comparison gcc/tree-parloops.c @ 0:a06113de4d67

first commit
author kent <kent@cr.ie.u-ryukyu.ac.jp>
date Fri, 17 Jul 2009 14:47:48 +0900
parents
children 77e2b8dfacca
comparison
equal deleted inserted replaced
-1:000000000000 0:a06113de4d67
1 /* Loop autoparallelization.
2 Copyright (C) 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
3 Contributed by Sebastian Pop <pop@cri.ensmp.fr> and
4 Zdenek Dvorak <dvorakz@suse.cz>.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "tree.h"
27 #include "rtl.h"
28 #include "tree-flow.h"
29 #include "cfgloop.h"
30 #include "ggc.h"
31 #include "tree-data-ref.h"
32 #include "diagnostic.h"
33 #include "tree-pass.h"
34 #include "tree-scalar-evolution.h"
35 #include "hashtab.h"
36 #include "langhooks.h"
37 #include "tree-vectorizer.h"
38
39 /* This pass tries to distribute iterations of loops into several threads.
40 The implementation is straightforward -- for each loop we test whether its
41 iterations are independent, and if it is the case (and some additional
42 conditions regarding profitability and correctness are satisfied), we
43 add GIMPLE_OMP_PARALLEL and GIMPLE_OMP_FOR codes and let omp expansion
44 machinery do its job.
45
46 The most of the complexity is in bringing the code into shape expected
47 by the omp expanders:
48 -- for GIMPLE_OMP_FOR, ensuring that the loop has only one induction
49 variable and that the exit test is at the start of the loop body
50 -- for GIMPLE_OMP_PARALLEL, replacing the references to local addressable
51 variables by accesses through pointers, and breaking up ssa chains
52 by storing the values incoming to the parallelized loop to a structure
53 passed to the new function as an argument (something similar is done
54 in omp gimplification, unfortunately only a small part of the code
55 can be shared).
56
57 TODO:
58 -- if there are several parallelizable loops in a function, it may be
59 possible to generate the threads just once (using synchronization to
60 ensure that cross-loop dependences are obeyed).
61 -- handling of common scalar dependence patterns (accumulation, ...)
62 -- handling of non-innermost loops */
63
64 /*
65 Reduction handling:
66 currently we use vect_is_simple_reduction() to detect reduction patterns.
67 The code transformation will be introduced by an example.
68
69
70 parloop
71 {
72 int sum=1;
73
74 for (i = 0; i < N; i++)
75 {
76 x[i] = i + 3;
77 sum+=x[i];
78 }
79 }
80
81 gimple-like code:
82 header_bb:
83
84 # sum_29 = PHI <sum_11(5), 1(3)>
85 # i_28 = PHI <i_12(5), 0(3)>
86 D.1795_8 = i_28 + 3;
87 x[i_28] = D.1795_8;
88 sum_11 = D.1795_8 + sum_29;
89 i_12 = i_28 + 1;
90 if (N_6(D) > i_12)
91 goto header_bb;
92
93
94 exit_bb:
95
96 # sum_21 = PHI <sum_11(4)>
97 printf (&"%d"[0], sum_21);
98
99
100 after reduction transformation (only relevant parts):
101
102 parloop
103 {
104
105 ....
106
107
108 # Storing the initial value given by the user. #
109
110 .paral_data_store.32.sum.27 = 1;
111
112 #pragma omp parallel num_threads(4)
113
114 #pragma omp for schedule(static)
115
116 # The neutral element corresponding to the particular
117 reduction's operation, e.g. 0 for PLUS_EXPR,
118 1 for MULT_EXPR, etc. replaces the user's initial value. #
119
120 # sum.27_29 = PHI <sum.27_11, 0>
121
122 sum.27_11 = D.1827_8 + sum.27_29;
123
124 GIMPLE_OMP_CONTINUE
125
126 # Adding this reduction phi is done at create_phi_for_local_result() #
127 # sum.27_56 = PHI <sum.27_11, 0>
128 GIMPLE_OMP_RETURN
129
130 # Creating the atomic operation is done at
131 create_call_for_reduction_1() #
132
133 #pragma omp atomic_load
134 D.1839_59 = *&.paral_data_load.33_51->reduction.23;
135 D.1840_60 = sum.27_56 + D.1839_59;
136 #pragma omp atomic_store (D.1840_60);
137
138 GIMPLE_OMP_RETURN
139
140 # collecting the result after the join of the threads is done at
141 create_loads_for_reductions().
142 The value computed by the threads is loaded from the
143 shared struct. #
144
145
146 .paral_data_load.33_52 = &.paral_data_store.32;
147 sum_37 = .paral_data_load.33_52->sum.27;
148 sum_43 = D.1795_41 + sum_37;
149
150 exit bb:
151 # sum_21 = PHI <sum_43, sum_26>
152 printf (&"%d"[0], sum_21);
153
154 ...
155
156 }
157
158 */
159
160 /* Minimal number of iterations of a loop that should be executed in each
161 thread. */
162 #define MIN_PER_THREAD 100
163
164 /* Element of the hashtable, representing a
165 reduction in the current loop. */
166 struct reduction_info
167 {
168 gimple reduc_stmt; /* reduction statement. */
169 gimple reduc_phi; /* The phi node defining the reduction. */
170 enum tree_code reduction_code;/* code for the reduction operation. */
171 gimple keep_res; /* The PHI_RESULT of this phi is the resulting value
172 of the reduction variable when existing the loop. */
173 tree initial_value; /* The initial value of the reduction var before entering the loop. */
174 tree field; /* the name of the field in the parloop data structure intended for reduction. */
175 tree init; /* reduction initialization value. */
176 gimple new_phi; /* (helper field) Newly created phi node whose result
177 will be passed to the atomic operation. Represents
178 the local result each thread computed for the reduction
179 operation. */
180 };
181
182 /* Equality and hash functions for hashtab code. */
183
184 static int
185 reduction_info_eq (const void *aa, const void *bb)
186 {
187 const struct reduction_info *a = (const struct reduction_info *) aa;
188 const struct reduction_info *b = (const struct reduction_info *) bb;
189
190 return (a->reduc_phi == b->reduc_phi);
191 }
192
193 static hashval_t
194 reduction_info_hash (const void *aa)
195 {
196 const struct reduction_info *a = (const struct reduction_info *) aa;
197
198 return htab_hash_pointer (a->reduc_phi);
199 }
200
201 static struct reduction_info *
202 reduction_phi (htab_t reduction_list, gimple phi)
203 {
204 struct reduction_info tmpred, *red;
205
206 if (htab_elements (reduction_list) == 0)
207 return NULL;
208
209 tmpred.reduc_phi = phi;
210 red = (struct reduction_info *) htab_find (reduction_list, &tmpred);
211
212 return red;
213 }
214
215 /* Element of hashtable of names to copy. */
216
217 struct name_to_copy_elt
218 {
219 unsigned version; /* The version of the name to copy. */
220 tree new_name; /* The new name used in the copy. */
221 tree field; /* The field of the structure used to pass the
222 value. */
223 };
224
225 /* Equality and hash functions for hashtab code. */
226
227 static int
228 name_to_copy_elt_eq (const void *aa, const void *bb)
229 {
230 const struct name_to_copy_elt *a = (const struct name_to_copy_elt *) aa;
231 const struct name_to_copy_elt *b = (const struct name_to_copy_elt *) bb;
232
233 return a->version == b->version;
234 }
235
236 static hashval_t
237 name_to_copy_elt_hash (const void *aa)
238 {
239 const struct name_to_copy_elt *a = (const struct name_to_copy_elt *) aa;
240
241 return (hashval_t) a->version;
242 }
243
244 /* Returns true if the iterations of LOOP are independent on each other (that
245 is, if we can execute them in parallel), and if LOOP satisfies other
246 conditions that we need to be able to parallelize it. Description of number
247 of iterations is stored to NITER. Reduction analysis is done, if
248 reductions are found, they are inserted to the REDUCTION_LIST. */
249
250 static bool
251 loop_parallel_p (struct loop *loop, htab_t reduction_list,
252 struct tree_niter_desc *niter)
253 {
254 edge exit = single_dom_exit (loop);
255 VEC (ddr_p, heap) * dependence_relations;
256 VEC (data_reference_p, heap) *datarefs;
257 lambda_trans_matrix trans;
258 bool ret = false;
259 gimple_stmt_iterator gsi;
260 loop_vec_info simple_loop_info;
261
262 /* Only consider innermost loops with just one exit. The innermost-loop
263 restriction is not necessary, but it makes things simpler. */
264 if (loop->inner || !exit)
265 return false;
266
267 if (dump_file && (dump_flags & TDF_DETAILS))
268 fprintf (dump_file, "\nConsidering loop %d\n", loop->num);
269
270 /* We need to know # of iterations, and there should be no uses of values
271 defined inside loop outside of it, unless the values are invariants of
272 the loop. */
273 if (!number_of_iterations_exit (loop, exit, niter, false))
274 {
275 if (dump_file && (dump_flags & TDF_DETAILS))
276 fprintf (dump_file, " FAILED: number of iterations not known\n");
277 return false;
278 }
279
280 vect_dump = NULL;
281 simple_loop_info = vect_analyze_loop_form (loop);
282
283 for (gsi = gsi_start_phis (loop->header); !gsi_end_p (gsi); gsi_next (&gsi))
