comparison gcc/tree-complex.c @ 0:a06113de4d67

first commit
author kent <kent@cr.ie.u-ryukyu.ac.jp>
date Fri, 17 Jul 2009 14:47:48 +0900
parents
children 77e2b8dfacca
comparison
equal deleted inserted replaced
-1:000000000000 0:a06113de4d67
1 /* Lower complex number operations to scalar operations.
2 Copyright (C) 2004, 2005, 2006, 2007, 2008 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 3, or (at your option) any
9 later version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "tm.h"
24 #include "tree.h"
25 #include "rtl.h"
26 #include "real.h"
27 #include "flags.h"
28 #include "tree-flow.h"
29 #include "gimple.h"
30 #include "tree-iterator.h"
31 #include "tree-pass.h"
32 #include "tree-ssa-propagate.h"
33 #include "diagnostic.h"
34
35
36 /* For each complex ssa name, a lattice value. We're interested in finding
37 out whether a complex number is degenerate in some way, having only real
38 or only complex parts. */
39
40 typedef enum
41 {
42 UNINITIALIZED = 0,
43 ONLY_REAL = 1,
44 ONLY_IMAG = 2,
45 VARYING = 3
46 } complex_lattice_t;
47
48 #define PAIR(a, b) ((a) << 2 | (b))
49
50 DEF_VEC_I(complex_lattice_t);
51 DEF_VEC_ALLOC_I(complex_lattice_t, heap);
52
53 static VEC(complex_lattice_t, heap) *complex_lattice_values;
54
55 /* For each complex variable, a pair of variables for the components exists in
56 the hashtable. */
57 static htab_t complex_variable_components;
58
59 /* For each complex SSA_NAME, a pair of ssa names for the components. */
60 static VEC(tree, heap) *complex_ssa_name_components;
61
62 /* Lookup UID in the complex_variable_components hashtable and return the
63 associated tree. */
64 static tree
65 cvc_lookup (unsigned int uid)
66 {
67 struct int_tree_map *h, in;
68 in.uid = uid;
69 h = (struct int_tree_map *) htab_find_with_hash (complex_variable_components, &in, uid);
70 return h ? h->to : NULL;
71 }
72
73 /* Insert the pair UID, TO into the complex_variable_components hashtable. */
74
75 static void
76 cvc_insert (unsigned int uid, tree to)
77 {
78 struct int_tree_map *h;
79 void **loc;
80
81 h = XNEW (struct int_tree_map);
82 h->uid = uid;
83 h->to = to;
84 loc = htab_find_slot_with_hash (complex_variable_components, h,
85 uid, INSERT);
86 *(struct int_tree_map **) loc = h;
87 }
88
89 /* Return true if T is not a zero constant. In the case of real values,
90 we're only interested in +0.0. */
91
92 static int
93 some_nonzerop (tree t)
94 {
95 int zerop = false;
96
97 if (TREE_CODE (t) == REAL_CST)
98 zerop = REAL_VALUES_IDENTICAL (TREE_REAL_CST (t), dconst0);
99 else if (TREE_CODE (t) == FIXED_CST)
100 zerop = fixed_zerop (t);
101 else if (TREE_CODE (t) == INTEGER_CST)
102 zerop = integer_zerop (t);
103
104 return !zerop;
105 }
106
107
108 /* Compute a lattice value from the components of a complex type REAL
109 and IMAG. */
110
111 static complex_lattice_t
112 find_lattice_value_parts (tree real, tree imag)
113 {
114 int r, i;
115 complex_lattice_t ret;
116
117 r = some_nonzerop (real);
118 i = some_nonzerop (imag);
119 ret = r * ONLY_REAL + i * ONLY_IMAG;
120
121 /* ??? On occasion we could do better than mapping 0+0i to real, but we
122 certainly don't want to leave it UNINITIALIZED, which eventually gets
123 mapped to VARYING. */
124 if (ret == UNINITIALIZED)
125 ret = ONLY_REAL;
126
127 return ret;
128 }
129
130
131 /* Compute a lattice value from gimple_val T. */
132
133 static complex_lattice_t
134 find_lattice_value (tree t)
135 {
136 tree real, imag;
137
138 switch (TREE_CODE (t))
139 {
140 case SSA_NAME:
141 return VEC_index (complex_lattice_t, complex_lattice_values,
142 SSA_NAME_VERSION (t));
143
144 case COMPLEX_CST:
145 real = TREE_REALPART (t);
146 imag = TREE_IMAGPART (t);
147 break;
148
149 default:
150 gcc_unreachable ();
151 }
152
153 return find_lattice_value_parts (real, imag);
154 }
155
156 /* Determine if LHS is something for which we're interested in seeing
157 simulation results. */
158
159 static bool
160 is_complex_reg (tree lhs)
161 {
162 return TREE_CODE (TREE_TYPE (lhs)) == COMPLEX_TYPE && is_gimple_reg (lhs);
163 }
164
165 /* Mark the incoming parameters to the function as VARYING. */
166
167 static void
168 init_parameter_lattice_values (void)
169 {
170 tree parm, ssa_name;
171
172 for (parm = DECL_ARGUMENTS (cfun->decl); parm ; parm = TREE_CHAIN (parm))
173 if (is_complex_reg (parm)
174 && var_ann (parm) != NULL
175 && (ssa_name = gimple_default_def (cfun, parm)) != NULL_TREE)
176 VEC_replace (complex_lattice_t, complex_lattice_values,
177 SSA_NAME_VERSION (ssa_name), VARYING);
178 }
179
180 /* Initialize simulation state for each statement. Return false if we
181 found no statements we want to simulate, and thus there's nothing
182 for the entire pass to do. */
183
184 static bool
185 init_dont_simulate_again (void)
186 {
187 basic_block bb;
188 gimple_stmt_iterator gsi;
189 gimple phi;
190 bool saw_a_complex_op = false;
191
192 FOR_EACH_BB (bb)
193 {
194 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
195 {
196 phi = gsi_stmt (gsi);
197 prop_set_simulate_again (phi,
198 is_complex_reg (gimple_phi_result (phi)));
199 }
200
201 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
202 {
203 gimple stmt;
204 tree op0, op1;
205 bool sim_again_p;
206
207 stmt = gsi_stmt (gsi);
208 op0 = op1 = NULL_TREE;
209
210 /* Most control-altering statements must be initially
211 simulated, else we won't cover the entire cfg. */
212 sim_again_p = stmt_ends_bb_p (stmt);
213
214 switch (gimple_code (stmt))
215 {
216 case GIMPLE_CALL:
