comparison gcc/tree-call-cdce.c @ 0:a06113de4d67

first commit
author kent <kent@cr.ie.u-ryukyu.ac.jp>
date Fri, 17 Jul 2009 14:47:48 +0900
parents
children 77e2b8dfacca
comparison
equal deleted inserted replaced
-1:000000000000 0:a06113de4d67
1 /* Conditional Dead Call Elimination pass for the GNU compiler.
2 Copyright (C) 2008
3 Free Software Foundation, Inc.
4 Contributed by Xinliang David Li <davidxl@google.com>
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it
9 under the terms of the GNU General Public License as published by the
10 Free Software Foundation; either version 3, or (at your option) any
11 later version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT
14 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "ggc.h"
27
28 /* These RTL headers are needed for basic-block.h. */
29 #include "rtl.h"
30 #include "tm_p.h"
31 #include "hard-reg-set.h"
32 #include "obstack.h"
33 #include "basic-block.h"
34
35 #include "tree.h"
36 #include "diagnostic.h"
37 #include "tree-flow.h"
38 #include "gimple.h"
39 #include "tree-dump.h"
40 #include "tree-pass.h"
41 #include "timevar.h"
42 #include "flags.h"
43
44
45 /* Conditional dead call elimination
46
47 Some builtin functions can set errno on error conditions, but they
48 are otherwise pure. If the result of a call to such a function is
49 not used, the compiler can still not eliminate the call without
50 powerful interprocedural analysis to prove that the errno is not
51 checked. However, if the conditions under which the error occurs
52 are known, the compiler can conditionally dead code eliminate the
53 calls by shrink-wrapping the semi-dead calls into the error condition:
54
55 built_in_call (args)
56 ==>
57 if (error_cond (args))
58 built_in_call (args)
59
60 An actual simple example is :
61 log (x); // Mostly dead call
62 ==>
63 if (x < 0)
64 log (x);
65 With this change, call to log (x) is effectively eliminated, as
66 in majority of the cases, log won't be called with x out of
67 range. The branch is totally predictable, so the branch cost
68 is low.
69
70 Note that library functions are not supposed to clear errno to zero without
71 error. See IEEE Std 1003.1, section 2.3 Error Numbers, and section 7.5:3 of
72 ISO/IEC 9899 (C99).
73
74 The condition wrapping the builtin call is conservatively set to avoid too
75 aggressive (wrong) shrink wrapping. The optimization is called conditional
76 dead call elimination because the call is eliminated under the condition
77 that the input arguments would not lead to domain or range error (for
78 instance when x <= 0 for a log (x) call), however the chances that the error
79 condition is hit is very low (those builtin calls which are conditionally
80 dead are usually part of the C++ abstraction penalty exposed after
81 inlining). */
82
83
84 /* A structure for representing input domain of
85 a function argument in integer. If the lower
86 bound is -inf, has_lb is set to false. If the
87 upper bound is +inf, has_ub is false.
88 is_lb_inclusive and is_ub_inclusive are flags
89 to indicate if lb and ub value are inclusive
90 respectively. */
91
92 typedef struct input_domain
93 {
94 int lb;
95 int ub;
96 bool has_lb;
97 bool has_ub;
98 bool is_lb_inclusive;
99 bool is_ub_inclusive;
100 } inp_domain;
101
102 /* A helper function to construct and return an input
103 domain object. LB is the lower bound, HAS_LB is
104 a boolean flag indicating if the lower bound exists,
105 and LB_INCLUSIVE is a boolean flag indicating if the
106 lower bound is inclusive or not. UB, HAS_UB, and
107 UB_INCLUSIVE have the same meaning, but for upper
108 bound of the domain. */
109
110 static inp_domain
111 get_domain (int lb, bool has_lb, bool lb_inclusive,
112 int ub, bool has_ub, bool ub_inclusive)
113 {
114 inp_domain domain;
115 domain.lb = lb;
116 domain.has_lb = has_lb;
117 domain.is_lb_inclusive = lb_inclusive;
118 domain.ub = ub;
119 domain.has_ub = has_ub;
120 domain.is_ub_inclusive = ub_inclusive;
121 return domain;
122 }
123
124 /* A helper function to check the target format for the
125 argument type. In this implementation, only IEEE formats
126 are supported. ARG is the call argument to be checked.
