comparison gcc/tree-sra.c @ 0:a06113de4d67

first commit
author kent <kent@cr.ie.u-ryukyu.ac.jp>
date Fri, 17 Jul 2009 14:47:48 +0900
parents
children 77e2b8dfacca
comparison
equal deleted inserted replaced
-1:000000000000 0:a06113de4d67
1 /* Scalar Replacement of Aggregates (SRA) converts some structure
2 references into scalar references, exposing them to the scalar
3 optimizers.
4 Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008, 2009
5 Free Software Foundation, Inc.
6 Contributed by Diego Novillo <dnovillo@redhat.com>
7
8 This file is part of GCC.
9
10 GCC is free software; you can redistribute it and/or modify it
11 under the terms of the GNU General Public License as published by the
12 Free Software Foundation; either version 3, or (at your option) any
13 later version.
14
15 GCC is distributed in the hope that it will be useful, but WITHOUT
16 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
17 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with GCC; see the file COPYING3. If not see
22 <http://www.gnu.org/licenses/>. */
23
24 #include "config.h"
25 #include "system.h"
26 #include "coretypes.h"
27 #include "tm.h"
28 #include "ggc.h"
29 #include "tree.h"
30
31 /* These RTL headers are needed for basic-block.h. */
32 #include "rtl.h"
33 #include "tm_p.h"
34 #include "hard-reg-set.h"
35 #include "basic-block.h"
36 #include "diagnostic.h"
37 #include "langhooks.h"
38 #include "tree-inline.h"
39 #include "tree-flow.h"
40 #include "gimple.h"
41 #include "tree-dump.h"
42 #include "tree-pass.h"
43 #include "timevar.h"
44 #include "flags.h"
45 #include "bitmap.h"
46 #include "obstack.h"
47 #include "target.h"
48 /* expr.h is needed for MOVE_RATIO. */
49 #include "expr.h"
50 #include "params.h"
51
52
53 /* This object of this pass is to replace a non-addressable aggregate with a
54 set of independent variables. Most of the time, all of these variables
55 will be scalars. But a secondary objective is to break up larger
56 aggregates into smaller aggregates. In the process we may find that some
57 bits of the larger aggregate can be deleted as unreferenced.
58
59 This substitution is done globally. More localized substitutions would
60 be the purvey of a load-store motion pass.
61
62 The optimization proceeds in phases:
63
64 (1) Identify variables that have types that are candidates for
65 decomposition.
66
67 (2) Scan the function looking for the ways these variables are used.
68 In particular we're interested in the number of times a variable
69 (or member) is needed as a complete unit, and the number of times
70 a variable (or member) is copied.
71
72 (3) Based on the usage profile, instantiate substitution variables.
73
74 (4) Scan the function making replacements.
75 */
76
77
78 /* True if this is the "early" pass, before inlining. */
79 static bool early_sra;
80
81 /* The set of todo flags to return from tree_sra. */
82 static unsigned int todoflags;
83
84 /* The set of aggregate variables that are candidates for scalarization. */
85 static bitmap sra_candidates;
86
87 /* Set of scalarizable PARM_DECLs that need copy-in operations at the
88 beginning of the function. */
89 static bitmap needs_copy_in;
90
91 /* Sets of bit pairs that cache type decomposition and instantiation. */
92 static bitmap sra_type_decomp_cache;
93 static bitmap sra_type_inst_cache;
94
95 /* One of these structures is created for each candidate aggregate and
96 each (accessed) member or group of members of such an aggregate. */
97 struct sra_elt
98 {
99 /* A tree of the elements. Used when we want to traverse everything. */
100 struct sra_elt *parent;
101 struct sra_elt *groups;
102 struct sra_elt *children;
103 struct sra_elt *sibling;
104
105 /* If this element is a root, then this is the VAR_DECL. If this is
106 a sub-element, this is some token used to identify the reference.
107 In the case of COMPONENT_REF, this is the FIELD_DECL. In the case
108 of an ARRAY_REF, this is the (constant) index. In the case of an
109 ARRAY_RANGE_REF, this is the (constant) RANGE_EXPR. In the case
110 of a complex number, this is a zero or one. */
111 tree element;
112
113 /* The type of the element. */
114 tree type;
115
116 /* A VAR_DECL, for any sub-element we've decided to replace. */
117 tree replacement;
118
119 /* The number of times the element is referenced as a whole. I.e.
120 given "a.b.c", this would be incremented for C, but not for A or B. */
121 unsigned int n_uses;
122
123 /* The number of times the element is copied to or from another
124 scalarizable element. */
125 unsigned int n_copies;
126
127 /* True if TYPE is scalar. */
128 bool is_scalar;
129
130 /* True if this element is a group of members of its parent. */
131 bool is_group;
132
133 /* True if we saw something about this element that prevents scalarization,
134 such as non-constant indexing. */
135 bool cannot_scalarize;
136
137 /* True if we've decided that structure-to-structure assignment
138 should happen via memcpy and not per-element. */
139 bool use_block_copy;
140
141 /* True if everything under this element has been marked TREE_NO_WARNING. */
142 bool all_no_warning;
143
144 /* A flag for use with/after random access traversals. */
145 bool visited;
146
147 /* True if there is BIT_FIELD_REF on the lhs with a vector. */
148 bool is_vector_lhs;
149
150 /* 1 if the element is a field that is part of a block, 2 if the field
151 is the block itself, 0 if it's neither. */
152 char in_bitfld_block;
153 };
154
155 #define IS_ELEMENT_FOR_GROUP(ELEMENT) (TREE_CODE (ELEMENT) == RANGE_EXPR)
156
157 #define FOR_EACH_ACTUAL_CHILD(CHILD, ELT) \
158 for ((CHILD) = (ELT)->is_group \
159 ? next_child_for_group (NULL, (ELT)) \
160 : (ELT)->children; \
161 (CHILD); \
162 (CHILD) = (ELT)->is_group \
163 ? next_child_for_group ((CHILD), (ELT)) \
164 : (CHILD)->sibling)
165
166 /* Helper function for above macro. Return next child in group. */
167 static struct sra_elt *
168 next_child_for_group (struct sra_elt *child, struct sra_elt *group)
169 {
170 gcc_assert (group->is_group);
171
172 /* Find the next child in the parent. */
173 if (child)
174 child = child->sibling;
175 else
176 child = group->parent->children;
177
178 /* Skip siblings that do not belong to the group. */
179 while (child)
180 {
181 tree g_elt = group->element;
182 if (TREE_CODE (g_elt) == RANGE_EXPR)
183 {
184 if (!tree_int_cst_lt (child->element, TREE_OPERAND (g_elt, 0))
185 && !tree_int_cst_lt (TREE_OPERAND (g_elt, 1), child->element))
186 break;
187 }
188 else
189 gcc_unreachable ();
190
191 child = child->sibling;
192 }
193
194 return child;
195 }
196
197 /* Random access to the child of a parent is performed by hashing.
198 This prevents quadratic behavior, and allows SRA to function
199 reasonably on larger records. */
200 static htab_t sra_map;
201
202 /* All structures are allocated out of the following obstack. */
203 static struct obstack sra_obstack;
204
205 /* Debugging functions. */
206 static void dump_sra_elt_name (FILE *, struct sra_elt *);
207 extern void debug_sra_elt_name (struct sra_elt *);
208
209 /* Forward declarations. */
210 static tree generate_element_ref (struct sra_elt *);
211 static gimple_seq sra_build_assignment (tree dst, tree src);
212 static void mark_all_v_defs_seq (gimple_seq);
213 static void mark_all_v_defs_stmt (gimple);
214
215
216 /* Return true if DECL is an SRA candidate. */
217
218 static bool
219 is_sra_candidate_decl (tree decl)
220 {
221 return DECL_P (decl) && bitmap_bit_p (sra_candidates, DECL_UID (decl));
222 }
223
224 /* Return true if TYPE is a scalar type. */
225
226 static bool
227 is_sra_scalar_type (tree type)
228 {
229 enum tree_code code = TREE_CODE (type);
230 return (code == INTEGER_TYPE || code == REAL_TYPE || code == VECTOR_TYPE
231 || code == FIXED_POINT_TYPE
232 || code == ENUMERAL_TYPE || code == BOOLEAN_TYPE
233 || code == POINTER_TYPE || code == OFFSET_TYPE
234 || code == REFERENCE_TYPE);
235 }
236
237 /* Return true if TYPE can be decomposed into a set of independent variables.
238
239 Note that this doesn't imply that all elements of TYPE can be
240 instantiated, just that if we decide to break up the type into
241 separate pieces that it can be done. */
242
243 bool
244 sra_type_can_be_decomposed_p (tree type)
245 {
246 unsigned int cache = TYPE_UID (TYPE_MAIN_VARIANT (type)) * 2;
247 tree t;
248
249 /* Avoid searching the same type twice. */
250 if (bitmap_bit_p (sra_type_decomp_cache, cache+0))
251 return true;
252 if (bitmap_bit_p (sra_type_decomp_cache, cache+1))
253 return false;
254
255 /* The type must have a definite nonzero size. */
256 if (TYPE_SIZE (type) == NULL || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST
257 || integer_zerop (TYPE_SIZE (type)))
258 goto fail;
259
260 /* The type must be a non-union aggregate. */
261 switch (TREE_CODE (type))
262 {
263 case RECORD_TYPE:
264 {
265 bool saw_one_field = false;
266
267 for (t = TYPE_FIELDS (type); t ; t = TREE_CHAIN (t))
268 if (TREE_CODE (t) == FIELD_DECL)
269 {
270 /* Reject incorrectly represented bit fields. */
271 if (DECL_BIT_FIELD (t)
272 && INTEGRAL_TYPE_P (TREE_TYPE (t))
273 && (tree_low_cst (DECL_SIZE (t), 1)
274 != TYPE_PRECISION (TREE_TYPE (t))))
275 goto fail;
276
277 saw_one_field = true;
278 }
279
280 /* Record types must have at least one field. */
281 if (!saw_one_field)
282 goto fail;
283 }
284 break;
285
286 case ARRAY_TYPE:
287 /* Array types must have a fixed lower and upper bound. */
288 t = TYPE_DOMAIN (type);
289 if (t == NULL)
290 goto fail;
291 if (TYPE_MIN_VALUE (t) == NULL || !TREE_CONSTANT (TYPE_MIN_VALUE (t)))
292 goto fail;
293 if (TYPE_MAX_VALUE (t) == NULL || !TREE_CONSTANT (TYPE_MAX_VALUE (t)))
294 goto fail;
295 break;
296
297 case COMPLEX_TYPE:
298 break;
299
300 default:
301 goto fail;
302 }
303
304 bitmap_set_bit (sra_type_decomp_cache, cache+0);
305 return true;
306
307 fail:
308 bitmap_set_bit (sra_type_decomp_cache, cache+1);
309 return false;
310 }
311
312 /* Returns true if the TYPE is one of the available va_list types.
313 Otherwise it returns false.
314 Note, that for multiple calling conventions there can be more
315 than just one va_list type present. */
316
317 static bool
318 is_va_list_type (tree type)
319 {
320 tree h;
321
322 if (type == NULL_TREE)
323 return false;
324 h = targetm.canonical_va_list_type (type);
325 if (h == NULL_TREE)
326 return false;
327 if (TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (h))
328 return true;
329 return false;
330 }
331
332 /* Return true if DECL can be decomposed into a set of independent
333 (though not necessarily scalar) variables. */
334
335 static bool
336 decl_can_be_decomposed_p (tree var)
337 {
338 /* Early out for scalars. */
339 if (is_sra_scalar_type (TREE_TYPE (var)))
340 return false;
341
342 /* The variable must not be aliased. */
343 if (!is_gimple_non_addressable (var))
344 {
345 if (dump_file && (dump_flags & TDF_DETAILS))
346 {
347 fprintf (dump_file, "Cannot scalarize variable ");
348 print_generic_expr (dump_file, var, dump_flags);
349 fprintf (dump_file, " because it must live in memory\n");
350 }
351 return false;
352 }
353
354 /* The variable must not be volatile. */
355 if (TREE_THIS_VOLATILE (var))
356 {
357 if (dump_file && (dump_flags & TDF_DETAILS))
358 {
359 fprintf (dump_file, "Cannot scalarize variable ");
360 print_generic_expr (dump_file, var, dump_flags);
361 fprintf (dump_file, " because it is declared volatile\n");
362 }
363 return false;
364 }
365
366 /* We must be able to decompose the variable's type. */
367 if (!sra_type_can_be_decomposed_p (TREE_TYPE (var)))
368 {
369 if (dump_file && (dump_flags & TDF_DETAILS))
370 {
371 fprintf (dump_file, "Cannot scalarize variable ");
372 print_generic_expr (dump_file, var, dump_flags);
373 fprintf (dump_file, " because its type cannot be decomposed\n");
374 }
375 return false;
376 }
377
378 /* HACK: if we decompose a va_list_type_node before inlining, then we'll
379 confuse tree-stdarg.c, and we won't be able to figure out which and
380 how many arguments are accessed. This really should be improved in
381 tree-stdarg.c, as the decomposition is truly a win. This could also
382 be fixed if the stdarg pass ran early, but this can't be done until
383 we've aliasing information early too. See PR 30791. */
384 if (early_sra && is_va_list_type (TREE_TYPE (var)))
385 return false;
386
387 return true;
388 }
389
390 /* Return true if TYPE can be *completely* decomposed into scalars. */
391
392 static bool
393 type_can_instantiate_all_elements (tree type)
394 {
395 if (is_sra_scalar_type (type))
396 return true;
397 if (!sra_type_can_be_decomposed_p (type))
398 return false;
399
400 switch (TREE_CODE (type))
401 {
402 case RECORD_TYPE:
403 {
404 unsigned int cache = TYPE_UID (TYPE_MAIN_VARIANT (type)) * 2;
405 tree f;
406
407 if (bitmap_bit_p (sra_type_inst_cache, cache+0))
408 return true;
409 if (bitmap_bit_p (sra_type_inst_cache, cache+1))
410 return false;
411
412 for (f = TYPE_FIELDS (type); f ; f = TREE_CHAIN (f))
413 if (TREE_CODE (f) == FIELD_DECL)
414 {
415 if (!type_can_instantiate_all_elements (TREE_TYPE (f)))
416 {
417 bitmap_set_bit (sra_type_inst_cache, cache+1);
418 return false;
419 }
420 }
421
422 bitmap_set_bit (sra_type_inst_cache, cache+0);
423 return true;
424 }
425
426 case ARRAY_TYPE:
427 return type_can_instantiate_all_elements (TREE_TYPE (type));
428
429 case COMPLEX_TYPE:
430 return true;
431
432 default:
433 gcc_unreachable ();
434 }
435 }
436
437 /* Test whether ELT or some sub-element cannot be scalarized. */
438
439 static bool
440 can_completely_scalarize_p (struct sra_elt *elt)
441 {
442 struct sra_elt *c;
443
444 if (elt->cannot_scalarize)
445 return false;
446
447 for (c = elt->children; c; c = c->sibling)
448 if (!can_completely_scalarize_p (c))
449 return false;
450
451 for (c = elt->groups; c; c = c->sibling)
452 if (!can_completely_scalarize_p (c))
453 return false;
454
455 return true;
456 }
457
458
459 /* A simplified tree hashing algorithm that only handles the types of
460 trees we expect to find in sra_elt->element. */
461
462 static hashval_t
463 sra_hash_tree (tree t)
464 {
465 hashval_t h;
466
467 switch (TREE_CODE (t))
468 {
469 case VAR_DECL:
470 case PARM_DECL:
471 case RESULT_DECL:
472 h = DECL_UID (t);
473 break;
474
475 case INTEGER_CST:
476 h = TREE_INT_CST_LOW (t) ^ TREE_INT_CST_HIGH (t);
477 break;
478
479 case RANGE_EXPR:
480 h = iterative_hash_expr (TREE_OPERAND (t, 0), 0);
481 h = iterative_hash_expr (TREE_OPERAND (t, 1), h);
482 break;
483
484 case FIELD_DECL:
485 /* We can have types that are compatible, but have different member
486 lists, so we can't hash fields by ID. Use offsets instead. */
487 h = iterative_hash_expr (DECL_FIELD_OFFSET (t), 0);
488 h = iterative_hash_expr (DECL_FIELD_BIT_OFFSET (t), h);
489 break;
490
491 case BIT_FIELD_REF:
492 /* Don't take operand 0 into account, that's our parent. */
493 h = iterative_hash_expr (TREE_OPERAND (t, 1), 0);
494 h = iterative_hash_expr (TREE_OPERAND (t, 2), h);
495 break;
496
497 default:
498 gcc_unreachable ();
499 }
500
501 return h;
502 }
503
504 /* Hash function for type SRA_PAIR. */
505
506 static hashval_t
507 sra_elt_hash (const void *x)
508 {
509 const struct sra_elt *const e = (const struct sra_elt *) x;
510 const struct sra_elt *p;
511 hashval_t h;
512
513 h = sra_hash_tree (e->element);
514
515 /* Take into account everything except bitfield blocks back up the
516 chain. Given that chain lengths are rarely very long, this
517 should be acceptable. If we truly identify this as a performance
