comparison gcc/sel-sched.c @ 0:a06113de4d67

first commit
author kent <kent@cr.ie.u-ryukyu.ac.jp>
date Fri, 17 Jul 2009 14:47:48 +0900
parents
children 77e2b8dfacca
comparison
equal deleted inserted replaced
-1:000000000000 0:a06113de4d67
1 /* Instruction scheduling pass. Selective scheduler and pipeliner.
2 Copyright (C) 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "tm.h"
24 #include "toplev.h"
25 #include "rtl.h"
26 #include "tm_p.h"
27 #include "hard-reg-set.h"
28 #include "regs.h"
29 #include "function.h"
30 #include "flags.h"
31 #include "insn-config.h"
32 #include "insn-attr.h"
33 #include "except.h"
34 #include "toplev.h"
35 #include "recog.h"
36 #include "params.h"
37 #include "target.h"
38 #include "output.h"
39 #include "timevar.h"
40 #include "tree-pass.h"
41 #include "sched-int.h"
42 #include "ggc.h"
43 #include "tree.h"
44 #include "vec.h"
45 #include "langhooks.h"
46 #include "rtlhooks-def.h"
47 #include "output.h"
48
49 #ifdef INSN_SCHEDULING
50 #include "sel-sched-ir.h"
51 #include "sel-sched-dump.h"
52 #include "sel-sched.h"
53 #include "dbgcnt.h"
54
55 /* Implementation of selective scheduling approach.
56 The below implementation follows the original approach with the following
57 changes:
58
59 o the scheduler works after register allocation (but can be also tuned
60 to work before RA);
61 o some instructions are not copied or register renamed;
62 o conditional jumps are not moved with code duplication;
63 o several jumps in one parallel group are not supported;
64 o when pipelining outer loops, code motion through inner loops
65 is not supported;
66 o control and data speculation are supported;
67 o some improvements for better compile time/performance were made.
68
69 Terminology
70 ===========
71
72 A vinsn, or virtual insn, is an insn with additional data characterizing
73 insn pattern, such as LHS, RHS, register sets used/set/clobbered, etc.
74 Vinsns also act as smart pointers to save memory by reusing them in
75 different expressions. A vinsn is described by vinsn_t type.
76
77 An expression is a vinsn with additional data characterizing its properties
78 at some point in the control flow graph. The data may be its usefulness,
79 priority, speculative status, whether it was renamed/subsituted, etc.
80 An expression is described by expr_t type.
81
82 Availability set (av_set) is a set of expressions at a given control flow
83 point. It is represented as av_set_t. The expressions in av sets are kept
84 sorted in the terms of expr_greater_p function. It allows to truncate
85 the set while leaving the best expressions.
86
87 A fence is a point through which code motion is prohibited. On each step,
88 we gather a parallel group of insns at a fence. It is possible to have
89 multiple fences. A fence is represented via fence_t.
90
91 A boundary is the border between the fence group and the rest of the code.
92 Currently, we never have more than one boundary per fence, as we finalize
93 the fence group when a jump is scheduled. A boundary is represented
94 via bnd_t.
95
96 High-level overview
97 ===================
98
99 The scheduler finds regions to schedule, schedules each one, and finalizes.
100 The regions are formed starting from innermost loops, so that when the inner
101 loop is pipelined, its prologue can be scheduled together with yet unprocessed
102 outer loop. The rest of acyclic regions are found using extend_rgns:
103 the blocks that are not yet allocated to any regions are traversed in top-down
104 order, and a block is added to a region to which all its predecessors belong;
105 otherwise, the block starts its own region.
106
107 The main scheduling loop (sel_sched_region_2) consists of just
108 scheduling on each fence and updating fences. For each fence,
109 we fill a parallel group of insns (fill_insns) until some insns can be added.
110 First, we compute available exprs (av-set) at the boundary of the current
111 group. Second, we choose the best expression from it. If the stall is
112 required to schedule any of the expressions, we advance the current cycle
113 appropriately. So, the final group does not exactly correspond to a VLIW
114 word. Third, we move the chosen expression to the boundary (move_op)
115 and update the intermediate av sets and liveness sets. We quit fill_insns
116 when either no insns left for scheduling or we have scheduled enough insns
117 so we feel like advancing a scheduling point.
118
119 Computing available expressions
120 ===============================
121
122 The computation (compute_av_set) is a bottom-up traversal. At each insn,
123 we're moving the union of its successors' sets through it via
124 moveup_expr_set. The dependent expressions are removed. Local
125 transformations (substitution, speculation) are applied to move more
126 exprs. Then the expr corresponding to the current insn is added.
127 The result is saved on each basic block header.
128
129 When traversing the CFG, we're moving down for no more than max_ws insns.
130 Also, we do not move down to ineligible successors (is_ineligible_successor),
131 which include moving along a back-edge, moving to already scheduled code,
132 and moving to another fence. The first two restrictions are lifted during
133 pipelining, which allows us to move insns along a back-edge. We always have
134 an acyclic region for scheduling because we forbid motion through fences.
135
136 Choosing the best expression
137 ============================
138
139 We sort the final availability set via sel_rank_for_schedule, then we remove
140 expressions which are not yet ready (tick_check_p) or which dest registers
141 cannot be used. For some of them, we choose another register via
142 find_best_reg. To do this, we run find_used_regs to calculate the set of
143 registers which cannot be used. The find_used_regs function performs
144 a traversal of code motion paths for an expr. We consider for renaming
145 only registers which are from the same regclass as the original one and
146 using which does not interfere with any live ranges. Finally, we convert
147 the resulting set to the ready list format and use max_issue and reorder*
148 hooks similarly to the Haifa scheduler.
149
150 Scheduling the best expression
151 ==============================
152
153 We run the move_op routine to perform the same type of code motion paths
154 traversal as in find_used_regs. (These are working via the same driver,
155 code_motion_path_driver.) When moving down the CFG, we look for original
156 instruction that gave birth to a chosen expression. We undo
157 the transformations performed on an expression via the history saved in it.
158 When found, we remove the instruction or leave a reg-reg copy/speculation
159 check if needed. On a way up, we insert bookkeeping copies at each join
160 point. If a copy is not needed, it will be removed later during this
161 traversal. We update the saved av sets and liveness sets on the way up, too.
162
163 Finalizing the schedule
164 =======================
165
166 When pipelining, we reschedule the blocks from which insns were pipelined
167 to get a tighter schedule. On Itanium, we also perform bundling via
168 the same routine from ia64.c.
169
170 Dependence analysis changes
171 ===========================
172
173 We augmented the sched-deps.c with hooks that get called when a particular
174 dependence is found in a particular part of an insn. Using these hooks, we
175 can do several actions such as: determine whether an insn can be moved through
176 another (has_dependence_p, moveup_expr); find out whether an insn can be
177 scheduled on the current cycle (tick_check_p); find out registers that
178 are set/used/clobbered by an insn and find out all the strange stuff that
179 restrict its movement, like SCHED_GROUP_P or CANT_MOVE (done in
180 init_global_and_expr_for_insn).
181
182 Initialization changes
183 ======================
184
185 There are parts of haifa-sched.c, sched-deps.c, and sched-rgn.c that are
186 reused in all of the schedulers. We have split up the initialization of data
187 of such parts into different functions prefixed with scheduler type and
188 postfixed with the type of data initialized: {,sel_,haifa_}sched_{init,finish},
189 sched_rgn_init/finish, sched_deps_init/finish, sched_init_{luids/bbs}, etc.
190 The same splitting is done with current_sched_info structure:
191 dependence-related parts are in sched_deps_info, common part is in
192 common_sched_info, and haifa/sel/etc part is in current_sched_info.
193
194 Target contexts
195 ===============
196
197 As we now have multiple-point scheduling, this would not work with backends
198 which save some of the scheduler state to use it in the target hooks.
199 For this purpose, we introduce a concept of target contexts, which
200 encapsulate such information. The backend should implement simple routines
201 of allocating/freeing/setting such a context. The scheduler calls these
202 as target hooks and handles the target context as an opaque pointer (similar
203 to the DFA state type, state_t).
204
205 Various speedups
206 ================
207
208 As the correct data dependence graph is not supported during scheduling (which
209 is to be changed in mid-term), we cache as much of the dependence analysis
210 results as possible to avoid reanalyzing. This includes: bitmap caches on
211 each insn in stream of the region saying yes/no for a query with a pair of
212 UIDs; hashtables with the previously done transformations on each insn in
213 stream; a vector keeping a history of transformations on each expr.
214
215 Also, we try to minimize the dependence context used on each fence to check
216 whether the given expression is ready for scheduling by removing from it
217 insns that are definitely completed the execution. The results of
218 tick_check_p checks are also cached in a vector on each fence.
219
220 We keep a valid liveness set on each insn in a region to avoid the high
221 cost of recomputation on large basic blocks.
222
223 Finally, we try to minimize the number of needed updates to the availability
224 sets. The updates happen in two cases: when fill_insns terminates,
225 we advance all fences and increase the stage number to show that the region
226 has changed and the sets are to be recomputed; and when the next iteration
227 of a loop in fill_insns happens (but this one reuses the saved av sets
228 on bb headers.) Thus, we try to break the fill_insns loop only when
229 "significant" number of insns from the current scheduling window was
230 scheduled. This should be made a target param.
231
232
233 TODO: correctly support the data dependence graph at all stages and get rid
234 of all caches. This should speed up the scheduler.
235 TODO: implement moving cond jumps with bookkeeping copies on both targets.
236 TODO: tune the scheduler before RA so it does not create too much pseudos.
237
238
239 References:
240 S.-M. Moon and K. Ebcioglu. Parallelizing nonnumerical code with
241 selective scheduling and software pipelining.
242 ACM TOPLAS, Vol 19, No. 6, pages 853--898, Nov. 1997.
243
244 Andrey Belevantsev, Maxim Kuvyrkov, Vladimir Makarov, Dmitry Melnik,
245 and Dmitry Zhurikhin. An interblock VLIW-targeted instruction scheduler
246 for GCC. In Proceedings of GCC Developers' Summit 2006.
247
248 Arutyun Avetisyan, Andrey Belevantsev, and Dmitry Melnik. GCC Instruction
249 Scheduler and Software Pipeliner on the Itanium Platform. EPIC-7 Workshop.
250 http://rogue.colorado.edu/EPIC7/.
251
252 */
253
254 /* True when pipelining is enabled. */
255 bool pipelining_p;
256
257 /* True if bookkeeping is enabled. */
258 bool bookkeeping_p;
259
260 /* Maximum number of insns that are eligible for renaming. */
261 int max_insns_to_rename;
262
263
264 /* Definitions of local types and macros. */
265
266 /* Represents possible outcomes of moving an expression through an insn. */
267 enum MOVEUP_EXPR_CODE
268 {
269 /* The expression is not changed. */
270 MOVEUP_EXPR_SAME,
271
272 /* Not changed, but requires a new destination register. */
273 MOVEUP_EXPR_AS_RHS,
274
275 /* Cannot be moved. */
276 MOVEUP_EXPR_NULL,
277
278 /* Changed (substituted or speculated). */
279 MOVEUP_EXPR_CHANGED
280 };
281
282 /* The container to be passed into rtx search & replace functions. */
283 struct rtx_search_arg
284 {
285 /* What we are searching for. */
286 rtx x;
287
288 /* The occurence counter. */
289 int n;
290 };
291
292 typedef struct rtx_search_arg *rtx_search_arg_p;
293
294 /* This struct contains precomputed hard reg sets that are needed when
295 computing registers available for renaming. */
296 struct hard_regs_data
297 {
298 /* For every mode, this stores registers available for use with
299 that mode. */
300 HARD_REG_SET regs_for_mode[NUM_MACHINE_MODES];
301
302 /* True when regs_for_mode[mode] is initialized. */
303 bool regs_for_mode_ok[NUM_MACHINE_MODES];
304
305 /* For every register, it has regs that are ok to rename into it.
306 The register in question is always set. If not, this means
307 that the whole set is not computed yet. */
308 HARD_REG_SET regs_for_rename[FIRST_PSEUDO_REGISTER];
309
310 /* For every mode, this stores registers not available due to
311 call clobbering. */
312 HARD_REG_SET regs_for_call_clobbered[NUM_MACHINE_MODES];
313
314 /* All registers that are used or call used. */
315 HARD_REG_SET regs_ever_used;
316
317 #ifdef STACK_REGS
318 /* Stack registers. */
319 HARD_REG_SET stack_regs;
320 #endif
321 };
322
323 /* Holds the results of computation of available for renaming and
324 unavailable hard registers. */
325 struct reg_rename
326 {
327 /* These are unavailable due to calls crossing, globalness, etc. */
328 HARD_REG_SET unavailable_hard_regs;
329
330 /* These are *available* for renaming. */
331 HARD_REG_SET available_for_renaming;
332
333 /* Whether this code motion path crosses a call. */
334 bool crosses_call;
335 };
336
337 /* A global structure that contains the needed information about harg
338 regs. */
339 static struct hard_regs_data sel_hrd;
340
341
342 /* This structure holds local data used in code_motion_path_driver hooks on
343 the same or adjacent levels of recursion. Here we keep those parameters
344 that are not used in code_motion_path_driver routine itself, but only in
345 its hooks. Moreover, all parameters that can be modified in hooks are
346 in this structure, so all other parameters passed explicitly to hooks are
347 read-only. */
348 struct cmpd_local_params
349 {
350 /* Local params used in move_op_* functions. */
351
352 /* Edges for bookkeeping generation. */
353 edge e1, e2;
354
355 /* C_EXPR merged from all successors and locally allocated temporary C_EXPR. */
356 expr_t c_expr_merged, c_expr_local;
357
358 /* Local params used in fur_* functions. */
359 /* Copy of the ORIGINAL_INSN list, stores the original insns already
360 found before entering the current level of code_motion_path_driver. */
361 def_list_t old_original_insns;
362
363 /* Local params used in move_op_* functions. */
364 /* True when we have removed last insn in the block which was
365 also a boundary. Do not update anything or create bookkeeping copies. */
366 BOOL_BITFIELD removed_last_insn : 1;
367 };
368
369 /* Stores the static parameters for move_op_* calls. */
370 struct moveop_static_params
371 {
372 /* Destination register. */
373 rtx dest;
374
375 /* Current C_EXPR. */
376 expr_t c_expr;
377
378 /* An UID of expr_vliw which is to be moved up. If we find other exprs,
379 they are to be removed. */
380 int uid;
381
382 #ifdef ENABLE_CHECKING
383 /* This is initialized to the insn on which the driver stopped its traversal. */
384 insn_t failed_insn;
385 #endif
386
387 /* True if we scheduled an insn with different register. */
388 bool was_renamed;
389 };
390
391 /* Stores the static parameters for fur_* calls. */
392 struct fur_static_params
393 {
394 /* Set of registers unavailable on the code motion path. */
395 regset used_regs;
396
397 /* Pointer to the list of original insns definitions. */
398 def_list_t *original_insns;
399
400 /* True if a code motion path contains a CALL insn. */
401 bool crosses_call;
402 };
403
404 typedef struct fur_static_params *fur_static_params_p;
405 typedef struct cmpd_local_params *cmpd_local_params_p;
406 typedef struct moveop_static_params *moveop_static_params_p;
407
408 /* Set of hooks and parameters that determine behaviour specific to
409 move_op or find_used_regs functions. */
410 struct code_motion_path_driver_info_def
411 {
412 /* Called on enter to the basic block. */
413 int (*on_enter) (insn_t, cmpd_local_params_p, void *, bool);
414
415 /* Called when original expr is found. */
416 void (*orig_expr_found) (insn_t, expr_t, cmpd_local_params_p, void *);
417
418 /* Called while descending current basic block if current insn is not
419 the original EXPR we're searching for. */
420 bool (*orig_expr_not_found) (insn_t, av_set_t, void *);
421
422 /* Function to merge C_EXPRes from different successors. */
423 void (*merge_succs) (insn_t, insn_t, int, cmpd_local_params_p, void *);
424
425 /* Function to finalize merge from different successors and possibly
426 deallocate temporary data structures used for merging. */
427 void (*after_merge_succs) (cmpd_local_params_p, void *);
428
429 /* Called on the backward stage of recursion to do moveup_expr.
430 Used only with move_op_*. */
431 void (*ascend) (insn_t, void *);
432
433 /* Called on the ascending pass, before returning from the current basic
434 block or from the whole traversal. */
435 void (*at_first_insn) (insn_t, cmpd_local_params_p, void *);
436
437 /* When processing successors in move_op we need only descend into
438 SUCCS_NORMAL successors, while in find_used_regs we need SUCCS_ALL. */
439 int succ_flags;
440
441 /* The routine name to print in dumps ("move_op" of "find_used_regs"). */
442 const char *routine_name;
443 };
444
445 /* Global pointer to current hooks, either points to MOVE_OP_HOOKS or
446 FUR_HOOKS. */
447 struct code_motion_path_driver_info_def *code_motion_path_driver_info;
448
449 /* Set of hooks for performing move_op and find_used_regs routines with
450 code_motion_path_driver. */
451 struct code_motion_path_driver_info_def move_op_hooks, fur_hooks;
452
453 /* True if/when we want to emulate Haifa scheduler in the common code.
454 This is used in sched_rgn_local_init and in various places in
455 sched-deps.c. */
456 int sched_emulate_haifa_p;
457
458 /* GLOBAL_LEVEL is used to discard information stored in basic block headers
459 av_sets. Av_set of bb header is valid if its (bb header's) level is equal
460 to GLOBAL_LEVEL. And invalid if lesser. This is primarily used to advance
461 scheduling window. */
462 int global_level;
463
464 /* Current fences. */
465 flist_t fences;
466
467 /* True when separable insns should be scheduled as RHSes. */
468 static bool enable_schedule_as_rhs_p;
469
470 /* Used in verify_target_availability to assert that target reg is reported
471 unavailabile by both TARGET_UNAVAILABLE and find_used_regs only if
472 we haven't scheduled anything on the previous fence.
473 if scheduled_something_on_previous_fence is true, TARGET_UNAVAILABLE can
474 have more conservative value than the one returned by the
475 find_used_regs, thus we shouldn't assert that these values are equal. */
476 static bool scheduled_something_on_previous_fence;
477
478 /* All newly emitted insns will have their uids greater than this value. */
479 static int first_emitted_uid;
480
481 /* Set of basic blocks that are forced to start new ebbs. This is a subset
482 of all the ebb heads. */
483 static bitmap_head _forced_ebb_heads;
484 bitmap_head *forced_ebb_heads = &_forced_ebb_heads;
485
486 /* Blocks that need to be rescheduled after pipelining. */
487 bitmap blocks_to_reschedule = NULL;
488
489 /* True when the first lv set should be ignored when updating liveness. */
490 static bool ignore_first = false;
491
492 /* Number of insns max_issue has initialized data structures for. */
493 static int max_issue_size = 0;
494
495 /* Whether we can issue more instructions. */
496 static int can_issue_more;
497
498 /* Maximum software lookahead window size, reduced when rescheduling after
499 pipelining. */
500 static int max_ws;
501
502 /* Number of insns scheduled in current region. */
503 static int num_insns_scheduled;
504
505 /* A vector of expressions is used to be able to sort them. */
506 DEF_VEC_P(expr_t);
507 DEF_VEC_ALLOC_P(expr_t,heap);
508 static VEC(expr_t, heap) *vec_av_set = NULL;
509
510 /* A vector of vinsns is used to hold temporary lists of vinsns. */
511 DEF_VEC_P(vinsn_t);
512 DEF_VEC_ALLOC_P(vinsn_t,heap);
513 typedef VEC(vinsn_t, heap) *vinsn_vec_t;
514
515 /* This vector has the exprs which may still present in av_sets, but actually
516 can't be moved up due to bookkeeping created during code motion to another
517 fence. See comment near the call to update_and_record_unavailable_insns
518 for the detailed explanations. */
519 static vinsn_vec_t vec_bookkeeping_blocked_vinsns = NULL;
520
521 /* This vector has vinsns which are scheduled with renaming on the first fence
522 and then seen on the second. For expressions with such vinsns, target
523 availability information may be wrong. */
524 static vinsn_vec_t vec_target_unavailable_vinsns = NULL;
525
526 /* Vector to store temporary nops inserted in move_op to prevent removal
527 of empty bbs. */
528 DEF_VEC_P(insn_t);
529 DEF_VEC_ALLOC_P(insn_t,heap);
530 static VEC(insn_t, heap) *vec_temp_moveop_nops = NULL;
531
532 /* These bitmaps record original instructions scheduled on the current
533 iteration and bookkeeping copies created by them. */
534 static bitmap current_originators = NULL;
535 static bitmap current_copies = NULL;
536
537 /* This bitmap marks the blocks visited by code_motion_path_driver so we don't
538 visit them afterwards. */
539 static bitmap code_motion_visited_blocks = NULL;
540
541 /* Variables to accumulate different statistics. */
542
543 /* The number of bookkeeping copies created. */
544 static int stat_bookkeeping_copies;
545
546 /* The number of insns that required bookkeeiping for their scheduling. */
547 static int stat_insns_needed_bookkeeping;
548
549 /* The number of insns that got renamed. */
550 static int stat_renamed_scheduled;
551
552 /* The number of substitutions made during scheduling. */
553 static int stat_substitutions_total;
554
555
556 /* Forward declarations of static functions. */
557 static bool rtx_ok_for_substitution_p (rtx, rtx);
558 static int sel_rank_for_schedule (const void *, const void *);
559 static av_set_t find_sequential_best_exprs (bnd_t, expr_t, bool);
560
561 static rtx get_dest_from_orig_ops (av_set_t);
562 static basic_block generate_bookkeeping_insn (expr_t, edge, edge);
563 static bool find_used_regs (insn_t, av_set_t, regset, struct reg_rename *,
564 def_list_t *);
565 static bool move_op (insn_t, av_set_t, expr_t, rtx, expr_t, bool*);
566 static int code_motion_path_driver (insn_t, av_set_t, ilist_t,
567 cmpd_local_params_p, void *);
568 static void sel_sched_region_1 (void);
569 static void sel_sched_region_2 (int);
570 static av_set_t compute_av_set_inside_bb (insn_t, ilist_t, int, bool);
571
572 static void debug_state (state_t);
573
574
575 /* Functions that work with fences. */
576
577 /* Advance one cycle on FENCE. */
578 static void
579 advance_one_cycle (fence_t fence)
580 {
581 unsigned i;
582 int cycle;
583 rtx insn;
584
585 advance_state (FENCE_STATE (fence));
586 cycle = ++FENCE_CYCLE (fence);
587 FENCE_ISSUED_INSNS (fence) = 0;
588 FENCE_STARTS_CYCLE_P (fence) = 1;
589 can_issue_more = issue_rate;
590
591 for (i = 0; VEC_iterate (rtx, FENCE_EXECUTING_INSNS (fence), i, insn); )
592 {
593 if (INSN_READY_CYCLE (insn) < cycle)
594 {
595 remove_from_deps (FENCE_DC (fence), insn);
596 VEC_unordered_remove (rtx, FENCE_EXECUTING_INSNS (fence), i);
597 continue;
598 }
599 i++;
600 }
601 if (sched_verbose >= 2)
602 {
603 sel_print ("Finished a cycle. Current cycle = %d\n", FENCE_CYCLE (fence));
604 debug_state (FENCE_STATE (fence));
605 }
606 }
607
608 /* Returns true when SUCC in a fallthru bb of INSN, possibly
609 skipping empty basic blocks. */
610 static bool
611 in_fallthru_bb_p (rtx insn, rtx succ)
612 {
613 basic_block bb = BLOCK_FOR_INSN (insn);
614
615 if (bb == BLOCK_FOR_INSN (succ))
616 return true;
617
618 if (find_fallthru_edge (bb))
619 bb = find_fallthru_edge (bb)->dest;
620 else
621 return false;
622
623 while (sel_bb_empty_p (bb))
624 bb = bb->next_bb;
625
626 return bb == BLOCK_FOR_INSN (succ);
627 }
628
629 /* Construct successor fences from OLD_FENCEs and put them in NEW_FENCES.
630 When a successor will continue a ebb, transfer all parameters of a fence
631 to the new fence. ORIG_MAX_SEQNO is the maximal seqno before this round
632 of scheduling helping to distinguish between the old and the new code. */
633 static void
634 extract_new_fences_from (flist_t old_fences, flist_tail_t new_fences,
635 int orig_max_seqno)
636 {
637 bool was_here_p = false;
638 insn_t insn = NULL_RTX;
639 insn_t succ;
640 succ_iterator si;
641 ilist_iterator ii;
642 fence_t fence = FLIST_FENCE (old_fences);
643 basic_block bb;
644
645 /* Get the only element of FENCE_BNDS (fence). */
646 FOR_EACH_INSN (insn, ii, FENCE_BNDS (fence))
647 {
648 gcc_assert (!was_here_p);
649 was_here_p = true;
650 }
651 gcc_assert (was_here_p && insn != NULL_RTX);
652
653 /* When in the "middle" of the block, just move this fence
654 to the new list. */
655 bb = BLOCK_FOR_INSN (insn);
656 if (! sel_bb_end_p (insn)
657 || (single_succ_p (bb)
658 && single_pred_p (single_succ (bb))))
659 {
660 insn_t succ;
661
662 succ = (sel_bb_end_p (insn)
663 ? sel_bb_head (single_succ (bb))
664 : NEXT_INSN (insn));
665
666 if (INSN_SEQNO (succ) > 0
667 && INSN_SEQNO (succ) <= orig_max_seqno
668 && INSN_SCHED_TIMES (succ) <= 0)
669 {
670 FENCE_INSN (fence) = succ;
671 move_fence_to_fences (old_fences, new_fences);
672
673 if (sched_verbose >= 1)
674 sel_print ("Fence %d continues as %d[%d] (state continue)\n",
675 INSN_UID (insn), INSN_UID (succ), BLOCK_NUM (succ));
676 }
677 return;
678 }
679
680 /* Otherwise copy fence's structures to (possibly) multiple successors. */
681 FOR_EACH_SUCC_1 (succ, si, insn, SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
682 {
683 int seqno = INSN_SEQNO (succ);
684
685 if (0 < seqno && seqno <= orig_max_seqno
686 && (pipelining_p || INSN_SCHED_TIMES (succ) <= 0))
687 {
688 bool b = (in_same_ebb_p (insn, succ)
689 || in_fallthru_bb_p (insn, succ));
690
691 if (sched_verbose >= 1)
692 sel_print ("Fence %d continues as %d[%d] (state %s)\n",
693 INSN_UID (insn), INSN_UID (succ),
694 BLOCK_NUM (succ), b ? "continue" : "reset");
695
696 if (b)
697 add_dirty_fence_to_fences (new_fences, succ, fence);
698 else
699 {
700 /* Mark block of the SUCC as head of the new ebb. */
701 bitmap_set_bit (forced_ebb_heads, BLOCK_NUM (succ));
702 add_clean_fence_to_fences (new_fences, succ, fence);
703 }
704 }
705 }
706 }
707
708
709 /* Functions to support substitution. */
710
711 /* Returns whether INSN with dependence status DS is eligible for
712 substitution, i.e. it's a copy operation x := y, and RHS that is
713 moved up through this insn should be substituted. */
714 static bool
715 can_substitute_through_p (insn_t insn, ds_t ds)
716 {
717 /* We can substitute only true dependencies. */
718 if ((ds & DEP_OUTPUT)
719 || (ds & DEP_ANTI)
720 || ! INSN_RHS (insn)
721 || ! INSN_LHS (insn))
722 return false;
723
724 /* Now we just need to make sure the INSN_RHS consists of only one
725 simple REG rtx. */
726 if (REG_P (INSN_LHS (insn))
727 && REG_P (INSN_RHS (insn)))
728 return true;
729 return false;
730 }
731
732 /* Substitute all occurences of INSN's destination in EXPR' vinsn with INSN's
733 source (if INSN is eligible for substitution). Returns TRUE if
734 substitution was actually performed, FALSE otherwise. Substitution might
735 be not performed because it's either EXPR' vinsn doesn't contain INSN's
736 destination or the resulting insn is invalid for the target machine.
737 When UNDO is true, perform unsubstitution instead (the difference is in
738 the part of rtx on which validate_replace_rtx is called). */
739 static bool
740 substitute_reg_in_expr (expr_t expr, insn_t insn, bool undo)
741 {
742 rtx *where;
743 bool new_insn_valid;
744 vinsn_t *vi = &EXPR_VINSN (expr);
745 bool has_rhs = VINSN_RHS (*vi) != NULL;
746 rtx old, new_rtx;
747
748 /* Do not try to replace in SET_DEST. Although we'll choose new
749 register for the RHS, we don't want to change RHS' original reg.
750 If the insn is not SET, we may still be able to substitute something
751 in it, and if we're here (don't have deps), it doesn't write INSN's
752 dest. */
753 where = (has_rhs
754 ? &VINSN_RHS (*vi)
755 : &PATTERN (VINSN_INSN_RTX (*vi)));
756 old = undo ? INSN_RHS (insn) : INSN_LHS (insn);
757
758 /* Substitute if INSN has a form of x:=y and LHS(INSN) occurs in *VI. */
759 if (rtx_ok_for_substitution_p (old, *where))
760 {
761 rtx new_insn;
762 rtx *where_replace;
763
764 /* We should copy these rtxes before substitution. */
765 new_rtx = copy_rtx (undo ? INSN_LHS (insn) : INSN_RHS (insn));
766 new_insn = create_copy_of_insn_rtx (VINSN_INSN_RTX (*vi));
767
768 /* Where we'll replace.
769 WHERE_REPLACE should point inside NEW_INSN, so INSN_RHS couldn't be
770 used instead of SET_SRC. */
771 where_replace = (has_rhs
772 ? &SET_SRC (PATTERN (new_insn))
773 : &PATTERN (new_insn));
774
775 new_insn_valid
776 = validate_replace_rtx_part_nosimplify (old, new_rtx, where_replace,
777 new_insn);
778
779 /* ??? Actually, constrain_operands result depends upon choice of
780 destination register. E.g. if we allow single register to be an rhs,
781 and if we try to move dx=ax(as rhs) through ax=dx, we'll result
782 in invalid insn dx=dx, so we'll loose this rhs here.
783 Just can't come up with significant testcase for this, so just
784 leaving it for now. */
785 if (new_insn_valid)
786 {
787 change_vinsn_in_expr (expr,
788 create_vinsn_from_insn_rtx (new_insn, false));
789
790 /* Do not allow clobbering the address register of speculative
791 insns. */
792 if ((EXPR_SPEC_DONE_DS (expr) & SPECULATIVE)
793 && bitmap_bit_p (VINSN_REG_USES (EXPR_VINSN (expr)),
794 expr_dest_regno (expr)))
795 EXPR_TARGET_AVAILABLE (expr) = false;
796
797 return true;
798 }
799 else
800 return false;
801 }
802 else
803 return false;
804 }
805
806 /* Helper function for count_occurences_equiv. */
807 static int
808 count_occurrences_1 (rtx *cur_rtx, void *arg)
809 {
810 rtx_search_arg_p p = (rtx_search_arg_p) arg;
811
812 /* The last param FOR_GCSE is true, because otherwise it performs excessive
813 substitutions like
814 r8 = r33
815 r16 = r33
816 for the last insn it presumes r33 equivalent to r8, so it changes it to
817 r33. Actually, there's no change, but it spoils debugging. */
818 if (exp_equiv_p (*cur_rtx, p->x, 0, true))
819 {
820 /* Bail out if we occupy more than one register. */
821 if (REG_P (*cur_rtx)
822 && HARD_REGISTER_P (*cur_rtx)
823 && hard_regno_nregs[REGNO(*cur_rtx)][GET_MODE (*cur_rtx)] > 1)
824 {
825 p->n = 0;
826 return 1;
827 }
828
829 p->n++;
830
831 /* Do not traverse subexprs. */
832 return -1;
833 }
834
835 if (GET_CODE (*cur_rtx) == SUBREG
836 && REG_P (p->x)
837 && REGNO (SUBREG_REG (*cur_rtx)) == REGNO (p->x))
838 {
839 /* ??? Do not support substituting regs inside subregs. In that case,
840 simplify_subreg will be called by validate_replace_rtx, and
841 unsubstitution will fail later. */
842 p->n = 0;
843 return 1;
844 }
845
846 /* Continue search. */
847 return 0;
848 }
849
850 /* Return the number of places WHAT appears within WHERE.