217 if (gimple_call_lhs (stmt))
218 sim_again_p = is_complex_reg (gimple_call_lhs (stmt));
219 break;
220
221 case GIMPLE_ASSIGN:
222 sim_again_p = is_complex_reg (gimple_assign_lhs (stmt));
223 if (gimple_assign_rhs_code (stmt) == REALPART_EXPR
224 || gimple_assign_rhs_code (stmt) == IMAGPART_EXPR)
225 op0 = TREE_OPERAND (gimple_assign_rhs1 (stmt), 0);
226 else
227 op0 = gimple_assign_rhs1 (stmt);
228 if (gimple_num_ops (stmt) > 2)
229 op1 = gimple_assign_rhs2 (stmt);
230 break;
231
232 case GIMPLE_COND:
233 op0 = gimple_cond_lhs (stmt);
234 op1 = gimple_cond_rhs (stmt);
235 break;
236
237 default:
238 break;
239 }
240
241 if (op0 || op1)
242 switch (gimple_expr_code (stmt))
243 {
244 case EQ_EXPR:
245 case NE_EXPR:
246 case PLUS_EXPR:
247 case MINUS_EXPR:
248 case MULT_EXPR:
249 case TRUNC_DIV_EXPR:
250 case CEIL_DIV_EXPR:
251 case FLOOR_DIV_EXPR:
252 case ROUND_DIV_EXPR:
253 case RDIV_EXPR:
254 if (TREE_CODE (TREE_TYPE (op0)) == COMPLEX_TYPE
255 || TREE_CODE (TREE_TYPE (op1)) == COMPLEX_TYPE)
256 saw_a_complex_op = true;
257 break;
258
259 case NEGATE_EXPR:
260 case CONJ_EXPR:
261 if (TREE_CODE (TREE_TYPE (op0)) == COMPLEX_TYPE)
262 saw_a_complex_op = true;
263 break;
264
265 case REALPART_EXPR:
266 case IMAGPART_EXPR:
267 /* The total store transformation performed during
268 gimplification creates such uninitialized loads
269 and we need to lower the statement to be able
270 to fix things up. */
271 if (TREE_CODE (op0) == SSA_NAME
272 && ssa_undefined_value_p (op0))
273 saw_a_complex_op = true;
274 break;
275
276 default:
277 break;
278 }
279
280 prop_set_simulate_again (stmt, sim_again_p);
281 }
282 }
283
284 return saw_a_complex_op;
285 }
286
287
288 /* Evaluate statement STMT against the complex lattice defined above. */
289
290 static enum ssa_prop_result
291 complex_visit_stmt (gimple stmt, edge *taken_edge_p ATTRIBUTE_UNUSED,
292 tree *result_p)
293 {
294 complex_lattice_t new_l, old_l, op1_l, op2_l;
295 unsigned int ver;
296 tree lhs;
297
298 lhs = gimple_get_lhs (stmt);
299 /* Skip anything but GIMPLE_ASSIGN and GIMPLE_CALL with a lhs. */
300 if (!lhs)
301 return SSA_PROP_VARYING;
302
303 /* These conditions should be satisfied due to the initial filter
304 set up in init_dont_simulate_again. */
305 gcc_assert (TREE_CODE (lhs) == SSA_NAME);
306 gcc_assert (TREE_CODE (TREE_TYPE (lhs)) == COMPLEX_TYPE);
307
308 *result_p = lhs;
309 ver = SSA_NAME_VERSION (lhs);
310 old_l = VEC_index (complex_lattice_t, complex_lattice_values, ver);
311
312 switch (gimple_expr_code (stmt))
313 {
314 case SSA_NAME:
315 case COMPLEX_CST:
316 new_l = find_lattice_value (gimple_assign_rhs1 (stmt));
317 break;
318
319 case COMPLEX_EXPR:
320 new_l = find_lattice_value_parts (gimple_assign_rhs1 (stmt),
321 gimple_assign_rhs2 (stmt));
322 break;
323
324 case PLUS_EXPR:
325 case MINUS_EXPR:
326 op1_l = find_lattice_value (gimple_assign_rhs1 (stmt));
327 op2_l = find_lattice_value (gimple_assign_rhs2 (stmt));
328
329 /* We've set up the lattice values such that IOR neatly
330 models addition. */
331 new_l = op1_l | op2_l;
332 break;
333
334 case MULT_EXPR:
335 case RDIV_EXPR:
336 case TRUNC_DIV_EXPR:
337 case CEIL_DIV_EXPR:
338 case FLOOR_DIV_EXPR:
339 case ROUND_DIV_EXPR:
340 op1_l = find_lattice_value (gimple_assign_rhs1 (stmt));
341 op2_l = find_lattice_value (gimple_assign_rhs2 (stmt));
342
343 /* Obviously, if either varies, so does the result. */
344 if (op1_l == VARYING || op2_l == VARYING)
345 new_l = VARYING;
346 /* Don't prematurely promote variables if we've not yet seen
347 their inputs. */
348 else if (op1_l == UNINITIALIZED)
349 new_l = op2_l;
350 else if (op2_l == UNINITIALIZED)
351 new_l = op1_l;
352 else
353 {
354 /* At this point both numbers have only one component. If the
355 numbers are of opposite kind, the result is imaginary,
356 otherwise the result is real. The add/subtract translates
357 the real/imag from/to 0/1; the ^ performs the comparison. */
358 new_l = ((op1_l - ONLY_REAL) ^ (op2_l - ONLY_REAL)) + ONLY_REAL;
359
360 /* Don't allow the lattice value to flip-flop indefinitely. */
361 new_l |= old_l;
362 }
363 break;
364
365 case NEGATE_EXPR:
366 case CONJ_EXPR:
367 new_l = find_lattice_value (gimple_assign_rhs1 (stmt));
368 break;
369
370 default:
371 new_l = VARYING;
372 break;
373 }
374
375 /* If nothing changed this round, let the propagator know. */
376 if (new_l == old_l)
377 return SSA_PROP_NOT_INTERESTING;
378
379 VEC_replace (complex_lattice_t, complex_lattice_values, ver, new_l);
380 return new_l == VARYING ? SSA_PROP_VARYING : SSA_PROP_INTERESTING;
381 }
382
383 /* Evaluate a PHI node against the complex lattice defined above. */
384
385 static enum ssa_prop_result
386 complex_visit_phi (gimple phi)
387 {
388 complex_lattice_t new_l, old_l;
389 unsigned int ver;
390 tree lhs;
391 int i;
392
393 lhs = gimple_phi_result (phi);
394
395 /* This condition should be satisfied due to the initial filter
396 set up in init_dont_simulate_again. */
397 gcc_assert (TREE_CODE (TREE_TYPE (lhs)) == COMPLEX_TYPE);
398
399 /* We've set up the lattice values such that IOR neatly models PHI meet. */
400 new_l = UNINITIALIZED;
401 for (i = gimple_phi_num_args (phi) - 1; i >= 0; --i)
402 new_l |= find_lattice_value (gimple_phi_arg_def (phi, i));
403
404 ver = SSA_NAME_VERSION (lhs);
405 old_l = VEC_index (complex_lattice_t, complex_lattice_values, ver);
406
407 if (new_l == old_l)
408 return SSA_PROP_NOT_INTERESTING;
409
410 VEC_replace (complex_lattice_t, complex_lattice_values, ver, new_l);