518 problem, it should work to hash the pointer value
519 "e->parent". */
520 for (p = e->parent; p ; p = p->parent)
521 if (!p->in_bitfld_block)
522 h = (h * 65521) ^ sra_hash_tree (p->element);
523
524 return h;
525 }
526
527 /* Equality function for type SRA_PAIR. */
528
529 static int
530 sra_elt_eq (const void *x, const void *y)
531 {
532 const struct sra_elt *const a = (const struct sra_elt *) x;
533 const struct sra_elt *const b = (const struct sra_elt *) y;
534 tree ae, be;
535 const struct sra_elt *ap = a->parent;
536 const struct sra_elt *bp = b->parent;
537
538 if (ap)
539 while (ap->in_bitfld_block)
540 ap = ap->parent;
541 if (bp)
542 while (bp->in_bitfld_block)
543 bp = bp->parent;
544
545 if (ap != bp)
546 return false;
547
548 ae = a->element;
549 be = b->element;
550
551 if (ae == be)
552 return true;
553 if (TREE_CODE (ae) != TREE_CODE (be))
554 return false;
555
556 switch (TREE_CODE (ae))
557 {
558 case VAR_DECL:
559 case PARM_DECL:
560 case RESULT_DECL:
561 /* These are all pointer unique. */
562 return false;
563
564 case INTEGER_CST:
565 /* Integers are not pointer unique, so compare their values. */
566 return tree_int_cst_equal (ae, be);
567
568 case RANGE_EXPR:
569 return
570 tree_int_cst_equal (TREE_OPERAND (ae, 0), TREE_OPERAND (be, 0))
571 && tree_int_cst_equal (TREE_OPERAND (ae, 1), TREE_OPERAND (be, 1));
572
573 case FIELD_DECL:
574 /* Fields are unique within a record, but not between
575 compatible records. */
576 if (DECL_FIELD_CONTEXT (ae) == DECL_FIELD_CONTEXT (be))
577 return false;
578 return fields_compatible_p (ae, be);
579
580 case BIT_FIELD_REF:
581 return
582 tree_int_cst_equal (TREE_OPERAND (ae, 1), TREE_OPERAND (be, 1))
583 && tree_int_cst_equal (TREE_OPERAND (ae, 2), TREE_OPERAND (be, 2));
584
585 default:
586 gcc_unreachable ();
587 }
588 }
589
590 /* Create or return the SRA_ELT structure for CHILD in PARENT. PARENT
591 may be null, in which case CHILD must be a DECL. */
592
593 static struct sra_elt *
594 lookup_element (struct sra_elt *parent, tree child, tree type,
595 enum insert_option insert)
596 {
597 struct sra_elt dummy;
598 struct sra_elt **slot;
599 struct sra_elt *elt;
600
601 if (parent)
602 dummy.parent = parent->is_group ? parent->parent : parent;
603 else
604 dummy.parent = NULL;
605 dummy.element = child;
606
607 slot = (struct sra_elt **) htab_find_slot (sra_map, &dummy, insert);
608 if (!slot && insert == NO_INSERT)
609 return NULL;
610
611 elt = *slot;
612 if (!elt && insert == INSERT)
613 {
614 *slot = elt = XOBNEW (&sra_obstack, struct sra_elt);
615 memset (elt, 0, sizeof (*elt));
616
617 elt->parent = parent;
618 elt->element = child;
619 elt->type = type;
620 elt->is_scalar = is_sra_scalar_type (type);
621
622 if (parent)
623 {
624 if (IS_ELEMENT_FOR_GROUP (elt->element))
625 {
626 elt->is_group = true;
627 elt->sibling = parent->groups;
628 parent->groups = elt;
629 }
630 else
631 {
632 elt->sibling = parent->children;
633 parent->children = elt;
634 }
635 }
636
637 /* If this is a parameter, then if we want to scalarize, we have
638 one copy from the true function parameter. Count it now. */
639 if (TREE_CODE (child) == PARM_DECL)
640 {
641 elt->n_copies = 1;
642 bitmap_set_bit (needs_copy_in, DECL_UID (child));
643 }
644 }
645
646 return elt;
647 }
648
649 /* Create or return the SRA_ELT structure for EXPR if the expression
650 refers to a scalarizable variable. */
651
652 static struct sra_elt *
653 maybe_lookup_element_for_expr (tree expr)
654 {
655 struct sra_elt *elt;
656 tree child;
657
658 switch (TREE_CODE (expr))
659 {
660 case VAR_DECL:
661 case PARM_DECL:
662 case RESULT_DECL:
663 if (is_sra_candidate_decl (expr))
664 return lookup_element (NULL, expr, TREE_TYPE (expr), INSERT);
665 return NULL;
666
667 case ARRAY_REF:
668 /* We can't scalarize variable array indices. */
669 if (in_array_bounds_p (expr))
670 child = TREE_OPERAND (expr, 1);
671 else
672 return NULL;
673 break;
674
675 case ARRAY_RANGE_REF:
676 /* We can't scalarize variable array indices. */
677 if (range_in_array_bounds_p (expr))
678 {
679 tree domain = TYPE_DOMAIN (TREE_TYPE (expr));
680 child = build2 (RANGE_EXPR, integer_type_node,
681 TYPE_MIN_VALUE (domain), TYPE_MAX_VALUE (domain));
682 }
683 else
684 return NULL;
685 break;
686
687 case COMPONENT_REF:
688 {
689 tree type = TREE_TYPE (TREE_OPERAND (expr, 0));
690 /* Don't look through unions. */
691 if (TREE_CODE (type) != RECORD_TYPE)
692 return NULL;
693 /* Neither through variable-sized records. */
694 if (TYPE_SIZE (type) == NULL_TREE
695 || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
696 return NULL;
697 child = TREE_OPERAND (expr, 1);
698 }
699 break;
700
701 case REALPART_EXPR:
702 child = integer_zero_node;
703 break;
704 case IMAGPART_EXPR:
705 child = integer_one_node;
706 break;
707
708 default:
709 return NULL;
710 }
711
712 elt = maybe_lookup_element_for_expr (TREE_OPERAND (expr, 0));
713 if (elt)
714 return lookup_element (elt, child, TREE_TYPE (expr), INSERT);
715 return NULL;
716 }
717
718
719 /* Functions to walk just enough of the tree to see all scalarizable
720 references, and categorize them. */
721
722 /* A set of callbacks for phases 2 and 4. They'll be invoked for the
723 various kinds of references seen. In all cases, *GSI is an iterator
724 pointing to the statement being processed. */
725 struct sra_walk_fns
726 {
727 /* Invoked when ELT is required as a unit. Note that ELT might refer to
728 a leaf node, in which case this is a simple scalar reference. *EXPR_P
729 points to the location of the expression. IS_OUTPUT is true if this
730 is a left-hand-side reference. USE_ALL is true if we saw something we
731 couldn't quite identify and had to force the use of the entire object. */
732 void (*use) (struct sra_elt *elt, tree *expr_p,
733 gimple_stmt_iterator *gsi, bool is_output, bool use_all);
734
735 /* Invoked when we have a copy between two scalarizable references. */
736 void (*copy) (struct sra_elt *lhs_elt, struct sra_elt *rhs_elt,
737 gimple_stmt_iterator *gsi);
738
739 /* Invoked when ELT is initialized from a constant. VALUE may be NULL,
740 in which case it should be treated as an empty CONSTRUCTOR. */
741 void (*init) (struct sra_elt *elt, tree value, gimple_stmt_iterator *gsi);
742
743 /* Invoked when we have a copy between one scalarizable reference ELT
744 and one non-scalarizable reference OTHER without side-effects.
745 IS_OUTPUT is true if ELT is on the left-hand side. */
746 void (*ldst) (struct sra_elt *elt, tree other,
747 gimple_stmt_iterator *gsi, bool is_output);
748
749 /* True during phase 2, false during phase 4. */
750 /* ??? This is a hack. */
751 bool initial_scan;
752 };
753
754 #ifdef ENABLE_CHECKING
755 /* Invoked via walk_tree, if *TP contains a candidate decl, return it. */
756
757 static tree
758 sra_find_candidate_decl (tree *tp, int *walk_subtrees,
759 void *data ATTRIBUTE_UNUSED)
760 {
761 tree t = *tp;
762 enum tree_code code = TREE_CODE (t);
763
764 if (code == VAR_DECL || code == PARM_DECL || code == RESULT_DECL)
765 {
766 *walk_subtrees = 0;
767 if (is_sra_candidate_decl (t))
768 return t;
769 }
770 else if (TYPE_P (t))
771 *walk_subtrees = 0;
772
773 return NULL;
774 }
775 #endif
776
777 /* Walk most expressions looking for a scalarizable aggregate.
778 If we find one, invoke FNS->USE. */
779
780 static void
781 sra_walk_expr (tree *expr_p, gimple_stmt_iterator *gsi, bool is_output,
782 const struct sra_walk_fns *fns)
783 {
784 tree expr = *expr_p;
785 tree inner = expr;
786 bool disable_scalarization = false;
787 bool use_all_p = false;
788
789 /* We're looking to collect a reference expression between EXPR and INNER,
790 such that INNER is a scalarizable decl and all other nodes through EXPR
791 are references that we can scalarize. If we come across something that
792 we can't scalarize, we reset EXPR. This has the effect of making it
793 appear that we're referring to the larger expression as a whole. */
794
795 while (1)
796 switch (TREE_CODE (inner))
797 {
798 case VAR_DECL:
799 case PARM_DECL:
800 case RESULT_DECL:
801 /* If there is a scalarizable decl at the bottom, then process it. */
802 if (is_sra_candidate_decl (inner))
803 {
804 struct sra_elt *elt = maybe_lookup_element_for_expr (expr);
805 if (disable_scalarization)
806 elt->cannot_scalarize = true;
807 else
808 fns->use (elt, expr_p, gsi, is_output, use_all_p);
809 }
810 return;
811
812 case ARRAY_REF:
813 /* Non-constant index means any member may be accessed. Prevent the
814 expression from being scalarized. If we were to treat this as a
815 reference to the whole array, we can wind up with a single dynamic
816 index reference inside a loop being overridden by several constant
817 index references during loop setup. It's possible that this could
818 be avoided by using dynamic usage counts based on BB trip counts
819 (based on loop analysis or profiling), but that hardly seems worth
820 the effort. */
821 /* ??? Hack. Figure out how to push this into the scan routines
822 without duplicating too much code. */
823 if (!in_array_bounds_p (inner))
824 {
825 disable_scalarization = true;
826 goto use_all;
827 }
828 /* ??? Are we assured that non-constant bounds and stride will have
829 the same value everywhere? I don't think Fortran will... */
830 if (TREE_OPERAND (inner, 2) || TREE_OPERAND (inner, 3))
831 goto use_all;
832 inner = TREE_OPERAND (inner, 0);
833 break;
834
835 case ARRAY_RANGE_REF:
836 if (!range_in_array_bounds_p (inner))
837 {
838 disable_scalarization = true;
839 goto use_all;
840 }
841 /* ??? See above non-constant bounds and stride . */
842 if (TREE_OPERAND (inner, 2) || TREE_OPERAND (inner, 3))
843 goto use_all;
844 inner = TREE_OPERAND (inner, 0);
845 break;
846
847 case COMPONENT_REF:
848 {
849 tree type = TREE_TYPE (TREE_OPERAND (inner, 0));
850 /* Don't look through unions. */
851 if (TREE_CODE (type) != RECORD_TYPE)
852 goto use_all;
853 /* Neither through variable-sized records. */
854 if (TYPE_SIZE (type) == NULL_TREE
855 || TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
856 goto use_all;
857 inner = TREE_OPERAND (inner, 0);
858 }
859 break;
860
861 case REALPART_EXPR:
862 case IMAGPART_EXPR:
863 inner = TREE_OPERAND (inner, 0);
864 break;
865
866 case BIT_FIELD_REF:
867 /* A bit field reference to a specific vector is scalarized but for
868 ones for inputs need to be marked as used on the left hand size so
869 when we scalarize it, we can mark that variable as non renamable. */
870 if (is_output
871 && TREE_CODE (TREE_TYPE (TREE_OPERAND (inner, 0))) == VECTOR_TYPE)
872 {
873 struct sra_elt *elt
874 = maybe_lookup_element_for_expr (TREE_OPERAND (inner, 0));
875 if (elt)
876 elt->is_vector_lhs = true;
877 }
878
879 /* A bit field reference (access to *multiple* fields simultaneously)
880 is not currently scalarized. Consider this an access to the full
881 outer element, to which walk_tree will bring us next. */
882 goto use_all;
883
884 CASE_CONVERT:
885 /* Similarly, a nop explicitly wants to look at an object in a
886 type other than the one we've scalarized. */
887 goto use_all;
888
889 case VIEW_CONVERT_EXPR:
890 /* Likewise for a view conversion, but with an additional twist:
891 it can be on the LHS and, in this case, an access to the full
892 outer element would mean a killing def. So we need to punt
893 if we haven't already a full access to the current element,
894 because we cannot pretend to have a killing def if we only
895 have a partial access at some level. */
896 if (is_output && !use_all_p && inner != expr)
897 disable_scalarization = true;
898 goto use_all;
899
900 case WITH_SIZE_EXPR:
901 /* This is a transparent wrapper. The entire inner expression really
902 is being used. */
903 goto use_all;
904
905 use_all:
906 expr_p = &TREE_OPERAND (inner, 0);
907 inner = expr = *expr_p;
908 use_all_p = true;
909 break;
910
911 default:
912 #ifdef ENABLE_CHECKING
913 /* Validate that we're not missing any references. */
914 gcc_assert (!walk_tree (&inner, sra_find_candidate_decl, NULL, NULL));
915 #endif
916 return;
917 }
918 }
919
920 /* Walk the arguments of a GIMPLE_CALL looking for scalarizable aggregates.
921 If we find one, invoke FNS->USE. */
922
923 static void
924 sra_walk_gimple_call (gimple stmt, gimple_stmt_iterator *gsi,
925 const struct sra_walk_fns *fns)
926 {
927 int i;
928 int nargs = gimple_call_num_args (stmt);
929
930 for (i = 0; i < nargs; i++)
931 sra_walk_expr (gimple_call_arg_ptr (stmt, i), gsi, false, fns);
932
933 if (gimple_call_lhs (stmt))
934 sra_walk_expr (gimple_call_lhs_ptr (stmt), gsi, true, fns);
935 }
936
937 /* Walk the inputs and outputs of a GIMPLE_ASM looking for scalarizable
938 aggregates. If we find one, invoke FNS->USE. */
939
940 static void
941 sra_walk_gimple_asm (gimple stmt, gimple_stmt_iterator *gsi,
942 const struct sra_walk_fns *fns)
943 {
944 size_t i;
945 for (i = 0; i < gimple_asm_ninputs (stmt); i++)
946 sra_walk_expr (&TREE_VALUE (gimple_asm_input_op (stmt, i)), gsi, false, fns);
947 for (i = 0; i < gimple_asm_noutputs (stmt); i++)
948 sra_walk_expr (&TREE_VALUE (gimple_asm_output_op (stmt, i)), gsi, true, fns);
949 }
950
951 /* Walk a GIMPLE_ASSIGN and categorize the assignment appropriately. */
952
953 static void
954 sra_walk_gimple_assign (gimple stmt, gimple_stmt_iterator *gsi,
955 const struct sra_walk_fns *fns)
956 {
957 struct sra_elt *lhs_elt = NULL, *rhs_elt = NULL;
958 tree lhs, rhs;
959
960 /* If there is more than 1 element on the RHS, only walk the lhs. */
961 if (!gimple_assign_single_p (stmt))
962 {
963 sra_walk_expr (gimple_assign_lhs_ptr (stmt), gsi, true, fns);
964 return;
965 }
966
967 lhs = gimple_assign_lhs (stmt);
968 rhs = gimple_assign_rhs1 (stmt);
969 lhs_elt = maybe_lookup_element_for_expr (lhs);
970 rhs_elt = maybe_lookup_element_for_expr (rhs);
971
972 /* If both sides are scalarizable, this is a COPY operation. */
973 if (lhs_elt && rhs_elt)
974 {
975 fns->copy (lhs_elt, rhs_elt, gsi);
976 return;
977 }
978
979 /* If the RHS is scalarizable, handle it. There are only two cases. */
980 if (rhs_elt)
981 {
982 if (!rhs_elt->is_scalar && !TREE_SIDE_EFFECTS (lhs))
983 fns->ldst (rhs_elt, lhs, gsi, false);
984 else
985 fns->use (rhs_elt, gimple_assign_rhs1_ptr (stmt), gsi, false, false);
986 }
987
988 /* If it isn't scalarizable, there may be scalarizable variables within, so
989 check for a call or else walk the RHS to see if we need to do any
990 copy-in operations. We need to do it before the LHS is scalarized so
991 that the statements get inserted in the proper place, before any
992 copy-out operations. */
993 else
994 sra_walk_expr (gimple_assign_rhs1_ptr (stmt), gsi, false, fns);
995
996 /* Likewise, handle the LHS being scalarizable. We have cases similar
997 to those above, but also want to handle RHS being constant. */
998 if (lhs_elt)
999 {
1000 /* If this is an assignment from a constant, or constructor, then
1001 we have access to all of the elements individually. Invoke INIT. */
1002 if (TREE_CODE (rhs) == COMPLEX_EXPR
1003 || TREE_CODE (rhs) == COMPLEX_CST
1004 || TREE_CODE (rhs) == CONSTRUCTOR)
1005 fns->init (lhs_elt, rhs, gsi);
1006
1007 /* If this is an assignment from read-only memory, treat this as if
1008 we'd been passed the constructor directly. Invoke INIT. */
1009 else if (TREE_CODE (rhs) == VAR_DECL
1010 && TREE_STATIC (rhs)
1011 && !DECL_EXTERNAL (rhs)
1012 && TREE_READONLY (rhs)
1013 && targetm.binds_local_p (rhs))
1014 fns->init (lhs_elt, DECL_INITIAL (rhs), gsi);
1015
1016 /* If this is a copy from a non-scalarizable lvalue, invoke LDST.
