslots_filled, trial, flags))
2689 goto winner;
2690 }
2691 else if (0
2692 #ifdef ANNUL_IFTRUE_SLOTS
2693 || ! thread_if_true
2694 #endif
2695 #ifdef ANNUL_IFFALSE_SLOTS
2696 || thread_if_true
2697 #endif
2698 )
2699 {
2700 old_trial = trial;
2701 trial = try_split (pat, trial, 0);
2702 if (new_thread == old_trial)
2703 new_thread = trial;
2704 if (thread == old_trial)
2705 thread = trial;
2706 pat = PATTERN (trial);
2707 if ((must_annul || delay_list == NULL) && (thread_if_true
2708 ? check_annul_list_true_false (0, delay_list)
2709 && eligible_for_annul_false (insn, *pslots_filled, trial, flags)
2710 : check_annul_list_true_false (1, delay_list)
2711 && eligible_for_annul_true (insn, *pslots_filled, trial, flags)))
2712 {
2713 rtx temp;
2714
2715 must_annul = 1;
2716 winner:
2717
2718 #ifdef HAVE_cc0
2719 if (reg_mentioned_p (cc0_rtx, pat))
2720 link_cc0_insns (trial);
2721 #endif
2722
2723 /* If we own this thread, delete the insn. If this is the
2724 destination of a branch, show that a basic block status
2725 may have been updated. In any case, mark the new
2726 starting point of this thread. */
2727 if (own_thread)
2728 {
2729 rtx note;
2730
2731 update_block (trial, thread);
2732 if (trial == thread)
2733 {
2734 thread = next_active_insn (thread);
2735 if (new_thread == trial)
2736 new_thread = thread;
2737 }
2738
2739 /* We are moving this insn, not deleting it. We must
2740 temporarily increment the use count on any referenced
2741 label lest it be deleted by delete_related_insns. */
2742 for (note = REG_NOTES (trial);
2743 note != NULL_RTX;
2744 note = XEXP (note, 1))
2745 if (REG_NOTE_KIND (note) == REG_LABEL_OPERAND
2746 || REG_NOTE_KIND (note) == REG_LABEL_TARGET)
2747 {
2748 /* REG_LABEL_OPERAND could be
2749 NOTE_INSN_DELETED_LABEL too. */
2750 if (LABEL_P (XEXP (note, 0)))
2751 LABEL_NUSES (XEXP (note, 0))++;
2752 else
2753 gcc_assert (REG_NOTE_KIND (note)
2754 == REG_LABEL_OPERAND);
2755 }
2756 if (JUMP_P (trial) && JUMP_LABEL (trial))
2757 LABEL_NUSES (JUMP_LABEL (trial))++;
2758
2759 delete_related_insns (trial);
2760
2761 for (note = REG_NOTES (trial);
2762 note != NULL_RTX;
2763 note = XEXP (note, 1))
2764 if (REG_NOTE_KIND (note) == REG_LABEL_OPERAND
2765 || REG_NOTE_KIND (note) == REG_LABEL_TARGET)
2766 {
2767 /* REG_LABEL_OPERAND could be
2768 NOTE_INSN_DELETED_LABEL too. */
2769 if (LABEL_P (XEXP (note, 0)))
2770 LABEL_NUSES (XEXP (note, 0))--;
2771 else
2772 gcc_assert (REG_NOTE_KIND (note)
2773 == REG_LABEL_OPERAND);
2774 }
2775 if (JUMP_P (trial) && JUMP_LABEL (trial))
2776 LABEL_NUSES (JUMP_LABEL (trial))--;
2777 }
2778 else
2779 new_thread = next_active_insn (trial);
2780
2781 temp = own_thread ? trial : copy_rtx (trial);
2782 if (thread_if_true)
2783 INSN_FROM_TARGET_P (temp) = 1;
2784
2785 delay_list = add_to_delay_list (temp, delay_list);
2786
2787 if (slots_to_fill == ++(*pslots_filled))
2788 {
2789 /* Even though we have filled all the slots, we
2790 may be branching to a location that has a
2791 redundant insn. Skip any if so. */
2792 while (new_thread && ! own_thread
2793 && ! insn_sets_resource_p (new_thread, &set, 1)
2794 && ! insn_sets_resource_p (new_thread, &needed, 1)
2795 && ! insn_references_resource_p (new_thread,
2796 &set, 1)
2797 && (prior_insn
2798 = redundant_insn (new_thread, insn,
2799 delay_list)))
2800 {
2801 /* We know we do not own the thread, so no need
2802 to call update_block and delete_insn. */
2803 fix_reg_dead_note (prior_insn, insn);
2804 update_reg_unused_notes (prior_insn, new_thread);
2805 new_thread = next_active_insn (new_thread);
2806 }
2807 break;
2808 }
2809
2810 continue;
2811 }
2812 }
2813 }
2814
2815 /* This insn can't go into a delay slot. */
2816 lose = 1;
2817 mark_set_resources (trial, &set, 0, MARK_SRC_DEST_CALL);
2818 mark_referenced_resources (trial, &needed, 1);
2819
2820 /* Ensure we don't put insns between the setting of cc and the comparison
2821 by moving a setting of cc into an earlier delay slot since these insns
2822 could clobber the condition code. */
2823 set.cc = 1;
2824
2825 /* If this insn is a register-register copy and the next insn has
2826 a use of our destination, change it to use our source. That way,
2827 it will become a candidate for our delay slot the next time
2828 through this loop. This case occurs commonly in loops that
2829 scan a list.
2830
2831 We could check for more complex cases than those tested below,
2832 but it doesn't seem worth it. It might also be a good idea to try
2833 to swap the two insns. That might do better.