851 Bail out when we found a reference occupying several hard registers. */
852 static int
853 count_occurrences_equiv (rtx what, rtx where)
854 {
855 struct rtx_search_arg arg;
856
857 arg.x = what;
858 arg.n = 0;
859
860 for_each_rtx (&where, &count_occurrences_1, (void *) &arg);
861
862 return arg.n;
863 }
864
865 /* Returns TRUE if WHAT is found in WHERE rtx tree. */
866 static bool
867 rtx_ok_for_substitution_p (rtx what, rtx where)
868 {
869 return (count_occurrences_equiv (what, where) > 0);
870 }
871
872
873 /* Functions to support register renaming. */
874
875 /* Substitute VI's set source with REGNO. Returns newly created pattern
876 that has REGNO as its source. */
877 static rtx
878 create_insn_rtx_with_rhs (vinsn_t vi, rtx rhs_rtx)
879 {
880 rtx lhs_rtx;
881 rtx pattern;
882 rtx insn_rtx;
883
884 lhs_rtx = copy_rtx (VINSN_LHS (vi));
885
886 pattern = gen_rtx_SET (VOIDmode, lhs_rtx, rhs_rtx);
887 insn_rtx = create_insn_rtx_from_pattern (pattern, NULL_RTX);
888
889 return insn_rtx;
890 }
891
892 /* Returns whether INSN's src can be replaced with register number
893 NEW_SRC_REG. E.g. the following insn is valid for i386:
894
895 (insn:HI 2205 6585 2207 727 ../../gcc/libiberty/regex.c:3337
896 (set (mem/s:QI (plus:SI (plus:SI (reg/f:SI 7 sp)
897 (reg:SI 0 ax [orig:770 c1 ] [770]))
898 (const_int 288 [0x120])) [0 str S1 A8])
899 (const_int 0 [0x0])) 43 {*movqi_1} (nil)
900 (nil))
901
902 But if we change (const_int 0 [0x0]) to (reg:QI 4 si), it will be invalid
903 because of operand constraints:
904
905 (define_insn "*movqi_1"
906 [(set (match_operand:QI 0 "nonimmediate_operand" "=q,q ,q ,r,r ,?r,m")
907 (match_operand:QI 1 "general_operand" " q,qn,qm,q,rn,qm,qn")
908 )]
909
910 So do constrain_operands here, before choosing NEW_SRC_REG as best
911 reg for rhs. */
912
913 static bool
914 replace_src_with_reg_ok_p (insn_t insn, rtx new_src_reg)
915 {
916 vinsn_t vi = INSN_VINSN (insn);
917 enum machine_mode mode;
918 rtx dst_loc;
919 bool res;
920
921 gcc_assert (VINSN_SEPARABLE_P (vi));
922
923 get_dest_and_mode (insn, &dst_loc, &mode);
924 gcc_assert (mode == GET_MODE (new_src_reg));
925
926 if (REG_P (dst_loc) && REGNO (new_src_reg) == REGNO (dst_loc))
927 return true;
928
929 /* See whether SET_SRC can be replaced with this register. */
930 validate_change (insn, &SET_SRC (PATTERN (insn)), new_src_reg, 1);
931 res = verify_changes (0);
932 cancel_changes (0);
933
934 return res;
935 }
936
937 /* Returns whether INSN still be valid after replacing it's DEST with
938 register NEW_REG. */
939 static bool
940 replace_dest_with_reg_ok_p (insn_t insn, rtx new_reg)
941 {
942 vinsn_t vi = INSN_VINSN (insn);
943 bool res;
944
945 /* We should deal here only with separable insns. */
946 gcc_assert (VINSN_SEPARABLE_P (vi));
947 gcc_assert (GET_MODE (VINSN_LHS (vi)) == GET_MODE (new_reg));
948
949 /* See whether SET_DEST can be replaced with this register. */
950 validate_change (insn, &SET_DEST (PATTERN (insn)), new_reg, 1);
951 res = verify_changes (0);
952 cancel_changes (0);
953
954 return res;
955 }
956
957 /* Create a pattern with rhs of VI and lhs of LHS_RTX. */
958 static rtx
959 create_insn_rtx_with_lhs (vinsn_t vi, rtx lhs_rtx)
960 {
961 rtx rhs_rtx;
962 rtx pattern;
963 rtx insn_rtx;
964
965 rhs_rtx = copy_rtx (VINSN_RHS (vi));
966
967 pattern = gen_rtx_SET (VOIDmode, lhs_rtx, rhs_rtx);
968 insn_rtx = create_insn_rtx_from_pattern (pattern, NULL_RTX);
969
970 return insn_rtx;
971 }
972
973 /* Substitute lhs in the given expression EXPR for the register with number
974 NEW_REGNO. SET_DEST may be arbitrary rtx, not only register. */
975 static void
976 replace_dest_with_reg_in_expr (expr_t expr, rtx new_reg)
977 {
978 rtx insn_rtx;
979 vinsn_t vinsn;
980
981 insn_rtx = create_insn_rtx_with_lhs (EXPR_VINSN (expr), new_reg);
982 vinsn = create_vinsn_from_insn_rtx (insn_rtx, false);
983
984 change_vinsn_in_expr (expr, vinsn);
985 EXPR_WAS_RENAMED (expr) = 1;
986 EXPR_TARGET_AVAILABLE (expr) = 1;
987 }
988
989 /* Returns whether VI writes either one of the USED_REGS registers or,
990 if a register is a hard one, one of the UNAVAILABLE_HARD_REGS registers. */
991 static bool
992 vinsn_writes_one_of_regs_p (vinsn_t vi, regset used_regs,
993 HARD_REG_SET unavailable_hard_regs)
994 {
995 unsigned regno;
996 reg_set_iterator rsi;
997
998 EXECUTE_IF_SET_IN_REG_SET (VINSN_REG_SETS (vi), 0, regno, rsi)
999 {
1000 if (REGNO_REG_SET_P (used_regs, regno))
1001 return true;
1002 if (HARD_REGISTER_NUM_P (regno)
1003 && TEST_HARD_REG_BIT (unavailable_hard_regs, regno))
1004 return true;
1005 }
1006
1007 EXECUTE_IF_SET_IN_REG_SET (VINSN_REG_CLOBBERS (vi), 0, regno, rsi)
1008 {
1009 if (REGNO_REG_SET_P (used_regs, regno))
1010 return true;
1011 if (HARD_REGISTER_NUM_P (regno)
1012 && TEST_HARD_REG_BIT (unavailable_hard_regs, regno))
1013 return true;
1014 }
1015
1016 return false;
1017 }
1018
1019 /* Returns register class of the output register in INSN.
1020 Returns NO_REGS for call insns because some targets have constraints on
1021 destination register of a call insn.
1022
1023 Code adopted from regrename.c::build_def_use. */
1024 static enum reg_class
1025 get_reg_class (rtx insn)
1026 {
1027 int alt, i, n_ops;
1028
1029 extract_insn (insn);
1030 if (! constrain_operands (1))
1031 fatal_insn_not_found (insn);
1032 preprocess_constraints ();
1033 alt = which_alternative;
1034 n_ops = recog_data.n_operands;
1035
1036 for (i = 0; i < n_ops; ++i)
1037 {
1038 int matches = recog_op_alt[i][alt].matches;
1039 if (matches >= 0)
1040 recog_op_alt[i][alt].cl = recog_op_alt[matches][alt].cl;
1041 }
1042
1043 if (asm_noperands (PATTERN (insn)) > 0)
1044 {
1045 for (i = 0; i < n_ops; i++)
1046 if (recog_data.operand_type[i] == OP_OUT)
1047 {
1048 rtx *loc = recog_data.operand_loc[i];
1049 rtx op = *loc;
1050 enum reg_class cl = recog_op_alt[i][alt].cl;
1051
1052 if (REG_P (op)
1053 && REGNO (op) == ORIGINAL_REGNO (op))
1054 continue;
1055
1056 return cl;
1057 }
1058 }
1059 else if (!CALL_P (insn))
1060 {
1061 for (i = 0; i < n_ops + recog_data.n_dups; i++)
1062 {
1063 int opn = i < n_ops ? i : recog_data.dup_num[i - n_ops];
1064 enum reg_class cl = recog_op_alt[opn][alt].cl;
1065
1066 if (recog_data.operand_type[opn] == OP_OUT ||
1067 recog_data.operand_type[opn] == OP_INOUT)
1068 return cl;
1069 }
1070 }
1071
1072 /* Insns like
1073 (insn (set (reg:CCZ 17 flags) (compare:CCZ ...)))
1074 may result in returning NO_REGS, cause flags is written implicitly through
1075 CMP insn, which has no OP_OUT | OP_INOUT operands. */
1076 return NO_REGS;
1077 }
1078
1079 #ifdef HARD_REGNO_RENAME_OK
1080 /* Calculate HARD_REGNO_RENAME_OK data for REGNO. */
1081 static void
1082 init_hard_regno_rename (int regno)
1083 {
1084 int cur_reg;
1085
1086 SET_HARD_REG_BIT (sel_hrd.regs_for_rename[regno], regno);
1087
1088 for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
1089 {
1090 /* We are not interested in renaming in other regs. */
1091 if (!TEST_HARD_REG_BIT (sel_hrd.regs_ever_used, cur_reg))
1092 continue;
1093
1094 if (HARD_REGNO_RENAME_OK (regno, cur_reg))
1095 SET_HARD_REG_BIT (sel_hrd.regs_for_rename[regno], cur_reg);
1096 }
1097 }
1098 #endif
1099
1100 /* A wrapper around HARD_REGNO_RENAME_OK that will look into the hard regs
1101 data first. */
1102 static inline bool
1103 sel_hard_regno_rename_ok (int from ATTRIBUTE_UNUSED, int to ATTRIBUTE_UNUSED)
1104 {
1105 #ifdef HARD_REGNO_RENAME_OK
1106 /* Check whether this is all calculated. */
1107 if (TEST_HARD_REG_BIT (sel_hrd.regs_for_rename[from], from))
1108 return TEST_HARD_REG_BIT (sel_hrd.regs_for_rename[from], to);
1109
1110 init_hard_regno_rename (from);
1111
1112 return TEST_HARD_REG_BIT (sel_hrd.regs_for_rename[from], to);
1113 #else
1114 return true;
1115 #endif
1116 }
1117
1118 /* Calculate set of registers that are capable of holding MODE. */
1119 static void
1120 init_regs_for_mode (enum machine_mode mode)
1121 {
1122 int cur_reg;
1123
1124 CLEAR_HARD_REG_SET (sel_hrd.regs_for_mode[mode]);
1125 CLEAR_HARD_REG_SET (sel_hrd.regs_for_call_clobbered[mode]);
1126
1127 for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
1128 {
1129 int nregs = hard_regno_nregs[cur_reg][mode];
1130 int i;
1131
1132 for (i = nregs - 1; i >= 0; --i)
1133 if (fixed_regs[cur_reg + i]
1134 || global_regs[cur_reg + i]
1135 /* Can't use regs which aren't saved by
1136 the prologue. */
1137 || !TEST_HARD_REG_BIT (sel_hrd.regs_ever_used, cur_reg + i)
1138 #ifdef LEAF_REGISTERS
1139 /* We can't use a non-leaf register if we're in a
1140 leaf function. */
1141 || (current_function_is_leaf
1142 && !LEAF_REGISTERS[cur_reg + i])
1143 #endif
1144 )
1145 break;
1146
1147 if (i >= 0)
1148 continue;
1149
1150 /* See whether it accepts all modes that occur in
1151 original insns. */
1152 if (! HARD_REGNO_MODE_OK (cur_reg, mode))
1153 continue;
1154
1155 if (HARD_REGNO_CALL_PART_CLOBBERED (cur_reg, mode))
1156 SET_HARD_REG_BIT (sel_hrd.regs_for_call_clobbered[mode],
1157 cur_reg);
1158
1159 /* If the CUR_REG passed all the checks above,
1160 then it's ok. */
1161 SET_HARD_REG_BIT (sel_hrd.regs_for_mode[mode], cur_reg);
1162 }
1163
1164 sel_hrd.regs_for_mode_ok[mode] = true;
1165 }
1166
1167 /* Init all register sets gathered in HRD. */
1168 static void
1169 init_hard_regs_data (void)
1170 {
1171 int cur_reg = 0;
1172 enum machine_mode cur_mode = 0;
1173
1174 CLEAR_HARD_REG_SET (sel_hrd.regs_ever_used);
1175 for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
1176 if (df_regs_ever_live_p (cur_reg) || call_used_regs[cur_reg])
1177 SET_HARD_REG_BIT (sel_hrd.regs_ever_used, cur_reg);
1178
1179 /* Initialize registers that are valid based on mode when this is
1180 really needed. */
1181 for (cur_mode = 0; cur_mode < NUM_MACHINE_MODES; cur_mode++)
1182 sel_hrd.regs_for_mode_ok[cur_mode] = false;
1183
1184 /* Mark that all HARD_REGNO_RENAME_OK is not calculated. */
1185 for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
1186 CLEAR_HARD_REG_SET (sel_hrd.regs_for_rename[cur_reg]);
1187
1188 #ifdef STACK_REGS
1189 CLEAR_HARD_REG_SET (sel_hrd.stack_regs);
1190
1191 for (cur_reg = FIRST_STACK_REG; cur_reg <= LAST_STACK_REG; cur_reg++)
1192 SET_HARD_REG_BIT (sel_hrd.stack_regs, cur_reg);
1193 #endif
1194 }
1195
1196 /* Mark hardware regs in REG_RENAME_P that are not suitable
1197 for renaming rhs in INSN due to hardware restrictions (register class,
1198 modes compatibility etc). This doesn't affect original insn's dest reg,
1199 if it isn't in USED_REGS. DEF is a definition insn of rhs for which the
1200 destination register is sought. LHS (DEF->ORIG_INSN) may be REG or MEM.
1201 Registers that are in used_regs are always marked in
1202 unavailable_hard_regs as well. */
1203
1204 static void
1205 mark_unavailable_hard_regs (def_t def, struct reg_rename *reg_rename_p,
1206 regset used_regs ATTRIBUTE_UNUSED)
1207 {
1208 enum machine_mode mode;
1209 enum reg_class cl = NO_REGS;
1210 rtx orig_dest;
1211 unsigned cur_reg, regno;
1212 hard_reg_set_iterator hrsi;
1213
1214 gcc_assert (GET_CODE (PATTERN (def->orig_insn)) == SET);
1215 gcc_assert (reg_rename_p);
1216
1217 orig_dest = SET_DEST (PATTERN (def->orig_insn));
1218
1219 /* We have decided not to rename 'mem = something;' insns, as 'something'
1220 is usually a register. */
1221 if (!REG_P (orig_dest))
1222 return;
1223
1224 regno = REGNO (orig_dest);
1225
1226 /* If before reload, don't try to work with pseudos. */
1227 if (!reload_completed && !HARD_REGISTER_NUM_P (regno))
1228 return;
1229
1230 mode = GET_MODE (orig_dest);
1231
1232 /* Stop when mode is not supported for renaming. Also can't proceed
1233 if the original register is one of the fixed_regs, global_regs or
1234 frame pointer. */
1235 if (fixed_regs[regno]
1236 || global_regs[regno]
1237 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
1238 || (frame_pointer_needed && regno == HARD_FRAME_POINTER_REGNUM)
1239 #else
1240 || (frame_pointer_needed && regno == FRAME_POINTER_REGNUM)
1241 #endif
1242 )
1243 {
1244 SET_HARD_REG_SET (reg_rename_p->unavailable_hard_regs);
1245
1246 /* Give a chance for original register, if it isn't in used_regs. */
1247 if (!def->crosses_call)
1248 CLEAR_HARD_REG_BIT (reg_rename_p->unavailable_hard_regs, regno);
1249
1250 return;
1251 }
1252
1253 /* If something allocated on stack in this function, mark frame pointer
1254 register unavailable, considering also modes.
1255 FIXME: it is enough to do this once per all original defs. */
1256 if (frame_pointer_needed)
1257 {
1258 int i;
1259
1260 for (i = hard_regno_nregs[FRAME_POINTER_REGNUM][Pmode]; i--;)
1261 SET_HARD_REG_BIT (reg_rename_p->unavailable_hard_regs,
1262 FRAME_POINTER_REGNUM + i);
1263
1264 #if FRAME_POINTER_REGNUM != HARD_FRAME_POINTER_REGNUM
1265 for (i = hard_regno_nregs[HARD_FRAME_POINTER_REGNUM][Pmode]; i--;)
1266 SET_HARD_REG_BIT (reg_rename_p->unavailable_hard_regs,
1267 HARD_FRAME_POINTER_REGNUM + i);
1268 #endif
1269 }
1270
1271 #ifdef STACK_REGS
1272 /* For the stack registers the presence of FIRST_STACK_REG in USED_REGS
1273 is equivalent to as if all stack regs were in this set.
1274 I.e. no stack register can be renamed, and even if it's an original
1275 register here we make sure it won't be lifted over it's previous def
1276 (it's previous def will appear as if it's a FIRST_STACK_REG def.
1277 The HARD_REGNO_RENAME_OK covers other cases in condition below. */
1278 if (IN_RANGE (REGNO (orig_dest), FIRST_STACK_REG, LAST_STACK_REG)
1279 && REGNO_REG_SET_P (used_regs, FIRST_STACK_REG))
1280 IOR_HARD_REG_SET (reg_rename_p->unavailable_hard_regs,
1281 sel_hrd.stack_regs);
1282 #endif
1283
1284 /* If there's a call on this path, make regs from call_used_reg_set
1285 unavailable. */
1286 if (def->crosses_call)
1287 IOR_HARD_REG_SET (reg_rename_p->unavailable_hard_regs,
1288 call_used_reg_set);
1289
1290 /* Stop here before reload: we need FRAME_REGS, STACK_REGS, and crosses_call,
1291 but not register classes. */
1292 if (!reload_completed)
1293 return;
1294
1295 /* Leave regs as 'available' only from the current
1296 register class. */
1297 cl = get_reg_class (def->orig_insn);
1298 gcc_assert (cl != NO_REGS);
1299 COPY_HARD_REG_SET (reg_rename_p->available_for_renaming,
1300 reg_class_contents[cl]);
1301
1302 /* Leave only registers available for this mode. */
1303 if (!sel_hrd.regs_for_mode_ok[mode])
1304 init_regs_for_mode (mode);
1305 AND_HARD_REG_SET (reg_rename_p->available_for_renaming,
1306 sel_hrd.regs_for_mode[mode]);
1307
1308 /* Exclude registers that are partially call clobbered. */
1309 if (def->crosses_call
1310 && ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode))
1311 AND_COMPL_HARD_REG_SET (reg_rename_p->available_for_renaming,
1312 sel_hrd.regs_for_call_clobbered[mode]);
1313
1314 /* Leave only those that are ok to rename. */
1315 EXECUTE_IF_SET_IN_HARD_REG_SET (reg_rename_p->available_for_renaming,
1316 0, cur_reg, hrsi)
1317 {
1318 int nregs;
1319 int i;
1320
1321 nregs = hard_regno_nregs[cur_reg][mode];
1322 gcc_assert (nregs > 0);
1323
1324 for (i = nregs - 1; i >= 0; --i)
1325 if (! sel_hard_regno_rename_ok (regno + i, cur_reg + i))
1326 break;
1327
1328 if (i >= 0)
1329 CLEAR_HARD_REG_BIT (reg_rename_p->available_for_renaming,
1330 cur_reg);
1331 }
1332
1333 AND_COMPL_HARD_REG_SET (reg_rename_p->available_for_renaming,
1334 reg_rename_p->unavailable_hard_regs);
1335
1336 /* Regno is always ok from the renaming part of view, but it really
1337 could be in *unavailable_hard_regs already, so set it here instead
1338 of there. */
1339 SET_HARD_REG_BIT (reg_rename_p->available_for_renaming, regno);
1340 }
1341
1342 /* reg_rename_tick[REG1] > reg_rename_tick[REG2] if REG1 was chosen as the
1343 best register more recently than REG2. */
1344 static int reg_rename_tick[FIRST_PSEUDO_REGISTER];
1345
1346 /* Indicates the number of times renaming happened before the current one. */
1347 static int reg_rename_this_tick;
1348
1349 /* Choose the register among free, that is suitable for storing
1350 the rhs value.
1351
1352 ORIGINAL_INSNS is the list of insns where the operation (rhs)
1353 originally appears. There could be multiple original operations
1354 for single rhs since we moving it up and merging along different
1355 paths.
1356
1357 Some code is adapted from regrename.c (regrename_optimize).
1358 If original register is available, function returns it.
1359 Otherwise it performs the checks, so the new register should
1360 comply with the following:
1361 - it should not violate any live ranges (such registers are in
1362 REG_RENAME_P->available_for_renaming set);
1363 - it should not be in the HARD_REGS_USED regset;
1364 - it should be in the class compatible with original uses;
1365 - it should not be clobbered through reference with different mode;
1366 - if we're in the leaf function, then the new register should
1367 not be in the LEAF_REGISTERS;
1368 - etc.
1369
1370 If several registers meet the conditions, the register with smallest
1371 tick is returned to achieve more even register allocation.
1372
1373 If original register seems to be ok, we set *IS_ORIG_REG_P_PTR to true.
1374
1375 If no register satisfies the above conditions, NULL_RTX is returned. */
1376 static rtx
1377 choose_best_reg_1 (HARD_REG_SET hard_regs_used,
1378 struct reg_rename *reg_rename_p,
1379 def_list_t original_insns, bool *is_orig_reg_p_ptr)
1380 {
1381 int best_new_reg;
1382 unsigned cur_reg;
1383 enum machine_mode mode = VOIDmode;
1384 unsigned regno, i, n;
1385 hard_reg_set_iterator hrsi;
1386 def_list_iterator di;
1387 def_t def;
1388
1389 /* If original register is available, return it. */
1390 *is_orig_reg_p_ptr = true;
1391
1392 FOR_EACH_DEF (def, di, original_insns)
1393 {
1394 rtx orig_dest = SET_DEST (PATTERN (def->orig_insn));
1395
1396 gcc_assert (REG_P (orig_dest));
1397
1398 /* Check that all original operations have the same mode.
1399 This is done for the next loop; if we'd return from this
1400 loop, we'd check only part of them, but in this case
1401 it doesn't matter. */
1402 if (mode == VOIDmode)
1403 mode = GET_MODE (orig_dest);
1404 gcc_assert (mode == GET_MODE (orig_dest));
1405
1406 regno = REGNO (orig_dest);
1407 for (i = 0, n = hard_regno_nregs[regno][mode]; i < n; i++)
1408 if (TEST_HARD_REG_BIT (hard_regs_used, regno + i))
1409 break;
1410
1411 /* All hard registers are available. */
1412 if (i == n)
1413 {
1414 gcc_assert (mode != VOIDmode);
1415
1416 /* Hard registers should not be shared. */
1417 return gen_rtx_REG (mode, regno);
1418 }
1419 }
1420
1421 *is_orig_reg_p_ptr = false;
1422 best_new_reg = -1;
1423
1424 /* Among all available regs choose the register that was
1425 allocated earliest. */
1426 EXECUTE_IF_SET_IN_HARD_REG_SET (reg_rename_p->available_for_renaming,
1427 0, cur_reg, hrsi)
1428 if (! TEST_HARD_REG_BIT (hard_regs_used, cur_reg))
1429 {
1430 /* All hard registers are available. */
1431 if (best_new_reg < 0
1432 || reg_rename_tick[cur_reg] < reg_rename_tick[best_new_reg])
1433 {
1434 best_new_reg = cur_reg;
1435
1436 /* Return immediately when we know there's no better reg. */
1437 if (! reg_rename_tick[best_new_reg])
1438 break;
1439 }
1440 }
1441
1442 if (best_new_reg >= 0)
1443 {
1444 /* Use the check from the above loop. */
1445 gcc_assert (mode != VOIDmode);
1446 return gen_rtx_REG (mode, best_new_reg);
1447 }
1448
1449 return NULL_RTX;
1450 }
1451
1452 /* A wrapper around choose_best_reg_1 () to verify that we make correct
1453 assumptions about available registers in the function. */
1454 static rtx
1455 choose_best_reg (HARD_REG_SET hard_regs_used, struct reg_rename *reg_rename_p,
1456 def_list_t original_insns, bool *is_orig_reg_p_ptr)
1457 {
1458 rtx best_reg = choose_best_reg_1 (hard_regs_used, reg_rename_p,
1459 original_insns, is_orig_reg_p_ptr);
1460
1461 gcc_assert (best_reg == NULL_RTX
1462 || TEST_HARD_REG_BIT (sel_hrd.regs_ever_used, REGNO (best_reg)));
1463
1464 return best_reg;
1465 }
1466
1467 /* Choose the pseudo register for storing rhs value. As this is supposed
1468 to work before reload, we return either the original register or make
1469 the new one. The parameters are the same that in choose_nest_reg_1
1470 functions, except that USED_REGS may contain pseudos.
1471 If we work with hard regs, check also REG_RENAME_P->UNAVAILABLE_HARD_REGS.
1472
1473 TODO: take into account register pressure while doing this. Up to this
1474 moment, this function would never return NULL for pseudos, but we should
1475 not rely on this. */
1476 static rtx
1477 choose_best_pseudo_reg (regset used_regs,
1478 struct reg_rename *reg_rename_p,
1479 def_list_t original_insns, bool *is_orig_reg_p_ptr)
1480 {
1481 def_list_iterator i;
1482 def_t def;
1483 enum machine_mode mode = VOIDmode;
1484 bool bad_hard_regs = false;
1485
1486 /* We should not use this after reload. */
1487 gcc_assert (!reload_completed);
1488
1489 /* If original register is available, return it. */
1490 *is_orig_reg_p_ptr = true;
1491
1492 FOR_EACH_DEF (def, i, original_insns)
1493 {
1494 rtx dest = SET_DEST (PATTERN (def->orig_insn));
1495 int orig_regno;
1496
1497 gcc_assert (REG_P (dest));
1498
1499 /* Check that all original operations have the same mode. */
1500 if (mode == VOIDmode)
1501 mode = GET_MODE (dest);
1502 else
1503 gcc_assert (mode == GET_MODE (dest));
1504 orig_regno = REGNO (dest);
1505
1506 if (!REGNO_REG_SET_P (used_regs, orig_regno))
1507 {
1508 if (orig_regno < FIRST_PSEUDO_REGISTER)
1509 {
1510 gcc_assert (df_regs_ever_live_p (orig_regno));
1511
1512 /* For hard registers, we have to check hardware imposed
1513 limitations (frame/stack registers, calls crossed). */
1514 if (!TEST_HARD_REG_BIT (reg_rename_p->unavailable_hard_regs,
1515 orig_regno))
1516 {
1517 /* Don't let register cross a call if it doesn't already
1518 cross one. This condition is written in accordance with
1519 that in sched-deps.c sched_analyze_reg(). */
1520 if (!reg_rename_p->crosses_call
1521 || REG_N_CALLS_CROSSED (orig_regno) > 0)
1522 return gen_rtx_REG (mode, orig_regno);
1523 }
1524
1525 bad_hard_regs = true;
1526 }
1527 else
1528 return dest;
1529 }
1530 }
1531
1532 *is_orig_reg_p_ptr = false;
1533
1534 /* We had some original hard registers that couldn't be used.
1535 Those were likely special. Don't try to create a pseudo. */
1536 if (bad_hard_regs)
1537 return NULL_RTX;
1538
1539 /* We haven't found a register from original operations. Get a new one.
1540 FIXME: control register pressure somehow. */
1541 {
1542 rtx new_reg = gen_reg_rtx (mode);
1543
1544 gcc_assert (mode != VOIDmode);
1545
1546 max_regno = max_reg_num ();
1547 maybe_extend_reg_info_p ();
1548 REG_N_CALLS_CROSSED (REGNO (new_reg)) = reg_rename_p->crosses_call ? 1 : 0;
1549
1550 return new_reg;
1551 }
1552 }
1553
1554 /* True when target of EXPR is available due to EXPR_TARGET_AVAILABLE,
1555 USED_REGS and REG_RENAME_P->UNAVAILABLE_HARD_REGS. */
1556 static void
1557 verify_target_availability (expr_t expr, regset used_regs,
1558 struct reg_rename *reg_rename_p)
1559 {
1560 unsigned n, i, regno;
1561 enum machine_mode mode;
1562 bool target_available, live_available, hard_available;
1563
1564 if (!REG_P (EXPR_LHS (expr)) || EXPR_TARGET_AVAILABLE (expr) < 0)
1565 return;
1566
1567 regno = expr_dest_regno (expr);
1568 mode = GET_MODE (EXPR_LHS (expr));
1569 target_available = EXPR_TARGET_AVAILABLE (expr) == 1;
1570 n = reload_completed ? hard_regno_nregs[regno][mode] : 1;
1571
1572 live_available = hard_available = true;
1573 for (i = 0; i < n; i++)
1574 {
1575 if (bitmap_bit_p (used_regs, regno + i))
1576 live_available = false;
1577 if (TEST_HARD_REG_BIT (reg_rename_p->unavailable_hard_regs, regno + i))
1578 hard_available = false;
1579 }
1580
1581 /* When target is not available, it may be due to hard register
1582 restrictions, e.g. crosses calls, so we check hard_available too. */
1583 if (target_available)
1584 gcc_assert (live_available);
1585 else
1586 /* Check only if we haven't scheduled something on the previous fence,
1587 cause due to MAX_SOFTWARE_LOOKAHEAD_WINDOW_SIZE issues
1588 and having more than one fence, we may end having targ_un in a block
1589 in which successors target register is actually available.
1590
1591 The last condition handles the case when a dependence from a call insn
1592 was created in sched-deps.c for insns with destination registers that
1593 never crossed a call before, but do cross one after our code motion.
1594
1595 FIXME: in the latter case, we just uselessly called find_used_regs,
1596 because we can't move this expression with any other register
1597 as well. */
1598 gcc_assert (scheduled_something_on_previous_fence || !live_available
1599 || !hard_available
1600 || (!reload_completed && reg_rename_p->crosses_call
1601 && REG_N_CALLS_CROSSED (regno) == 0));
1602 }
1603
1604 /* Collect unavailable registers due to liveness for EXPR from BNDS
1605 into USED_REGS. Save additional information about available
1606 registers and unavailable due to hardware restriction registers
1607 into REG_RENAME_P structure. Save original insns into ORIGINAL_INSNS
1608 list. */
1609 static void
1610 collect_unavailable_regs_from_bnds (expr_t expr, blist_t bnds, regset used_regs,
1611 struct reg_rename *reg_rename_p,
1612 def_list_t *original_insns)
1613 {
1614 for (; bnds; bnds = BLIST_NEXT (bnds))
1615 {
1616 bool res;
1617 av_set_t orig_ops = NULL;
1618 bnd_t bnd = BLIST_BND (bnds);
1619
1620 /* If the chosen best expr doesn't belong to current boundary,
1621 skip it. */
1622 if (!av_set_is_in_p (BND_AV1 (bnd), EXPR_VINSN (expr)))
1623 continue;
1624
1625 /* Put in ORIG_OPS all exprs from this boundary that became
1626 RES on top. */
1627 orig_ops = find_sequential_best_exprs (bnd, expr, false);
1628
1629 /* Compute used regs and OR it into the USED_REGS. */
1630 res = find_used_regs (BND_TO (bnd), orig_ops, used_regs,
1631 reg_rename_p, original_insns);
1632
1633 /* FIXME: the assert is true until we'd have several boundaries. */
1634 gcc_assert (res);
1635 av_set_clear (&orig_ops);
1636 }
1637 }
1638
1639 /* Return TRUE if it is possible to replace LHSes of ORIG_INSNS with BEST_REG.
1640 If BEST_REG is valid, replace LHS of EXPR with it. */
1641 static bool
1642 try_replace_dest_reg (ilist_t orig_insns, rtx best_reg, expr_t expr)
1643 {
1644 if (expr_dest_regno (expr) == REGNO (best_reg))
1645 {
1646 EXPR_TARGET_AVAILABLE (expr) = 1;
1647 return true;
1648 }
1649
1650 gcc_assert (orig_insns);
1651
1652 /* Try whether we'll be able to generate the insn
1653 'dest := best_reg' at the place of the original operation. */
1654 for (; orig_insns; orig_insns = ILIST_NEXT (orig_insns))
1655 {
1656 insn_t orig_insn = DEF_LIST_DEF (orig_insns)->orig_insn;
1657
1658 gcc_assert (EXPR_SEPARABLE_P (INSN_EXPR (orig_insn)));
1659
1660 if (!replace_src_with_reg_ok_p (orig_insn, best_reg)
1661 || !replace_dest_with_reg_ok_p (orig_insn, best_reg))
1662 return false;
1663 }
1664
1665 /* Make sure that EXPR has the right destination
1666 register. */
1667 replace_dest_with_reg_in_expr (expr, best_reg);
1668 return true;
1669 }
1670
1671 /* Select and assign best register to EXPR searching from BNDS.
1672 Set *IS_ORIG_REG_P to TRUE if original register was selected.
1673 Return FALSE if no register can be chosen, which could happen when:
1674 * EXPR_SEPARABLE_P is true but we were unable to find suitable register;
1675 * EXPR_SEPARABLE_P is false but the insn sets/clobbers one of the registers
1676 that are used on the moving path. */
1677 static bool
1678 find_best_reg_for_expr (expr_t expr, blist_t bnds, bool *is_orig_reg_p)
1679 {
1680 static struct reg_rename reg_rename_data;
1681
1682 regset used_regs;
1683 def_list_t original_insns = NULL;
1684 bool reg_ok;
1685
1686 *is_orig_reg_p = false;
1687
1688 /* Don't bother to do anything if this insn doesn't set any registers. */
1689 if (bitmap_empty_p (VINSN_REG_SETS (EXPR_VINSN (expr)))
1690 && bitmap_empty_p (VINSN_REG_CLOBBERS (EXPR_VINSN (expr))))
1691 return true;
1692
1693 used_regs = get_clear_regset_from_pool ();
1694 CLEAR_HARD_REG_SET (reg_rename_data.unavailable_hard_regs);
1695
1696 collect_unavailable_regs_from_bnds (expr, bnds, used_regs, &reg_rename_data,
1697 &original_insns);
1698
1699 #ifdef ENABLE_CHECKING
1700 /* If after reload, make sure we're working with hard regs here. */
1701 if (reload_completed)
1702 {
1703 reg_set_iterator rsi;
1704 unsigned i;
1705
1706 EXECUTE_IF_SET_IN_REG_SET (used_regs, FIRST_PSEUDO_REGISTER, i, rsi)
1707 gcc_unreachable ();
1708 }
1709 #endif
1710
1711 if (EXPR_SEPARABLE_P (expr))
1712 {
1713 rtx best_reg = NULL_RTX;
1714 /* Check that we have computed availability of a target register
1715 correctly. */
1716 verify_target_availability (expr, used_regs, &reg_rename_data);
1717
1718 /* Turn everything in hard regs after reload. */
1719 if (reload_completed)
1720 {
1721 HARD_REG_SET hard_regs_used;
1722 REG_SET_TO_HARD_REG_SET (hard_regs_used, used_regs);
1723
1724 /* Join hard registers unavailable due to register class
1725 restrictions and live range intersection. */
1726 IOR_HARD_REG_SET (hard_regs_used,
1727 reg_rename_data.unavailable_hard_regs);
1728
1729 best_reg = choose_best_reg (hard_regs_used, &reg_rename_data,
1730 original_insns, is_orig_reg_p);
1731 }
1732 else
1733 best_reg = choose_best_pseudo_reg (used_regs, &reg_rename_data,
1734 original_insns, is_orig_reg_p);
1735
1736 if (!best_reg)
1737 reg_ok = false;
1738 else if (*is_orig_reg_p)
1739 {
1740 /* In case of unification BEST_REG may be different from EXPR's LHS
1741 when EXPR's LHS is unavailable, and there is another LHS among
1742 ORIGINAL_INSNS. */
1743 reg_ok = try_replace_dest_reg (original_insns, best_reg, expr);
1744 }
1745 else
1746 {
1747 /* Forbid renaming of low-cost insns. */
1748 if (sel_vinsn_cost (EXPR_VINSN (expr)) < 2)
1749 reg_ok = false;
1750 else
1751 reg_ok = try_replace_dest_reg (original_insns, best_reg, expr);
1752 }
1753 }
1754 else
1755 {
1756 /* If !EXPR_SCHEDULE_AS_RHS (EXPR), just make sure INSN doesn't set
1757 any of the HARD_REGS_USED set. */
1758 if (vinsn_writes_one_of_regs_p (EXPR_VINSN (expr), used_regs,
1759 reg_rename_data.unavailable_hard_regs))
1760 {
1761 reg_ok = false;
1762 gcc_assert (EXPR_TARGET_AVAILABLE (expr) <= 0);
1763 }
1764 else
1765 {
1766 reg_ok = true;
1767 gcc_assert (EXPR_TARGET_AVAILABLE (expr) != 0);
1768 }
1769 }
1770
1771 ilist_clear (&original_insns);
1772 return_regset_to_pool (used_regs);
1773
1774 return reg_ok;
1775 }
1776
1777
1778 /* Return true if dependence described by DS can be overcomed. */
1779 static bool
1780 can_speculate_dep_p (ds_t ds)
1781 {
1782 if (spec_info == NULL)
1783 return false;
1784
1785 /* Leave only speculative data. */
1786 ds &= SPECULATIVE;
1787
1788 if (ds == 0)
1789 return false;
1790
1791 {
1792 /* FIXME: make sched-deps.c produce only those non-hard dependencies,
1793 that we can overcome. */
1794 ds_t spec_mask = spec_info->mask;
1795
1796 if ((ds & spec_mask) != ds)
1797 return false;
1798 }
1799
1800 if (ds_weak (ds) < spec_info->data_weakness_cutoff)
1801 return false;
1802
1803 return true;
1804 }
1805
1806 /* Get a speculation check instruction.
