comparison gcc/tree-ssa-dce.c @ 0:a06113de4d67

first commit
author kent <kent@cr.ie.u-ryukyu.ac.jp>
date Fri, 17 Jul 2009 14:47:48 +0900
parents
children 77e2b8dfacca
comparison
equal deleted inserted replaced
-1:000000000000 0:a06113de4d67
1 /* Dead code elimination pass for the GNU compiler.
2 Copyright (C) 2002, 2003, 2004, 2005, 2006, 2007, 2008
3 Free Software Foundation, Inc.
4 Contributed by Ben Elliston <bje@redhat.com>
5 and Andrew MacLeod <amacleod@redhat.com>
6 Adapted to use control dependence by Steven Bosscher, SUSE Labs.
7
8 This file is part of GCC.
9
10 GCC is free software; you can redistribute it and/or modify it
11 under the terms of the GNU General Public License as published by the
12 Free Software Foundation; either version 3, or (at your option) any
13 later version.
14
15 GCC is distributed in the hope that it will be useful, but WITHOUT
16 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
17 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with GCC; see the file COPYING3. If not see
22 <http://www.gnu.org/licenses/>. */
23
24 /* Dead code elimination.
25
26 References:
27
28 Building an Optimizing Compiler,
29 Robert Morgan, Butterworth-Heinemann, 1998, Section 8.9.
30
31 Advanced Compiler Design and Implementation,
32 Steven Muchnick, Morgan Kaufmann, 1997, Section 18.10.
33
34 Dead-code elimination is the removal of statements which have no
35 impact on the program's output. "Dead statements" have no impact
36 on the program's output, while "necessary statements" may have
37 impact on the output.
38
39 The algorithm consists of three phases:
40 1. Marking as necessary all statements known to be necessary,
41 e.g. most function calls, writing a value to memory, etc;
42 2. Propagating necessary statements, e.g., the statements
43 giving values to operands in necessary statements; and
44 3. Removing dead statements. */
45
46 #include "config.h"
47 #include "system.h"
48 #include "coretypes.h"
49 #include "tm.h"
50 #include "ggc.h"
51
52 /* These RTL headers are needed for basic-block.h. */
53 #include "rtl.h"
54 #include "tm_p.h"
55 #include "hard-reg-set.h"
56 #include "obstack.h"
57 #include "basic-block.h"
58
59 #include "tree.h"
60 #include "diagnostic.h"
61 #include "tree-flow.h"
62 #include "gimple.h"
63 #include "tree-dump.h"
64 #include "tree-pass.h"
65 #include "timevar.h"
66 #include "flags.h"
67 #include "cfgloop.h"
68 #include "tree-scalar-evolution.h"
69
70 static struct stmt_stats
71 {
72 int total;
73 int total_phis;
74 int removed;
75 int removed_phis;
76 } stats;
77
78 #define STMT_NECESSARY GF_PLF_1
79
80 static VEC(gimple,heap) *worklist;
81
82 /* Vector indicating an SSA name has already been processed and marked
83 as necessary. */
84 static sbitmap processed;
85
86 /* Vector indicating that last_stmt if a basic block has already been
87 marked as necessary. */
88 static sbitmap last_stmt_necessary;
89
90 /* Before we can determine whether a control branch is dead, we need to
91 compute which blocks are control dependent on which edges.
92
93 We expect each block to be control dependent on very few edges so we
94 use a bitmap for each block recording its edges. An array holds the
95 bitmap. The Ith bit in the bitmap is set if that block is dependent
96 on the Ith edge. */
97 static bitmap *control_dependence_map;
98
99 /* Vector indicating that a basic block has already had all the edges
100 processed that it is control dependent on. */
101 static sbitmap visited_control_parents;
102
103 /* TRUE if this pass alters the CFG (by removing control statements).
