comparison gcc/tree-data-ref.h @ 0:a06113de4d67

first commit
author kent <kent@cr.ie.u-ryukyu.ac.jp>
date Fri, 17 Jul 2009 14:47:48 +0900
parents
children 77e2b8dfacca
comparison
equal deleted inserted replaced
-1:000000000000 0:a06113de4d67
1 /* Data references and dependences detectors.
2 Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008, 2009
3 Free Software Foundation, Inc.
4 Contributed by Sebastian Pop <pop@cri.ensmp.fr>
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 #ifndef GCC_TREE_DATA_REF_H
23 #define GCC_TREE_DATA_REF_H
24
25 #include "graphds.h"
26 #include "lambda.h"
27 #include "omega.h"
28 #include "tree-chrec.h"
29
30 /*
31 innermost_loop_behavior describes the evolution of the address of the memory
32 reference in the innermost enclosing loop. The address is expressed as
33 BASE + STEP * # of iteration, and base is further decomposed as the base
34 pointer (BASE_ADDRESS), loop invariant offset (OFFSET) and
35 constant offset (INIT). Examples, in loop nest
36
37 for (i = 0; i < 100; i++)
38 for (j = 3; j < 100; j++)
39
40 Example 1 Example 2
41 data-ref a[j].b[i][j] *(p + x + 16B + 4B * j)
42
43
44 innermost_loop_behavior
45 base_address &a p
46 offset i * D_i x
47 init 3 * D_j + offsetof (b) 28
48 step D_j 4
49
50 */
51 struct innermost_loop_behavior
52 {
53 tree base_address;
54 tree offset;
55 tree init;
56 tree step;
57
58 /* Alignment information. ALIGNED_TO is set to the largest power of two
59 that divides OFFSET. */
60 tree aligned_to;
61 };
62
63 /* Describes the evolutions of indices of the memory reference. The indices
64 are indices of the ARRAY_REFs and the operands of INDIRECT_REFs.
65 For ARRAY_REFs, BASE_OBJECT is the reference with zeroed indices
66 (note that this reference does not have to be valid, if zero does not
67 belong to the range of the array; hence it is not recommended to use
68 BASE_OBJECT in any code generation). For INDIRECT_REFs, the address is
69 set to the loop-invariant part of the address of the object, except for
70 the constant offset. For the examples above,
71
72 base_object: a[0].b[0][0] *(p + x + 4B * j_0)
73 indices: {j_0, +, 1}_2 {16, +, 4}_2
74 {i_0, +, 1}_1
75 {j_0, +, 1}_2
76 */
77
78 struct indices
79 {
80 /* The object. */
81 tree base_object;
82
83 /* A list of chrecs. Access functions of the indices. */
84 VEC(tree,heap) *access_fns;
85 };
86
87 struct dr_alias
88 {
89 /* The alias information that should be used for new pointers to this
90 location. SYMBOL_TAG is either a DECL or a SYMBOL_MEMORY_TAG. */
91 tree symbol_tag;
92 struct ptr_info_def *ptr_info;
93
94 /* The set of virtual operands corresponding to this memory reference,
95 serving as a description of the alias information for the memory
96 reference. This could be eliminated if we had alias oracle. */
97 bitmap vops;
98 };
99
100 typedef struct scop *scop_p;
101
102 /* Each vector of the access matrix represents a linear access
103 function for a subscript. First elements correspond to the
104 leftmost indices, ie. for a[i][j] the first vector corresponds to
105 the subscript in "i". The elements of a vector are relative to
106 the loop nests in which the data reference is considered,
107 i.e. the vector is relative to the SCoP that provides the context
108 in which this data reference occurs.