1807 C_EXPR is a speculative expression,
1808 CHECK_DS describes speculations that should be checked,
1809 ORIG_INSN is the original non-speculative insn in the stream. */
1810 static insn_t
1811 create_speculation_check (expr_t c_expr, ds_t check_ds, insn_t orig_insn)
1812 {
1813 rtx check_pattern;
1814 rtx insn_rtx;
1815 insn_t insn;
1816 basic_block recovery_block;
1817 rtx label;
1818
1819 /* Create a recovery block if target is going to emit branchy check, or if
1820 ORIG_INSN was speculative already. */
1821 if (targetm.sched.needs_block_p (check_ds)
1822 || EXPR_SPEC_DONE_DS (INSN_EXPR (orig_insn)) != 0)
1823 {
1824 recovery_block = sel_create_recovery_block (orig_insn);
1825 label = BB_HEAD (recovery_block);
1826 }
1827 else
1828 {
1829 recovery_block = NULL;
1830 label = NULL_RTX;
1831 }
1832
1833 /* Get pattern of the check. */
1834 check_pattern = targetm.sched.gen_spec_check (EXPR_INSN_RTX (c_expr), label,
1835 check_ds);
1836
1837 gcc_assert (check_pattern != NULL);
1838
1839 /* Emit check. */
1840 insn_rtx = create_insn_rtx_from_pattern (check_pattern, label);
1841
1842 insn = sel_gen_insn_from_rtx_after (insn_rtx, INSN_EXPR (orig_insn),
1843 INSN_SEQNO (orig_insn), orig_insn);
1844
1845 /* Make check to be non-speculative. */
1846 EXPR_SPEC_DONE_DS (INSN_EXPR (insn)) = 0;
1847 INSN_SPEC_CHECKED_DS (insn) = check_ds;
1848
1849 /* Decrease priority of check by difference of load/check instruction
1850 latencies. */
1851 EXPR_PRIORITY (INSN_EXPR (insn)) -= (sel_vinsn_cost (INSN_VINSN (orig_insn))
1852 - sel_vinsn_cost (INSN_VINSN (insn)));
1853
1854 /* Emit copy of original insn (though with replaced target register,
1855 if needed) to the recovery block. */
1856 if (recovery_block != NULL)
1857 {
1858 rtx twin_rtx;
1859 insn_t twin;
1860
1861 twin_rtx = copy_rtx (PATTERN (EXPR_INSN_RTX (c_expr)));
1862 twin_rtx = create_insn_rtx_from_pattern (twin_rtx, NULL_RTX);
1863 twin = sel_gen_recovery_insn_from_rtx_after (twin_rtx,
1864 INSN_EXPR (orig_insn),
1865 INSN_SEQNO (insn),
1866 bb_note (recovery_block));
1867 }
1868
1869 /* If we've generated a data speculation check, make sure
1870 that all the bookkeeping instruction we'll create during
1871 this move_op () will allocate an ALAT entry so that the
1872 check won't fail.
1873 In case of control speculation we must convert C_EXPR to control
1874 speculative mode, because failing to do so will bring us an exception
1875 thrown by the non-control-speculative load. */
1876 check_ds = ds_get_max_dep_weak (check_ds);
1877 speculate_expr (c_expr, check_ds);
1878
1879 return insn;
1880 }
1881
1882 /* True when INSN is a "regN = regN" copy. */
1883 static bool
1884 identical_copy_p (rtx insn)
1885 {
1886 rtx lhs, rhs, pat;
1887
1888 pat = PATTERN (insn);
1889
1890 if (GET_CODE (pat) != SET)
1891 return false;
1892
1893 lhs = SET_DEST (pat);
1894 if (!REG_P (lhs))
1895 return false;
1896
1897 rhs = SET_SRC (pat);
1898 if (!REG_P (rhs))
1899 return false;
1900
1901 return REGNO (lhs) == REGNO (rhs);
1902 }
1903
1904 /* Undo all transformations on *AV_PTR that were done when
1905 moving through INSN. */
1906 static void
1907 undo_transformations (av_set_t *av_ptr, rtx insn)
1908 {
1909 av_set_iterator av_iter;
1910 expr_t expr;
1911 av_set_t new_set = NULL;
1912
1913 /* First, kill any EXPR that uses registers set by an insn. This is
1914 required for correctness. */
1915 FOR_EACH_EXPR_1 (expr, av_iter, av_ptr)
1916 if (!sched_insns_conditions_mutex_p (insn, EXPR_INSN_RTX (expr))
1917 && bitmap_intersect_p (INSN_REG_SETS (insn),
1918 VINSN_REG_USES (EXPR_VINSN (expr)))
1919 /* When an insn looks like 'r1 = r1', we could substitute through
1920 it, but the above condition will still hold. This happened with
1921 gcc.c-torture/execute/961125-1.c. */
1922 && !identical_copy_p (insn))
1923 {
1924 if (sched_verbose >= 6)
1925 sel_print ("Expr %d removed due to use/set conflict\n",
1926 INSN_UID (EXPR_INSN_RTX (expr)));
1927 av_set_iter_remove (&av_iter);
1928 }
1929
1930 /* Undo transformations looking at the history vector. */
1931 FOR_EACH_EXPR (expr, av_iter, *av_ptr)
1932 {
1933 int index = find_in_history_vect (EXPR_HISTORY_OF_CHANGES (expr),
1934 insn, EXPR_VINSN (expr), true);
1935
1936 if (index >= 0)
1937 {
1938 expr_history_def *phist;
1939
1940 phist = VEC_index (expr_history_def,
1941 EXPR_HISTORY_OF_CHANGES (expr),
1942 index);
1943
1944 switch (phist->type)
1945 {
1946 case TRANS_SPECULATION:
1947 {
1948 ds_t old_ds, new_ds;
1949
1950 /* Compute the difference between old and new speculative
1951 statuses: that's what we need to check.
1952 Earlier we used to assert that the status will really
1953 change. This no longer works because only the probability
1954 bits in the status may have changed during compute_av_set,
1955 and in the case of merging different probabilities of the
1956 same speculative status along different paths we do not
1957 record this in the history vector. */
1958 old_ds = phist->spec_ds;
1959 new_ds = EXPR_SPEC_DONE_DS (expr);
1960
1961 old_ds &= SPECULATIVE;
1962 new_ds &= SPECULATIVE;
1963 new_ds &= ~old_ds;
1964
1965 EXPR_SPEC_TO_CHECK_DS (expr) |= new_ds;
1966 break;
1967 }
1968 case TRANS_SUBSTITUTION:
1969 {
1970 expr_def _tmp_expr, *tmp_expr = &_tmp_expr;
1971 vinsn_t new_vi;
1972 bool add = true;
1973
1974 new_vi = phist->old_expr_vinsn;
1975
1976 gcc_assert (VINSN_SEPARABLE_P (new_vi)
1977 == EXPR_SEPARABLE_P (expr));
1978 copy_expr (tmp_expr, expr);
1979
1980 if (vinsn_equal_p (phist->new_expr_vinsn,
1981 EXPR_VINSN (tmp_expr)))
1982 change_vinsn_in_expr (tmp_expr, new_vi);
1983 else
1984 /* This happens when we're unsubstituting on a bookkeeping
1985 copy, which was in turn substituted. The history is wrong
1986 in this case. Do it the hard way. */
1987 add = substitute_reg_in_expr (tmp_expr, insn, true);
1988 if (add)
1989 av_set_add (&new_set, tmp_expr);
1990 clear_expr (tmp_expr);
1991 break;
1992 }
1993 default:
1994 gcc_unreachable ();
1995 }
1996 }
1997
1998 }
1999
2000 av_set_union_and_clear (av_ptr, &new_set, NULL);
2001 }
2002
2003
2004 /* Moveup_* helpers for code motion and computing av sets. */
2005
2006 /* Propagates EXPR inside an insn group through THROUGH_INSN.
2007 The difference from the below function is that only substitution is
2008 performed. */
2009 static enum MOVEUP_EXPR_CODE
2010 moveup_expr_inside_insn_group (expr_t expr, insn_t through_insn)
2011 {
2012 vinsn_t vi = EXPR_VINSN (expr);
2013 ds_t *has_dep_p;
2014 ds_t full_ds;
2015
2016 /* Do this only inside insn group. */
2017 gcc_assert (INSN_SCHED_CYCLE (through_insn) > 0);
2018
2019 full_ds = has_dependence_p (expr, through_insn, &has_dep_p);
2020 if (full_ds == 0)
2021 return MOVEUP_EXPR_SAME;
2022
2023 /* Substitution is the possible choice in this case. */
2024 if (has_dep_p[DEPS_IN_RHS])
2025 {
2026 /* Can't substitute UNIQUE VINSNs. */
2027 gcc_assert (!VINSN_UNIQUE_P (vi));
2028
2029 if (can_substitute_through_p (through_insn,
2030 has_dep_p[DEPS_IN_RHS])
2031 && substitute_reg_in_expr (expr, through_insn, false))
2032 {
2033 EXPR_WAS_SUBSTITUTED (expr) = true;
2034 return MOVEUP_EXPR_CHANGED;
2035 }
2036
2037 /* Don't care about this, as even true dependencies may be allowed
2038 in an insn group. */
2039 return MOVEUP_EXPR_SAME;
2040 }
2041
2042 /* This can catch output dependencies in COND_EXECs. */
2043 if (has_dep_p[DEPS_IN_INSN])
2044 return MOVEUP_EXPR_NULL;
2045
2046 /* This is either an output or an anti dependence, which usually have
2047 a zero latency. Allow this here, if we'd be wrong, tick_check_p
2048 will fix this. */
2049 gcc_assert (has_dep_p[DEPS_IN_LHS]);
2050 return MOVEUP_EXPR_AS_RHS;
2051 }
2052
2053 /* True when a trapping EXPR cannot be moved through THROUGH_INSN. */
2054 #define CANT_MOVE_TRAPPING(expr, through_insn) \
2055 (VINSN_MAY_TRAP_P (EXPR_VINSN (expr)) \
2056 && !sel_insn_has_single_succ_p ((through_insn), SUCCS_ALL) \
2057 && !sel_insn_is_speculation_check (through_insn))
2058
2059 /* True when a conflict on a target register was found during moveup_expr. */
2060 static bool was_target_conflict = false;
2061
2062 /* Modifies EXPR so it can be moved through the THROUGH_INSN,
2063 performing necessary transformations. Record the type of transformation
2064 made in PTRANS_TYPE, when it is not NULL. When INSIDE_INSN_GROUP,
2065 permit all dependencies except true ones, and try to remove those
2066 too via forward substitution. All cases when a non-eliminable
2067 non-zero cost dependency exists inside an insn group will be fixed
2068 in tick_check_p instead. */
2069 static enum MOVEUP_EXPR_CODE
2070 moveup_expr (expr_t expr, insn_t through_insn, bool inside_insn_group,
2071 enum local_trans_type *ptrans_type)
2072 {
2073 vinsn_t vi = EXPR_VINSN (expr);
2074 insn_t insn = VINSN_INSN_RTX (vi);
2075 bool was_changed = false;
2076 bool as_rhs = false;
2077 ds_t *has_dep_p;
2078 ds_t full_ds;
2079
2080 /* When inside_insn_group, delegate to the helper. */
2081 if (inside_insn_group)
2082 return moveup_expr_inside_insn_group (expr, through_insn);
2083
2084 /* Deal with unique insns and control dependencies. */
2085 if (VINSN_UNIQUE_P (vi))
2086 {
2087 /* We can move jumps without side-effects or jumps that are
2088 mutually exclusive with instruction THROUGH_INSN (all in cases
2089 dependencies allow to do so and jump is not speculative). */
2090 if (control_flow_insn_p (insn))
2091 {
2092 basic_block fallthru_bb;
2093
2094 /* Do not move checks and do not move jumps through other
2095 jumps. */
2096 if (control_flow_insn_p (through_insn)
2097 || sel_insn_is_speculation_check (insn))
2098 return MOVEUP_EXPR_NULL;
2099
2100 /* Don't move jumps through CFG joins. */
2101 if (bookkeeping_can_be_created_if_moved_through_p (through_insn))
2102 return MOVEUP_EXPR_NULL;
2103
2104 /* The jump should have a clear fallthru block, and
2105 this block should be in the current region. */
2106 if ((fallthru_bb = fallthru_bb_of_jump (insn)) == NULL
2107 || ! in_current_region_p (fallthru_bb))
2108 return MOVEUP_EXPR_NULL;
2109
2110 /* And it should be mutually exclusive with through_insn, or
2111 be an unconditional jump. */
2112 if (! any_uncondjump_p (insn)
2113 && ! sched_insns_conditions_mutex_p (insn, through_insn))
2114 return MOVEUP_EXPR_NULL;
2115 }
2116
2117 /* Don't move what we can't move. */
2118 if (EXPR_CANT_MOVE (expr)
2119 && BLOCK_FOR_INSN (through_insn) != BLOCK_FOR_INSN (insn))
2120 return MOVEUP_EXPR_NULL;
2121
2122 /* Don't move SCHED_GROUP instruction through anything.
2123 If we don't force this, then it will be possible to start
2124 scheduling a sched_group before all its dependencies are
2125 resolved.
2126 ??? Haifa deals with this issue by delaying the SCHED_GROUP
2127 as late as possible through rank_for_schedule. */
2128 if (SCHED_GROUP_P (insn))
2129 return MOVEUP_EXPR_NULL;
2130 }
2131 else
2132 gcc_assert (!control_flow_insn_p (insn));
2133
2134 /* Deal with data dependencies. */
2135 was_target_conflict = false;
2136 full_ds = has_dependence_p (expr, through_insn, &has_dep_p);
2137 if (full_ds == 0)
2138 {
2139 if (!CANT_MOVE_TRAPPING (expr, through_insn))
2140 return MOVEUP_EXPR_SAME;
2141 }
2142 else
2143 {
2144 /* We can move UNIQUE insn up only as a whole and unchanged,
2145 so it shouldn't have any dependencies. */
2146 if (VINSN_UNIQUE_P (vi))
2147 return MOVEUP_EXPR_NULL;
2148 }
2149
2150 if (full_ds != 0 && can_speculate_dep_p (full_ds))
2151 {
2152 int res;
2153
2154 res = speculate_expr (expr, full_ds);
2155 if (res >= 0)
2156 {
2157 /* Speculation was successful. */
2158 full_ds = 0;
2159 was_changed = (res > 0);
2160 if (res == 2)
2161 was_target_conflict = true;
2162 if (ptrans_type)
2163 *ptrans_type = TRANS_SPECULATION;
2164 sel_clear_has_dependence ();
2165 }
2166 }
2167
2168 if (has_dep_p[DEPS_IN_INSN])
2169 /* We have some dependency that cannot be discarded. */
2170 return MOVEUP_EXPR_NULL;
2171
2172 if (has_dep_p[DEPS_IN_LHS])
2173 {
2174 /* Only separable insns can be moved up with the new register.
2175 Anyways, we should mark that the original register is
2176 unavailable. */
2177 if (!enable_schedule_as_rhs_p || !EXPR_SEPARABLE_P (expr))
2178 return MOVEUP_EXPR_NULL;
2179
2180 EXPR_TARGET_AVAILABLE (expr) = false;
2181 was_target_conflict = true;
2182 as_rhs = true;
2183 }
2184
2185 /* At this point we have either separable insns, that will be lifted
2186 up only as RHSes, or non-separable insns with no dependency in lhs.
2187 If dependency is in RHS, then try to perform substitution and move up
2188 substituted RHS:
2189
2190 Ex. 1: Ex.2
2191 y = x; y = x;
2192 z = y*2; y = y*2;
2193
2194 In Ex.1 y*2 can be substituted for x*2 and the whole operation can be
2195 moved above y=x assignment as z=x*2.
2196
2197 In Ex.2 y*2 also can be substituted for x*2, but only the right hand
2198 side can be moved because of the output dependency. The operation was
2199 cropped to its rhs above. */
2200 if (has_dep_p[DEPS_IN_RHS])
2201 {
2202 ds_t *rhs_dsp = &has_dep_p[DEPS_IN_RHS];
2203
2204 /* Can't substitute UNIQUE VINSNs. */
2205 gcc_assert (!VINSN_UNIQUE_P (vi));
2206
2207 if (can_speculate_dep_p (*rhs_dsp))
2208 {
2209 int res;
2210
2211 res = speculate_expr (expr, *rhs_dsp);
2212 if (res >= 0)
2213 {
2214 /* Speculation was successful. */
2215 *rhs_dsp = 0;
2216 was_changed = (res > 0);
2217 if (res == 2)
2218 was_target_conflict = true;
2219 if (ptrans_type)
2220 *ptrans_type = TRANS_SPECULATION;
2221 }
2222 else
2223 return MOVEUP_EXPR_NULL;
2224 }
2225 else if (can_substitute_through_p (through_insn,
2226 *rhs_dsp)
2227 && substitute_reg_in_expr (expr, through_insn, false))
2228 {
2229 /* ??? We cannot perform substitution AND speculation on the same
2230 insn. */
2231 gcc_assert (!was_changed);
2232 was_changed = true;
2233 if (ptrans_type)
2234 *ptrans_type = TRANS_SUBSTITUTION;
2235 EXPR_WAS_SUBSTITUTED (expr) = true;
2236 }
2237 else
2238 return MOVEUP_EXPR_NULL;
2239 }
2240
2241 /* Don't move trapping insns through jumps.
2242 This check should be at the end to give a chance to control speculation
2243 to perform its duties. */
2244 if (CANT_MOVE_TRAPPING (expr, through_insn))
2245 return MOVEUP_EXPR_NULL;
2246
2247 return (was_changed
2248 ? MOVEUP_EXPR_CHANGED
2249 : (as_rhs
2250 ? MOVEUP_EXPR_AS_RHS
2251 : MOVEUP_EXPR_SAME));
2252 }
2253
2254 /* Try to look at bitmap caches for EXPR and INSN pair, return true
2255 if successful. When INSIDE_INSN_GROUP, also try ignore dependencies
2256 that can exist within a parallel group. Write to RES the resulting
2257 code for moveup_expr. */
2258 static bool
2259 try_bitmap_cache (expr_t expr, insn_t insn,
2260 bool inside_insn_group,
2261 enum MOVEUP_EXPR_CODE *res)
2262 {
2263 int expr_uid = INSN_UID (EXPR_INSN_RTX (expr));
2264
2265 /* First check whether we've analyzed this situation already. */
2266 if (bitmap_bit_p (INSN_ANALYZED_DEPS (insn), expr_uid))
2267 {
2268 if (bitmap_bit_p (INSN_FOUND_DEPS (insn), expr_uid))
2269 {
2270 if (sched_verbose >= 6)
2271 sel_print ("removed (cached)\n");
2272 *res = MOVEUP_EXPR_NULL;
2273 return true;
2274 }
2275 else
2276 {
2277 if (sched_verbose >= 6)
2278 sel_print ("unchanged (cached)\n");
2279 *res = MOVEUP_EXPR_SAME;
2280 return true;
2281 }
2282 }
2283 else if (bitmap_bit_p (INSN_FOUND_DEPS (insn), expr_uid))
2284 {
2285 if (inside_insn_group)
2286 {
2287 if (sched_verbose >= 6)
2288 sel_print ("unchanged (as RHS, cached, inside insn group)\n");
2289 *res = MOVEUP_EXPR_SAME;
2290 return true;
2291
2292 }
2293 else
2294 EXPR_TARGET_AVAILABLE (expr) = false;
2295
2296 /* This is the only case when propagation result can change over time,
2297 as we can dynamically switch off scheduling as RHS. In this case,
2298 just check the flag to reach the correct decision. */
2299 if (enable_schedule_as_rhs_p)
2300 {
2301 if (sched_verbose >= 6)
2302 sel_print ("unchanged (as RHS, cached)\n");
2303 *res = MOVEUP_EXPR_AS_RHS;
2304 return true;
2305 }
2306 else
2307 {
2308 if (sched_verbose >= 6)
2309 sel_print ("removed (cached as RHS, but renaming"
2310 " is now disabled)\n");
2311 *res = MOVEUP_EXPR_NULL;
2312 return true;
2313 }
2314 }
2315
2316 return false;
2317 }
2318
2319 /* Try to look at bitmap caches for EXPR and INSN pair, return true
2320 if successful. Write to RES the resulting code for moveup_expr. */
2321 static bool
2322 try_transformation_cache (expr_t expr, insn_t insn,
2323 enum MOVEUP_EXPR_CODE *res)
2324 {
2325 struct transformed_insns *pti
2326 = (struct transformed_insns *)
2327 htab_find_with_hash (INSN_TRANSFORMED_INSNS (insn),
2328 &EXPR_VINSN (expr),
2329 VINSN_HASH_RTX (EXPR_VINSN (expr)));
2330 if (pti)
2331 {
2332 /* This EXPR was already moved through this insn and was
2333 changed as a result. Fetch the proper data from
2334 the hashtable. */
2335 insert_in_history_vect (&EXPR_HISTORY_OF_CHANGES (expr),
2336 INSN_UID (insn), pti->type,
2337 pti->vinsn_old, pti->vinsn_new,
2338 EXPR_SPEC_DONE_DS (expr));
2339
2340 if (INSN_IN_STREAM_P (VINSN_INSN_RTX (pti->vinsn_new)))
2341 pti->vinsn_new = vinsn_copy (pti->vinsn_new, true);
2342 change_vinsn_in_expr (expr, pti->vinsn_new);
2343 if (pti->was_target_conflict)
2344 EXPR_TARGET_AVAILABLE (expr) = false;
2345 if (pti->type == TRANS_SPECULATION)
2346 {
2347 ds_t ds;
2348
2349 ds = EXPR_SPEC_DONE_DS (expr);
2350
2351 EXPR_SPEC_DONE_DS (expr) = pti->ds;
2352 EXPR_NEEDS_SPEC_CHECK_P (expr) |= pti->needs_check;
2353 }
2354
2355 if (sched_verbose >= 6)
2356 {
2357 sel_print ("changed (cached): ");
2358 dump_expr (expr);
2359 sel_print ("\n");
2360 }
2361
2362 *res = MOVEUP_EXPR_CHANGED;
2363 return true;
2364 }
2365
2366 return false;
2367 }
2368
2369 /* Update bitmap caches on INSN with result RES of propagating EXPR. */
2370 static void
2371 update_bitmap_cache (expr_t expr, insn_t insn, bool inside_insn_group,
2372 enum MOVEUP_EXPR_CODE res)
2373 {
2374 int expr_uid = INSN_UID (EXPR_INSN_RTX (expr));
2375
2376 /* Do not cache result of propagating jumps through an insn group,
2377 as it is always true, which is not useful outside the group. */
2378 if (inside_insn_group)
2379 return;
2380
2381 if (res == MOVEUP_EXPR_NULL)
2382 {
2383 bitmap_set_bit (INSN_ANALYZED_DEPS (insn), expr_uid);
2384 bitmap_set_bit (INSN_FOUND_DEPS (insn), expr_uid);
2385 }
2386 else if (res == MOVEUP_EXPR_SAME)
2387 {
2388 bitmap_set_bit (INSN_ANALYZED_DEPS (insn), expr_uid);
2389 bitmap_clear_bit (INSN_FOUND_DEPS (insn), expr_uid);
2390 }
2391 else if (res == MOVEUP_EXPR_AS_RHS)
2392 {
2393 bitmap_clear_bit (INSN_ANALYZED_DEPS (insn), expr_uid);
2394 bitmap_set_bit (INSN_FOUND_DEPS (insn), expr_uid);
2395 }
2396 else
2397 gcc_unreachable ();
2398 }
2399
2400 /* Update hashtable on INSN with changed EXPR, old EXPR_OLD_VINSN
2401 and transformation type TRANS_TYPE. */
2402 static void
2403 update_transformation_cache (expr_t expr, insn_t insn,
2404 bool inside_insn_group,
2405 enum local_trans_type trans_type,
2406 vinsn_t expr_old_vinsn)
2407 {
2408 struct transformed_insns *pti;
2409
2410 if (inside_insn_group)
2411 return;
2412
2413 pti = XNEW (struct transformed_insns);
2414 pti->vinsn_old = expr_old_vinsn;
2415 pti->vinsn_new = EXPR_VINSN (expr);
2416 pti->type = trans_type;
2417 pti->was_target_conflict = was_target_conflict;
2418 pti->ds = EXPR_SPEC_DONE_DS (expr);
2419 pti->needs_check = EXPR_NEEDS_SPEC_CHECK_P (expr);
2420 vinsn_attach (pti->vinsn_old);
2421 vinsn_attach (pti->vinsn_new);
2422 *((struct transformed_insns **)
2423 htab_find_slot_with_hash (INSN_TRANSFORMED_INSNS (insn),
2424 pti, VINSN_HASH_RTX (expr_old_vinsn),
2425 INSERT)) = pti;
2426 }
2427
2428 /* Same as moveup_expr, but first looks up the result of
2429 transformation in caches. */
2430 static enum MOVEUP_EXPR_CODE
2431 moveup_expr_cached (expr_t expr, insn_t insn, bool inside_insn_group)
2432 {
2433 enum MOVEUP_EXPR_CODE res;
2434 bool got_answer = false;
2435
2436 if (sched_verbose >= 6)
2437 {
2438 sel_print ("Moving ");
2439 dump_expr (expr);
2440 sel_print (" through %d: ", INSN_UID (insn));
2441 }
2442
2443 if (try_bitmap_cache (expr, insn, inside_insn_group, &res))
2444 /* When inside insn group, we do not want remove stores conflicting
2445 with previosly issued loads. */
2446 got_answer = ! inside_insn_group || res != MOVEUP_EXPR_NULL;
2447 else if (try_transformation_cache (expr, insn, &res))
2448 got_answer = true;
2449
2450 if (! got_answer)
2451 {
2452 /* Invoke moveup_expr and record the results. */
2453 vinsn_t expr_old_vinsn = EXPR_VINSN (expr);
2454 ds_t expr_old_spec_ds = EXPR_SPEC_DONE_DS (expr);
2455 int expr_uid = INSN_UID (VINSN_INSN_RTX (expr_old_vinsn));
2456 bool unique_p = VINSN_UNIQUE_P (expr_old_vinsn);
2457 enum local_trans_type trans_type = TRANS_SUBSTITUTION;
2458
2459 /* ??? Invent something better than this. We can't allow old_vinsn
2460 to go, we need it for the history vector. */
2461 vinsn_attach (expr_old_vinsn);
2462
2463 res = moveup_expr (expr, insn, inside_insn_group,
2464 &trans_type);
2465 switch (res)
2466 {
2467 case MOVEUP_EXPR_NULL:
2468 update_bitmap_cache (expr, insn, inside_insn_group, res);
2469 if (sched_verbose >= 6)
2470 sel_print ("removed\n");
2471 break;
2472
2473 case MOVEUP_EXPR_SAME:
2474 update_bitmap_cache (expr, insn, inside_insn_group, res);
2475 if (sched_verbose >= 6)
2476 sel_print ("unchanged\n");
2477 break;
2478
2479 case MOVEUP_EXPR_AS_RHS:
2480 gcc_assert (!unique_p || inside_insn_group);
2481 update_bitmap_cache (expr, insn, inside_insn_group, res);
2482 if (sched_verbose >= 6)
2483 sel_print ("unchanged (as RHS)\n");
2484 break;
2485
2486 case MOVEUP_EXPR_CHANGED:
2487 gcc_assert (INSN_UID (EXPR_INSN_RTX (expr)) != expr_uid
2488 || EXPR_SPEC_DONE_DS (expr) != expr_old_spec_ds);
2489 insert_in_history_vect (&EXPR_HISTORY_OF_CHANGES (expr),
2490 INSN_UID (insn), trans_type,
2491 expr_old_vinsn, EXPR_VINSN (expr),
2492 expr_old_spec_ds);
2493 update_transformation_cache (expr, insn, inside_insn_group,
2494 trans_type, expr_old_vinsn);
2495 if (sched_verbose >= 6)
2496 {
2497 sel_print ("changed: ");
2498 dump_expr (expr);
2499 sel_print ("\n");
2500 }
2501 break;
2502 default:
2503 gcc_unreachable ();
2504 }
2505
2506 vinsn_detach (expr_old_vinsn);
2507 }
2508
2509 return res;
2510 }
2511
2512 /* Moves an av set AVP up through INSN, performing necessary
2513 transformations. */
2514 static void
2515 moveup_set_expr (av_set_t *avp, insn_t insn, bool inside_insn_group)
2516 {
2517 av_set_iterator i;
2518 expr_t expr;
2519
2520 FOR_EACH_EXPR_1 (expr, i, avp)
2521 {
2522
2523 switch (moveup_expr_cached (expr, insn, inside_insn_group))
2524 {
2525 case MOVEUP_EXPR_SAME:
2526 case MOVEUP_EXPR_AS_RHS:
2527 break;
2528
2529 case MOVEUP_EXPR_NULL:
2530 av_set_iter_remove (&i);
2531 break;
2532
2533 case MOVEUP_EXPR_CHANGED:
2534 expr = merge_with_other_exprs (avp, &i, expr);
2535 break;
2536
2537 default:
2538 gcc_unreachable ();
2539 }
2540 }
2541 }
2542
2543 /* Moves AVP set along PATH. */
2544 static void
2545 moveup_set_inside_insn_group (av_set_t *avp, ilist_t path)
2546 {
2547 int last_cycle;
2548
2549 if (sched_verbose >= 6)
2550 sel_print ("Moving expressions up in the insn group...\n");
2551 if (! path)
2552 return;
2553 last_cycle = INSN_SCHED_CYCLE (ILIST_INSN (path));
2554 while (path
2555 && INSN_SCHED_CYCLE (ILIST_INSN (path)) == last_cycle)
2556 {
2557 moveup_set_expr (avp, ILIST_INSN (path), true);
2558 path = ILIST_NEXT (path);
2559 }
2560 }
2561
2562 /* Returns true if after moving EXPR along PATH it equals to EXPR_VLIW. */
2563 static bool
2564 equal_after_moveup_path_p (expr_t expr, ilist_t path, expr_t expr_vliw)
2565 {
2566 expr_def _tmp, *tmp = &_tmp;
2567 int last_cycle;
2568 bool res = true;
2569
2570 copy_expr_onside (tmp, expr);
2571 last_cycle = path ? INSN_SCHED_CYCLE (ILIST_INSN (path)) : 0;
2572 while (path
2573 && res
2574 && INSN_SCHED_CYCLE (ILIST_INSN (path)) == last_cycle)
2575 {
2576 res = (moveup_expr_cached (tmp, ILIST_INSN (path), true)
2577 != MOVEUP_EXPR_NULL);
2578 path = ILIST_NEXT (path);
2579 }
2580
2581 if (res)
2582 {
2583 vinsn_t tmp_vinsn = EXPR_VINSN (tmp);
2584 vinsn_t expr_vliw_vinsn = EXPR_VINSN (expr_vliw);
2585
2586 if (tmp_vinsn != expr_vliw_vinsn)
2587 res = vinsn_equal_p (tmp_vinsn, expr_vliw_vinsn);
2588 }
2589
2590 clear_expr (tmp);
2591 return res;
2592 }
2593
2594
2595 /* Functions that compute av and lv sets. */
2596
2597 /* Returns true if INSN is not a downward continuation of the given path P in
2598 the current stage. */
2599 static bool
2600 is_ineligible_successor (insn_t insn, ilist_t p)
2601 {
2602 insn_t prev_insn;
2603
2604 /* Check if insn is not deleted. */
2605 if (PREV_INSN (insn) && NEXT_INSN (PREV_INSN (insn)) != insn)
2606 gcc_unreachable ();
2607 else if (NEXT_INSN (insn) && PREV_INSN (NEXT_INSN (insn)) != insn)
2608 gcc_unreachable ();
2609
2610 /* If it's the first insn visited, then the successor is ok. */
2611 if (!p)
2612 return false;
2613
2614 prev_insn = ILIST_INSN (p);
2615
2616 if (/* a backward edge. */
2617 INSN_SEQNO (insn) < INSN_SEQNO (prev_insn)
2618 /* is already visited. */
2619 || (INSN_SEQNO (insn) == INSN_SEQNO (prev_insn)
2620 && (ilist_is_in_p (p, insn)
2621 /* We can reach another fence here and still seqno of insn
2622 would be equal to seqno of prev_insn. This is possible
2623 when prev_insn is a previously created bookkeeping copy.
2624 In that case it'd get a seqno of insn. Thus, check here
2625 whether insn is in current fence too. */
2626 || IN_CURRENT_FENCE_P (insn)))
2627 /* Was already scheduled on this round. */
2628 || (INSN_SEQNO (insn) > INSN_SEQNO (prev_insn)
2629 && IN_CURRENT_FENCE_P (insn))
2630 /* An insn from another fence could also be
2631 scheduled earlier even if this insn is not in
2632 a fence list right now. Check INSN_SCHED_CYCLE instead. */
2633 || (!pipelining_p
2634 && INSN_SCHED_TIMES (insn) > 0))
2635 return true;
2636 else
2637 return false;
2638 }
2639
2640 /* Computes the av_set below the last bb insn INSN, doing all the 'dirty work'
2641 of handling multiple successors and properly merging its av_sets. P is
2642 the current path traversed. WS is the size of lookahead window.
2643 Return the av set computed. */
2644 static av_set_t
2645 compute_av_set_at_bb_end (insn_t insn, ilist_t p, int ws)
2646 {
2647 struct succs_info *sinfo;
2648 av_set_t expr_in_all_succ_branches = NULL;
2649 int is;
2650 insn_t succ, zero_succ = NULL;
2651 av_set_t av1 = NULL;
2652
2653 gcc_assert (sel_bb_end_p (insn));
2654
2655 /* Find different kind of successors needed for correct computing of
2656 SPEC and TARGET_AVAILABLE attributes. */
2657 sinfo = compute_succs_info (insn, SUCCS_NORMAL);
2658
2659 /* Debug output. */
2660 if (sched_verbose >= 6)
2661 {
2662 sel_print ("successors of bb end (%d): ", INSN_UID (insn));
2663 dump_insn_vector (sinfo->succs_ok);
2664 sel_print ("\n");
2665 if (sinfo->succs_ok_n != sinfo->all_succs_n)
2666 sel_print ("real successors num: %d\n", sinfo->all_succs_n);
2667 }
2668
2669 /* Add insn to to the tail of current path. */
2670 ilist_add (&p, insn);
2671
2672 for (is = 0; VEC_iterate (rtx, sinfo->succs_ok, is, succ); is++)
2673 {
2674 av_set_t succ_set;
2675
2676 /* We will edit SUCC_SET and EXPR_SPEC field of its elements. */
2677 succ_set = compute_av_set_inside_bb (succ, p, ws, true);
2678
2679 av_set_split_usefulness (succ_set,
2680 VEC_index (int, sinfo->probs_ok, is),
2681 sinfo->all_prob);
2682
2683 if (sinfo->all_succs_n > 1
2684 && sinfo->all_succs_n == sinfo->succs_ok_n)
2685 {
2686 /* Find EXPR'es that came from *all* successors and save them
2687 into expr_in_all_succ_branches. This set will be used later
2688 for calculating speculation attributes of EXPR'es. */
2689 if (is == 0)
2690 {
2691 expr_in_all_succ_branches = av_set_copy (succ_set);
2692
2693 /* Remember the first successor for later. */
2694 zero_succ = succ;
2695 }
2696 else
2697 {
2698 av_set_iterator i;
2699 expr_t expr;
2700
2701 FOR_EACH_EXPR_1 (expr, i, &expr_in_all_succ_branches)
2702 if (!av_set_is_in_p (succ_set, EXPR_VINSN (expr)))
2703 av_set_iter_remove (&i);
2704 }
2705 }
2706
2707 /* Union the av_sets. Check liveness restrictions on target registers
2708 in special case of two successors. */
2709 if (sinfo->succs_ok_n == 2 && is == 1)
2710 {
2711 basic_block bb0 = BLOCK_FOR_INSN (zero_succ);
2712 basic_block bb1 = BLOCK_FOR_INSN (succ);
2713
2714 gcc_assert (BB_LV_SET_VALID_P (bb0) && BB_LV_SET_VALID_P (bb1));
2715 av_set_union_and_live (&av1, &succ_set,
2716 BB_LV_SET (bb0),
2717 BB_LV_SET (bb1),
2718 insn);
2719 }
2720 else
2721 av_set_union_and_clear (&av1, &succ_set, insn);
2722 }
2723
2724 /* Check liveness restrictions via hard way when there are more than
2725 two successors. */
2726 if (sinfo->succs_ok_n > 2)
2727 for (is = 0; VEC_iterate (rtx, sinfo->succs_ok, is, succ); is++)
2728 {
2729 basic_block succ_bb = BLOCK_FOR_INSN (succ);
2730
2731 gcc_assert (BB_LV_SET_VALID_P (succ_bb));
2732 mark_unavailable_targets (av1, BB_AV_SET (succ_bb),
2733 BB_LV_SET (succ_bb));
2734 }
2735
2736 /* Finally, check liveness restrictions on paths leaving the region. */
2737 if (sinfo->all_succs_n > sinfo->succs_ok_n)
2738 for (is = 0; VEC_iterate (rtx, sinfo->succs_other, is, succ); is++)
2739 mark_unavailable_targets
2740 (av1, NULL, BB_LV_SET (BLOCK_FOR_INSN (succ)));
2741
2742 if (sinfo->all_succs_n > 1)
2743 {
2744 av_set_iterator i;
2745 expr_t expr;
2746
2747 /* Increase the spec attribute of all EXPR'es that didn't come
2748 from all successors. */
2749 FOR_EACH_EXPR (expr, i, av1)
2750 if (!av_set_is_in_p (expr_in_all_succ_branches, EXPR_VINSN (expr)))
2751 EXPR_SPEC (expr)++;
2752
2753 av_set_clear (&expr_in_all_succ_branches);
2754
2755 /* Do not move conditional branches through other
2756 conditional branches. So, remove all conditional
2757 branches from av_set if current operator is a conditional
2758 branch. */
2759 av_set_substract_cond_branches (&av1);
2760 }
2761
2762 ilist_remove (&p);
2763 free_succs_info (sinfo);
2764
2765 if (sched_verbose >= 6)
2766 {
2767 sel_print ("av_succs (%d): ", INSN_UID (insn));
2768 dump_av_set (av1);
2769 sel_print ("\n");
2770 }
2771
2772 return av1;
2773 }
2774
2775 /* This function computes av_set for the FIRST_INSN by dragging valid
2776 av_set through all basic block insns either from the end of basic block
2777 (computed using compute_av_set_at_bb_end) or from the insn on which
2778 MAX_WS was exceeded. It uses compute_av_set_at_bb_end to compute av_set
2779 below the basic block and handling conditional branches.