2834
2835 We can't do this if the next insn modifies our destination, because
2836 that would make the replacement into the insn invalid. We also can't
2837 do this if it modifies our source, because it might be an earlyclobber
2838 operand. This latter test also prevents updating the contents of
2839 a PRE_INC. We also can't do this if there's overlap of source and
2840 destination. Overlap may happen for larger-than-register-size modes. */
2841
2842 if (NONJUMP_INSN_P (trial) && GET_CODE (pat) == SET
2843 && REG_P (SET_SRC (pat))
2844 && REG_P (SET_DEST (pat))
2845 && !reg_overlap_mentioned_p (SET_DEST (pat), SET_SRC (pat)))
2846 {
2847 rtx next = next_nonnote_insn (trial);
2848
2849 if (next && NONJUMP_INSN_P (next)
2850 && GET_CODE (PATTERN (next)) != USE
2851 && ! reg_set_p (SET_DEST (pat), next)
2852 && ! reg_set_p (SET_SRC (pat), next)
2853 && reg_referenced_p (SET_DEST (pat), PATTERN (next))
2854 && ! modified_in_p (SET_DEST (pat), next))
2855 validate_replace_rtx (SET_DEST (pat), SET_SRC (pat), next);
2856 }
2857 }
2858
2859 /* If we stopped on a branch insn that has delay slots, see if we can
2860 steal some of the insns in those slots. */
2861 if (trial && NONJUMP_INSN_P (trial)
2862 && GET_CODE (PATTERN (trial)) == SEQUENCE
2863 && JUMP_P (XVECEXP (PATTERN (trial), 0, 0)))
2864 {
2865 /* If this is the `true' thread, we will want to follow the jump,
2866 so we can only do this if we have taken everything up to here. */
2867 if (thread_if_true && trial == new_thread)
2868 {
2869 delay_list
2870 = steal_delay_list_from_target (insn, condition, PATTERN (trial),
2871 delay_list, &set, &needed,
2872 &opposite_needed, slots_to_fill,
2873 pslots_filled, &must_annul,
2874 &new_thread);
2875 /* If we owned the thread and are told that it branched
2876 elsewhere, make sure we own the thread at the new location. */
2877 if (own_thread && trial != new_thread)
2878 own_thread = own_thread_p (new_thread, new_thread, 0);
2879 }
2880 else if (! thread_if_true)
2881 delay_list
2882 = steal_delay_list_from_fallthrough (insn, condition,
2883 PATTERN (trial),
2884 delay_list, &set, &needed,
2885 &opposite_needed, slots_to_fill,
2886 pslots_filled, &must_annul);
2887 }
2888
2889 /* If we haven't found anything for this delay slot and it is very
2890 likely that the branch will be taken, see if the insn at our target
2891 increments or decrements a register with an increment that does not
2892 depend on the destination register. If so, try to place the opposite
2893 arithmetic insn after the jump insn and put the arithmetic insn in the
2894 delay slot. If we can't do this, return. */
2895 if (delay_list == 0 && likely && new_thread
2896 && NONJUMP_INSN_P (new_thread)
2897 && GET_CODE (PATTERN (new_thread)) != ASM_INPUT
2898 && asm_noperands (PATTERN (new_thread)) < 0)
2899 {
2900 rtx pat = PATTERN (new_thread);
2901 rtx dest;
2902 rtx src;
2903
2904 trial = new_thread;
2905 pat = PATTERN (trial);
2906
2907 if (!NONJUMP_INSN_P (trial)
2908 || GET_CODE (pat) != SET
2909 || ! eligible_for_delay (insn, 0, trial, flags)
2910 || can_throw_internal (trial))
2911 return 0;
2912
2913 dest = SET_DEST (pat), src = SET_SRC (pat);
2914 if ((GET_CODE (src) == PLUS || GET_CODE (src) == MINUS)
2915 && rtx_equal_p (XEXP (src, 0), dest)
2916 && (!FLOAT_MODE_P (GET_MODE (src))
2917 || flag_unsafe_math_optimizations)
2918 && ! reg_overlap_mentioned_p (dest, XEXP (src, 1))
2919 && ! side_effects_p (pat))
2920 {
2921 rtx other = XEXP (src, 1);
2922 rtx new_arith;
2923 rtx ninsn;
2924
2925 /* If this is a constant adjustment, use the same code with
2926 the negated constant. Otherwise, reverse the sense of the
2927 arithmetic. */
2928 if (GET_CODE (other) == CONST_INT)
2929 new_arith = gen_rtx_fmt_ee (GET_CODE (src), GET_MODE (src), dest,
2930 negate_rtx (GET_MODE (src), other));
2931 else
2932 new_arith = gen_rtx_fmt_ee (GET_CODE (src) == PLUS ? MINUS : PLUS,
2933 GET_MODE (src), dest, other);
2934
2935 ninsn = emit_insn_after (gen_rtx_SET (VOIDmode, dest, new_arith),
2936 insn);
2937
2938 if (recog_memoized (ninsn) < 0
2939 || (extract_insn (ninsn), ! constrain_operands (1)))
2940 {
2941 delete_related_insns (ninsn);
2942 return 0;
2943 }
2944
2945 if (own_thread)
2946 {
2947 update_block (trial, thread);
2948 if (trial == thread)
2949 {
2950 thread = next_active_insn (thread);
2951 if (new_thread == trial)
2952 new_thread = thread;
2953 }
2954 delete_related_insns (trial);
2955 }
2956 else
2957 new_thread = next_active_insn (trial);
2958
2959 ninsn = own_thread ? trial : copy_rtx (trial);
2960 if (thread_if_true)
2961 INSN_FROM_TARGET_P (ninsn) = 1;
2962
2963 delay_list = add_to_delay_list (ninsn, NULL_RTX);
2964 (*pslots_filled)++;
2965 }
2966 }
2967
2968 if (delay_list && must_annul)
2969 INSN_ANNULLED_BRANCH_P (insn) = 1;
2970
2971 /* If we are to branch into the middle of this thread, find an appropriate
2972 label or make a new one if none, and redirect INSN to it. If we hit the
2973 end of the function, use the end-of-function label. */
2974 if (new_thread != thread)
2975 {
2976 rtx label;
2977
2978 gcc_assert (thread_if_true);
2979
2980 if (new_thread && JUMP_P (new_thread)
2981 && (simplejump_p (new_thread)
2982 || GET_CODE (PATTERN (new_thread)) == RETURN)
2983 && redirect_with_delay_list_safe_p (insn,
2984 JUMP_LABEL (new_thread),
2985 delay_list))
2986 new_thread = follow_jumps (JUMP_LABEL (new_thread));
2987
2988 if (new_thread == 0)
2989 label = find_end_label ();
2990 else if (LABEL_P (new_thread))
2991 label = new_thread;
2992 else
2993 label = get_label_before (new_thread);
2994
2995 if (label)
2996 reorg_redirect_jump (insn, label);
2997 }
2998
2999 return delay_list;
3000 }
3001
3002 /* Make another attempt to find insns to place in delay slots.
3003
3004 We previously looked for insns located in front of the delay insn
3005 and, for non-jump delay insns, located behind the delay insn.
3006
3007 Here only try to schedule jump insns and try to move insns from either
3008 the target or the following insns into the delay slot. If annulling is
3009 supported, we will be likely to do this. Otherwise, we can do this only
3010 if safe. */
3011
3012 static void
3013 fill_eager_delay_slots (void)
3014 {
3015 rtx insn;
3016 int i;
3017 int num_unfilled_slots = unfilled_slots_next - unfilled_slots_base;
3018
3019 for (i = 0; i < num_unfilled_slots; i++)
3020 {
3021 rtx condition;
3022 rtx target_label, insn_at_target, fallthrough_insn;
3023 rtx delay_list = 0;
3024 int own_target;
3025 int own_fallthrough;
3026 int prediction, slots_to_fill, slots_filled;
3027
3028 insn = unfilled_slots_base[i];
3029 if (insn == 0
3030 || INSN_DELETED_P (insn)
3031 || !JUMP_P (insn)
3032 || ! (condjump_p (insn) || condjump_in_parallel_p (insn)))
3033 continue;
3034
3035 slots_to_fill = num_delay_slots (insn);
3036 /* Some machine description have defined instructions to have
3037 delay slots only in certain circumstances which may depend on
3038 nearby insns (which change due to reorg's actions).