284 {
285 gimple phi = gsi_stmt (gsi);
286 gimple reduc_stmt = NULL;
287
288 /* ??? TODO: Change this into a generic function that
289 recognizes reductions. */
290 if (!is_gimple_reg (PHI_RESULT (phi)))
291 continue;
292 if (simple_loop_info)
293 reduc_stmt = vect_is_simple_reduction (simple_loop_info, phi);
294
295 /* Create a reduction_info struct, initialize it and insert it to
296 the reduction list. */
297
298 if (reduc_stmt)
299 {
300 PTR *slot;
301 struct reduction_info *new_reduction;
302
303 if (dump_file && (dump_flags & TDF_DETAILS))
304 {
305 fprintf (dump_file,
306 "Detected reduction. reduction stmt is: \n");
307 print_gimple_stmt (dump_file, reduc_stmt, 0, 0);
308 fprintf (dump_file, "\n");
309 }
310
311 new_reduction = XCNEW (struct reduction_info);
312
313 new_reduction->reduc_stmt = reduc_stmt;
314 new_reduction->reduc_phi = phi;
315 new_reduction->reduction_code = gimple_assign_rhs_code (reduc_stmt);
316 slot = htab_find_slot (reduction_list, new_reduction, INSERT);
317 *slot = new_reduction;
318 }
319 }
320
321 /* Get rid of the information created by the vectorizer functions. */
322 destroy_loop_vec_info (simple_loop_info, true);
323
324 for (gsi = gsi_start_phis (exit->dest); !gsi_end_p (gsi); gsi_next (&gsi))
325 {
326 gimple phi = gsi_stmt (gsi);
327 struct reduction_info *red;
328 imm_use_iterator imm_iter;
329 use_operand_p use_p;
330 gimple reduc_phi;
331 tree val = PHI_ARG_DEF_FROM_EDGE (phi, exit);
332
333 if (is_gimple_reg (val))
334 {
335 if (dump_file && (dump_flags & TDF_DETAILS))
336 {
337 fprintf (dump_file, "phi is ");
338 print_gimple_stmt (dump_file, phi, 0, 0);
339 fprintf (dump_file, "arg of phi to exit: value ");
340 print_generic_expr (dump_file, val, 0);
341 fprintf (dump_file, " used outside loop\n");
342 fprintf (dump_file,
343 " checking if it a part of reduction pattern: \n");
344 }
345 if (htab_elements (reduction_list) == 0)
346 {
347 if (dump_file && (dump_flags & TDF_DETAILS))
348 fprintf (dump_file,
349 " FAILED: it is not a part of reduction.\n");
350 return false;
351 }
352 reduc_phi = NULL;
353 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, val)
354 {
355 if (flow_bb_inside_loop_p (loop, gimple_bb (USE_STMT (use_p))))
356 {
357 reduc_phi = USE_STMT (use_p);
358 break;
359 }
360 }
361 red = reduction_phi (reduction_list, reduc_phi);
362 if (red == NULL)
363 {
364 if (dump_file && (dump_flags & TDF_DETAILS))
365 fprintf (dump_file,
366 " FAILED: it is not a part of reduction.\n");
367 return false;
368 }
369 if (dump_file && (dump_flags & TDF_DETAILS))
370 {
371 fprintf (dump_file, "reduction phi is ");
372 print_gimple_stmt (dump_file, red->reduc_phi, 0, 0);
373 fprintf (dump_file, "reduction stmt is ");
374 print_gimple_stmt (dump_file, red->reduc_stmt, 0, 0);
375 }
376
377 }
378 }
379
380 /* The iterations of the loop may communicate only through bivs whose
381 iteration space can be distributed efficiently. */
382 for (gsi = gsi_start_phis (loop->header); !gsi_end_p (gsi); gsi_next (&gsi))
383 {
384 gimple phi = gsi_stmt (gsi);
385 tree def = PHI_RESULT (phi);
386 affine_iv iv;
387
388 if (is_gimple_reg (def) && !simple_iv (loop, loop, def, &iv, true))
389 {
390 struct reduction_info *red;
391
392 red = reduction_phi (reduction_list, phi);
393 if (red == NULL)
394 {
395 if (dump_file && (dump_flags & TDF_DETAILS))
396 fprintf (dump_file,
397 " FAILED: scalar dependency between iterations\n");
398 return false;
399 }
400 }
401 }
402
403 /* We need to version the loop to verify assumptions in runtime. */
404 if (!can_duplicate_loop_p (loop))
405 {
406 if (dump_file && (dump_flags & TDF_DETAILS))
407 fprintf (dump_file, " FAILED: cannot be duplicated\n");
408 return false;
409 }
410
411 /* Check for problems with dependences. If the loop can be reversed,
412 the iterations are independent. */
413 datarefs = VEC_alloc (data_reference_p, heap, 10);
414 dependence_relations = VEC_alloc (ddr_p, heap, 10 * 10);
415 compute_data_dependences_for_loop (loop, true, &datarefs,
416 &dependence_relations);
417 if (dump_file && (dump_flags & TDF_DETAILS))
418 dump_data_dependence_relations (dump_file, dependence_relations);
419
420 trans = lambda_trans_matrix_new (1, 1);
421 LTM_MATRIX (trans)[0][0] = -1;
422
423 if (lambda_transform_legal_p (trans, 1, dependence_relations))
424 {
425 ret = true;
426 if (dump_file && (dump_flags & TDF_DETAILS))
427 fprintf (dump_file, " SUCCESS: may be parallelized\n");
428 }
429 else if (dump_file && (dump_flags & TDF_DETAILS))
430 fprintf (dump_file,
431 " FAILED: data dependencies exist across iterations\n");
432
433 free_dependence_relations (dependence_relations);
434 free_data_refs (datarefs);
435
436 return ret;
437 }
438
439 /* Return true when LOOP contains basic blocks marked with the
440 BB_IRREDUCIBLE_LOOP flag. */
441
442 static inline bool
443 loop_has_blocks_with_irreducible_flag (struct loop *loop)
444 {
445 unsigned i;
446 basic_block *bbs = get_loop_body_in_dom_order (loop);
447 bool res = true;
448
449 for (i = 0; i < loop->num_nodes; i++)
450 if (bbs[i]->flags & BB_IRREDUCIBLE_LOOP)
451 goto end;
452
453 res = false;
454 end:
455 free (bbs);
456 return res;
457 }
458
459 /* Assigns the address of OBJ in TYPE to an ssa name, and returns this name.
460 The assignment statement is placed on edge ENTRY. DECL_ADDRESS maps decls
461 to their addresses that can be reused. The address of OBJ is known to
462 be invariant in the whole function. */
463
464 static tree
465 take_address_of (tree obj, tree type, edge entry, htab_t decl_address)
466 {
467 int uid;
468 void **dslot;
469 struct int_tree_map ielt, *nielt;
470 tree *var_p, name, bvar, addr;
471 gimple stmt;
472 gimple_seq stmts;
473
474 /* Since the address of OBJ is invariant, the trees may be shared.
475 Avoid rewriting unrelated parts of the code. */
476 obj = unshare_expr (obj);
477 for (var_p = &obj;
478 handled_component_p (*var_p);
479 var_p = &TREE_OPERAND (*var_p, 0))
480 continue;
481 uid = DECL_UID (*var_p);
482
483 ielt.uid = uid;
484 dslot = htab_find_slot_with_hash (decl_address, &ielt, uid, INSERT);
485 if (!*dslot)
486 {
487 addr = build_addr (*var_p, current_function_decl);
488 bvar = create_tmp_var (TREE_TYPE (addr), get_name (*var_p));
489 add_referenced_var (bvar);
490 stmt = gimple_build_assign (bvar, addr);
491 name = make_ssa_name (bvar, stmt);
492 gimple_assign_set_lhs (stmt, name);
493 gsi_insert_on_edge_immediate (entry, stmt);
494
495 nielt = XNEW (struct int_tree_map);
496 nielt->uid = uid;
497 nielt->to = name;
498 *dslot = nielt;
499 }
500 else
501 name = ((struct int_tree_map *) *dslot)->to;
502
503 if (var_p != &obj)
504 {
505 *var_p = build1 (INDIRECT_REF, TREE_TYPE (*var_p), name);
506 name = force_gimple_operand (build_addr (obj, current_function_decl),
507 &stmts, true, NULL_TREE);
508 if (!gimple_seq_empty_p (stmts))
509 gsi_insert_seq_on_edge_immediate (entry, stmts);
510 }
511
512 if (TREE_TYPE (name) != type)
513 {
514 name = force_gimple_operand (fold_convert (type, name), &stmts, true,
515 NULL_TREE);
516 if (!gimple_seq_empty_p (stmts))
517 gsi_insert_seq_on_edge_immediate (entry, stmts);
518 }
519
520 return name;
521 }
522
523 /* Callback for htab_traverse. Create the initialization statement
524 for reduction described in SLOT, and place it at the preheader of
525 the loop described in DATA. */
526
527 static int
528 initialize_reductions (void **slot, void *data)
529 {
530 tree init, c;
531 tree bvar, type, arg;
532 edge e;
533
534 struct reduction_info *const reduc = (struct reduction_info *) *slot;
535 struct loop *loop = (struct loop *) data;
536
537 /* Create initialization in preheader:
538 reduction_variable = initialization value of reduction. */
539
540 /* In the phi node at the header, replace the argument coming
541 from the preheader with the reduction initialization value. */
542
543 /* Create a new variable to initialize the reduction. */
544 type = TREE_TYPE (PHI_RESULT (reduc->reduc_phi));
545 bvar = create_tmp_var (type, "reduction");
546 add_referenced_var (bvar);
547
548 c = build_omp_clause (OMP_CLAUSE_REDUCTION);
549 OMP_CLAUSE_REDUCTION_CODE (c) = reduc->reduction_code;
550 OMP_CLAUSE_DECL (c) = SSA_NAME_VAR (gimple_assign_lhs (reduc->reduc_stmt));
551
552 init = omp_reduction_init (c, TREE_TYPE (bvar));
553 reduc->init = init;
554
555 /* Replace the argument representing the initialization value
556 with the initialization value for the reduction (neutral
557 element for the particular operation, e.g. 0 for PLUS_EXPR,
558 1 for MULT_EXPR, etc).