2780 FIRST_INSN - the basic block head, P - path consisting of the insns
2781 traversed on the way to the FIRST_INSN (the path is sparse, only bb heads
2782 and bb ends are added to the path), WS - current window size,
2783 NEED_COPY_P - true if we'll make a copy of av_set before returning it. */
2784 static av_set_t
2785 compute_av_set_inside_bb (insn_t first_insn, ilist_t p, int ws,
2786 bool need_copy_p)
2787 {
2788 insn_t cur_insn;
2789 int end_ws = ws;
2790 insn_t bb_end = sel_bb_end (BLOCK_FOR_INSN (first_insn));
2791 insn_t after_bb_end = NEXT_INSN (bb_end);
2792 insn_t last_insn;
2793 av_set_t av = NULL;
2794 basic_block cur_bb = BLOCK_FOR_INSN (first_insn);
2795
2796 /* Return NULL if insn is not on the legitimate downward path. */
2797 if (is_ineligible_successor (first_insn, p))
2798 {
2799 if (sched_verbose >= 6)
2800 sel_print ("Insn %d is ineligible_successor\n", INSN_UID (first_insn));
2801
2802 return NULL;
2803 }
2804
2805 /* If insn already has valid av(insn) computed, just return it. */
2806 if (AV_SET_VALID_P (first_insn))
2807 {
2808 av_set_t av_set;
2809
2810 if (sel_bb_head_p (first_insn))
2811 av_set = BB_AV_SET (BLOCK_FOR_INSN (first_insn));
2812 else
2813 av_set = NULL;
2814
2815 if (sched_verbose >= 6)
2816 {
2817 sel_print ("Insn %d has a valid av set: ", INSN_UID (first_insn));
2818 dump_av_set (av_set);
2819 sel_print ("\n");
2820 }
2821
2822 return need_copy_p ? av_set_copy (av_set) : av_set;
2823 }
2824
2825 ilist_add (&p, first_insn);
2826
2827 /* As the result after this loop have completed, in LAST_INSN we'll
2828 have the insn which has valid av_set to start backward computation
2829 from: it either will be NULL because on it the window size was exceeded
2830 or other valid av_set as returned by compute_av_set for the last insn
2831 of the basic block. */
2832 for (last_insn = first_insn; last_insn != after_bb_end;
2833 last_insn = NEXT_INSN (last_insn))
2834 {
2835 /* We may encounter valid av_set not only on bb_head, but also on
2836 those insns on which previously MAX_WS was exceeded. */
2837 if (AV_SET_VALID_P (last_insn))
2838 {
2839 if (sched_verbose >= 6)
2840 sel_print ("Insn %d has a valid empty av set\n", INSN_UID (last_insn));
2841 break;
2842 }
2843
2844 /* The special case: the last insn of the BB may be an
2845 ineligible_successor due to its SEQ_NO that was set on
2846 it as a bookkeeping. */
2847 if (last_insn != first_insn
2848 && is_ineligible_successor (last_insn, p))
2849 {
2850 if (sched_verbose >= 6)
2851 sel_print ("Insn %d is ineligible_successor\n", INSN_UID (last_insn));
2852 break;
2853 }
2854
2855 if (end_ws > max_ws)
2856 {
2857 /* We can reach max lookahead size at bb_header, so clean av_set
2858 first. */
2859 INSN_WS_LEVEL (last_insn) = global_level;
2860
2861 if (sched_verbose >= 6)
2862 sel_print ("Insn %d is beyond the software lookahead window size\n",
2863 INSN_UID (last_insn));
2864 break;
2865 }
2866
2867 end_ws++;
2868 }
2869
2870 /* Get the valid av_set into AV above the LAST_INSN to start backward
2871 computation from. It either will be empty av_set or av_set computed from
2872 the successors on the last insn of the current bb. */
2873 if (last_insn != after_bb_end)
2874 {
2875 av = NULL;
2876
2877 /* This is needed only to obtain av_sets that are identical to
2878 those computed by the old compute_av_set version. */
2879 if (last_insn == first_insn && !INSN_NOP_P (last_insn))
2880 av_set_add (&av, INSN_EXPR (last_insn));
2881 }
2882 else
2883 /* END_WS is always already increased by 1 if LAST_INSN == AFTER_BB_END. */
2884 av = compute_av_set_at_bb_end (bb_end, p, end_ws);
2885
2886 /* Compute av_set in AV starting from below the LAST_INSN up to
2887 location above the FIRST_INSN. */
2888 for (cur_insn = PREV_INSN (last_insn); cur_insn != PREV_INSN (first_insn);
2889 cur_insn = PREV_INSN (cur_insn))
2890 if (!INSN_NOP_P (cur_insn))
2891 {
2892 expr_t expr;
2893
2894 moveup_set_expr (&av, cur_insn, false);
2895
2896 /* If the expression for CUR_INSN is already in the set,
2897 replace it by the new one. */
2898 expr = av_set_lookup (av, INSN_VINSN (cur_insn));
2899 if (expr != NULL)
2900 {
2901 clear_expr (expr);
2902 copy_expr (expr, INSN_EXPR (cur_insn));
2903 }
2904 else
2905 av_set_add (&av, INSN_EXPR (cur_insn));
2906 }
2907
2908 /* Clear stale bb_av_set. */
2909 if (sel_bb_head_p (first_insn))
2910 {
2911 av_set_clear (&BB_AV_SET (cur_bb));
2912 BB_AV_SET (cur_bb) = need_copy_p ? av_set_copy (av) : av;
2913 BB_AV_LEVEL (cur_bb) = global_level;
2914 }
2915
2916 if (sched_verbose >= 6)
2917 {
2918 sel_print ("Computed av set for insn %d: ", INSN_UID (first_insn));
2919 dump_av_set (av);
2920 sel_print ("\n");
2921 }
2922
2923 ilist_remove (&p);
2924 return av;
2925 }
2926
2927 /* Compute av set before INSN.
2928 INSN - the current operation (actual rtx INSN)
2929 P - the current path, which is list of insns visited so far
2930 WS - software lookahead window size.
2931 UNIQUE_P - TRUE, if returned av_set will be changed, hence
2932 if we want to save computed av_set in s_i_d, we should make a copy of it.
2933
2934 In the resulting set we will have only expressions that don't have delay
2935 stalls and nonsubstitutable dependences. */
2936 static av_set_t
2937 compute_av_set (insn_t insn, ilist_t p, int ws, bool unique_p)
2938 {
2939 return compute_av_set_inside_bb (insn, p, ws, unique_p);
2940 }
2941
2942 /* Propagate a liveness set LV through INSN. */
2943 static void
2944 propagate_lv_set (regset lv, insn_t insn)
2945 {
2946 gcc_assert (INSN_P (insn));
2947
2948 if (INSN_NOP_P (insn))
2949 return;
2950
2951 df_simulate_one_insn_backwards (BLOCK_FOR_INSN (insn), insn, lv);
2952 }
2953
2954 /* Return livness set at the end of BB. */
2955 static regset
2956 compute_live_after_bb (basic_block bb)
2957 {
2958 edge e;
2959 edge_iterator ei;
2960 regset lv = get_clear_regset_from_pool ();
2961
2962 gcc_assert (!ignore_first);
2963
2964 FOR_EACH_EDGE (e, ei, bb->succs)
2965 if (sel_bb_empty_p (e->dest))
2966 {
2967 if (! BB_LV_SET_VALID_P (e->dest))
2968 {
2969 gcc_unreachable ();
2970 gcc_assert (BB_LV_SET (e->dest) == NULL);
2971 BB_LV_SET (e->dest) = compute_live_after_bb (e->dest);
2972 BB_LV_SET_VALID_P (e->dest) = true;
2973 }
2974 IOR_REG_SET (lv, BB_LV_SET (e->dest));
2975 }
2976 else
2977 IOR_REG_SET (lv, compute_live (sel_bb_head (e->dest)));
2978
2979 return lv;
2980 }
2981
2982 /* Compute the set of all live registers at the point before INSN and save
2983 it at INSN if INSN is bb header. */
2984 regset
2985 compute_live (insn_t insn)
2986 {
2987 basic_block bb = BLOCK_FOR_INSN (insn);
2988 insn_t final, temp;
2989 regset lv;
2990
2991 /* Return the valid set if we're already on it. */
2992 if (!ignore_first)
2993 {
2994 regset src = NULL;
2995
2996 if (sel_bb_head_p (insn) && BB_LV_SET_VALID_P (bb))
2997 src = BB_LV_SET (bb);
2998 else
2999 {
3000 gcc_assert (in_current_region_p (bb));
3001 if (INSN_LIVE_VALID_P (insn))
3002 src = INSN_LIVE (insn);
3003 }
3004
3005 if (src)
3006 {
3007 lv = get_regset_from_pool ();
3008 COPY_REG_SET (lv, src);
3009
3010 if (sel_bb_head_p (insn) && ! BB_LV_SET_VALID_P (bb))
3011 {
3012 COPY_REG_SET (BB_LV_SET (bb), lv);
3013 BB_LV_SET_VALID_P (bb) = true;
3014 }
3015
3016 return_regset_to_pool (lv);
3017 return lv;
3018 }
3019 }
3020
3021 /* We've skipped the wrong lv_set. Don't skip the right one. */
3022 ignore_first = false;
3023 gcc_assert (in_current_region_p (bb));
3024
3025 /* Find a valid LV set in this block or below, if needed.
3026 Start searching from the next insn: either ignore_first is true, or
3027 INSN doesn't have a correct live set. */
3028 temp = NEXT_INSN (insn);
3029 final = NEXT_INSN (BB_END (bb));
3030 while (temp != final && ! INSN_LIVE_VALID_P (temp))
3031 temp = NEXT_INSN (temp);
3032 if (temp == final)
3033 {
3034 lv = compute_live_after_bb (bb);
3035 temp = PREV_INSN (temp);
3036 }
3037 else
3038 {
3039 lv = get_regset_from_pool ();
3040 COPY_REG_SET (lv, INSN_LIVE (temp));
3041 }
3042
3043 /* Put correct lv sets on the insns which have bad sets. */
3044 final = PREV_INSN (insn);
3045 while (temp != final)
3046 {
3047 propagate_lv_set (lv, temp);
3048 COPY_REG_SET (INSN_LIVE (temp), lv);
3049 INSN_LIVE_VALID_P (temp) = true;
3050 temp = PREV_INSN (temp);
3051 }
3052
3053 /* Also put it in a BB. */
3054 if (sel_bb_head_p (insn))
3055 {
3056 basic_block bb = BLOCK_FOR_INSN (insn);
3057
3058 COPY_REG_SET (BB_LV_SET (bb), lv);
3059 BB_LV_SET_VALID_P (bb) = true;
3060 }
3061
3062 /* We return LV to the pool, but will not clear it there. Thus we can
3063 legimatelly use LV till the next use of regset_pool_get (). */
3064 return_regset_to_pool (lv);
3065 return lv;
3066 }
3067
3068 /* Update liveness sets for INSN. */
3069 static inline void
3070 update_liveness_on_insn (rtx insn)
3071 {
3072 ignore_first = true;
3073 compute_live (insn);
3074 }
3075
3076 /* Compute liveness below INSN and write it into REGS. */
3077 static inline void
3078 compute_live_below_insn (rtx insn, regset regs)
3079 {
3080 rtx succ;
3081 succ_iterator si;
3082
3083 FOR_EACH_SUCC_1 (succ, si, insn, SUCCS_ALL)
3084 IOR_REG_SET (regs, compute_live (succ));
3085 }
3086
3087 /* Update the data gathered in av and lv sets starting from INSN. */
3088 static void
3089 update_data_sets (rtx insn)
3090 {
3091 update_liveness_on_insn (insn);
3092 if (sel_bb_head_p (insn))
3093 {
3094 gcc_assert (AV_LEVEL (insn) != 0);
3095 BB_AV_LEVEL (BLOCK_FOR_INSN (insn)) = -1;
3096 compute_av_set (insn, NULL, 0, 0);
3097 }
3098 }
3099
3100
3101 /* Helper for move_op () and find_used_regs ().
3102 Return speculation type for which a check should be created on the place
3103 of INSN. EXPR is one of the original ops we are searching for. */
3104 static ds_t
3105 get_spec_check_type_for_insn (insn_t insn, expr_t expr)
3106 {
3107 ds_t to_check_ds;
3108 ds_t already_checked_ds = EXPR_SPEC_DONE_DS (INSN_EXPR (insn));
3109
3110 to_check_ds = EXPR_SPEC_TO_CHECK_DS (expr);
3111
3112 if (targetm.sched.get_insn_checked_ds)
3113 already_checked_ds |= targetm.sched.get_insn_checked_ds (insn);
3114
3115 if (spec_info != NULL
3116 && (spec_info->flags & SEL_SCHED_SPEC_DONT_CHECK_CONTROL))
3117 already_checked_ds |= BEGIN_CONTROL;
3118
3119 already_checked_ds = ds_get_speculation_types (already_checked_ds);
3120
3121 to_check_ds &= ~already_checked_ds;
3122
3123 return to_check_ds;
3124 }
3125
3126 /* Find the set of registers that are unavailable for storing expres
3127 while moving ORIG_OPS up on the path starting from INSN due to
3128 liveness (USED_REGS) or hardware restrictions (REG_RENAME_P).
3129
3130 All the original operations found during the traversal are saved in the
3131 ORIGINAL_INSNS list.
3132
3133 REG_RENAME_P denotes the set of hardware registers that
3134 can not be used with renaming due to the register class restrictions,
3135 mode restrictions and other (the register we'll choose should be
3136 compatible class with the original uses, shouldn't be in call_used_regs,
3137 should be HARD_REGNO_RENAME_OK etc).
3138
3139 Returns TRUE if we've found all original insns, FALSE otherwise.
3140
3141 This function utilizes code_motion_path_driver (formerly find_used_regs_1)
3142 to traverse the code motion paths. This helper function finds registers
3143 that are not available for storing expres while moving ORIG_OPS up on the
3144 path starting from INSN. A register considered as used on the moving path,
3145 if one of the following conditions is not satisfied:
3146
3147 (1) a register not set or read on any path from xi to an instance of
3148 the original operation,
3149 (2) not among the live registers of the point immediately following the
3150 first original operation on a given downward path, except for the
3151 original target register of the operation,
3152 (3) not live on the other path of any conditional branch that is passed
3153 by the operation, in case original operations are not present on
3154 both paths of the conditional branch.
3155
3156 All the original operations found during the traversal are saved in the
3157 ORIGINAL_INSNS list.
3158
3159 REG_RENAME_P->CROSSES_CALL is true, if there is a call insn on the path
3160 from INSN to original insn. In this case CALL_USED_REG_SET will be added
3161 to unavailable hard regs at the point original operation is found. */
3162
3163 static bool
3164 find_used_regs (insn_t insn, av_set_t orig_ops, regset used_regs,
3165 struct reg_rename *reg_rename_p, def_list_t *original_insns)
3166 {
3167 def_list_iterator i;
3168 def_t def;
3169 int res;
3170 bool needs_spec_check_p = false;
3171 expr_t expr;
3172 av_set_iterator expr_iter;
3173 struct fur_static_params sparams;
3174 struct cmpd_local_params lparams;
3175
3176 /* We haven't visited any blocks yet. */
3177 bitmap_clear (code_motion_visited_blocks);
3178
3179 /* Init parameters for code_motion_path_driver. */
3180 sparams.crosses_call = false;
3181 sparams.original_insns = original_insns;
3182 sparams.used_regs = used_regs;
3183
3184 /* Set the appropriate hooks and data. */
3185 code_motion_path_driver_info = &fur_hooks;
3186
3187 res = code_motion_path_driver (insn, orig_ops, NULL, &lparams, &sparams);
3188
3189 reg_rename_p->crosses_call |= sparams.crosses_call;
3190
3191 gcc_assert (res == 1);
3192 gcc_assert (original_insns && *original_insns);
3193
3194 /* ??? We calculate whether an expression needs a check when computing
3195 av sets. This information is not as precise as it could be due to
3196 merging this bit in merge_expr. We can do better in find_used_regs,
3197 but we want to avoid multiple traversals of the same code motion
3198 paths. */
3199 FOR_EACH_EXPR (expr, expr_iter, orig_ops)
3200 needs_spec_check_p |= EXPR_NEEDS_SPEC_CHECK_P (expr);
3201
3202 /* Mark hardware regs in REG_RENAME_P that are not suitable
3203 for renaming expr in INSN due to hardware restrictions (register class,
3204 modes compatibility etc). */
3205 FOR_EACH_DEF (def, i, *original_insns)
3206 {
3207 vinsn_t vinsn = INSN_VINSN (def->orig_insn);
3208
3209 if (VINSN_SEPARABLE_P (vinsn))
3210 mark_unavailable_hard_regs (def, reg_rename_p, used_regs);
3211
3212 /* Do not allow clobbering of ld.[sa] address in case some of the
3213 original operations need a check. */
3214 if (needs_spec_check_p)
3215 IOR_REG_SET (used_regs, VINSN_REG_USES (vinsn));
3216 }
3217
3218 return true;
3219 }
3220
3221
3222 /* Functions to choose the best insn from available ones. */
3223
3224 /* Adjusts the priority for EXPR using the backend *_adjust_priority hook. */
3225 static int
3226 sel_target_adjust_priority (expr_t expr)
3227 {
3228 int priority = EXPR_PRIORITY (expr);
3229 int new_priority;
3230
3231 if (targetm.sched.adjust_priority)
3232 new_priority = targetm.sched.adjust_priority (EXPR_INSN_RTX (expr), priority);
3233 else
3234 new_priority = priority;
3235
3236 /* If the priority has changed, adjust EXPR_PRIORITY_ADJ accordingly. */
3237 EXPR_PRIORITY_ADJ (expr) = new_priority - EXPR_PRIORITY (expr);
3238
3239 gcc_assert (EXPR_PRIORITY_ADJ (expr) >= 0);
3240
3241 if (sched_verbose >= 2)
3242 sel_print ("sel_target_adjust_priority: insn %d, %d +%d = %d.\n",
3243 INSN_UID (EXPR_INSN_RTX (expr)), EXPR_PRIORITY (expr),
3244 EXPR_PRIORITY_ADJ (expr), new_priority);
3245
3246 return new_priority;
3247 }
3248
3249 /* Rank two available exprs for schedule. Never return 0 here. */
3250 static int
3251 sel_rank_for_schedule (const void *x, const void *y)
3252 {
3253 expr_t tmp = *(const expr_t *) y;
3254 expr_t tmp2 = *(const expr_t *) x;
3255 insn_t tmp_insn, tmp2_insn;
3256 vinsn_t tmp_vinsn, tmp2_vinsn;
3257 int val;
3258
3259 tmp_vinsn = EXPR_VINSN (tmp);
3260 tmp2_vinsn = EXPR_VINSN (tmp2);
3261 tmp_insn = EXPR_INSN_RTX (tmp);
3262 tmp2_insn = EXPR_INSN_RTX (tmp2);
3263
3264 /* Prefer SCHED_GROUP_P insns to any others. */
3265 if (SCHED_GROUP_P (tmp_insn) != SCHED_GROUP_P (tmp2_insn))
3266 {
3267 if (VINSN_UNIQUE_P (tmp_vinsn) && VINSN_UNIQUE_P (tmp2_vinsn))
3268 return SCHED_GROUP_P (tmp2_insn) ? 1 : -1;
3269
3270 /* Now uniqueness means SCHED_GROUP_P is set, because schedule groups
3271 cannot be cloned. */
3272 if (VINSN_UNIQUE_P (tmp2_vinsn))
3273 return 1;
3274 return -1;
3275 }
3276
3277 /* Discourage scheduling of speculative checks. */
3278 val = (sel_insn_is_speculation_check (tmp_insn)
3279 - sel_insn_is_speculation_check (tmp2_insn));
3280 if (val)
3281 return val;
3282
3283 /* Prefer not scheduled insn over scheduled one. */
3284 if (EXPR_SCHED_TIMES (tmp) > 0 || EXPR_SCHED_TIMES (tmp2) > 0)
3285 {
3286 val = EXPR_SCHED_TIMES (tmp) - EXPR_SCHED_TIMES (tmp2);
3287 if (val)
3288 return val;
3289 }
3290
3291 /* Prefer jump over non-jump instruction. */
3292 if (control_flow_insn_p (tmp_insn) && !control_flow_insn_p (tmp2_insn))
3293 return -1;
3294 else if (control_flow_insn_p (tmp2_insn) && !control_flow_insn_p (tmp_insn))
3295 return 1;
3296
3297 /* Prefer an expr with greater priority. */
3298 if (EXPR_USEFULNESS (tmp) != 0 && EXPR_USEFULNESS (tmp2) != 0)
3299 {
3300 int p2 = EXPR_PRIORITY (tmp2) + EXPR_PRIORITY_ADJ (tmp2),
3301 p1 = EXPR_PRIORITY (tmp) + EXPR_PRIORITY_ADJ (tmp);
3302
3303 val = p2 * EXPR_USEFULNESS (tmp2) - p1 * EXPR_USEFULNESS (tmp);
3304 }
3305 else
3306 val = EXPR_PRIORITY (tmp2) - EXPR_PRIORITY (tmp)
3307 + EXPR_PRIORITY_ADJ (tmp2) - EXPR_PRIORITY_ADJ (tmp);
3308 if (val)
3309 return val;
3310
3311 if (spec_info != NULL && spec_info->mask != 0)
3312 /* This code was taken from haifa-sched.c: rank_for_schedule (). */
3313 {
3314 ds_t ds1, ds2;
3315 dw_t dw1, dw2;
3316 int dw;
3317
3318 ds1 = EXPR_SPEC_DONE_DS (tmp);
3319 if (ds1)
3320 dw1 = ds_weak (ds1);
3321 else
3322 dw1 = NO_DEP_WEAK;
3323
3324 ds2 = EXPR_SPEC_DONE_DS (tmp2);
3325 if (ds2)
3326 dw2 = ds_weak (ds2);
3327 else
3328 dw2 = NO_DEP_WEAK;
3329
3330 dw = dw2 - dw1;
3331 if (dw > (NO_DEP_WEAK / 8) || dw < -(NO_DEP_WEAK / 8))
3332 return dw;
3333 }
3334
3335 tmp_insn = EXPR_INSN_RTX (tmp);
3336 tmp2_insn = EXPR_INSN_RTX (tmp2);
3337
3338 /* Prefer an old insn to a bookkeeping insn. */
3339 if (INSN_UID (tmp_insn) < first_emitted_uid
3340 && INSN_UID (tmp2_insn) >= first_emitted_uid)
3341 return -1;
3342 if (INSN_UID (tmp_insn) >= first_emitted_uid
3343 && INSN_UID (tmp2_insn) < first_emitted_uid)
3344 return 1;
3345
3346 /* Prefer an insn with smaller UID, as a last resort.
3347 We can't safely use INSN_LUID as it is defined only for those insns
3348 that are in the stream. */
3349 return INSN_UID (tmp_insn) - INSN_UID (tmp2_insn);
3350 }
3351
3352 /* Filter out expressions from av set pointed to by AV_PTR
3353 that are pipelined too many times. */
3354 static void
3355 process_pipelined_exprs (av_set_t *av_ptr)
3356 {
3357 expr_t expr;
3358 av_set_iterator si;
3359
3360 /* Don't pipeline already pipelined code as that would increase
3361 number of unnecessary register moves. */
3362 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3363 {
3364 if (EXPR_SCHED_TIMES (expr)
3365 >= PARAM_VALUE (PARAM_SELSCHED_MAX_SCHED_TIMES))
3366 av_set_iter_remove (&si);
3367 }
3368 }
3369
3370 /* Filter speculative insns from AV_PTR if we don't want them. */
3371 static void
3372 process_spec_exprs (av_set_t *av_ptr)
3373 {
3374 bool try_data_p = true;
3375 bool try_control_p = true;
3376 expr_t expr;
3377 av_set_iterator si;
3378
3379 if (spec_info == NULL)
3380 return;
3381
3382 /* Scan *AV_PTR to find out if we want to consider speculative
3383 instructions for scheduling. */
3384 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3385 {
3386 ds_t ds;
3387
3388 ds = EXPR_SPEC_DONE_DS (expr);
3389
3390 /* The probability of a success is too low - don't speculate. */
3391 if ((ds & SPECULATIVE)
3392 && (ds_weak (ds) < spec_info->data_weakness_cutoff
3393 || EXPR_USEFULNESS (expr) < spec_info->control_weakness_cutoff
3394 || (pipelining_p && false
3395 && (ds & DATA_SPEC)
3396 && (ds & CONTROL_SPEC))))
3397 {
3398 av_set_iter_remove (&si);
3399 continue;
3400 }
3401
3402 if ((spec_info->flags & PREFER_NON_DATA_SPEC)
3403 && !(ds & BEGIN_DATA))
3404 try_data_p = false;
3405
3406 if ((spec_info->flags & PREFER_NON_CONTROL_SPEC)
3407 && !(ds & BEGIN_CONTROL))
3408 try_control_p = false;
3409 }
3410
3411 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3412 {
3413 ds_t ds;
3414
3415 ds = EXPR_SPEC_DONE_DS (expr);
3416
3417 if (ds & SPECULATIVE)
3418 {
3419 if ((ds & BEGIN_DATA) && !try_data_p)
3420 /* We don't want any data speculative instructions right
3421 now. */
3422 av_set_iter_remove (&si);
3423
3424 if ((ds & BEGIN_CONTROL) && !try_control_p)
3425 /* We don't want any control speculative instructions right
3426 now. */
3427 av_set_iter_remove (&si);
3428 }
3429 }
3430 }
3431
3432 /* Search for any use-like insns in AV_PTR and decide on scheduling
3433 them. Return one when found, and NULL otherwise.
3434 Note that we check here whether a USE could be scheduled to avoid
3435 an infinite loop later. */
3436 static expr_t
3437 process_use_exprs (av_set_t *av_ptr)
3438 {
3439 expr_t expr;
3440 av_set_iterator si;
3441 bool uses_present_p = false;
3442 bool try_uses_p = true;
3443
3444 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3445 {
3446 /* This will also initialize INSN_CODE for later use. */
3447 if (recog_memoized (EXPR_INSN_RTX (expr)) < 0)
3448 {
3449 /* If we have a USE in *AV_PTR that was not scheduled yet,
3450 do so because it will do good only. */
3451 if (EXPR_SCHED_TIMES (expr) <= 0)
3452 {
3453 if (EXPR_TARGET_AVAILABLE (expr) == 1)
3454 return expr;
3455
3456 av_set_iter_remove (&si);
3457 }
3458 else
3459 {
3460 gcc_assert (pipelining_p);
3461
3462 uses_present_p = true;
3463 }
3464 }
3465 else
3466 try_uses_p = false;
3467 }
3468
3469 if (uses_present_p)
3470 {
3471 /* If we don't want to schedule any USEs right now and we have some
3472 in *AV_PTR, remove them, else just return the first one found. */
3473 if (!try_uses_p)
3474 {
3475 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3476 if (INSN_CODE (EXPR_INSN_RTX (expr)) < 0)
3477 av_set_iter_remove (&si);
3478 }
3479 else
3480 {
3481 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3482 {
3483 gcc_assert (INSN_CODE (EXPR_INSN_RTX (expr)) < 0);
3484
3485 if (EXPR_TARGET_AVAILABLE (expr) == 1)
3486 return expr;
3487
3488 av_set_iter_remove (&si);
3489 }
3490 }
3491 }
3492
3493 return NULL;
3494 }
3495
3496 /* Lookup EXPR in VINSN_VEC and return TRUE if found. */
3497 static bool
3498 vinsn_vec_has_expr_p (vinsn_vec_t vinsn_vec, expr_t expr)
3499 {
3500 vinsn_t vinsn;
3501 int n;
3502
3503 for (n = 0; VEC_iterate (vinsn_t, vinsn_vec, n, vinsn); n++)
3504 if (VINSN_SEPARABLE_P (vinsn))
3505 {
3506 if (vinsn_equal_p (vinsn, EXPR_VINSN (expr)))
3507 return true;
3508 }
3509 else
3510 {
3511 /* For non-separable instructions, the blocking insn can have
3512 another pattern due to substitution, and we can't choose
3513 different register as in the above case. Check all registers
3514 being written instead. */
3515 if (bitmap_intersect_p (VINSN_REG_SETS (vinsn),
3516 VINSN_REG_SETS (EXPR_VINSN (expr))))
3517 return true;
3518 }
3519
3520 return false;
3521 }
3522
3523 #ifdef ENABLE_CHECKING
3524 /* Return true if either of expressions from ORIG_OPS can be blocked
3525 by previously created bookkeeping code. STATIC_PARAMS points to static
3526 parameters of move_op. */
3527 static bool
3528 av_set_could_be_blocked_by_bookkeeping_p (av_set_t orig_ops, void *static_params)
3529 {
3530 expr_t expr;
3531 av_set_iterator iter;
3532 moveop_static_params_p sparams;
3533
3534 /* This checks that expressions in ORIG_OPS are not blocked by bookkeeping
3535 created while scheduling on another fence. */
3536 FOR_EACH_EXPR (expr, iter, orig_ops)
3537 if (vinsn_vec_has_expr_p (vec_bookkeeping_blocked_vinsns, expr))
3538 return true;
3539
3540 gcc_assert (code_motion_path_driver_info == &move_op_hooks);
3541 sparams = (moveop_static_params_p) static_params;
3542
3543 /* Expressions can be also blocked by bookkeeping created during current
3544 move_op. */
3545 if (bitmap_bit_p (current_copies, INSN_UID (sparams->failed_insn)))
3546 FOR_EACH_EXPR (expr, iter, orig_ops)
3547 if (moveup_expr_cached (expr, sparams->failed_insn, false) != MOVEUP_EXPR_NULL)
3548 return true;
3549
3550 /* Expressions in ORIG_OPS may have wrong destination register due to
3551 renaming. Check with the right register instead. */
3552 if (sparams->dest && REG_P (sparams->dest))
3553 {
3554 unsigned regno = REGNO (sparams->dest);
3555 vinsn_t failed_vinsn = INSN_VINSN (sparams->failed_insn);
3556
3557 if (bitmap_bit_p (VINSN_REG_SETS (failed_vinsn), regno)
3558 || bitmap_bit_p (VINSN_REG_USES (failed_vinsn), regno)
3559 || bitmap_bit_p (VINSN_REG_CLOBBERS (failed_vinsn), regno))
3560 return true;
3561 }
3562
3563 return false;
3564 }
3565 #endif
3566
3567 /* Clear VINSN_VEC and detach vinsns. */
3568 static void
3569 vinsn_vec_clear (vinsn_vec_t *vinsn_vec)
3570 {
3571 unsigned len = VEC_length (vinsn_t, *vinsn_vec);
3572 if (len > 0)
3573 {
3574 vinsn_t vinsn;
3575 int n;
3576
3577 for (n = 0; VEC_iterate (vinsn_t, *vinsn_vec, n, vinsn); n++)
3578 vinsn_detach (vinsn);
3579 VEC_block_remove (vinsn_t, *vinsn_vec, 0, len);
3580 }
3581 }
3582
3583 /* Add the vinsn of EXPR to the VINSN_VEC. */
3584 static void
3585 vinsn_vec_add (vinsn_vec_t *vinsn_vec, expr_t expr)
3586 {
3587 vinsn_attach (EXPR_VINSN (expr));
3588 VEC_safe_push (vinsn_t, heap, *vinsn_vec, EXPR_VINSN (expr));
3589 }
3590
3591 /* Free the vector representing blocked expressions. */
3592 static void
3593 vinsn_vec_free (vinsn_vec_t *vinsn_vec)
3594 {
3595 if (*vinsn_vec)
3596 VEC_free (vinsn_t, heap, *vinsn_vec);
3597 }
3598
3599 /* Increase EXPR_PRIORITY_ADJ for INSN by AMOUNT. */
3600
3601 void sel_add_to_insn_priority (rtx insn, int amount)
3602 {
3603 EXPR_PRIORITY_ADJ (INSN_EXPR (insn)) += amount;
3604
3605 if (sched_verbose >= 2)
3606 sel_print ("sel_add_to_insn_priority: insn %d, by %d (now %d+%d).\n",
3607 INSN_UID (insn), amount, EXPR_PRIORITY (INSN_EXPR (insn)),
3608 EXPR_PRIORITY_ADJ (INSN_EXPR (insn)));
3609 }
3610
3611 /* Turn AV into a vector, filter inappropriate insns and sort it. Return
3612 true if there is something to schedule. BNDS and FENCE are current
3613 boundaries and fence, respectively. If we need to stall for some cycles
3614 before an expr from AV would become available, write this number to
3615 *PNEED_STALL. */
3616 static bool
3617 fill_vec_av_set (av_set_t av, blist_t bnds, fence_t fence,
3618 int *pneed_stall)
3619 {
3620 av_set_iterator si;
3621 expr_t expr;
3622 int sched_next_worked = 0, stalled, n;
3623 static int av_max_prio, est_ticks_till_branch;
3624 int min_need_stall = -1;
3625 deps_t dc = BND_DC (BLIST_BND (bnds));
3626
3627 /* Bail out early when the ready list contained only USEs/CLOBBERs that are
3628 already scheduled. */
3629 if (av == NULL)
3630 return false;
3631
3632 /* Empty vector from the previous stuff. */
3633 if (VEC_length (expr_t, vec_av_set) > 0)
3634 VEC_block_remove (expr_t, vec_av_set, 0, VEC_length (expr_t, vec_av_set));
3635
3636 /* Turn the set into a vector for sorting and call sel_target_adjust_priority
3637 for each insn. */
3638 gcc_assert (VEC_empty (expr_t, vec_av_set));
3639 FOR_EACH_EXPR (expr, si, av)
3640 {
3641 VEC_safe_push (expr_t, heap, vec_av_set, expr);
3642
3643 gcc_assert (EXPR_PRIORITY_ADJ (expr) == 0 || *pneed_stall);
3644
3645 /* Adjust priority using target backend hook. */
3646 sel_target_adjust_priority (expr);
3647 }
3648
3649 /* Sort the vector. */
3650 qsort (VEC_address (expr_t, vec_av_set), VEC_length (expr_t, vec_av_set),
3651 sizeof (expr_t), sel_rank_for_schedule);
3652
3653 /* We record maximal priority of insns in av set for current instruction
3654 group. */
3655 if (FENCE_STARTS_CYCLE_P (fence))
3656 av_max_prio = est_ticks_till_branch = INT_MIN;
3657
3658 /* Filter out inappropriate expressions. Loop's direction is reversed to
3659 visit "best" instructions first. We assume that VEC_unordered_remove
3660 moves last element in place of one being deleted. */
3661 for (n = VEC_length (expr_t, vec_av_set) - 1, stalled = 0; n >= 0; n--)
3662 {
3663 expr_t expr = VEC_index (expr_t, vec_av_set, n);
3664 insn_t insn = EXPR_INSN_RTX (expr);
3665 char target_available;
3666 bool is_orig_reg_p = true;
3667 int need_cycles, new_prio;
3668
3669 /* Don't allow any insns other than from SCHED_GROUP if we have one. */
3670 if (FENCE_SCHED_NEXT (fence) && insn != FENCE_SCHED_NEXT (fence))
3671 {
3672 VEC_unordered_remove (expr_t, vec_av_set, n);
3673 continue;
3674 }
3675
3676 /* Set number of sched_next insns (just in case there
3677 could be several). */
3678 if (FENCE_SCHED_NEXT (fence))
3679 sched_next_worked++;
3680
3681 /* Check all liveness requirements and try renaming.
