comparison gcc/tree-phinodes.c @ 0:a06113de4d67

first commit
author kent <kent@cr.ie.u-ryukyu.ac.jp>
date Fri, 17 Jul 2009 14:47:48 +0900
parents
children 77e2b8dfacca
comparison
equal deleted inserted replaced
-1:000000000000 0:a06113de4d67
1 /* Generic routines for manipulating PHIs
2 Copyright (C) 2003, 2005, 2007, 2008 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
10
11 GCC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "tm.h"
24 #include "tree.h"
25 #include "rtl.h"
26 #include "varray.h"
27 #include "ggc.h"
28 #include "basic-block.h"
29 #include "tree-flow.h"
30 #include "toplev.h"
31 #include "gimple.h"
32
33 /* Rewriting a function into SSA form can create a huge number of PHIs
34 many of which may be thrown away shortly after their creation if jumps
35 were threaded through PHI nodes.
36
37 While our garbage collection mechanisms will handle this situation, it
38 is extremely wasteful to create nodes and throw them away, especially
39 when the nodes can be reused.
40
41 For PR 8361, we can significantly reduce the number of nodes allocated
42 and thus the total amount of memory allocated by managing PHIs a
43 little. This additionally helps reduce the amount of work done by the
44 garbage collector. Similar results have been seen on a wider variety
45 of tests (such as the compiler itself).
46
47 Right now we maintain our free list on a per-function basis. It may
48 or may not make sense to maintain the free list for the duration of
49 a compilation unit.
50
51 We could also use a zone allocator for these objects since they have
52 a very well defined lifetime. If someone wants to experiment with that
53 this is the place to try it.
54
55 PHI nodes have different sizes, so we can't have a single list of all
56 the PHI nodes as it would be too expensive to walk down that list to
57 find a PHI of a suitable size.
58
59 Instead we have an array of lists of free PHI nodes. The array is
60 indexed by the number of PHI alternatives that PHI node can hold.
61 Except for the last array member, which holds all remaining PHI
62 nodes.
63
64 So to find a free PHI node, we compute its index into the free PHI
65 node array and see if there are any elements with an exact match.
66 If so, then we are done. Otherwise, we test the next larger size
67 up and continue until we are in the last array element.
68
69 We do not actually walk members of the last array element. While it
70 might allow us to pick up a few reusable PHI nodes, it could potentially
71 be very expensive if the program has released a bunch of large PHI nodes,
72 but keeps asking for even larger PHI nodes. Experiments have shown that
73 walking the elements of the last array entry would result in finding less
74 than .1% additional reusable PHI nodes.
75
76 Note that we can never have less than two PHI argument slots. Thus,
77 the -2 on all the calculations below. */
78
79 #define NUM_BUCKETS 10
80 static GTY ((deletable (""))) VEC(gimple,gc) *free_phinodes[NUM_BUCKETS - 2];
81 static unsigned long free_phinode_count;
82
83 static int ideal_phi_node_len (int);
84
85 #ifdef GATHER_STATISTICS
86 unsigned int phi_nodes_reused;
87 unsigned int phi_nodes_created;
88 #endif
89
90 /* Initialize management of PHIs. */
91
92 void
93 init_phinodes (void)
94 {
95 int i;
96
97 for (i = 0; i < NUM_BUCKETS - 2; i++)
98 free_phinodes[i] = NULL;
99 free_phinode_count = 0;
100 }
101
102 /* Finalize management of PHIs. */
103
104 void
105 fini_phinodes (void)
106 {
107 int i;
108
109 for (i = 0; i < NUM_BUCKETS - 2; i++)
110 free_phinodes[i] = NULL;
111 free_phinode_count = 0;
112 }
113
114 /* Dump some simple statistics regarding the re-use of PHI nodes. */
115
116 #ifdef GATHER_STATISTICS
117 void
118 phinodes_print_statistics (void)
119 {
120 fprintf (stderr, "PHI nodes allocated: %u\n", phi_nodes_created);