411 return new_l == VARYING ? SSA_PROP_VARYING : SSA_PROP_INTERESTING;
412 }
413
414 /* Create one backing variable for a complex component of ORIG. */
415
416 static tree
417 create_one_component_var (tree type, tree orig, const char *prefix,
418 const char *suffix, enum tree_code code)
419 {
420 tree r = create_tmp_var (type, prefix);
421 add_referenced_var (r);
422
423 DECL_SOURCE_LOCATION (r) = DECL_SOURCE_LOCATION (orig);
424 DECL_ARTIFICIAL (r) = 1;
425
426 if (DECL_NAME (orig) && !DECL_IGNORED_P (orig))
427 {
428 const char *name = IDENTIFIER_POINTER (DECL_NAME (orig));
429 tree inner_type;
430
431 DECL_NAME (r) = get_identifier (ACONCAT ((name, suffix, NULL)));
432
433 inner_type = TREE_TYPE (TREE_TYPE (orig));
434 SET_DECL_DEBUG_EXPR (r, build1 (code, type, orig));
435 DECL_DEBUG_EXPR_IS_FROM (r) = 1;
436 DECL_IGNORED_P (r) = 0;
437 TREE_NO_WARNING (r) = TREE_NO_WARNING (orig);
438 }
439 else
440 {
441 DECL_IGNORED_P (r) = 1;
442 TREE_NO_WARNING (r) = 1;
443 }
444
445 return r;
446 }
447
448 /* Retrieve a value for a complex component of VAR. */
449
450 static tree
451 get_component_var (tree var, bool imag_p)
452 {
453 size_t decl_index = DECL_UID (var) * 2 + imag_p;
454 tree ret = cvc_lookup (decl_index);
455
456 if (ret == NULL)
457 {
458 ret = create_one_component_var (TREE_TYPE (TREE_TYPE (var)), var,
459 imag_p ? "CI" : "CR",
460 imag_p ? "$imag" : "$real",
461 imag_p ? IMAGPART_EXPR : REALPART_EXPR);
462 cvc_insert (decl_index, ret);
463 }
464
465 return ret;
466 }
467
468 /* Retrieve a value for a complex component of SSA_NAME. */
469
470 static tree
471 get_component_ssa_name (tree ssa_name, bool imag_p)
472 {
473 complex_lattice_t lattice = find_lattice_value (ssa_name);
474 size_t ssa_name_index;
475 tree ret;
476
477 if (lattice == (imag_p ? ONLY_REAL : ONLY_IMAG))
478 {
479 tree inner_type = TREE_TYPE (TREE_TYPE (ssa_name));
480 if (SCALAR_FLOAT_TYPE_P (inner_type))
481 return build_real (inner_type, dconst0);
482 else
483 return build_int_cst (inner_type, 0);
484 }
485
486 ssa_name_index = SSA_NAME_VERSION (ssa_name) * 2 + imag_p;
487 ret = VEC_index (tree, complex_ssa_name_components, ssa_name_index);
488 if (ret == NULL)
489 {
490 ret = get_component_var (SSA_NAME_VAR (ssa_name), imag_p);
491 ret = make_ssa_name (ret, NULL);
492
493 /* Copy some properties from the original. In particular, whether it
494 is used in an abnormal phi, and whether it's uninitialized. */
495 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ret)
496 = SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ssa_name);
497 if (TREE_CODE (SSA_NAME_VAR (ssa_name)) == VAR_DECL
498 && gimple_nop_p (SSA_NAME_DEF_STMT (ssa_name)))
499 {
500 SSA_NAME_DEF_STMT (ret) = SSA_NAME_DEF_STMT (ssa_name);
501 set_default_def (SSA_NAME_VAR (ret), ret);
502 }
503
504 VEC_replace (tree, complex_ssa_name_components, ssa_name_index, ret);
505 }
506
507 return ret;
508 }
509
510 /* Set a value for a complex component of SSA_NAME, return a
511 gimple_seq of stuff that needs doing. */
512
513 static gimple_seq
514 set_component_ssa_name (tree ssa_name, bool imag_p, tree value)
515 {
516 complex_lattice_t lattice = find_lattice_value (ssa_name);
517 size_t ssa_name_index;
518 tree comp;
519 gimple last;
520 gimple_seq list;
521
522 /* We know the value must be zero, else there's a bug in our lattice
523 analysis. But the value may well be a variable known to contain
524 zero. We should be safe ignoring it. */
525 if (lattice == (imag_p ? ONLY_REAL : ONLY_IMAG))
526 return NULL;
527
528 /* If we've already assigned an SSA_NAME to this component, then this
529 means that our walk of the basic blocks found a use before the set.
530 This is fine. Now we should create an initialization for the value
531 we created earlier. */
532 ssa_name_index = SSA_NAME_VERSION (ssa_name) * 2 + imag_p;
533 comp = VEC_index (tree, complex_ssa_name_components, ssa_name_index);
534 if (comp)
535 ;
536
537 /* If we've nothing assigned, and the value we're given is already stable,
538 then install that as the value for this SSA_NAME. This preemptively
539 copy-propagates the value, which avoids unnecessary memory allocation. */
540 else if (is_gimple_min_invariant (value)
541 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ssa_name))
542 {
543 VEC_replace (tree, complex_ssa_name_components, ssa_name_index, value);
544 return NULL;
545 }
546 else if (TREE_CODE (value) == SSA_NAME
547 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (ssa_name))
548 {
549 /* Replace an anonymous base value with the variable from cvc_lookup.
550 This should result in better debug info. */
551 if (DECL_IGNORED_P (SSA_NAME_VAR (value))
552 && !DECL_IGNORED_P (SSA_NAME_VAR (ssa_name)))
553 {
554 comp = get_component_var (SSA_NAME_VAR (ssa_name), imag_p);
555 replace_ssa_name_symbol (value, comp);
556 }
557
558 VEC_replace (tree, complex_ssa_name_components, ssa_name_index, value);
559 return NULL;
560 }
561
562 /* Finally, we need to stabilize the result by installing the value into
563 a new ssa name. */
564 else
565 comp = get_component_ssa_name (ssa_name, imag_p);
566
567 /* Do all the work to assign VALUE to COMP. */
568 list = NULL;
569 value = force_gimple_operand (value, &list, false, NULL);
570 last = gimple_build_assign (comp, value);
571 gimple_seq_add_stmt (&list, last);
572 gcc_assert (SSA_NAME_DEF_STMT (comp) == last);
573
574 return list;
575 }
576
577 /* Extract the real or imaginary part of a complex variable or constant.