3682 FIXME: try to minimize calls to this. */
3683 target_available = EXPR_TARGET_AVAILABLE (expr);
3684
3685 /* If insn was already scheduled on the current fence,
3686 set TARGET_AVAILABLE to -1 no matter what expr's attribute says. */
3687 if (vinsn_vec_has_expr_p (vec_target_unavailable_vinsns, expr))
3688 target_available = -1;
3689
3690 /* If the availability of the EXPR is invalidated by the insertion of
3691 bookkeeping earlier, make sure that we won't choose this expr for
3692 scheduling if it's not separable, and if it is separable, then
3693 we have to recompute the set of available registers for it. */
3694 if (vinsn_vec_has_expr_p (vec_bookkeeping_blocked_vinsns, expr))
3695 {
3696 VEC_unordered_remove (expr_t, vec_av_set, n);
3697 if (sched_verbose >= 4)
3698 sel_print ("Expr %d is blocked by bookkeeping inserted earlier\n",
3699 INSN_UID (insn));
3700 continue;
3701 }
3702
3703 if (target_available == true)
3704 {
3705 /* Do nothing -- we can use an existing register. */
3706 is_orig_reg_p = EXPR_SEPARABLE_P (expr);
3707 }
3708 else if (/* Non-separable instruction will never
3709 get another register. */
3710 (target_available == false
3711 && !EXPR_SEPARABLE_P (expr))
3712 /* Don't try to find a register for low-priority expression. */
3713 || (int) VEC_length (expr_t, vec_av_set) - 1 - n >= max_insns_to_rename
3714 /* ??? FIXME: Don't try to rename data speculation. */
3715 || (EXPR_SPEC_DONE_DS (expr) & BEGIN_DATA)
3716 || ! find_best_reg_for_expr (expr, bnds, &is_orig_reg_p))
3717 {
3718 VEC_unordered_remove (expr_t, vec_av_set, n);
3719 if (sched_verbose >= 4)
3720 sel_print ("Expr %d has no suitable target register\n",
3721 INSN_UID (insn));
3722 continue;
3723 }
3724
3725 /* Filter expressions that need to be renamed or speculated when
3726 pipelining, because compensating register copies or speculation
3727 checks are likely to be placed near the beginning of the loop,
3728 causing a stall. */
3729 if (pipelining_p && EXPR_ORIG_SCHED_CYCLE (expr) > 0
3730 && (!is_orig_reg_p || EXPR_SPEC_DONE_DS (expr) != 0))
3731 {
3732 /* Estimation of number of cycles until loop branch for
3733 renaming/speculation to be successful. */
3734 int need_n_ticks_till_branch = sel_vinsn_cost (EXPR_VINSN (expr));
3735
3736 if ((int) current_loop_nest->ninsns < 9)
3737 {
3738 VEC_unordered_remove (expr_t, vec_av_set, n);
3739 if (sched_verbose >= 4)
3740 sel_print ("Pipelining expr %d will likely cause stall\n",
3741 INSN_UID (insn));
3742 continue;
3743 }
3744
3745 if ((int) current_loop_nest->ninsns - num_insns_scheduled
3746 < need_n_ticks_till_branch * issue_rate / 2
3747 && est_ticks_till_branch < need_n_ticks_till_branch)
3748 {
3749 VEC_unordered_remove (expr_t, vec_av_set, n);
3750 if (sched_verbose >= 4)
3751 sel_print ("Pipelining expr %d will likely cause stall\n",
3752 INSN_UID (insn));
3753 continue;
3754 }
3755 }
3756
3757 /* We want to schedule speculation checks as late as possible. Discard
3758 them from av set if there are instructions with higher priority. */
3759 if (sel_insn_is_speculation_check (insn)
3760 && EXPR_PRIORITY (expr) < av_max_prio)
3761 {
3762 stalled++;
3763 min_need_stall = min_need_stall < 0 ? 1 : MIN (min_need_stall, 1);
3764 VEC_unordered_remove (expr_t, vec_av_set, n);
3765 if (sched_verbose >= 4)
3766 sel_print ("Delaying speculation check %d until its first use\n",
3767 INSN_UID (insn));
3768 continue;
3769 }
3770
3771 /* Ignore EXPRs available from pipelining to update AV_MAX_PRIO. */
3772 if (EXPR_ORIG_SCHED_CYCLE (expr) <= 0)
3773 av_max_prio = MAX (av_max_prio, EXPR_PRIORITY (expr));
3774
3775 /* Don't allow any insns whose data is not yet ready.
3776 Check first whether we've already tried them and failed. */
3777 if (INSN_UID (insn) < FENCE_READY_TICKS_SIZE (fence))
3778 {
3779 need_cycles = (FENCE_READY_TICKS (fence)[INSN_UID (insn)]
3780 - FENCE_CYCLE (fence));
3781 if (EXPR_ORIG_SCHED_CYCLE (expr) <= 0)
3782 est_ticks_till_branch = MAX (est_ticks_till_branch,
3783 EXPR_PRIORITY (expr) + need_cycles);
3784
3785 if (need_cycles > 0)
3786 {
3787 stalled++;
3788 min_need_stall = (min_need_stall < 0
3789 ? need_cycles
3790 : MIN (min_need_stall, need_cycles));
3791 VEC_unordered_remove (expr_t, vec_av_set, n);
3792
3793 if (sched_verbose >= 4)
3794 sel_print ("Expr %d is not ready until cycle %d (cached)\n",
3795 INSN_UID (insn),
3796 FENCE_READY_TICKS (fence)[INSN_UID (insn)]);
3797 continue;
3798 }
3799 }
3800
3801 /* Now resort to dependence analysis to find whether EXPR might be
3802 stalled due to dependencies from FENCE's context. */
3803 need_cycles = tick_check_p (expr, dc, fence);
3804 new_prio = EXPR_PRIORITY (expr) + EXPR_PRIORITY_ADJ (expr) + need_cycles;
3805
3806 if (EXPR_ORIG_SCHED_CYCLE (expr) <= 0)
3807 est_ticks_till_branch = MAX (est_ticks_till_branch,
3808 new_prio);
3809
3810 if (need_cycles > 0)
3811 {
3812 if (INSN_UID (insn) >= FENCE_READY_TICKS_SIZE (fence))
3813 {
3814 int new_size = INSN_UID (insn) * 3 / 2;
3815
3816 FENCE_READY_TICKS (fence)
3817 = (int *) xrecalloc (FENCE_READY_TICKS (fence),
3818 new_size, FENCE_READY_TICKS_SIZE (fence),
3819 sizeof (int));
3820 }
3821 FENCE_READY_TICKS (fence)[INSN_UID (insn)]
3822 = FENCE_CYCLE (fence) + need_cycles;
3823
3824 stalled++;
3825 min_need_stall = (min_need_stall < 0
3826 ? need_cycles
3827 : MIN (min_need_stall, need_cycles));
3828
3829 VEC_unordered_remove (expr_t, vec_av_set, n);
3830
3831 if (sched_verbose >= 4)
3832 sel_print ("Expr %d is not ready yet until cycle %d\n",
3833 INSN_UID (insn),
3834 FENCE_READY_TICKS (fence)[INSN_UID (insn)]);
3835 continue;
3836 }
3837
3838 if (sched_verbose >= 4)
3839 sel_print ("Expr %d is ok\n", INSN_UID (insn));
3840 min_need_stall = 0;
3841 }
3842
3843 /* Clear SCHED_NEXT. */
3844 if (FENCE_SCHED_NEXT (fence))
3845 {
3846 gcc_assert (sched_next_worked == 1);
3847 FENCE_SCHED_NEXT (fence) = NULL_RTX;
3848 }
3849
3850 /* No need to stall if this variable was not initialized. */
3851 if (min_need_stall < 0)
3852 min_need_stall = 0;
3853
3854 if (VEC_empty (expr_t, vec_av_set))
3855 {
3856 /* We need to set *pneed_stall here, because later we skip this code
3857 when ready list is empty. */
3858 *pneed_stall = min_need_stall;
3859 return false;
3860 }
3861 else
3862 gcc_assert (min_need_stall == 0);
3863
3864 /* Sort the vector. */
3865 qsort (VEC_address (expr_t, vec_av_set), VEC_length (expr_t, vec_av_set),
3866 sizeof (expr_t), sel_rank_for_schedule);
3867
3868 if (sched_verbose >= 4)
3869 {
3870 sel_print ("Total ready exprs: %d, stalled: %d\n",
3871 VEC_length (expr_t, vec_av_set), stalled);
3872 sel_print ("Sorted av set (%d): ", VEC_length (expr_t, vec_av_set));
3873 for (n = 0; VEC_iterate (expr_t, vec_av_set, n, expr); n++)
3874 dump_expr (expr);
3875 sel_print ("\n");
3876 }
3877
3878 *pneed_stall = 0;
3879 return true;
3880 }
3881
3882 /* Convert a vectored and sorted av set to the ready list that
3883 the rest of the backend wants to see. */
3884 static void
3885 convert_vec_av_set_to_ready (void)
3886 {
3887 int n;
3888 expr_t expr;
3889
3890 /* Allocate and fill the ready list from the sorted vector. */
3891 ready.n_ready = VEC_length (expr_t, vec_av_set);
3892 ready.first = ready.n_ready - 1;
3893
3894 gcc_assert (ready.n_ready > 0);
3895
3896 if (ready.n_ready > max_issue_size)
3897 {
3898 max_issue_size = ready.n_ready;
3899 sched_extend_ready_list (ready.n_ready);
3900 }
3901
3902 for (n = 0; VEC_iterate (expr_t, vec_av_set, n, expr); n++)
3903 {
3904 vinsn_t vi = EXPR_VINSN (expr);
3905 insn_t insn = VINSN_INSN_RTX (vi);
3906
3907 ready_try[n] = 0;
3908 ready.vec[n] = insn;
3909 }
3910 }
3911
3912 /* Initialize ready list from *AV_PTR for the max_issue () call.
3913 If any unrecognizable insn found in *AV_PTR, return it (and skip
3914 max_issue). BND and FENCE are current boundary and fence,
3915 respectively. If we need to stall for some cycles before an expr
3916 from *AV_PTR would become available, write this number to *PNEED_STALL. */
3917 static expr_t
3918 fill_ready_list (av_set_t *av_ptr, blist_t bnds, fence_t fence,
3919 int *pneed_stall)
3920 {
3921 expr_t expr;
3922
3923 /* We do not support multiple boundaries per fence. */
3924 gcc_assert (BLIST_NEXT (bnds) == NULL);
3925
3926 /* Process expressions required special handling, i.e. pipelined,
3927 speculative and recog() < 0 expressions first. */
3928 process_pipelined_exprs (av_ptr);
3929 process_spec_exprs (av_ptr);
3930
3931 /* A USE could be scheduled immediately. */
3932 expr = process_use_exprs (av_ptr);
3933 if (expr)
3934 {
3935 *pneed_stall = 0;
3936 return expr;
3937 }
3938
3939 /* Turn the av set to a vector for sorting. */
3940 if (! fill_vec_av_set (*av_ptr, bnds, fence, pneed_stall))
3941 {
3942 ready.n_ready = 0;
3943 return NULL;
3944 }
3945
3946 /* Build the final ready list. */
3947 convert_vec_av_set_to_ready ();
3948 return NULL;
3949 }
3950
3951 /* Wrapper for dfa_new_cycle (). Returns TRUE if cycle was advanced. */
3952 static bool
3953 sel_dfa_new_cycle (insn_t insn, fence_t fence)
3954 {
3955 int last_scheduled_cycle = FENCE_LAST_SCHEDULED_INSN (fence)
3956 ? INSN_SCHED_CYCLE (FENCE_LAST_SCHEDULED_INSN (fence))
3957 : FENCE_CYCLE (fence) - 1;
3958 bool res = false;
3959 int sort_p = 0;
3960
3961 if (!targetm.sched.dfa_new_cycle)
3962 return false;
3963
3964 memcpy (curr_state, FENCE_STATE (fence), dfa_state_size);
3965
3966 while (!sort_p && targetm.sched.dfa_new_cycle (sched_dump, sched_verbose,
3967 insn, last_scheduled_cycle,
3968 FENCE_CYCLE (fence), &sort_p))
3969 {
3970 memcpy (FENCE_STATE (fence), curr_state, dfa_state_size);
3971 advance_one_cycle (fence);
3972 memcpy (curr_state, FENCE_STATE (fence), dfa_state_size);
3973 res = true;
3974 }
3975
3976 return res;
3977 }
3978
3979 /* Invoke reorder* target hooks on the ready list. Return the number of insns
3980 we can issue. FENCE is the current fence. */
3981 static int
3982 invoke_reorder_hooks (fence_t fence)
3983 {
3984 int issue_more;
3985 bool ran_hook = false;
3986
3987 /* Call the reorder hook at the beginning of the cycle, and call
3988 the reorder2 hook in the middle of the cycle. */
3989 if (FENCE_ISSUED_INSNS (fence) == 0)
3990 {
3991 if (targetm.sched.reorder
3992 && !SCHED_GROUP_P (ready_element (&ready, 0))
3993 && ready.n_ready > 1)
3994 {
3995 /* Don't give reorder the most prioritized insn as it can break
3996 pipelining. */
3997 if (pipelining_p)
3998 --ready.n_ready;
3999
4000 issue_more
4001 = targetm.sched.reorder (sched_dump, sched_verbose,
4002 ready_lastpos (&ready),
4003 &ready.n_ready, FENCE_CYCLE (fence));
4004
4005 if (pipelining_p)
4006 ++ready.n_ready;
4007
4008 ran_hook = true;
4009 }
4010 else
4011 /* Initialize can_issue_more for variable_issue. */
4012 issue_more = issue_rate;
4013 }
4014 else if (targetm.sched.reorder2
4015 && !SCHED_GROUP_P (ready_element (&ready, 0)))
4016 {
4017 if (ready.n_ready == 1)
4018 issue_more =
4019 targetm.sched.reorder2 (sched_dump, sched_verbose,
4020 ready_lastpos (&ready),
4021 &ready.n_ready, FENCE_CYCLE (fence));
4022 else
4023 {
4024 if (pipelining_p)
4025 --ready.n_ready;
4026
4027 issue_more =
4028 targetm.sched.reorder2 (sched_dump, sched_verbose,
4029 ready.n_ready
4030 ? ready_lastpos (&ready) : NULL,
4031 &ready.n_ready, FENCE_CYCLE (fence));
4032
4033 if (pipelining_p)
4034 ++ready.n_ready;
4035 }
4036
4037 ran_hook = true;
4038 }
4039 else
4040 issue_more = issue_rate;
4041
4042 /* Ensure that ready list and vec_av_set are in line with each other,
4043 i.e. vec_av_set[i] == ready_element (&ready, i). */
4044 if (issue_more && ran_hook)
4045 {
4046 int i, j, n;
4047 rtx *arr = ready.vec;
4048 expr_t *vec = VEC_address (expr_t, vec_av_set);
4049
4050 for (i = 0, n = ready.n_ready; i < n; i++)
4051 if (EXPR_INSN_RTX (vec[i]) != arr[i])
4052 {
4053 expr_t tmp;
4054
4055 for (j = i; j < n; j++)
4056 if (EXPR_INSN_RTX (vec[j]) == arr[i])
4057 break;
4058 gcc_assert (j < n);
4059
4060 tmp = vec[i];
4061 vec[i] = vec[j];
4062 vec[j] = tmp;
4063 }
4064 }
4065
4066 return issue_more;
4067 }
4068
4069 /* Return an EXPR correponding to INDEX element of ready list, if
4070 FOLLOW_READY_ELEMENT is true (i.e., an expr of
4071 ready_element (&ready, INDEX) will be returned), and to INDEX element of
4072 ready.vec otherwise. */
4073 static inline expr_t
4074 find_expr_for_ready (int index, bool follow_ready_element)
4075 {
4076 expr_t expr;
4077 int real_index;
4078
4079 real_index = follow_ready_element ? ready.first - index : index;
4080
4081 expr = VEC_index (expr_t, vec_av_set, real_index);
4082 gcc_assert (ready.vec[real_index] == EXPR_INSN_RTX (expr));
4083
4084 return expr;
4085 }
4086
4087 /* Calculate insns worth trying via lookahead_guard hook. Return a number
4088 of such insns found. */
4089 static int
4090 invoke_dfa_lookahead_guard (void)
4091 {
4092 int i, n;
4093 bool have_hook
4094 = targetm.sched.first_cycle_multipass_dfa_lookahead_guard != NULL;
4095
4096 if (sched_verbose >= 2)
4097 sel_print ("ready after reorder: ");
4098
4099 for (i = 0, n = 0; i < ready.n_ready; i++)
4100 {
4101 expr_t expr;
4102 insn_t insn;
4103 int r;
4104
4105 /* In this loop insn is Ith element of the ready list given by
4106 ready_element, not Ith element of ready.vec. */
4107 insn = ready_element (&ready, i);
4108
4109 if (! have_hook || i == 0)
4110 r = 0;
4111 else
4112 r = !targetm.sched.first_cycle_multipass_dfa_lookahead_guard (insn);
4113
4114 gcc_assert (INSN_CODE (insn) >= 0);
4115
4116 /* Only insns with ready_try = 0 can get here
4117 from fill_ready_list. */
4118 gcc_assert (ready_try [i] == 0);
4119 ready_try[i] = r;
4120 if (!r)
4121 n++;
4122
4123 expr = find_expr_for_ready (i, true);
4124
4125 if (sched_verbose >= 2)
4126 {
4127 dump_vinsn (EXPR_VINSN (expr));
4128 sel_print (":%d; ", ready_try[i]);
4129 }
4130 }
4131
4132 if (sched_verbose >= 2)
4133 sel_print ("\n");
4134 return n;
4135 }
4136
4137 /* Calculate the number of privileged insns and return it. */
4138 static int
4139 calculate_privileged_insns (void)
4140 {
4141 expr_t cur_expr, min_spec_expr = NULL;
4142 insn_t cur_insn, min_spec_insn;
4143 int privileged_n = 0, i;
4144
4145 for (i = 0; i < ready.n_ready; i++)
4146 {
4147 if (ready_try[i])
4148 continue;
4149
4150 if (! min_spec_expr)
4151 {
4152 min_spec_insn = ready_element (&ready, i);
4153 min_spec_expr = find_expr_for_ready (i, true);
4154 }
4155
4156 cur_insn = ready_element (&ready, i);
4157 cur_expr = find_expr_for_ready (i, true);
4158
4159 if (EXPR_SPEC (cur_expr) > EXPR_SPEC (min_spec_expr))
4160 break;
4161
4162 ++privileged_n;
4163 }
4164
4165 if (i == ready.n_ready)
4166 privileged_n = 0;
4167
4168 if (sched_verbose >= 2)
4169 sel_print ("privileged_n: %d insns with SPEC %d\n",
4170 privileged_n, privileged_n ? EXPR_SPEC (min_spec_expr) : -1);
4171 return privileged_n;
4172 }
4173
4174 /* Call the rest of the hooks after the choice was made. Return
4175 the number of insns that still can be issued given that the current
4176 number is ISSUE_MORE. FENCE and BEST_INSN are the current fence
4177 and the insn chosen for scheduling, respectively. */
4178 static int
4179 invoke_aftermath_hooks (fence_t fence, rtx best_insn, int issue_more)
4180 {
4181 gcc_assert (INSN_P (best_insn));
4182
4183 /* First, call dfa_new_cycle, and then variable_issue, if available. */
4184 sel_dfa_new_cycle (best_insn, fence);
4185
4186 if (targetm.sched.variable_issue)
4187 {
4188 memcpy (curr_state, FENCE_STATE (fence), dfa_state_size);
4189 issue_more =
4190 targetm.sched.variable_issue (sched_dump, sched_verbose, best_insn,
4191 issue_more);
4192 memcpy (FENCE_STATE (fence), curr_state, dfa_state_size);
4193 }
4194 else if (GET_CODE (PATTERN (best_insn)) != USE
4195 && GET_CODE (PATTERN (best_insn)) != CLOBBER)
4196 issue_more--;
4197
4198 return issue_more;
4199 }
4200
4201 /* Estimate the cost of issuing INSN on DFA state STATE. */
4202 static int
4203 estimate_insn_cost (rtx insn, state_t state)
4204 {
4205 static state_t temp = NULL;
4206 int cost;
4207
4208 if (!temp)
4209 temp = xmalloc (dfa_state_size);
4210
4211 memcpy (temp, state, dfa_state_size);
4212 cost = state_transition (temp, insn);
4213
4214 if (cost < 0)
4215 return 0;
4216 else if (cost == 0)
4217 return 1;
4218 return cost;
4219 }
4220
4221 /* Return the cost of issuing EXPR on the FENCE as estimated by DFA.
4222 This function properly handles ASMs, USEs etc. */
4223 static int
4224 get_expr_cost (expr_t expr, fence_t fence)
4225 {
4226 rtx insn = EXPR_INSN_RTX (expr);
4227
4228 if (recog_memoized (insn) < 0)
4229 {
4230 if (!FENCE_STARTS_CYCLE_P (fence)
4231 /* FIXME: Is this condition necessary? */
4232 && VINSN_UNIQUE_P (EXPR_VINSN (expr))
4233 && INSN_ASM_P (insn))
4234 /* This is asm insn which is tryed to be issued on the
4235 cycle not first. Issue it on the next cycle. */
4236 return 1;
4237 else
4238 /* A USE insn, or something else we don't need to
4239 understand. We can't pass these directly to
4240 state_transition because it will trigger a
4241 fatal error for unrecognizable insns. */
4242 return 0;
4243 }
4244 else
4245 return estimate_insn_cost (insn, FENCE_STATE (fence));
4246 }
4247
4248 /* Find the best insn for scheduling, either via max_issue or just take
4249 the most prioritized available. */
4250 static int
4251 choose_best_insn (fence_t fence, int privileged_n, int *index)
4252 {
4253 int can_issue = 0;
4254
4255 if (dfa_lookahead > 0)
4256 {
4257 cycle_issued_insns = FENCE_ISSUED_INSNS (fence);
4258 can_issue = max_issue (&ready, privileged_n,
4259 FENCE_STATE (fence), index);
4260 if (sched_verbose >= 2)
4261 sel_print ("max_issue: we can issue %d insns, already did %d insns\n",
4262 can_issue, FENCE_ISSUED_INSNS (fence));
4263 }
4264 else
4265 {
4266 /* We can't use max_issue; just return the first available element. */
4267 int i;
4268
4269 for (i = 0; i < ready.n_ready; i++)
4270 {
4271 expr_t expr = find_expr_for_ready (i, true);
4272
4273 if (get_expr_cost (expr, fence) < 1)
4274 {
4275 can_issue = can_issue_more;
4276 *index = i;
4277
4278 if (sched_verbose >= 2)
4279 sel_print ("using %dth insn from the ready list\n", i + 1);
4280
4281 break;
4282 }
4283 }
4284
4285 if (i == ready.n_ready)
4286 {
4287 can_issue = 0;
4288 *index = -1;
4289 }
4290 }
4291
4292 return can_issue;
4293 }
4294
4295 /* Choose the best expr from *AV_VLIW_PTR and a suitable register for it.
4296 BNDS and FENCE are current boundaries and scheduling fence respectively.
4297 Return the expr found and NULL if nothing can be issued atm.
4298 Write to PNEED_STALL the number of cycles to stall if no expr was found. */
4299 static expr_t
4300 find_best_expr (av_set_t *av_vliw_ptr, blist_t bnds, fence_t fence,
4301 int *pneed_stall)
4302 {
4303 expr_t best;
4304
4305 /* Choose the best insn for scheduling via:
4306 1) sorting the ready list based on priority;
4307 2) calling the reorder hook;
4308 3) calling max_issue. */
4309 best = fill_ready_list (av_vliw_ptr, bnds, fence, pneed_stall);
4310 if (best == NULL && ready.n_ready > 0)
4311 {
4312 int privileged_n, index, avail_n;
4313
4314 can_issue_more = invoke_reorder_hooks (fence);
4315 if (can_issue_more > 0)
4316 {
4317 /* Try choosing the best insn until we find one that is could be
4318 scheduled due to liveness restrictions on its destination register.
4319 In the future, we'd like to choose once and then just probe insns
4320 in the order of their priority. */
4321 avail_n = invoke_dfa_lookahead_guard ();
4322 privileged_n = calculate_privileged_insns ();
4323 can_issue_more = choose_best_insn (fence, privileged_n, &index);
4324 if (can_issue_more)
4325 best = find_expr_for_ready (index, true);
4326 }
4327 /* We had some available insns, so if we can't issue them,
4328 we have a stall. */
4329 if (can_issue_more == 0)
4330 {
4331 best = NULL;
4332 *pneed_stall = 1;
4333 }
4334 }
4335
4336 if (best != NULL)
4337 {
4338 can_issue_more = invoke_aftermath_hooks (fence, EXPR_INSN_RTX (best),
4339 can_issue_more);
4340 if (can_issue_more == 0)
4341 *pneed_stall = 1;
4342 }
4343
4344 if (sched_verbose >= 2)
4345 {
4346 if (best != NULL)
4347 {
4348 sel_print ("Best expression (vliw form): ");
4349 dump_expr (best);
4350 sel_print ("; cycle %d\n", FENCE_CYCLE (fence));
4351 }
4352 else
4353 sel_print ("No best expr found!\n");
4354 }
4355
4356 return best;
4357 }
4358
4359
4360 /* Functions that implement the core of the scheduler. */
4361
4362
4363 /* Emit an instruction from EXPR with SEQNO and VINSN after
4364 PLACE_TO_INSERT. */
4365 static insn_t
4366 emit_insn_from_expr_after (expr_t expr, vinsn_t vinsn, int seqno,
4367 insn_t place_to_insert)
4368 {
4369 /* This assert fails when we have identical instructions
4370 one of which dominates the other. In this case move_op ()
4371 finds the first instruction and doesn't search for second one.
4372 The solution would be to compute av_set after the first found
4373 insn and, if insn present in that set, continue searching.
4374 For now we workaround this issue in move_op. */
4375 gcc_assert (!INSN_IN_STREAM_P (EXPR_INSN_RTX (expr)));
4376
4377 if (EXPR_WAS_RENAMED (expr))
4378 {
4379 unsigned regno = expr_dest_regno (expr);
4380
4381 if (HARD_REGISTER_NUM_P (regno))
4382 {
4383 df_set_regs_ever_live (regno, true);
4384 reg_rename_tick[regno] = ++reg_rename_this_tick;
4385 }
4386 }
4387
4388 return sel_gen_insn_from_expr_after (expr, vinsn, seqno,
4389 place_to_insert);
4390 }
4391
4392 /* Return TRUE if BB can hold bookkeeping code. */
4393 static bool
4394 block_valid_for_bookkeeping_p (basic_block bb)
4395 {
4396 insn_t bb_end = BB_END (bb);
4397
4398 if (!in_current_region_p (bb) || EDGE_COUNT (bb->succs) > 1)
4399 return false;
4400
4401 if (INSN_P (bb_end))
4402 {
4403 if (INSN_SCHED_TIMES (bb_end) > 0)
4404 return false;
4405 }
4406 else
4407 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (bb_end));
4408
4409 return true;
4410 }
4411
4412 /* Attempt to find a block that can hold bookkeeping code for path(s) incoming
4413 into E2->dest, except from E1->src (there may be a sequence of empty basic
4414 blocks between E1->src and E2->dest). Return found block, or NULL if new
4415 one must be created. */
4416 static basic_block
4417 find_block_for_bookkeeping (edge e1, edge e2)
4418 {
4419 basic_block candidate_block = NULL;
4420 edge e;
4421
4422 /* Loop over edges from E1 to E2, inclusive. */
4423 for (e = e1; ; e = EDGE_SUCC (e->dest, 0))
4424 {
4425 if (EDGE_COUNT (e->dest->preds) == 2)
4426 {
4427 if (candidate_block == NULL)
4428 candidate_block = (EDGE_PRED (e->dest, 0) == e
4429 ? EDGE_PRED (e->dest, 1)->src
4430 : EDGE_PRED (e->dest, 0)->src);
4431 else
4432 /* Found additional edge leading to path from e1 to e2
4433 from aside. */
4434 return NULL;
4435 }
4436 else if (EDGE_COUNT (e->dest->preds) > 2)
4437 /* Several edges leading to path from e1 to e2 from aside. */
4438 return NULL;
4439
4440 if (e == e2)
4441 return (block_valid_for_bookkeeping_p (candidate_block)
4442 ? candidate_block
4443 : NULL);
4444 }
4445 gcc_unreachable ();
4446 }
4447
4448 /* Create new basic block for bookkeeping code for path(s) incoming into
4449 E2->dest, except from E1->src. Return created block. */
4450 static basic_block
4451 create_block_for_bookkeeping (edge e1, edge e2)
4452 {
4453 basic_block new_bb, bb = e2->dest;
4454
4455 /* Check that we don't spoil the loop structure. */
4456 if (current_loop_nest)
4457 {
4458 basic_block latch = current_loop_nest->latch;
4459
4460 /* We do not split header. */
4461 gcc_assert (e2->dest != current_loop_nest->header);
4462
4463 /* We do not redirect the only edge to the latch block. */
4464 gcc_assert (e1->dest != latch
4465 || !single_pred_p (latch)
4466 || e1 != single_pred_edge (latch));
4467 }
4468
4469 /* Split BB to insert BOOK_INSN there. */
4470 new_bb = sched_split_block (bb, NULL);
4471
4472 /* Move note_list from the upper bb. */
4473 gcc_assert (BB_NOTE_LIST (new_bb) == NULL_RTX);
4474 BB_NOTE_LIST (new_bb) = BB_NOTE_LIST (bb);
4475 BB_NOTE_LIST (bb) = NULL_RTX;
4476
4477 gcc_assert (e2->dest == bb);
4478
4479 /* Skip block for bookkeeping copy when leaving E1->src. */
4480 if (e1->flags & EDGE_FALLTHRU)
4481 sel_redirect_edge_and_branch_force (e1, new_bb);
4482 else
4483 sel_redirect_edge_and_branch (e1, new_bb);
4484
4485 gcc_assert (e1->dest == new_bb);
4486 gcc_assert (sel_bb_empty_p (bb));
4487
4488 return bb;
4489 }
4490
4491 /* Return insn after which we must insert bookkeeping code for path(s) incoming
4492 into E2->dest, except from E1->src. */
4493 static insn_t
4494 find_place_for_bookkeeping (edge e1, edge e2)
4495 {
4496 insn_t place_to_insert;
4497 /* Find a basic block that can hold bookkeeping. If it can be found, do not
4498 create new basic block, but insert bookkeeping there. */
4499 basic_block book_block = find_block_for_bookkeeping (e1, e2);
4500
4501 if (!book_block)
4502 book_block = create_block_for_bookkeeping (e1, e2);
4503
4504 place_to_insert = BB_END (book_block);
4505
4506 /* If basic block ends with a jump, insert bookkeeping code right before it. */
4507 if (INSN_P (place_to_insert) && control_flow_insn_p (place_to_insert))
4508 place_to_insert = PREV_INSN (place_to_insert);
4509
4510 return place_to_insert;
4511 }
4512
4513 /* Find a proper seqno for bookkeeing insn inserted at PLACE_TO_INSERT
4514 for JOIN_POINT. */
4515 static int
4516 find_seqno_for_bookkeeping (insn_t place_to_insert, insn_t join_point)
4517 {
4518 int seqno;
4519 rtx next;
4520
4521 /* Check if we are about to insert bookkeeping copy before a jump, and use
4522 jump's seqno for the copy; otherwise, use JOIN_POINT's seqno. */
4523 next = NEXT_INSN (place_to_insert);
4524 if (INSN_P (next)
4525 && JUMP_P (next)
4526 && BLOCK_FOR_INSN (next) == BLOCK_FOR_INSN (place_to_insert))
4527 seqno = INSN_SEQNO (next);
4528 else if (INSN_SEQNO (join_point) > 0)
4529 seqno = INSN_SEQNO (join_point);
4530 else
4531 seqno = get_seqno_by_preds (place_to_insert);
4532
4533 gcc_assert (seqno > 0);
4534 return seqno;
4535 }
4536
4537 /* Insert bookkeeping copy of C_EXPS's insn after PLACE_TO_INSERT, assigning
4538 NEW_SEQNO to it. Return created insn. */
4539 static insn_t
4540 emit_bookkeeping_insn (insn_t place_to_insert, expr_t c_expr, int new_seqno)
4541 {
4542 rtx new_insn_rtx = create_copy_of_insn_rtx (EXPR_INSN_RTX (c_expr));
4543
4544 vinsn_t new_vinsn
4545 = create_vinsn_from_insn_rtx (new_insn_rtx,
4546 VINSN_UNIQUE_P (EXPR_VINSN (c_expr)));
4547
4548 insn_t new_insn = emit_insn_from_expr_after (c_expr, new_vinsn, new_seqno,
4549 place_to_insert);
4550
4551 INSN_SCHED_TIMES (new_insn) = 0;
4552 bitmap_set_bit (current_copies, INSN_UID (new_insn));
4553
4554 return new_insn;
4555 }
4556
4557 /* Generate a bookkeeping copy of C_EXPR's insn for path(s) incoming into to
4558 E2->dest, except from E1->src (there may be a sequence of empty blocks
4559 between E1->src and E2->dest). Return block containing the copy.