127 Returns true if the format is supported. To support other
128 target formats, function get_no_error_domain needs to be
129 enhanced to have range bounds properly computed. Since
130 the check is cheap (very small number of candidates
131 to be checked), the result is not cached for each float type. */
132
133 static bool
134 check_target_format (tree arg)
135 {
136 tree type;
137 enum machine_mode mode;
138 const struct real_format *rfmt;
139
140 type = TREE_TYPE (arg);
141 mode = TYPE_MODE (type);
142 rfmt = REAL_MODE_FORMAT (mode);
143 if ((mode == SFmode
144 && (rfmt == &ieee_single_format || rfmt == &mips_single_format
145 || rfmt == &motorola_single_format))
146 || (mode == DFmode
147 && (rfmt == &ieee_double_format || rfmt == &mips_double_format
148 || rfmt == &motorola_double_format))
149 /* For long double, we can not really check XFmode
150 which is only defined on intel platforms.
151 Candidate pre-selection using builtin function
152 code guarantees that we are checking formats
153 for long double modes: double, quad, and extended. */
154 || (mode != SFmode && mode != DFmode
155 && (rfmt == &ieee_quad_format
156 || rfmt == &mips_quad_format
157 || rfmt == &ieee_extended_motorola_format
158 || rfmt == &ieee_extended_intel_96_format
159 || rfmt == &ieee_extended_intel_128_format
160 || rfmt == &ieee_extended_intel_96_round_53_format)))
161 return true;
162
163 return false;
164 }
165
166
167 /* A helper function to help select calls to pow that are suitable for
168 conditional DCE transformation. It looks for pow calls that can be
169 guided with simple conditions. Such calls either have constant base
170 values or base values converted from integers. Returns true if
171 the pow call POW_CALL is a candidate. */
172
173 /* The maximum integer bit size for base argument of a pow call
174 that is suitable for shrink-wrapping transformation. */
175 #define MAX_BASE_INT_BIT_SIZE 32
176
177 static bool
178 check_pow (gimple pow_call)
179 {
180 tree base, expn;
181 enum tree_code bc, ec;
182
183 if (gimple_call_num_args (pow_call) != 2)
184 return false;
185
186 base = gimple_call_arg (pow_call, 0);
187 expn = gimple_call_arg (pow_call, 1);
188
189 if (!check_target_format (expn))
190 return false;
191
192 bc = TREE_CODE (base);
193 ec = TREE_CODE (expn);
194
195 /* Folding candidates are not interesting.
196 Can actually assert that it is already folded. */
197 if (ec == REAL_CST && bc == REAL_CST)
198 return false;
199
200 if (bc == REAL_CST)
201 {
202 /* Only handle a fixed range of constant. */
203 REAL_VALUE_TYPE mv;
204 REAL_VALUE_TYPE bcv = TREE_REAL_CST (base);
205 if (REAL_VALUES_EQUAL (bcv, dconst1))
206 return false;
207 if (REAL_VALUES_LESS (bcv, dconst1))
208 return false;
209 real_from_integer (&mv, TYPE_MODE (TREE_TYPE (base)), 256, 0, 1);
210 if (REAL_VALUES_LESS (mv, bcv))
211 return false;
212 return true;
213 }
214 else if (bc == SSA_NAME)
215 {
216 tree base_val0, base_var, type;
217 gimple base_def;
218 int bit_sz;
219
220 /* Only handles cases where base value is converted
221 from integer values. */
222 base_def = SSA_NAME_DEF_STMT (base);
223 if (gimple_code (base_def) != GIMPLE_ASSIGN)
224 return false;
225
226 if (gimple_assign_rhs_code (base_def) != FLOAT_EXPR)
227 return false;
228 base_val0 = gimple_assign_rhs1 (base_def);
229
230 base_var = SSA_NAME_VAR (base_val0);
231 if (!DECL_P (base_var))
232 return false;
233
234 type = TREE_TYPE (base_var);
235 if (TREE_CODE (type) != INTEGER_TYPE)
236 return false;
237 bit_sz = TYPE_PRECISION (type);
238 /* If the type of the base is too wide,
239 the resulting shrink wrapping condition
240 will be too conservative. */
241 if (bit_sz > MAX_BASE_INT_BIT_SIZE)
242 return false;
243
244 return true;
245 }
246 else
247 return false;
248 }
249
250 /* A helper function to help select candidate function calls that are
251 suitable for conditional DCE. Candidate functions must have single
252 valid input domain in this implementation except for pow (see check_pow).