559 Keep the old value in a new variable "reduction_initial",
560 that will be taken in consideration after the parallel
561 computing is done. */
562
563 e = loop_preheader_edge (loop);
564 arg = PHI_ARG_DEF_FROM_EDGE (reduc->reduc_phi, e);
565 /* Create new variable to hold the initial value. */
566
567 SET_USE (PHI_ARG_DEF_PTR_FROM_EDGE
568 (reduc->reduc_phi, loop_preheader_edge (loop)), init);
569 reduc->initial_value = arg;
570 return 1;
571 }
572
573 struct elv_data
574 {
575 struct walk_stmt_info info;
576 edge entry;
577 htab_t decl_address;
578 bool changed;
579 };
580
581 /* Eliminates references to local variables in *TP out of the single
582 entry single exit region starting at DTA->ENTRY.
583 DECL_ADDRESS contains addresses of the references that had their
584 address taken already. If the expression is changed, CHANGED is
585 set to true. Callback for walk_tree. */
586
587 static tree
588 eliminate_local_variables_1 (tree *tp, int *walk_subtrees, void *data)
589 {
590 struct elv_data *const dta = (struct elv_data *) data;
591 tree t = *tp, var, addr, addr_type, type, obj;
592
593 if (DECL_P (t))
594 {
595 *walk_subtrees = 0;
596
597 if (!SSA_VAR_P (t) || DECL_EXTERNAL (t))
598 return NULL_TREE;
599
600 type = TREE_TYPE (t);
601 addr_type = build_pointer_type (type);
602 addr = take_address_of (t, addr_type, dta->entry, dta->decl_address);
603 *tp = build1 (INDIRECT_REF, TREE_TYPE (*tp), addr);
604
605 dta->changed = true;
606 return NULL_TREE;
607 }
608
609 if (TREE_CODE (t) == ADDR_EXPR)
610 {
611 /* ADDR_EXPR may appear in two contexts:
612 -- as a gimple operand, when the address taken is a function invariant
613 -- as gimple rhs, when the resulting address in not a function
614 invariant
615 We do not need to do anything special in the latter case (the base of
616 the memory reference whose address is taken may be replaced in the
617 DECL_P case). The former case is more complicated, as we need to
618 ensure that the new address is still a gimple operand. Thus, it
619 is not sufficient to replace just the base of the memory reference --
620 we need to move the whole computation of the address out of the
621 loop. */
622 if (!is_gimple_val (t))
623 return NULL_TREE;
624
625 *walk_subtrees = 0;
626 obj = TREE_OPERAND (t, 0);
627 var = get_base_address (obj);
628 if (!var || !SSA_VAR_P (var) || DECL_EXTERNAL (var))
629 return NULL_TREE;
630
631 addr_type = TREE_TYPE (t);
632 addr = take_address_of (obj, addr_type, dta->entry, dta->decl_address);
633 *tp = addr;
634
635 dta->changed = true;
636 return NULL_TREE;
637 }
638
639 if (!EXPR_P (t))
640 *walk_subtrees = 0;
641
642 return NULL_TREE;
643 }
644
645 /* Moves the references to local variables in STMT out of the single
646 entry single exit region starting at ENTRY. DECL_ADDRESS contains
647 addresses of the references that had their address taken
648 already. */
649
650 static void
651 eliminate_local_variables_stmt (edge entry, gimple stmt,
652 htab_t decl_address)
653 {
654 struct elv_data dta;
655
656 memset (&dta.info, '\0', sizeof (dta.info));
657 dta.entry = entry;
658 dta.decl_address = decl_address;
659 dta.changed = false;
660
661 walk_gimple_op (stmt, eliminate_local_variables_1, &dta.info);
662
663 if (dta.changed)
664 update_stmt (stmt);
665 }
666
667 /* Eliminates the references to local variables from the single entry
668 single exit region between the ENTRY and EXIT edges.
669
670 This includes:
671 1) Taking address of a local variable -- these are moved out of the
672 region (and temporary variable is created to hold the address if
673 necessary).
674
675 2) Dereferencing a local variable -- these are replaced with indirect
676 references. */
677
678 static void
679 eliminate_local_variables (edge entry, edge exit)
680 {
681 basic_block bb;
682 VEC (basic_block, heap) *body = VEC_alloc (basic_block, heap, 3);
683 unsigned i;
684 gimple_stmt_iterator gsi;
685 htab_t decl_address = htab_create (10, int_tree_map_hash, int_tree_map_eq,
686 free);
687 basic_block entry_bb = entry->src;
688 basic_block exit_bb = exit->dest;
689
690 gather_blocks_in_sese_region (entry_bb, exit_bb, &body);
691
692 for (i = 0; VEC_iterate (basic_block, body, i, bb); i++)
693 if (bb != entry_bb && bb != exit_bb)
694 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
695 eliminate_local_variables_stmt (entry, gsi_stmt (gsi),
696 decl_address);
697
698 htab_delete (decl_address);
699 VEC_free (basic_block, heap, body);
700 }
701
702 /* Returns true if expression EXPR is not defined between ENTRY and
703 EXIT, i.e. if all its operands are defined outside of the region. */
704
705 static bool
706 expr_invariant_in_region_p (edge entry, edge exit, tree expr)
707 {
708 basic_block entry_bb = entry->src;
709 basic_block exit_bb = exit->dest;
710 basic_block def_bb;
711
712 if (is_gimple_min_invariant (expr))
713 return true;
714
715 if (TREE_CODE (expr) == SSA_NAME)
716 {
717 def_bb = gimple_bb (SSA_NAME_DEF_STMT (expr));
718 if (def_bb
719 && dominated_by_p (CDI_DOMINATORS, def_bb, entry_bb)
720 && !dominated_by_p (CDI_DOMINATORS, def_bb, exit_bb))
721 return false;
722
723 return true;
724 }
725
726 return false;
727 }
728
729 /* If COPY_NAME_P is true, creates and returns a duplicate of NAME.
730 The copies are stored to NAME_COPIES, if NAME was already duplicated,
731 its duplicate stored in NAME_COPIES is returned.