4560 All scheduler data is initialized for the newly created insn. */
4561 static basic_block
4562 generate_bookkeeping_insn (expr_t c_expr, edge e1, edge e2)
4563 {
4564 insn_t join_point, place_to_insert, new_insn;
4565 int new_seqno;
4566 bool need_to_exchange_data_sets;
4567
4568 if (sched_verbose >= 4)
4569 sel_print ("Generating bookkeeping insn (%d->%d)\n", e1->src->index,
4570 e2->dest->index);
4571
4572 join_point = sel_bb_head (e2->dest);
4573 place_to_insert = find_place_for_bookkeeping (e1, e2);
4574 new_seqno = find_seqno_for_bookkeeping (place_to_insert, join_point);
4575 need_to_exchange_data_sets
4576 = sel_bb_empty_p (BLOCK_FOR_INSN (place_to_insert));
4577
4578 new_insn = emit_bookkeeping_insn (place_to_insert, c_expr, new_seqno);
4579
4580 /* When inserting bookkeeping insn in new block, av sets should be
4581 following: old basic block (that now holds bookkeeping) data sets are
4582 the same as was before generation of bookkeeping, and new basic block
4583 (that now hold all other insns of old basic block) data sets are
4584 invalid. So exchange data sets for these basic blocks as sel_split_block
4585 mistakenly exchanges them in this case. Cannot do it earlier because
4586 when single instruction is added to new basic block it should hold NULL
4587 lv_set. */
4588 if (need_to_exchange_data_sets)
4589 exchange_data_sets (BLOCK_FOR_INSN (new_insn),
4590 BLOCK_FOR_INSN (join_point));
4591
4592 stat_bookkeeping_copies++;
4593 return BLOCK_FOR_INSN (new_insn);
4594 }
4595
4596 /* Remove from AV_PTR all insns that may need bookkeeping when scheduling
4597 on FENCE, but we are unable to copy them. */
4598 static void
4599 remove_insns_that_need_bookkeeping (fence_t fence, av_set_t *av_ptr)
4600 {
4601 expr_t expr;
4602 av_set_iterator i;
4603
4604 /* An expression does not need bookkeeping if it is available on all paths
4605 from current block to original block and current block dominates
4606 original block. We check availability on all paths by examining
4607 EXPR_SPEC; this is not equivalent, because it may be positive even
4608 if expr is available on all paths (but if expr is not available on
4609 any path, EXPR_SPEC will be positive). */
4610
4611 FOR_EACH_EXPR_1 (expr, i, av_ptr)
4612 {
4613 if (!control_flow_insn_p (EXPR_INSN_RTX (expr))
4614 && (!bookkeeping_p || VINSN_UNIQUE_P (EXPR_VINSN (expr)))
4615 && (EXPR_SPEC (expr)
4616 || !EXPR_ORIG_BB_INDEX (expr)
4617 || !dominated_by_p (CDI_DOMINATORS,
4618 BASIC_BLOCK (EXPR_ORIG_BB_INDEX (expr)),
4619 BLOCK_FOR_INSN (FENCE_INSN (fence)))))
4620 {
4621 if (sched_verbose >= 4)
4622 sel_print ("Expr %d removed because it would need bookkeeping, which "
4623 "cannot be created\n", INSN_UID (EXPR_INSN_RTX (expr)));
4624 av_set_iter_remove (&i);
4625 }
4626 }
4627 }
4628
4629 /* Moving conditional jump through some instructions.
4630
4631 Consider example:
4632
4633 ... <- current scheduling point
4634 NOTE BASIC BLOCK: <- bb header
4635 (p8) add r14=r14+0x9;;
4636 (p8) mov [r14]=r23
4637 (!p8) jump L1;;
4638 NOTE BASIC BLOCK:
4639 ...
4640
4641 We can schedule jump one cycle earlier, than mov, because they cannot be
4642 executed together as their predicates are mutually exclusive.
4643
4644 This is done in this way: first, new fallthrough basic block is created
4645 after jump (it is always can be done, because there already should be a
4646 fallthrough block, where control flow goes in case of predicate being true -
4647 in our example; otherwise there should be a dependence between those
4648 instructions and jump and we cannot schedule jump right now);
4649 next, all instructions between jump and current scheduling point are moved
4650 to this new block. And the result is this:
4651
4652 NOTE BASIC BLOCK:
4653 (!p8) jump L1 <- current scheduling point
4654 NOTE BASIC BLOCK: <- bb header
4655 (p8) add r14=r14+0x9;;
4656 (p8) mov [r14]=r23
4657 NOTE BASIC BLOCK:
4658 ...
4659 */
4660 static void
4661 move_cond_jump (rtx insn, bnd_t bnd)
4662 {
4663 edge ft_edge;
4664 basic_block block_from, block_next, block_new;
4665 rtx next, prev, link;
4666
4667 /* BLOCK_FROM holds basic block of the jump. */
4668 block_from = BLOCK_FOR_INSN (insn);
4669
4670 /* Moving of jump should not cross any other jumps or
4671 beginnings of new basic blocks. */
4672 gcc_assert (block_from == BLOCK_FOR_INSN (BND_TO (bnd)));
4673
4674 /* Jump is moved to the boundary. */
4675 prev = BND_TO (bnd);
4676 next = PREV_INSN (insn);
4677 BND_TO (bnd) = insn;
4678
4679 ft_edge = find_fallthru_edge (block_from);
4680 block_next = ft_edge->dest;
4681 /* There must be a fallthrough block (or where should go
4682 control flow in case of false jump predicate otherwise?). */
4683 gcc_assert (block_next);
4684
4685 /* Create new empty basic block after source block. */
4686 block_new = sel_split_edge (ft_edge);
4687 gcc_assert (block_new->next_bb == block_next
4688 && block_from->next_bb == block_new);
4689
4690 gcc_assert (BB_END (block_from) == insn);
4691
4692 /* Move all instructions except INSN from BLOCK_FROM to
4693 BLOCK_NEW. */
4694 for (link = prev; link != insn; link = NEXT_INSN (link))
4695 {
4696 EXPR_ORIG_BB_INDEX (INSN_EXPR (link)) = block_new->index;
4697 df_insn_change_bb (link, block_new);
4698 }
4699
4700 /* Set correct basic block and instructions properties. */
4701 BB_END (block_new) = PREV_INSN (insn);
4702
4703 NEXT_INSN (PREV_INSN (prev)) = insn;
4704 PREV_INSN (insn) = PREV_INSN (prev);
4705
4706 /* Assert there is no jump to BLOCK_NEW, only fallthrough edge. */
4707 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (BB_HEAD (block_new)));
4708 PREV_INSN (prev) = BB_HEAD (block_new);
4709 NEXT_INSN (next) = NEXT_INSN (BB_HEAD (block_new));
4710 NEXT_INSN (BB_HEAD (block_new)) = prev;
4711 PREV_INSN (NEXT_INSN (next)) = next;
4712
4713 gcc_assert (!sel_bb_empty_p (block_from)
4714 && !sel_bb_empty_p (block_new));
4715
4716 /* Update data sets for BLOCK_NEW to represent that INSN and
4717 instructions from the other branch of INSN is no longer
4718 available at BLOCK_NEW. */
4719 BB_AV_LEVEL (block_new) = global_level;
4720 gcc_assert (BB_LV_SET (block_new) == NULL);
4721 BB_LV_SET (block_new) = get_clear_regset_from_pool ();
4722 update_data_sets (sel_bb_head (block_new));
4723
4724 /* INSN is a new basic block header - so prepare its data
4725 structures and update availability and liveness sets. */
4726 update_data_sets (insn);
4727
4728 if (sched_verbose >= 4)
4729 sel_print ("Moving jump %d\n", INSN_UID (insn));
4730 }
4731
4732 /* Remove nops generated during move_op for preventing removal of empty
4733 basic blocks. */
4734 static void
4735 remove_temp_moveop_nops (void)
4736 {
4737 int i;
4738 insn_t insn;
4739
4740 for (i = 0; VEC_iterate (insn_t, vec_temp_moveop_nops, i, insn); i++)
4741 {
4742 gcc_assert (INSN_NOP_P (insn));
4743 return_nop_to_pool (insn);
4744 }
4745
4746 /* Empty the vector. */
4747 if (VEC_length (insn_t, vec_temp_moveop_nops) > 0)
4748 VEC_block_remove (insn_t, vec_temp_moveop_nops, 0,
4749 VEC_length (insn_t, vec_temp_moveop_nops));
4750 }
4751
4752 /* Records the maximal UID before moving up an instruction. Used for
4753 distinguishing between bookkeeping copies and original insns. */
4754 static int max_uid_before_move_op = 0;
4755
4756 /* Remove from AV_VLIW_P all instructions but next when debug counter
4757 tells us so. Next instruction is fetched from BNDS. */
4758 static void
4759 remove_insns_for_debug (blist_t bnds, av_set_t *av_vliw_p)
4760 {
4761 if (! dbg_cnt (sel_sched_insn_cnt))
4762 /* Leave only the next insn in av_vliw. */
4763 {
4764 av_set_iterator av_it;
4765 expr_t expr;
4766 bnd_t bnd = BLIST_BND (bnds);
4767 insn_t next = BND_TO (bnd);
4768
4769 gcc_assert (BLIST_NEXT (bnds) == NULL);
4770
4771 FOR_EACH_EXPR_1 (expr, av_it, av_vliw_p)
4772 if (EXPR_INSN_RTX (expr) != next)
4773 av_set_iter_remove (&av_it);
4774 }
4775 }
4776
4777 /* Compute available instructions on BNDS. FENCE is the current fence. Write
4778 the computed set to *AV_VLIW_P. */
4779 static void
4780 compute_av_set_on_boundaries (fence_t fence, blist_t bnds, av_set_t *av_vliw_p)
4781 {
4782 if (sched_verbose >= 2)
4783 {
4784 sel_print ("Boundaries: ");
4785 dump_blist (bnds);
4786 sel_print ("\n");
4787 }
4788
4789 for (; bnds; bnds = BLIST_NEXT (bnds))
4790 {
4791 bnd_t bnd = BLIST_BND (bnds);
4792 av_set_t av1_copy;
4793 insn_t bnd_to = BND_TO (bnd);
4794
4795 /* Rewind BND->TO to the basic block header in case some bookkeeping
4796 instructions were inserted before BND->TO and it needs to be
4797 adjusted. */
4798 if (sel_bb_head_p (bnd_to))
4799 gcc_assert (INSN_SCHED_TIMES (bnd_to) == 0);
4800 else
4801 while (INSN_SCHED_TIMES (PREV_INSN (bnd_to)) == 0)
4802 {
4803 bnd_to = PREV_INSN (bnd_to);
4804 if (sel_bb_head_p (bnd_to))
4805 break;
4806 }
4807
4808 if (BND_TO (bnd) != bnd_to)
4809 {
4810 gcc_assert (FENCE_INSN (fence) == BND_TO (bnd));
4811 FENCE_INSN (fence) = bnd_to;
4812 BND_TO (bnd) = bnd_to;
4813 }
4814
4815 av_set_clear (&BND_AV (bnd));
4816 BND_AV (bnd) = compute_av_set (BND_TO (bnd), NULL, 0, true);
4817
4818 av_set_clear (&BND_AV1 (bnd));
4819 BND_AV1 (bnd) = av_set_copy (BND_AV (bnd));
4820
4821 moveup_set_inside_insn_group (&BND_AV1 (bnd), NULL);
4822
4823 av1_copy = av_set_copy (BND_AV1 (bnd));
4824 av_set_union_and_clear (av_vliw_p, &av1_copy, NULL);
4825 }
4826
4827 if (sched_verbose >= 2)
4828 {
4829 sel_print ("Available exprs (vliw form): ");
4830 dump_av_set (*av_vliw_p);
4831 sel_print ("\n");
4832 }
4833 }
4834
4835 /* Calculate the sequential av set on BND corresponding to the EXPR_VLIW
4836 expression. When FOR_MOVEOP is true, also replace the register of
4837 expressions found with the register from EXPR_VLIW. */
4838 static av_set_t
4839 find_sequential_best_exprs (bnd_t bnd, expr_t expr_vliw, bool for_moveop)
4840 {
4841 av_set_t expr_seq = NULL;
4842 expr_t expr;
4843 av_set_iterator i;
4844
4845 FOR_EACH_EXPR (expr, i, BND_AV (bnd))
4846 {
4847 if (equal_after_moveup_path_p (expr, NULL, expr_vliw))
4848 {
4849 if (for_moveop)
4850 {
4851 /* The sequential expression has the right form to pass
4852 to move_op except when renaming happened. Put the
4853 correct register in EXPR then. */
4854 if (EXPR_SEPARABLE_P (expr) && REG_P (EXPR_LHS (expr)))
4855 {
4856 if (expr_dest_regno (expr) != expr_dest_regno (expr_vliw))
4857 {
4858 replace_dest_with_reg_in_expr (expr, EXPR_LHS (expr_vliw));
4859 stat_renamed_scheduled++;
4860 }
4861 /* Also put the correct TARGET_AVAILABLE bit on the expr.
4862 This is needed when renaming came up with original
4863 register. */
4864 else if (EXPR_TARGET_AVAILABLE (expr)
4865 != EXPR_TARGET_AVAILABLE (expr_vliw))
4866 {
4867 gcc_assert (EXPR_TARGET_AVAILABLE (expr_vliw) == 1);
4868 EXPR_TARGET_AVAILABLE (expr) = 1;
4869 }
4870 }
4871 if (EXPR_WAS_SUBSTITUTED (expr))
4872 stat_substitutions_total++;
4873 }
4874
4875 av_set_add (&expr_seq, expr);
4876
4877 /* With substitution inside insn group, it is possible
4878 that more than one expression in expr_seq will correspond
4879 to expr_vliw. In this case, choose one as the attempt to
4880 move both leads to miscompiles. */
4881 break;
4882 }
4883 }
4884
4885 if (for_moveop && sched_verbose >= 2)
4886 {
4887 sel_print ("Best expression(s) (sequential form): ");
4888 dump_av_set (expr_seq);
4889 sel_print ("\n");
4890 }
4891
4892 return expr_seq;
4893 }
4894
4895
4896 /* Move nop to previous block. */
4897 static void ATTRIBUTE_UNUSED
4898 move_nop_to_previous_block (insn_t nop, basic_block prev_bb)
4899 {
4900 insn_t prev_insn, next_insn, note;
4901
4902 gcc_assert (sel_bb_head_p (nop)
4903 && prev_bb == BLOCK_FOR_INSN (nop)->prev_bb);
4904 note = bb_note (BLOCK_FOR_INSN (nop));
4905 prev_insn = sel_bb_end (prev_bb);
4906 next_insn = NEXT_INSN (nop);
4907 gcc_assert (prev_insn != NULL_RTX
4908 && PREV_INSN (note) == prev_insn);
4909
4910 NEXT_INSN (prev_insn) = nop;
4911 PREV_INSN (nop) = prev_insn;
4912
4913 PREV_INSN (note) = nop;
4914 NEXT_INSN (note) = next_insn;
4915
4916 NEXT_INSN (nop) = note;
4917 PREV_INSN (next_insn) = note;
4918
4919 BB_END (prev_bb) = nop;
4920 BLOCK_FOR_INSN (nop) = prev_bb;
4921 }
4922
4923 /* Prepare a place to insert the chosen expression on BND. */
4924 static insn_t
4925 prepare_place_to_insert (bnd_t bnd)
4926 {
4927 insn_t place_to_insert;
4928
4929 /* Init place_to_insert before calling move_op, as the later
4930 can possibly remove BND_TO (bnd). */
4931 if (/* If this is not the first insn scheduled. */
4932 BND_PTR (bnd))
4933 {
4934 /* Add it after last scheduled. */
4935 place_to_insert = ILIST_INSN (BND_PTR (bnd));
4936 }
4937 else
4938 {
4939 /* Add it before BND_TO. The difference is in the
4940 basic block, where INSN will be added. */
4941 place_to_insert = get_nop_from_pool (BND_TO (bnd));
4942 gcc_assert (BLOCK_FOR_INSN (place_to_insert)
4943 == BLOCK_FOR_INSN (BND_TO (bnd)));
4944 }
4945
4946 return place_to_insert;
4947 }
4948
4949 /* Find original instructions for EXPR_SEQ and move it to BND boundary.
4950 Return the expression to emit in C_EXPR. */
4951 static bool
4952 move_exprs_to_boundary (bnd_t bnd, expr_t expr_vliw,
4953 av_set_t expr_seq, expr_t c_expr)
4954 {
4955 bool b, should_move;
4956 unsigned book_uid;
4957 bitmap_iterator bi;
4958 int n_bookkeeping_copies_before_moveop;
4959
4960 /* Make a move. This call will remove the original operation,
4961 insert all necessary bookkeeping instructions and update the
4962 data sets. After that all we have to do is add the operation
4963 at before BND_TO (BND). */
4964 n_bookkeeping_copies_before_moveop = stat_bookkeeping_copies;
4965 max_uid_before_move_op = get_max_uid ();
4966 bitmap_clear (current_copies);
4967 bitmap_clear (current_originators);
4968
4969 b = move_op (BND_TO (bnd), expr_seq, expr_vliw,
4970 get_dest_from_orig_ops (expr_seq), c_expr, &should_move);
4971
4972 /* We should be able to find the expression we've chosen for
4973 scheduling. */
4974 gcc_assert (b);
4975
4976 if (stat_bookkeeping_copies > n_bookkeeping_copies_before_moveop)
4977 stat_insns_needed_bookkeeping++;
4978
4979 EXECUTE_IF_SET_IN_BITMAP (current_copies, 0, book_uid, bi)
4980 {
4981 /* We allocate these bitmaps lazily. */
4982 if (! INSN_ORIGINATORS_BY_UID (book_uid))
4983 INSN_ORIGINATORS_BY_UID (book_uid) = BITMAP_ALLOC (NULL);
4984
4985 bitmap_copy (INSN_ORIGINATORS_BY_UID (book_uid),
4986 current_originators);
4987 }
4988
4989 return should_move;
4990 }
4991
4992
4993 /* Debug a DFA state as an array of bytes. */
4994 static void
4995 debug_state (state_t state)
4996 {
4997 unsigned char *p;
4998 unsigned int i, size = dfa_state_size;
4999
5000 sel_print ("state (%u):", size);
5001 for (i = 0, p = (unsigned char *) state; i < size; i++)
5002 sel_print (" %d", p[i]);
5003 sel_print ("\n");
5004 }
5005
5006 /* Advance state on FENCE with INSN. Return true if INSN is
5007 an ASM, and we should advance state once more. */
5008 static bool
5009 advance_state_on_fence (fence_t fence, insn_t insn)
5010 {
5011 bool asm_p;
5012
5013 if (recog_memoized (insn) >= 0)
5014 {
5015 int res;
5016 state_t temp_state = alloca (dfa_state_size);
5017
5018 gcc_assert (!INSN_ASM_P (insn));
5019 asm_p = false;
5020
5021 memcpy (temp_state, FENCE_STATE (fence), dfa_state_size);
5022 res = state_transition (FENCE_STATE (fence), insn);
5023 gcc_assert (res < 0);
5024
5025 if (memcmp (temp_state, FENCE_STATE (fence), dfa_state_size))
5026 {
5027 FENCE_ISSUED_INSNS (fence)++;
5028
5029 /* We should never issue more than issue_rate insns. */
5030 if (FENCE_ISSUED_INSNS (fence) > issue_rate)
5031 gcc_unreachable ();
5032 }
5033 }
5034 else
5035 {
5036 /* This could be an ASM insn which we'd like to schedule
5037 on the next cycle. */
5038 asm_p = INSN_ASM_P (insn);
5039 if (!FENCE_STARTS_CYCLE_P (fence) && asm_p)
5040 advance_one_cycle (fence);
5041 }
5042
5043 if (sched_verbose >= 2)
5044 debug_state (FENCE_STATE (fence));
5045 FENCE_STARTS_CYCLE_P (fence) = 0;
5046 return asm_p;
5047 }
5048
5049 /* Update FENCE on which INSN was scheduled and this INSN, too. NEED_STALL
5050 is nonzero if we need to stall after issuing INSN. */
5051 static void
5052 update_fence_and_insn (fence_t fence, insn_t insn, int need_stall)
5053 {
5054 bool asm_p;
5055
5056 /* First, reflect that something is scheduled on this fence. */
5057 asm_p = advance_state_on_fence (fence, insn);
5058 FENCE_LAST_SCHEDULED_INSN (fence) = insn;
5059 VEC_safe_push (rtx, gc, FENCE_EXECUTING_INSNS (fence), insn);
5060 if (SCHED_GROUP_P (insn))
5061 {
5062 FENCE_SCHED_NEXT (fence) = INSN_SCHED_NEXT (insn);
5063 SCHED_GROUP_P (insn) = 0;
5064 }
5065 else
5066 FENCE_SCHED_NEXT (fence) = NULL_RTX;
5067 if (INSN_UID (insn) < FENCE_READY_TICKS_SIZE (fence))
5068 FENCE_READY_TICKS (fence) [INSN_UID (insn)] = 0;
5069
5070 /* Set instruction scheduling info. This will be used in bundling,
5071 pipelining, tick computations etc. */
5072 ++INSN_SCHED_TIMES (insn);
5073 EXPR_TARGET_AVAILABLE (INSN_EXPR (insn)) = true;
5074 EXPR_ORIG_SCHED_CYCLE (INSN_EXPR (insn)) = FENCE_CYCLE (fence);
5075 INSN_AFTER_STALL_P (insn) = FENCE_AFTER_STALL_P (fence);
5076 INSN_SCHED_CYCLE (insn) = FENCE_CYCLE (fence);
5077
5078 /* This does not account for adjust_cost hooks, just add the biggest
5079 constant the hook may add to the latency. TODO: make this
5080 a target dependent constant. */
5081 INSN_READY_CYCLE (insn)
5082 = INSN_SCHED_CYCLE (insn) + (INSN_CODE (insn) < 0
5083 ? 1
5084 : maximal_insn_latency (insn) + 1);
5085
5086 /* Change these fields last, as they're used above. */
5087 FENCE_AFTER_STALL_P (fence) = 0;
5088 if (asm_p || need_stall)
5089 advance_one_cycle (fence);
5090
5091 /* Indicate that we've scheduled something on this fence. */
5092 FENCE_SCHEDULED_P (fence) = true;
5093 scheduled_something_on_previous_fence = true;
5094
5095 /* Print debug information when insn's fields are updated. */
5096 if (sched_verbose >= 2)
5097 {
5098 sel_print ("Scheduling insn: ");
5099 dump_insn_1 (insn, 1);
5100 sel_print ("\n");
5101 }
5102 }
5103
5104 /* Update boundary BND with INSN, remove the old boundary from
5105 BNDSP, add new boundaries to BNDS_TAIL_P and return it. */
5106 static blist_t *
5107 update_boundaries (bnd_t bnd, insn_t insn, blist_t *bndsp,
5108 blist_t *bnds_tailp)
5109 {
5110 succ_iterator si;
5111 insn_t succ;
5112
5113 advance_deps_context (BND_DC (bnd), insn);
5114 FOR_EACH_SUCC_1 (succ, si, insn,
5115 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
5116 {
5117 ilist_t ptr = ilist_copy (BND_PTR (bnd));
5118
5119 ilist_add (&ptr, insn);
5120 blist_add (bnds_tailp, succ, ptr, BND_DC (bnd));
5121 bnds_tailp = &BLIST_NEXT (*bnds_tailp);
5122 }
5123
5124 blist_remove (bndsp);
5125 return bnds_tailp;
5126 }
5127
5128 /* Schedule EXPR_VLIW on BND. Return the insn emitted. */
5129 static insn_t
5130 schedule_expr_on_boundary (bnd_t bnd, expr_t expr_vliw, int seqno)
5131 {
5132 av_set_t expr_seq;
5133 expr_t c_expr = XALLOCA (expr_def);
5134 insn_t place_to_insert;
5135 insn_t insn;
5136 bool should_move;
5137
5138 expr_seq = find_sequential_best_exprs (bnd, expr_vliw, true);
5139
5140 /* In case of scheduling a jump skipping some other instructions,
5141 prepare CFG. After this, jump is at the boundary and can be
5142 scheduled as usual insn by MOVE_OP. */
5143 if (vinsn_cond_branch_p (EXPR_VINSN (expr_vliw)))
5144 {
5145 insn = EXPR_INSN_RTX (expr_vliw);
5146
5147 /* Speculative jumps are not handled. */
5148 if (insn != BND_TO (bnd)
5149 && !sel_insn_is_speculation_check (insn))
5150 move_cond_jump (insn, bnd);
5151 }
5152
5153 /* Find a place for C_EXPR to schedule. */
5154 place_to_insert = prepare_place_to_insert (bnd);
5155 should_move = move_exprs_to_boundary (bnd, expr_vliw, expr_seq, c_expr);
5156 clear_expr (c_expr);
5157
5158 /* Add the instruction. The corner case to care about is when
5159 the expr_seq set has more than one expr, and we chose the one that
5160 is not equal to expr_vliw. Then expr_vliw may be insn in stream, and
5161 we can't use it. Generate the new vinsn. */
5162 if (INSN_IN_STREAM_P (EXPR_INSN_RTX (expr_vliw)))
5163 {
5164 vinsn_t vinsn_new;
5165
5166 vinsn_new = vinsn_copy (EXPR_VINSN (expr_vliw), false);
5167 change_vinsn_in_expr (expr_vliw, vinsn_new);
5168 should_move = false;
5169 }
5170 if (should_move)
5171 insn = sel_move_insn (expr_vliw, seqno, place_to_insert);
5172 else
5173 insn = emit_insn_from_expr_after (expr_vliw, NULL, seqno,
5174 place_to_insert);
5175
5176 /* Return the nops generated for preserving of data sets back
5177 into pool. */
5178 if (INSN_NOP_P (place_to_insert))
5179 return_nop_to_pool (place_to_insert);
5180 remove_temp_moveop_nops ();
5181
5182 av_set_clear (&expr_seq);
5183
5184 /* Save the expression scheduled so to reset target availability if we'll
5185 meet it later on the same fence. */
5186 if (EXPR_WAS_RENAMED (expr_vliw))
5187 vinsn_vec_add (&vec_target_unavailable_vinsns, INSN_EXPR (insn));
5188
5189 /* Check that the recent movement didn't destroyed loop
5190 structure. */
5191 gcc_assert (!pipelining_p
5192 || current_loop_nest == NULL
5193 || loop_latch_edge (current_loop_nest));
5194 return insn;
5195 }
5196
5197 /* Stall for N cycles on FENCE. */
5198 static void
5199 stall_for_cycles (fence_t fence, int n)
5200 {
5201 int could_more;
5202
5203 could_more = n > 1 || FENCE_ISSUED_INSNS (fence) < issue_rate;
5204 while (n--)
5205 advance_one_cycle (fence);
5206 if (could_more)
5207 FENCE_AFTER_STALL_P (fence) = 1;
5208 }
5209
5210 /* Gather a parallel group of insns at FENCE and assign their seqno
5211 to SEQNO. All scheduled insns are gathered in SCHEDULED_INSNS_TAILPP
5212 list for later recalculation of seqnos. */
5213 static void
5214 fill_insns (fence_t fence, int seqno, ilist_t **scheduled_insns_tailpp)
5215 {
5216 blist_t bnds = NULL, *bnds_tailp;
5217 av_set_t av_vliw = NULL;
5218 insn_t insn = FENCE_INSN (fence);
5219
5220 if (sched_verbose >= 2)
5221 sel_print ("Starting fill_insns for insn %d, cycle %d\n",
5222 INSN_UID (insn), FENCE_CYCLE (fence));
5223
5224 blist_add (&bnds, insn, NULL, FENCE_DC (fence));
5225 bnds_tailp = &BLIST_NEXT (bnds);
5226 set_target_context (FENCE_TC (fence));
5227 target_bb = INSN_BB (insn);
5228
5229 /* Do while we can add any operation to the current group. */
5230 do
5231 {
5232 blist_t *bnds_tailp1, *bndsp;
5233 expr_t expr_vliw;
5234 int need_stall;
5235 int was_stall = 0, scheduled_insns = 0, stall_iterations = 0;
5236 int max_insns = pipelining_p ? issue_rate : 2 * issue_rate;
5237 int max_stall = pipelining_p ? 1 : 3;
5238
5239 compute_av_set_on_boundaries (fence, bnds, &av_vliw);
5240 remove_insns_that_need_bookkeeping (fence, &av_vliw);
5241 remove_insns_for_debug (bnds, &av_vliw);
5242
5243 /* Return early if we have nothing to schedule. */
5244 if (av_vliw == NULL)
5245 break;
5246
5247 /* Choose the best expression and, if needed, destination register
5248 for it. */
5249 do
5250 {
5251 expr_vliw = find_best_expr (&av_vliw, bnds, fence, &need_stall);
5252 if (!expr_vliw && need_stall)
5253 {
5254 /* All expressions required a stall. Do not recompute av sets
5255 as we'll get the same answer (modulo the insns between
5256 the fence and its boundary, which will not be available for
5257 pipelining). */
5258 gcc_assert (! expr_vliw && stall_iterations < 2);
5259 was_stall++;
5260 /* If we are going to stall for too long, break to recompute av
5261 sets and bring more insns for pipelining. */
5262 if (need_stall <= 3)
5263 stall_for_cycles (fence, need_stall);
5264 else
5265 {
5266 stall_for_cycles (fence, 1);
5267 break;
5268 }
5269 }
5270 }
5271 while (! expr_vliw && need_stall);
5272
5273 /* Now either we've selected expr_vliw or we have nothing to schedule. */
5274 if (!expr_vliw)
5275 {
5276 av_set_clear (&av_vliw);
5277 break;
5278 }
5279
5280 bndsp = &bnds;
5281 bnds_tailp1 = bnds_tailp;
5282
5283 do
5284 /* This code will be executed only once until we'd have several
5285 boundaries per fence. */
5286 {
5287 bnd_t bnd = BLIST_BND (*bndsp);
5288
5289 if (!av_set_is_in_p (BND_AV1 (bnd), EXPR_VINSN (expr_vliw)))
5290 {
5291 bndsp = &BLIST_NEXT (*bndsp);
5292 continue;
5293 }
5294
5295 insn = schedule_expr_on_boundary (bnd, expr_vliw, seqno);
5296 update_fence_and_insn (fence, insn, need_stall);
5297 bnds_tailp = update_boundaries (bnd, insn, bndsp, bnds_tailp);
5298
5299 /* Add insn to the list of scheduled on this cycle instructions. */
5300 ilist_add (*scheduled_insns_tailpp, insn);
5301 *scheduled_insns_tailpp = &ILIST_NEXT (**scheduled_insns_tailpp);
5302 }
5303 while (*bndsp != *bnds_tailp1);
5304
5305 av_set_clear (&av_vliw);
5306 scheduled_insns++;
5307
5308 /* We currently support information about candidate blocks only for
5309 one 'target_bb' block. Hence we can't schedule after jump insn,
5310 as this will bring two boundaries and, hence, necessity to handle
5311 information for two or more blocks concurrently. */
5312 if (sel_bb_end_p (insn)
5313 || (was_stall
5314 && (was_stall >= max_stall
5315 || scheduled_insns >= max_insns)))
5316 break;
5317 }
5318 while (bnds);
5319
5320 gcc_assert (!FENCE_BNDS (fence));
5321
5322 /* Update boundaries of the FENCE. */
5323 while (bnds)
5324 {
5325 ilist_t ptr = BND_PTR (BLIST_BND (bnds));
5326
5327 if (ptr)
5328 {
5329 insn = ILIST_INSN (ptr);
5330
5331 if (!ilist_is_in_p (FENCE_BNDS (fence), insn))
5332 ilist_add (&FENCE_BNDS (fence), insn);
5333 }
5334
5335 blist_remove (&bnds);
5336 }
5337
5338 /* Update target context on the fence. */
5339 reset_target_context (FENCE_TC (fence), false);
5340 }
5341
5342 /* All exprs in ORIG_OPS must have the same destination register or memory.
5343 Return that destination. */
5344 static rtx
5345 get_dest_from_orig_ops (av_set_t orig_ops)
5346 {
5347 rtx dest = NULL_RTX;
5348 av_set_iterator av_it;
5349 expr_t expr;
5350 bool first_p = true;
5351
5352 FOR_EACH_EXPR (expr, av_it, orig_ops)
5353 {
5354 rtx x = EXPR_LHS (expr);
5355
5356 if (first_p)
5357 {
5358 first_p = false;
5359 dest = x;
5360 }
5361 else
5362 gcc_assert (dest == x
5363 || (dest != NULL_RTX && x != NULL_RTX
5364 && rtx_equal_p (dest, x)));
5365 }
5366
5367 return dest;
5368 }
5369
5370 /* Update data sets for the bookkeeping block and record those expressions
5371 which become no longer available after inserting this bookkeeping. */
5372 static void
5373 update_and_record_unavailable_insns (basic_block book_block)
5374 {
5375 av_set_iterator i;
5376 av_set_t old_av_set = NULL;
5377 expr_t cur_expr;
5378 rtx bb_end = sel_bb_end (book_block);
5379
5380 /* First, get correct liveness in the bookkeeping block. The problem is
5381 the range between the bookeeping insn and the end of block. */
5382 update_liveness_on_insn (bb_end);
5383 if (control_flow_insn_p (bb_end))
5384 update_liveness_on_insn (PREV_INSN (bb_end));
5385
5386 /* If there's valid av_set on BOOK_BLOCK, then there might exist another
5387 fence above, where we may choose to schedule an insn which is
5388 actually blocked from moving up with the bookkeeping we create here. */
5389 if (AV_SET_VALID_P (sel_bb_head (book_block)))
5390 {
5391 old_av_set = av_set_copy (BB_AV_SET (book_block));
5392 update_data_sets (sel_bb_head (book_block));
5393
5394 /* Traverse all the expressions in the old av_set and check whether
5395 CUR_EXPR is in new AV_SET. */
5396 FOR_EACH_EXPR (cur_expr, i, old_av_set)
5397 {
5398 expr_t new_expr = av_set_lookup (BB_AV_SET (book_block),
5399 EXPR_VINSN (cur_expr));
5400
5401 if (! new_expr
5402 /* In this case, we can just turn off the E_T_A bit, but we can't
5403 represent this information with the current vector. */
5404 || EXPR_TARGET_AVAILABLE (new_expr)
5405 != EXPR_TARGET_AVAILABLE (cur_expr))
5406 /* Unfortunately, the below code could be also fired up on
5407 separable insns.
5408 FIXME: add an example of how this could happen. */
5409 vinsn_vec_add (&vec_bookkeeping_blocked_vinsns, cur_expr);
5410 }
5411
5412 av_set_clear (&old_av_set);
5413 }
5414 }
5415
5416 /* The main effect of this function is that sparams->c_expr is merged
5417 with (or copied to) lparams->c_expr_merged. If there's only one successor,
5418 we avoid merging anything by copying sparams->c_expr to lparams->c_expr_merged.
5419 lparams->c_expr_merged is copied back to sparams->c_expr after all
5420 successors has been traversed. lparams->c_expr_local is an expr allocated
5421 on stack in the caller function, and is used if there is more than one
5422 successor.