121 fprintf (stderr, "PHI nodes reused: %u\n", phi_nodes_reused);
122 }
123 #endif
124
125 /* Allocate a PHI node with at least LEN arguments. If the free list
126 happens to contain a PHI node with LEN arguments or more, return
127 that one. */
128
129 static inline gimple
130 allocate_phi_node (size_t len)
131 {
132 gimple phi;
133 size_t bucket = NUM_BUCKETS - 2;
134 size_t size = sizeof (struct gimple_statement_phi)
135 + (len - 1) * sizeof (struct phi_arg_d);
136
137 if (free_phinode_count)
138 for (bucket = len - 2; bucket < NUM_BUCKETS - 2; bucket++)
139 if (free_phinodes[bucket])
140 break;
141
142 /* If our free list has an element, then use it. */
143 if (bucket < NUM_BUCKETS - 2
144 && gimple_phi_capacity (VEC_index (gimple, free_phinodes[bucket], 0))
145 >= len)
146 {
147 free_phinode_count--;
148 phi = VEC_pop (gimple, free_phinodes[bucket]);
149 if (VEC_empty (gimple, free_phinodes[bucket]))
150 VEC_free (gimple, gc, free_phinodes[bucket]);
151 #ifdef GATHER_STATISTICS
152 phi_nodes_reused++;
153 #endif
154 }
155 else
156 {
157 phi = (gimple) ggc_alloc (size);
158 #ifdef GATHER_STATISTICS
159 phi_nodes_created++;
160 {
161 enum gimple_alloc_kind kind = gimple_alloc_kind (GIMPLE_PHI);
162 gimple_alloc_counts[(int) kind]++;
163 gimple_alloc_sizes[(int) kind] += size;
164 }
165 #endif
166 }
167
168 return phi;
169 }
170
171 /* Given LEN, the original number of requested PHI arguments, return
172 a new, "ideal" length for the PHI node. The "ideal" length rounds
173 the total size of the PHI node up to the next power of two bytes.
174
175 Rounding up will not result in wasting any memory since the size request
176 will be rounded up by the GC system anyway. [ Note this is not entirely
177 true since the original length might have fit on one of the special
178 GC pages. ] By rounding up, we may avoid the need to reallocate the
179 PHI node later if we increase the number of arguments for the PHI. */
180
181 static int
182 ideal_phi_node_len (int len)
183 {
184 size_t size, new_size;
185 int log2, new_len;
186
187 /* We do not support allocations of less than two PHI argument slots. */
188 if (len < 2)
189 len = 2;
190
191 /* Compute the number of bytes of the original request. */
192 size = sizeof (struct gimple_statement_phi)
193 + (len - 1) * sizeof (struct phi_arg_d);
194
195 /* Round it up to the next power of two. */
196 log2 = ceil_log2 (size);
197 new_size = 1 << log2;
198
199 /* Now compute and return the number of PHI argument slots given an
200 ideal size allocation. */
201 new_len = len + (new_size - size) / sizeof (struct phi_arg_d);
202 return new_len;
203 }
204
205 /* Return a PHI node with LEN argument slots for variable VAR. */
206
207 gimple
208 make_phi_node (tree var, int len)
209 {
210 gimple phi;
211 int capacity, i;
212
213 capacity = ideal_phi_node_len (len);
214
215 phi = allocate_phi_node (capacity);
216
217 /* We need to clear the entire PHI node, including the argument
218 portion, because we represent a "missing PHI argument" by placing
219 NULL_TREE in PHI_ARG_DEF. */
220 memset (phi, 0, (sizeof (struct gimple_statement_phi)
221 - sizeof (struct phi_arg_d)
222 + sizeof (struct phi_arg_d) * len));
223 phi->gsbase.code = GIMPLE_PHI;
224 phi->gimple_phi.nargs = len;
225 phi->gimple_phi.capacity = capacity;
226 if (TREE_CODE (var) == SSA_NAME)
227 gimple_phi_set_result (phi, var);
228 else
229 gimple_phi_set_result (phi, make_ssa_name (var, phi));
230
231 for (i = 0; i < capacity; i++)
232 {
233 use_operand_p imm;
234 imm = gimple_phi_arg_imm_use_ptr (phi, i);
235 imm->use = gimple_phi_arg_def_ptr (phi, i);
236 imm->prev = NULL;
237 imm->next = NULL;
238 imm->loc.stmt = phi;
239 }
240
241 return phi;
242 }
243
244 /* We no longer need PHI, release it so that it may be reused. */
245
246 void