1017 The lvalue requirement prevents us from trying to directly scalarize
1018 the result of a function call. Which would result in trying to call
1019 the function multiple times, and other evil things. */
1020 else if (!lhs_elt->is_scalar
1021 && !TREE_SIDE_EFFECTS (rhs) && is_gimple_addressable (rhs))
1022 fns->ldst (lhs_elt, rhs, gsi, true);
1023
1024 /* Otherwise we're being used in some context that requires the
1025 aggregate to be seen as a whole. Invoke USE. */
1026 else
1027 fns->use (lhs_elt, gimple_assign_lhs_ptr (stmt), gsi, true, false);
1028 }
1029
1030 /* Similarly to above, LHS_ELT being null only means that the LHS as a
1031 whole is not a scalarizable reference. There may be occurrences of
1032 scalarizable variables within, which implies a USE. */
1033 else
1034 sra_walk_expr (gimple_assign_lhs_ptr (stmt), gsi, true, fns);
1035 }
1036
1037 /* Entry point to the walk functions. Search the entire function,
1038 invoking the callbacks in FNS on each of the references to
1039 scalarizable variables. */
1040
1041 static void
1042 sra_walk_function (const struct sra_walk_fns *fns)
1043 {
1044 basic_block bb;
1045 gimple_stmt_iterator si, ni;
1046
1047 /* ??? Phase 4 could derive some benefit to walking the function in
1048 dominator tree order. */
1049
1050 FOR_EACH_BB (bb)
1051 for (si = gsi_start_bb (bb); !gsi_end_p (si); si = ni)
1052 {
1053 gimple stmt;
1054
1055 stmt = gsi_stmt (si);
1056
1057 ni = si;
1058 gsi_next (&ni);
1059
1060 /* If the statement has no virtual operands, then it doesn't
1061 make any structure references that we care about. */
1062 if (gimple_aliases_computed_p (cfun)
1063 && ZERO_SSA_OPERANDS (stmt, (SSA_OP_VIRTUAL_DEFS | SSA_OP_VUSE)))
1064 continue;
1065
1066 switch (gimple_code (stmt))
1067 {
1068 case GIMPLE_RETURN:
1069 /* If we have "return <retval>" then the return value is
1070 already exposed for our pleasure. Walk it as a USE to
1071 force all the components back in place for the return.
1072 */
1073 if (gimple_return_retval (stmt) == NULL_TREE)
1074 ;
1075 else
1076 sra_walk_expr (gimple_return_retval_ptr (stmt), &si, false,
1077 fns);
1078 break;
1079
1080 case GIMPLE_ASSIGN:
1081 sra_walk_gimple_assign (stmt, &si, fns);
1082 break;
1083 case GIMPLE_CALL:
1084 sra_walk_gimple_call (stmt, &si, fns);
1085 break;
1086 case GIMPLE_ASM:
1087 sra_walk_gimple_asm (stmt, &si, fns);
1088 break;
1089
1090 default:
1091 break;
1092 }
1093 }
1094 }
1095
1096 /* Phase One: Scan all referenced variables in the program looking for
1097 structures that could be decomposed. */
1098
1099 static bool
1100 find_candidates_for_sra (void)
1101 {
1102 bool any_set = false;
1103 tree var;
1104 referenced_var_iterator rvi;
1105
1106 FOR_EACH_REFERENCED_VAR (var, rvi)
1107 {
1108 if (decl_can_be_decomposed_p (var))
1109 {
1110 bitmap_set_bit (sra_candidates, DECL_UID (var));
1111 any_set = true;
1112 }
1113 }
1114
1115 return any_set;
1116 }
1117
1118
1119 /* Phase Two: Scan all references to scalarizable variables. Count the
1120 number of times they are used or copied respectively. */
1121
1122 /* Callbacks to fill in SRA_WALK_FNS. Everything but USE is
1123 considered a copy, because we can decompose the reference such that
1124 the sub-elements needn't be contiguous. */
1125
1126 static void
1127 scan_use (struct sra_elt *elt, tree *expr_p ATTRIBUTE_UNUSED,
1128 gimple_stmt_iterator *gsi ATTRIBUTE_UNUSED,
1129 bool is_output ATTRIBUTE_UNUSED, bool use_all ATTRIBUTE_UNUSED)
1130 {
1131 elt->n_uses += 1;
1132 }
1133
1134 static void
1135 scan_copy (struct sra_elt *lhs_elt, struct sra_elt *rhs_elt,
1136 gimple_stmt_iterator *gsi ATTRIBUTE_UNUSED)
1137 {
1138 lhs_elt->n_copies += 1;
1139 rhs_elt->n_copies += 1;
1140 }
1141
1142 static void
1143 scan_init (struct sra_elt *lhs_elt, tree rhs ATTRIBUTE_UNUSED,
1144 gimple_stmt_iterator *gsi ATTRIBUTE_UNUSED)
1145 {
1146 lhs_elt->n_copies += 1;
1147 }
1148
1149 static void
1150 scan_ldst (struct sra_elt *elt, tree other ATTRIBUTE_UNUSED,
1151 gimple_stmt_iterator *gsi ATTRIBUTE_UNUSED,
1152 bool is_output ATTRIBUTE_UNUSED)
1153 {
1154 elt->n_copies += 1;
1155 }
1156
1157 /* Dump the values we collected during the scanning phase. */
1158
1159 static void
1160 scan_dump (struct sra_elt *elt)
1161 {
1162 struct sra_elt *c;
1163
1164 dump_sra_elt_name (dump_file, elt);
1165 fprintf (dump_file, ": n_uses=%u n_copies=%u\n", elt->n_uses, elt->n_copies);
1166
1167 for (c = elt->children; c ; c = c->sibling)
1168 scan_dump (c);
1169
1170 for (c = elt->groups; c ; c = c->sibling)
1171 scan_dump (c);
1172 }
1173
1174 /* Entry point to phase 2. Scan the entire function, building up
1175 scalarization data structures, recording copies and uses. */
1176
1177 static void
1178 scan_function (void)
1179 {
1180 static const struct sra_walk_fns fns = {
1181 scan_use, scan_copy, scan_init, scan_ldst, true
1182 };
1183 bitmap_iterator bi;
1184
1185 sra_walk_function (&fns);
1186
1187 if (dump_file && (dump_flags & TDF_DETAILS))
1188 {
1189 unsigned i;
1190
1191 fputs ("\nScan results:\n", dump_file);
1192 EXECUTE_IF_SET_IN_BITMAP (sra_candidates, 0, i, bi)
1193 {
1194 tree var = referenced_var (i);
1195 struct sra_elt *elt = lookup_element (NULL, var, NULL, NO_INSERT);
1196 if (elt)
1197 scan_dump (elt);
1198 }
1199 fputc ('\n', dump_file);
1200 }
1201 }
1202
1203 /* Phase Three: Make decisions about which variables to scalarize, if any.
1204 All elements to be scalarized have replacement variables made for them. */
1205
1206 /* A subroutine of build_element_name. Recursively build the element
1207 name on the obstack. */
1208
1209 static void
1210 build_element_name_1 (struct sra_elt *elt)
1211 {
1212 tree t;
1213 char buffer[32];
1214
1215 if (elt->parent)
1216 {
1217 build_element_name_1 (elt->parent);
1218 obstack_1grow (&sra_obstack, '$');
1219
1220 if (TREE_CODE (elt->parent->type) == COMPLEX_TYPE)
1221 {
1222 if (elt->element == integer_zero_node)
1223 obstack_grow (&sra_obstack, "real", 4);
1224 else
1225 obstack_grow (&sra_obstack, "imag", 4);
1226 return;
1227 }
1228 }
1229
1230 t = elt->element;
1231 if (TREE_CODE (t) == INTEGER_CST)
1232 {
1233 /* ??? Eh. Don't bother doing double-wide printing. */
1234 sprintf (buffer, HOST_WIDE_INT_PRINT_DEC, TREE_INT_CST_LOW (t));
1235 obstack_grow (&sra_obstack, buffer, strlen (buffer));
1236 }
1237 else if (TREE_CODE (t) == BIT_FIELD_REF)
1238 {
1239 sprintf (buffer, "B" HOST_WIDE_INT_PRINT_DEC,
1240 tree_low_cst (TREE_OPERAND (t, 2), 1));
1241 obstack_grow (&sra_obstack, buffer, strlen (buffer));
1242 sprintf (buffer, "F" HOST_WIDE_INT_PRINT_DEC,
1243 tree_low_cst (TREE_OPERAND (t, 1), 1));
1244 obstack_grow (&sra_obstack, buffer, strlen (buffer));
1245 }
1246 else
1247 {
1248 tree name = DECL_NAME (t);
1249 if (name)
1250 obstack_grow (&sra_obstack, IDENTIFIER_POINTER (name),
1251 IDENTIFIER_LENGTH (name));
1252 else
1253 {
1254 sprintf (buffer, "D%u", DECL_UID (t));
1255 obstack_grow (&sra_obstack, buffer, strlen (buffer));
1256 }
1257 }
1258 }
1259
1260 /* Construct a pretty variable name for an element's replacement variable.
1261 The name is built on the obstack. */
1262
1263 static char *
1264 build_element_name (struct sra_elt *elt)
1265 {
1266 build_element_name_1 (elt);
1267 obstack_1grow (&sra_obstack, '\0');
1268 return XOBFINISH (&sra_obstack, char *);
1269 }
1270
1271 /* Instantiate an element as an independent variable. */
1272
1273 static void
1274 instantiate_element (struct sra_elt *elt)
1275 {
1276 struct sra_elt *base_elt;
1277 tree var, base;
1278 bool nowarn = TREE_NO_WARNING (elt->element);
1279
1280 for (base_elt = elt; base_elt->parent; base_elt = base_elt->parent)
1281 if (!nowarn)
1282 nowarn = TREE_NO_WARNING (base_elt->parent->element);
1283 base = base_elt->element;
1284
1285 elt->replacement = var = make_rename_temp (elt->type, "SR");
1286
1287 if (DECL_P (elt->element)
1288 && !tree_int_cst_equal (DECL_SIZE (var), DECL_SIZE (elt->element)))
1289 {
1290 DECL_SIZE (var) = DECL_SIZE (elt->element);
1291 DECL_SIZE_UNIT (var) = DECL_SIZE_UNIT (elt->element);
1292
1293 elt->in_bitfld_block = 1;
1294 elt->replacement = fold_build3 (BIT_FIELD_REF, elt->type, var,
1295 DECL_SIZE (var),
1296 BYTES_BIG_ENDIAN
1297 ? size_binop (MINUS_EXPR,
1298 TYPE_SIZE (elt->type),
1299 DECL_SIZE (var))
1300 : bitsize_int (0));
1301 }
1302
1303 /* For vectors, if used on the left hand side with BIT_FIELD_REF,
1304 they are not a gimple register. */
1305 if (TREE_CODE (TREE_TYPE (var)) == VECTOR_TYPE && elt->is_vector_lhs)
1306 DECL_GIMPLE_REG_P (var) = 0;
1307
1308 DECL_SOURCE_LOCATION (var) = DECL_SOURCE_LOCATION (base);
1309 DECL_ARTIFICIAL (var) = 1;
1310
1311 if (TREE_THIS_VOLATILE (elt->type))
1312 {
1313 TREE_THIS_VOLATILE (var) = 1;
1314 TREE_SIDE_EFFECTS (var) = 1;
1315 }
1316
1317 if (DECL_NAME (base) && !DECL_IGNORED_P (base))
1318 {
1319 char *pretty_name = build_element_name (elt);
1320 DECL_NAME (var) = get_identifier (pretty_name);
1321 obstack_free (&sra_obstack, pretty_name);
1322
1323 SET_DECL_DEBUG_EXPR (var, generate_element_ref (elt));
1324 DECL_DEBUG_EXPR_IS_FROM (var) = 1;
1325
1326 DECL_IGNORED_P (var) = 0;
1327 TREE_NO_WARNING (var) = nowarn;
1328 }
1329 else
1330 {
1331 DECL_IGNORED_P (var) = 1;
1332 /* ??? We can't generate any warning that would be meaningful. */
1333 TREE_NO_WARNING (var) = 1;
1334 }
1335
1336 /* Zero-initialize bit-field scalarization variables, to avoid
1337 triggering undefined behavior. */
1338 if (TREE_CODE (elt->element) == BIT_FIELD_REF
1339 || (var != elt->replacement
1340 && TREE_CODE (elt->replacement) == BIT_FIELD_REF))
1341 {
1342 gimple_seq init = sra_build_assignment (var,
1343 fold_convert (TREE_TYPE (var),
1344 integer_zero_node)
1345 );
1346 insert_edge_copies_seq (init, ENTRY_BLOCK_PTR);
1347 mark_all_v_defs_seq (init);
1348 }
1349
1350 if (dump_file)
1351 {
1352 fputs (" ", dump_file);
1353 dump_sra_elt_name (dump_file, elt);
1354 fputs (" -> ", dump_file);
1355 print_generic_expr (dump_file, var, dump_flags);
1356 fputc ('\n', dump_file);
1357 }
1358 }
1359
1360 /* Make one pass across an element tree deciding whether or not it's
1361 profitable to instantiate individual leaf scalars.
1362
1363 PARENT_USES and PARENT_COPIES are the sum of the N_USES and N_COPIES
1364 fields all the way up the tree. */
1365
1366 static void
1367 decide_instantiation_1 (struct sra_elt *elt, unsigned int parent_uses,
1368 unsigned int parent_copies)
1369 {
1370 if (dump_file && !elt->parent)
1371 {
1372 fputs ("Initial instantiation for ", dump_file);
1373 dump_sra_elt_name (dump_file, elt);
1374 fputc ('\n', dump_file);
1375 }
1376
1377 if (elt->cannot_scalarize)
1378 return;
1379
1380 if (elt->is_scalar)
1381 {
1382 /* The decision is simple: instantiate if we're used more frequently
1383 than the parent needs to be seen as a complete unit. */
1384 if (elt->n_uses + elt->n_copies + parent_copies > parent_uses)
1385 instantiate_element (elt);
1386 }
1387 else
1388 {
1389 struct sra_elt *c, *group;
1390 unsigned int this_uses = elt->n_uses + parent_uses;
1391 unsigned int this_copies = elt->n_copies + parent_copies;
1392
1393 /* Consider groups of sub-elements as weighing in favour of
1394 instantiation whatever their size. */
1395 for (group = elt->groups; group ; group = group->sibling)
1396 FOR_EACH_ACTUAL_CHILD (c, group)
1397 {
1398 c->n_uses += group->n_uses;
1399 c->n_copies += group->n_copies;
1400 }
1401
1402 for (c = elt->children; c ; c = c->sibling)
1403 decide_instantiation_1 (c, this_uses, this_copies);
1404 }
1405 }
1406
1407 /* Compute the size and number of all instantiated elements below ELT.
1408 We will only care about this if the size of the complete structure
1409 fits in a HOST_WIDE_INT, so we don't have to worry about overflow. */
1410
1411 static unsigned int
1412 sum_instantiated_sizes (struct sra_elt *elt, unsigned HOST_WIDE_INT *sizep)
1413 {
1414 if (elt->replacement)
1415 {
1416 *sizep += TREE_INT_CST_LOW (TYPE_SIZE_UNIT (elt->type));
1417 return 1;
1418 }
1419 else
1420 {
1421 struct sra_elt *c;
1422 unsigned int count = 0;
1423
1424 for (c = elt->children; c ; c = c->sibling)
1425 count += sum_instantiated_sizes (c, sizep);
1426
1427 return count;
1428 }
1429 }
1430
1431 /* Instantiate fields in ELT->TYPE that are not currently present as
1432 children of ELT. */
1433
1434 static void instantiate_missing_elements (struct sra_elt *elt);
1435
1436 static struct sra_elt *
1437 instantiate_missing_elements_1 (struct sra_elt *elt, tree child, tree type)
1438 {
1439 struct sra_elt *sub = lookup_element (elt, child, type, INSERT);
1440 if (sub->is_scalar)
1441 {
1442 if (sub->replacement == NULL)
1443 instantiate_element (sub);
1444 }
1445 else
1446 instantiate_missing_elements (sub);
1447 return sub;
1448 }
1449
1450 /* Obtain the canonical type for field F of ELEMENT. */
1451
1452 static tree
1453 canon_type_for_field (tree f, tree element)
1454 {
1455 tree field_type = TREE_TYPE (f);
1456
1457 /* canonicalize_component_ref() unwidens some bit-field types (not
1458 marked as DECL_BIT_FIELD in C++), so we must do the same, lest we
1459 may introduce type mismatches. */
1460 if (INTEGRAL_TYPE_P (field_type)
1461 && DECL_MODE (f) != TYPE_MODE (field_type))
1462 field_type = TREE_TYPE (get_unwidened (build3 (COMPONENT_REF,
1463 field_type,
1464 element,
1465 f, NULL_TREE),
1466 NULL_TREE));
1467
1468 return field_type;
1469 }
1470
1471 /* Look for adjacent fields of ELT starting at F that we'd like to
1472 scalarize as a single variable. Return the last field of the
1473 group. */
1474
1475 static tree
1476 try_instantiate_multiple_fields (struct sra_elt *elt, tree f)
1477 {
1478 int count;
1479 unsigned HOST_WIDE_INT align, bit, size, alchk;
1480 enum machine_mode mode;
1481 tree first = f, prev;
1482 tree type, var;
1483 struct sra_elt *block;
1484
1485 /* Point fields are typically best handled as standalone entities. */
1486 if (POINTER_TYPE_P (TREE_TYPE (f)))
1487 return f;
1488
1489 if (!is_sra_scalar_type (TREE_TYPE (f))
1490 || !host_integerp (DECL_FIELD_OFFSET (f), 1)
1491 || !host_integerp (DECL_FIELD_BIT_OFFSET (f), 1)
1492 || !host_integerp (DECL_SIZE (f), 1)
1493 || lookup_element (elt, f, NULL, NO_INSERT))
1494 return f;
1495
1496 block = elt;
1497
1498 /* For complex and array objects, there are going to be integer
1499 literals as child elements. In this case, we can't just take the
1500 alignment and mode of the decl, so we instead rely on the element
1501 type.