104 FALSE otherwise.
105
106 If this pass alters the CFG, then it will arrange for the dominators
107 to be recomputed. */
108 static bool cfg_altered;
109
110 /* Execute code that follows the macro for each edge (given number
111 EDGE_NUMBER within the CODE) for which the block with index N is
112 control dependent. */
113 #define EXECUTE_IF_CONTROL_DEPENDENT(BI, N, EDGE_NUMBER) \
114 EXECUTE_IF_SET_IN_BITMAP (control_dependence_map[(N)], 0, \
115 (EDGE_NUMBER), (BI))
116
117
118 /* Indicate block BB is control dependent on an edge with index EDGE_INDEX. */
119 static inline void
120 set_control_dependence_map_bit (basic_block bb, int edge_index)
121 {
122 if (bb == ENTRY_BLOCK_PTR)
123 return;
124 gcc_assert (bb != EXIT_BLOCK_PTR);
125 bitmap_set_bit (control_dependence_map[bb->index], edge_index);
126 }
127
128 /* Clear all control dependences for block BB. */
129 static inline void
130 clear_control_dependence_bitmap (basic_block bb)
131 {
132 bitmap_clear (control_dependence_map[bb->index]);
133 }
134
135
136 /* Find the immediate postdominator PDOM of the specified basic block BLOCK.
137 This function is necessary because some blocks have negative numbers. */
138
139 static inline basic_block
140 find_pdom (basic_block block)
141 {
142 gcc_assert (block != ENTRY_BLOCK_PTR);
143
144 if (block == EXIT_BLOCK_PTR)
145 return EXIT_BLOCK_PTR;
146 else
147 {
148 basic_block bb = get_immediate_dominator (CDI_POST_DOMINATORS, block);
149 if (! bb)
150 return EXIT_BLOCK_PTR;
151 return bb;
152 }
153 }
154
155
156 /* Determine all blocks' control dependences on the given edge with edge_list
157 EL index EDGE_INDEX, ala Morgan, Section 3.6. */
158
159 static void
160 find_control_dependence (struct edge_list *el, int edge_index)
161 {
162 basic_block current_block;
163 basic_block ending_block;
164
165 gcc_assert (INDEX_EDGE_PRED_BB (el, edge_index) != EXIT_BLOCK_PTR);
166
167 if (INDEX_EDGE_PRED_BB (el, edge_index) == ENTRY_BLOCK_PTR)
168 ending_block = single_succ (ENTRY_BLOCK_PTR);
169 else
170 ending_block = find_pdom (INDEX_EDGE_PRED_BB (el, edge_index));
171
172 for (current_block = INDEX_EDGE_SUCC_BB (el, edge_index);
173 current_block != ending_block && current_block != EXIT_BLOCK_PTR;
174 current_block = find_pdom (current_block))
175 {
176 edge e = INDEX_EDGE (el, edge_index);
177
178 /* For abnormal edges, we don't make current_block control
179 dependent because instructions that throw are always necessary
180 anyway. */
181 if (e->flags & EDGE_ABNORMAL)
182 continue;
183
184 set_control_dependence_map_bit (current_block, edge_index);
185 }
186 }
187
188
189 /* Record all blocks' control dependences on all edges in the edge
190 list EL, ala Morgan, Section 3.6. */
191
192 static void
193 find_all_control_dependences (struct edge_list *el)
194 {
195 int i;
196
197 for (i = 0; i < NUM_EDGES (el); ++i)
198 find_control_dependence (el, i);
199 }
200
201 /* If STMT is not already marked necessary, mark it, and add it to the
202 worklist if ADD_TO_WORKLIST is true. */
203 static inline void
204 mark_stmt_necessary (gimple stmt, bool add_to_worklist)
205 {
206 gcc_assert (stmt);
207
208 if (gimple_plf (stmt, STMT_NECESSARY))
209 return;
210
211 if (dump_file && (dump_flags & TDF_DETAILS))
212 {
213 fprintf (dump_file, "Marking useful stmt: ");
214 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
215 fprintf (dump_file, "\n");
216 }
217
218 gimple_set_plf (stmt, STMT_NECESSARY, true);
219 if (add_to_worklist)
220 VEC_safe_push (gimple, heap, worklist, stmt);
221 }
222
223
224 /* Mark the statement defining operand OP as necessary. */
225
226 static inline void
227 mark_operand_necessary (tree op)
228 {
229 gimple stmt;
230 int ver;
231
232 gcc_assert (op);
233
234 ver = SSA_NAME_VERSION (op);
235 if (TEST_BIT (processed, ver))
236 return;
237 SET_BIT (processed, ver);
238
239 stmt = SSA_NAME_DEF_STMT (op);
240 gcc_assert (stmt);
241
242 if (gimple_plf (stmt, STMT_NECESSARY) || gimple_nop_p (stmt))
243 return;
244
245 gimple_set_plf (stmt, STMT_NECESSARY, true);
246 VEC_safe_push (gimple, heap, worklist, stmt);
247 }
248
249
250 /* Mark STMT as necessary if it obviously is. Add it to the worklist if
251 it can make other statements necessary.