3039
3040 For example, the PA port normally has delay slots for unconditional
3041 jumps.
3042
3043 However, the PA port claims such jumps do not have a delay slot
3044 if they are immediate successors of certain CALL_INSNs. This
3045 allows the port to favor filling the delay slot of the call with
3046 the unconditional jump. */
3047 if (slots_to_fill == 0)
3048 continue;
3049
3050 slots_filled = 0;
3051 target_label = JUMP_LABEL (insn);
3052 condition = get_branch_condition (insn, target_label);
3053
3054 if (condition == 0)
3055 continue;
3056
3057 /* Get the next active fallthrough and target insns and see if we own
3058 them. Then see whether the branch is likely true. We don't need
3059 to do a lot of this for unconditional branches. */
3060
3061 insn_at_target = next_active_insn (target_label);
3062 own_target = own_thread_p (target_label, target_label, 0);
3063
3064 if (condition == const_true_rtx)
3065 {
3066 own_fallthrough = 0;
3067 fallthrough_insn = 0;
3068 prediction = 2;
3069 }
3070 else
3071 {
3072 fallthrough_insn = next_active_insn (insn);
3073 own_fallthrough = own_thread_p (NEXT_INSN (insn), NULL_RTX, 1);
3074 prediction = mostly_true_jump (insn, condition);
3075 }
3076
3077 /* If this insn is expected to branch, first try to get insns from our
3078 target, then our fallthrough insns. If it is not expected to branch,
3079 try the other order. */
3080
3081 if (prediction > 0)
3082 {
3083 delay_list
3084 = fill_slots_from_thread (insn, condition, insn_at_target,
3085 fallthrough_insn, prediction == 2, 1,
3086 own_target,
3087 slots_to_fill, &slots_filled, delay_list);
3088
3089 if (delay_list == 0 && own_fallthrough)
3090 {
3091 /* Even though we didn't find anything for delay slots,
3092 we might have found a redundant insn which we deleted
3093 from the thread that was filled. So we have to recompute
3094 the next insn at the target. */
3095 target_label = JUMP_LABEL (insn);
3096 insn_at_target = next_active_insn (target_label);
3097
3098 delay_list
3099 = fill_slots_from_thread (insn, condition, fallthrough_insn,
3100 insn_at_target, 0, 0,
3101 own_fallthrough,
3102 slots_to_fill, &slots_filled,
3103 delay_list);
3104 }
3105 }
3106 else
3107 {
3108 if (own_fallthrough)
3109 delay_list
3110 = fill_slots_from_thread (insn, condition, fallthrough_insn,
3111 insn_at_target, 0, 0,
3112 own_fallthrough,
3113 slots_to_fill, &slots_filled,
3114 delay_list);
3115
3116 if (delay_list == 0)
3117 delay_list
3118 = fill_slots_from_thread (insn, condition, insn_at_target,
3119 next_active_insn (insn), 0, 1,
3120 own_target,
3121 slots_to_fill, &slots_filled,
3122 delay_list);
3123 }
3124
3125 if (delay_list)
3126 unfilled_slots_base[i]
3127 = emit_delay_sequence (insn, delay_list, slots_filled);
3128
3129 if (slots_to_fill == slots_filled)
3130 unfilled_slots_base[i] = 0;
3131
3132 note_delay_statistics (slots_filled, 1);
3133 }
3134 }
3135
3136 static void delete_computation (rtx insn);
3137
3138 /* Recursively delete prior insns that compute the value (used only by INSN
3139 which the caller is deleting) stored in the register mentioned by NOTE
3140 which is a REG_DEAD note associated with INSN. */
3141
3142 static void
3143 delete_prior_computation (rtx note, rtx insn)
3144 {
3145 rtx our_prev;
3146 rtx reg = XEXP (note, 0);
3147
3148 for (our_prev = prev_nonnote_insn (insn);
3149 our_prev && (NONJUMP_INSN_P (our_prev)
3150 || CALL_P (our_prev));
3151 our_prev = prev_nonnote_insn (our_prev))
3152 {
3153 rtx pat = PATTERN (our_prev);
3154
3155 /* If we reach a CALL which is not calling a const function
3156 or the callee pops the arguments, then give up. */
3157 if (CALL_P (our_prev)
3158 && (! RTL_CONST_CALL_P (our_prev)
3159 || GET_CODE (pat) != SET || GET_CODE (SET_SRC (pat)) != CALL))
3160 break;
3161
3162 /* If we reach a SEQUENCE, it is too complex to try to
3163 do anything with it, so give up. We can be run during
3164 and after reorg, so SEQUENCE rtl can legitimately show
3165 up here. */
3166 if (GET_CODE (pat) == SEQUENCE)
3167 break;
3168
3169 if (GET_CODE (pat) == USE
3170 && NONJUMP_INSN_P (XEXP (pat, 0)))
3171 /* reorg creates USEs that look like this. We leave them
3172 alone because reorg needs them for its own purposes. */
3173 break;
3174
3175 if (reg_set_p (reg, pat))
3176 {
3177 if (side_effects_p (pat) && !CALL_P (our_prev))
3178 break;
3179
3180 if (GET_CODE (pat) == PARALLEL)
3181 {
3182 /* If we find a SET of something else, we can't
3183 delete the insn. */
3184
3185 int i;
3186
3187 for (i = 0; i < XVECLEN (pat, 0); i++)
3188 {
3189 rtx part = XVECEXP (pat, 0, i);
3190
3191 if (GET_CODE (part) == SET
3192 && SET_DEST (part) != reg)
3193 break;
3194 }
3195
3196 if (i == XVECLEN (pat, 0))
3197 delete_computation (our_prev);
3198 }
3199 else if (GET_CODE (pat) == SET
3200 && REG_P (SET_DEST (pat)))
3201 {
3202 int dest_regno = REGNO (SET_DEST (pat));
3203 int dest_endregno = END_REGNO (SET_DEST (pat));
3204 int regno = REGNO (reg);
3205 int endregno = END_REGNO (reg);
3206
3207 if (dest_regno >= regno
3208 && dest_endregno <= endregno)
3209 delete_computation (our_prev);
3210
3211 /* We may have a multi-word hard register and some, but not
3212 all, of the words of the register are needed in subsequent
3213 insns. Write REG_UNUSED notes for those parts that were not
3214 needed. */
3215 else if (dest_regno <= regno
3216 && dest_endregno >= endregno)
3217 {
3218 int i;
3219
3220 add_reg_note (our_prev, REG_UNUSED, reg);
3221
3222 for (i = dest_regno; i < dest_endregno; i++)
3223 if (! find_regno_note (our_prev, REG_UNUSED, i))
3224 break;
3225
3226 if (i == dest_endregno)
3227 delete_computation (our_prev);
3228 }
3229 }
3230
3231 break;
3232 }
3233
3234 /* If PAT references the register that dies here, it is an
3235 additional use. Hence any prior SET isn't dead. However, this
3236 insn becomes the new place for the REG_DEAD note. */
3237 if (reg_overlap_mentioned_p (reg, pat))
3238 {
3239 XEXP (note, 1) = REG_NOTES (our_prev);
3240 REG_NOTES (our_prev) = note;
3241 break;
3242 }
3243 }
3244 }
3245
3246 /* Delete INSN and recursively delete insns that compute values used only
3247 by INSN. This uses the REG_DEAD notes computed during flow analysis.