732
733 Regardless of COPY_NAME_P, the decl used as a base of the ssa name is also
734 duplicated, storing the copies in DECL_COPIES. */
735
736 static tree
737 separate_decls_in_region_name (tree name,
738 htab_t name_copies, htab_t decl_copies,
739 bool copy_name_p)
740 {
741 tree copy, var, var_copy;
742 unsigned idx, uid, nuid;
743 struct int_tree_map ielt, *nielt;
744 struct name_to_copy_elt elt, *nelt;
745 void **slot, **dslot;
746
747 if (TREE_CODE (name) != SSA_NAME)
748 return name;
749
750 idx = SSA_NAME_VERSION (name);
751 elt.version = idx;
752 slot = htab_find_slot_with_hash (name_copies, &elt, idx,
753 copy_name_p ? INSERT : NO_INSERT);
754 if (slot && *slot)
755 return ((struct name_to_copy_elt *) *slot)->new_name;
756
757 var = SSA_NAME_VAR (name);
758 uid = DECL_UID (var);
759 ielt.uid = uid;
760 dslot = htab_find_slot_with_hash (decl_copies, &ielt, uid, INSERT);
761 if (!*dslot)
762 {
763 var_copy = create_tmp_var (TREE_TYPE (var), get_name (var));
764 DECL_GIMPLE_REG_P (var_copy) = DECL_GIMPLE_REG_P (var);
765 add_referenced_var (var_copy);
766 nielt = XNEW (struct int_tree_map);
767 nielt->uid = uid;
768 nielt->to = var_copy;
769 *dslot = nielt;
770
771 /* Ensure that when we meet this decl next time, we won't duplicate
772 it again. */
773 nuid = DECL_UID (var_copy);
774 ielt.uid = nuid;
775 dslot = htab_find_slot_with_hash (decl_copies, &ielt, nuid, INSERT);
776 gcc_assert (!*dslot);
777 nielt = XNEW (struct int_tree_map);
778 nielt->uid = nuid;
779 nielt->to = var_copy;
780 *dslot = nielt;
781 }
782 else
783 var_copy = ((struct int_tree_map *) *dslot)->to;
784
785 if (copy_name_p)
786 {
787 copy = duplicate_ssa_name (name, NULL);
788 nelt = XNEW (struct name_to_copy_elt);
789 nelt->version = idx;
790 nelt->new_name = copy;
791 nelt->field = NULL_TREE;
792 *slot = nelt;
793 }
794 else
795 {
796 gcc_assert (!slot);
797 copy = name;
798 }
799
800 SSA_NAME_VAR (copy) = var_copy;
801 return copy;
802 }
803
804 /* Finds the ssa names used in STMT that are defined outside the
805 region between ENTRY and EXIT and replaces such ssa names with
806 their duplicates. The duplicates are stored to NAME_COPIES. Base
807 decls of all ssa names used in STMT (including those defined in
808 LOOP) are replaced with the new temporary variables; the
809 replacement decls are stored in DECL_COPIES. */
810
811 static void
812 separate_decls_in_region_stmt (edge entry, edge exit, gimple stmt,
813 htab_t name_copies, htab_t decl_copies)
814 {
815 use_operand_p use;
816 def_operand_p def;
817 ssa_op_iter oi;
818 tree name, copy;
819 bool copy_name_p;
820
821 mark_virtual_ops_for_renaming (stmt);
822
823 FOR_EACH_PHI_OR_STMT_DEF (def, stmt, oi, SSA_OP_DEF)
824 {
825 name = DEF_FROM_PTR (def);
826 gcc_assert (TREE_CODE (name) == SSA_NAME);
827 copy = separate_decls_in_region_name (name, name_copies, decl_copies,
828 false);
829 gcc_assert (copy == name);
830 }
831
832 FOR_EACH_PHI_OR_STMT_USE (use, stmt, oi, SSA_OP_USE)
833 {
834 name = USE_FROM_PTR (use);
835 if (TREE_CODE (name) != SSA_NAME)
836 continue;
837
838 copy_name_p = expr_invariant_in_region_p (entry, exit, name);
839 copy = separate_decls_in_region_name (name, name_copies, decl_copies,
840 copy_name_p);
841 SET_USE (use, copy);
842 }
843 }
844
845 /* Callback for htab_traverse. Adds a field corresponding to the reduction
846 specified in SLOT. The type is passed in DATA. */
847
848 static int
849 add_field_for_reduction (void **slot, void *data)
850 {
851
852 struct reduction_info *const red = (struct reduction_info *) *slot;
853 tree const type = (tree) data;
854 tree var = SSA_NAME_VAR (gimple_assign_lhs (red->reduc_stmt));
855 tree field = build_decl (FIELD_DECL, DECL_NAME (var), TREE_TYPE (var));
856
857 insert_field_into_struct (type, field);
858
859 red->field = field;
860
861 return 1;
862 }
863
864 /* Callback for htab_traverse. Adds a field corresponding to a ssa name
865 described in SLOT. The type is passed in DATA. */
866
867 static int
868 add_field_for_name (void **slot, void *data)
869 {
870 struct name_to_copy_elt *const elt = (struct name_to_copy_elt *) *slot;
871 tree type = (tree) data;
872 tree name = ssa_name (elt->version);
873 tree var = SSA_NAME_VAR (name);
874 tree field = build_decl (FIELD_DECL, DECL_NAME (var), TREE_TYPE (var));
875
876 insert_field_into_struct (type, field);
877 elt->field = field;
878
879 return 1;
880 }
881
882 /* Callback for htab_traverse. A local result is the intermediate result
883 computed by a single
884 thread, or the initial value in case no iteration was executed.
885 This function creates a phi node reflecting these values.
886 The phi's result will be stored in NEW_PHI field of the
887 reduction's data structure. */
888
889 static int
890 create_phi_for_local_result (void **slot, void *data)
891 {
892 struct reduction_info *const reduc = (struct reduction_info *) *slot;
893 const struct loop *const loop = (const struct loop *) data;
894 edge e;
895 gimple new_phi;
896 basic_block store_bb;
897 tree local_res;
898
899 /* STORE_BB is the block where the phi
900 should be stored. It is the destination of the loop exit.
901 (Find the fallthru edge from GIMPLE_OMP_CONTINUE). */
902 store_bb = FALLTHRU_EDGE (loop->latch)->dest;
903
904 /* STORE_BB has two predecessors. One coming from the loop
905 (the reduction's result is computed at the loop),
906 and another coming from a block preceding the loop,
907 when no iterations
908 are executed (the initial value should be taken). */
909 if (EDGE_PRED (store_bb, 0) == FALLTHRU_EDGE (loop->latch))
910 e = EDGE_PRED (store_bb, 1);
911 else
912 e = EDGE_PRED (store_bb, 0);
913 local_res
914 = make_ssa_name (SSA_NAME_VAR (gimple_assign_lhs (reduc->reduc_stmt)),
915 NULL);
916 new_phi = create_phi_node (local_res, store_bb);
917 SSA_NAME_DEF_STMT (local_res) = new_phi;
918 add_phi_arg (new_phi, reduc->init, e);
919 add_phi_arg (new_phi, gimple_assign_lhs (reduc->reduc_stmt),
920 FALLTHRU_EDGE (loop->latch));
921 reduc->new_phi = new_phi;
922
923 return 1;
924 }
925
926 struct clsn_data
927 {
928 tree store;
929 tree load;
930
931 basic_block store_bb;
932 basic_block load_bb;
933 };
934
935 /* Callback for htab_traverse. Create an atomic instruction for the
936 reduction described in SLOT.
937 DATA annotates the place in memory the atomic operation relates to,
938 and the basic block it needs to be generated in. */
939
940 static int
941 create_call_for_reduction_1 (void **slot, void *data)
942 {
943 struct reduction_info *const reduc = (struct reduction_info *) *slot;
944 struct clsn_data *const clsn_data = (struct clsn_data *) data;
945 gimple_stmt_iterator gsi;
946 tree type = TREE_TYPE (PHI_RESULT (reduc->reduc_phi));
947 tree struct_type = TREE_TYPE (TREE_TYPE (clsn_data->load));
948 tree load_struct;
949 basic_block bb;
950 basic_block new_bb;
951 edge e;
952 tree t, addr, addr_type, ref, x;
953 tree tmp_load, name;
954 gimple load;
955
956 load_struct = fold_build1 (INDIRECT_REF, struct_type, clsn_data->load);
957 t = build3 (COMPONENT_REF, type, load_struct, reduc->field, NULL_TREE);
958 addr_type = build_pointer_type (type);
959
960 addr = build_addr (t, current_function_decl);
961
962 /* Create phi node. */
963 bb = clsn_data->load_bb;
964
965 e = split_block (bb, t);
966 new_bb = e->dest;
967
968 tmp_load = create_tmp_var (TREE_TYPE (TREE_TYPE (addr)), NULL);
969 add_referenced_var (tmp_load);
970 tmp_load = make_ssa_name (tmp_load, NULL);
971 load = gimple_build_omp_atomic_load (tmp_load, addr);
972 SSA_NAME_DEF_STMT (tmp_load) = load;
973 gsi = gsi_start_bb (new_bb);
974 gsi_insert_after (&gsi, load, GSI_NEW_STMT);
975
976 e = split_block (new_bb, load);
977 new_bb = e->dest;
978 gsi = gsi_start_bb (new_bb);
979 ref = tmp_load;
980 x = fold_build2 (reduc->reduction_code,
981 TREE_TYPE (PHI_RESULT (reduc->new_phi)), ref,
982 PHI_RESULT (reduc->new_phi));
983
984 name = force_gimple_operand_gsi (&gsi, x, true, NULL_TREE, true,
985 GSI_CONTINUE_LINKING);
986
987 gsi_insert_after (&gsi, gimple_build_omp_atomic_store (name), GSI_NEW_STMT);
988 return 1;
989 }
990
991 /* Create the atomic operation at the join point of the threads.
992 REDUCTION_LIST describes the reductions in the LOOP.
993 LD_ST_DATA describes the shared data structure where
994 shared data is stored in and loaded from. */
995 static void
996 create_call_for_reduction (struct loop *loop, htab_t reduction_list,
997 struct clsn_data *ld_st_data)
998 {
999 htab_traverse (reduction_list, create_phi_for_local_result, loop);
1000 /* Find the fallthru edge from GIMPLE_OMP_CONTINUE. */
1001 ld_st_data->load_bb = FALLTHRU_EDGE (loop->latch)->dest;
1002 htab_traverse (reduction_list, create_call_for_reduction_1, ld_st_data);
1003 }
1004
1005 /* Callback for htab_traverse. Loads the final reduction value at the
1006 join point of all threads, and inserts it in the right place. */
1007
1008 static int
1009 create_loads_for_reductions (void **slot, void *data)
1010 {
1011 struct reduction_info *const red = (struct reduction_info *) *slot;
1012 struct clsn_data *const clsn_data = (struct clsn_data *) data;
1013 gimple stmt;
1014 gimple_stmt_iterator gsi;
1015 tree type = TREE_TYPE (gimple_assign_lhs (red->reduc_stmt));
1016 tree struct_type = TREE_TYPE (TREE_TYPE (clsn_data->load));
1017 tree load_struct;
1018 tree name;
1019 tree x;
1020
1021 gsi = gsi_after_labels (clsn_data->load_bb);
1022 load_struct = fold_build1 (INDIRECT_REF, struct_type, clsn_data->load);
1023 load_struct = build3 (COMPONENT_REF, type, load_struct, red->field,
1024 NULL_TREE);
1025
1026 x = load_struct;
1027 name = PHI_RESULT (red->keep_res);
1028 stmt = gimple_build_assign (name, x);
1029 SSA_NAME_DEF_STMT (name) = stmt;
1030
1031 gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
1032
1033 for (gsi = gsi_start_phis (gimple_bb (red->keep_res));
1034 !gsi_end_p (gsi); gsi_next (&gsi))
1035 if (gsi_stmt (gsi) == red->keep_res)
1036 {
1037 remove_phi_node (&gsi, false);
1038 return 1;
1039 }
1040 gcc_unreachable ();
1041 }
1042
1043 /* Load the reduction result that was stored in LD_ST_DATA.