252
253 If AGGRESSIVE is false, control statements are conservatively marked as
254 necessary. */
255
256 static void
257 mark_stmt_if_obviously_necessary (gimple stmt, bool aggressive)
258 {
259 tree lhs = NULL_TREE;
260 /* With non-call exceptions, we have to assume that all statements could
261 throw. If a statement may throw, it is inherently necessary. */
262 if (flag_non_call_exceptions
263 && stmt_could_throw_p (stmt))
264 {
265 mark_stmt_necessary (stmt, true);
266 return;
267 }
268
269 /* Statements that are implicitly live. Most function calls, asm
270 and return statements are required. Labels and GIMPLE_BIND nodes
271 are kept because they are control flow, and we have no way of
272 knowing whether they can be removed. DCE can eliminate all the
273 other statements in a block, and CFG can then remove the block
274 and labels. */
275 switch (gimple_code (stmt))
276 {
277 case GIMPLE_PREDICT:
278 case GIMPLE_LABEL:
279 mark_stmt_necessary (stmt, false);
280 return;
281
282 case GIMPLE_ASM:
283 case GIMPLE_RESX:
284 case GIMPLE_RETURN:
285 case GIMPLE_CHANGE_DYNAMIC_TYPE:
286 mark_stmt_necessary (stmt, true);
287 return;
288
289 case GIMPLE_CALL:
290 /* Most, but not all function calls are required. Function calls that
291 produce no result and have no side effects (i.e. const pure
292 functions) are unnecessary. */
293 if (gimple_has_side_effects (stmt))
294 {
295 mark_stmt_necessary (stmt, true);
296 return;
297 }
298 if (!gimple_call_lhs (stmt))
299 return;
300 lhs = gimple_call_lhs (stmt);
301 /* Fall through */
302
303 case GIMPLE_ASSIGN:
304 if (!lhs)
305 lhs = gimple_assign_lhs (stmt);
306 /* These values are mildly magic bits of the EH runtime. We can't
307 see the entire lifetime of these values until landing pads are
308 generated. */
309 if (TREE_CODE (lhs) == EXC_PTR_EXPR
310 || TREE_CODE (lhs) == FILTER_EXPR)
311 {
312 mark_stmt_necessary (stmt, true);
313 return;
314 }
315 break;
316
317 case GIMPLE_GOTO:
318 gcc_assert (!simple_goto_p (stmt));
319 mark_stmt_necessary (stmt, true);
320 return;
321
322 case GIMPLE_COND:
323 gcc_assert (EDGE_COUNT (gimple_bb (stmt)->succs) == 2);
324 /* Fall through. */
325
326 case GIMPLE_SWITCH:
327 if (! aggressive)
328 mark_stmt_necessary (stmt, true);
329 break;
330
331 default:
332 break;
333 }
334
335 /* If the statement has volatile operands, it needs to be preserved.