247 release_phi_node (gimple phi)
248 {
249 size_t bucket;
250 size_t len = gimple_phi_capacity (phi);
251 size_t x;
252
253 for (x = 0; x < gimple_phi_num_args (phi); x++)
254 {
255 use_operand_p imm;
256 imm = gimple_phi_arg_imm_use_ptr (phi, x);
257 delink_imm_use (imm);
258 }
259
260 bucket = len > NUM_BUCKETS - 1 ? NUM_BUCKETS - 1 : len;
261 bucket -= 2;
262 VEC_safe_push (gimple, gc, free_phinodes[bucket], phi);
263 free_phinode_count++;
264 }
265
266
267 /* Resize an existing PHI node. The only way is up. Return the
268 possibly relocated phi. */
269
270 static void
271 resize_phi_node (gimple *phi, size_t len)
272 {
273 size_t old_size, i;
274 gimple new_phi;
275
276 gcc_assert (len > gimple_phi_capacity (*phi));
277
278 /* The garbage collector will not look at the PHI node beyond the
279 first PHI_NUM_ARGS elements. Therefore, all we have to copy is a
280 portion of the PHI node currently in use. */
281 old_size = sizeof (struct gimple_statement_phi)
282 + (gimple_phi_num_args (*phi) - 1) * sizeof (struct phi_arg_d);
283
284 new_phi = allocate_phi_node (len);
285
286 memcpy (new_phi, *phi, old_size);
287
288 for (i = 0; i < gimple_phi_num_args (new_phi); i++)
289 {
290 use_operand_p imm, old_imm;
291 imm = gimple_phi_arg_imm_use_ptr (new_phi, i);
292 old_imm = gimple_phi_arg_imm_use_ptr (*phi, i);
293 imm->use = gimple_phi_arg_def_ptr (new_phi, i);
294 relink_imm_use_stmt (imm, old_imm, new_phi);
295 }
296
297 new_phi->gimple_phi.capacity = len;
298
299 for (i = gimple_phi_num_args (new_phi); i < len; i++)
300 {
301 use_operand_p imm;
302 imm = gimple_phi_arg_imm_use_ptr (new_phi, i);
303 imm->use = gimple_phi_arg_def_ptr (new_phi, i);
304 imm->prev = NULL;
305 imm->next = NULL;
306 imm->loc.stmt = new_phi;
307 }
308
309 *phi = new_phi;
310 }
311
312 /* Reserve PHI arguments for a new edge to basic block BB. */
313
314 void
315 reserve_phi_args_for_new_edge (basic_block bb)
316 {
317 size_t len = EDGE_COUNT (bb->preds);
318 size_t cap = ideal_phi_node_len (len + 4);
319 gimple_stmt_iterator gsi;
320
321 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
322 {
323 gimple *loc = gsi_stmt_ptr (&gsi);
324
325 if (len > gimple_phi_capacity (*loc))
326 {
327 gimple old_phi = *loc;
328
329 resize_phi_node (loc, cap);
330
331 /* The result of the PHI is defined by this PHI node. */
332 SSA_NAME_DEF_STMT (gimple_phi_result (*loc)) = *loc;
333
334 release_phi_node (old_phi);
335 }
336
337 /* We represent a "missing PHI argument" by placing NULL_TREE in
338 the corresponding slot. If PHI arguments were added
339 immediately after an edge is created, this zeroing would not
340 be necessary, but unfortunately this is not the case. For
341 example, the loop optimizer duplicates several basic blocks,
342 redirects edges, and then fixes up PHI arguments later in
343 batch. */
344 SET_PHI_ARG_DEF (*loc, len - 1, NULL_TREE);
345
346 (*loc)->gimple_phi.nargs++;
347 }
348 }
349
350 /* Adds PHI to BB. */
351
352 void
353 add_phi_node_to_bb (gimple phi, basic_block bb)
354 {
355 gimple_stmt_iterator gsi;
356 /* Add the new PHI node to the list of PHI nodes for block BB. */
357 if (phi_nodes (bb) == NULL)
358 set_phi_nodes (bb, gimple_seq_alloc ());
359
360 gsi = gsi_last (phi_nodes (bb));
361 gsi_insert_after (&gsi, phi, GSI_NEW_STMT);
362
363 /* Associate BB to the PHI node. */
364 gimple_set_bb (phi, bb);
365
366 }
367
368 /* Create a new PHI node for variable VAR at basic block BB. */
369
370 gimple
371 create_phi_node (tree var, basic_block bb)
372 {
373 gimple phi = make_phi_node (var, EDGE_COUNT (bb->preds));
374
375 add_phi_node_to_bb (phi, bb);
376 return phi;
377 }
378
379
380 /* Add a new argument to PHI node PHI. DEF is the incoming reaching
381 definition and E is the edge through which DEF reaches PHI. The new
382 argument is added at the end of the argument list.