578 Make sure that it's a proper gimple_val and gimplify it if not.
579 Emit any new code before gsi. */
580
581 static tree
582 extract_component (gimple_stmt_iterator *gsi, tree t, bool imagpart_p,
583 bool gimple_p)
584 {
585 switch (TREE_CODE (t))
586 {
587 case COMPLEX_CST:
588 return imagpart_p ? TREE_IMAGPART (t) : TREE_REALPART (t);
589
590 case COMPLEX_EXPR:
591 gcc_unreachable ();
592
593 case VAR_DECL:
594 case RESULT_DECL:
595 case PARM_DECL:
596 case INDIRECT_REF:
597 case COMPONENT_REF:
598 case ARRAY_REF:
599 {
600 tree inner_type = TREE_TYPE (TREE_TYPE (t));
601
602 t = build1 ((imagpart_p ? IMAGPART_EXPR : REALPART_EXPR),
603 inner_type, unshare_expr (t));
604
605 if (gimple_p)
606 t = force_gimple_operand_gsi (gsi, t, true, NULL, true,
607 GSI_SAME_STMT);
608
609 return t;
610 }
611
612 case SSA_NAME:
613 return get_component_ssa_name (t, imagpart_p);
614
615 default:
616 gcc_unreachable ();
617 }
618 }
619
620 /* Update the complex components of the ssa name on the lhs of STMT. */
621
622 static void
623 update_complex_components (gimple_stmt_iterator *gsi, gimple stmt, tree r,
624 tree i)
625 {
626 tree lhs;
627 gimple_seq list;
628
629 lhs = gimple_get_lhs (stmt);
630
631 list = set_component_ssa_name (lhs, false, r);
632 if (list)
633 gsi_insert_seq_after (gsi, list, GSI_CONTINUE_LINKING);
634
635 list = set_component_ssa_name (lhs, true, i);
636 if (list)
637 gsi_insert_seq_after (gsi, list, GSI_CONTINUE_LINKING);
638 }
639
640 static void
641 update_complex_components_on_edge (edge e, tree lhs, tree r, tree i)
642 {
643 gimple_seq list;
644
645 list = set_component_ssa_name (lhs, false, r);
646 if (list)
647 gsi_insert_seq_on_edge (e, list);
648
649 list = set_component_ssa_name (lhs, true, i);
650 if (list)
651 gsi_insert_seq_on_edge (e, list);
652 }
653
654
655 /* Update an assignment to a complex variable in place. */
656
657 static void
658 update_complex_assignment (gimple_stmt_iterator *gsi, tree r, tree i)
659 {
660 gimple_stmt_iterator orig_si = *gsi;
661
662 if (gimple_in_ssa_p (cfun))
663 update_complex_components (gsi, gsi_stmt (*gsi), r, i);
664
665 gimple_assign_set_rhs_with_ops (&orig_si, COMPLEX_EXPR, r, i);
666 update_stmt (gsi_stmt (orig_si));
667 }
668
669
670 /* Generate code at the entry point of the function to initialize the
671 component variables for a complex parameter. */
672
673 static void
674 update_parameter_components (void)
675 {
676 edge entry_edge = single_succ_edge (ENTRY_BLOCK_PTR);
677 tree parm;
678
679 for (parm = DECL_ARGUMENTS (cfun->decl); parm ; parm = TREE_CHAIN (parm))
680 {
681 tree type = TREE_TYPE (parm);
682 tree ssa_name, r, i;
683
684 if (TREE_CODE (type) != COMPLEX_TYPE || !is_gimple_reg (parm))
685 continue;
686
687 type = TREE_TYPE (type);
688 ssa_name = gimple_default_def (cfun, parm);
689 if (!ssa_name)
690 continue;
691
692 r = build1 (REALPART_EXPR, type, ssa_name);
693 i = build1 (IMAGPART_EXPR, type, ssa_name);
694 update_complex_components_on_edge (entry_edge, ssa_name, r, i);
695 }
696 }
697
698 /* Generate code to set the component variables of a complex variable
699 to match the PHI statements in block BB. */
700
701 static void
702 update_phi_components (basic_block bb)
703 {
704 gimple_stmt_iterator gsi;
705
706 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
707 {
708 gimple phi = gsi_stmt (gsi);
709
710 if (is_complex_reg (gimple_phi_result (phi)))
711 {
712 tree lr, li;
713 gimple pr = NULL, pi = NULL;
714 unsigned int i, n;
715
716 lr = get_component_ssa_name (gimple_phi_result (phi), false);
717 if (TREE_CODE (lr) == SSA_NAME)
718 {
719 pr = create_phi_node (lr, bb);
720 SSA_NAME_DEF_STMT (lr) = pr;
721 }
722
723 li = get_component_ssa_name (gimple_phi_result (phi), true);
724 if (TREE_CODE (li) == SSA_NAME)
725 {
726 pi = create_phi_node (li, bb);
727 SSA_NAME_DEF_STMT (li) = pi;
728 }
729
730 for (i = 0, n = gimple_phi_num_args (phi); i < n; ++i)
731 {
732 tree comp, arg = gimple_phi_arg_def (phi, i);
733 if (pr)
734 {
735 comp = extract_component (NULL, arg, false, false);
736 SET_PHI_ARG_DEF (pr, i, comp);
737 }
738 if (pi)
739 {
740 comp = extract_component (NULL, arg, true, false);
741 SET_PHI_ARG_DEF (pi, i, comp);
742 }
743 }
744 }
745 }
746 }
747
748 /* Mark each virtual op in STMT for ssa update. */
749
750 static void
751 update_all_vops (gimple stmt)
752 {
753 ssa_op_iter iter;
754 tree sym;
755
756 FOR_EACH_SSA_TREE_OPERAND (sym, stmt, iter, SSA_OP_ALL_VIRTUALS)
757 {
758 if (TREE_CODE (sym) == SSA_NAME)
759 sym = SSA_NAME_VAR (sym);
760 mark_sym_for_renaming (sym);
761 }
762 }
763
764
765 /* Expand a complex move to scalars. */
766
767 static void
768 expand_complex_move (gimple_stmt_iterator *gsi, tree type)
769 {
770 tree inner_type = TREE_TYPE (type);
771 tree r, i, lhs, rhs;
772 gimple stmt = gsi_stmt (*gsi);
773
774 if (is_gimple_assign (stmt))
775 {
776 lhs = gimple_assign_lhs (stmt);
777 if (gimple_num_ops (stmt) == 2)
778 rhs = gimple_assign_rhs1 (stmt);
779 else
780 rhs = NULL_TREE;
781 }
782 else if (is_gimple_call (stmt))
783 {
784 lhs = gimple_call_lhs (stmt);
785 rhs = NULL_TREE;
786 }
787 else
788 gcc_unreachable ();
789
790 if (TREE_CODE (lhs) == SSA_NAME)
791 {
792 if (is_ctrl_altering_stmt (stmt))
793 {
794 edge_iterator ei;
795 edge e;
796
797 /* The value is not assigned on the exception edges, so we need not
798 concern ourselves there. We do need to update on the fallthru
799 edge. Find it. */
800 FOR_EACH_EDGE (e, ei, gsi_bb (*gsi)->succs)
801 if (e->flags & EDGE_FALLTHRU)
802 goto found_fallthru;
803 gcc_unreachable ();
804 found_fallthru:
805
806 r = build1 (REALPART_EXPR, inner_type, lhs);
807 i = build1 (IMAGPART_EXPR, inner_type, lhs);
808 update_complex_components_on_edge (e, lhs, r, i);
809 }
810 else if (is_gimple_call (stmt)
811 || gimple_has_side_effects (stmt)
812 || gimple_assign_rhs_code (stmt) == PAREN_EXPR)
813 {
814 r = build1 (REALPART_EXPR, inner_type, lhs);
815 i = build1 (IMAGPART_EXPR, inner_type, lhs);
816 update_complex_components (gsi, stmt, r, i);
817 }
818 else
819 {
820 update_all_vops (stmt);
821 if (gimple_assign_rhs_code (stmt) != COMPLEX_EXPR)
822 {
823 r = extract_component (gsi, rhs, 0, true);
824 i = extract_component (gsi, rhs, 1, true);
825 }
826 else
827 {
828 r = gimple_assign_rhs1 (stmt);
829 i = gimple_assign_rhs2 (stmt);
830 }
831 update_complex_assignment (gsi, r, i);
832 }
833 }
834 else if (rhs && TREE_CODE (rhs) == SSA_NAME && !TREE_SIDE_EFFECTS (lhs))
835 {
836 tree x;
837 gimple t;
838
839 r = extract_component (gsi, rhs, 0, false);