253 Returns true if the function call is a candidate. */
254
255 static bool
256 check_builtin_call (gimple bcall)
257 {
258 tree arg;
259
260 arg = gimple_call_arg (bcall, 0);
261 return check_target_format (arg);
262 }
263
264 /* A helper function to determine if a builtin function call is a
265 candidate for conditional DCE. Returns true if the builtin call
266 is a candidate. */
267
268 static bool
269 is_call_dce_candidate (gimple call)
270 {
271 tree fn;
272 enum built_in_function fnc;
273
274 /* Only potentially dead calls are considered. */
275 if (gimple_call_lhs (call))
276 return false;
277
278 fn = gimple_call_fndecl (call);
279 if (!fn
280 || !DECL_BUILT_IN (fn)
281 || (DECL_BUILT_IN_CLASS (fn) != BUILT_IN_NORMAL))
282 return false;
283
284 fnc = DECL_FUNCTION_CODE (fn);
285 switch (fnc)
286 {
287 /* Trig functions. */
288 CASE_FLT_FN (BUILT_IN_ACOS):
289 CASE_FLT_FN (BUILT_IN_ASIN):
290 /* Hyperbolic functions. */
291 CASE_FLT_FN (BUILT_IN_ACOSH):
292 CASE_FLT_FN (BUILT_IN_ATANH):
293 CASE_FLT_FN (BUILT_IN_COSH):
294 CASE_FLT_FN (BUILT_IN_SINH):
295 /* Log functions. */
296 CASE_FLT_FN (BUILT_IN_LOG):
297 CASE_FLT_FN (BUILT_IN_LOG2):
298 CASE_FLT_FN (BUILT_IN_LOG10):
299 CASE_FLT_FN (BUILT_IN_LOG1P):
300 /* Exp functions. */
301 CASE_FLT_FN (BUILT_IN_EXP):
302 CASE_FLT_FN (BUILT_IN_EXP2):
303 CASE_FLT_FN (BUILT_IN_EXP10):
304 CASE_FLT_FN (BUILT_IN_EXPM1):
305 CASE_FLT_FN (BUILT_IN_POW10):
306 /* Sqrt. */
307 CASE_FLT_FN (BUILT_IN_SQRT):
308 return check_builtin_call (call);
309 /* Special one: two argument pow. */
310 case BUILT_IN_POW:
311 return check_pow (call);
312 default:
313 break;
314 }
315
316 return false;
317 }
318
319
320 /* A helper function to generate gimple statements for
321 one bound comparison. ARG is the call argument to
322 be compared with the bound, LBUB is the bound value
323 in integer, TCODE is the tree_code of the comparison,
324 TEMP_NAME1/TEMP_NAME2 are names of the temporaries,
325 CONDS is a vector holding the produced GIMPLE statements,
326 and NCONDS points to the variable holding the number
327 of logical comparisons. CONDS is either empty or
328 a list ended with a null tree. */
329
330 static void
331 gen_one_condition (tree arg, int lbub,
332 enum tree_code tcode,
333 const char *temp_name1,
334 const char *temp_name2,
335 VEC (gimple, heap) *conds,
336 unsigned *nconds)
337 {
338 tree lbub_real_cst, lbub_cst, float_type;
339 tree temp, tempn, tempc, tempcn;
340 gimple stmt1, stmt2, stmt3;
341
342 float_type = TREE_TYPE (arg);
343 lbub_cst = build_int_cst (integer_type_node, lbub);
344 lbub_real_cst = build_real_from_int_cst (float_type, lbub_cst);
345
346 temp = create_tmp_var (float_type, temp_name1);
347 stmt1 = gimple_build_assign (temp, arg);
348 tempn = make_ssa_name (temp, stmt1);
349 gimple_assign_set_lhs (stmt1, tempn);
350
351 tempc = create_tmp_var (boolean_type_node, temp_name2);
352 stmt2 = gimple_build_assign (tempc,
353 fold_build2 (tcode,
354 boolean_type_node,
355 tempn, lbub_real_cst));
356 tempcn = make_ssa_name (tempc, stmt2);
357 gimple_assign_set_lhs (stmt2, tempcn);
358
359 stmt3 = gimple_build_cond_from_tree (tempcn, NULL_TREE, NULL_TREE);
360 VEC_quick_push (gimple, conds, stmt1);
361 VEC_quick_push (gimple, conds, stmt2);
362 VEC_quick_push (gimple, conds, stmt3);
363 (*nconds)++;
364 }
365
366 /* A helper function to generate GIMPLE statements for
367 out of input domain check. ARG is the call argument
368 to be runtime checked, DOMAIN holds the valid domain
369 for the given function, CONDS points to the vector
370 holding the result GIMPLE statements. *NCONDS is
371 the number of logical comparisons. This function
372 produces no more than two logical comparisons, one
373 for lower bound check, one for upper bound check. */
374
375 static void
376 gen_conditions_for_domain (tree arg, inp_domain domain,
377 VEC (gimple, heap) *conds,
378 unsigned *nconds)
379 {
380 if (domain.has_lb)
381 gen_one_condition (arg, domain.lb,
382 (domain.is_lb_inclusive
383 ? LT_EXPR : LE_EXPR),
384 "DCE_COND_LB", "DCE_COND_LB_TEST",
385 conds, nconds);
386
387 if (domain.has_ub)
388 {
389 /* Now push a separator. */
390 if (domain.has_lb)
391 VEC_quick_push (gimple, conds, NULL);
392
393 gen_one_condition (arg, domain.ub,
394 (domain.is_ub_inclusive
395 ? GT_EXPR : GE_EXPR),
396 "DCE_COND_UB", "DCE_COND_UB_TEST",
397 conds, nconds);
398 }
399 }
400
401
402 /* A helper function to generate condition
403 code for the y argument in call pow (some_const, y).