1502
1503 ??? We could try to infer additional alignment from the full
1504 object declaration and the location of the sub-elements we're
1505 accessing. */
1506 for (count = 0; !DECL_P (block->element); count++)
1507 block = block->parent;
1508
1509 align = DECL_ALIGN (block->element);
1510 alchk = GET_MODE_BITSIZE (DECL_MODE (block->element));
1511
1512 if (count)
1513 {
1514 type = TREE_TYPE (block->element);
1515 while (count--)
1516 type = TREE_TYPE (type);
1517
1518 align = TYPE_ALIGN (type);
1519 alchk = GET_MODE_BITSIZE (TYPE_MODE (type));
1520 }
1521
1522 if (align < alchk)
1523 align = alchk;
1524
1525 /* Coalescing wider fields is probably pointless and
1526 inefficient. */
1527 if (align > BITS_PER_WORD)
1528 align = BITS_PER_WORD;
1529
1530 bit = tree_low_cst (DECL_FIELD_OFFSET (f), 1) * BITS_PER_UNIT
1531 + tree_low_cst (DECL_FIELD_BIT_OFFSET (f), 1);
1532 size = tree_low_cst (DECL_SIZE (f), 1);
1533
1534 alchk = align - 1;
1535 alchk = ~alchk;
1536
1537 if ((bit & alchk) != ((bit + size - 1) & alchk))
1538 return f;
1539
1540 /* Find adjacent fields in the same alignment word. */
1541
1542 for (prev = f, f = TREE_CHAIN (f);
1543 f && TREE_CODE (f) == FIELD_DECL
1544 && is_sra_scalar_type (TREE_TYPE (f))
1545 && host_integerp (DECL_FIELD_OFFSET (f), 1)
1546 && host_integerp (DECL_FIELD_BIT_OFFSET (f), 1)
1547 && host_integerp (DECL_SIZE (f), 1)
1548 && !lookup_element (elt, f, NULL, NO_INSERT);
1549 prev = f, f = TREE_CHAIN (f))
1550 {
1551 unsigned HOST_WIDE_INT nbit, nsize;
1552
1553 nbit = tree_low_cst (DECL_FIELD_OFFSET (f), 1) * BITS_PER_UNIT
1554 + tree_low_cst (DECL_FIELD_BIT_OFFSET (f), 1);
1555 nsize = tree_low_cst (DECL_SIZE (f), 1);
1556
1557 if (bit + size == nbit)
1558 {
1559 if ((bit & alchk) != ((nbit + nsize - 1) & alchk))
1560 {
1561 /* If we're at an alignment boundary, don't bother
1562 growing alignment such that we can include this next
1563 field. */
1564 if ((nbit & alchk)
1565 || GET_MODE_BITSIZE (DECL_MODE (f)) <= align)
1566 break;
1567
1568 align = GET_MODE_BITSIZE (DECL_MODE (f));
1569 alchk = align - 1;
1570 alchk = ~alchk;
1571
1572 if ((bit & alchk) != ((nbit + nsize - 1) & alchk))
1573 break;
1574 }
1575 size += nsize;
1576 }
1577 else if (nbit + nsize == bit)
1578 {
1579 if ((nbit & alchk) != ((bit + size - 1) & alchk))
1580 {
1581 if ((bit & alchk)
1582 || GET_MODE_BITSIZE (DECL_MODE (f)) <= align)
1583 break;
1584
1585 align = GET_MODE_BITSIZE (DECL_MODE (f));
1586 alchk = align - 1;
1587 alchk = ~alchk;
1588
1589 if ((nbit & alchk) != ((bit + size - 1) & alchk))
1590 break;
1591 }
1592 bit = nbit;
1593 size += nsize;
1594 }
1595 else
1596 break;
1597 }
1598
1599 f = prev;
1600
1601 if (f == first)
1602 return f;
1603
1604 gcc_assert ((bit & alchk) == ((bit + size - 1) & alchk));
1605
1606 /* Try to widen the bit range so as to cover padding bits as well. */
1607
1608 if ((bit & ~alchk) || size != align)
1609 {
1610 unsigned HOST_WIDE_INT mbit = bit & alchk;
1611 unsigned HOST_WIDE_INT msize = align;
1612
1613 for (f = TYPE_FIELDS (elt->type);
1614 f; f = TREE_CHAIN (f))
1615 {
1616 unsigned HOST_WIDE_INT fbit, fsize;
1617
1618 /* Skip the fields from first to prev. */
1619 if (f == first)
1620 {
1621 f = prev;
1622 continue;
1623 }
1624
1625 if (!(TREE_CODE (f) == FIELD_DECL
1626 && host_integerp (DECL_FIELD_OFFSET (f), 1)
1627 && host_integerp (DECL_FIELD_BIT_OFFSET (f), 1)))
1628 continue;
1629
1630 fbit = tree_low_cst (DECL_FIELD_OFFSET (f), 1) * BITS_PER_UNIT
1631 + tree_low_cst (DECL_FIELD_BIT_OFFSET (f), 1);
1632
1633 /* If we're past the selected word, we're fine. */
1634 if ((bit & alchk) < (fbit & alchk))
1635 continue;
1636
1637 if (host_integerp (DECL_SIZE (f), 1))
1638 fsize = tree_low_cst (DECL_SIZE (f), 1);
1639 else
1640 /* Assume a variable-sized field takes up all space till
1641 the end of the word. ??? Endianness issues? */
1642 fsize = align - (fbit & alchk);
1643
1644 if ((fbit & alchk) < (bit & alchk))
1645 {
1646 /* A large field might start at a previous word and
1647 extend into the selected word. Exclude those
1648 bits. ??? Endianness issues? */
1649 HOST_WIDE_INT diff = fbit + fsize - mbit;
1650
1651 if (diff <= 0)
1652 continue;
1653
1654 mbit += diff;
1655 msize -= diff;
1656 }
1657 else
1658 {
1659 /* Non-overlapping, great. */
1660 if (fbit + fsize <= mbit
1661 || mbit + msize <= fbit)
1662 continue;
1663
1664 if (fbit <= mbit)
1665 {
1666 unsigned HOST_WIDE_INT diff = fbit + fsize - mbit;
1667 mbit += diff;
1668 msize -= diff;
1669 }
1670 else if (fbit > mbit)
1671 msize -= (mbit + msize - fbit);
1672 else
1673 gcc_unreachable ();
1674 }
1675 }
1676
1677 bit = mbit;
1678 size = msize;
1679 }
1680
1681 /* Now we know the bit range we're interested in. Find the smallest
1682 machine mode we can use to access it. */
1683
1684 for (mode = smallest_mode_for_size (size, MODE_INT);
1685 ;
1686 mode = GET_MODE_WIDER_MODE (mode))
1687 {
1688 gcc_assert (mode != VOIDmode);
1689
1690 alchk = GET_MODE_PRECISION (mode) - 1;
1691 alchk = ~alchk;
1692
1693 if ((bit & alchk) == ((bit + size - 1) & alchk))
1694 break;
1695 }
1696
1697 gcc_assert (~alchk < align);
1698
1699 /* Create the field group as a single variable. */
1700
1701 /* We used to create a type for the mode above, but size turns
1702 to be out not of mode-size. As we need a matching type
1703 to build a BIT_FIELD_REF, use a nonstandard integer type as
1704 fallback. */
1705 type = lang_hooks.types.type_for_size (size, 1);
1706 if (!type || TYPE_PRECISION (type) != size)
1707 type = build_nonstandard_integer_type (size, 1);
1708 gcc_assert (type);
1709 var = build3 (BIT_FIELD_REF, type, NULL_TREE,
1710 bitsize_int (size), bitsize_int (bit));
1711
1712 block = instantiate_missing_elements_1 (elt, var, type);
1713 gcc_assert (block && block->is_scalar);
1714
1715 var = block->replacement;
1716 block->in_bitfld_block = 2;
1717
1718 /* Add the member fields to the group, such that they access
1719 portions of the group variable. */
1720
1721 for (f = first; f != TREE_CHAIN (prev); f = TREE_CHAIN (f))
1722 {
1723 tree field_type = canon_type_for_field (f, elt->element);
1724 struct sra_elt *fld = lookup_element (block, f, field_type, INSERT);
1725
1726 gcc_assert (fld && fld->is_scalar && !fld->replacement);
1727
1728 fld->replacement = fold_build3 (BIT_FIELD_REF, field_type, var,
1729 bitsize_int (TYPE_PRECISION (field_type)),
1730 bitsize_int
1731 ((TREE_INT_CST_LOW (DECL_FIELD_OFFSET (f))
1732 * BITS_PER_UNIT
1733 + (TREE_INT_CST_LOW
1734 (DECL_FIELD_BIT_OFFSET (f)))
1735 - (TREE_INT_CST_LOW
1736 (TREE_OPERAND (block->element, 2))))
1737 & ~alchk));
1738 fld->in_bitfld_block = 1;
1739 }
1740
1741 return prev;
1742 }
1743
1744 static void
1745 instantiate_missing_elements (struct sra_elt *elt)
1746 {
1747 tree type = elt->type;
1748
1749 switch (TREE_CODE (type))
1750 {
1751 case RECORD_TYPE:
1752 {
1753 tree f;
1754 for (f = TYPE_FIELDS (type); f ; f = TREE_CHAIN (f))
1755 if (TREE_CODE (f) == FIELD_DECL)
1756 {
1757 tree last = try_instantiate_multiple_fields (elt, f);
1758
1759 if (last != f)
1760 {
1761 f = last;
1762 continue;
1763 }
1764
1765 instantiate_missing_elements_1 (elt, f,
1766 canon_type_for_field
1767 (f, elt->element));
1768 }
1769 break;
1770 }
1771
1772 case ARRAY_TYPE:
1773 {
1774 tree i, max, subtype;
1775
1776 i = TYPE_MIN_VALUE (TYPE_DOMAIN (type));
1777 max = TYPE_MAX_VALUE (TYPE_DOMAIN (type));
1778 subtype = TREE_TYPE (type);
1779
1780 while (1)
1781 {
1782 instantiate_missing_elements_1 (elt, i, subtype);
1783 if (tree_int_cst_equal (i, max))
1784 break;
1785 i = int_const_binop (PLUS_EXPR, i, integer_one_node, true);
1786 }
1787
1788 break;
1789 }
1790
1791 case COMPLEX_TYPE:
1792 type = TREE_TYPE (type);
1793 instantiate_missing_elements_1 (elt, integer_zero_node, type);
1794 instantiate_missing_elements_1 (elt, integer_one_node, type);
1795 break;
1796
1797 default:
1798 gcc_unreachable ();
1799 }
1800 }
1801
1802 /* Return true if there is only one non aggregate field in the record, TYPE.
1803 Return false otherwise. */
1804
1805 static bool
1806 single_scalar_field_in_record_p (tree type)
1807 {
1808 int num_fields = 0;
1809 tree field;
1810 if (TREE_CODE (type) != RECORD_TYPE)
1811 return false;
1812
1813 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
1814 if (TREE_CODE (field) == FIELD_DECL)
1815 {
1816 num_fields++;
1817
1818 if (num_fields == 2)
1819 return false;
1820
1821 if (AGGREGATE_TYPE_P (TREE_TYPE (field)))
1822 return false;
1823 }
1824
1825 return true;
1826 }
1827
1828 /* Make one pass across an element tree deciding whether to perform block
1829 or element copies. If we decide on element copies, instantiate all
1830 elements. Return true if there are any instantiated sub-elements. */
1831
1832 static bool
1833 decide_block_copy (struct sra_elt *elt)
1834 {
1835 struct sra_elt *c;
1836 bool any_inst;
1837
1838 /* We shouldn't be invoked on groups of sub-elements as they must
1839 behave like their parent as far as block copy is concerned. */
1840 gcc_assert (!elt->is_group);
1841
1842 /* If scalarization is disabled, respect it. */
1843 if (elt->cannot_scalarize)
1844 {
1845 elt->use_block_copy = 1;
1846
1847 if (dump_file)
1848 {
1849 fputs ("Scalarization disabled for ", dump_file);
1850 dump_sra_elt_name (dump_file, elt);
1851 fputc ('\n', dump_file);
1852 }
1853
1854 /* Disable scalarization of sub-elements */
1855 for (c = elt->children; c; c = c->sibling)
1856 {
1857 c->cannot_scalarize = 1;
1858 decide_block_copy (c);
1859 }
1860
1861 /* Groups behave like their parent. */
1862 for (c = elt->groups; c; c = c->sibling)
1863 {
1864 c->cannot_scalarize = 1;
1865 c->use_block_copy = 1;
1866 }
1867
1868 return false;
1869 }
1870
1871 /* Don't decide if we've no uses and no groups. */
1872 if (elt->n_uses == 0 && elt->n_copies == 0 && elt->groups == NULL)
1873 ;
1874
1875 else if (!elt->is_scalar)
1876 {
1877 tree size_tree = TYPE_SIZE_UNIT (elt->type);
1878 bool use_block_copy = true;
1879
1880 /* Tradeoffs for COMPLEX types pretty much always make it better
1881 to go ahead and split the components. */
1882 if (TREE_CODE (elt->type) == COMPLEX_TYPE)
1883 use_block_copy = false;
1884
1885 /* Don't bother trying to figure out the rest if the structure is
1886 so large we can't do easy arithmetic. This also forces block
1887 copies for variable sized structures. */
1888 else if (host_integerp (size_tree, 1))
1889 {
1890 unsigned HOST_WIDE_INT full_size, inst_size = 0;
1891 unsigned int max_size, max_count, inst_count, full_count;
1892
1893 /* If the sra-max-structure-size parameter is 0, then the
1894 user has not overridden the parameter and we can choose a
1895 sensible default. */
1896 max_size = SRA_MAX_STRUCTURE_SIZE
1897 ? SRA_MAX_STRUCTURE_SIZE
1898 : MOVE_RATIO (optimize_function_for_speed_p (cfun)) * UNITS_PER_WORD;
1899 max_count = SRA_MAX_STRUCTURE_COUNT
1900 ? SRA_MAX_STRUCTURE_COUNT
1901 : MOVE_RATIO (optimize_function_for_speed_p (cfun));
1902
1903 full_size = tree_low_cst (size_tree, 1);
1904 full_count = count_type_elements (elt->type, false);
1905 inst_count = sum_instantiated_sizes (elt, &inst_size);
1906
1907 /* If there is only one scalar field in the record, don't block copy. */
1908 if (single_scalar_field_in_record_p (elt->type))
1909 use_block_copy = false;
1910
1911 /* ??? What to do here. If there are two fields, and we've only
1912 instantiated one, then instantiating the other is clearly a win.