109
110 For example, in
111
112 | loop_1
113 | loop_2
114 | a[i+3][2*j+n-1]
115
116 if "i" varies in loop_1 and "j" varies in loop_2, the access
117 matrix with respect to the loop nest {loop_1, loop_2} is:
118
119 | loop_1 loop_2 param_n cst
120 | 1 0 0 3
121 | 0 2 1 -1
122
123 whereas the access matrix with respect to loop_2 considers "i" as
124 a parameter:
125
126 | loop_2 param_i param_n cst
127 | 0 1 0 3
128 | 2 0 1 -1
129 */
130 struct access_matrix
131 {
132 VEC (loop_p, heap) *loop_nest;
133 int nb_induction_vars;
134 VEC (tree, heap) *parameters;
135 VEC (lambda_vector, gc) *matrix;
136 };
137
138 #define AM_LOOP_NEST(M) (M)->loop_nest
139 #define AM_NB_INDUCTION_VARS(M) (M)->nb_induction_vars
140 #define AM_PARAMETERS(M) (M)->parameters
141 #define AM_MATRIX(M) (M)->matrix
142 #define AM_NB_PARAMETERS(M) (VEC_length (tree, AM_PARAMETERS(M)))
143 #define AM_CONST_COLUMN_INDEX(M) (AM_NB_INDUCTION_VARS (M) + AM_NB_PARAMETERS (M))
144 #define AM_NB_COLUMNS(M) (AM_NB_INDUCTION_VARS (M) + AM_NB_PARAMETERS (M) + 1)
145 #define AM_GET_SUBSCRIPT_ACCESS_VECTOR(M, I) VEC_index (lambda_vector, AM_MATRIX (M), I)
146 #define AM_GET_ACCESS_MATRIX_ELEMENT(M, I, J) AM_GET_SUBSCRIPT_ACCESS_VECTOR (M, I)[J]
147
148 /* Return the column in the access matrix of LOOP_NUM. */
149
150 static inline int
151 am_vector_index_for_loop (struct access_matrix *access_matrix, int loop_num)
152 {
153 int i;
154 loop_p l;
155
156 for (i = 0; VEC_iterate (loop_p, AM_LOOP_NEST (access_matrix), i, l); i++)
157 if (l->num == loop_num)
158 return i;
159
160 gcc_unreachable();
161 }
162
163 int access_matrix_get_index_for_parameter (tree, struct access_matrix *);
164
165 struct data_reference
166 {
167 /* A pointer to the statement that contains this DR. */
168 gimple stmt;
169
170 /* A pointer to the memory reference. */
171 tree ref;
172
173 /* Auxiliary info specific to a pass. */
174 void *aux;
175
176 /* True when the data reference is in RHS of a stmt. */
177 bool is_read;
178
179 /* Behavior of the memory reference in the innermost loop. */
180 struct innermost_loop_behavior innermost;
181
182 /* Subscripts of this data reference. */
183 struct indices indices;
184
185 /* Alias information for the data reference. */
186 struct dr_alias alias;
187
188 /* The SCoP in which the data reference was analyzed. */
189 scop_p scop;
190
191 /* Matrix representation for the data access functions. */
192 struct access_matrix *access_matrix;
193 };
194
195 #define DR_SCOP(DR) (DR)->scop
196 #define DR_STMT(DR) (DR)->stmt
197 #define DR_REF(DR) (DR)->ref
198 #define DR_BASE_OBJECT(DR) (DR)->indices.base_object
199 #define DR_ACCESS_FNS(DR) (DR)->indices.access_fns
200 #define DR_ACCESS_FN(DR, I) VEC_index (tree, DR_ACCESS_FNS (DR), I)
201 #define DR_NUM_DIMENSIONS(DR) VEC_length (tree, DR_ACCESS_FNS (DR))
202 #define DR_IS_READ(DR) (DR)->is_read
203 #define DR_BASE_ADDRESS(DR) (DR)->innermost.base_address
204 #define DR_OFFSET(DR) (DR)->innermost.offset
205 #define DR_INIT(DR) (DR)->innermost.init
206 #define DR_STEP(DR) (DR)->innermost.step
207 #define DR_SYMBOL_TAG(DR) (DR)->alias.symbol_tag
208 #define DR_PTR_INFO(DR) (DR)->alias.ptr_info
209 #define DR_VOPS(DR) (DR)->alias.vops
210 #define DR_ALIGNED_TO(DR) (DR)->innermost.aligned_to
211 #define DR_ACCESS_MATRIX(DR) (DR)->access_matrix
212
213 typedef struct data_reference *data_reference_p;
214 DEF_VEC_P(data_reference_p);