1044 REDUCTION_LIST describes the list of reductions that the
1045 loads should be generated for. */
1046 static void
1047 create_final_loads_for_reduction (htab_t reduction_list,
1048 struct clsn_data *ld_st_data)
1049 {
1050 gimple_stmt_iterator gsi;
1051 tree t;
1052 gimple stmt;
1053
1054 gsi = gsi_after_labels (ld_st_data->load_bb);
1055 t = build_fold_addr_expr (ld_st_data->store);
1056 stmt = gimple_build_assign (ld_st_data->load, t);
1057
1058 gsi_insert_before (&gsi, stmt, GSI_NEW_STMT);
1059 SSA_NAME_DEF_STMT (ld_st_data->load) = stmt;
1060
1061 htab_traverse (reduction_list, create_loads_for_reductions, ld_st_data);
1062
1063 }
1064
1065 /* Callback for htab_traverse. Store the neutral value for the
1066 particular reduction's operation, e.g. 0 for PLUS_EXPR,
1067 1 for MULT_EXPR, etc. into the reduction field.
1068 The reduction is specified in SLOT. The store information is
1069 passed in DATA. */
1070
1071 static int
1072 create_stores_for_reduction (void **slot, void *data)
1073 {
1074 struct reduction_info *const red = (struct reduction_info *) *slot;
1075 struct clsn_data *const clsn_data = (struct clsn_data *) data;
1076 tree t;
1077 gimple stmt;
1078 gimple_stmt_iterator gsi;
1079 tree type = TREE_TYPE (gimple_assign_lhs (red->reduc_stmt));
1080
1081 gsi = gsi_last_bb (clsn_data->store_bb);
1082 t = build3 (COMPONENT_REF, type, clsn_data->store, red->field, NULL_TREE);
1083 stmt = gimple_build_assign (t, red->initial_value);
1084 mark_virtual_ops_for_renaming (stmt);
1085 gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
1086
1087 return 1;
1088 }
1089
1090 /* Callback for htab_traverse. Creates loads to a field of LOAD in LOAD_BB and
1091 store to a field of STORE in STORE_BB for the ssa name and its duplicate
1092 specified in SLOT. */
1093
1094 static int
1095 create_loads_and_stores_for_name (void **slot, void *data)
1096 {
1097 struct name_to_copy_elt *const elt = (struct name_to_copy_elt *) *slot;
1098 struct clsn_data *const clsn_data = (struct clsn_data *) data;
1099 tree t;
1100 gimple stmt;
1101 gimple_stmt_iterator gsi;
1102 tree type = TREE_TYPE (elt->new_name);
1103 tree struct_type = TREE_TYPE (TREE_TYPE (clsn_data->load));
1104 tree load_struct;
1105
1106 gsi = gsi_last_bb (clsn_data->store_bb);
1107 t = build3 (COMPONENT_REF, type, clsn_data->store, elt->field, NULL_TREE);
1108 stmt = gimple_build_assign (t, ssa_name (elt->version));
1109 mark_virtual_ops_for_renaming (stmt);
1110 gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
1111
1112 gsi = gsi_last_bb (clsn_data->load_bb);
1113 load_struct = fold_build1 (INDIRECT_REF, struct_type, clsn_data->load);
1114 t = build3 (COMPONENT_REF, type, load_struct, elt->field, NULL_TREE);
1115 stmt = gimple_build_assign (elt->new_name, t);
1116 SSA_NAME_DEF_STMT (elt->new_name) = stmt;
1117 gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
1118
1119 return 1;
1120 }
1121
1122 /* Moves all the variables used in LOOP and defined outside of it (including
1123 the initial values of loop phi nodes, and *PER_THREAD if it is a ssa
1124 name) to a structure created for this purpose. The code
1125
1126 while (1)
1127 {
1128 use (a);
1129 use (b);
1130 }
1131
1132 is transformed this way:
1133
1134 bb0:
1135 old.a = a;
1136 old.b = b;
1137
1138 bb1:
1139 a' = new->a;
1140 b' = new->b;
1141 while (1)
1142 {
1143 use (a');
1144 use (b');
1145 }
1146
1147 `old' is stored to *ARG_STRUCT and `new' is stored to NEW_ARG_STRUCT. The
1148 pointer `new' is intentionally not initialized (the loop will be split to a
1149 separate function later, and `new' will be initialized from its arguments).
1150 LD_ST_DATA holds information about the shared data structure used to pass
1151 information among the threads. It is initialized here, and
1152 gen_parallel_loop will pass it to create_call_for_reduction that
1153 needs this information. REDUCTION_LIST describes the reductions
1154 in LOOP. */
1155
1156 static void
1157 separate_decls_in_region (edge entry, edge exit, htab_t reduction_list,
1158 tree *arg_struct, tree *new_arg_struct,
1159 struct clsn_data *ld_st_data)
1160
1161 {
1162 basic_block bb1 = split_edge (entry);
1163 basic_block bb0 = single_pred (bb1);
1164 htab_t name_copies = htab_create (10, name_to_copy_elt_hash,
1165 name_to_copy_elt_eq, free);
1166 htab_t decl_copies = htab_create (10, int_tree_map_hash, int_tree_map_eq,
1167 free);
1168 unsigned i;
1169 tree type, type_name, nvar;
1170 gimple_stmt_iterator gsi;
1171 struct clsn_data clsn_data;
1172 VEC (basic_block, heap) *body = VEC_alloc (basic_block, heap, 3);
1173 basic_block bb;
1174 basic_block entry_bb = bb1;
1175 basic_block exit_bb = exit->dest;
1176
1177 entry = single_succ_edge (entry_bb);
1178 gather_blocks_in_sese_region (entry_bb, exit_bb, &body);
1179
1180 for (i = 0; VEC_iterate (basic_block, body, i, bb); i++)
1181 {
1182 if (bb != entry_bb && bb != exit_bb)
1183 {
1184 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1185 separate_decls_in_region_stmt (entry, exit, gsi_stmt (gsi),
1186 name_copies, decl_copies);
1187
1188 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1189 separate_decls_in_region_stmt (entry, exit, gsi_stmt (gsi),
1190 name_copies, decl_copies);
1191 }
1192 }
1193
1194 VEC_free (basic_block, heap, body);
1195
1196 if (htab_elements (name_copies) == 0 && reduction_list == 0)
1197 {
1198 /* It may happen that there is nothing to copy (if there are only
1199 loop carried and external variables in the loop). */
1200 *arg_struct = NULL;
1201 *new_arg_struct = NULL;
1202 }
1203 else
1204 {
1205 /* Create the type for the structure to store the ssa names to. */
1206 type = lang_hooks.types.make_type (RECORD_TYPE);
1207 type_name = build_decl (TYPE_DECL, create_tmp_var_name (".paral_data"),
1208 type);
1209 TYPE_NAME (type) = type_name;
1210
1211 htab_traverse (name_copies, add_field_for_name, type);
1212 if (reduction_list && htab_elements (reduction_list) > 0)
1213 {
1214 /* Create the fields for reductions. */
1215 htab_traverse (reduction_list, add_field_for_reduction,
1216 type);
1217 }
1218 layout_type (type);
1219
1220 /* Create the loads and stores. */
1221 *arg_struct = create_tmp_var (type, ".paral_data_store");
1222 add_referenced_var (*arg_struct);
1223 nvar = create_tmp_var (build_pointer_type (type), ".paral_data_load");
1224 add_referenced_var (nvar);
1225 *new_arg_struct = make_ssa_name (nvar, NULL);
1226
1227 ld_st_data->store = *arg_struct;
1228 ld_st_data->load = *new_arg_struct;
1229 ld_st_data->store_bb = bb0;
1230 ld_st_data->load_bb = bb1;
1231
1232 htab_traverse (name_copies, create_loads_and_stores_for_name,
1233 ld_st_data);
1234
1235 /* Load the calculation from memory (after the join of the threads). */
1236
1237 if (reduction_list && htab_elements (reduction_list) > 0)