404 See candidate selection in check_pow. Since the
405 candidates' base values have a limited range,
406 the guarded code generated for y are simple:
407 if (y > max_y)
408 pow (const, y);
409 Note max_y can be computed separately for each
410 const base, but in this implementation, we
411 choose to compute it using the max base
412 in the allowed range for the purpose of
413 simplicity. BASE is the constant base value,
414 EXPN is the expression for the exponent argument,
415 *CONDS is the vector to hold resulting statements,
416 and *NCONDS is the number of logical conditions. */
417
418 static void
419 gen_conditions_for_pow_cst_base (tree base, tree expn,
420 VEC (gimple, heap) *conds,
421 unsigned *nconds)
422 {
423 inp_domain exp_domain;
424 /* Validate the range of the base constant to make
425 sure it is consistent with check_pow. */
426 REAL_VALUE_TYPE mv;
427 REAL_VALUE_TYPE bcv = TREE_REAL_CST (base);
428 gcc_assert (!REAL_VALUES_EQUAL (bcv, dconst1)
429 && !REAL_VALUES_LESS (bcv, dconst1));
430 real_from_integer (&mv, TYPE_MODE (TREE_TYPE (base)), 256, 0, 1);
431 gcc_assert (!REAL_VALUES_LESS (mv, bcv));
432
433 exp_domain = get_domain (0, false, false,
434 127, true, false);
435
436 gen_conditions_for_domain (expn, exp_domain,
437 conds, nconds);
438 }
439
440 /* Generate error condition code for pow calls with
441 non constant base values. The candidates selected
442 have their base argument value converted from
443 integer (see check_pow) value (1, 2, 4 bytes), and
444 the max exp value is computed based on the size
445 of the integer type (i.e. max possible base value).
446 The resulting input domain for exp argument is thus
447 conservative (smaller than the max value allowed by
448 the runtime value of the base). BASE is the integer
449 base value, EXPN is the expression for the exponent
450 argument, *CONDS is the vector to hold resulting
451 statements, and *NCONDS is the number of logical
452 conditions. */
453
454 static void
455 gen_conditions_for_pow_int_base (tree base, tree expn,
456 VEC (gimple, heap) *conds,
457 unsigned *nconds)
458 {
459 gimple base_def;
460 tree base_nm, base_val0;
461 tree base_var, int_type;
462 tree temp, tempn;
463 tree cst0;
464 gimple stmt1, stmt2;
465 int bit_sz, max_exp;
466 inp_domain exp_domain;
467
468 base_def = SSA_NAME_DEF_STMT (base);
469 base_nm = gimple_assign_lhs (base_def);
470 base_val0 = gimple_assign_rhs1 (base_def);
471 base_var = SSA_NAME_VAR (base_val0);
472 int_type = TREE_TYPE (base_var);
473 bit_sz = TYPE_PRECISION (int_type);
474 gcc_assert (bit_sz > 0
475 && bit_sz <= MAX_BASE_INT_BIT_SIZE);
476
477 /* Determine the max exp argument value according to
478 the size of the base integer. The max exp value
479 is conservatively estimated assuming IEEE754 double
480 precision format. */
481 if (bit_sz == 8)
482 max_exp = 128;
483 else if (bit_sz == 16)
484 max_exp = 64;
485 else
486 {
487 gcc_assert (bit_sz == MAX_BASE_INT_BIT_SIZE);
488 max_exp = 32;
489 }
490
491 /* For pow ((double)x, y), generate the following conditions:
492 cond 1:
493 temp1 = x;
494 if (temp1 <= 0)
495
496 cond 2:
497 temp2 = y;
498 if (temp2 > max_exp_real_cst) */
499
500 /* Generate condition in reverse order -- first
501 the condition for the exp argument. */
502
503 exp_domain = get_domain (0, false, false,
504 max_exp, true, true);
505
506 gen_conditions_for_domain (expn, exp_domain,
507 conds, nconds);
508
509 /* Now generate condition for the base argument.