1913 If there are a large number of fields then the size of the copy
1914 is much more of a factor. */
1915
1916 /* If the structure is small, and we've made copies, go ahead
1917 and instantiate, hoping that the copies will go away. */
1918 if (full_size <= max_size
1919 && (full_count - inst_count) <= max_count
1920 && elt->n_copies > elt->n_uses)
1921 use_block_copy = false;
1922 else if (inst_count * 100 >= full_count * SRA_FIELD_STRUCTURE_RATIO
1923 && inst_size * 100 >= full_size * SRA_FIELD_STRUCTURE_RATIO)
1924 use_block_copy = false;
1925
1926 /* In order to avoid block copy, we have to be able to instantiate
1927 all elements of the type. See if this is possible. */
1928 if (!use_block_copy
1929 && (!can_completely_scalarize_p (elt)
1930 || !type_can_instantiate_all_elements (elt->type)))
1931 use_block_copy = true;
1932 }
1933
1934 elt->use_block_copy = use_block_copy;
1935
1936 /* Groups behave like their parent. */
1937 for (c = elt->groups; c; c = c->sibling)
1938 c->use_block_copy = use_block_copy;
1939
1940 if (dump_file)
1941 {
1942 fprintf (dump_file, "Using %s for ",
1943 use_block_copy ? "block-copy" : "element-copy");
1944 dump_sra_elt_name (dump_file, elt);
1945 fputc ('\n', dump_file);
1946 }
1947
1948 if (!use_block_copy)
1949 {
1950 instantiate_missing_elements (elt);
1951 return true;
1952 }
1953 }
1954
1955 any_inst = elt->replacement != NULL;
1956
1957 for (c = elt->children; c ; c = c->sibling)
1958 any_inst |= decide_block_copy (c);
1959
1960 return any_inst;
1961 }
1962
1963 /* Entry point to phase 3. Instantiate scalar replacement variables. */
1964
1965 static void
1966 decide_instantiations (void)
1967 {
1968 unsigned int i;
1969 bool cleared_any;
1970 bitmap_head done_head;
1971 bitmap_iterator bi;
1972
1973 /* We cannot clear bits from a bitmap we're iterating over,
1974 so save up all the bits to clear until the end. */
1975 bitmap_initialize (&done_head, &bitmap_default_obstack);
1976 cleared_any = false;
1977
1978 EXECUTE_IF_SET_IN_BITMAP (sra_candidates, 0, i, bi)
1979 {
1980 tree var = referenced_var (i);
1981 struct sra_elt *elt = lookup_element (NULL, var, NULL, NO_INSERT);
1982 if (elt)
1983 {
1984 decide_instantiation_1 (elt, 0, 0);
1985 if (!decide_block_copy (elt))
1986 elt = NULL;
1987 }
1988 if (!elt)
1989 {
1990 bitmap_set_bit (&done_head, i);
1991 cleared_any = true;
1992 }
1993 }
1994
1995 if (cleared_any)
1996 {
1997 bitmap_and_compl_into (sra_candidates, &done_head);
1998 bitmap_and_compl_into (needs_copy_in, &done_head);
1999 }
2000 bitmap_clear (&done_head);
2001
2002 mark_set_for_renaming (sra_candidates);
2003
2004 if (dump_file)
2005 fputc ('\n', dump_file);
2006 }
2007
2008
2009 /* Phase Four: Update the function to match the replacements created. */
2010
2011 /* Mark all the variables in VDEF/VUSE operators for STMT for
2012 renaming. This becomes necessary when we modify all of a
2013 non-scalar. */
2014
2015 static void
2016 mark_all_v_defs_stmt (gimple stmt)
2017 {
2018 tree sym;
2019 ssa_op_iter iter;
2020
2021 update_stmt_if_modified (stmt);
2022
2023 FOR_EACH_SSA_TREE_OPERAND (sym, stmt, iter, SSA_OP_ALL_VIRTUALS)
2024 {
2025 if (TREE_CODE (sym) == SSA_NAME)
2026 sym = SSA_NAME_VAR (sym);
2027 mark_sym_for_renaming (sym);
2028 }
2029 }
2030
2031
2032 /* Mark all the variables in virtual operands in all the statements in
2033 LIST for renaming. */
2034
2035 static void
2036 mark_all_v_defs_seq (gimple_seq seq)
2037 {
2038 gimple_stmt_iterator gsi;
2039
2040 for (gsi = gsi_start (seq); !gsi_end_p (gsi); gsi_next (&gsi))
2041 mark_all_v_defs_stmt (gsi_stmt (gsi));
2042 }
2043
2044 /* Mark every replacement under ELT with TREE_NO_WARNING. */
2045
2046 static void
2047 mark_no_warning (struct sra_elt *elt)
2048 {
2049 if (!elt->all_no_warning)
2050 {
2051 if (elt->replacement)
2052 TREE_NO_WARNING (elt->replacement) = 1;
2053 else
2054 {
2055 struct sra_elt *c;
2056 FOR_EACH_ACTUAL_CHILD (c, elt)
2057 mark_no_warning (c);
2058 }
2059 elt->all_no_warning = true;
2060 }
2061 }
2062
2063 /* Build a single level component reference to ELT rooted at BASE. */
2064
2065 static tree
2066 generate_one_element_ref (struct sra_elt *elt, tree base)
2067 {
2068 switch (TREE_CODE (TREE_TYPE (base)))
2069 {
2070 case RECORD_TYPE:
2071 {
2072 tree field = elt->element;
2073
2074 /* We can't test elt->in_bitfld_block here because, when this is
2075 called from instantiate_element, we haven't set this field
2076 yet. */
2077 if (TREE_CODE (field) == BIT_FIELD_REF)
2078 {
2079 tree ret = unshare_expr (field);
2080 TREE_OPERAND (ret, 0) = base;
2081 return ret;
2082 }
2083
2084 /* Watch out for compatible records with differing field lists. */
2085 if (DECL_FIELD_CONTEXT (field) != TYPE_MAIN_VARIANT (TREE_TYPE (base)))
2086 field = find_compatible_field (TREE_TYPE (base), field);
2087
2088 return build3 (COMPONENT_REF, elt->type, base, field, NULL);
2089 }
2090
2091 case ARRAY_TYPE:
2092 if (TREE_CODE (elt->element) == RANGE_EXPR)
2093 return build4 (ARRAY_RANGE_REF, elt->type, base,
2094 TREE_OPERAND (elt->element, 0), NULL, NULL);
2095 else
2096 return build4 (ARRAY_REF, elt->type, base, elt->element, NULL, NULL);
2097
2098 case COMPLEX_TYPE:
2099 if (elt->element == integer_zero_node)
2100 return build1 (REALPART_EXPR, elt->type, base);
2101 else
2102 return build1 (IMAGPART_EXPR, elt->type, base);
2103
2104 default:
2105 gcc_unreachable ();
2106 }
2107 }
2108
2109 /* Build a full component reference to ELT rooted at its native variable. */
2110
2111 static tree
2112 generate_element_ref (struct sra_elt *elt)
2113 {
2114 if (elt->parent)
2115 return generate_one_element_ref (elt, generate_element_ref (elt->parent));
2116 else
2117 return elt->element;
2118 }
2119
2120 /* Return true if BF is a bit-field that we can handle like a scalar. */
2121
2122 static bool
2123 scalar_bitfield_p (tree bf)
2124 {
2125 return (TREE_CODE (bf) == BIT_FIELD_REF
2126 && (is_gimple_reg (TREE_OPERAND (bf, 0))
2127 || (TYPE_MODE (TREE_TYPE (TREE_OPERAND (bf, 0))) != BLKmode
2128 && (!TREE_SIDE_EFFECTS (TREE_OPERAND (bf, 0))
2129 || (GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE
2130 (TREE_OPERAND (bf, 0))))
2131 <= BITS_PER_WORD)))));
2132 }
2133
2134 /* Create an assignment statement from SRC to DST. */
2135
2136 static gimple_seq
2137 sra_build_assignment (tree dst, tree src)
2138 {
2139 gimple stmt;
2140 gimple_seq seq = NULL, seq2 = NULL;
2141 /* Turning BIT_FIELD_REFs into bit operations enables other passes
2142 to do a much better job at optimizing the code.
2143 From dst = BIT_FIELD_REF <var, sz, off> we produce
2144
2145 SR.1 = (scalar type) var;
2146 SR.2 = SR.1 >> off;
2147 SR.3 = SR.2 & ((1 << sz) - 1);
2148 ... possible sign extension of SR.3 ...
2149 dst = (destination type) SR.3;
2150 */
2151 if (scalar_bitfield_p (src))
2152 {
2153 tree var, shift, width;
2154 tree utype, stype;
2155 bool unsignedp = (INTEGRAL_TYPE_P (TREE_TYPE (src))
2156 ? TYPE_UNSIGNED (TREE_TYPE (src)) : true);
2157 struct gimplify_ctx gctx;
2158
2159 var = TREE_OPERAND (src, 0);
2160 width = TREE_OPERAND (src, 1);
2161 /* The offset needs to be adjusted to a right shift quantity
2162 depending on the endianness. */
2163 if (BYTES_BIG_ENDIAN)
2164 {
2165 tree tmp = size_binop (PLUS_EXPR, width, TREE_OPERAND (src, 2));
2166 shift = size_binop (MINUS_EXPR, TYPE_SIZE (TREE_TYPE (var)), tmp);
2167 }
2168 else
2169 shift = TREE_OPERAND (src, 2);
2170
2171 /* In weird cases we have non-integral types for the source or
2172 destination object.
2173 ??? For unknown reasons we also want an unsigned scalar type. */
2174 stype = TREE_TYPE (var);
2175 if (!INTEGRAL_TYPE_P (stype))
2176 stype = lang_hooks.types.type_for_size (TREE_INT_CST_LOW
2177 (TYPE_SIZE (stype)), 1);
2178 else if (!TYPE_UNSIGNED (stype))
2179 stype = unsigned_type_for (stype);
2180
2181 utype = TREE_TYPE (dst);
2182 if (!INTEGRAL_TYPE_P (utype))
2183 utype = lang_hooks.types.type_for_size (TREE_INT_CST_LOW
2184 (TYPE_SIZE (utype)), 1);
2185 else if (!TYPE_UNSIGNED (utype))
2186 utype = unsigned_type_for (utype);
2187
2188 /* Convert the base var of the BIT_FIELD_REF to the scalar type
2189 we use for computation if we cannot use it directly. */
2190 if (INTEGRAL_TYPE_P (TREE_TYPE (var)))
2191 var = fold_convert (stype, var);
2192 else
2193 var = fold_build1 (VIEW_CONVERT_EXPR, stype, var);
2194
2195 if (!integer_zerop (shift))
2196 var = fold_build2 (RSHIFT_EXPR, stype, var, shift);
2197
2198 /* If we need a masking operation, produce one. */
2199 if (TREE_INT_CST_LOW (width) == TYPE_PRECISION (stype))
2200 unsignedp = true;
2201 else
2202 {
2203 tree one = build_int_cst_wide (stype, 1, 0);
2204 tree mask = int_const_binop (LSHIFT_EXPR, one, width, 0);
2205 mask = int_const_binop (MINUS_EXPR, mask, one, 0);
2206 var = fold_build2 (BIT_AND_EXPR, stype, var, mask);
2207 }
2208
2209 /* After shifting and masking, convert to the target type. */
2210 var = fold_convert (utype, var);
2211
2212 /* Perform sign extension, if required.
2213 ??? This should never be necessary. */
2214 if (!unsignedp)
2215 {
2216 tree signbit = int_const_binop (LSHIFT_EXPR,
2217 build_int_cst_wide (utype, 1, 0),
2218 size_binop (MINUS_EXPR, width,
2219 bitsize_int (1)), 0);
2220
2221 var = fold_build2 (BIT_XOR_EXPR, utype, var, signbit);
2222 var = fold_build2 (MINUS_EXPR, utype, var, signbit);
2223 }
2224
2225 /* fold_build3 (BIT_FIELD_REF, ...) sometimes returns a cast. */
2226 STRIP_NOPS (dst);
2227
2228 /* Finally, move and convert to the destination. */
2229 if (INTEGRAL_TYPE_P (TREE_TYPE (dst)))
2230 var = fold_convert (TREE_TYPE (dst), var);
2231 else
2232 var = fold_build1 (VIEW_CONVERT_EXPR, TREE_TYPE (dst), var);
2233
2234 push_gimplify_context (&gctx);
2235 gctx.into_ssa = true;
2236 gctx.allow_rhs_cond_expr = true;
2237
2238 gimplify_assign (dst, var, &seq);
2239
2240 if (gimple_referenced_vars (cfun))
2241 for (var = gctx.temps; var; var = TREE_CHAIN (var))
2242 add_referenced_var (var);
2243 pop_gimplify_context (NULL);
2244
2245 return seq;
2246 }
2247
2248 /* fold_build3 (BIT_FIELD_REF, ...) sometimes returns a cast. */
2249 if (CONVERT_EXPR_P (dst))
2250 {
2251 STRIP_NOPS (dst);
2252 src = fold_convert (TREE_TYPE (dst), src);
2253 }
2254 /* It was hoped that we could perform some type sanity checking
2255 here, but since front-ends can emit accesses of fields in types
2256 different from their nominal types and copy structures containing
2257 them as a whole, we'd have to handle such differences here.
2258 Since such accesses under different types require compatibility
2259 anyway, there's little point in making tests and/or adding
2260 conversions to ensure the types of src and dst are the same.
2261 So we just assume type differences at this point are ok.
2262 The only exception we make here are pointer types, which can be different
2263 in e.g. structurally equal, but non-identical RECORD_TYPEs. */
2264 else if (POINTER_TYPE_P (TREE_TYPE (dst))
2265 && !useless_type_conversion_p (TREE_TYPE (dst), TREE_TYPE (src)))
2266 src = fold_convert (TREE_TYPE (dst), src);
2267
2268 /* ??? Only call the gimplifier if we need to. Otherwise we may
2269 end up substituting with DECL_VALUE_EXPR - see PR37380. */
2270 if (!handled_component_p (src)
2271 && !SSA_VAR_P (src))
2272 {
2273 src = force_gimple_operand (src, &seq2, false, NULL_TREE);
2274 gimple_seq_add_seq (&seq, seq2);
2275 }
2276 stmt = gimple_build_assign (dst, src);
2277 gimple_seq_add_stmt (&seq, stmt);
2278 return seq;
2279 }
2280
2281 /* BIT_FIELD_REFs must not be shared. sra_build_elt_assignment()
2282 takes care of assignments, but we must create copies for uses. */
2283 #define REPLDUP(t) (TREE_CODE (t) != BIT_FIELD_REF ? (t) : unshare_expr (t))
2284
2285 /* Emit an assignment from SRC to DST, but if DST is a scalarizable
2286 BIT_FIELD_REF, turn it into bit operations. */
2287
2288 static gimple_seq
2289 sra_build_bf_assignment (tree dst, tree src)
2290 {
2291 tree var, type, utype, tmp, tmp2, tmp3;
2292 gimple_seq seq;
2293 gimple stmt;
2294 tree cst, cst2, mask;
2295 tree minshift, maxshift;
2296
2297 if (TREE_CODE (dst) != BIT_FIELD_REF)
2298 return sra_build_assignment (dst, src);
2299
2300 var = TREE_OPERAND (dst, 0);
2301
2302 if (!scalar_bitfield_p (dst))
2303 return sra_build_assignment (REPLDUP (dst), src);
2304
2305 seq = NULL;
2306
2307 cst = fold_convert (bitsizetype, TREE_OPERAND (dst, 2));
2308 cst2 = size_binop (PLUS_EXPR,
2309 fold_convert (bitsizetype, TREE_OPERAND (dst, 1)),
2310 cst);
2311
2312 if (BYTES_BIG_ENDIAN)
2313 {
2314 maxshift = size_binop (MINUS_EXPR, TYPE_SIZE (TREE_TYPE (var)), cst);
2315 minshift = size_binop (MINUS_EXPR, TYPE_SIZE (TREE_TYPE (var)), cst2);
2316 }
2317 else
2318 {
2319 maxshift = cst2;
2320 minshift = cst;
2321 }
2322
2323 type = TREE_TYPE (var);
2324 if (!INTEGRAL_TYPE_P (type))
2325 type = lang_hooks.types.type_for_size
2326 (TREE_INT_CST_LOW (TYPE_SIZE (TREE_TYPE (var))), 1);
2327 if (TYPE_UNSIGNED (type))
2328 utype = type;
2329 else
2330 utype = unsigned_type_for (type);
2331
2332 mask = build_int_cst_wide (utype, 1, 0);
2333 if (TREE_INT_CST_LOW (maxshift) == TYPE_PRECISION (utype))
2334 cst = build_int_cst_wide (utype, 0, 0);
2335 else
2336 cst = int_const_binop (LSHIFT_EXPR, mask, maxshift, true);
2337 if (integer_zerop (minshift))
2338 cst2 = mask;
2339 else
2340 cst2 = int_const_binop (LSHIFT_EXPR, mask, minshift, true);
2341 mask = int_const_binop (MINUS_EXPR, cst, cst2, true);
2342 mask = fold_build1 (BIT_NOT_EXPR, utype, mask);
2343
2344 if (TYPE_MAIN_VARIANT (utype) != TYPE_MAIN_VARIANT (TREE_TYPE (var))
2345 && !integer_zerop (mask))
2346 {
2347 tmp = var;
2348 if (!is_gimple_variable (tmp))
2349 tmp = unshare_expr (var);
2350 else
2351 TREE_NO_WARNING (var) = true;
2352
2353 tmp2 = make_rename_temp (utype, "SR");
2354
2355 if (INTEGRAL_TYPE_P (TREE_TYPE (var)))
2356 tmp = fold_convert (utype, tmp);
2357 else
2358 tmp = fold_build1 (VIEW_CONVERT_EXPR, utype, tmp);
2359
2360 stmt = gimple_build_assign (tmp2, tmp);
2361 gimple_seq_add_stmt (&seq, stmt);
2362 }
2363 else
2364 tmp2 = var;
2365
2366 if (!integer_zerop (mask))
2367 {
2368 tmp = make_rename_temp (utype, "SR");
2369 stmt = gimple_build_assign (tmp, fold_build2 (BIT_AND_EXPR, utype,
2370 tmp2, mask));
2371 gimple_seq_add_stmt (&seq, stmt);
2372 }
2373 else
2374 tmp = mask;
2375
2376 if (is_gimple_reg (src) && INTEGRAL_TYPE_P (TREE_TYPE (src)))
2377 tmp2 = src;
2378 else if (INTEGRAL_TYPE_P (TREE_TYPE (src)))
2379 {
2380 gimple_seq tmp_seq;
2381 tmp2 = make_rename_temp (TREE_TYPE (src), "SR");
2382 tmp_seq = sra_build_assignment (tmp2, src);
2383 gimple_seq_add_seq (&seq, tmp_seq);
2384 }
2385 else
2386 {
2387 gimple_seq tmp_seq;
2388 tmp2 = make_rename_temp
2389 (lang_hooks.types.type_for_size
2390 (TREE_INT_CST_LOW (TYPE_SIZE (TREE_TYPE (src))),
2391 1), "SR");
2392 tmp_seq = sra_build_assignment (tmp2, fold_build1 (VIEW_CONVERT_EXPR,
2393 TREE_TYPE (tmp2), src));
2394 gimple_seq_add_seq (&seq, tmp_seq);
2395 }
2396
2397 if (!TYPE_UNSIGNED (TREE_TYPE (tmp2)))
2398 {
2399 gimple_seq tmp_seq;
2400 tree ut = unsigned_type_for (TREE_TYPE (tmp2));
2401 tmp3 = make_rename_temp (ut, "SR");
2402 tmp2 = fold_convert (ut, tmp2);
2403 tmp_seq = sra_build_assignment (tmp3, tmp2);
2404 gimple_seq_add_seq (&seq, tmp_seq);
2405
2406 tmp2 = fold_build1 (BIT_NOT_EXPR, utype, mask);
2407 tmp2 = int_const_binop (RSHIFT_EXPR, tmp2, minshift, true);
2408 tmp2 = fold_convert (ut, tmp2);
2409 tmp2 = fold_build2 (BIT_AND_EXPR, ut, tmp3, tmp2);
2410
2411 if (tmp3 != tmp2)
2412 {
2413 tmp3 = make_rename_temp (ut, "SR");
2414 tmp_seq = sra_build_assignment (tmp3, tmp2);
2415 gimple_seq_add_seq (&seq, tmp_seq);
2416 }
2417
2418 tmp2 = tmp3;
2419 }
2420
2421 if (TYPE_MAIN_VARIANT (TREE_TYPE (tmp2)) != TYPE_MAIN_VARIANT (utype))
2422 {
2423 gimple_seq tmp_seq;
2424 tmp3 = make_rename_temp (utype, "SR");
2425 tmp2 = fold_convert (utype, tmp2);
2426 tmp_seq = sra_build_assignment (tmp3, tmp2);
2427 gimple_seq_add_seq (&seq, tmp_seq);
2428 tmp2 = tmp3;
2429 }
2430
2431 if (!integer_zerop (minshift))
2432 {
2433 tmp3 = make_rename_temp (utype, "SR");
2434 stmt = gimple_build_assign (tmp3, fold_build2 (LSHIFT_EXPR, utype,
2435 tmp2, minshift));
2436 gimple_seq_add_stmt (&seq, stmt);
2437 tmp2 = tmp3;
2438 }
2439
2440 if (utype != TREE_TYPE (var))
2441 tmp3 = make_rename_temp (utype, "SR");
2442 else
2443 tmp3 = var;
2444 stmt = gimple_build_assign (tmp3, fold_build2 (BIT_IOR_EXPR, utype,
2445 tmp, tmp2));
2446 gimple_seq_add_stmt (&seq, stmt);
2447
2448 if (tmp3 != var)
2449 {
2450 if (TREE_TYPE (var) == type)
2451 stmt = gimple_build_assign (var, fold_convert (type, tmp3));
2452 else
2453 stmt = gimple_build_assign (var, fold_build1 (VIEW_CONVERT_EXPR,
2454 TREE_TYPE (var), tmp3));
2455 gimple_seq_add_stmt (&seq, stmt);
2456 }
2457
2458 return seq;
2459 }
2460
2461 /* Expand an assignment of SRC to the scalarized representation of
2462 ELT. If it is a field group, try to widen the assignment to cover
2463 the full variable. */
2464
2465 static gimple_seq
2466 sra_build_elt_assignment (struct sra_elt *elt, tree src)
2467 {
2468 tree dst = elt->replacement;
2469 tree var, tmp, cst, cst2;
2470 gimple stmt;
2471 gimple_seq seq;
2472
2473 if (TREE_CODE (dst) != BIT_FIELD_REF
2474 || !elt->in_bitfld_block)
2475 return sra_build_assignment (REPLDUP (dst), src);
2476
2477 var = TREE_OPERAND (dst, 0);
2478
2479 /* Try to widen the assignment to the entire variable.