840 i = extract_component (gsi, rhs, 1, false);
841
842 x = build1 (REALPART_EXPR, inner_type, unshare_expr (lhs));
843 t = gimple_build_assign (x, r);
844 gsi_insert_before (gsi, t, GSI_SAME_STMT);
845
846 if (stmt == gsi_stmt (*gsi))
847 {
848 x = build1 (IMAGPART_EXPR, inner_type, unshare_expr (lhs));
849 gimple_assign_set_lhs (stmt, x);
850 gimple_assign_set_rhs1 (stmt, i);
851 }
852 else
853 {
854 x = build1 (IMAGPART_EXPR, inner_type, unshare_expr (lhs));
855 t = gimple_build_assign (x, i);
856 gsi_insert_before (gsi, t, GSI_SAME_STMT);
857
858 stmt = gsi_stmt (*gsi);
859 gcc_assert (gimple_code (stmt) == GIMPLE_RETURN);
860 gimple_return_set_retval (stmt, lhs);
861 }
862
863 update_all_vops (stmt);
864 update_stmt (stmt);
865 }
866 }
867
868 /* Expand complex addition to scalars:
869 a + b = (ar + br) + i(ai + bi)
870 a - b = (ar - br) + i(ai + bi)
871 */
872
873 static void
874 expand_complex_addition (gimple_stmt_iterator *gsi, tree inner_type,
875 tree ar, tree ai, tree br, tree bi,
876 enum tree_code code,
877 complex_lattice_t al, complex_lattice_t bl)
878 {
879 tree rr, ri;
880
881 switch (PAIR (al, bl))
882 {
883 case PAIR (ONLY_REAL, ONLY_REAL):
884 rr = gimplify_build2 (gsi, code, inner_type, ar, br);
885 ri = ai;
886 break;
887
888 case PAIR (ONLY_REAL, ONLY_IMAG):
889 rr = ar;
890 if (code == MINUS_EXPR)
891 ri = gimplify_build2 (gsi, MINUS_EXPR, inner_type, ai, bi);
892 else
893 ri = bi;
894 break;
895
896 case PAIR (ONLY_IMAG, ONLY_REAL):
897 if (code == MINUS_EXPR)
898 rr = gimplify_build2 (gsi, MINUS_EXPR, inner_type, ar, br);
899 else
900 rr = br;
901 ri = ai;
902 break;
903
904 case PAIR (ONLY_IMAG, ONLY_IMAG):
905 rr = ar;
906 ri = gimplify_build2 (gsi, code, inner_type, ai, bi);
907 break;
908
909 case PAIR (VARYING, ONLY_REAL):
910 rr = gimplify_build2 (gsi, code, inner_type, ar, br);
911 ri = ai;
912 break;
913
914 case PAIR (VARYING, ONLY_IMAG):
915 rr = ar;
916 ri = gimplify_build2 (gsi, code, inner_type, ai, bi);
917 break;
918
919 case PAIR (ONLY_REAL, VARYING):
920 if (code == MINUS_EXPR)
921 goto general;
922 rr = gimplify_build2 (gsi, code, inner_type, ar, br);
923 ri = bi;
924 break;
925
926 case PAIR (ONLY_IMAG, VARYING):
927 if (code == MINUS_EXPR)
928 goto general;
929 rr = br;
930 ri = gimplify_build2 (gsi, code, inner_type, ai, bi);
931 break;
932
933 case PAIR (VARYING, VARYING):
934 general:
935 rr = gimplify_build2 (gsi, code, inner_type, ar, br);
936 ri = gimplify_build2 (gsi, code, inner_type, ai, bi);
937 break;
938
939 default:
940 gcc_unreachable ();
941 }
942
943 update_complex_assignment (gsi, rr, ri);
944 }
945
946 /* Expand a complex multiplication or division to a libcall to the c99
947 compliant routines. */
948
949 static void
950 expand_complex_libcall (gimple_stmt_iterator *gsi, tree ar, tree ai,
951 tree br, tree bi, enum tree_code code)
952 {
953 enum machine_mode mode;
954 enum built_in_function bcode;
955 tree fn, type, lhs;
956 gimple old_stmt, stmt;
957
958 old_stmt = gsi_stmt (*gsi);
959 lhs = gimple_assign_lhs (old_stmt);
960 type = TREE_TYPE (lhs);
961
962 mode = TYPE_MODE (type);
963 gcc_assert (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT);
964
965 if (code == MULT_EXPR)
966 bcode = BUILT_IN_COMPLEX_MUL_MIN + mode - MIN_MODE_COMPLEX_FLOAT;
967 else if (code == RDIV_EXPR)
968 bcode = BUILT_IN_COMPLEX_DIV_MIN + mode - MIN_MODE_COMPLEX_FLOAT;
969 else
970 gcc_unreachable ();
971 fn = built_in_decls[bcode];
972
973 stmt = gimple_build_call (fn, 4, ar, ai, br, bi);
974 gimple_call_set_lhs (stmt, lhs);
975 update_stmt (stmt);
976 gsi_replace (gsi, stmt, false);
977
978 if (maybe_clean_or_replace_eh_stmt (old_stmt, stmt))
979 gimple_purge_dead_eh_edges (gsi_bb (*gsi));
980
981 if (gimple_in_ssa_p (cfun))
982 {
983 type = TREE_TYPE (type);
984 update_complex_components (gsi, stmt,
985 build1 (REALPART_EXPR, type, lhs),
986 build1 (IMAGPART_EXPR, type, lhs));
987 SSA_NAME_DEF_STMT (lhs) = stmt;
988 }
989 }
990
991 /* Expand complex multiplication to scalars:
992 a * b = (ar*br - ai*bi) + i(ar*bi + br*ai)
993 */
994
995 static void
996 expand_complex_multiplication (gimple_stmt_iterator *gsi, tree inner_type,
997 tree ar, tree ai, tree br, tree bi,
998 complex_lattice_t al, complex_lattice_t bl)
999 {
1000 tree rr, ri;
1001
1002 if (al < bl)
1003 {
1004 complex_lattice_t tl;
1005 rr = ar, ar = br, br = rr;
1006 ri = ai, ai = bi, bi = ri;
1007 tl = al, al = bl, bl = tl;
1008 }
1009
1010 switch (PAIR (al, bl))
1011 {
1012 case PAIR (ONLY_REAL, ONLY_REAL):
1013 rr = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, br);
1014 ri = ai;
1015 break;
1016
1017 case PAIR (ONLY_IMAG, ONLY_REAL):
1018 rr = ar;
1019 if (TREE_CODE (ai) == REAL_CST
1020 && REAL_VALUES_IDENTICAL (TREE_REAL_CST (ai), dconst1))
1021 ri = br;
1022 else
1023 ri = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, br);
1024 break;
1025
1026 case PAIR (ONLY_IMAG, ONLY_IMAG):
1027 rr = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, bi);
1028 rr = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, rr);
1029 ri = ar;
1030 break;
1031
1032 case PAIR (VARYING, ONLY_REAL):
1033 rr = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, br);
1034 ri = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, br);
1035 break;
1036
1037 case PAIR (VARYING, ONLY_IMAG):
1038 rr = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, bi);
1039 rr = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, rr);
1040 ri = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, bi);
1041 break;
1042
1043 case PAIR (VARYING, VARYING):
1044 if (flag_complex_method == 2 && SCALAR_FLOAT_TYPE_P (inner_type))
1045 {
1046 expand_complex_libcall (gsi, ar, ai, br, bi, MULT_EXPR);
1047 return;
1048 }
1049 else
1050 {
1051 tree t1, t2, t3, t4;
1052
1053 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, br);
1054 t2 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, bi);
1055 t3 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, bi);
1056
1057 /* Avoid expanding redundant multiplication for the common
1058 case of squaring a complex number. */
1059 if (ar == br && ai == bi)
1060 t4 = t3;
1061 else
1062 t4 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, br);
1063
1064 rr = gimplify_build2 (gsi, MINUS_EXPR, inner_type, t1, t2);
1065 ri = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t3, t4);
1066 }
1067 break;
1068
1069 default:
1070 gcc_unreachable ();
1071 }
1072
1073 update_complex_assignment (gsi, rr, ri);
1074 }
1075
1076 /* Expand complex division to scalars, straightforward algorithm.