510 Note it does not use the helper function
511 gen_conditions_for_domain because the base
512 type is integer. */
513
514 /* Push a separator. */
515 VEC_quick_push (gimple, conds, NULL);
516
517 temp = create_tmp_var (int_type, "DCE_COND1");
518 cst0 = build_int_cst (int_type, 0);
519 stmt1 = gimple_build_assign (temp, base_val0);
520 tempn = make_ssa_name (temp, stmt1);
521 gimple_assign_set_lhs (stmt1, tempn);
522 stmt2 = gimple_build_cond (LE_EXPR, tempn, cst0, NULL_TREE, NULL_TREE);
523
524 VEC_quick_push (gimple, conds, stmt1);
525 VEC_quick_push (gimple, conds, stmt2);
526 (*nconds)++;
527 }
528
529 /* Method to generate conditional statements for guarding conditionally
530 dead calls to pow. One or more statements can be generated for
531 each logical condition. Statement groups of different conditions
532 are separated by a NULL tree and they are stored in the VEC
533 conds. The number of logical conditions are stored in *nconds.
534
535 See C99 standard, 7.12.7.4:2, for description of pow (x, y).
536 The precise condition for domain errors are complex. In this
537 implementation, a simplified (but conservative) valid domain
538 for x and y are used: x is positive to avoid dom errors, while
539 y is smaller than a upper bound (depending on x) to avoid range
540 errors. Runtime code is generated to check x (if not constant)
541 and y against the valid domain. If it is out, jump to the call,
542 otherwise the call is bypassed. POW_CALL is the call statement,
543 *CONDS is a vector holding the resulting condition statements,
544 and *NCONDS is the number of logical conditions. */
545
546 static void
547 gen_conditions_for_pow (gimple pow_call, VEC (gimple, heap) *conds,
548 unsigned *nconds)
549 {
550 tree base, expn;
551 enum tree_code bc, ec;
552
553 #ifdef ENABLE_CHECKING
554 gcc_assert (check_pow (pow_call));
555 #endif
556
557 *nconds = 0;
558
559 base = gimple_call_arg (pow_call, 0);
560 expn = gimple_call_arg (pow_call, 1);
561
562 bc = TREE_CODE (base);
563 ec = TREE_CODE (expn);
564
565 if (bc == REAL_CST)
566 gen_conditions_for_pow_cst_base (base, expn, conds, nconds);
567 else if (bc == SSA_NAME)
568 gen_conditions_for_pow_int_base (base, expn, conds, nconds);
569 else
570 gcc_unreachable ();
571 }
572
573 /* A helper routine to help computing the valid input domain
574 for a builtin function. See C99 7.12.7 for details. In this
575 implementation, we only handle single region domain. The
576 resulting region can be conservative (smaller) than the actual
577 one and rounded to integers. Some of the bounds are documented
578 in the standard, while other limit constants are computed
579 assuming IEEE floating point format (for SF and DF modes).