3248 If we are running before flow.c, we need do nothing since flow.c will
3249 delete dead code. We also can't know if the registers being used are
3250 dead or not at this point.
3251
3252 Otherwise, look at all our REG_DEAD notes. If a previous insn does
3253 nothing other than set a register that dies in this insn, we can delete
3254 that insn as well.
3255
3256 On machines with CC0, if CC0 is used in this insn, we may be able to
3257 delete the insn that set it. */
3258
3259 static void
3260 delete_computation (rtx insn)
3261 {
3262 rtx note, next;
3263
3264 #ifdef HAVE_cc0
3265 if (reg_referenced_p (cc0_rtx, PATTERN (insn)))
3266 {
3267 rtx prev = prev_nonnote_insn (insn);
3268 /* We assume that at this stage
3269 CC's are always set explicitly
3270 and always immediately before the jump that
3271 will use them. So if the previous insn
3272 exists to set the CC's, delete it
3273 (unless it performs auto-increments, etc.). */
3274 if (prev && NONJUMP_INSN_P (prev)
3275 && sets_cc0_p (PATTERN (prev)))
3276 {
3277 if (sets_cc0_p (PATTERN (prev)) > 0
3278 && ! side_effects_p (PATTERN (prev)))
3279 delete_computation (prev);
3280 else
3281 /* Otherwise, show that cc0 won't be used. */
3282 add_reg_note (prev, REG_UNUSED, cc0_rtx);
3283 }
3284 }
3285 #endif
3286
3287 for (note = REG_NOTES (insn); note; note = next)
3288 {
3289 next = XEXP (note, 1);
3290
3291 if (REG_NOTE_KIND (note) != REG_DEAD
3292 /* Verify that the REG_NOTE is legitimate. */
3293 || !REG_P (XEXP (note, 0)))
3294 continue;
3295
3296 delete_prior_computation (note, insn);
3297 }
3298
3299 delete_related_insns (insn);
3300 }
3301
3302 /* If all INSN does is set the pc, delete it,
3303 and delete the insn that set the condition codes for it
3304 if that's what the previous thing was. */
3305
3306 static void
3307 delete_jump (rtx insn)
3308 {
3309 rtx set = single_set (insn);
3310
3311 if (set && GET_CODE (SET_DEST (set)) == PC)
3312 delete_computation (insn);
3313 }
3314
3315
3316 /* Once we have tried two ways to fill a delay slot, make a pass over the
3317 code to try to improve the results and to do such things as more jump
3318 threading. */
3319
3320 static void
3321 relax_delay_slots (rtx first)
3322 {
3323 rtx insn, next, pat;
3324 rtx trial, delay_insn, target_label;
3325
3326 /* Look at every JUMP_INSN and see if we can improve it. */
3327 for (insn = first; insn; insn = next)
3328 {
3329 rtx other;
3330
3331 next = next_active_insn (insn);
3332
3333 /* If this is a jump insn, see if it now jumps to a jump, jumps to
3334 the next insn, or jumps to a label that is not the last of a
3335 group of consecutive labels. */
3336 if (JUMP_P (insn)
3337 && (condjump_p (insn) || condjump_in_parallel_p (insn))
3338 && (target_label = JUMP_LABEL (insn)) != 0)
3339 {
3340 target_label = skip_consecutive_labels (follow_jumps (target_label));
3341 if (target_label == 0)
3342 target_label = find_end_label ();
3343
3344 if (target_label && next_active_insn (target_label) == next
3345 && ! condjump_in_parallel_p (insn))
3346 {
3347 delete_jump (insn);
3348 continue;
3349 }
3350
3351 if (target_label && target_label != JUMP_LABEL (insn))
3352 reorg_redirect_jump (insn, target_label);
3353
3354 /* See if this jump conditionally branches around an unconditional
3355 jump. If so, invert this jump and point it to the target of the
3356 second jump. */
3357 if (next && JUMP_P (next)
3358 && any_condjump_p (insn)
3359 && (simplejump_p (next) || GET_CODE (PATTERN (next)) == RETURN)
3360 && target_label
3361 && next_active_insn (target_label) == next_active_insn (next)
3362 && no_labels_between_p (insn, next))
3363 {
3364 rtx label = JUMP_LABEL (next);
3365
3366 /* Be careful how we do this to avoid deleting code or
3367 labels that are momentarily dead. See similar optimization
3368 in jump.c.
3369
3370 We also need to ensure we properly handle the case when
3371 invert_jump fails. */
3372
3373 ++LABEL_NUSES (target_label);
3374 if (label)
3375 ++LABEL_NUSES (label);
3376
3377 if (invert_jump (insn, label, 1))
3378 {
3379 delete_related_insns (next);
3380 next = insn;
3381 }
3382
3383 if (label)
3384 --LABEL_NUSES (label);
3385
3386 if (--LABEL_NUSES (target_label) == 0)
3387 delete_related_insns (target_label);
3388
3389 continue;
3390 }
3391 }
3392
3393 /* If this is an unconditional jump and the previous insn is a
3394 conditional jump, try reversing the condition of the previous
3395 insn and swapping our targets. The next pass might be able to
3396 fill the slots.
3397
3398 Don't do this if we expect the conditional branch to be true, because
3399 we would then be making the more common case longer. */
3400
3401 if (JUMP_P (insn)
3402 && (simplejump_p (insn) || GET_CODE (PATTERN (insn)) == RETURN)
3403 && (other = prev_active_insn (insn)) != 0
3404 && any_condjump_p (other)
3405 && no_labels_between_p (other, insn)
3406 && 0 > mostly_true_jump (other,
3407 get_branch_condition (other,
3408 JUMP_LABEL (other))))
3409 {
3410 rtx other_target = JUMP_LABEL (other);
3411 target_label = JUMP_LABEL (insn);
3412
3413 if (invert_jump (other, target_label, 0))
3414 reorg_redirect_jump (insn, other_target);
3415 }
3416
3417 /* Now look only at cases where we have filled a delay slot. */
3418 if (!NONJUMP_INSN_P (insn)
3419 || GET_CODE (PATTERN (insn)) != SEQUENCE)
3420 continue;
3421
3422 pat = PATTERN (insn);
3423 delay_insn = XVECEXP (pat, 0, 0);
3424
3425 /* See if the first insn in the delay slot is redundant with some
3426 previous insn. Remove it from the delay slot if so; then set up
3427 to reprocess this insn. */
3428 if (redundant_insn (XVECEXP (pat, 0, 1), delay_insn, 0))
3429 {
3430 delete_from_delay_slot (XVECEXP (pat, 0, 1));
3431 next = prev_active_insn (next);
3432 continue;
3433 }
3434
3435 /* See if we have a RETURN insn with a filled delay slot followed
3436 by a RETURN insn with an unfilled a delay slot. If so, we can delete
3437 the first RETURN (but not its delay insn). This gives the same
3438 effect in fewer instructions.