383 If PHI has reached its maximum capacity, add a few slots. In this case,
384 PHI points to the reallocated phi node when we return. */
385
386 void
387 add_phi_arg (gimple phi, tree def, edge e)
388 {
389 basic_block bb = e->dest;
390
391 gcc_assert (bb == gimple_bb (phi));
392
393 /* We resize PHI nodes upon edge creation. We should always have
394 enough room at this point. */
395 gcc_assert (gimple_phi_num_args (phi) <= gimple_phi_capacity (phi));
396
397 /* We resize PHI nodes upon edge creation. We should always have
398 enough room at this point. */
399 gcc_assert (e->dest_idx < gimple_phi_num_args (phi));
400
401 /* Copy propagation needs to know what object occur in abnormal
402 PHI nodes. This is a convenient place to record such information. */
403 if (e->flags & EDGE_ABNORMAL)
404 {
405 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (def) = 1;
406 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (PHI_RESULT (phi)) = 1;
407 }
408
409 SET_PHI_ARG_DEF (phi, e->dest_idx, def);
410 }
411
412
413 /* Remove the Ith argument from PHI's argument list. This routine
414 implements removal by swapping the last alternative with the
415 alternative we want to delete and then shrinking the vector, which
416 is consistent with how we remove an edge from the edge vector. */
417
418 static void
419 remove_phi_arg_num (gimple phi, int i)
420 {
421 int num_elem = gimple_phi_num_args (phi);
422
423 gcc_assert (i < num_elem);
424
425 /* Delink the item which is being removed. */
426 delink_imm_use (gimple_phi_arg_imm_use_ptr (phi, i));
427
428 /* If it is not the last element, move the last element
429 to the element we want to delete, resetting all the links. */
430 if (i != num_elem - 1)
431 {
432 use_operand_p old_p, new_p;
433 old_p = gimple_phi_arg_imm_use_ptr (phi, num_elem - 1);
434 new_p = gimple_phi_arg_imm_use_ptr (phi, i);
435 /* Set use on new node, and link into last element's place. */
436 *(new_p->use) = *(old_p->use);
437 relink_imm_use (new_p, old_p);
438 }
439
440 /* Shrink the vector and return. Note that we do not have to clear
441 PHI_ARG_DEF because the garbage collector will not look at those
442 elements beyond the first PHI_NUM_ARGS elements of the array. */
443 phi->gimple_phi.nargs--;
444 }
445
446
447 /* Remove all PHI arguments associated with edge E. */
448
449 void
450 remove_phi_args (edge e)
451 {
452 gimple_stmt_iterator gsi;
453
454 for (gsi = gsi_start_phis (e->dest); !gsi_end_p (gsi); gsi_next (&gsi))
455 remove_phi_arg_num (gsi_stmt (gsi), e->dest_idx);
456 }
457
458
459 /* Remove the PHI node pointed-to by iterator GSI from basic block BB. After
460 removal, iterator GSI is updated to point to the next PHI node in the
461 sequence. If RELEASE_LHS_P is true, the LHS of this PHI node is released
462 into the free pool of SSA names. */
463
464 void
465 remove_phi_node (gimple_stmt_iterator *gsi, bool release_lhs_p)
466 {
467 gimple phi = gsi_stmt (*gsi);
468 gsi_remove (gsi, false);
469
470 /* If we are deleting the PHI node, then we should release the
471 SSA_NAME node so that it can be reused. */
472 release_phi_node (phi);
473 if (release_lhs_p)
474 release_ssa_name (gimple_phi_result (phi));
475 }
476
477 /* Remove all the phi nodes from BB. */
478
479 void
480 remove_phi_nodes (basic_block bb)
481 {
482 gimple_stmt_iterator gsi;
483
484 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); )
485 remove_phi_node (&gsi, true);
486
487 set_phi_nodes (bb, NULL);
488 }
489
490 #include "gt-tree-phinodes.h"