580 Since IEEE only sets minimum requirements for long double format,
581 different long double formats exist under different implementations
582 (e.g, 64 bit double precision (DF), 80 bit double-extended
583 precision (XF), and 128 bit quad precision (QF) ). For simplicity,
584 in this implementation, the computed bounds for long double assume
585 64 bit format (DF), and are therefore conservative. Another
586 assumption is that single precision float type is always SF mode,
587 and double type is DF mode. This function is quite
588 implementation specific, so it may not be suitable to be part of
589 builtins.c. This needs to be revisited later to see if it can
590 be leveraged in x87 assembly expansion. */
591
592 static inp_domain
593 get_no_error_domain (enum built_in_function fnc)
594 {
595 switch (fnc)
596 {
597 /* Trig functions: return [-1, +1] */
598 CASE_FLT_FN (BUILT_IN_ACOS):
599 CASE_FLT_FN (BUILT_IN_ASIN):
600 return get_domain (-1, true, true,
601 1, true, true);
602 /* Hyperbolic functions. */
603 CASE_FLT_FN (BUILT_IN_ACOSH):
604 /* acosh: [1, +inf) */
605 return get_domain (1, true, true,
606 1, false, false);
607 CASE_FLT_FN (BUILT_IN_ATANH):
608 /* atanh: (-1, +1) */
609 return get_domain (-1, true, false,
610 1, true, false);
611 case BUILT_IN_COSHF:
612 case BUILT_IN_SINHF:
613 /* coshf: (-89, +89) */
614 return get_domain (-89, true, false,
615 89, true, false);
616 case BUILT_IN_COSH:
617 case BUILT_IN_SINH:
618 case BUILT_IN_COSHL:
619 case BUILT_IN_SINHL:
620 /* cosh: (-710, +710) */
621 return get_domain (-710, true, false,
622 710, true, false);
623 /* Log functions: (0, +inf) */
624 CASE_FLT_FN (BUILT_IN_LOG):
625 CASE_FLT_FN (BUILT_IN_LOG2):
626 CASE_FLT_FN (BUILT_IN_LOG10):
627 return get_domain (0, true, false,
628 0, false, false);
629 CASE_FLT_FN (BUILT_IN_LOG1P):
630 return get_domain (-1, true, false,
631 0, false, false);
632 /* Exp functions. */
633 case BUILT_IN_EXPF:
634 case BUILT_IN_EXPM1F:
635 /* expf: (-inf, 88) */
636 return get_domain (-1, false, false,
637 88, true, false);
638 case BUILT_IN_EXP:
639 case BUILT_IN_EXPM1:
640 case BUILT_IN_EXPL:
641 case BUILT_IN_EXPM1L:
642 /* exp: (-inf, 709) */
643 return get_domain (-1, false, false,
644 709, true, false);
645 case BUILT_IN_EXP2F:
646 /* exp2f: (-inf, 128) */
647 return get_domain (-1, false, false,
648 128, true, false);
649 case BUILT_IN_EXP2:
650 case BUILT_IN_EXP2L:
651 /* exp2: (-inf, 1024) */
652 return get_domain (-1, false, false,
653 1024, true, false);
654 case BUILT_IN_EXP10F:
655 case BUILT_IN_POW10F:
656 /* exp10f: (-inf, 38) */
657 return get_domain (-1, false, false,
658 38, true, false);
659 case BUILT_IN_EXP10:
660 case BUILT_IN_POW10:
661 case BUILT_IN_EXP10L:
662 case BUILT_IN_POW10L:
663 /* exp10: (-inf, 308) */
664 return get_domain (-1, false, false,
665 308, true, false);
666 /* sqrt: [0, +inf) */
667 CASE_FLT_FN (BUILT_IN_SQRT):
668 return get_domain (0, true, true,
669 0, false, false);
670 default:
671 gcc_unreachable ();
672 }
673
674 gcc_unreachable ();
675 }
676
677 /* The function to generate shrink wrap conditions for a partially
678 dead builtin call whose return value is not used anywhere,
679 but has to be kept live due to potential error condition.