215 DEF_VEC_ALLOC_P (data_reference_p, heap);
216
217 enum data_dependence_direction {
218 dir_positive,
219 dir_negative,
220 dir_equal,
221 dir_positive_or_negative,
222 dir_positive_or_equal,
223 dir_negative_or_equal,
224 dir_star,
225 dir_independent
226 };
227
228 /* The description of the grid of iterations that overlap. At most
229 two loops are considered at the same time just now, hence at most
230 two functions are needed. For each of the functions, we store
231 the vector of coefficients, f[0] + x * f[1] + y * f[2] + ...,
232 where x, y, ... are variables. */
233
234 #define MAX_DIM 2
235
236 /* Special values of N. */
237 #define NO_DEPENDENCE 0
238 #define NOT_KNOWN (MAX_DIM + 1)
239 #define CF_NONTRIVIAL_P(CF) ((CF)->n != NO_DEPENDENCE && (CF)->n != NOT_KNOWN)
240 #define CF_NOT_KNOWN_P(CF) ((CF)->n == NOT_KNOWN)
241 #define CF_NO_DEPENDENCE_P(CF) ((CF)->n == NO_DEPENDENCE)
242
243 typedef VEC (tree, heap) *affine_fn;
244
245 typedef struct
246 {
247 unsigned n;
248 affine_fn fns[MAX_DIM];
249 } conflict_function;
250
251 /* What is a subscript? Given two array accesses a subscript is the
252 tuple composed of the access functions for a given dimension.
253 Example: Given A[f1][f2][f3] and B[g1][g2][g3], there are three
254 subscripts: (f1, g1), (f2, g2), (f3, g3). These three subscripts
255 are stored in the data_dependence_relation structure under the form
256 of an array of subscripts. */
257
258 struct subscript
259 {
260 /* A description of the iterations for which the elements are
261 accessed twice. */
262 conflict_function *conflicting_iterations_in_a;
263 conflict_function *conflicting_iterations_in_b;
264
265 /* This field stores the information about the iteration domain
266 validity of the dependence relation. */
267 tree last_conflict;
268
269 /* Distance from the iteration that access a conflicting element in
270 A to the iteration that access this same conflicting element in
271 B. The distance is a tree scalar expression, i.e. a constant or a
272 symbolic expression, but certainly not a chrec function. */
273 tree distance;
274 };
275
276 typedef struct subscript *subscript_p;
277 DEF_VEC_P(subscript_p);
278 DEF_VEC_ALLOC_P (subscript_p, heap);
279
280 #define SUB_CONFLICTS_IN_A(SUB) SUB->conflicting_iterations_in_a
281 #define SUB_CONFLICTS_IN_B(SUB) SUB->conflicting_iterations_in_b
282 #define SUB_LAST_CONFLICT(SUB) SUB->last_conflict
283 #define SUB_DISTANCE(SUB) SUB->distance
284
285 /* A data_dependence_relation represents a relation between two
286 data_references A and B. */
287
288 struct data_dependence_relation
289 {
290
291 struct data_reference *a;
292 struct data_reference *b;
293
294 /* A "yes/no/maybe" field for the dependence relation:
295
296 - when "ARE_DEPENDENT == NULL_TREE", there exist a dependence
297 relation between A and B, and the description of this relation
298 is given in the SUBSCRIPTS array,
299
300 - when "ARE_DEPENDENT == chrec_known", there is no dependence and
301 SUBSCRIPTS is empty,
302
303 - when "ARE_DEPENDENT == chrec_dont_know", there may be a dependence,
304 but the analyzer cannot be more specific. */
305 tree are_dependent;
306
307 /* For each subscript in the dependence test, there is an element in
308 this array. This is the attribute that labels the edge A->B of
309 the data_dependence_relation. */
310 VEC (subscript_p, heap) *subscripts;
311
312 /* The analyzed loop nest. */