3439
3440 Only do so if optimizing for size since this results in slower, but
3441 smaller code. */
3442 if (optimize_function_for_size_p (cfun)
3443 && GET_CODE (PATTERN (delay_insn)) == RETURN
3444 && next
3445 && JUMP_P (next)
3446 && GET_CODE (PATTERN (next)) == RETURN)
3447 {
3448 rtx after;
3449 int i;
3450
3451 /* Delete the RETURN and just execute the delay list insns.
3452
3453 We do this by deleting the INSN containing the SEQUENCE, then
3454 re-emitting the insns separately, and then deleting the RETURN.
3455 This allows the count of the jump target to be properly
3456 decremented. */
3457
3458 /* Clear the from target bit, since these insns are no longer
3459 in delay slots. */
3460 for (i = 0; i < XVECLEN (pat, 0); i++)
3461 INSN_FROM_TARGET_P (XVECEXP (pat, 0, i)) = 0;
3462
3463 trial = PREV_INSN (insn);
3464 delete_related_insns (insn);
3465 gcc_assert (GET_CODE (pat) == SEQUENCE);
3466 after = trial;
3467 for (i = 0; i < XVECLEN (pat, 0); i++)
3468 {
3469 rtx this_insn = XVECEXP (pat, 0, i);
3470 add_insn_after (this_insn, after, NULL);
3471 after = this_insn;
3472 }
3473 delete_scheduled_jump (delay_insn);
3474 continue;
3475 }
3476
3477 /* Now look only at the cases where we have a filled JUMP_INSN. */
3478 if (!JUMP_P (XVECEXP (PATTERN (insn), 0, 0))
3479 || ! (condjump_p (XVECEXP (PATTERN (insn), 0, 0))
3480 || condjump_in_parallel_p (XVECEXP (PATTERN (insn), 0, 0))))
3481 continue;
3482
3483 target_label = JUMP_LABEL (delay_insn);
3484
3485 if (target_label)
3486 {
3487 /* If this jump goes to another unconditional jump, thread it, but
3488 don't convert a jump into a RETURN here. */
3489 trial = skip_consecutive_labels (follow_jumps (target_label));
3490 if (trial == 0)
3491 trial = find_end_label ();
3492
3493 if (trial && trial != target_label
3494 && redirect_with_delay_slots_safe_p (delay_insn, trial, insn))
3495 {
3496 reorg_redirect_jump (delay_insn, trial);
3497 target_label = trial;
3498 }
3499
3500 /* If the first insn at TARGET_LABEL is redundant with a previous
3501 insn, redirect the jump to the following insn process again. */
3502 trial = next_active_insn (target_label);
3503 if (trial && GET_CODE (PATTERN (trial)) != SEQUENCE
3504 && redundant_insn (trial, insn, 0)
3505 && ! can_throw_internal (trial))
3506 {
3507 /* Figure out where to emit the special USE insn so we don't
3508 later incorrectly compute register live/death info. */
3509 rtx tmp = next_active_insn (trial);
3510 if (tmp == 0)
3511 tmp = find_end_label ();
3512
3513 if (tmp)
3514 {
3515 /* Insert the special USE insn and update dataflow info. */
3516 update_block (trial, tmp);
3517
3518 /* Now emit a label before the special USE insn, and
3519 redirect our jump to the new label. */
3520 target_label = get_label_before (PREV_INSN (tmp));
3521 reorg_redirect_jump (delay_insn, target_label);
3522 next = insn;
3523 continue;
3524 }
3525 }
3526
3527 /* Similarly, if it is an unconditional jump with one insn in its
3528 delay list and that insn is redundant, thread the jump. */
3529 if (trial && GET_CODE (PATTERN (trial)) == SEQUENCE
3530 && XVECLEN (PATTERN (trial), 0) == 2
3531 && JUMP_P (XVECEXP (PATTERN (trial), 0, 0))
3532 && (simplejump_p (XVECEXP (PATTERN (trial), 0, 0))
3533 || GET_CODE (PATTERN (XVECEXP (PATTERN (trial), 0, 0))) == RETURN)
3534 && redundant_insn (XVECEXP (PATTERN (trial), 0, 1), insn, 0))
3535 {
3536 target_label = JUMP_LABEL (XVECEXP (PATTERN (trial), 0, 0));
3537 if (target_label == 0)
3538 target_label = find_end_label ();
3539
3540 if (target_label
3541 && redirect_with_delay_slots_safe_p (delay_insn, target_label,
3542 insn))
3543 {
3544 reorg_redirect_jump (delay_insn, target_label);
3545 next = insn;
3546 continue;
3547 }
3548 }
3549 }
3550
3551 if (! INSN_ANNULLED_BRANCH_P (delay_insn)
3552 && prev_active_insn (target_label) == insn
3553 && ! condjump_in_parallel_p (delay_insn)
3554 #ifdef HAVE_cc0
3555 /* If the last insn in the delay slot sets CC0 for some insn,
3556 various code assumes that it is in a delay slot. We could
3557 put it back where it belonged and delete the register notes,
3558 but it doesn't seem worthwhile in this uncommon case. */
3559 && ! find_reg_note (XVECEXP (pat, 0, XVECLEN (pat, 0) - 1),
3560 REG_CC_USER, NULL_RTX)
3561 #endif
3562 )
3563 {
3564 rtx after;
3565 int i;
3566
3567 /* All this insn does is execute its delay list and jump to the
3568 following insn. So delete the jump and just execute the delay
3569 list insns.
3570
3571 We do this by deleting the INSN containing the SEQUENCE, then
3572 re-emitting the insns separately, and then deleting the jump.