5423
5424 SUCC is one of the SUCCS_NORMAL successors of INSN,
5425 MOVEOP_DRV_CALL_RES is the result of call code_motion_path_driver on succ,
5426 LPARAMS and STATIC_PARAMS contain the parameters described above. */
5427 static void
5428 move_op_merge_succs (insn_t insn ATTRIBUTE_UNUSED,
5429 insn_t succ ATTRIBUTE_UNUSED,
5430 int moveop_drv_call_res,
5431 cmpd_local_params_p lparams, void *static_params)
5432 {
5433 moveop_static_params_p sparams = (moveop_static_params_p) static_params;
5434
5435 /* Nothing to do, if original expr wasn't found below. */
5436 if (moveop_drv_call_res != 1)
5437 return;
5438
5439 /* If this is a first successor. */
5440 if (!lparams->c_expr_merged)
5441 {
5442 lparams->c_expr_merged = sparams->c_expr;
5443 sparams->c_expr = lparams->c_expr_local;
5444 }
5445 else
5446 {
5447 /* We must merge all found expressions to get reasonable
5448 EXPR_SPEC_DONE_DS for the resulting insn. If we don't
5449 do so then we can first find the expr with epsilon
5450 speculation success probability and only then with the
5451 good probability. As a result the insn will get epsilon
5452 probability and will never be scheduled because of
5453 weakness_cutoff in find_best_expr.
5454
5455 We call merge_expr_data here instead of merge_expr
5456 because due to speculation C_EXPR and X may have the
5457 same insns with different speculation types. And as of
5458 now such insns are considered non-equal.
5459
5460 However, EXPR_SCHED_TIMES is different -- we must get
5461 SCHED_TIMES from a real insn, not a bookkeeping copy.
5462 We force this here. Instead, we may consider merging
5463 SCHED_TIMES to the maximum instead of minimum in the
5464 below function. */
5465 int old_times = EXPR_SCHED_TIMES (lparams->c_expr_merged);
5466
5467 merge_expr_data (lparams->c_expr_merged, sparams->c_expr, NULL);
5468 if (EXPR_SCHED_TIMES (sparams->c_expr) == 0)
5469 EXPR_SCHED_TIMES (lparams->c_expr_merged) = old_times;
5470
5471 clear_expr (sparams->c_expr);
5472 }
5473 }
5474
5475 /* Add used regs for the successor SUCC into SPARAMS->USED_REGS.
5476
5477 SUCC is one of the SUCCS_NORMAL successors of INSN,
5478 MOVEOP_DRV_CALL_RES is the result of call code_motion_path_driver on succ or 0,
5479 if SUCC is one of SUCCS_BACK or SUCCS_OUT.
5480 STATIC_PARAMS contain USED_REGS set. */
5481 static void
5482 fur_merge_succs (insn_t insn ATTRIBUTE_UNUSED, insn_t succ,
5483 int moveop_drv_call_res,
5484 cmpd_local_params_p lparams ATTRIBUTE_UNUSED,
5485 void *static_params)
5486 {
5487 regset succ_live;
5488 fur_static_params_p sparams = (fur_static_params_p) static_params;
5489
5490 /* Here we compute live regsets only for branches that do not lie
5491 on the code motion paths. These branches correspond to value
5492 MOVEOP_DRV_CALL_RES==0 and include SUCCS_BACK and SUCCS_OUT, though
5493 for such branches code_motion_path_driver is not called. */
5494 if (moveop_drv_call_res != 0)
5495 return;
5496
5497 /* Mark all registers that do not meet the following condition:
5498 (3) not live on the other path of any conditional branch
5499 that is passed by the operation, in case original
5500 operations are not present on both paths of the
5501 conditional branch. */
5502 succ_live = compute_live (succ);
5503 IOR_REG_SET (sparams->used_regs, succ_live);
5504 }
5505
5506 /* This function is called after the last successor. Copies LP->C_EXPR_MERGED
5507 into SP->CEXPR. */
5508 static void
5509 move_op_after_merge_succs (cmpd_local_params_p lp, void *sparams)
5510 {
5511 moveop_static_params_p sp = (moveop_static_params_p) sparams;
5512
5513 sp->c_expr = lp->c_expr_merged;
5514 }
5515
5516 /* Track bookkeeping copies created, insns scheduled, and blocks for
5517 rescheduling when INSN is found by move_op. */
5518 static void
5519 track_scheduled_insns_and_blocks (rtx insn)
5520 {
5521 /* Even if this insn can be a copy that will be removed during current move_op,
5522 we still need to count it as an originator. */
5523 bitmap_set_bit (current_originators, INSN_UID (insn));
5524
5525 if (!bitmap_bit_p (current_copies, INSN_UID (insn)))
5526 {
5527 /* Note that original block needs to be rescheduled, as we pulled an
5528 instruction out of it. */
5529 if (INSN_SCHED_TIMES (insn) > 0)
5530 bitmap_set_bit (blocks_to_reschedule, BLOCK_FOR_INSN (insn)->index);
5531 else if (INSN_UID (insn) < first_emitted_uid)
5532 num_insns_scheduled++;
5533 }
5534 else
5535 bitmap_clear_bit (current_copies, INSN_UID (insn));
5536
5537 /* For instructions we must immediately remove insn from the
5538 stream, so subsequent update_data_sets () won't include this
5539 insn into av_set.
5540 For expr we must make insn look like "INSN_REG (insn) := c_expr". */
5541 if (INSN_UID (insn) > max_uid_before_move_op)
5542 stat_bookkeeping_copies--;
5543 }
5544
5545 /* Emit a register-register copy for INSN if needed. Return true if
5546 emitted one. PARAMS is the move_op static parameters. */
5547 static bool
5548 maybe_emit_renaming_copy (rtx insn,
5549 moveop_static_params_p params)
5550 {
5551 bool insn_emitted = false;
5552 rtx cur_reg = expr_dest_reg (params->c_expr);
5553
5554 gcc_assert (!cur_reg || (params->dest && REG_P (params->dest)));
5555
5556 /* If original operation has expr and the register chosen for
5557 that expr is not original operation's dest reg, substitute
5558 operation's right hand side with the register chosen. */
5559 if (cur_reg != NULL_RTX && REGNO (params->dest) != REGNO (cur_reg))
5560 {
5561 insn_t reg_move_insn, reg_move_insn_rtx;
5562
5563 reg_move_insn_rtx = create_insn_rtx_with_rhs (INSN_VINSN (insn),
5564 params->dest);
5565 reg_move_insn = sel_gen_insn_from_rtx_after (reg_move_insn_rtx,
5566 INSN_EXPR (insn),
5567 INSN_SEQNO (insn),
5568 insn);
5569 EXPR_SPEC_DONE_DS (INSN_EXPR (reg_move_insn)) = 0;
5570 replace_dest_with_reg_in_expr (params->c_expr, params->dest);
5571
5572 insn_emitted = true;
5573 params->was_renamed = true;
5574 }
5575
5576 return insn_emitted;
5577 }
5578
5579 /* Emit a speculative check for INSN speculated as EXPR if needed.
5580 Return true if we've emitted one. PARAMS is the move_op static
5581 parameters. */
5582 static bool
5583 maybe_emit_speculative_check (rtx insn, expr_t expr,
5584 moveop_static_params_p params)
5585 {
5586 bool insn_emitted = false;
5587 insn_t x;
5588 ds_t check_ds;
5589
5590 check_ds = get_spec_check_type_for_insn (insn, expr);
5591 if (check_ds != 0)
5592 {
5593 /* A speculation check should be inserted. */
5594 x = create_speculation_check (params->c_expr, check_ds, insn);
5595 insn_emitted = true;
5596 }
5597 else
5598 {
5599 EXPR_SPEC_DONE_DS (INSN_EXPR (insn)) = 0;
5600 x = insn;
5601 }
5602
5603 gcc_assert (EXPR_SPEC_DONE_DS (INSN_EXPR (x)) == 0
5604 && EXPR_SPEC_TO_CHECK_DS (INSN_EXPR (x)) == 0);
5605 return insn_emitted;
5606 }
5607
5608 /* Handle transformations that leave an insn in place of original
5609 insn such as renaming/speculation. Return true if one of such
5610 transformations actually happened, and we have emitted this insn. */
5611 static bool
5612 handle_emitting_transformations (rtx insn, expr_t expr,
5613 moveop_static_params_p params)
5614 {
5615 bool insn_emitted = false;
5616
5617 insn_emitted = maybe_emit_renaming_copy (insn, params);
5618 insn_emitted |= maybe_emit_speculative_check (insn, expr, params);
5619
5620 return insn_emitted;
5621 }
5622
5623 /* Remove INSN from stream. When ONLY_DISCONNECT is true, its data
5624 is not removed but reused when INSN is re-emitted. */
5625 static void
5626 remove_insn_from_stream (rtx insn, bool only_disconnect)
5627 {
5628 insn_t nop, bb_head, bb_end;
5629 bool need_nop_to_preserve_bb;
5630 basic_block bb = BLOCK_FOR_INSN (insn);
5631
5632 /* If INSN is the only insn in the basic block (not counting JUMP,
5633 which may be a jump to next insn), leave NOP there till the
5634 return to fill_insns. */
5635 bb_head = sel_bb_head (bb);
5636 bb_end = sel_bb_end (bb);
5637 need_nop_to_preserve_bb = ((bb_head == bb_end)
5638 || (NEXT_INSN (bb_head) == bb_end
5639 && JUMP_P (bb_end))
5640 || IN_CURRENT_FENCE_P (NEXT_INSN (insn)));
5641
5642 /* If there's only one insn in the BB, make sure that a nop is
5643 inserted into it, so the basic block won't disappear when we'll
5644 delete INSN below with sel_remove_insn. It should also survive
5645 till the return to fill_insns. */
5646 if (need_nop_to_preserve_bb)
5647 {
5648 nop = get_nop_from_pool (insn);
5649 gcc_assert (INSN_NOP_P (nop));
5650 VEC_safe_push (insn_t, heap, vec_temp_moveop_nops, nop);
5651 }
5652
5653 sel_remove_insn (insn, only_disconnect, false);
5654 }
5655
5656 /* This function is called when original expr is found.
5657 INSN - current insn traversed, EXPR - the corresponding expr found.
5658 LPARAMS is the local parameters of code modion driver, STATIC_PARAMS
5659 is static parameters of move_op. */
5660 static void
5661 move_op_orig_expr_found (insn_t insn, expr_t expr,
5662 cmpd_local_params_p lparams ATTRIBUTE_UNUSED,
5663 void *static_params)
5664 {
5665 bool only_disconnect, insn_emitted;
5666 moveop_static_params_p params = (moveop_static_params_p) static_params;
5667
5668 copy_expr_onside (params->c_expr, INSN_EXPR (insn));
5669 track_scheduled_insns_and_blocks (insn);
5670 insn_emitted = handle_emitting_transformations (insn, expr, params);
5671 only_disconnect = (params->uid == INSN_UID (insn)
5672 && ! insn_emitted && ! EXPR_WAS_CHANGED (expr));
5673
5674 /* Mark that we've disconnected an insn. */
5675 if (only_disconnect)
5676 params->uid = -1;
5677 remove_insn_from_stream (insn, only_disconnect);
5678 }
5679
5680 /* The function is called when original expr is found.
5681 INSN - current insn traversed, EXPR - the corresponding expr found,
5682 crosses_call and original_insns in STATIC_PARAMS are updated. */
5683 static void
5684 fur_orig_expr_found (insn_t insn, expr_t expr ATTRIBUTE_UNUSED,
5685 cmpd_local_params_p lparams ATTRIBUTE_UNUSED,
5686 void *static_params)
5687 {
5688 fur_static_params_p params = (fur_static_params_p) static_params;
5689 regset tmp;
5690
5691 if (CALL_P (insn))
5692 params->crosses_call = true;
5693
5694 def_list_add (params->original_insns, insn, params->crosses_call);
5695
5696 /* Mark the registers that do not meet the following condition:
5697 (2) not among the live registers of the point
5698 immediately following the first original operation on
5699 a given downward path, except for the original target
5700 register of the operation. */
5701 tmp = get_clear_regset_from_pool ();
5702 compute_live_below_insn (insn, tmp);
5703 AND_COMPL_REG_SET (tmp, INSN_REG_SETS (insn));
5704 AND_COMPL_REG_SET (tmp, INSN_REG_CLOBBERS (insn));
5705 IOR_REG_SET (params->used_regs, tmp);
5706 return_regset_to_pool (tmp);
5707
5708 /* (*1) We need to add to USED_REGS registers that are read by
5709 INSN's lhs. This may lead to choosing wrong src register.
5710 E.g. (scheduling const expr enabled):
5711
5712 429: ax=0x0 <- Can't use AX for this expr (0x0)
5713 433: dx=[bp-0x18]
5714 427: [ax+dx+0x1]=ax
5715 REG_DEAD: ax
5716 168: di=dx
5717 REG_DEAD: dx
5718 */
5719 /* FIXME: see comment above and enable MEM_P
5720 in vinsn_separable_p. */
5721 gcc_assert (!VINSN_SEPARABLE_P (INSN_VINSN (insn))
5722 || !MEM_P (INSN_LHS (insn)));
5723 }
5724
5725 /* This function is called on the ascending pass, before returning from
5726 current basic block. */
5727 static void
5728 move_op_at_first_insn (insn_t insn, cmpd_local_params_p lparams,
5729 void *static_params)
5730 {
5731 moveop_static_params_p sparams = (moveop_static_params_p) static_params;
5732 basic_block book_block = NULL;
5733
5734 /* When we have removed the boundary insn for scheduling, which also
5735 happened to be the end insn in its bb, we don't need to update sets. */
5736 if (!lparams->removed_last_insn
5737 && lparams->e1
5738 && sel_bb_head_p (insn))
5739 {
5740 /* We should generate bookkeeping code only if we are not at the
5741 top level of the move_op. */
5742 if (sel_num_cfg_preds_gt_1 (insn))
5743 book_block = generate_bookkeeping_insn (sparams->c_expr,
5744 lparams->e1, lparams->e2);
5745 /* Update data sets for the current insn. */
5746 update_data_sets (insn);
5747 }
5748
5749 /* If bookkeeping code was inserted, we need to update av sets of basic
5750 block that received bookkeeping. After generation of bookkeeping insn,
5751 bookkeeping block does not contain valid av set because we are not following
5752 the original algorithm in every detail with regards to e.g. renaming
5753 simple reg-reg copies. Consider example:
5754
5755 bookkeeping block scheduling fence
5756 \ /
5757 \ join /
5758 ----------
5759 | |
5760 ----------
5761 / \
5762 / \
5763 r1 := r2 r1 := r3
5764
5765 We try to schedule insn "r1 := r3" on the current
5766 scheduling fence. Also, note that av set of bookkeeping block
5767 contain both insns "r1 := r2" and "r1 := r3". When the insn has
5768 been scheduled, the CFG is as follows:
5769
5770 r1 := r3 r1 := r3
5771 bookkeeping block scheduling fence
5772 \ /
5773 \ join /
5774 ----------
5775 | |
5776 ----------
5777 / \
5778 / \
5779 r1 := r2
5780
5781 Here, insn "r1 := r3" was scheduled at the current scheduling point
5782 and bookkeeping code was generated at the bookeeping block. This
5783 way insn "r1 := r2" is no longer available as a whole instruction
5784 (but only as expr) ahead of insn "r1 := r3" in bookkeeping block.
5785 This situation is handled by calling update_data_sets.
5786
5787 Since update_data_sets is called only on the bookkeeping block, and
5788 it also may have predecessors with av_sets, containing instructions that
5789 are no longer available, we save all such expressions that become
5790 unavailable during data sets update on the bookkeeping block in
5791 VEC_BOOKKEEPING_BLOCKED_VINSNS. Later we avoid selecting such
5792 expressions for scheduling. This allows us to avoid recomputation of
5793 av_sets outside the code motion path. */
5794
5795 if (book_block)
5796 update_and_record_unavailable_insns (book_block);
5797
5798 /* If INSN was previously marked for deletion, it's time to do it. */
5799 if (lparams->removed_last_insn)
5800 insn = PREV_INSN (insn);
5801
5802 /* Do not tidy control flow at the topmost moveop, as we can erroneously
5803 kill a block with a single nop in which the insn should be emitted. */
5804 if (lparams->e1)
5805 tidy_control_flow (BLOCK_FOR_INSN (insn), true);
5806 }
5807
5808 /* This function is called on the ascending pass, before returning from the
5809 current basic block. */
5810 static void
5811 fur_at_first_insn (insn_t insn,
5812 cmpd_local_params_p lparams ATTRIBUTE_UNUSED,
5813 void *static_params ATTRIBUTE_UNUSED)
5814 {
5815 gcc_assert (!sel_bb_head_p (insn) || AV_SET_VALID_P (insn)
5816 || AV_LEVEL (insn) == -1);
5817 }
5818
5819 /* Called on the backward stage of recursion to call moveup_expr for insn
5820 and sparams->c_expr. */
5821 static void
5822 move_op_ascend (insn_t insn, void *static_params)
5823 {
5824 enum MOVEUP_EXPR_CODE res;
5825 moveop_static_params_p sparams = (moveop_static_params_p) static_params;
5826
5827 if (! INSN_NOP_P (insn))
5828 {
5829 res = moveup_expr_cached (sparams->c_expr, insn, false);
5830 gcc_assert (res != MOVEUP_EXPR_NULL);
5831 }
5832
5833 /* Update liveness for this insn as it was invalidated. */
5834 update_liveness_on_insn (insn);
5835 }
5836
5837 /* This function is called on enter to the basic block.
5838 Returns TRUE if this block already have been visited and
5839 code_motion_path_driver should return 1, FALSE otherwise. */
5840 static int
5841 fur_on_enter (insn_t insn ATTRIBUTE_UNUSED, cmpd_local_params_p local_params,
5842 void *static_params, bool visited_p)
5843 {
5844 fur_static_params_p sparams = (fur_static_params_p) static_params;
5845
5846 if (visited_p)
5847 {
5848 /* If we have found something below this block, there should be at
5849 least one insn in ORIGINAL_INSNS. */
5850 gcc_assert (*sparams->original_insns);
5851
5852 /* Adjust CROSSES_CALL, since we may have come to this block along
5853 different path. */
5854 DEF_LIST_DEF (*sparams->original_insns)->crosses_call
5855 |= sparams->crosses_call;
5856 }
5857 else
5858 local_params->old_original_insns = *sparams->original_insns;
5859
5860 return 1;
5861 }
5862
5863 /* Same as above but for move_op. */
5864 static int
5865 move_op_on_enter (insn_t insn ATTRIBUTE_UNUSED,
5866 cmpd_local_params_p local_params ATTRIBUTE_UNUSED,
5867 void *static_params ATTRIBUTE_UNUSED, bool visited_p)
5868 {
5869 if (visited_p)
5870 return -1;
5871 return 1;
5872 }
5873
5874 /* This function is called while descending current basic block if current
5875 insn is not the original EXPR we're searching for.
5876
5877 Return value: FALSE, if code_motion_path_driver should perform a local
5878 cleanup and return 0 itself;
5879 TRUE, if code_motion_path_driver should continue. */
5880 static bool
5881 move_op_orig_expr_not_found (insn_t insn, av_set_t orig_ops ATTRIBUTE_UNUSED,
5882 void *static_params)
5883 {
5884 moveop_static_params_p sparams = (moveop_static_params_p) static_params;
5885
5886 #ifdef ENABLE_CHECKING
5887 sparams->failed_insn = insn;
5888 #endif
5889
5890 /* If we're scheduling separate expr, in order to generate correct code
5891 we need to stop the search at bookkeeping code generated with the
5892 same destination register or memory. */
5893 if (lhs_of_insn_equals_to_dest_p (insn, sparams->dest))
5894 return false;
5895 return true;
5896 }
5897
5898 /* This function is called while descending current basic block if current
5899 insn is not the original EXPR we're searching for.
5900
5901 Return value: TRUE (code_motion_path_driver should continue). */
5902 static bool
5903 fur_orig_expr_not_found (insn_t insn, av_set_t orig_ops, void *static_params)
5904 {
5905 bool mutexed;
5906 expr_t r;
5907 av_set_iterator avi;
5908 fur_static_params_p sparams = (fur_static_params_p) static_params;
5909
5910 if (CALL_P (insn))
5911 sparams->crosses_call = true;
5912
5913 /* If current insn we are looking at cannot be executed together
5914 with original insn, then we can skip it safely.
5915
5916 Example: ORIG_OPS = { (p6) r14 = sign_extend (r15); }
5917 INSN = (!p6) r14 = r14 + 1;
5918
5919 Here we can schedule ORIG_OP with lhs = r14, though only
5920 looking at the set of used and set registers of INSN we must
5921 forbid it. So, add set/used in INSN registers to the
5922 untouchable set only if there is an insn in ORIG_OPS that can
5923 affect INSN. */
5924 mutexed = true;
5925 FOR_EACH_EXPR (r, avi, orig_ops)
5926 if (!sched_insns_conditions_mutex_p (insn, EXPR_INSN_RTX (r)))
5927 {
5928 mutexed = false;
5929 break;
5930 }
5931
5932 /* Mark all registers that do not meet the following condition:
5933 (1) Not set or read on any path from xi to an instance of the
5934 original operation. */
5935 if (!mutexed)
5936 {
5937 IOR_REG_SET (sparams->used_regs, INSN_REG_SETS (insn));
5938 IOR_REG_SET (sparams->used_regs, INSN_REG_USES (insn));
5939 IOR_REG_SET (sparams->used_regs, INSN_REG_CLOBBERS (insn));
5940 }
5941
5942 return true;
5943 }
5944
5945 /* Hooks and data to perform move_op operations with code_motion_path_driver. */
5946 struct code_motion_path_driver_info_def move_op_hooks = {
5947 move_op_on_enter,
5948 move_op_orig_expr_found,
5949 move_op_orig_expr_not_found,
5950 move_op_merge_succs,
5951 move_op_after_merge_succs,
5952 move_op_ascend,
5953 move_op_at_first_insn,
5954 SUCCS_NORMAL,
5955 "move_op"
5956 };
5957
5958 /* Hooks and data to perform find_used_regs operations
5959 with code_motion_path_driver. */
5960 struct code_motion_path_driver_info_def fur_hooks = {
5961 fur_on_enter,
5962 fur_orig_expr_found,
5963 fur_orig_expr_not_found,
5964 fur_merge_succs,
5965 NULL, /* fur_after_merge_succs */
5966 NULL, /* fur_ascend */
5967 fur_at_first_insn,
5968 SUCCS_ALL,
5969 "find_used_regs"
5970 };
5971
5972 /* Traverse all successors of INSN. For each successor that is SUCCS_NORMAL
5973 code_motion_path_driver is called recursively. Original operation
5974 was found at least on one path that is starting with one of INSN's
5975 successors (this fact is asserted). ORIG_OPS is expressions we're looking
5976 for, PATH is the path we've traversed, STATIC_PARAMS is the parameters
5977 of either move_op or find_used_regs depending on the caller.
5978
5979 Return 0 if we haven't found expression, 1 if we found it, -1 if we don't
5980 know for sure at this point. */
5981 static int
5982 code_motion_process_successors (insn_t insn, av_set_t orig_ops,
5983 ilist_t path, void *static_params)
5984 {
5985 int res = 0;
5986 succ_iterator succ_i;
5987 rtx succ;
5988 basic_block bb;
5989 int old_index;
5990 unsigned old_succs;
5991
5992 struct cmpd_local_params lparams;
5993 expr_def _x;
5994
5995 lparams.c_expr_local = &_x;
5996 lparams.c_expr_merged = NULL;
5997
5998 /* We need to process only NORMAL succs for move_op, and collect live
5999 registers from ALL branches (including those leading out of the
6000 region) for find_used_regs.
6001
6002 In move_op, there can be a case when insn's bb number has changed
6003 due to created bookkeeping. This happens very rare, as we need to
6004 move expression from the beginning to the end of the same block.
6005 Rescan successors in this case. */
6006
6007 rescan:
6008 bb = BLOCK_FOR_INSN (insn);
6009 old_index = bb->index;
6010 old_succs = EDGE_COUNT (bb->succs);
6011
6012 FOR_EACH_SUCC_1 (succ, succ_i, insn, code_motion_path_driver_info->succ_flags)
6013 {
6014 int b;
6015
6016 lparams.e1 = succ_i.e1;
6017 lparams.e2 = succ_i.e2;
6018
6019 /* Go deep into recursion only for NORMAL edges (non-backedges within the
6020 current region). */
6021 if (succ_i.current_flags == SUCCS_NORMAL)
6022 b = code_motion_path_driver (succ, orig_ops, path, &lparams,
6023 static_params);
6024 else
6025 b = 0;
6026
6027 /* Merge c_expres found or unify live register sets from different
6028 successors. */
6029 code_motion_path_driver_info->merge_succs (insn, succ, b, &lparams,
6030 static_params);
6031 if (b == 1)
6032 res = b;
6033 else if (b == -1 && res != 1)
6034 res = b;
6035
6036 /* We have simplified the control flow below this point. In this case,
6037 the iterator becomes invalid. We need to try again. */
6038 if (BLOCK_FOR_INSN (insn)->index != old_index
6039 || EDGE_COUNT (bb->succs) != old_succs)
6040 goto rescan;
6041 }
6042
6043 #ifdef ENABLE_CHECKING
6044 /* Here, RES==1 if original expr was found at least for one of the
6045 successors. After the loop, RES may happen to have zero value
6046 only if at some point the expr searched is present in av_set, but is
6047 not found below. In most cases, this situation is an error.
6048 The exception is when the original operation is blocked by
6049 bookkeeping generated for another fence or for another path in current
6050 move_op. */
6051 gcc_assert (res == 1
6052 || (res == 0
6053 && av_set_could_be_blocked_by_bookkeeping_p (orig_ops,
6054 static_params))
6055 || res == -1);
6056 #endif
6057
6058 /* Merge data, clean up, etc. */
6059 if (res != -1 && code_motion_path_driver_info->after_merge_succs)
6060 code_motion_path_driver_info->after_merge_succs (&lparams, static_params);
6061
6062 return res;
6063 }
6064
6065
6066 /* Perform a cleanup when the driver is about to terminate. ORIG_OPS_P
6067 is the pointer to the av set with expressions we were looking for,
6068 PATH_P is the pointer to the traversed path. */
6069 static inline void
6070 code_motion_path_driver_cleanup (av_set_t *orig_ops_p, ilist_t *path_p)
6071 {
6072 ilist_remove (path_p);
6073 av_set_clear (orig_ops_p);
6074 }
6075
6076 /* The driver function that implements move_op or find_used_regs
6077 functionality dependent whether code_motion_path_driver_INFO is set to
6078 &MOVE_OP_HOOKS or &FUR_HOOKS. This function implements the common parts
6079 of code (CFG traversal etc) that are shared among both functions. INSN
6080 is the insn we're starting the search from, ORIG_OPS are the expressions
6081 we're searching for, PATH is traversed path, LOCAL_PARAMS_IN are local
6082 parameters of the driver, and STATIC_PARAMS are static parameters of
6083 the caller.
6084
6085 Returns whether original instructions were found. Note that top-level
6086 code_motion_path_driver always returns true. */
6087 static int
6088 code_motion_path_driver (insn_t insn, av_set_t orig_ops, ilist_t path,
6089 cmpd_local_params_p local_params_in,
6090 void *static_params)
6091 {
6092 expr_t expr = NULL;
6093 basic_block bb = BLOCK_FOR_INSN (insn);
6094 insn_t first_insn, bb_tail, before_first;
6095 bool removed_last_insn = false;
6096
6097 if (sched_verbose >= 6)
6098 {
6099 sel_print ("%s (", code_motion_path_driver_info->routine_name);
6100 dump_insn (insn);
6101 sel_print (",");
6102 dump_av_set (orig_ops);
6103 sel_print (")\n");
6104 }
6105
6106 gcc_assert (orig_ops);
6107
6108 /* If no original operations exist below this insn, return immediately. */
6109 if (is_ineligible_successor (insn, path))
6110 {
6111 if (sched_verbose >= 6)
6112 sel_print ("Insn %d is ineligible successor\n", INSN_UID (insn));
6113 return false;
6114 }
6115
6116 /* The block can have invalid av set, in which case it was created earlier
6117 during move_op. Return immediately. */
6118 if (sel_bb_head_p (insn))
6119 {
6120 if (! AV_SET_VALID_P (insn))
6121 {
6122 if (sched_verbose >= 6)
6123 sel_print ("Returned from block %d as it had invalid av set\n",
6124 bb->index);
6125 return false;
6126 }
6127
6128 if (bitmap_bit_p (code_motion_visited_blocks, bb->index))
6129 {
6130 /* We have already found an original operation on this branch, do not
6131 go any further and just return TRUE here. If we don't stop here,
6132 function can have exponential behaviour even on the small code
6133 with many different paths (e.g. with data speculation and
6134 recovery blocks). */
6135 if (sched_verbose >= 6)
6136 sel_print ("Block %d already visited in this traversal\n", bb->index);
6137 if (code_motion_path_driver_info->on_enter)
6138 return code_motion_path_driver_info->on_enter (insn,
6139 local_params_in,
6140 static_params,
6141 true);
6142 }
6143 }
6144
6145 if (code_motion_path_driver_info->on_enter)
6146 code_motion_path_driver_info->on_enter (insn, local_params_in,
6147 static_params, false);
6148 orig_ops = av_set_copy (orig_ops);
6149
6150 /* Filter the orig_ops set. */
6151 if (AV_SET_VALID_P (insn))
6152 av_set_intersect (&orig_ops, AV_SET (insn));
6153
6154 /* If no more original ops, return immediately. */
6155 if (!orig_ops)
6156 {
6157 if (sched_verbose >= 6)
6158 sel_print ("No intersection with av set of block %d\n", bb->index);
6159 return false;
6160 }
6161
6162 /* For non-speculative insns we have to leave only one form of the
6163 original operation, because if we don't, we may end up with
6164 different C_EXPRes and, consequently, with bookkeepings for different
6165 expression forms along the same code motion path. That may lead to
6166 generation of incorrect code. So for each code motion we stick to
6167 the single form of the instruction, except for speculative insns
6168 which we need to keep in different forms with all speculation
6169 types. */
6170 av_set_leave_one_nonspec (&orig_ops);
6171
6172 /* It is not possible that all ORIG_OPS are filtered out. */
6173 gcc_assert (orig_ops);
6174
6175 /* It is enough to place only heads and tails of visited basic blocks into
6176 the PATH. */
6177 ilist_add (&path, insn);
6178 first_insn = insn;
6179 bb_tail = sel_bb_end (bb);
6180
6181 /* Descend the basic block in search of the original expr; this part
6182 corresponds to the part of the original move_op procedure executed
6183 before the recursive call. */
6184 for (;;)
6185 {
6186 /* Look at the insn and decide if it could be an ancestor of currently
6187 scheduling operation. If it is so, then the insn "dest = op" could
6188 either be replaced with "dest = reg", because REG now holds the result
6189 of OP, or just removed, if we've scheduled the insn as a whole.
6190
6191 If this insn doesn't contain currently scheduling OP, then proceed
6192 with searching and look at its successors. Operations we're searching
6193 for could have changed when moving up through this insn via
6194 substituting. In this case, perform unsubstitution on them first.
6195
6196 When traversing the DAG below this insn is finished, insert
6197 bookkeeping code, if the insn is a joint point, and remove
6198 leftovers. */
6199
6200 expr = av_set_lookup (orig_ops, INSN_VINSN (insn));
6201 if (expr)
6202 {
6203 insn_t last_insn = PREV_INSN (insn);
6204
6205 /* We have found the original operation. */
6206 if (sched_verbose >= 6)
6207 sel_print ("Found original operation at insn %d\n", INSN_UID (insn));
6208
6209 code_motion_path_driver_info->orig_expr_found
6210 (insn, expr, local_params_in, static_params);
6211
6212 /* Step back, so on the way back we'll start traversing from the
6213 previous insn (or we'll see that it's bb_note and skip that
6214 loop). */
6215 if (insn == first_insn)
6216 {
6217 first_insn = NEXT_INSN (last_insn);
6218 removed_last_insn = sel_bb_end_p (last_insn);
6219 }
6220 insn = last_insn;
6221 break;
6222 }
6223 else
6224 {
6225 /* We haven't found the original expr, continue descending the basic
6226 block. */
6227 if (code_motion_path_driver_info->orig_expr_not_found
6228 (insn, orig_ops, static_params))
6229 {
6230 /* Av set ops could have been changed when moving through this
6231 insn. To find them below it, we have to un-substitute them. */
6232 undo_transformations (&orig_ops, insn);
6233 }
6234 else
6235 {
6236 /* Clean up and return, if the hook tells us to do so. It may
6237 happen if we've encountered the previously created
6238 bookkeeping. */
6239 code_motion_path_driver_cleanup (&orig_ops, &path);
6240 return -1;
6241 }
6242
6243 gcc_assert (orig_ops);
6244 }
6245
6246 /* Stop at insn if we got to the end of BB. */
6247 if (insn == bb_tail)
6248 break;
6249
6250 insn = NEXT_INSN (insn);
6251 }
6252
6253 /* Here INSN either points to the insn before the original insn (may be
6254 bb_note, if original insn was a bb_head) or to the bb_end. */
6255 if (!expr)
6256 {
6257 int res;
6258
6259 gcc_assert (insn == sel_bb_end (bb));
6260
6261 /* Add bb tail to PATH (but it doesn't make any sense if it's a bb_head -
6262 it's already in PATH then). */
6263 if (insn != first_insn)
6264 ilist_add (&path, insn);
6265
6266 /* Process_successors should be able to find at least one
6267 successor for which code_motion_path_driver returns TRUE. */
6268 res = code_motion_process_successors (insn, orig_ops,
6269 path, static_params);
6270
6271 /* Remove bb tail from path. */
6272 if (insn != first_insn)
6273 ilist_remove (&path);
6274
6275 if (res != 1)
6276 {
6277 /* This is the case when one of the original expr is no longer available
6278 due to bookkeeping created on this branch with the same register.
6279 In the original algorithm, which doesn't have update_data_sets call
6280 on a bookkeeping block, it would simply result in returning
6281 FALSE when we've encountered a previously generated bookkeeping
6282 insn in moveop_orig_expr_not_found. */
6283 code_motion_path_driver_cleanup (&orig_ops, &path);
6284 return res;
6285 }
6286 }
6287
6288 /* Don't need it any more. */
6289 av_set_clear (&orig_ops);
6290
6291 /* Backward pass: now, when we have C_EXPR computed, we'll drag it to
6292 the beginning of the basic block. */
6293 before_first = PREV_INSN (first_insn);
6294 while (insn != before_first)
6295 {
6296 if (code_motion_path_driver_info->ascend)
6297 code_motion_path_driver_info->ascend (insn, static_params);
6298
6299 insn = PREV_INSN (insn);
6300 }
6301
6302 /* Now we're at the bb head. */
6303 insn = first_insn;
6304 ilist_remove (&path);
6305 local_params_in->removed_last_insn = removed_last_insn;
6306 code_motion_path_driver_info->at_first_insn (insn, local_params_in, static_params);
6307
6308 /* This should be the very last operation as at bb head we could change
6309 the numbering by creating bookkeeping blocks. */
6310 if (removed_last_insn)
6311 insn = PREV_INSN (insn);
6312 bitmap_set_bit (code_motion_visited_blocks, BLOCK_FOR_INSN (insn)->index);
6313 return true;
6314 }
6315
6316 /* Move up the operations from ORIG_OPS set traversing the dag starting
6317 from INSN. PATH represents the edges traversed so far.
6318 DEST is the register chosen for scheduling the current expr. Insert
6319 bookkeeping code in the join points. EXPR_VLIW is the chosen expression,
6320 C_EXPR is how it looks like at the given cfg point.
6321 Set *SHOULD_MOVE to indicate whether we have only disconnected
6322 one of the insns found.