2480 We need the source to be a BIT_FIELD_REF as well, such that, for
2481 BIT_FIELD_REF<d,sz,dp> = BIT_FIELD_REF<s,sz,sp>,
2482 by design, conditions are met such that we can turn it into
2483 d = BIT_FIELD_REF<s,dw,sp-dp>. */
2484 if (elt->in_bitfld_block == 2
2485 && TREE_CODE (src) == BIT_FIELD_REF)
2486 {
2487 tmp = src;
2488 cst = TYPE_SIZE (TREE_TYPE (var));
2489 cst2 = size_binop (MINUS_EXPR, TREE_OPERAND (src, 2),
2490 TREE_OPERAND (dst, 2));
2491
2492 src = TREE_OPERAND (src, 0);
2493
2494 /* Avoid full-width bit-fields. */
2495 if (integer_zerop (cst2)
2496 && tree_int_cst_equal (cst, TYPE_SIZE (TREE_TYPE (src))))
2497 {
2498 if (INTEGRAL_TYPE_P (TREE_TYPE (src))
2499 && !TYPE_UNSIGNED (TREE_TYPE (src)))
2500 src = fold_convert (unsigned_type_for (TREE_TYPE (src)), src);
2501
2502 /* If a single conversion won't do, we'll need a statement
2503 list. */
2504 if (TYPE_MAIN_VARIANT (TREE_TYPE (var))
2505 != TYPE_MAIN_VARIANT (TREE_TYPE (src)))
2506 {
2507 gimple_seq tmp_seq;
2508 seq = NULL;
2509
2510 if (!INTEGRAL_TYPE_P (TREE_TYPE (src)))
2511 src = fold_build1 (VIEW_CONVERT_EXPR,
2512 lang_hooks.types.type_for_size
2513 (TREE_INT_CST_LOW
2514 (TYPE_SIZE (TREE_TYPE (src))),
2515 1), src);
2516 gcc_assert (TYPE_UNSIGNED (TREE_TYPE (src)));
2517
2518 tmp = make_rename_temp (TREE_TYPE (src), "SR");
2519 stmt = gimple_build_assign (tmp, src);
2520 gimple_seq_add_stmt (&seq, stmt);
2521
2522 tmp_seq = sra_build_assignment (var,
2523 fold_convert (TREE_TYPE (var),
2524 tmp));
2525 gimple_seq_add_seq (&seq, tmp_seq);
2526
2527 return seq;
2528 }
2529
2530 src = fold_convert (TREE_TYPE (var), src);
2531 }
2532 else
2533 {
2534 src = fold_convert (TREE_TYPE (var), tmp);
2535 }
2536
2537 return sra_build_assignment (var, src);
2538 }
2539
2540 return sra_build_bf_assignment (dst, src);
2541 }
2542
2543 /* Generate a set of assignment statements in *LIST_P to copy all
2544 instantiated elements under ELT to or from the equivalent structure
2545 rooted at EXPR. COPY_OUT controls the direction of the copy, with
2546 true meaning to copy out of EXPR into ELT. */
2547
2548 static void
2549 generate_copy_inout (struct sra_elt *elt, bool copy_out, tree expr,
2550 gimple_seq *seq_p)
2551 {
2552 struct sra_elt *c;
2553 gimple_seq tmp_seq;
2554 tree t;
2555
2556 if (!copy_out && TREE_CODE (expr) == SSA_NAME
2557 && TREE_CODE (TREE_TYPE (expr)) == COMPLEX_TYPE)
2558 {
2559 tree r, i;
2560
2561 c = lookup_element (elt, integer_zero_node, NULL, NO_INSERT);
2562 r = c->replacement;
2563 c = lookup_element (elt, integer_one_node, NULL, NO_INSERT);
2564 i = c->replacement;
2565
2566 t = build2 (COMPLEX_EXPR, elt->type, r, i);
2567 tmp_seq = sra_build_bf_assignment (expr, t);
2568 SSA_NAME_DEF_STMT (expr) = gimple_seq_last_stmt (tmp_seq);
2569 gimple_seq_add_seq (seq_p, tmp_seq);
2570 }
2571 else if (elt->replacement)
2572 {
2573 if (copy_out)
2574 tmp_seq = sra_build_elt_assignment (elt, expr);
2575 else
2576 tmp_seq = sra_build_bf_assignment (expr, REPLDUP (elt->replacement));
2577 gimple_seq_add_seq (seq_p, tmp_seq);
2578 }
2579 else
2580 {
2581 FOR_EACH_ACTUAL_CHILD (c, elt)
2582 {
2583 t = generate_one_element_ref (c, unshare_expr (expr));
2584 generate_copy_inout (c, copy_out, t, seq_p);
2585 }
2586 }
2587 }
2588
2589 /* Generate a set of assignment statements in *LIST_P to copy all instantiated
2590 elements under SRC to their counterparts under DST. There must be a 1-1
2591 correspondence of instantiated elements. */
2592
2593 static void
2594 generate_element_copy (struct sra_elt *dst, struct sra_elt *src, gimple_seq *seq_p)
2595 {
2596 struct sra_elt *dc, *sc;
2597
2598 FOR_EACH_ACTUAL_CHILD (dc, dst)
2599 {
2600 sc = lookup_element (src, dc->element, NULL, NO_INSERT);
2601 if (!sc && dc->in_bitfld_block == 2)
2602 {
2603 struct sra_elt *dcs;
2604
2605 FOR_EACH_ACTUAL_CHILD (dcs, dc)
2606 {
2607 sc = lookup_element (src, dcs->element, NULL, NO_INSERT);
2608 gcc_assert (sc);
2609 generate_element_copy (dcs, sc, seq_p);
2610 }
2611
2612 continue;
2613 }
2614
2615 /* If DST and SRC are structs with the same elements, but do not have
2616 the same TYPE_MAIN_VARIANT, then lookup of DST FIELD_DECL in SRC
2617 will fail. Try harder by finding the corresponding FIELD_DECL
2618 in SRC. */
2619 if (!sc)
2620 {
2621 tree f;
2622
2623 gcc_assert (useless_type_conversion_p (dst->type, src->type));
2624 gcc_assert (TREE_CODE (dc->element) == FIELD_DECL);
2625 for (f = TYPE_FIELDS (src->type); f ; f = TREE_CHAIN (f))
2626 if (simple_cst_equal (DECL_FIELD_OFFSET (f),
2627 DECL_FIELD_OFFSET (dc->element)) > 0
2628 && simple_cst_equal (DECL_FIELD_BIT_OFFSET (f),
2629 DECL_FIELD_BIT_OFFSET (dc->element)) > 0
2630 && simple_cst_equal (DECL_SIZE (f),
2631 DECL_SIZE (dc->element)) > 0
2632 && (useless_type_conversion_p (TREE_TYPE (dc->element),
2633 TREE_TYPE (f))
2634 || (POINTER_TYPE_P (TREE_TYPE (dc->element))
2635 && POINTER_TYPE_P (TREE_TYPE (f)))))
2636 break;
2637 gcc_assert (f != NULL_TREE);
2638 sc = lookup_element (src, f, NULL, NO_INSERT);
2639 }
2640
2641 generate_element_copy (dc, sc, seq_p);
2642 }
2643
2644 if (dst->replacement)
2645 {
2646 gimple_seq tmp_seq;
2647
2648 gcc_assert (src->replacement);
2649
2650 tmp_seq = sra_build_elt_assignment (dst, REPLDUP (src->replacement));
2651 gimple_seq_add_seq (seq_p, tmp_seq);
2652 }
2653 }
2654
2655 /* Generate a set of assignment statements in *LIST_P to zero all instantiated
2656 elements under ELT. In addition, do not assign to elements that have been
2657 marked VISITED but do reset the visited flag; this allows easy coordination
2658 with generate_element_init. */
2659
2660 static void
2661 generate_element_zero (struct sra_elt *elt, gimple_seq *seq_p)
2662 {
2663 struct sra_elt *c;
2664
2665 if (elt->visited)
2666 {
2667 elt->visited = false;
2668 return;
2669 }
2670
2671 if (!elt->in_bitfld_block)
2672 FOR_EACH_ACTUAL_CHILD (c, elt)
2673 generate_element_zero (c, seq_p);
2674
2675 if (elt->replacement)
2676 {
2677 tree t;
2678 gimple_seq tmp_seq;
2679
2680 gcc_assert (elt->is_scalar);
2681 t = fold_convert (elt->type, integer_zero_node);
2682
2683 tmp_seq = sra_build_elt_assignment (elt, t);
2684 gimple_seq_add_seq (seq_p, tmp_seq);
2685 }
2686 }
2687
2688 /* Generate an assignment VAR = INIT, where INIT may need gimplification.
2689 Add the result to *LIST_P. */
2690
2691 static void
2692 generate_one_element_init (struct sra_elt *elt, tree init, gimple_seq *seq_p)
2693 {
2694 gimple_seq tmp_seq = sra_build_elt_assignment (elt, init);
2695 gimple_seq_add_seq (seq_p, tmp_seq);
2696 }
2697
2698 /* Generate a set of assignment statements in *LIST_P to set all instantiated
2699 elements under ELT with the contents of the initializer INIT. In addition,
2700 mark all assigned elements VISITED; this allows easy coordination with
2701 generate_element_zero. Return false if we found a case we couldn't
2702 handle. */
2703
2704 static bool
2705 generate_element_init_1 (struct sra_elt *elt, tree init, gimple_seq *seq_p)
2706 {
2707 bool result = true;
2708 enum tree_code init_code;
2709 struct sra_elt *sub;
2710 tree t;
2711 unsigned HOST_WIDE_INT idx;
2712 tree value, purpose;
2713
2714 /* We can be passed DECL_INITIAL of a static variable. It might have a
2715 conversion, which we strip off here. */
2716 STRIP_USELESS_TYPE_CONVERSION (init);
2717 init_code = TREE_CODE (init);
2718
2719 if (elt->is_scalar)
2720 {
2721 if (elt->replacement)
2722 {
2723 generate_one_element_init (elt, init, seq_p);
2724 elt->visited = true;
2725 }
2726 return result;
2727 }
2728
2729 switch (init_code)
2730 {
2731 case COMPLEX_CST:
2732 case COMPLEX_EXPR:
2733 FOR_EACH_ACTUAL_CHILD (sub, elt)
2734 {
2735 if (sub->element == integer_zero_node)
2736 t = (init_code == COMPLEX_EXPR
2737 ? TREE_OPERAND (init, 0) : TREE_REALPART (init));
2738 else
2739 t = (init_code == COMPLEX_EXPR
2740 ? TREE_OPERAND (init, 1) : TREE_IMAGPART (init));
2741 result &= generate_element_init_1 (sub, t, seq_p);
2742 }
2743 break;
2744
2745 case CONSTRUCTOR:
2746 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (init), idx, purpose, value)
2747 {
2748 /* Array constructors are routinely created with NULL indices. */
2749 if (purpose == NULL_TREE)
2750 {
2751 result = false;
2752 break;
2753 }
2754 if (TREE_CODE (purpose) == RANGE_EXPR)
2755 {
2756 tree lower = TREE_OPERAND (purpose, 0);
2757 tree upper = TREE_OPERAND (purpose, 1);
2758
2759 while (1)
2760 {
2761 sub = lookup_element (elt, lower, NULL, NO_INSERT);
2762 if (sub != NULL)
2763 result &= generate_element_init_1 (sub, value, seq_p);
2764 if (tree_int_cst_equal (lower, upper))
2765 break;
2766 lower = int_const_binop (PLUS_EXPR, lower,
2767 integer_one_node, true);
2768 }
2769 }
2770 else
2771 {
2772 sub = lookup_element (elt, purpose, NULL, NO_INSERT);
2773 if (sub != NULL)
2774 result &= generate_element_init_1 (sub, value, seq_p);
2775 }
2776 }
2777 break;
2778
2779 default:
2780 elt->visited = true;
2781 result = false;
2782 }
2783
2784 return result;
2785 }
2786
2787 /* A wrapper function for generate_element_init_1 that handles cleanup after
2788 gimplification. */
2789
2790 static bool
2791 generate_element_init (struct sra_elt *elt, tree init, gimple_seq *seq_p)
2792 {
2793 bool ret;
2794 struct gimplify_ctx gctx;
2795
2796 push_gimplify_context (&gctx);
2797 ret = generate_element_init_1 (elt, init, seq_p);
2798 pop_gimplify_context (NULL);
2799
2800 /* The replacement can expose previously unreferenced variables. */
2801 if (ret && *seq_p)
2802 {
2803 gimple_stmt_iterator i;
2804
2805 for (i = gsi_start (*seq_p); !gsi_end_p (i); gsi_next (&i))
2806 find_new_referenced_vars (gsi_stmt (i));
2807 }
2808
2809 return ret;
2810 }
2811
2812 /* Insert a gimple_seq SEQ on all the outgoing edges out of BB. Note that
2813 if BB has more than one edge, STMT will be replicated for each edge.