3573 This allows the count of the jump target to be properly
3574 decremented. */
3575
3576 /* Clear the from target bit, since these insns are no longer
3577 in delay slots. */
3578 for (i = 0; i < XVECLEN (pat, 0); i++)
3579 INSN_FROM_TARGET_P (XVECEXP (pat, 0, i)) = 0;
3580
3581 trial = PREV_INSN (insn);
3582 delete_related_insns (insn);
3583 gcc_assert (GET_CODE (pat) == SEQUENCE);
3584 after = trial;
3585 for (i = 0; i < XVECLEN (pat, 0); i++)
3586 {
3587 rtx this_insn = XVECEXP (pat, 0, i);
3588 add_insn_after (this_insn, after, NULL);
3589 after = this_insn;
3590 }
3591 delete_scheduled_jump (delay_insn);
3592 continue;
3593 }
3594
3595 /* See if this is an unconditional jump around a single insn which is
3596 identical to the one in its delay slot. In this case, we can just
3597 delete the branch and the insn in its delay slot. */
3598 if (next && NONJUMP_INSN_P (next)
3599 && prev_label (next_active_insn (next)) == target_label
3600 && simplejump_p (insn)
3601 && XVECLEN (pat, 0) == 2
3602 && rtx_equal_p (PATTERN (next), PATTERN (XVECEXP (pat, 0, 1))))
3603 {
3604 delete_related_insns (insn);
3605 continue;
3606 }
3607
3608 /* See if this jump (with its delay slots) conditionally branches
3609 around an unconditional jump (without delay slots). If so, invert
3610 this jump and point it to the target of the second jump. We cannot
3611 do this for annulled jumps, though. Again, don't convert a jump to
3612 a RETURN here. */
3613 if (! INSN_ANNULLED_BRANCH_P (delay_insn)
3614 && any_condjump_p (delay_insn)
3615 && next && JUMP_P (next)
3616 && (simplejump_p (next) || GET_CODE (PATTERN (next)) == RETURN)
3617 && next_active_insn (target_label) == next_active_insn (next)
3618 && no_labels_between_p (insn, next))
3619 {
3620 rtx label = JUMP_LABEL (next);
3621 rtx old_label = JUMP_LABEL (delay_insn);
3622
3623 if (label == 0)
3624 label = find_end_label ();
3625
3626 /* find_end_label can generate a new label. Check this first. */
3627 if (label
3628 && no_labels_between_p (insn, next)
3629 && redirect_with_delay_slots_safe_p (delay_insn, label, insn))
3630 {
3631 /* Be careful how we do this to avoid deleting code or labels
3632 that are momentarily dead. See similar optimization in
3633 jump.c */
3634 if (old_label)
3635 ++LABEL_NUSES (old_label);
3636
3637 if (invert_jump (delay_insn, label, 1))
3638 {
3639 int i;
3640
3641 /* Must update the INSN_FROM_TARGET_P bits now that
3642 the branch is reversed, so that mark_target_live_regs
3643 will handle the delay slot insn correctly. */
3644 for (i = 1; i < XVECLEN (PATTERN (insn), 0); i++)
3645 {
3646 rtx slot = XVECEXP (PATTERN (insn), 0, i);
3647 INSN_FROM_TARGET_P (slot) = ! INSN_FROM_TARGET_P (slot);
3648 }
3649
3650 delete_related_insns (next);
3651 next = insn;
3652 }
3653
3654 if (old_label && --LABEL_NUSES (old_label) == 0)
3655 delete_related_insns (old_label);
3656 continue;
3657 }
3658 }
3659
3660 /* If we own the thread opposite the way this insn branches, see if we
3661 can merge its delay slots with following insns. */
3662 if (INSN_FROM_TARGET_P (XVECEXP (pat, 0, 1))
3663 && own_thread_p (NEXT_INSN (insn), 0, 1))
3664 try_merge_delay_insns (insn, next);
3665 else if (! INSN_FROM_TARGET_P (XVECEXP (pat, 0, 1))
3666 && own_thread_p (target_label, target_label, 0))
3667 try_merge_delay_insns (insn, next_active_insn (target_label));
3668
3669 /* If we get here, we haven't deleted INSN. But we may have deleted
3670 NEXT, so recompute it. */
3671 next = next_active_insn (insn);
3672 }
3673 }
3674
3675 #ifdef HAVE_return
3676
3677 /* Look for filled jumps to the end of function label. We can try to convert
3678 them into RETURN insns if the insns in the delay slot are valid for the
3679 RETURN as well. */
3680
3681 static void
3682 make_return_insns (rtx first)
3683 {
3684 rtx insn, jump_insn, pat;
3685 rtx real_return_label = end_of_function_label;
3686 int slots, i;
3687
3688 #ifdef DELAY_SLOTS_FOR_EPILOGUE
3689 /* If a previous pass filled delay slots in the epilogue, things get a
3690 bit more complicated, as those filler insns would generally (without
3691 data flow analysis) have to be executed after any existing branch
3692 delay slot filler insns. It is also unknown whether such a
3693 transformation would actually be profitable. Note that the existing
3694 code only cares for branches with (some) filled delay slots. */
3695 if (crtl->epilogue_delay_list != NULL)
3696 return;
3697 #endif
3698
3699 /* See if there is a RETURN insn in the function other than the one we
3700 made for END_OF_FUNCTION_LABEL. If so, set up anything we can't change
3701 into a RETURN to jump to it. */
3702 for (insn = first; insn; insn = NEXT_INSN (insn))
3703 if (JUMP_P (insn) && GET_CODE (PATTERN (insn)) == RETURN)
3704 {
3705 real_return_label = get_label_before (insn);
3706 break;
3707 }
3708
3709 /* Show an extra usage of REAL_RETURN_LABEL so it won't go away if it
3710 was equal to END_OF_FUNCTION_LABEL. */
3711 LABEL_NUSES (real_return_label)++;
3712
3713 /* Clear the list of insns to fill so we can use it. */
3714 obstack_free (&unfilled_slots_obstack, unfilled_firstobj);
3715
3716 for (insn = first; insn; insn = NEXT_INSN (insn))
3717 {
3718 int flags;
3719
3720 /* Only look at filled JUMP_INSNs that go to the end of function
3721 label. */
3722 if (!NONJUMP_INSN_P (insn)
3723 || GET_CODE (PATTERN (insn)) != SEQUENCE
3724 || !JUMP_P (XVECEXP (PATTERN (insn), 0, 0))
3725 || JUMP_LABEL (XVECEXP (PATTERN (insn), 0, 0)) != end_of_function_label)
3726 continue;
3727
3728 pat = PATTERN (insn);
3729 jump_insn = XVECEXP (pat, 0, 0);
3730
3731 /* If we can't make the jump into a RETURN, try to redirect it to the best
3732 RETURN and go on to the next insn. */
3733 if (! reorg_redirect_jump (jump_insn, NULL_RTX))
3734 {
3735 /* Make sure redirecting the jump will not invalidate the delay
3736 slot insns. */
3737 if (redirect_with_delay_slots_safe_p (jump_insn,
3738 real_return_label,
3739 insn))
3740 reorg_redirect_jump (jump_insn, real_return_label);
3741 continue;
3742 }
3743
3744 /* See if this RETURN can accept the insns current in its delay slot.