1077 a / b = ((ar*br + ai*bi)/t) + i((ai*br - ar*bi)/t)
1078 t = br*br + bi*bi
1079 */
1080
1081 static void
1082 expand_complex_div_straight (gimple_stmt_iterator *gsi, tree inner_type,
1083 tree ar, tree ai, tree br, tree bi,
1084 enum tree_code code)
1085 {
1086 tree rr, ri, div, t1, t2, t3;
1087
1088 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, br, br);
1089 t2 = gimplify_build2 (gsi, MULT_EXPR, inner_type, bi, bi);
1090 div = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, t2);
1091
1092 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, br);
1093 t2 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, bi);
1094 t3 = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, t2);
1095 rr = gimplify_build2 (gsi, code, inner_type, t3, div);
1096
1097 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, br);
1098 t2 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, bi);
1099 t3 = gimplify_build2 (gsi, MINUS_EXPR, inner_type, t1, t2);
1100 ri = gimplify_build2 (gsi, code, inner_type, t3, div);
1101
1102 update_complex_assignment (gsi, rr, ri);
1103 }
1104
1105 /* Expand complex division to scalars, modified algorithm to minimize
1106 overflow with wide input ranges. */
1107
1108 static void
1109 expand_complex_div_wide (gimple_stmt_iterator *gsi, tree inner_type,
1110 tree ar, tree ai, tree br, tree bi,
1111 enum tree_code code)
1112 {
1113 tree rr, ri, ratio, div, t1, t2, tr, ti, compare;
1114 basic_block bb_cond, bb_true, bb_false, bb_join;
1115 gimple stmt;
1116
1117 /* Examine |br| < |bi|, and branch. */
1118 t1 = gimplify_build1 (gsi, ABS_EXPR, inner_type, br);
1119 t2 = gimplify_build1 (gsi, ABS_EXPR, inner_type, bi);
1120 compare = fold_build2 (LT_EXPR, boolean_type_node, t1, t2);
1121 STRIP_NOPS (compare);
1122
1123 bb_cond = bb_true = bb_false = bb_join = NULL;
1124 rr = ri = tr = ti = NULL;
1125 if (!TREE_CONSTANT (compare))
1126 {
1127 edge e;
1128 gimple stmt;
1129 tree cond, tmp;
1130
1131 tmp = create_tmp_var (boolean_type_node, NULL);
1132 stmt = gimple_build_assign (tmp, compare);
1133 if (gimple_in_ssa_p (cfun))
1134 {
1135 tmp = make_ssa_name (tmp, stmt);
1136 gimple_assign_set_lhs (stmt, tmp);
1137 }
1138
1139 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1140
1141 cond = fold_build2 (EQ_EXPR, boolean_type_node, tmp, boolean_true_node);
1142 stmt = gimple_build_cond_from_tree (cond, NULL_TREE, NULL_TREE);
1143 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1144
1145 /* Split the original block, and create the TRUE and FALSE blocks. */
1146 e = split_block (gsi_bb (*gsi), stmt);
1147 bb_cond = e->src;
1148 bb_join = e->dest;
1149 bb_true = create_empty_bb (bb_cond);
1150 bb_false = create_empty_bb (bb_true);
1151
1152 /* Wire the blocks together. */
1153 e->flags = EDGE_TRUE_VALUE;
1154 redirect_edge_succ (e, bb_true);
1155 make_edge (bb_cond, bb_false, EDGE_FALSE_VALUE);
1156 make_edge (bb_true, bb_join, EDGE_FALLTHRU);
1157 make_edge (bb_false, bb_join, EDGE_FALLTHRU);
1158
1159 /* Update dominance info. Note that bb_join's data was
1160 updated by split_block. */
1161 if (dom_info_available_p (CDI_DOMINATORS))
1162 {
1163 set_immediate_dominator (CDI_DOMINATORS, bb_true, bb_cond);
1164 set_immediate_dominator (CDI_DOMINATORS, bb_false, bb_cond);
1165 }
1166
1167 rr = make_rename_temp (inner_type, NULL);
1168 ri = make_rename_temp (inner_type, NULL);
1169 }
1170
1171 /* In the TRUE branch, we compute
1172 ratio = br/bi;
1173 div = (br * ratio) + bi;
1174 tr = (ar * ratio) + ai;
1175 ti = (ai * ratio) - ar;
1176 tr = tr / div;
1177 ti = ti / div; */
1178 if (bb_true || integer_nonzerop (compare))
1179 {
1180 if (bb_true)
1181 {
1182 *gsi = gsi_last_bb (bb_true);
1183 gsi_insert_after (gsi, gimple_build_nop (), GSI_NEW_STMT);
1184 }
1185
1186 ratio = gimplify_build2 (gsi, code, inner_type, br, bi);
1187
1188 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, br, ratio);
1189 div = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, bi);
1190
1191 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, ratio);
1192 tr = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, ai);
1193
1194 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, ratio);
1195 ti = gimplify_build2 (gsi, MINUS_EXPR, inner_type, t1, ar);
1196
1197 tr = gimplify_build2 (gsi, code, inner_type, tr, div);
1198 ti = gimplify_build2 (gsi, code, inner_type, ti, div);
1199
1200 if (bb_true)
1201 {
1202 stmt = gimple_build_assign (rr, tr);
1203 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1204 stmt = gimple_build_assign (ri, ti);
1205 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1206 gsi_remove (gsi, true);
1207 }
1208 }
1209
1210 /* In the FALSE branch, we compute
1211 ratio = d/c;
1212 divisor = (d * ratio) + c;
1213 tr = (b * ratio) + a;
1214 ti = b - (a * ratio);
1215 tr = tr / div;
1216 ti = ti / div; */
1217 if (bb_false || integer_zerop (compare))
1218 {
1219 if (bb_false)
1220 {
1221 *gsi = gsi_last_bb (bb_false);
1222 gsi_insert_after (gsi, gimple_build_nop (), GSI_NEW_STMT);
1223 }
1224
1225 ratio = gimplify_build2 (gsi, code, inner_type, bi, br);
1226
1227 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, bi, ratio);
1228 div = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, br);
1229
1230 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ai, ratio);
1231 tr = gimplify_build2 (gsi, PLUS_EXPR, inner_type, t1, ar);
1232
1233 t1 = gimplify_build2 (gsi, MULT_EXPR, inner_type, ar, ratio);
1234 ti = gimplify_build2 (gsi, MINUS_EXPR, inner_type, ai, t1);
1235
1236 tr = gimplify_build2 (gsi, code, inner_type, tr, div);
1237 ti = gimplify_build2 (gsi, code, inner_type, ti, div);
1238
1239 if (bb_false)
1240 {
1241 stmt = gimple_build_assign (rr, tr);
1242 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1243 stmt = gimple_build_assign (ri, ti);
1244 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