680 BI_CALL is the builtin call, CONDS is the vector of statements
681 for condition code, NCODES is the pointer to the number of
682 logical conditions. Statements belonging to different logical
683 condition are separated by NULL tree in the vector. */
684
685 static void
686 gen_shrink_wrap_conditions (gimple bi_call, VEC (gimple, heap) *conds,
687 unsigned int *nconds)
688 {
689 gimple call;
690 tree fn;
691 enum built_in_function fnc;
692
693 gcc_assert (nconds && conds);
694 gcc_assert (VEC_length (gimple, conds) == 0);
695 gcc_assert (is_gimple_call (bi_call));
696
697 call = bi_call;
698 fn = gimple_call_fndecl (call);
699 gcc_assert (fn && DECL_BUILT_IN (fn));
700 fnc = DECL_FUNCTION_CODE (fn);
701 *nconds = 0;
702
703 if (fnc == BUILT_IN_POW)
704 gen_conditions_for_pow (call, conds, nconds);
705 else
706 {
707 tree arg;
708 inp_domain domain = get_no_error_domain (fnc);
709 *nconds = 0;
710 arg = gimple_call_arg (bi_call, 0);
711 gen_conditions_for_domain (arg, domain, conds, nconds);
712 }
713
714 return;
715 }
716
717
718 /* Probability of the branch (to the call) is taken. */
719 #define ERR_PROB 0.01
720
721 /* The function to shrink wrap a partially dead builtin call
722 whose return value is not used anywhere, but has to be kept
723 live due to potential error condition. Returns true if the
724 transformation actually happens. */
725
726 static bool
727 shrink_wrap_one_built_in_call (gimple bi_call)
728 {
729 gimple_stmt_iterator bi_call_bsi;
730 basic_block bi_call_bb, join_tgt_bb, guard_bb, guard_bb0;
731 edge join_tgt_in_edge_from_call, join_tgt_in_edge_fall_thru;
732 edge bi_call_in_edge0, guard_bb_in_edge;
733 VEC (gimple, heap) *conds;
734 unsigned tn_cond_stmts, nconds;
735 unsigned ci;
736 gimple cond_expr = NULL;
737 gimple cond_expr_start;
738 tree bi_call_label_decl;
739 gimple bi_call_label;
740
741 conds = VEC_alloc (gimple, heap, 12);
742 gen_shrink_wrap_conditions (bi_call, conds, &nconds);
743
744 /* This can happen if the condition generator decides
745 it is not beneficial to do the transformation. Just
746 return false and do not do any transformation for
747 the call. */
748 if (nconds == 0)
749 return false;
750
751 bi_call_bb = gimple_bb (bi_call);
752
753 /* Now find the join target bb -- split
754 bi_call_bb if needed. */
755 bi_call_bsi = gsi_for_stmt (bi_call);
756
757 join_tgt_in_edge_from_call = split_block (bi_call_bb, bi_call);
758 bi_call_bsi = gsi_for_stmt (bi_call);
759
760 join_tgt_bb = join_tgt_in_edge_from_call->dest;
761
762 /* Now it is time to insert the first conditional expression
763 into bi_call_bb and split this bb so that bi_call is
764 shrink-wrapped. */
765 tn_cond_stmts = VEC_length (gimple, conds);
766 cond_expr = NULL;
767 cond_expr_start = VEC_index (gimple, conds, 0);
768 for (ci = 0; ci < tn_cond_stmts; ci++)
769 {
770 gimple c = VEC_index (gimple, conds, ci);
771 gcc_assert (c || ci != 0);
772 if (!c)
773 break;
774 gsi_insert_before (&bi_call_bsi, c, GSI_SAME_STMT);
775 cond_expr = c;
776 }
777 nconds--;
778 ci++;
779 gcc_assert (cond_expr && gimple_code (cond_expr) == GIMPLE_COND);
780
781 /* Now the label. */
782 bi_call_label_decl = create_artificial_label ();
783 bi_call_label = gimple_build_label (bi_call_label_decl);
784 gsi_insert_before (&bi_call_bsi, bi_call_label, GSI_SAME_STMT);
785
786 bi_call_in_edge0 = split_block (bi_call_bb, cond_expr);
787 bi_call_in_edge0->flags &= ~EDGE_FALLTHRU;
788 bi_call_in_edge0->flags |= EDGE_TRUE_VALUE;
789 guard_bb0 = bi_call_bb;
790 bi_call_bb = bi_call_in_edge0->dest;
791 join_tgt_in_edge_fall_thru = make_edge (guard_bb0, join_tgt_bb,
792 EDGE_FALSE_VALUE);
793
794 bi_call_in_edge0->probability = REG_BR_PROB_BASE * ERR_PROB;
795 join_tgt_in_edge_fall_thru->probability =
796 REG_BR_PROB_BASE - bi_call_in_edge0->probability;
797
798 /* Code generation for the rest of the conditions */
799 guard_bb = guard_bb0;