1238 {
1239 htab_traverse (reduction_list, create_stores_for_reduction,
1240 ld_st_data);
1241 clsn_data.load = make_ssa_name (nvar, NULL);
1242 clsn_data.load_bb = exit->dest;
1243 clsn_data.store = ld_st_data->store;
1244 create_final_loads_for_reduction (reduction_list, &clsn_data);
1245 }
1246 }
1247
1248 htab_delete (decl_copies);
1249 htab_delete (name_copies);
1250 }
1251
1252 /* Bitmap containing uids of functions created by parallelization. We cannot
1253 allocate it from the default obstack, as it must live across compilation
1254 of several functions; we make it gc allocated instead. */
1255
1256 static GTY(()) bitmap parallelized_functions;
1257
1258 /* Returns true if FN was created by create_loop_fn. */
1259
1260 static bool
1261 parallelized_function_p (tree fn)
1262 {
1263 if (!parallelized_functions || !DECL_ARTIFICIAL (fn))
1264 return false;
1265
1266 return bitmap_bit_p (parallelized_functions, DECL_UID (fn));
1267 }
1268
1269 /* Creates and returns an empty function that will receive the body of
1270 a parallelized loop. */
1271
1272 static tree
1273 create_loop_fn (void)
1274 {
1275 char buf[100];
1276 char *tname;
1277 tree decl, type, name, t;
1278 struct function *act_cfun = cfun;
1279 static unsigned loopfn_num;
1280
1281 snprintf (buf, 100, "%s.$loopfn", current_function_name ());
1282 ASM_FORMAT_PRIVATE_NAME (tname, buf, loopfn_num++);
1283 clean_symbol_name (tname);
1284 name = get_identifier (tname);
1285 type = build_function_type_list (void_type_node, ptr_type_node, NULL_TREE);
1286
1287 decl = build_decl (FUNCTION_DECL, name, type);
1288 if (!parallelized_functions)
1289 parallelized_functions = BITMAP_GGC_ALLOC ();
1290 bitmap_set_bit (parallelized_functions, DECL_UID (decl));
1291
1292 TREE_STATIC (decl) = 1;
1293 TREE_USED (decl) = 1;
1294 DECL_ARTIFICIAL (decl) = 1;
1295 DECL_IGNORED_P (decl) = 0;
1296 TREE_PUBLIC (decl) = 0;
1297 DECL_UNINLINABLE (decl) = 1;
1298 DECL_EXTERNAL (decl) = 0;
1299 DECL_CONTEXT (decl) = NULL_TREE;
1300 DECL_INITIAL (decl) = make_node (BLOCK);
1301
1302 t = build_decl (RESULT_DECL, NULL_TREE, void_type_node);
1303 DECL_ARTIFICIAL (t) = 1;
1304 DECL_IGNORED_P (t) = 1;
1305 DECL_RESULT (decl) = t;
1306
1307 t = build_decl (PARM_DECL, get_identifier (".paral_data_param"),
1308 ptr_type_node);
1309 DECL_ARTIFICIAL (t) = 1;
1310 DECL_ARG_TYPE (t) = ptr_type_node;
1311 DECL_CONTEXT (t) = decl;
1312 TREE_USED (t) = 1;
1313 DECL_ARGUMENTS (decl) = t;
1314
1315 allocate_struct_function (decl, false);
1316
1317 /* The call to allocate_struct_function clobbers CFUN, so we need to restore
1318 it. */
1319 set_cfun (act_cfun);
1320
1321 return decl;
1322 }
1323
1324 /* Bases all the induction variables in LOOP on a single induction
1325 variable (unsigned with base 0 and step 1), whose final value is
1326 compared with *NIT. When the IV type precision has to be larger
1327 than *NIT type precision, *NIT is converted to the larger type, the
1328 conversion code is inserted before the loop, and *NIT is updated to
1329 the new definition. The induction variable is incremented in the
1330 loop latch. REDUCTION_LIST describes the reductions in LOOP.
1331 Return the induction variable that was created. */
1332
1333 tree
1334 canonicalize_loop_ivs (struct loop *loop, htab_t reduction_list, tree *nit)
1335 {
1336 unsigned precision = TYPE_PRECISION (TREE_TYPE (*nit));
1337 unsigned original_precision = precision;
1338 tree res, type, var_before, val, atype, mtype;
1339 gimple_stmt_iterator gsi, psi;
1340 gimple phi, stmt;
1341 bool ok;
1342 affine_iv iv;
1343 edge exit = single_dom_exit (loop);
1344 struct reduction_info *red;
1345 gimple_seq stmts;
1346
1347 for (psi = gsi_start_phis (loop->header);
1348 !gsi_end_p (psi); gsi_next (&psi))
1349 {
1350 phi = gsi_stmt (psi);
1351 res = PHI_RESULT (phi);
1352
1353 if (is_gimple_reg (res) && TYPE_PRECISION (TREE_TYPE (res)) > precision)
1354 precision = TYPE_PRECISION (TREE_TYPE (res));
1355 }
1356
1357 type = lang_hooks.types.type_for_size (precision, 1);
1358
1359 if (original_precision != precision)
1360 {
1361 *nit = fold_convert (type, *nit);
1362 *nit = force_gimple_operand (*nit, &stmts, true, NULL_TREE);
1363 if (stmts)
1364 gsi_insert_seq_on_edge_immediate (loop_preheader_edge (loop), stmts);
1365 }
1366
1367 gsi = gsi_last_bb (loop->latch);
1368 create_iv (build_int_cst_type (type, 0), build_int_cst (type, 1), NULL_TREE,
1369 loop, &gsi, true, &var_before, NULL);
1370
1371 gsi = gsi_after_labels (loop->header);
1372 for (psi = gsi_start_phis (loop->header); !gsi_end_p (psi); )
1373 {
1374 phi = gsi_stmt (psi);
1375 res = PHI_RESULT (phi);
1376
1377 if (!is_gimple_reg (res) || res == var_before)
1378 {
1379 gsi_next (&psi);
1380 continue;
1381 }
1382
1383 ok = simple_iv (loop, loop, res, &iv, true);
1384
1385 if (reduction_list)
1386 red = reduction_phi (reduction_list, phi);
1387 else
1388 red = NULL;
1389
1390 /* We preserve the reduction phi nodes. */
1391 if (!ok && red)
1392 {
1393 gsi_next (&psi);
1394 continue;
1395 }
1396 else
1397 gcc_assert (ok);
1398 remove_phi_node (&psi, false);
1399
1400 atype = TREE_TYPE (res);
1401 mtype = POINTER_TYPE_P (atype) ? sizetype : atype;
1402 val = fold_build2 (MULT_EXPR, mtype, unshare_expr (iv.step),
1403 fold_convert (mtype, var_before));
1404 val = fold_build2 (POINTER_TYPE_P (atype)
1405 ? POINTER_PLUS_EXPR : PLUS_EXPR,
1406 atype, unshare_expr (iv.base), val);
1407 val = force_gimple_operand_gsi (&gsi, val, false, NULL_TREE, true,
1408 GSI_SAME_STMT);
1409 stmt = gimple_build_assign (res, val);
1410 gsi_insert_before (&gsi, stmt, GSI_SAME_STMT);
1411 SSA_NAME_DEF_STMT (res) = stmt;
1412 }
1413
1414 stmt = last_stmt (exit->src);
1415 /* Make the loop exit if the control condition is not satisfied. */
1416 if (exit->flags & EDGE_TRUE_VALUE)
1417 {
1418 edge te, fe;
1419
1420 extract_true_false_edges_from_block (exit->src, &te, &fe);
1421 te->flags = EDGE_FALSE_VALUE;
1422 fe->flags = EDGE_TRUE_VALUE;
1423 }
1424 gimple_cond_set_code (stmt, LT_EXPR);
1425 gimple_cond_set_lhs (stmt, var_before);
1426 gimple_cond_set_rhs (stmt, *nit);
1427 update_stmt (stmt);
1428
1429 return var_before;
1430 }
1431
1432 /* Moves the exit condition of LOOP to the beginning of its header, and
1433 duplicates the part of the last iteration that gets disabled to the
1434 exit of the loop. NIT is the number of iterations of the loop
1435 (used to initialize the variables in the duplicated part).
1436
1437 TODO: the common case is that latch of the loop is empty and immediately
1438 follows the loop exit. In this case, it would be better not to copy the
1439 body of the loop, but only move the entry of the loop directly before the
1440 exit check and increase the number of iterations of the loop by one.