1245 gsi_remove (gsi, true);
1246 }
1247 }
1248
1249 if (bb_join)
1250 *gsi = gsi_start_bb (bb_join);
1251 else
1252 rr = tr, ri = ti;
1253
1254 update_complex_assignment (gsi, rr, ri);
1255 }
1256
1257 /* Expand complex division to scalars. */
1258
1259 static void
1260 expand_complex_division (gimple_stmt_iterator *gsi, tree inner_type,
1261 tree ar, tree ai, tree br, tree bi,
1262 enum tree_code code,
1263 complex_lattice_t al, complex_lattice_t bl)
1264 {
1265 tree rr, ri;
1266
1267 switch (PAIR (al, bl))
1268 {
1269 case PAIR (ONLY_REAL, ONLY_REAL):
1270 rr = gimplify_build2 (gsi, code, inner_type, ar, br);
1271 ri = ai;
1272 break;
1273
1274 case PAIR (ONLY_REAL, ONLY_IMAG):
1275 rr = ai;
1276 ri = gimplify_build2 (gsi, code, inner_type, ar, bi);
1277 ri = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, ri);
1278 break;
1279
1280 case PAIR (ONLY_IMAG, ONLY_REAL):
1281 rr = ar;
1282 ri = gimplify_build2 (gsi, code, inner_type, ai, br);
1283 break;
1284
1285 case PAIR (ONLY_IMAG, ONLY_IMAG):
1286 rr = gimplify_build2 (gsi, code, inner_type, ai, bi);
1287 ri = ar;
1288 break;
1289
1290 case PAIR (VARYING, ONLY_REAL):
1291 rr = gimplify_build2 (gsi, code, inner_type, ar, br);
1292 ri = gimplify_build2 (gsi, code, inner_type, ai, br);
1293 break;
1294
1295 case PAIR (VARYING, ONLY_IMAG):
1296 rr = gimplify_build2 (gsi, code, inner_type, ai, bi);
1297 ri = gimplify_build2 (gsi, code, inner_type, ar, bi);
1298 ri = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, ri);
1299
1300 case PAIR (ONLY_REAL, VARYING):
1301 case PAIR (ONLY_IMAG, VARYING):
1302 case PAIR (VARYING, VARYING):
1303 switch (flag_complex_method)
1304 {
1305 case 0:
1306 /* straightforward implementation of complex divide acceptable. */
1307 expand_complex_div_straight (gsi, inner_type, ar, ai, br, bi, code);
1308 break;
1309
1310 case 2:
1311 if (SCALAR_FLOAT_TYPE_P (inner_type))
1312 {
1313 expand_complex_libcall (gsi, ar, ai, br, bi, code);
1314 break;
1315 }
1316 /* FALLTHRU */
1317
1318 case 1:
1319 /* wide ranges of inputs must work for complex divide. */
1320 expand_complex_div_wide (gsi, inner_type, ar, ai, br, bi, code);
1321 break;
1322
1323 default:
1324 gcc_unreachable ();
1325 }
1326 return;
1327
1328 default:
1329 gcc_unreachable ();
1330 }
1331
1332 update_complex_assignment (gsi, rr, ri);
1333 }
1334
1335 /* Expand complex negation to scalars:
1336 -a = (-ar) + i(-ai)
1337 */
1338
1339 static void
1340 expand_complex_negation (gimple_stmt_iterator *gsi, tree inner_type,
1341 tree ar, tree ai)
1342 {
1343 tree rr, ri;
1344
1345 rr = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, ar);
1346 ri = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, ai);
1347
1348 update_complex_assignment (gsi, rr, ri);
1349 }
1350
1351 /* Expand complex conjugate to scalars:
1352 ~a = (ar) + i(-ai)
1353 */
1354
1355 static void
1356 expand_complex_conjugate (gimple_stmt_iterator *gsi, tree inner_type,
1357 tree ar, tree ai)
1358 {
1359 tree ri;
1360
1361 ri = gimplify_build1 (gsi, NEGATE_EXPR, inner_type, ai);
1362
1363 update_complex_assignment (gsi, ar, ri);
1364 }
1365
1366 /* Expand complex comparison (EQ or NE only). */
1367
1368 static void
1369 expand_complex_comparison (gimple_stmt_iterator *gsi, tree ar, tree ai,
1370 tree br, tree bi, enum tree_code code)
1371 {
1372 tree cr, ci, cc, type;
1373 gimple stmt;
1374
1375 cr = gimplify_build2 (gsi, code, boolean_type_node, ar, br);
1376 ci = gimplify_build2 (gsi, code, boolean_type_node, ai, bi);
1377 cc = gimplify_build2 (gsi,
1378 (code == EQ_EXPR ? TRUTH_AND_EXPR : TRUTH_OR_EXPR),
1379 boolean_type_node, cr, ci);
1380
1381 stmt = gsi_stmt (*gsi);
1382
1383 switch (gimple_code (stmt))
1384 {
1385 case GIMPLE_RETURN:
1386 type = TREE_TYPE (gimple_return_retval (stmt));
1387 gimple_return_set_retval (stmt, fold_convert (type, cc));
1388 break;
1389
1390 case GIMPLE_ASSIGN:
1391 type = TREE_TYPE (gimple_assign_lhs (stmt));
1392 gimple_assign_set_rhs_from_tree (gsi, fold_convert (type, cc));
1393 stmt = gsi_stmt (*gsi);
1394 break;
1395
1396 case GIMPLE_COND:
1397 gimple_cond_set_code (stmt, EQ_EXPR);
1398 gimple_cond_set_lhs (stmt, cc);
1399 gimple_cond_set_rhs (stmt, boolean_true_node);
1400 break;
1401
1402 default:
1403 gcc_unreachable ();
1404 }
1405
1406 update_stmt (stmt);
1407 }
1408
1409
1410 /* Process one statement. If we identify a complex operation, expand it. */
1411
1412 static void
1413 expand_complex_operations_1 (gimple_stmt_iterator *gsi)
1414 {
1415 gimple stmt = gsi_stmt (*gsi);
1416 tree type, inner_type, lhs;
1417 tree ac, ar, ai, bc, br, bi;
1418 complex_lattice_t al, bl;
1419 enum tree_code code;
1420
1421 lhs = gimple_get_lhs (stmt);
1422 if (!lhs && gimple_code (stmt) != GIMPLE_COND)
1423 return;
1424
1425 type = TREE_TYPE (gimple_op (stmt, 0));
1426 code = gimple_expr_code (stmt);
1427
1428 /* Initial filter for operations we handle. */
1429 switch (code)
1430 {
1431 case PLUS_EXPR:
1432 case MINUS_EXPR:
1433 case MULT_EXPR:
1434 case TRUNC_DIV_EXPR:
1435 case CEIL_DIV_EXPR:
1436 case FLOOR_DIV_EXPR:
1437 case ROUND_DIV_EXPR:
1438 case RDIV_EXPR:
1439 case NEGATE_EXPR:
1440 case CONJ_EXPR:
1441 if (TREE_CODE (type) != COMPLEX_TYPE)
1442 return;
1443 inner_type = TREE_TYPE (type);
1444 break;
1445
1446 case EQ_EXPR:
1447 case NE_EXPR:
1448 /* Note, both GIMPLE_ASSIGN and GIMPLE_COND may have an EQ_EXPR
1449 subocde, so we need to access the operands using gimple_op. */
1450 inner_type = TREE_TYPE (gimple_op (stmt, 1));
1451 if (TREE_CODE (inner_type) != COMPLEX_TYPE)
1452 return;
1453 break;
1454
1455 default:
1456 {
1457 tree rhs;
1458
1459 /* GIMPLE_COND may also fallthru here, but we do not need to
1460 do anything with it. */
1461 if (gimple_code (stmt) == GIMPLE_COND)
1462 return;
1463
1464 if (TREE_CODE (type) == COMPLEX_TYPE)
1465 expand_complex_move (gsi, type);