2814 Also, abnormal edges will be ignored. */
2815
2816 void
2817 insert_edge_copies_seq (gimple_seq seq, basic_block bb)
2818 {
2819 edge e;
2820 edge_iterator ei;
2821 unsigned n_copies = -1;
2822
2823 FOR_EACH_EDGE (e, ei, bb->succs)
2824 if (!(e->flags & EDGE_ABNORMAL))
2825 n_copies++;
2826
2827 FOR_EACH_EDGE (e, ei, bb->succs)
2828 if (!(e->flags & EDGE_ABNORMAL))
2829 gsi_insert_seq_on_edge (e, n_copies-- > 0 ? gimple_seq_copy (seq) : seq);
2830 }
2831
2832 /* Helper function to insert LIST before GSI, and set up line number info. */
2833
2834 void
2835 sra_insert_before (gimple_stmt_iterator *gsi, gimple_seq seq)
2836 {
2837 gimple stmt = gsi_stmt (*gsi);
2838
2839 if (gimple_has_location (stmt))
2840 annotate_all_with_location (seq, gimple_location (stmt));
2841 gsi_insert_seq_before (gsi, seq, GSI_SAME_STMT);
2842 }
2843
2844 /* Similarly, but insert after GSI. Handles insertion onto edges as well. */
2845
2846 void
2847 sra_insert_after (gimple_stmt_iterator *gsi, gimple_seq seq)
2848 {
2849 gimple stmt = gsi_stmt (*gsi);
2850
2851 if (gimple_has_location (stmt))
2852 annotate_all_with_location (seq, gimple_location (stmt));
2853
2854 if (stmt_ends_bb_p (stmt))
2855 insert_edge_copies_seq (seq, gsi_bb (*gsi));
2856 else
2857 gsi_insert_seq_after (gsi, seq, GSI_SAME_STMT);
2858 }
2859
2860 /* Similarly, but replace the statement at GSI. */
2861
2862 static void
2863 sra_replace (gimple_stmt_iterator *gsi, gimple_seq seq)
2864 {
2865 sra_insert_before (gsi, seq);
2866 gsi_remove (gsi, false);
2867 if (gsi_end_p (*gsi))
2868 *gsi = gsi_last (gsi_seq (*gsi));
2869 else
2870 gsi_prev (gsi);
2871 }
2872
2873 /* Data structure that bitfield_overlaps_p fills in with information
2874 about the element passed in and how much of it overlaps with the
2875 bit-range passed it to. */
2876
2877 struct bitfield_overlap_info
2878 {
2879 /* The bit-length of an element. */
2880 tree field_len;
2881
2882 /* The bit-position of the element in its parent. */
2883 tree field_pos;
2884
2885 /* The number of bits of the element that overlap with the incoming
2886 bit range. */
2887 tree overlap_len;
2888
2889 /* The first bit of the element that overlaps with the incoming bit
2890 range. */
2891 tree overlap_pos;
2892 };
2893
2894 /* Return true if a BIT_FIELD_REF<(FLD->parent), BLEN, BPOS>
2895 expression (referenced as BF below) accesses any of the bits in FLD,
2896 false if it doesn't. If DATA is non-null, its field_len and
2897 field_pos are filled in such that BIT_FIELD_REF<(FLD->parent),
2898 field_len, field_pos> (referenced as BFLD below) represents the
2899 entire field FLD->element, and BIT_FIELD_REF<BFLD, overlap_len,
2900 overlap_pos> represents the portion of the entire field that
2901 overlaps with BF. */
2902
2903 static bool
2904 bitfield_overlaps_p (tree blen, tree bpos, struct sra_elt *fld,
2905 struct bitfield_overlap_info *data)
2906 {
2907 tree flen, fpos;
2908 bool ret;
2909
2910 if (TREE_CODE (fld->element) == FIELD_DECL)
2911 {
2912 flen = fold_convert (bitsizetype, DECL_SIZE (fld->element));
2913 fpos = fold_convert (bitsizetype, DECL_FIELD_OFFSET (fld->element));
2914 fpos = size_binop (MULT_EXPR, fpos, bitsize_int (BITS_PER_UNIT));
2915 fpos = size_binop (PLUS_EXPR, fpos, DECL_FIELD_BIT_OFFSET (fld->element));
2916 }
2917 else if (TREE_CODE (fld->element) == BIT_FIELD_REF)
2918 {
2919 flen = fold_convert (bitsizetype, TREE_OPERAND (fld->element, 1));
2920 fpos = fold_convert (bitsizetype, TREE_OPERAND (fld->element, 2));
2921 }
2922 else if (TREE_CODE (fld->element) == INTEGER_CST)
2923 {
2924 tree domain_type = TYPE_DOMAIN (TREE_TYPE (fld->parent->element));
2925 flen = fold_convert (bitsizetype, TYPE_SIZE (fld->type));
2926 fpos = fold_convert (bitsizetype, fld->element);
2927 if (domain_type && TYPE_MIN_VALUE (domain_type))
2928 fpos = size_binop (MINUS_EXPR, fpos,
2929 fold_convert (bitsizetype,
2930 TYPE_MIN_VALUE (domain_type)));
2931 fpos = size_binop (MULT_EXPR, flen, fpos);
2932 }
2933 else
2934 gcc_unreachable ();
2935
2936 gcc_assert (host_integerp (blen, 1)
2937 && host_integerp (bpos, 1)
2938 && host_integerp (flen, 1)
2939 && host_integerp (fpos, 1));
2940
2941 ret = ((!tree_int_cst_lt (fpos, bpos)
2942 && tree_int_cst_lt (size_binop (MINUS_EXPR, fpos, bpos),
2943 blen))
2944 || (!tree_int_cst_lt (bpos, fpos)
2945 && tree_int_cst_lt (size_binop (MINUS_EXPR, bpos, fpos),
2946 flen)));
2947
2948 if (!ret)
2949 return ret;
2950
2951 if (data)
2952 {
2953 tree bend, fend;
2954
2955 data->field_len = flen;
2956 data->field_pos = fpos;
2957
2958 fend = size_binop (PLUS_EXPR, fpos, flen);
2959 bend = size_binop (PLUS_EXPR, bpos, blen);
2960
2961 if (tree_int_cst_lt (bend, fend))
2962 data->overlap_len = size_binop (MINUS_EXPR, bend, fpos);
2963 else
2964 data->overlap_len = NULL;
2965
2966 if (tree_int_cst_lt (fpos, bpos))
2967 {
2968 data->overlap_pos = size_binop (MINUS_EXPR, bpos, fpos);
2969 data->overlap_len = size_binop (MINUS_EXPR,
2970 data->overlap_len
2971 ? data->overlap_len
2972 : data->field_len,
2973 data->overlap_pos);
2974 }
2975 else
2976 data->overlap_pos = NULL;
2977 }
2978
2979 return ret;
2980 }
2981
2982 /* Add to LISTP a sequence of statements that copies BLEN bits between
2983 VAR and the scalarized elements of ELT, starting a bit VPOS of VAR
2984 and at bit BPOS of ELT. The direction of the copy is given by
2985 TO_VAR. */
2986
2987 static void
2988 sra_explode_bitfield_assignment (tree var, tree vpos, bool to_var,
2989 gimple_seq *seq_p, tree blen, tree bpos,
2990 struct sra_elt *elt)
2991 {
2992 struct sra_elt *fld;
2993 struct bitfield_overlap_info flp;
2994
2995 FOR_EACH_ACTUAL_CHILD (fld, elt)
2996 {
2997 tree flen, fpos;
2998
2999 if (!bitfield_overlaps_p (blen, bpos, fld, &flp))
3000 continue;
3001
3002 flen = flp.overlap_len ? flp.overlap_len : flp.field_len;
3003 fpos = flp.overlap_pos ? flp.overlap_pos : bitsize_int (0);
3004
3005 if (fld->replacement)
3006 {
3007 tree infld, invar, type;
3008 gimple_seq st;
3009
3010 infld = fld->replacement;
3011
3012 type = unsigned_type_for (TREE_TYPE (infld));
3013 if (TYPE_PRECISION (type) != TREE_INT_CST_LOW (flen))
3014 type = build_nonstandard_integer_type (TREE_INT_CST_LOW (flen), 1);
3015
3016 if (TREE_CODE (infld) == BIT_FIELD_REF)
3017 {
3018 fpos = size_binop (PLUS_EXPR, fpos, TREE_OPERAND (infld, 2));
3019 infld = TREE_OPERAND (infld, 0);
3020 }
3021 else if (BYTES_BIG_ENDIAN && DECL_P (fld->element)
3022 && !tree_int_cst_equal (TYPE_SIZE (TREE_TYPE (infld)),
3023 DECL_SIZE (fld->element)))
3024 {
3025 fpos = size_binop (PLUS_EXPR, fpos,
3026 TYPE_SIZE (TREE_TYPE (infld)));
3027 fpos = size_binop (MINUS_EXPR, fpos,
3028 DECL_SIZE (fld->element));
3029 }
3030
3031 infld = fold_build3 (BIT_FIELD_REF, type, infld, flen, fpos);
3032
3033 invar = size_binop (MINUS_EXPR, flp.field_pos, bpos);
3034 if (flp.overlap_pos)
3035 invar = size_binop (PLUS_EXPR, invar, flp.overlap_pos);
3036 invar = size_binop (PLUS_EXPR, invar, vpos);
3037
3038 invar = fold_build3 (BIT_FIELD_REF, type, var, flen, invar);
3039
3040 if (to_var)
3041 st = sra_build_bf_assignment (invar, infld);
3042 else
3043 st = sra_build_bf_assignment (infld, invar);
3044
3045 gimple_seq_add_seq (seq_p, st);
3046 }
3047 else
3048 {
3049 tree sub = size_binop (MINUS_EXPR, flp.field_pos, bpos);
3050 sub = size_binop (PLUS_EXPR, vpos, sub);
3051 if (flp.overlap_pos)
3052 sub = size_binop (PLUS_EXPR, sub, flp.overlap_pos);
3053
3054 sra_explode_bitfield_assignment (var, sub, to_var, seq_p,
3055 flen, fpos, fld);
3056 }
3057 }
3058 }
3059
3060 /* Add to LISTBEFOREP statements that copy scalarized members of ELT
3061 that overlap with BIT_FIELD_REF<(ELT->element), BLEN, BPOS> back
3062 into the full variable, and to LISTAFTERP, if non-NULL, statements
3063 that copy the (presumably modified) overlapping portions of the
3064 full variable back to the scalarized variables. */
3065
3066 static void
3067 sra_sync_for_bitfield_assignment (gimple_seq *seq_before_p,
3068 gimple_seq *seq_after_p,
3069 tree blen, tree bpos,
3070 struct sra_elt *elt)
3071 {
3072 struct sra_elt *fld;
3073 struct bitfield_overlap_info flp;
3074
3075 FOR_EACH_ACTUAL_CHILD (fld, elt)
3076 if (bitfield_overlaps_p (blen, bpos, fld, &flp))
3077 {
3078 if (fld->replacement || (!flp.overlap_len && !flp.overlap_pos))
3079 {
3080 generate_copy_inout (fld, false, generate_element_ref (fld),
3081 seq_before_p);
3082 mark_no_warning (fld);
3083 if (seq_after_p)
3084 generate_copy_inout (fld, true, generate_element_ref (fld),
3085 seq_after_p);
3086 }
3087 else
3088 {
3089 tree flen = flp.overlap_len ? flp.overlap_len : flp.field_len;
3090 tree fpos = flp.overlap_pos ? flp.overlap_pos : bitsize_int (0);
3091
3092 sra_sync_for_bitfield_assignment (seq_before_p, seq_after_p,
3093 flen, fpos, fld);
3094 }
3095 }
3096 }
3097
3098 /* Scalarize a USE. To recap, this is either a simple reference to ELT,
3099 if elt is scalar, or some occurrence of ELT that requires a complete
3100 aggregate. IS_OUTPUT is true if ELT is being modified. */
3101
3102 static void
3103 scalarize_use (struct sra_elt *elt, tree *expr_p, gimple_stmt_iterator *gsi,
3104 bool is_output, bool use_all)
3105 {
3106 gimple stmt = gsi_stmt (*gsi);
3107 tree bfexpr;
3108
3109 if (elt->replacement)
3110 {
3111 tree replacement = elt->replacement;
3112
3113 /* If we have a replacement, then updating the reference is as
3114 simple as modifying the existing statement in place. */
3115 if (is_output
3116 && TREE_CODE (elt->replacement) == BIT_FIELD_REF
3117 && is_gimple_reg (TREE_OPERAND (elt->replacement, 0))
3118 && is_gimple_assign (stmt)
3119 && gimple_assign_lhs_ptr (stmt) == expr_p)
3120 {
3121 gimple_seq newseq;
3122 /* RHS must be a single operand. */
3123 gcc_assert (gimple_assign_single_p (stmt));
3124 newseq = sra_build_elt_assignment (elt, gimple_assign_rhs1 (stmt));
3125 sra_replace (gsi, newseq);
3126 return;
3127 }
3128 else if (!is_output
3129 && TREE_CODE (elt->replacement) == BIT_FIELD_REF
3130 && is_gimple_assign (stmt)
3131 && gimple_assign_rhs1_ptr (stmt) == expr_p)
3132 {
3133 tree tmp = make_rename_temp
3134 (TREE_TYPE (gimple_assign_lhs (stmt)), "SR");
3135 gimple_seq newseq = sra_build_assignment (tmp, REPLDUP (elt->replacement));
3136
3137 sra_insert_before (gsi, newseq);
3138 replacement = tmp;
3139 }
3140 if (is_output)
3141 mark_all_v_defs_stmt (stmt);
3142 *expr_p = REPLDUP (replacement);
3143 update_stmt (stmt);
3144 }
3145 else if (use_all && is_output
3146 && is_gimple_assign (stmt)
3147 && TREE_CODE (bfexpr
3148 = gimple_assign_lhs (stmt)) == BIT_FIELD_REF
3149 && &TREE_OPERAND (bfexpr, 0) == expr_p
3150 && INTEGRAL_TYPE_P (TREE_TYPE (bfexpr))
3151 && TREE_CODE (TREE_TYPE (*expr_p)) == RECORD_TYPE)
3152 {
3153 gimple_seq seq_before = NULL;
3154 gimple_seq seq_after = NULL;
3155 tree blen = fold_convert (bitsizetype, TREE_OPERAND (bfexpr, 1));
3156 tree bpos = fold_convert (bitsizetype, TREE_OPERAND (bfexpr, 2));
3157 bool update = false;
3158
3159 if (!elt->use_block_copy)
3160 {
3161 tree type = TREE_TYPE (bfexpr);
3162 tree var = make_rename_temp (type, "SR"), tmp, vpos;
3163 gimple st;
3164
3165 gimple_assign_set_lhs (stmt, var);
3166 update = true;
3167
3168 if (!TYPE_UNSIGNED (type))
3169 {
3170 type = unsigned_type_for (type);
3171 tmp = make_rename_temp (type, "SR");
3172 st = gimple_build_assign (tmp, fold_convert (type, var));
3173 gimple_seq_add_stmt (&seq_after, st);
3174 var = tmp;
3175 }
3176
3177 /* If VAR is wider than BLEN bits, it is padded at the
3178 most-significant end. We want to set VPOS such that
3179 <BIT_FIELD_REF VAR BLEN VPOS> would refer to the
3180 least-significant BLEN bits of VAR. */
3181 if (BYTES_BIG_ENDIAN)
3182 vpos = size_binop (MINUS_EXPR, TYPE_SIZE (type), blen);
3183 else
3184 vpos = bitsize_int (0);
3185 sra_explode_bitfield_assignment
3186 (var, vpos, false, &seq_after, blen, bpos, elt);
3187 }
3188 else
3189 sra_sync_for_bitfield_assignment
3190 (&seq_before, &seq_after, blen, bpos, elt);
3191
3192 if (seq_before)
3193 {
3194 mark_all_v_defs_seq (seq_before);
3195 sra_insert_before (gsi, seq_before);
3196 }
3197 if (seq_after)
3198 {
3199 mark_all_v_defs_seq (seq_after);
3200 sra_insert_after (gsi, seq_after);
3201 }
3202
3203 if (update)
3204 update_stmt (stmt);
3205 }
3206 else if (use_all && !is_output
3207 && is_gimple_assign (stmt)
3208 && TREE_CODE (bfexpr
3209 = gimple_assign_rhs1 (stmt)) == BIT_FIELD_REF
3210 && &TREE_OPERAND (gimple_assign_rhs1 (stmt), 0) == expr_p
3211 && INTEGRAL_TYPE_P (TREE_TYPE (bfexpr))
3212 && TREE_CODE (TREE_TYPE (*expr_p)) == RECORD_TYPE)
3213 {
3214 gimple_seq seq = NULL;
3215 tree blen = fold_convert (bitsizetype, TREE_OPERAND (bfexpr, 1));
3216 tree bpos = fold_convert (bitsizetype, TREE_OPERAND (bfexpr, 2));
3217 bool update = false;
3218
3219 if (!elt->use_block_copy)
3220 {
3221 tree type = TREE_TYPE (bfexpr);
3222 tree var = make_rename_temp (type, "SR"), tmp, vpos;
3223 gimple st = NULL;
3224
3225 gimple_assign_set_rhs1 (stmt, var);
3226 update = true;
3227
3228 if (!TYPE_UNSIGNED (type))
3229 {
3230 type = unsigned_type_for (type);
3231 tmp = make_rename_temp (type, "SR");
3232 st = gimple_build_assign (var,
3233 fold_convert (TREE_TYPE (var), tmp));
3234 var = tmp;
3235 }
3236
3237 gimple_seq_add_stmt (&seq,
3238 gimple_build_assign
3239 (var, build_int_cst_wide (type, 0, 0)));
3240
3241 /* If VAR is wider than BLEN bits, it is padded at the
3242 most-significant end. We want to set VPOS such that
3243 <BIT_FIELD_REF VAR BLEN VPOS> would refer to the
3244 least-significant BLEN bits of VAR. */
3245 if (BYTES_BIG_ENDIAN)
3246 vpos = size_binop (MINUS_EXPR, TYPE_SIZE (type), blen);
3247 else
3248 vpos = bitsize_int (0);
3249 sra_explode_bitfield_assignment
3250 (var, vpos, true, &seq, blen, bpos, elt);
3251
3252 if (st)
3253 gimple_seq_add_stmt (&seq, st);
3254 }
3255 else
3256 sra_sync_for_bitfield_assignment
3257 (&seq, NULL, blen, bpos, elt);
3258
3259 if (seq)
3260 {
3261 mark_all_v_defs_seq (seq);
3262 sra_insert_before (gsi, seq);
3263 }
3264
3265 if (update)
3266 update_stmt (stmt);
3267 }
3268 else
3269 {
3270 gimple_seq seq = NULL;
3271
3272 /* Otherwise we need some copies. If ELT is being read, then we
3273 want to store all (modified) sub-elements back into the
3274 structure before the reference takes place. If ELT is being
3275 written, then we want to load the changed values back into
3276 our shadow variables. */
3277 /* ??? We don't check modified for reads, we just always write all of
3278 the values. We should be able to record the SSA number of the VOP
3279 for which the values were last read. If that number matches the
3280 SSA number of the VOP in the current statement, then we needn't
3281 emit an assignment. This would also eliminate double writes when
3282 a structure is passed as more than one argument to a function call.