3745 It can if it has more or an equal number of slots and the contents
3746 of each is valid. */
3747
3748 flags = get_jump_flags (jump_insn, JUMP_LABEL (jump_insn));
3749 slots = num_delay_slots (jump_insn);
3750 if (slots >= XVECLEN (pat, 0) - 1)
3751 {
3752 for (i = 1; i < XVECLEN (pat, 0); i++)
3753 if (! (
3754 #ifdef ANNUL_IFFALSE_SLOTS
3755 (INSN_ANNULLED_BRANCH_P (jump_insn)
3756 && INSN_FROM_TARGET_P (XVECEXP (pat, 0, i)))
3757 ? eligible_for_annul_false (jump_insn, i - 1,
3758 XVECEXP (pat, 0, i), flags) :
3759 #endif
3760 #ifdef ANNUL_IFTRUE_SLOTS
3761 (INSN_ANNULLED_BRANCH_P (jump_insn)
3762 && ! INSN_FROM_TARGET_P (XVECEXP (pat, 0, i)))
3763 ? eligible_for_annul_true (jump_insn, i - 1,
3764 XVECEXP (pat, 0, i), flags) :
3765 #endif
3766 eligible_for_delay (jump_insn, i - 1,
3767 XVECEXP (pat, 0, i), flags)))
3768 break;
3769 }
3770 else
3771 i = 0;
3772
3773 if (i == XVECLEN (pat, 0))
3774 continue;
3775
3776 /* We have to do something with this insn. If it is an unconditional
3777 RETURN, delete the SEQUENCE and output the individual insns,
3778 followed by the RETURN. Then set things up so we try to find
3779 insns for its delay slots, if it needs some. */
3780 if (GET_CODE (PATTERN (jump_insn)) == RETURN)
3781 {
3782 rtx prev = PREV_INSN (insn);
3783
3784 delete_related_insns (insn);
3785 for (i = 1; i < XVECLEN (pat, 0); i++)
3786 prev = emit_insn_after (PATTERN (XVECEXP (pat, 0, i)), prev);
3787
3788 insn = emit_jump_insn_after (PATTERN (jump_insn), prev);
3789 emit_barrier_after (insn);
3790
3791 if (slots)
3792 obstack_ptr_grow (&unfilled_slots_obstack, insn);
3793 }
3794 else
3795 /* It is probably more efficient to keep this with its current
3796 delay slot as a branch to a RETURN. */
3797 reorg_redirect_jump (jump_insn, real_return_label);
3798 }
3799
3800 /* Now delete REAL_RETURN_LABEL if we never used it. Then try to fill any
3801 new delay slots we have created. */
3802 if (--LABEL_NUSES (real_return_label) == 0)
3803 delete_related_insns (real_return_label);
3804
3805 fill_simple_delay_slots (1);
3806 fill_simple_delay_slots (0);
3807 }
3808 #endif
3809
3810 /* Try to find insns to place in delay slots. */
3811
3812 void
3813 dbr_schedule (rtx first)
3814 {
3815 rtx insn, next, epilogue_insn = 0;
3816 int i;
3817
3818 /* If the current function has no insns other than the prologue and
3819 epilogue, then do not try to fill any delay slots. */
3820 if (n_basic_blocks == NUM_FIXED_BLOCKS)
3821 return;
3822
3823 /* Find the highest INSN_UID and allocate and initialize our map from
3824 INSN_UID's to position in code. */
3825 for (max_uid = 0, insn = first; insn; insn = NEXT_INSN (insn))
3826 {
3827 if (INSN_UID (insn) > max_uid)
3828 max_uid = INSN_UID (insn);
3829 if (NOTE_P (insn)
3830 && NOTE_KIND (insn) == NOTE_INSN_EPILOGUE_BEG)
3831 epilogue_insn = insn;
3832 }
3833
3834 uid_to_ruid = XNEWVEC (int, max_uid + 1);
3835 for (i = 0, insn = first; insn; i++, insn = NEXT_INSN (insn))
3836 uid_to_ruid[INSN_UID (insn)] = i;
3837
3838 /* Initialize the list of insns that need filling. */
3839 if (unfilled_firstobj == 0)
3840 {
3841 gcc_obstack_init (&unfilled_slots_obstack);
3842 unfilled_firstobj = XOBNEWVAR (&unfilled_slots_obstack, rtx, 0);
3843 }
3844
3845 for (insn = next_active_insn (first); insn; insn = next_active_insn (insn))
3846 {
3847 rtx target;
3848
3849 INSN_ANNULLED_BRANCH_P (insn) = 0;
3850 INSN_FROM_TARGET_P (insn) = 0;
3851
3852 /* Skip vector tables. We can't get attributes for them. */
3853 if (JUMP_P (insn)
3854 && (GET_CODE (PATTERN (insn)) == ADDR_VEC
3855 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC))
3856 continue;
3857
3858 if (num_delay_slots (insn) > 0)
3859 obstack_ptr_grow (&unfilled_slots_obstack, insn);
3860
3861 /* Ensure all jumps go to the last of a set of consecutive labels. */
3862 if (JUMP_P (insn)
3863 && (condjump_p (insn) || condjump_in_parallel_p (insn))
3864 && JUMP_LABEL (insn) != 0
3865 && ((target = skip_consecutive_labels (JUMP_LABEL (insn)))
3866 != JUMP_LABEL (insn)))
3867 redirect_jump (insn, target, 1);
3868 }
3869
3870 init_resource_info (epilogue_insn);
3871
3872 /* Show we haven't computed an end-of-function label yet. */
3873 end_of_function_label = 0;
3874
3875 /* Initialize the statistics for this function. */
3876 memset (num_insns_needing_delays, 0, sizeof num_insns_needing_delays);
3877 memset (num_filled_delays, 0, sizeof num_filled_delays);
3878
3879 /* Now do the delay slot filling. Try everything twice in case earlier
3880 changes make more slots fillable. */
3881
3882 for (reorg_pass_number = 0;
3883 reorg_pass_number < MAX_REORG_PASSES;
3884 reorg_pass_number++)
3885 {
3886 fill_simple_delay_slots (1);
3887 fill_simple_delay_slots (0);
3888 fill_eager_delay_slots ();
3889 relax_delay_slots (first);
3890 }
3891
3892 /* If we made an end of function label, indicate that it is now
3893 safe to delete it by undoing our prior adjustment to LABEL_NUSES.