1466 else if (is_gimple_assign (stmt)
1467 && (gimple_assign_rhs_code (stmt) == REALPART_EXPR
1468 || gimple_assign_rhs_code (stmt) == IMAGPART_EXPR)
1469 && TREE_CODE (lhs) == SSA_NAME)
1470 {
1471 rhs = gimple_assign_rhs1 (stmt);
1472 rhs = extract_component (gsi, TREE_OPERAND (rhs, 0),
1473 gimple_assign_rhs_code (stmt)
1474 == IMAGPART_EXPR,
1475 false);
1476 gimple_assign_set_rhs_from_tree (gsi, rhs);
1477 stmt = gsi_stmt (*gsi);
1478 update_stmt (stmt);
1479 }
1480 }
1481 return;
1482 }
1483
1484 /* Extract the components of the two complex values. Make sure and
1485 handle the common case of the same value used twice specially. */
1486 if (is_gimple_assign (stmt))
1487 {
1488 ac = gimple_assign_rhs1 (stmt);
1489 bc = (gimple_num_ops (stmt) > 2) ? gimple_assign_rhs2 (stmt) : NULL;
1490 }
1491 /* GIMPLE_CALL can not get here. */
1492 else
1493 {
1494 ac = gimple_cond_lhs (stmt);
1495 bc = gimple_cond_rhs (stmt);
1496 }
1497
1498 ar = extract_component (gsi, ac, false, true);
1499 ai = extract_component (gsi, ac, true, true);
1500
1501 if (ac == bc)
1502 br = ar, bi = ai;
1503 else if (bc)
1504 {
1505 br = extract_component (gsi, bc, 0, true);
1506 bi = extract_component (gsi, bc, 1, true);
1507 }
1508 else
1509 br = bi = NULL_TREE;
1510
1511 if (gimple_in_ssa_p (cfun))
1512 {
1513 al = find_lattice_value (ac);
1514 if (al == UNINITIALIZED)
1515 al = VARYING;
1516
1517 if (TREE_CODE_CLASS (code) == tcc_unary)
1518 bl = UNINITIALIZED;
1519 else if (ac == bc)
1520 bl = al;
1521 else
1522 {
1523 bl = find_lattice_value (bc);
1524 if (bl == UNINITIALIZED)
1525 bl = VARYING;
1526 }
1527 }
1528 else
1529 al = bl = VARYING;
1530
1531 switch (code)
1532 {
1533 case PLUS_EXPR:
1534 case MINUS_EXPR:
1535 expand_complex_addition (gsi, inner_type, ar, ai, br, bi, code, al, bl);
1536 break;
1537
1538 case MULT_EXPR:
1539 expand_complex_multiplication (gsi, inner_type, ar, ai, br, bi, al, bl);
1540 break;
1541
1542 case TRUNC_DIV_EXPR:
1543 case CEIL_DIV_EXPR:
1544 case FLOOR_DIV_EXPR:
1545 case ROUND_DIV_EXPR:
1546 case RDIV_EXPR:
1547 expand_complex_division (gsi, inner_type, ar, ai, br, bi, code, al, bl);
1548 break;
1549
1550 case NEGATE_EXPR:
1551 expand_complex_negation (gsi, inner_type, ar, ai);
1552 break;
1553
1554 case CONJ_EXPR:
1555 expand_complex_conjugate (gsi, inner_type, ar, ai);
1556 break;
1557
1558 case EQ_EXPR:
1559 case NE_EXPR:
1560 expand_complex_comparison (gsi, ar, ai, br, bi, code);
1561 break;
1562
1563 default:
1564 gcc_unreachable ();
1565 }
1566 }
1567
1568
1569 /* Entry point for complex operation lowering during optimization. */
1570
1571 static unsigned int
1572 tree_lower_complex (void)
1573 {
1574 int old_last_basic_block;
1575 gimple_stmt_iterator gsi;
1576 basic_block bb;
1577
1578 if (!init_dont_simulate_again ())
1579 return 0;
1580
1581 complex_lattice_values = VEC_alloc (complex_lattice_t, heap, num_ssa_names);
1582 VEC_safe_grow_cleared (complex_lattice_t, heap,
1583 complex_lattice_values, num_ssa_names);
1584
1585 init_parameter_lattice_values ();
1586 ssa_propagate (complex_visit_stmt, complex_visit_phi);
1587
1588 complex_variable_components = htab_create (10, int_tree_map_hash,
1589 int_tree_map_eq, free);
1590
1591 complex_ssa_name_components = VEC_alloc (tree, heap, 2*num_ssa_names);
1592 VEC_safe_grow_cleared (tree, heap, complex_ssa_name_components,
1593 2 * num_ssa_names);
1594
1595 update_parameter_components ();
1596
1597 /* ??? Ideally we'd traverse the blocks in breadth-first order. */
1598 old_last_basic_block = last_basic_block;
1599 FOR_EACH_BB (bb)
1600 {
1601 if (bb->index >= old_last_basic_block)
1602 continue;
1603
1604 update_phi_components (bb);
1605 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1606 expand_complex_operations_1 (&gsi);
1607 }
1608
1609 gsi_commit_edge_inserts ();
1610
1611 htab_delete (complex_variable_components);
1612 VEC_free (tree, heap, complex_ssa_name_components);
1613 VEC_free (complex_lattice_t, heap, complex_lattice_values);
1614 return 0;
1615 }
1616
1617 struct gimple_opt_pass pass_lower_complex =
1618 {
1619 {
1620 GIMPLE_PASS,
1621 "cplxlower", /* name */
1622 0, /* gate */
1623 tree_lower_complex, /* execute */
1624 NULL, /* sub */
1625 NULL, /* next */
1626 0, /* static_pass_number */
1627 0, /* tv_id */
1628 PROP_ssa, /* properties_required */
1629 0, /* properties_provided */
1630 0, /* properties_destroyed */
1631 0, /* todo_flags_start */
1632 TODO_dump_func
1633 | TODO_ggc_collect
1634 | TODO_update_ssa
1635 | TODO_verify_stmts /* todo_flags_finish */
1636 }
1637 };
1638
1639
1640 /* Entry point for complex operation lowering without optimization. */
1641
1642 static unsigned int
1643 tree_lower_complex_O0 (void)
1644 {
1645 int old_last_basic_block = last_basic_block;
1646 gimple_stmt_iterator gsi;
1647 basic_block bb;
1648
1649 FOR_EACH_BB (bb)
1650 {
1651 if (bb->index >= old_last_basic_block)
1652 continue;
1653
1654 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1655 expand_complex_operations_1 (&gsi);
1656 }
1657 return 0;
1658 }
1659
1660 static bool
1661 gate_no_optimization (void)
1662 {
1663 /* With errors, normal optimization passes are not run. If we don't
1664 lower complex operations at all, rtl expansion will abort. */
1665 return optimize == 0 || sorrycount || errorcount;
1666 }
1667
1668 struct gimple_opt_pass pass_lower_complex_O0 =
1669 {
1670 {
1671 GIMPLE_PASS,
1672 "cplxlower0", /* name */
1673 gate_no_optimization, /* gate */
1674 tree_lower_complex_O0, /* execute */
1675 NULL, /* sub */
1676 NULL, /* next */
1677 0, /* static_pass_number */
1678 0, /* tv_id */
1679 PROP_cfg, /* properties_required */
1680 0, /* properties_provided */
1681 0, /* properties_destroyed */
1682 0, /* todo_flags_start */
1683 TODO_dump_func | TODO_ggc_collect
1684 | TODO_verify_stmts, /* todo_flags_finish */
1685 }
1686 };