1441 This may need some additional preconditioning in case NIT = ~0.
1442 REDUCTION_LIST describes the reductions in LOOP. */
1443
1444 static void
1445 transform_to_exit_first_loop (struct loop *loop, htab_t reduction_list, tree nit)
1446 {
1447 basic_block *bbs, *nbbs, ex_bb, orig_header;
1448 unsigned n;
1449 bool ok;
1450 edge exit = single_dom_exit (loop), hpred;
1451 tree control, control_name, res, t;
1452 gimple phi, nphi, cond_stmt, stmt;
1453 gimple_stmt_iterator gsi;
1454
1455 split_block_after_labels (loop->header);
1456 orig_header = single_succ (loop->header);
1457 hpred = single_succ_edge (loop->header);
1458
1459 cond_stmt = last_stmt (exit->src);
1460 control = gimple_cond_lhs (cond_stmt);
1461 gcc_assert (gimple_cond_rhs (cond_stmt) == nit);
1462
1463 /* Make sure that we have phi nodes on exit for all loop header phis
1464 (create_parallel_loop requires that). */
1465 for (gsi = gsi_start_phis (loop->header); !gsi_end_p (gsi); gsi_next (&gsi))
1466 {
1467 phi = gsi_stmt (gsi);
1468 res = PHI_RESULT (phi);
1469 t = make_ssa_name (SSA_NAME_VAR (res), phi);
1470 SET_PHI_RESULT (phi, t);
1471
1472 nphi = create_phi_node (res, orig_header);
1473 SSA_NAME_DEF_STMT (res) = nphi;
1474 add_phi_arg (nphi, t, hpred);
1475
1476 if (res == control)
1477 {
1478 gimple_cond_set_lhs (cond_stmt, t);
1479 update_stmt (cond_stmt);
1480 control = t;
1481 }
1482 }
1483
1484 bbs = get_loop_body_in_dom_order (loop);
1485 for (n = 0; bbs[n] != exit->src; n++)
1486 continue;
1487 nbbs = XNEWVEC (basic_block, n);
1488 ok = gimple_duplicate_sese_tail (single_succ_edge (loop->header), exit,
1489 bbs + 1, n, nbbs);
1490 gcc_assert (ok);
1491 free (bbs);
1492 ex_bb = nbbs[0];
1493 free (nbbs);
1494
1495 /* Other than reductions, the only gimple reg that should be copied
1496 out of the loop is the control variable. */
1497
1498 control_name = NULL_TREE;
1499 for (gsi = gsi_start_phis (ex_bb); !gsi_end_p (gsi); )
1500 {
1501 phi = gsi_stmt (gsi);
1502 res = PHI_RESULT (phi);
1503 if (!is_gimple_reg (res))
1504 {
1505 gsi_next (&gsi);
1506 continue;
1507 }
1508
1509 /* Check if it is a part of reduction. If it is,
1510 keep the phi at the reduction's keep_res field. The
1511 PHI_RESULT of this phi is the resulting value of the reduction
1512 variable when exiting the loop. */
1513
1514 exit = single_dom_exit (loop);
1515
1516 if (htab_elements (reduction_list) > 0)
1517 {
1518 struct reduction_info *red;
1519
1520 tree val = PHI_ARG_DEF_FROM_EDGE (phi, exit);
1521
1522 red = reduction_phi (reduction_list, SSA_NAME_DEF_STMT (val));
1523 if (red)
1524 {
1525 red->keep_res = phi;
1526 gsi_next (&gsi);
1527 continue;
1528 }
1529 }
1530 gcc_assert (control_name == NULL_TREE
1531 && SSA_NAME_VAR (res) == SSA_NAME_VAR (control));
1532 control_name = res;
1533 remove_phi_node (&gsi, false);
1534 }
1535 gcc_assert (control_name != NULL_TREE);
1536
1537 /* Initialize the control variable to NIT. */
1538 gsi = gsi_after_labels (ex_bb);
1539 nit = force_gimple_operand_gsi (&gsi,
1540 fold_convert (TREE_TYPE (control_name), nit),
1541 false, NULL_TREE, false, GSI_SAME_STMT);
1542 stmt = gimple_build_assign (control_name, nit);
1543 gsi_insert_before (&gsi, stmt, GSI_NEW_STMT);
1544 SSA_NAME_DEF_STMT (control_name) = stmt;
1545 }
1546
1547 /* Create the parallel constructs for LOOP as described in gen_parallel_loop.
1548 LOOP_FN and DATA are the arguments of GIMPLE_OMP_PARALLEL.
1549 NEW_DATA is the variable that should be initialized from the argument
1550 of LOOP_FN. N_THREADS is the requested number of threads. Returns the
1551 basic block containing GIMPLE_OMP_PARALLEL tree. */
1552
1553 static basic_block
1554 create_parallel_loop (struct loop *loop, tree loop_fn, tree data,
1555 tree new_data, unsigned n_threads)
1556 {
1557 gimple_stmt_iterator gsi;
1558 basic_block bb, paral_bb, for_bb, ex_bb;
1559 tree t, param, res;
1560 gimple stmt, for_stmt, phi, cond_stmt;
1561 tree cvar, cvar_init, initvar, cvar_next, cvar_base, type;
1562 edge exit, nexit, guard, end, e;
1563
1564 /* Prepare the GIMPLE_OMP_PARALLEL statement. */
1565 bb = loop_preheader_edge (loop)->src;
1566 paral_bb = single_pred (bb);
1567 gsi = gsi_last_bb (paral_bb);
1568
1569 t = build_omp_clause (OMP_CLAUSE_NUM_THREADS);
1570 OMP_CLAUSE_NUM_THREADS_EXPR (t)
1571 = build_int_cst (integer_type_node, n_threads);
1572 stmt = gimple_build_omp_parallel (NULL, t, loop_fn, data);
1573
1574 gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
1575
1576 /* Initialize NEW_DATA. */
1577 if (data)
1578 {
1579 gsi = gsi_after_labels (bb);
1580
1581 param = make_ssa_name (DECL_ARGUMENTS (loop_fn), NULL);
1582 stmt = gimple_build_assign (param, build_fold_addr_expr (data));
1583 gsi_insert_before (&gsi, stmt, GSI_SAME_STMT);
1584 SSA_NAME_DEF_STMT (param) = stmt;
1585
1586 stmt = gimple_build_assign (new_data,
1587 fold_convert (TREE_TYPE (new_data), param));
1588 gsi_insert_before (&gsi, stmt, GSI_SAME_STMT);
1589 SSA_NAME_DEF_STMT (new_data) = stmt;
1590 }
1591
1592 /* Emit GIMPLE_OMP_RETURN for GIMPLE_OMP_PARALLEL. */
1593 bb = split_loop_exit_edge (single_dom_exit (loop));
1594 gsi = gsi_last_bb (bb);
1595 gsi_insert_after (&gsi, gimple_build_omp_return (false), GSI_NEW_STMT);
1596
1597 /* Extract data for GIMPLE_OMP_FOR. */
1598 gcc_assert (loop->header == single_dom_exit (loop)->src);
1599 cond_stmt = last_stmt (loop->header);
1600
1601 cvar = gimple_cond_lhs (cond_stmt);
1602 cvar_base = SSA_NAME_VAR (cvar);
1603 phi = SSA_NAME_DEF_STMT (cvar);
1604 cvar_init = PHI_ARG_DEF_FROM_EDGE (phi, loop_preheader_edge (loop));
1605 initvar = make_ssa_name (cvar_base, NULL);
1606 SET_USE (PHI_ARG_DEF_PTR_FROM_EDGE (phi, loop_preheader_edge (loop)),
1607 initvar);
1608 cvar_next = PHI_ARG_DEF_FROM_EDGE (phi, loop_latch_edge (loop));
1609
1610 gsi = gsi_last_bb (loop->latch);
1611 gcc_assert (gsi_stmt (gsi) == SSA_NAME_DEF_STMT (cvar_next));
1612 gsi_remove (&gsi, true);
1613
1614 /* Prepare cfg. */
1615 for_bb = split_edge (loop_preheader_edge (loop));
1616 ex_bb = split_loop_exit_edge (single_dom_exit (loop));
1617 extract_true_false_edges_from_block (loop->header, &nexit, &exit);
1618 gcc_assert (exit == single_dom_exit (loop));
1619
1620 guard = make_edge (for_bb, ex_bb, 0);
1621 single_succ_edge (loop->latch)->flags = 0;
1622 end = make_edge (loop->latch, ex_bb, EDGE_FALLTHRU);
1623 for (gsi = gsi_start_phis (ex_bb); !gsi_end_p (gsi); gsi_next (&gsi))
1624 {
1625 phi = gsi_stmt (gsi);
1626 res = PHI_RESULT (phi);
1627 stmt = SSA_NAME_DEF_STMT (PHI_ARG_DEF_FROM_EDGE (phi, exit));
1628 add_phi_arg (phi,
1629 PHI_ARG_DEF_FROM_EDGE (stmt, loop_preheader_edge (loop)),
1630 guard);
1631 add_phi_arg (phi, PHI_ARG_DEF_FROM_EDGE (stmt, loop_latch_edge (loop)),
1632 end);
1633 }
1634 e = redirect_edge_and_branch (exit, nexit->dest);
1635 PENDING_STMT (e) = NULL;
1636
1637 /* Emit GIMPLE_OMP_FOR. */
1638 gimple_cond_set_lhs (cond_stmt, cvar_base);
1639 type = TREE_TYPE (cvar);
1640 t = build_omp_clause (OMP_CLAUSE_SCHEDULE);
1641 OMP_CLAUSE_SCHEDULE_KIND (t) = OMP_CLAUSE_SCHEDULE_STATIC;
1642
1643 for_stmt = gimple_build_omp_for (NULL, t, 1, NULL);
1644 gimple_omp_for_set_index (for_stmt, 0, initvar);
1645 gimple_omp_for_set_initial (for_stmt, 0, cvar_init);
1646 gimple_omp_for_set_final (for_stmt, 0, gimple_cond_rhs (cond_stmt));
1647 gimple_omp_for_set_cond (for_stmt, 0, gimple_cond_code (cond_stmt));
1648 gimple_omp_for_set_incr (for_stmt, 0, build2 (PLUS_EXPR, type,
1649 cvar_base,
1650 build_int_cst (type, 1)));
1651
1652 gsi = gsi_last_bb (for_bb);
1653 gsi_insert_after (&gsi, for_stmt, GSI_NEW_STMT);
1654 SSA_NAME_DEF_STMT (initvar) = for_stmt;
1655
1656 /* Emit GIMPLE_OMP_CONTINUE. */
1657 gsi = gsi_last_bb (loop->latch);
1658 stmt = gimple_build_omp_continue (cvar_next, cvar);
1659 gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
1660 SSA_NAME_DEF_STMT (cvar_next) = stmt;
1661
1662 /* Emit GIMPLE_OMP_RETURN for GIMPLE_OMP_FOR. */
1663 gsi = gsi_last_bb (ex_bb);
1664 gsi_insert_after (&gsi, gimple_build_omp_return (true), GSI_NEW_STMT);
1665
1666 return paral_bb;
1667 }
1668
1669 /* Generates code to execute the iterations of LOOP in N_THREADS threads in
1670 parallel. NITER describes number of iterations of LOOP.