313 VEC (loop_p, heap) *loop_nest;
314
315 /* The classic direction vector. */
316 VEC (lambda_vector, heap) *dir_vects;
317
318 /* The classic distance vector. */
319 VEC (lambda_vector, heap) *dist_vects;
320
321 /* An index in loop_nest for the innermost loop that varies for
322 this data dependence relation. */
323 unsigned inner_loop;
324
325 /* Is the dependence reversed with respect to the lexicographic order? */
326 bool reversed_p;
327
328 /* When the dependence relation is affine, it can be represented by
329 a distance vector. */
330 bool affine_p;
331
332 /* Set to true when the dependence relation is on the same data
333 access. */
334 bool self_reference_p;
335 };
336
337 typedef struct data_dependence_relation *ddr_p;
338 DEF_VEC_P(ddr_p);
339 DEF_VEC_ALLOC_P(ddr_p,heap);
340
341 #define DDR_A(DDR) DDR->a
342 #define DDR_B(DDR) DDR->b
343 #define DDR_AFFINE_P(DDR) DDR->affine_p
344 #define DDR_ARE_DEPENDENT(DDR) DDR->are_dependent
345 #define DDR_SUBSCRIPTS(DDR) DDR->subscripts
346 #define DDR_SUBSCRIPT(DDR, I) VEC_index (subscript_p, DDR_SUBSCRIPTS (DDR), I)
347 #define DDR_NUM_SUBSCRIPTS(DDR) VEC_length (subscript_p, DDR_SUBSCRIPTS (DDR))
348
349 #define DDR_LOOP_NEST(DDR) DDR->loop_nest
350 /* The size of the direction/distance vectors: the number of loops in
351 the loop nest. */
352 #define DDR_NB_LOOPS(DDR) (VEC_length (loop_p, DDR_LOOP_NEST (DDR)))
353 #define DDR_INNER_LOOP(DDR) DDR->inner_loop
354 #define DDR_SELF_REFERENCE(DDR) DDR->self_reference_p
355
356 #define DDR_DIST_VECTS(DDR) ((DDR)->dist_vects)
357 #define DDR_DIR_VECTS(DDR) ((DDR)->dir_vects)
358 #define DDR_NUM_DIST_VECTS(DDR) \
359 (VEC_length (lambda_vector, DDR_DIST_VECTS (DDR)))
360 #define DDR_NUM_DIR_VECTS(DDR) \
361 (VEC_length (lambda_vector, DDR_DIR_VECTS (DDR)))
362 #define DDR_DIR_VECT(DDR, I) \
363 VEC_index (lambda_vector, DDR_DIR_VECTS (DDR), I)
364 #define DDR_DIST_VECT(DDR, I) \
365 VEC_index (lambda_vector, DDR_DIST_VECTS (DDR), I)
366 #define DDR_REVERSED_P(DDR) DDR->reversed_p
367
368
369
370 /* Describes a location of a memory reference. */
371
372 typedef struct data_ref_loc_d
373 {
374 /* Position of the memory reference. */
375 tree *pos;
376
377 /* True if the memory reference is read. */
378 bool is_read;
379 } data_ref_loc;
380
381 DEF_VEC_O (data_ref_loc);
382 DEF_VEC_ALLOC_O (data_ref_loc, heap);
383
384 bool get_references_in_stmt (gimple, VEC (data_ref_loc, heap) **);
385 bool dr_analyze_innermost (struct data_reference *);
386 extern bool compute_data_dependences_for_loop (struct loop *, bool,
387 VEC (data_reference_p, heap) **,
388 VEC (ddr_p, heap) **);
389 extern tree find_data_references_in_loop (struct loop *,
390 VEC (data_reference_p, heap) **);
391 extern void print_direction_vector (FILE *, lambda_vector, int);
392 extern void print_dir_vectors (FILE *, VEC (lambda_vector, heap) *, int);
393 extern void print_dist_vectors (FILE *, VEC (lambda_vector, heap) *, int);
394 extern void dump_subscript (FILE *, struct subscript *);
395 extern void dump_ddrs (FILE *, VEC (ddr_p, heap) *);
396 extern void dump_dist_dir_vectors (FILE *, VEC (ddr_p, heap) *);
397 extern void dump_data_reference (FILE *, struct data_reference *);
398 extern void dump_data_references (FILE *, VEC (data_reference_p, heap) *);
399 extern void debug_data_dependence_relation (struct data_dependence_relation *);
400 extern void dump_data_dependence_relation (FILE *,