800 while (nconds > 0)
801 {
802 unsigned ci0;
803 edge bi_call_in_edge;
804 gimple_stmt_iterator guard_bsi = gsi_for_stmt (cond_expr_start);
805 ci0 = ci;
806 cond_expr_start = VEC_index (gimple, conds, ci0);
807 for (; ci < tn_cond_stmts; ci++)
808 {
809 gimple c = VEC_index (gimple, conds, ci);
810 gcc_assert (c || ci != ci0);
811 if (!c)
812 break;
813 gsi_insert_before (&guard_bsi, c, GSI_SAME_STMT);
814 cond_expr = c;
815 }
816 nconds--;
817 ci++;
818 gcc_assert (cond_expr && gimple_code (cond_expr) == GIMPLE_COND);
819 guard_bb_in_edge = split_block (guard_bb, cond_expr);
820 guard_bb_in_edge->flags &= ~EDGE_FALLTHRU;
821 guard_bb_in_edge->flags |= EDGE_FALSE_VALUE;
822
823 bi_call_in_edge = make_edge (guard_bb, bi_call_bb, EDGE_TRUE_VALUE);
824
825 bi_call_in_edge->probability = REG_BR_PROB_BASE * ERR_PROB;
826 guard_bb_in_edge->probability =
827 REG_BR_PROB_BASE - bi_call_in_edge->probability;
828 }
829
830 VEC_free (gimple, heap, conds);
831 if (dump_file && (dump_flags & TDF_DETAILS))
832 {
833 location_t loc;
834 loc = gimple_location (bi_call);
835 fprintf (dump_file,
836 "%s:%d: note: function call is shrink-wrapped"
837 " into error conditions.\n",
838 LOCATION_FILE (loc), LOCATION_LINE (loc));
839 }
840
841 return true;
842 }
843
844 /* The top level function for conditional dead code shrink
845 wrapping transformation. */
846
847 static bool
848 shrink_wrap_conditional_dead_built_in_calls (VEC (gimple, heap) *calls)
849 {
850 bool changed = false;
851 unsigned i = 0;
852
853 unsigned n = VEC_length (gimple, calls);
854 if (n == 0)
855 return false;
856
857 for (; i < n ; i++)
858 {
859 gimple bi_call = VEC_index (gimple, calls, i);
860 changed |= shrink_wrap_one_built_in_call (bi_call);
861 }
862
863 return changed;
864 }
865
866 /* Pass entry points. */
867
868 static unsigned int
869 tree_call_cdce (void)
870 {
871 basic_block bb;
872 gimple_stmt_iterator i;
873 bool something_changed = false;
874 VEC (gimple, heap) *cond_dead_built_in_calls = NULL;
875 FOR_EACH_BB (bb)
876 {
877 /* Collect dead call candidates. */
878 for (i = gsi_start_bb (bb); !gsi_end_p (i); gsi_next (&i))
879 {
880 gimple stmt = gsi_stmt (i);
881 if (is_gimple_call (stmt)
882 && is_call_dce_candidate (stmt))
883 {
884 if (dump_file && (dump_flags & TDF_DETAILS))
885 {
886 fprintf (dump_file, "Found conditional dead call: ");
887 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
888 fprintf (dump_file, "\n");
889 }
890 if (cond_dead_built_in_calls == NULL)
891 cond_dead_built_in_calls = VEC_alloc (gimple, heap, 64);
892 VEC_safe_push (gimple, heap, cond_dead_built_in_calls, stmt);
893 }
894 }
895 }
896
897 if (cond_dead_built_in_calls == NULL)
898 return 0;
899
900 something_changed
901 = shrink_wrap_conditional_dead_built_in_calls (cond_dead_built_in_calls);
902
903 VEC_free (gimple, heap, cond_dead_built_in_calls);
904
905 if (something_changed)
906 {
907 free_dominance_info (CDI_DOMINATORS);
908 free_dominance_info (CDI_POST_DOMINATORS);
909 return (TODO_update_ssa | TODO_cleanup_cfg | TODO_ggc_collect
910 | TODO_remove_unused_locals);
911 }
912 else
913 return 0;
914 }
915
916 static bool
917 gate_call_cdce (void)
918 {
919 /* The limit constants used in the implementation
920 assume IEEE floating point format. Other formats
921 can be supported in the future if needed. */
922 return flag_tree_builtin_call_dce != 0 && optimize_function_for_speed_p (cfun);
923 }
924
925 struct gimple_opt_pass pass_call_cdce =
926 {
927 {
928 GIMPLE_PASS,
929 "cdce", /* name */
930 gate_call_cdce, /* gate */
931 tree_call_cdce, /* execute */
932 NULL, /* sub */
933 NULL, /* next */
934 0, /* static_pass_number */
935 TV_TREE_CALL_CDCE, /* tv_id */
936 PROP_cfg | PROP_ssa, /* properties_required */
937 0, /* properties_provided */
938 0, /* properties_destroyed */
939 0, /* todo_flags_start */
940 TODO_dump_func | TODO_verify_ssa /* todo_flags_finish */
941 }
942 };