1671 REDUCTION_LIST describes the reductions existent in the LOOP. */
1672
1673 static void
1674 gen_parallel_loop (struct loop *loop, htab_t reduction_list,
1675 unsigned n_threads, struct tree_niter_desc *niter)
1676 {
1677 struct loop *nloop;
1678 loop_iterator li;
1679 tree many_iterations_cond, type, nit;
1680 tree arg_struct, new_arg_struct;
1681 gimple_seq stmts;
1682 basic_block parallel_head;
1683 edge entry, exit;
1684 struct clsn_data clsn_data;
1685 unsigned prob;
1686
1687 /* From
1688
1689 ---------------------------------------------------------------------
1690 loop
1691 {
1692 IV = phi (INIT, IV + STEP)
1693 BODY1;
1694 if (COND)
1695 break;
1696 BODY2;
1697 }
1698 ---------------------------------------------------------------------
1699
1700 with # of iterations NITER (possibly with MAY_BE_ZERO assumption),
1701 we generate the following code:
1702
1703 ---------------------------------------------------------------------
1704
1705 if (MAY_BE_ZERO
1706 || NITER < MIN_PER_THREAD * N_THREADS)
1707 goto original;
1708
1709 BODY1;
1710 store all local loop-invariant variables used in body of the loop to DATA.
1711 GIMPLE_OMP_PARALLEL (OMP_CLAUSE_NUM_THREADS (N_THREADS), LOOPFN, DATA);
1712 load the variables from DATA.
1713 GIMPLE_OMP_FOR (IV = INIT; COND; IV += STEP) (OMP_CLAUSE_SCHEDULE (static))
1714 BODY2;
1715 BODY1;
1716 GIMPLE_OMP_CONTINUE;
1717 GIMPLE_OMP_RETURN -- GIMPLE_OMP_FOR
1718 GIMPLE_OMP_RETURN -- GIMPLE_OMP_PARALLEL
1719 goto end;
1720
1721 original:
1722 loop
1723 {
1724 IV = phi (INIT, IV + STEP)
1725 BODY1;
1726 if (COND)
1727 break;
1728 BODY2;
1729 }
1730
1731 end:
1732
1733 */
1734
1735 /* Create two versions of the loop -- in the old one, we know that the
1736 number of iterations is large enough, and we will transform it into the
1737 loop that will be split to loop_fn, the new one will be used for the
1738 remaining iterations. */
1739
1740 type = TREE_TYPE (niter->niter);
1741 nit = force_gimple_operand (unshare_expr (niter->niter), &stmts, true,
1742 NULL_TREE);
1743 if (stmts)
1744 gsi_insert_seq_on_edge_immediate (loop_preheader_edge (loop), stmts);
1745
1746 many_iterations_cond =
1747 fold_build2 (GE_EXPR, boolean_type_node,
1748 nit, build_int_cst (type, MIN_PER_THREAD * n_threads));
1749 many_iterations_cond
1750 = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
1751 invert_truthvalue (unshare_expr (niter->may_be_zero)),
1752 many_iterations_cond);
1753 many_iterations_cond
1754 = force_gimple_operand (many_iterations_cond, &stmts, false, NULL_TREE);
1755 if (stmts)
1756 gsi_insert_seq_on_edge_immediate (loop_preheader_edge (loop), stmts);
1757 if (!is_gimple_condexpr (many_iterations_cond))
1758 {
1759 many_iterations_cond
1760 = force_gimple_operand (many_iterations_cond, &stmts,
1761 true, NULL_TREE);
1762 if (stmts)
1763 gsi_insert_seq_on_edge_immediate (loop_preheader_edge (loop), stmts);
1764 }
1765
1766 initialize_original_copy_tables ();
1767
1768 /* We assume that the loop usually iterates a lot. */
1769 prob = 4 * REG_BR_PROB_BASE / 5;
1770 nloop = loop_version (loop, many_iterations_cond, NULL,
1771 prob, prob, REG_BR_PROB_BASE - prob, true);
1772 update_ssa (TODO_update_ssa);
1773 free_original_copy_tables ();
1774
1775 /* Base all the induction variables in LOOP on a single control one. */
1776 canonicalize_loop_ivs (loop, reduction_list, &nit);
1777
1778 /* Ensure that the exit condition is the first statement in the loop. */
1779 transform_to_exit_first_loop (loop, reduction_list, nit);
1780
1781 /* Generate initializations for reductions. */
1782 if (htab_elements (reduction_list) > 0)
1783 htab_traverse (reduction_list, initialize_reductions, loop);
1784
1785 /* Eliminate the references to local variables from the loop. */
1786 gcc_assert (single_exit (loop));
1787 entry = loop_preheader_edge (loop);
1788 exit = single_dom_exit (loop);
1789
1790 eliminate_local_variables (entry, exit);
1791 /* In the old loop, move all variables non-local to the loop to a structure
1792 and back, and create separate decls for the variables used in loop. */
1793 separate_decls_in_region (entry, exit, reduction_list, &arg_struct,
1794 &new_arg_struct, &clsn_data);
1795
1796 /* Create the parallel constructs. */
1797 parallel_head = create_parallel_loop (loop, create_loop_fn (), arg_struct,
1798 new_arg_struct, n_threads);
1799 if (htab_elements (reduction_list) > 0)
1800 create_call_for_reduction (loop, reduction_list, &clsn_data);
1801
1802 scev_reset ();
1803
1804 /* Cancel the loop (it is simpler to do it here rather than to teach the
1805 expander to do it). */
1806 cancel_loop_tree (loop);
1807
1808 /* Free loop bound estimations that could contain references to
1809 removed statements. */
1810 FOR_EACH_LOOP (li, loop, 0)
1811 free_numbers_of_iterations_estimates_loop (loop);
1812
1813 /* Expand the parallel constructs. We do it directly here instead of running
1814 a separate expand_omp pass, since it is more efficient, and less likely to
1815 cause troubles with further analyses not being able to deal with the
1816 OMP trees. */
1817
1818 omp_expand_local (parallel_head);
1819 }
1820
1821 /* Returns true when LOOP contains vector phi nodes. */
1822
1823 static bool
1824 loop_has_vector_phi_nodes (struct loop *loop ATTRIBUTE_UNUSED)
1825 {
1826 unsigned i;
1827 basic_block *bbs = get_loop_body_in_dom_order (loop);
1828 gimple_stmt_iterator gsi;
1829 bool res = true;
1830
1831 for (i = 0; i < loop->num_nodes; i++)
1832 for (gsi = gsi_start_phis (bbs[i]); !gsi_end_p (gsi); gsi_next (&gsi))
1833 if (TREE_CODE (TREE_TYPE (PHI_RESULT (gsi_stmt (gsi)))) == VECTOR_TYPE)
1834 goto end;
1835
1836 res = false;
1837 end:
1838 free (bbs);
1839 return res;
1840 }
1841
1842 /* Detect parallel loops and generate parallel code using libgomp
1843 primitives. Returns true if some loop was parallelized, false
1844 otherwise. */
1845
1846 bool
1847 parallelize_loops (void)
1848 {
1849 unsigned n_threads = flag_tree_parallelize_loops;
1850 bool changed = false;
1851 struct loop *loop;
1852 struct tree_niter_desc niter_desc;
1853 loop_iterator li;
1854 htab_t reduction_list;
1855
1856 /* Do not parallelize loops in the functions created by parallelization. */
1857 if (parallelized_function_p (cfun->decl))
1858 return false;
1859
1860 reduction_list = htab_create (10, reduction_info_hash,
1861 reduction_info_eq, free);
1862 init_stmt_vec_info_vec ();
1863
1864 FOR_EACH_LOOP (li, loop, 0)
1865 {
1866 htab_empty (reduction_list);
1867 if (/* Do not bother with loops in cold areas. */
1868 optimize_loop_nest_for_size_p (loop)
1869 /* Or loops that roll too little. */
1870 || expected_loop_iterations (loop) <= n_threads
1871 /* And of course, the loop must be parallelizable. */
1872 || !can_duplicate_loop_p (loop)
1873 || loop_has_blocks_with_irreducible_flag (loop)
1874 /* FIXME: the check for vector phi nodes could be removed. */
1875 || loop_has_vector_phi_nodes (loop)
1876 || !loop_parallel_p (loop, reduction_list, &niter_desc))
1877 continue;
1878
1879 changed = true;
1880 gen_parallel_loop (loop, reduction_list, n_threads, &niter_desc);
1881 verify_flow_info ();
1882 verify_dominators (CDI_DOMINATORS);
1883 verify_loop_structure ();
1884 verify_loop_closed_ssa ();
1885 }
1886
1887 free_stmt_vec_info_vec ();
1888 htab_delete (reduction_list);
1889 return changed;
1890 }
1891
1892 #include "gt-tree-parloops.h"