401 struct data_dependence_relation *);
402 extern void dump_data_dependence_relations (FILE *, VEC (ddr_p, heap) *);
403 extern void debug_data_dependence_relations (VEC (ddr_p, heap) *);
404 extern void dump_data_dependence_direction (FILE *,
405 enum data_dependence_direction);
406 extern void free_dependence_relation (struct data_dependence_relation *);
407 extern void free_dependence_relations (VEC (ddr_p, heap) *);
408 extern void free_data_ref (data_reference_p);
409 extern void free_data_refs (VEC (data_reference_p, heap) *);
410 extern bool find_data_references_in_stmt (struct loop *, gimple,
411 VEC (data_reference_p, heap) **);
412 struct data_reference *create_data_ref (struct loop *, tree, gimple, bool);
413 extern bool find_loop_nest (struct loop *, VEC (loop_p, heap) **);
414 extern void compute_all_dependences (VEC (data_reference_p, heap) *,
415 VEC (ddr_p, heap) **, VEC (loop_p, heap) *,
416 bool);
417
418 extern void create_rdg_vertices (struct graph *, VEC (gimple, heap) *);
419 extern bool dr_may_alias_p (const struct data_reference *,
420 const struct data_reference *);
421 extern bool stmt_simple_memref_p (struct loop *, gimple, tree);
422
423 /* Return true when the DDR contains two data references that have the
424 same access functions. */
425
426 static inline bool
427 same_access_functions (const struct data_dependence_relation *ddr)
428 {
429 unsigned i;
430
431 for (i = 0; i < DDR_NUM_SUBSCRIPTS (ddr); i++)
432 if (!eq_evolutions_p (DR_ACCESS_FN (DDR_A (ddr), i),
433 DR_ACCESS_FN (DDR_B (ddr), i)))
434 return false;
435
436 return true;
437 }
438
439 /* Return true when DDR is an anti-dependence relation. */
440
441 static inline bool
442 ddr_is_anti_dependent (ddr_p ddr)
443 {
444 return (DDR_ARE_DEPENDENT (ddr) == NULL_TREE
445 && DR_IS_READ (DDR_A (ddr))
446 && !DR_IS_READ (DDR_B (ddr))
447 && !same_access_functions (ddr));
448 }
449
450 /* Return true when DEPENDENCE_RELATIONS contains an anti-dependence. */
451
452 static inline bool
453 ddrs_have_anti_deps (VEC (ddr_p, heap) *dependence_relations)
454 {
455 unsigned i;
456 ddr_p ddr;
457
458 for (i = 0; VEC_iterate (ddr_p, dependence_relations, i, ddr); i++)
459 if (ddr_is_anti_dependent (ddr))
460 return true;
461
462 return false;
463 }
464
465 /* Return the dependence level for the DDR relation. */
466
467 static inline unsigned
468 ddr_dependence_level (ddr_p ddr)
469 {
470 unsigned vector;
471 unsigned level = 0;
472
473 if (DDR_DIST_VECTS (ddr))
474 level = dependence_level (DDR_DIST_VECT (ddr, 0), DDR_NB_LOOPS (ddr));
475
476 for (vector = 1; vector < DDR_NUM_DIST_VECTS (ddr); vector++)
477 level = MIN (level, dependence_level (DDR_DIST_VECT (ddr, vector),
478 DDR_NB_LOOPS (ddr)));
479 return level;
480 }
481
482
483
484 /* A Reduced Dependence Graph (RDG) vertex representing a statement. */
485 typedef struct rdg_vertex
486 {
487 /* The statement represented by this vertex. */
488 gimple stmt;
489
490 /* True when the statement contains a write to memory. */
491 bool has_mem_write;
492
493 /* True when the statement contains a read from memory. */
494 bool has_mem_reads;
495 } *rdg_vertex_p;
496
497 #define RDGV_STMT(V) ((struct rdg_vertex *) ((V)->data))->stmt
498 #define RDGV_HAS_MEM_WRITE(V) ((struct rdg_vertex *) ((V)->data))->has_mem_write
499 #define RDGV_HAS_MEM_READS(V) ((struct rdg_vertex *) ((V)->data))->has_mem_reads