3894 If it is now unused, delete it. */
3895 if (end_of_function_label && --LABEL_NUSES (end_of_function_label) == 0)
3896 delete_related_insns (end_of_function_label);
3897
3898 #ifdef HAVE_return
3899 if (HAVE_return && end_of_function_label != 0)
3900 make_return_insns (first);
3901 #endif
3902
3903 /* Delete any USE insns made by update_block; subsequent passes don't need
3904 them or know how to deal with them. */
3905 for (insn = first; insn; insn = next)
3906 {
3907 next = NEXT_INSN (insn);
3908
3909 if (NONJUMP_INSN_P (insn) && GET_CODE (PATTERN (insn)) == USE
3910 && INSN_P (XEXP (PATTERN (insn), 0)))
3911 next = delete_related_insns (insn);
3912 }
3913
3914 obstack_free (&unfilled_slots_obstack, unfilled_firstobj);
3915
3916 /* It is not clear why the line below is needed, but it does seem to be. */
3917 unfilled_firstobj = XOBNEWVAR (&unfilled_slots_obstack, rtx, 0);
3918
3919 if (dump_file)
3920 {
3921 int i, j, need_comma;
3922 int total_delay_slots[MAX_DELAY_HISTOGRAM + 1];
3923 int total_annul_slots[MAX_DELAY_HISTOGRAM + 1];
3924
3925 for (reorg_pass_number = 0;
3926 reorg_pass_number < MAX_REORG_PASSES;
3927 reorg_pass_number++)
3928 {
3929 fprintf (dump_file, ";; Reorg pass #%d:\n", reorg_pass_number + 1);
3930 for (i = 0; i < NUM_REORG_FUNCTIONS; i++)
3931 {
3932 need_comma = 0;
3933 fprintf (dump_file, ";; Reorg function #%d\n", i);
3934
3935 fprintf (dump_file, ";; %d insns needing delay slots\n;; ",
3936 num_insns_needing_delays[i][reorg_pass_number]);
3937
3938 for (j = 0; j < MAX_DELAY_HISTOGRAM + 1; j++)
3939 if (num_filled_delays[i][j][reorg_pass_number])
3940 {
3941 if (need_comma)
3942 fprintf (dump_file, ", ");
3943 need_comma = 1;
3944 fprintf (dump_file, "%d got %d delays",
3945 num_filled_delays[i][j][reorg_pass_number], j);
3946 }
3947 fprintf (dump_file, "\n");
3948 }
3949 }
3950 memset (total_delay_slots, 0, sizeof total_delay_slots);
3951 memset (total_annul_slots, 0, sizeof total_annul_slots);
3952 for (insn = first; insn; insn = NEXT_INSN (insn))
3953 {
3954 if (! INSN_DELETED_P (insn)
3955 && NONJUMP_INSN_P (insn)
3956 && GET_CODE (PATTERN (insn)) != USE
3957 && GET_CODE (PATTERN (insn)) != CLOBBER)
3958 {
3959 if (GET_CODE (PATTERN (insn)) == SEQUENCE)
3960 {
3961 j = XVECLEN (PATTERN (insn), 0) - 1;
3962 if (j > MAX_DELAY_HISTOGRAM)
3963 j = MAX_DELAY_HISTOGRAM;
3964 if (INSN_ANNULLED_BRANCH_P (XVECEXP (PATTERN (insn), 0, 0)))
3965 total_annul_slots[j]++;
3966 else
3967 total_delay_slots[j]++;
3968 }
3969 else if (num_delay_slots (insn) > 0)
3970 total_delay_slots[0]++;
3971 }
3972 }
3973 fprintf (dump_file, ";; Reorg totals: ");
3974 need_comma = 0;
3975 for (j = 0; j < MAX_DELAY_HISTOGRAM + 1; j++)
3976 {
3977 if (total_delay_slots[j])
3978 {
3979 if (need_comma)
3980 fprintf (dump_file, ", ");
3981 need_comma = 1;
3982 fprintf (dump_file, "%d got %d delays", total_delay_slots[j], j);
3983 }
3984 }
3985 fprintf (dump_file, "\n");
3986 #if defined (ANNUL_IFTRUE_SLOTS) || defined (ANNUL_IFFALSE_SLOTS)
3987 fprintf (dump_file, ";; Reorg annuls: ");
3988 need_comma = 0;
3989 for (j = 0; j < MAX_DELAY_HISTOGRAM + 1; j++)
3990 {
3991 if (total_annul_slots[j])
3992 {
3993 if (need_comma)
3994 fprintf (dump_file, ", ");
3995 need_comma = 1;
3996 fprintf (dump_file, "%d got %d delays", total_annul_slots[j], j);
3997 }
3998 }
3999 fprintf (dump_file, "\n");
4000 #endif
4001 fprintf (dump_file, "\n");
4002 }
4003
4004 /* For all JUMP insns, fill in branch prediction notes, so that during
4005 assembler output a target can set branch prediction bits in the code.
4006 We have to do this now, as up until this point the destinations of
4007 JUMPS can be moved around and changed, but past right here that cannot
4008 happen. */
4009 for (insn = first; insn; insn = NEXT_INSN (insn))
4010 {
4011 int pred_flags;
4012
4013 if (NONJUMP_INSN_P (insn))
4014 {
4015 rtx pat = PATTERN (insn);
4016
4017 if (GET_CODE (pat) == SEQUENCE)
4018 insn = XVECEXP (pat, 0, 0);
4019 }
4020 if (!JUMP_P (insn))
4021 continue;
4022
4023 pred_flags = get_jump_flags (insn, JUMP_LABEL (insn));
4024 add_reg_note (insn, REG_BR_PRED, GEN_INT (pred_flags));
4025 }
4026 free_resource_info ();
4027 free (uid_to_ruid);
4028 #ifdef DELAY_SLOTS_FOR_EPILOGUE
4029 /* SPARC assembler, for instance, emit warning when debug info is output
4030 into the delay slot. */
4031 {
4032 rtx link;
4033
4034 for (link = crtl->epilogue_delay_list;
4035 link;
4036 link = XEXP (link, 1))
4037 INSN_LOCATOR (XEXP (link, 0)) = 0;
4038 }
4039
4040 #endif
4041 crtl->dbr_scheduled_p = true;
4042 }
4043 #endif /* DELAY_SLOTS */
4044
4045 static bool
4046 gate_handle_delay_slots (void)
4047 {
4048 #ifdef DELAY_SLOTS
4049 /* At -O0 dataflow info isn't updated after RA. */
4050 return optimize > 0 && flag_delayed_branch && !crtl->dbr_scheduled_p;
4051 #else
4052 return 0;
4053 #endif
4054 }
4055
4056 /* Run delay slot optimization. */
4057 static unsigned int
4058 rest_of_handle_delay_slots (void)
4059 {
4060 #ifdef DELAY_SLOTS
4061 dbr_schedule (get_insns ());
4062 #endif
4063 return 0;
4064 }
4065
4066 struct rtl_opt_pass pass_delay_slots =
4067 {
4068 {
4069 RTL_PASS,
4070 "dbr", /* name */
4071 gate_handle_delay_slots, /* gate */
4072 rest_of_handle_delay_slots, /* execute */
4073 NULL, /* sub */
4074 NULL, /* next */
4075 0, /* static_pass_number */
4076 TV_DBR_SCHED, /* tv_id */
4077 0, /* properties_required */
4078 0, /* properties_provided */
4079 0, /* properties_destroyed */
4080 0, /* todo_flags_start */
4081 TODO_dump_func |
4082 TODO_ggc_collect /* todo_flags_finish */
4083 }
4084 };
4085
4086 /* Machine dependent reorg pass. */
4087 static bool
4088 gate_handle_machine_reorg (void)
4089 {
4090 return targetm.machine_dependent_reorg != 0;
4091 }
4092
4093
4094 static unsigned int
4095 rest_of_handle_machine_reorg (void)
4096 {
4097 targetm.machine_dependent_reorg ();
4098 return 0;
4099 }
4100
4101 struct rtl_opt_pass pass_machine_reorg =
4102 {
4103 {
4104 RTL_PASS,
4105 "mach", /* name */
4106 gate_handle_machine_reorg, /* gate */
4107 rest_of_handle_machine_reorg, /* execute */
4108 NULL, /* sub */
4109 NULL, /* next */
4110 0, /* static_pass_number */
4111 TV_MACH_DEP, /* tv_id */
4112 0, /* properties_required */
4113 0, /* properties_provided */
4114 0, /* properties_destroyed */
4115 0, /* todo_flags_start */
4116 TODO_dump_func |
4117 TODO_ggc_collect /* todo_flags_finish */
4118 }
4119 };