6323
6324 Returns whether original instructions were found, which is asserted
6325 to be true in the caller. */
6326 static bool
6327 move_op (insn_t insn, av_set_t orig_ops, expr_t expr_vliw,
6328 rtx dest, expr_t c_expr, bool *should_move)
6329 {
6330 struct moveop_static_params sparams;
6331 struct cmpd_local_params lparams;
6332 bool res;
6333
6334 /* Init params for code_motion_path_driver. */
6335 sparams.dest = dest;
6336 sparams.c_expr = c_expr;
6337 sparams.uid = INSN_UID (EXPR_INSN_RTX (expr_vliw));
6338 #ifdef ENABLE_CHECKING
6339 sparams.failed_insn = NULL;
6340 #endif
6341 sparams.was_renamed = false;
6342 lparams.e1 = NULL;
6343
6344 /* We haven't visited any blocks yet. */
6345 bitmap_clear (code_motion_visited_blocks);
6346
6347 /* Set appropriate hooks and data. */
6348 code_motion_path_driver_info = &move_op_hooks;
6349 res = code_motion_path_driver (insn, orig_ops, NULL, &lparams, &sparams);
6350
6351 if (sparams.was_renamed)
6352 EXPR_WAS_RENAMED (expr_vliw) = true;
6353
6354 *should_move = (sparams.uid == -1);
6355
6356 return res;
6357 }
6358
6359
6360 /* Functions that work with regions. */
6361
6362 /* Current number of seqno used in init_seqno and init_seqno_1. */
6363 static int cur_seqno;
6364
6365 /* A helper for init_seqno. Traverse the region starting from BB and
6366 compute seqnos for visited insns, marking visited bbs in VISITED_BBS.
6367 Clear visited blocks from BLOCKS_TO_RESCHEDULE. */
6368 static void
6369 init_seqno_1 (basic_block bb, sbitmap visited_bbs, bitmap blocks_to_reschedule)
6370 {
6371 int bbi = BLOCK_TO_BB (bb->index);
6372 insn_t insn, note = bb_note (bb);
6373 insn_t succ_insn;
6374 succ_iterator si;
6375
6376 SET_BIT (visited_bbs, bbi);
6377 if (blocks_to_reschedule)
6378 bitmap_clear_bit (blocks_to_reschedule, bb->index);
6379
6380 FOR_EACH_SUCC_1 (succ_insn, si, BB_END (bb),
6381 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
6382 {
6383 basic_block succ = BLOCK_FOR_INSN (succ_insn);
6384 int succ_bbi = BLOCK_TO_BB (succ->index);
6385
6386 gcc_assert (in_current_region_p (succ));
6387
6388 if (!TEST_BIT (visited_bbs, succ_bbi))
6389 {
6390 gcc_assert (succ_bbi > bbi);
6391
6392 init_seqno_1 (succ, visited_bbs, blocks_to_reschedule);
6393 }
6394 }
6395
6396 for (insn = BB_END (bb); insn != note; insn = PREV_INSN (insn))
6397 INSN_SEQNO (insn) = cur_seqno--;
6398 }
6399
6400 /* Initialize seqnos for the current region. NUMBER_OF_INSNS is the number
6401 of instructions in the region, BLOCKS_TO_RESCHEDULE contains blocks on
6402 which we're rescheduling when pipelining, FROM is the block where
6403 traversing region begins (it may not be the head of the region when
6404 pipelining, but the head of the loop instead).
6405
6406 Returns the maximal seqno found. */
6407 static int
6408 init_seqno (int number_of_insns, bitmap blocks_to_reschedule, basic_block from)
6409 {
6410 sbitmap visited_bbs;
6411 bitmap_iterator bi;
6412 unsigned bbi;
6413
6414 visited_bbs = sbitmap_alloc (current_nr_blocks);
6415
6416 if (blocks_to_reschedule)
6417 {
6418 sbitmap_ones (visited_bbs);
6419 EXECUTE_IF_SET_IN_BITMAP (blocks_to_reschedule, 0, bbi, bi)
6420 {
6421 gcc_assert (BLOCK_TO_BB (bbi) < current_nr_blocks);
6422 RESET_BIT (visited_bbs, BLOCK_TO_BB (bbi));
6423 }
6424 }
6425 else
6426 {
6427 sbitmap_zero (visited_bbs);
6428 from = EBB_FIRST_BB (0);
6429 }
6430
6431 cur_seqno = number_of_insns > 0 ? number_of_insns : sched_max_luid - 1;
6432 init_seqno_1 (from, visited_bbs, blocks_to_reschedule);
6433 gcc_assert (cur_seqno == 0 || number_of_insns == 0);
6434
6435 sbitmap_free (visited_bbs);
6436 return sched_max_luid - 1;
6437 }
6438
6439 /* Initialize scheduling parameters for current region. */
6440 static void
6441 sel_setup_region_sched_flags (void)
6442 {
6443 enable_schedule_as_rhs_p = 1;
6444 bookkeeping_p = 1;
6445 pipelining_p = (bookkeeping_p
6446 && (flag_sel_sched_pipelining != 0)
6447 && current_loop_nest != NULL);
6448 max_insns_to_rename = PARAM_VALUE (PARAM_SELSCHED_INSNS_TO_RENAME);
6449 max_ws = MAX_WS;
6450 }
6451
6452 /* Return true if all basic blocks of current region are empty. */
6453 static bool
6454 current_region_empty_p (void)
6455 {
6456 int i;
6457 for (i = 0; i < current_nr_blocks; i++)
6458 if (! sel_bb_empty_p (BASIC_BLOCK (BB_TO_BLOCK (i))))
6459 return false;
6460
6461 return true;
6462 }
6463
6464 /* Prepare and verify loop nest for pipelining. */
6465 static void
6466 setup_current_loop_nest (int rgn)
6467 {
6468 current_loop_nest = get_loop_nest_for_rgn (rgn);
6469
6470 if (!current_loop_nest)
6471 return;
6472
6473 /* If this loop has any saved loop preheaders from nested loops,
6474 add these basic blocks to the current region. */
6475 sel_add_loop_preheaders ();
6476
6477 /* Check that we're starting with a valid information. */
6478 gcc_assert (loop_latch_edge (current_loop_nest));
6479 gcc_assert (LOOP_MARKED_FOR_PIPELINING_P (current_loop_nest));
6480 }
6481
6482 /* Purge meaningless empty blocks in the middle of a region. */
6483 static void
6484 purge_empty_blocks (void)
6485 {
6486 int i ;
6487
6488 for (i = 1; i < current_nr_blocks; )
6489 {
6490 basic_block b = BASIC_BLOCK (BB_TO_BLOCK (i));
6491
6492 if (maybe_tidy_empty_bb (b))
6493 continue;
6494
6495 i++;
6496 }
6497 }
6498
6499 /* Compute instruction priorities for current region. */
6500 static void
6501 sel_compute_priorities (int rgn)
6502 {
6503 sched_rgn_compute_dependencies (rgn);
6504
6505 /* Compute insn priorities in haifa style. Then free haifa style
6506 dependencies that we've calculated for this. */
6507 compute_priorities ();
6508
6509 if (sched_verbose >= 5)
6510 debug_rgn_dependencies (0);
6511
6512 free_rgn_deps ();
6513 }
6514
6515 /* Init scheduling data for RGN. Returns true when this region should not
6516 be scheduled. */
6517 static bool
6518 sel_region_init (int rgn)
6519 {
6520 int i;
6521 bb_vec_t bbs;
6522
6523 rgn_setup_region (rgn);
6524
6525 /* Even if sched_is_disabled_for_current_region_p() is true, we still
6526 do region initialization here so the region can be bundled correctly,
6527 but we'll skip the scheduling in sel_sched_region (). */
6528 if (current_region_empty_p ())
6529 return true;
6530
6531 if (flag_sel_sched_pipelining)
6532 setup_current_loop_nest (rgn);
6533
6534 sel_setup_region_sched_flags ();
6535
6536 bbs = VEC_alloc (basic_block, heap, current_nr_blocks);
6537
6538 for (i = 0; i < current_nr_blocks; i++)
6539 VEC_quick_push (basic_block, bbs, BASIC_BLOCK (BB_TO_BLOCK (i)));
6540
6541 sel_init_bbs (bbs, NULL);
6542
6543 /* Initialize luids and dependence analysis which both sel-sched and haifa
6544 need. */
6545 sched_init_luids (bbs, NULL, NULL, NULL);
6546 sched_deps_init (false);
6547
6548 /* Initialize haifa data. */
6549 rgn_setup_sched_infos ();
6550 sel_set_sched_flags ();
6551 haifa_init_h_i_d (bbs, NULL, NULL, NULL);
6552
6553 sel_compute_priorities (rgn);
6554 init_deps_global ();
6555
6556 /* Main initialization. */
6557 sel_setup_sched_infos ();
6558 sel_init_global_and_expr (bbs);
6559
6560 VEC_free (basic_block, heap, bbs);
6561
6562 blocks_to_reschedule = BITMAP_ALLOC (NULL);
6563
6564 /* Init correct liveness sets on each instruction of a single-block loop.
6565 This is the only situation when we can't update liveness when calling
6566 compute_live for the first insn of the loop. */
6567 if (current_loop_nest)
6568 {
6569 int header = (sel_is_loop_preheader_p (BASIC_BLOCK (BB_TO_BLOCK (0)))
6570 ? 1
6571 : 0);
6572
6573 if (current_nr_blocks == header + 1)
6574 update_liveness_on_insn
6575 (sel_bb_head (BASIC_BLOCK (BB_TO_BLOCK (header))));
6576 }
6577
6578 /* Set hooks so that no newly generated insn will go out unnoticed. */
6579 sel_register_cfg_hooks ();
6580
6581 /* !!! We call target.sched.md_init () for the whole region, but we invoke
6582 targetm.sched.md_finish () for every ebb. */
6583 if (targetm.sched.md_init)
6584 /* None of the arguments are actually used in any target. */
6585 targetm.sched.md_init (sched_dump, sched_verbose, -1);
6586
6587 first_emitted_uid = get_max_uid () + 1;
6588 preheader_removed = false;
6589
6590 /* Reset register allocation ticks array. */
6591 memset (reg_rename_tick, 0, sizeof reg_rename_tick);
6592 reg_rename_this_tick = 0;
6593
6594 bitmap_initialize (forced_ebb_heads, 0);
6595 bitmap_clear (forced_ebb_heads);
6596
6597 setup_nop_vinsn ();
6598 current_copies = BITMAP_ALLOC (NULL);
6599 current_originators = BITMAP_ALLOC (NULL);
6600 code_motion_visited_blocks = BITMAP_ALLOC (NULL);
6601
6602 return false;
6603 }
6604
6605 /* Simplify insns after the scheduling. */
6606 static void
6607 simplify_changed_insns (void)
6608 {
6609 int i;
6610
6611 for (i = 0; i < current_nr_blocks; i++)
6612 {
6613 basic_block bb = BASIC_BLOCK (BB_TO_BLOCK (i));
6614 rtx insn;
6615
6616 FOR_BB_INSNS (bb, insn)
6617 if (INSN_P (insn))
6618 {
6619 expr_t expr = INSN_EXPR (insn);
6620
6621 if (EXPR_WAS_SUBSTITUTED (expr))
6622 validate_simplify_insn (insn);
6623 }
6624 }
6625 }
6626
6627 /* Find boundaries of the EBB starting from basic block BB, marking blocks of
6628 this EBB in SCHEDULED_BLOCKS and appropriately filling in HEAD, TAIL,
6629 PREV_HEAD, and NEXT_TAIL fields of CURRENT_SCHED_INFO structure. */
6630 static void
6631 find_ebb_boundaries (basic_block bb, bitmap scheduled_blocks)
6632 {
6633 insn_t head, tail;
6634 basic_block bb1 = bb;
6635 if (sched_verbose >= 2)
6636 sel_print ("Finishing schedule in bbs: ");
6637
6638 do
6639 {
6640 bitmap_set_bit (scheduled_blocks, BLOCK_TO_BB (bb1->index));
6641
6642 if (sched_verbose >= 2)
6643 sel_print ("%d; ", bb1->index);
6644 }
6645 while (!bb_ends_ebb_p (bb1) && (bb1 = bb_next_bb (bb1)));
6646
6647 if (sched_verbose >= 2)
6648 sel_print ("\n");
6649
6650 get_ebb_head_tail (bb, bb1, &head, &tail);
6651
6652 current_sched_info->head = head;
6653 current_sched_info->tail = tail;
6654 current_sched_info->prev_head = PREV_INSN (head);
6655 current_sched_info->next_tail = NEXT_INSN (tail);
6656 }
6657
6658 /* Regenerate INSN_SCHED_CYCLEs for insns of current EBB. */
6659 static void
6660 reset_sched_cycles_in_current_ebb (void)
6661 {
6662 int last_clock = 0;
6663 int haifa_last_clock = -1;
6664 int haifa_clock = 0;
6665 insn_t insn;
6666
6667 if (targetm.sched.md_init)
6668 {
6669 /* None of the arguments are actually used in any target.
6670 NB: We should have md_reset () hook for cases like this. */
6671 targetm.sched.md_init (sched_dump, sched_verbose, -1);
6672 }
6673
6674 state_reset (curr_state);
6675 advance_state (curr_state);
6676
6677 for (insn = current_sched_info->head;
6678 insn != current_sched_info->next_tail;
6679 insn = NEXT_INSN (insn))
6680 {
6681 int cost, haifa_cost;
6682 int sort_p;
6683 bool asm_p, real_insn, after_stall;
6684 int clock;
6685
6686 if (!INSN_P (insn))
6687 continue;
6688
6689 asm_p = false;
6690 real_insn = recog_memoized (insn) >= 0;
6691 clock = INSN_SCHED_CYCLE (insn);
6692
6693 cost = clock - last_clock;
6694
6695 /* Initialize HAIFA_COST. */
6696 if (! real_insn)
6697 {
6698 asm_p = INSN_ASM_P (insn);
6699
6700 if (asm_p)
6701 /* This is asm insn which *had* to be scheduled first
6702 on the cycle. */
6703 haifa_cost = 1;
6704 else
6705 /* This is a use/clobber insn. It should not change
6706 cost. */
6707 haifa_cost = 0;
6708 }
6709 else
6710 haifa_cost = estimate_insn_cost (insn, curr_state);
6711
6712 /* Stall for whatever cycles we've stalled before. */
6713 after_stall = 0;
6714 if (INSN_AFTER_STALL_P (insn) && cost > haifa_cost)
6715 {
6716 haifa_cost = cost;
6717 after_stall = 1;
6718 }
6719
6720 if (haifa_cost > 0)
6721 {
6722 int i = 0;
6723
6724 while (haifa_cost--)
6725 {
6726 advance_state (curr_state);
6727 i++;
6728
6729 if (sched_verbose >= 2)
6730 {
6731 sel_print ("advance_state (state_transition)\n");
6732 debug_state (curr_state);
6733 }
6734
6735 /* The DFA may report that e.g. insn requires 2 cycles to be
6736 issued, but on the next cycle it says that insn is ready
6737 to go. Check this here. */
6738 if (!after_stall
6739 && real_insn
6740 && haifa_cost > 0
6741 && estimate_insn_cost (insn, curr_state) == 0)
6742 break;
6743 }
6744
6745 haifa_clock += i;
6746 }
6747 else
6748 gcc_assert (haifa_cost == 0);
6749
6750 if (sched_verbose >= 2)
6751 sel_print ("Haifa cost for insn %d: %d\n", INSN_UID (insn), haifa_cost);
6752
6753 if (targetm.sched.dfa_new_cycle)
6754 while (targetm.sched.dfa_new_cycle (sched_dump, sched_verbose, insn,
6755 haifa_last_clock, haifa_clock,
6756 &sort_p))
6757 {
6758 advance_state (curr_state);
6759 haifa_clock++;
6760 if (sched_verbose >= 2)
6761 {
6762 sel_print ("advance_state (dfa_new_cycle)\n");
6763 debug_state (curr_state);
6764 }
6765 }
6766
6767 if (real_insn)
6768 {
6769 cost = state_transition (curr_state, insn);
6770
6771 if (sched_verbose >= 2)
6772 debug_state (curr_state);
6773
6774 gcc_assert (cost < 0);
6775 }
6776
6777 if (targetm.sched.variable_issue)
6778 targetm.sched.variable_issue (sched_dump, sched_verbose, insn, 0);
6779
6780 INSN_SCHED_CYCLE (insn) = haifa_clock;
6781
6782 last_clock = clock;
6783 haifa_last_clock = haifa_clock;
6784 }
6785 }
6786
6787 /* Put TImode markers on insns starting a new issue group. */
6788 static void
6789 put_TImodes (void)
6790 {
6791 int last_clock = -1;
6792 insn_t insn;
6793
6794 for (insn = current_sched_info->head; insn != current_sched_info->next_tail;
6795 insn = NEXT_INSN (insn))
6796 {
6797 int cost, clock;
6798
6799 if (!INSN_P (insn))
6800 continue;
6801
6802 clock = INSN_SCHED_CYCLE (insn);
6803 cost = (last_clock == -1) ? 1 : clock - last_clock;
6804
6805 gcc_assert (cost >= 0);
6806
6807 if (issue_rate > 1
6808 && GET_CODE (PATTERN (insn)) != USE
6809 && GET_CODE (PATTERN (insn)) != CLOBBER)
6810 {
6811 if (reload_completed && cost > 0)
6812 PUT_MODE (insn, TImode);
6813
6814 last_clock = clock;
6815 }
6816
6817 if (sched_verbose >= 2)
6818 sel_print ("Cost for insn %d is %d\n", INSN_UID (insn), cost);
6819 }
6820 }
6821
6822 /* Perform MD_FINISH on EBBs comprising current region. When
6823 RESET_SCHED_CYCLES_P is true, run a pass emulating the scheduler
6824 to produce correct sched cycles on insns. */
6825 static void
6826 sel_region_target_finish (bool reset_sched_cycles_p)
6827 {
6828 int i;
6829 bitmap scheduled_blocks = BITMAP_ALLOC (NULL);
6830
6831 for (i = 0; i < current_nr_blocks; i++)
6832 {
6833 if (bitmap_bit_p (scheduled_blocks, i))
6834 continue;
6835
6836 /* While pipelining outer loops, skip bundling for loop
6837 preheaders. Those will be rescheduled in the outer loop. */
6838 if (sel_is_loop_preheader_p (EBB_FIRST_BB (i)))
6839 continue;
6840
6841 find_ebb_boundaries (EBB_FIRST_BB (i), scheduled_blocks);
6842
6843 if (no_real_insns_p (current_sched_info->head, current_sched_info->tail))
6844 continue;
6845
6846 if (reset_sched_cycles_p)
6847 reset_sched_cycles_in_current_ebb ();
6848
6849 if (targetm.sched.md_init)
6850 targetm.sched.md_init (sched_dump, sched_verbose, -1);
6851
6852 put_TImodes ();
6853
6854 if (targetm.sched.md_finish)
6855 {
6856 targetm.sched.md_finish (sched_dump, sched_verbose);
6857
6858 /* Extend luids so that insns generated by the target will
6859 get zero luid. */
6860 sched_init_luids (NULL, NULL, NULL, NULL);
6861 }
6862 }
6863
6864 BITMAP_FREE (scheduled_blocks);
6865 }
6866
6867 /* Free the scheduling data for the current region. When RESET_SCHED_CYCLES_P
6868 is true, make an additional pass emulating scheduler to get correct insn
6869 cycles for md_finish calls. */
6870 static void
6871 sel_region_finish (bool reset_sched_cycles_p)
6872 {
6873 simplify_changed_insns ();
6874 sched_finish_ready_list ();
6875 free_nop_pool ();
6876
6877 /* Free the vectors. */
6878 if (vec_av_set)
6879 VEC_free (expr_t, heap, vec_av_set);
6880 BITMAP_FREE (current_copies);
6881 BITMAP_FREE (current_originators);
6882 BITMAP_FREE (code_motion_visited_blocks);
6883 vinsn_vec_free (&vec_bookkeeping_blocked_vinsns);
6884 vinsn_vec_free (&vec_target_unavailable_vinsns);
6885
6886 /* If LV_SET of the region head should be updated, do it now because
6887 there will be no other chance. */
6888 {
6889 succ_iterator si;
6890 insn_t insn;
6891
6892 FOR_EACH_SUCC_1 (insn, si, bb_note (EBB_FIRST_BB (0)),
6893 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
6894 {
6895 basic_block bb = BLOCK_FOR_INSN (insn);
6896
6897 if (!BB_LV_SET_VALID_P (bb))
6898 compute_live (insn);
6899 }
6900 }
6901
6902 /* Emulate the Haifa scheduler for bundling. */
6903 if (reload_completed)
6904 sel_region_target_finish (reset_sched_cycles_p);
6905
6906 sel_finish_global_and_expr ();
6907
6908 bitmap_clear (forced_ebb_heads);
6909
6910 free_nop_vinsn ();
6911
6912 finish_deps_global ();
6913 sched_finish_luids ();
6914
6915 sel_finish_bbs ();
6916 BITMAP_FREE (blocks_to_reschedule);
6917
6918 sel_unregister_cfg_hooks ();
6919
6920 max_issue_size = 0;
6921 }
6922
6923
6924 /* Functions that implement the scheduler driver. */
6925
6926 /* Schedule a parallel instruction group on each of FENCES. MAX_SEQNO
6927 is the current maximum seqno. SCHEDULED_INSNS_TAILPP is the list
6928 of insns scheduled -- these would be postprocessed later. */
6929 static void
6930 schedule_on_fences (flist_t fences, int max_seqno,
6931 ilist_t **scheduled_insns_tailpp)
6932 {
6933 flist_t old_fences = fences;
6934
6935 if (sched_verbose >= 1)
6936 {
6937 sel_print ("\nScheduling on fences: ");
6938 dump_flist (fences);
6939 sel_print ("\n");
6940 }
6941
6942 scheduled_something_on_previous_fence = false;
6943 for (; fences; fences = FLIST_NEXT (fences))
6944 {
6945 fence_t fence = NULL;
6946 int seqno = 0;
6947 flist_t fences2;
6948 bool first_p = true;
6949
6950 /* Choose the next fence group to schedule.
6951 The fact that insn can be scheduled only once
6952 on the cycle is guaranteed by two properties:
6953 1. seqnos of parallel groups decrease with each iteration.
6954 2. If is_ineligible_successor () sees the larger seqno, it
6955 checks if candidate insn is_in_current_fence_p (). */
6956 for (fences2 = old_fences; fences2; fences2 = FLIST_NEXT (fences2))
6957 {
6958 fence_t f = FLIST_FENCE (fences2);
6959
6960 if (!FENCE_PROCESSED_P (f))
6961 {
6962 int i = INSN_SEQNO (FENCE_INSN (f));
6963
6964 if (first_p || i > seqno)
6965 {
6966 seqno = i;
6967 fence = f;
6968 first_p = false;
6969 }
6970 else
6971 /* ??? Seqnos of different groups should be different. */
6972 gcc_assert (1 || i != seqno);
6973 }
6974 }
6975
6976 gcc_assert (fence);
6977
6978 /* As FENCE is nonnull, SEQNO is initialized. */
6979 seqno -= max_seqno + 1;
6980 fill_insns (fence, seqno, scheduled_insns_tailpp);
6981 FENCE_PROCESSED_P (fence) = true;
6982 }
6983
6984 /* All av_sets are invalidated by GLOBAL_LEVEL increase, thus we
6985 don't need to keep bookkeeping-invalidated and target-unavailable
6986 vinsns any more. */
6987 vinsn_vec_clear (&vec_bookkeeping_blocked_vinsns);
6988 vinsn_vec_clear (&vec_target_unavailable_vinsns);
6989 }
6990
6991 /* Calculate MIN_SEQNO and MAX_SEQNO. */
6992 static void
6993 find_min_max_seqno (flist_t fences, int *min_seqno, int *max_seqno)
6994 {
6995 *min_seqno = *max_seqno = INSN_SEQNO (FENCE_INSN (FLIST_FENCE (fences)));
6996
6997 /* The first element is already processed. */
6998 while ((fences = FLIST_NEXT (fences)))
6999 {
7000 int seqno = INSN_SEQNO (FENCE_INSN (FLIST_FENCE (fences)));
7001
7002 if (*min_seqno > seqno)
7003 *min_seqno = seqno;
7004 else if (*max_seqno < seqno)
7005 *max_seqno = seqno;
7006 }
7007 }
7008
7009 /* Calculate new fences from FENCES. */
7010 static flist_t
7011 calculate_new_fences (flist_t fences, int orig_max_seqno)
7012 {
7013 flist_t old_fences = fences;
7014 struct flist_tail_def _new_fences, *new_fences = &_new_fences;
7015
7016 flist_tail_init (new_fences);
7017 for (; fences; fences = FLIST_NEXT (fences))
7018 {
7019 fence_t fence = FLIST_FENCE (fences);
7020 insn_t insn;
7021
7022 if (!FENCE_BNDS (fence))
7023 {
7024 /* This fence doesn't have any successors. */
7025 if (!FENCE_SCHEDULED_P (fence))
7026 {
7027 /* Nothing was scheduled on this fence. */
7028 int seqno;
7029
7030 insn = FENCE_INSN (fence);
7031 seqno = INSN_SEQNO (insn);
7032 gcc_assert (seqno > 0 && seqno <= orig_max_seqno);
7033
7034 if (sched_verbose >= 1)
7035 sel_print ("Fence %d[%d] has not changed\n",
7036 INSN_UID (insn),
7037 BLOCK_NUM (insn));
7038 move_fence_to_fences (fences, new_fences);
7039 }
7040 }
7041 else
7042 extract_new_fences_from (fences, new_fences, orig_max_seqno);
7043 }
7044
7045 flist_clear (&old_fences);
7046 return FLIST_TAIL_HEAD (new_fences);
7047 }
7048
7049 /* Update seqnos of insns given by PSCHEDULED_INSNS. MIN_SEQNO and MAX_SEQNO
7050 are the miminum and maximum seqnos of the group, HIGHEST_SEQNO_IN_USE is
7051 the highest seqno used in a region. Return the updated highest seqno. */
7052 static int
7053 update_seqnos_and_stage (int min_seqno, int max_seqno,
7054 int highest_seqno_in_use,
7055 ilist_t *pscheduled_insns)
7056 {
7057 int new_hs;
7058 ilist_iterator ii;
7059 insn_t insn;
7060
7061 /* Actually, new_hs is the seqno of the instruction, that was
7062 scheduled first (i.e. it is the first one in SCHEDULED_INSNS). */
7063 if (*pscheduled_insns)
7064 {
7065 new_hs = (INSN_SEQNO (ILIST_INSN (*pscheduled_insns))
7066 + highest_seqno_in_use + max_seqno - min_seqno + 2);
7067 gcc_assert (new_hs > highest_seqno_in_use);
7068 }
7069 else
7070 new_hs = highest_seqno_in_use;
7071
7072 FOR_EACH_INSN (insn, ii, *pscheduled_insns)
7073 {
7074 gcc_assert (INSN_SEQNO (insn) < 0);
7075 INSN_SEQNO (insn) += highest_seqno_in_use + max_seqno - min_seqno + 2;
7076 gcc_assert (INSN_SEQNO (insn) <= new_hs);
7077 }
7078
7079 ilist_clear (pscheduled_insns);
7080 global_level++;
7081
7082 return new_hs;
7083 }
7084
7085 /* The main driver for scheduling a region. This function is responsible
7086 for correct propagation of fences (i.e. scheduling points) and creating
7087 a group of parallel insns at each of them. It also supports
7088 pipelining. ORIG_MAX_SEQNO is the maximal seqno before this pass
7089 of scheduling. */
7090 static void
7091 sel_sched_region_2 (int orig_max_seqno)
7092 {
7093 int highest_seqno_in_use = orig_max_seqno;
7094
7095 stat_bookkeeping_copies = 0;
7096 stat_insns_needed_bookkeeping = 0;
7097 stat_renamed_scheduled = 0;
7098 stat_substitutions_total = 0;
7099 num_insns_scheduled = 0;
7100
7101 while (fences)
7102 {
7103 int min_seqno, max_seqno;
7104 ilist_t scheduled_insns = NULL;
7105 ilist_t *scheduled_insns_tailp = &scheduled_insns;
7106
7107 find_min_max_seqno (fences, &min_seqno, &max_seqno);
7108 schedule_on_fences (fences, max_seqno, &scheduled_insns_tailp);
7109 fences = calculate_new_fences (fences, orig_max_seqno);
7110 highest_seqno_in_use = update_seqnos_and_stage (min_seqno, max_seqno,
7111 highest_seqno_in_use,
7112 &scheduled_insns);
7113 }
7114
7115 if (sched_verbose >= 1)
7116 sel_print ("Scheduled %d bookkeeping copies, %d insns needed "
7117 "bookkeeping, %d insns renamed, %d insns substituted\n",
7118 stat_bookkeeping_copies,
7119 stat_insns_needed_bookkeeping,
7120 stat_renamed_scheduled,
7121 stat_substitutions_total);
7122 }
7123
7124 /* Schedule a region. When pipelining, search for possibly never scheduled
7125 bookkeeping code and schedule it. Reschedule pipelined code without
7126 pipelining after. */
7127 static void
7128 sel_sched_region_1 (void)
7129 {
7130 int number_of_insns;
7131 int orig_max_seqno;
7132
7133 /* Remove empty blocks that might be in the region from the beginning.
7134 We need to do save sched_max_luid before that, as it actually shows
7135 the number of insns in the region, and purge_empty_blocks can
7136 alter it. */
7137 number_of_insns = sched_max_luid - 1;
7138 purge_empty_blocks ();
7139
7140 orig_max_seqno = init_seqno (number_of_insns, NULL, NULL);
7141 gcc_assert (orig_max_seqno >= 1);
7142
7143 /* When pipelining outer loops, create fences on the loop header,
7144 not preheader. */
7145 fences = NULL;
7146 if (current_loop_nest)
7147 init_fences (BB_END (EBB_FIRST_BB (0)));
7148 else
7149 init_fences (bb_note (EBB_FIRST_BB (0)));
7150 global_level = 1;
7151
7152 sel_sched_region_2 (orig_max_seqno);
7153
7154 gcc_assert (fences == NULL);
7155
7156 if (pipelining_p)
7157 {
7158 int i;
7159 basic_block bb;
7160 struct flist_tail_def _new_fences;
7161 flist_tail_t new_fences = &_new_fences;
7162 bool do_p = true;
7163
7164 pipelining_p = false;
7165 max_ws = MIN (max_ws, issue_rate * 3 / 2);
7166 bookkeeping_p = false;
7167 enable_schedule_as_rhs_p = false;
7168
7169 /* Schedule newly created code, that has not been scheduled yet. */
7170 do_p = true;
7171
7172 while (do_p)
7173 {
7174 do_p = false;
7175
7176 for (i = 0; i < current_nr_blocks; i++)
7177 {
7178 basic_block bb = EBB_FIRST_BB (i);
7179
7180 if (sel_bb_empty_p (bb))
7181 {
7182 bitmap_clear_bit (blocks_to_reschedule, bb->index);
7183 continue;
7184 }
7185
7186 if (bitmap_bit_p (blocks_to_reschedule, bb->index))
7187 {
7188 clear_outdated_rtx_info (bb);
7189 if (sel_insn_is_speculation_check (BB_END (bb))
7190 && JUMP_P (BB_END (bb)))
7191 bitmap_set_bit (blocks_to_reschedule,
7192 BRANCH_EDGE (bb)->dest->index);
7193 }
7194 else if (INSN_SCHED_TIMES (sel_bb_head (bb)) <= 0)
7195 bitmap_set_bit (blocks_to_reschedule, bb->index);
7196 }
7197
7198 for (i = 0; i < current_nr_blocks; i++)
7199 {
7200 bb = EBB_FIRST_BB (i);
7201
7202 /* While pipelining outer loops, skip bundling for loop
7203 preheaders. Those will be rescheduled in the outer
7204 loop. */
7205 if (sel_is_loop_preheader_p (bb))
7206 {
7207 clear_outdated_rtx_info (bb);
7208 continue;
7209 }
7210
7211 if (bitmap_bit_p (blocks_to_reschedule, bb->index))
7212 {
7213 flist_tail_init (new_fences);
7214
7215 orig_max_seqno = init_seqno (0, blocks_to_reschedule, bb);
7216
7217 /* Mark BB as head of the new ebb. */
7218 bitmap_set_bit (forced_ebb_heads, bb->index);
7219
7220 bitmap_clear_bit (blocks_to_reschedule, bb->index);
7221
7222 gcc_assert (fences == NULL);
7223
7224 init_fences (bb_note (bb));
7225
7226 sel_sched_region_2 (orig_max_seqno);
7227
7228 do_p = true;
7229 break;
7230 }
7231 }
7232 }
7233 }
7234 }
7235
7236 /* Schedule the RGN region. */
7237 void
7238 sel_sched_region (int rgn)
7239 {
7240 bool schedule_p;
7241 bool reset_sched_cycles_p;
7242
7243 if (sel_region_init (rgn))
7244 return;
7245
7246 if (sched_verbose >= 1)
7247 sel_print ("Scheduling region %d\n", rgn);
7248
7249 schedule_p = (!sched_is_disabled_for_current_region_p ()
7250 && dbg_cnt (sel_sched_region_cnt));
7251 reset_sched_cycles_p = pipelining_p;
7252 if (schedule_p)
7253 sel_sched_region_1 ();
7254 else
7255 /* Force initialization of INSN_SCHED_CYCLEs for correct bundling. */
7256 reset_sched_cycles_p = true;
7257
7258 sel_region_finish (reset_sched_cycles_p);
7259 }
7260
7261 /* Perform global init for the scheduler. */
7262 static void
7263 sel_global_init (void)
7264 {
7265 calculate_dominance_info (CDI_DOMINATORS);
7266 alloc_sched_pools ();
7267
7268 /* Setup the infos for sched_init. */
7269 sel_setup_sched_infos ();
7270 setup_sched_dump ();
7271
7272 sched_rgn_init (false);
7273 sched_init ();
7274
7275 sched_init_bbs ();
7276 /* Reset AFTER_RECOVERY if it has been set by the 1st scheduler pass. */
7277 after_recovery = 0;
7278 can_issue_more = issue_rate;
7279
7280 sched_extend_target ();
7281 sched_deps_init (true);
7282 setup_nop_and_exit_insns ();
7283 sel_extend_global_bb_info ();
7284 init_lv_sets ();
7285 init_hard_regs_data ();
7286 }
7287
7288 /* Free the global data of the scheduler. */
7289 static void
7290 sel_global_finish (void)
7291 {
7292 free_bb_note_pool ();
7293 free_lv_sets ();
7294 sel_finish_global_bb_info ();
7295
7296 free_regset_pool ();
7297 free_nop_and_exit_insns ();
7298
7299 sched_rgn_finish ();
7300 sched_deps_finish ();
7301 sched_finish ();
7302
7303 if (current_loops)
7304 sel_finish_pipelining ();
7305
7306 free_sched_pools ();
7307 free_dominance_info (CDI_DOMINATORS);
7308 }
7309
7310 /* Return true when we need to skip selective scheduling. Used for debugging. */
7311 bool
7312 maybe_skip_selective_scheduling (void)
7313 {
7314 return ! dbg_cnt (sel_sched_cnt);
7315 }
7316
7317 /* The entry point. */
7318 void
7319 run_selective_scheduling (void)
7320 {
7321 int rgn;
7322
7323 if (n_basic_blocks == NUM_FIXED_BLOCKS)
7324 return;
7325
7326 sel_global_init ();
7327
7328 for (rgn = 0; rgn < nr_regions; rgn++)
7329 sel_sched_region (rgn);
7330
7331 sel_global_finish ();
7332 }
7333
7334 #endif