500 #define RDG_STMT(RDG, I) RDGV_STMT (&(RDG->vertices[I]))
501 #define RDG_MEM_WRITE_STMT(RDG, I) RDGV_HAS_MEM_WRITE (&(RDG->vertices[I]))
502 #define RDG_MEM_READS_STMT(RDG, I) RDGV_HAS_MEM_READS (&(RDG->vertices[I]))
503
504 void dump_rdg_vertex (FILE *, struct graph *, int);
505 void debug_rdg_vertex (struct graph *, int);
506 void dump_rdg_component (FILE *, struct graph *, int, bitmap);
507 void debug_rdg_component (struct graph *, int);
508 void dump_rdg (FILE *, struct graph *);
509 void debug_rdg (struct graph *);
510 void dot_rdg (struct graph *);
511 int rdg_vertex_for_stmt (struct graph *, gimple);
512
513 /* Data dependence type. */
514
515 enum rdg_dep_type
516 {
517 /* Read After Write (RAW). */
518 flow_dd = 'f',
519
520 /* Write After Read (WAR). */
521 anti_dd = 'a',
522
523 /* Write After Write (WAW). */
524 output_dd = 'o',
525
526 /* Read After Read (RAR). */
527 input_dd = 'i'
528 };
529
530 /* Dependence information attached to an edge of the RDG. */
531
532 typedef struct rdg_edge
533 {
534 /* Type of the dependence. */
535 enum rdg_dep_type type;
536
537 /* Levels of the dependence: the depth of the loops that carry the
538 dependence. */
539 unsigned level;
540
541 /* Dependence relation between data dependences, NULL when one of
542 the vertices is a scalar. */
543 ddr_p relation;
544 } *rdg_edge_p;
545
546 #define RDGE_TYPE(E) ((struct rdg_edge *) ((E)->data))->type
547 #define RDGE_LEVEL(E) ((struct rdg_edge *) ((E)->data))->level
548 #define RDGE_RELATION(E) ((struct rdg_edge *) ((E)->data))->relation
549
550 struct graph *build_rdg (struct loop *);
551 struct graph *build_empty_rdg (int);
552 void free_rdg (struct graph *);
553
554 /* Return the index of the variable VAR in the LOOP_NEST array. */
555
556 static inline int
557 index_in_loop_nest (int var, VEC (loop_p, heap) *loop_nest)
558 {
559 struct loop *loopi;
560 int var_index;
561
562 for (var_index = 0; VEC_iterate (loop_p, loop_nest, var_index, loopi);
563 var_index++)
564 if (loopi->num == var)
565 break;
566
567 return var_index;
568 }
569
570 void stores_from_loop (struct loop *, VEC (gimple, heap) **);
571 void remove_similar_memory_refs (VEC (gimple, heap) **);
572 bool rdg_defs_used_in_other_loops_p (struct graph *, int);
573 bool have_similar_memory_accesses (gimple, gimple);
574
575 /* Determines whether RDG vertices V1 and V2 access to similar memory
576 locations, in which case they have to be in the same partition. */
577
578 static inline bool
579 rdg_has_similar_memory_accesses (struct graph *rdg, int v1, int v2)
580 {
581 return have_similar_memory_accesses (RDG_STMT (rdg, v1),
582 RDG_STMT (rdg, v2));
583 }
584
585 /* In lambda-code.c */
586 bool lambda_transform_legal_p (lambda_trans_matrix, int,
587 VEC (ddr_p, heap) *);
588 void lambda_collect_parameters (VEC (data_reference_p, heap) *,
589 VEC (tree, heap) **);
590 bool lambda_compute_access_matrices (VEC (data_reference_p, heap) *,
591 VEC (tree, heap) *, VEC (loop_p, heap) *);
592
593 /* In tree-data-ref.c */
594 void split_constant_offset (tree , tree *, tree *);
595
596 /* Strongly connected components of the reduced data dependence graph. */
597
598 typedef struct rdg_component
599 {
600 int num;
601 VEC (int, heap) *vertices;
602 } *rdgc;
603
604 DEF_VEC_P (rdgc);
605 DEF_VEC_ALLOC_P (rdgc, heap);
606
607 DEF_VEC_P (bitmap);
608 DEF_VEC_ALLOC_P (bitmap, heap);
609
610 #endif /* GCC_TREE_DATA_REF_H */