3283 This optimization would be most effective if sra_walk_function
3284 processed the blocks in dominator order. */
3285
3286 generate_copy_inout (elt, is_output, generate_element_ref (elt), &seq);
3287 if (seq == NULL)
3288 return;
3289 mark_all_v_defs_seq (seq);
3290 if (is_output)
3291 sra_insert_after (gsi, seq);
3292 else
3293 {
3294 sra_insert_before (gsi, seq);
3295 if (use_all)
3296 mark_no_warning (elt);
3297 }
3298 }
3299 }
3300
3301 /* Scalarize a COPY. To recap, this is an assignment statement between
3302 two scalarizable references, LHS_ELT and RHS_ELT. */
3303
3304 static void
3305 scalarize_copy (struct sra_elt *lhs_elt, struct sra_elt *rhs_elt,
3306 gimple_stmt_iterator *gsi)
3307 {
3308 gimple_seq seq;
3309 gimple stmt;
3310
3311 if (lhs_elt->replacement && rhs_elt->replacement)
3312 {
3313 /* If we have two scalar operands, modify the existing statement. */
3314 stmt = gsi_stmt (*gsi);
3315
3316 /* See the commentary in sra_walk_function concerning
3317 RETURN_EXPR, and why we should never see one here. */
3318 gcc_assert (is_gimple_assign (stmt));
3319 gcc_assert (gimple_assign_copy_p (stmt));
3320
3321
3322 gimple_assign_set_lhs (stmt, lhs_elt->replacement);
3323 gimple_assign_set_rhs1 (stmt, REPLDUP (rhs_elt->replacement));
3324 update_stmt (stmt);
3325 }
3326 else if (lhs_elt->use_block_copy || rhs_elt->use_block_copy)
3327 {
3328 /* If either side requires a block copy, then sync the RHS back
3329 to the original structure, leave the original assignment
3330 statement (which will perform the block copy), then load the
3331 LHS values out of its now-updated original structure. */
3332 /* ??? Could perform a modified pair-wise element copy. That
3333 would at least allow those elements that are instantiated in
3334 both structures to be optimized well. */
3335
3336 seq = NULL;
3337 generate_copy_inout (rhs_elt, false,
3338 generate_element_ref (rhs_elt), &seq);
3339 if (seq)
3340 {
3341 mark_all_v_defs_seq (seq);
3342 sra_insert_before (gsi, seq);
3343 }
3344
3345 seq = NULL;
3346 generate_copy_inout (lhs_elt, true,
3347 generate_element_ref (lhs_elt), &seq);
3348 if (seq)
3349 {
3350 mark_all_v_defs_seq (seq);
3351 sra_insert_after (gsi, seq);
3352 }
3353 }
3354 else
3355 {
3356 /* Otherwise both sides must be fully instantiated. In which
3357 case perform pair-wise element assignments and replace the
3358 original block copy statement. */
3359
3360 stmt = gsi_stmt (*gsi);
3361 mark_all_v_defs_stmt (stmt);
3362
3363 seq = NULL;
3364 generate_element_copy (lhs_elt, rhs_elt, &seq);
3365 gcc_assert (seq);
3366 mark_all_v_defs_seq (seq);
3367 sra_replace (gsi, seq);
3368 }
3369 }
3370
3371 /* Scalarize an INIT. To recap, this is an assignment to a scalarizable
3372 reference from some form of constructor: CONSTRUCTOR, COMPLEX_CST or
3373 COMPLEX_EXPR. If RHS is NULL, it should be treated as an empty
3374 CONSTRUCTOR. */
3375
3376 static void
3377 scalarize_init (struct sra_elt *lhs_elt, tree rhs, gimple_stmt_iterator *gsi)
3378 {
3379 bool result = true;
3380 gimple_seq seq = NULL, init_seq = NULL;
3381
3382 /* Generate initialization statements for all members extant in the RHS. */
3383 if (rhs)
3384 {
3385 /* Unshare the expression just in case this is from a decl's initial. */
3386 rhs = unshare_expr (rhs);
3387 result = generate_element_init (lhs_elt, rhs, &init_seq);
3388 }
3389
3390 if (!result)
3391 {
3392 /* If we failed to convert the entire initializer, then we must
3393 leave the structure assignment in place and must load values
3394 from the structure into the slots for which we did not find
3395 constants. The easiest way to do this is to generate a complete
3396 copy-out, and then follow that with the constant assignments
3397 that we were able to build. DCE will clean things up. */
3398 gimple_seq seq0 = NULL;
3399 generate_copy_inout (lhs_elt, true, generate_element_ref (lhs_elt),
3400 &seq0);
3401 gimple_seq_add_seq (&seq0, seq);
3402 seq = seq0;
3403 }
3404 else
3405 {
3406 /* CONSTRUCTOR is defined such that any member not mentioned is assigned
3407 a zero value. Initialize the rest of the instantiated elements. */
3408 generate_element_zero (lhs_elt, &seq);
3409 gimple_seq_add_seq (&seq, init_seq);
3410 }
3411
3412 if (lhs_elt->use_block_copy || !result)
3413 {
3414 /* Since LHS is not fully instantiated, we must leave the structure
3415 assignment in place. Treating this case differently from a USE
3416 exposes constants to later optimizations. */
3417 if (seq)
3418 {
3419 mark_all_v_defs_seq (seq);
3420 sra_insert_after (gsi, seq);
3421 }
3422 }
3423 else
3424 {
3425 /* The LHS is fully instantiated. The list of initializations
3426 replaces the original structure assignment. */
3427 gcc_assert (seq);
3428 mark_all_v_defs_stmt (gsi_stmt (*gsi));
3429 mark_all_v_defs_seq (seq);
3430 sra_replace (gsi, seq);
3431 }
3432 }
3433
3434 /* A subroutine of scalarize_ldst called via walk_tree. Set TREE_NO_TRAP
3435 on all INDIRECT_REFs. */
3436
3437 static tree
3438 mark_notrap (tree *tp, int *walk_subtrees, void *data ATTRIBUTE_UNUSED)
3439 {
3440 tree t = *tp;
3441
3442 if (TREE_CODE (t) == INDIRECT_REF)
3443 {
3444 TREE_THIS_NOTRAP (t) = 1;
3445 *walk_subtrees = 0;
3446 }
3447 else if (IS_TYPE_OR_DECL_P (t))
3448 *walk_subtrees = 0;
3449
3450 return NULL;
3451 }
3452
3453 /* Scalarize a LDST. To recap, this is an assignment between one scalarizable
3454 reference ELT and one non-scalarizable reference OTHER. IS_OUTPUT is true
3455 if ELT is on the left-hand side. */
3456
3457 static void
3458 scalarize_ldst (struct sra_elt *elt, tree other,
3459 gimple_stmt_iterator *gsi, bool is_output)
3460 {
3461 /* Shouldn't have gotten called for a scalar. */
3462 gcc_assert (!elt->replacement);
3463
3464 if (elt->use_block_copy)
3465 {
3466 /* Since ELT is not fully instantiated, we have to leave the
3467 block copy in place. Treat this as a USE. */
3468 scalarize_use (elt, NULL, gsi, is_output, false);
3469 }
3470 else
3471 {
3472 /* The interesting case is when ELT is fully instantiated. In this
3473 case we can have each element stored/loaded directly to/from the
3474 corresponding slot in OTHER. This avoids a block copy. */
3475
3476 gimple_seq seq = NULL;
3477 gimple stmt = gsi_stmt (*gsi);
3478
3479 mark_all_v_defs_stmt (stmt);
3480 generate_copy_inout (elt, is_output, other, &seq);
3481 gcc_assert (seq);
3482 mark_all_v_defs_seq (seq);
3483
3484 /* Preserve EH semantics. */
3485 if (stmt_ends_bb_p (stmt))
3486 {
3487 gimple_stmt_iterator si;
3488 gimple first;
3489 gimple_seq blist = NULL;
3490 bool thr = stmt_could_throw_p (stmt);
3491
3492 /* If the last statement of this BB created an EH edge
3493 before scalarization, we have to locate the first
3494 statement that can throw in the new statement list and
3495 use that as the last statement of this BB, such that EH
3496 semantics is preserved. All statements up to this one
3497 are added to the same BB. All other statements in the
3498 list will be added to normal outgoing edges of the same
3499 BB. If they access any memory, it's the same memory, so
3500 we can assume they won't throw. */
3501 si = gsi_start (seq);
3502 for (first = gsi_stmt (si);
3503 thr && !gsi_end_p (si) && !stmt_could_throw_p (first);
3504 first = gsi_stmt (si))
3505 {
3506 gsi_remove (&si, false);
3507 gimple_seq_add_stmt (&blist, first);
3508 }
3509
3510 /* Extract the first remaining statement from LIST, this is
3511 the EH statement if there is one. */
3512 gsi_remove (&si, false);
3513
3514 if (blist)
3515 sra_insert_before (gsi, blist);
3516
3517 /* Replace the old statement with this new representative. */
3518 gsi_replace (gsi, first, true);
3519
3520 if (!gsi_end_p (si))
3521 {
3522 /* If any reference would trap, then they all would. And more
3523 to the point, the first would. Therefore none of the rest
3524 will trap since the first didn't. Indicate this by
3525 iterating over the remaining statements and set
3526 TREE_THIS_NOTRAP in all INDIRECT_REFs. */
3527 do
3528 {
3529 walk_gimple_stmt (&si, NULL, mark_notrap, NULL);
3530 gsi_next (&si);
3531 }
3532 while (!gsi_end_p (si));
3533
3534 insert_edge_copies_seq (seq, gsi_bb (*gsi));
3535 }
3536 }
3537 else
3538 sra_replace (gsi, seq);
3539 }
3540 }
3541
3542 /* Generate initializations for all scalarizable parameters. */
3543
3544 static void
3545 scalarize_parms (void)
3546 {
3547 gimple_seq seq = NULL;
3548 unsigned i;
3549 bitmap_iterator bi;
3550
3551 EXECUTE_IF_SET_IN_BITMAP (needs_copy_in, 0, i, bi)
3552 {
3553 tree var = referenced_var (i);
3554 struct sra_elt *elt = lookup_element (NULL, var, NULL, NO_INSERT);
3555 generate_copy_inout (elt, true, var, &seq);
3556 }
3557
3558 if (seq)
3559 {
3560 insert_edge_copies_seq (seq, ENTRY_BLOCK_PTR);
3561 mark_all_v_defs_seq (seq);
3562 }
3563 }
3564
3565 /* Entry point to phase 4. Update the function to match replacements. */
3566
3567 static void
3568 scalarize_function (void)
3569 {
3570 static const struct sra_walk_fns fns = {
3571 scalarize_use, scalarize_copy, scalarize_init, scalarize_ldst, false
3572 };
3573
3574 sra_walk_function (&fns);
3575 scalarize_parms ();
3576 gsi_commit_edge_inserts ();
3577 }
3578
3579
3580 /* Debug helper function. Print ELT in a nice human-readable format. */
3581
3582 static void
3583 dump_sra_elt_name (FILE *f, struct sra_elt *elt)
3584 {
3585 if (elt->parent && TREE_CODE (elt->parent->type) == COMPLEX_TYPE)
3586 {
3587 fputs (elt->element == integer_zero_node ? "__real__ " : "__imag__ ", f);
3588 dump_sra_elt_name (f, elt->parent);
3589 }
3590 else
3591 {
3592 if (elt->parent)
3593 dump_sra_elt_name (f, elt->parent);
3594 if (DECL_P (elt->element))
3595 {
3596 if (TREE_CODE (elt->element) == FIELD_DECL)
3597 fputc ('.', f);
3598 print_generic_expr (f, elt->element, dump_flags);
3599 }
3600 else if (TREE_CODE (elt->element) == BIT_FIELD_REF)
3601 fprintf (f, "$B" HOST_WIDE_INT_PRINT_DEC "F" HOST_WIDE_INT_PRINT_DEC,
3602 tree_low_cst (TREE_OPERAND (elt->element, 2), 1),
3603 tree_low_cst (TREE_OPERAND (elt->element, 1), 1));
3604 else if (TREE_CODE (elt->element) == RANGE_EXPR)
3605 fprintf (f, "["HOST_WIDE_INT_PRINT_DEC".."HOST_WIDE_INT_PRINT_DEC"]",
3606 TREE_INT_CST_LOW (TREE_OPERAND (elt->element, 0)),
3607 TREE_INT_CST_LOW (TREE_OPERAND (elt->element, 1)));
3608 else
3609 fprintf (f, "[" HOST_WIDE_INT_PRINT_DEC "]",
3610 TREE_INT_CST_LOW (elt->element));
3611 }
3612 }
3613
3614 /* Likewise, but callable from the debugger. */
3615
3616 void
3617 debug_sra_elt_name (struct sra_elt *elt)
3618 {
3619 dump_sra_elt_name (stderr, elt);
3620 fputc ('\n', stderr);
3621 }
3622
3623 void
3624 sra_init_cache (void)
3625 {
3626 if (sra_type_decomp_cache)
3627 return;
3628
3629 sra_type_decomp_cache = BITMAP_ALLOC (NULL);
3630 sra_type_inst_cache = BITMAP_ALLOC (NULL);
3631 }
3632
3633
3634 /* Main entry point. */
3635
3636 static unsigned int
3637 tree_sra (void)
3638 {
3639 /* Initialize local variables. */
3640 todoflags = 0;
3641 gcc_obstack_init (&sra_obstack);
3642 sra_candidates = BITMAP_ALLOC (NULL);
3643 needs_copy_in = BITMAP_ALLOC (NULL);
3644 sra_init_cache ();
3645 sra_map = htab_create (101, sra_elt_hash, sra_elt_eq, NULL);
3646
3647 /* Scan. If we find anything, instantiate and scalarize. */
3648 if (find_candidates_for_sra ())
3649 {
3650 scan_function ();
3651 decide_instantiations ();
3652 scalarize_function ();
3653 if (!bitmap_empty_p (sra_candidates))
3654 todoflags |= TODO_rebuild_alias;
3655 }
3656
3657 /* Free allocated memory. */
3658 htab_delete (sra_map);
3659 sra_map = NULL;
3660 BITMAP_FREE (sra_candidates);
3661 BITMAP_FREE (needs_copy_in);
3662 BITMAP_FREE (sra_type_decomp_cache);
3663 BITMAP_FREE (sra_type_inst_cache);
3664 obstack_free (&sra_obstack, NULL);
3665 return todoflags;
3666 }
3667
3668 static unsigned int
3669 tree_sra_early (void)
3670 {
3671 unsigned int ret;
3672
3673 early_sra = true;
3674 ret = tree_sra ();
3675 early_sra = false;
3676
3677 return ret & ~TODO_rebuild_alias;
3678 }
3679
3680 static bool
3681 gate_sra (void)
3682 {
3683 return flag_tree_sra != 0;
3684 }
3685
3686 struct gimple_opt_pass pass_sra_early =
3687 {
3688 {
3689 GIMPLE_PASS,
3690 "esra", /* name */
3691 gate_sra, /* gate */
3692 tree_sra_early, /* execute */
3693 NULL, /* sub */
3694 NULL, /* next */
3695 0, /* static_pass_number */
3696 TV_TREE_SRA, /* tv_id */
3697 PROP_cfg | PROP_ssa, /* properties_required */
3698 0, /* properties_provided */
3699 0, /* properties_destroyed */
3700 0, /* todo_flags_start */
3701 TODO_dump_func
3702 | TODO_update_ssa
3703 | TODO_ggc_collect
3704 | TODO_verify_ssa /* todo_flags_finish */
3705 }
3706 };
3707
3708 struct gimple_opt_pass pass_sra =
3709 {
3710 {
3711 GIMPLE_PASS,
3712 "sra", /* name */
3713 gate_sra, /* gate */
3714 tree_sra, /* execute */
3715 NULL, /* sub */
3716 NULL, /* next */
3717 0, /* static_pass_number */
3718 TV_TREE_SRA, /* tv_id */
3719 PROP_cfg | PROP_ssa, /* properties_required */
3720 0, /* properties_provided */
3721 0, /* properties_destroyed */
3722 0, /* todo_flags_start */
3723 TODO_dump_func
3724 | TODO_update_ssa
3725 | TODO_ggc_collect
3726 | TODO_verify_ssa /* todo_flags_finish */
3727 }
3728 };