336 Same for statements that can alter control flow in unpredictable
337 ways. */
338 if (gimple_has_volatile_ops (stmt) || is_ctrl_altering_stmt (stmt))
339 {
340 mark_stmt_necessary (stmt, true);
341 return;
342 }
343
344 if (is_hidden_global_store (stmt))
345 {
346 mark_stmt_necessary (stmt, true);
347 return;
348 }
349
350 return;
351 }
352
353
354 /* Make corresponding control dependent edges necessary. We only
355 have to do this once for each basic block, so we clear the bitmap
356 after we're done. */
357 static void
358 mark_control_dependent_edges_necessary (basic_block bb, struct edge_list *el)
359 {
360 bitmap_iterator bi;
361 unsigned edge_number;
362
363 gcc_assert (bb != EXIT_BLOCK_PTR);
364
365 if (bb == ENTRY_BLOCK_PTR)
366 return;
367
368 EXECUTE_IF_CONTROL_DEPENDENT (bi, bb->index, edge_number)
369 {
370 gimple stmt;
371 basic_block cd_bb = INDEX_EDGE_PRED_BB (el, edge_number);
372
373 if (TEST_BIT (last_stmt_necessary, cd_bb->index))
374 continue;
375 SET_BIT (last_stmt_necessary, cd_bb->index);
376
377 stmt = last_stmt (cd_bb);
378 if (stmt && is_ctrl_stmt (stmt))
379 mark_stmt_necessary (stmt, true);
380 }
381 }
382
383
384 /* Find obviously necessary statements. These are things like most function
385 calls, and stores to file level variables.
386
387 If EL is NULL, control statements are conservatively marked as
388 necessary. Otherwise it contains the list of edges used by control
389 dependence analysis. */
390
391 static void
392 find_obviously_necessary_stmts (struct edge_list *el)
393 {
394 basic_block bb;
395 gimple_stmt_iterator gsi;
396 edge e;
397 gimple phi, stmt;
398
399 FOR_EACH_BB (bb)
400 {
401 /* PHI nodes are never inherently necessary. */
402 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
403 {
404 phi = gsi_stmt (gsi);
405 gimple_set_plf (phi, STMT_NECESSARY, false);
406 }
407
408 /* Check all statements in the block. */
409 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
410 {
411 stmt = gsi_stmt (gsi);
412 gimple_set_plf (stmt, STMT_NECESSARY, false);
413 mark_stmt_if_obviously_necessary (stmt, el != NULL);
414 }
415 }
416
417 if (el)
418 {
419 /* Prevent the loops from being removed. We must keep the infinite loops,
420 and we currently do not have a means to recognize the finite ones. */
421 FOR_EACH_BB (bb)
422 {
423 edge_iterator ei;
424 FOR_EACH_EDGE (e, ei, bb->succs)
425 if (e->flags & EDGE_DFS_BACK)
426 mark_control_dependent_edges_necessary (e->dest, el);
427 }
428 }
429 }
430
431
432 /* Propagate necessity using the operands of necessary statements.
433 Process the uses on each statement in the worklist, and add all
434 feeding statements which contribute to the calculation of this
435 value to the worklist.
436
437 In conservative mode, EL is NULL. */
438
439 static void
440 propagate_necessity (struct edge_list *el)
441 {
442 gimple stmt;
443 bool aggressive = (el ? true : false);
444
445 if (dump_file && (dump_flags & TDF_DETAILS))
446 fprintf (dump_file, "\nProcessing worklist:\n");
447
448 while (VEC_length (gimple, worklist) > 0)
449 {
450 /* Take STMT from worklist. */
451 stmt = VEC_pop (gimple, worklist);
452
453 if (dump_file && (dump_flags & TDF_DETAILS))
454 {
455 fprintf (dump_file, "processing: ");
456 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
457 fprintf (dump_file, "\n");
458 }
459
460 if (aggressive)
461 {
462 /* Mark the last statements of the basic blocks that the block
463 containing STMT is control dependent on, but only if we haven't
464 already done so. */
465 basic_block bb = gimple_bb (stmt);
466 if (bb != ENTRY_BLOCK_PTR
467 && ! TEST_BIT (visited_control_parents, bb->index))
468 {
469 SET_BIT (visited_control_parents, bb->index);
470 mark_control_dependent_edges_necessary (bb, el);
471 }
472 }
473
474 if (gimple_code (stmt) == GIMPLE_PHI)
475 {
476 /* PHI nodes are somewhat special in that each PHI alternative has
477 data and control dependencies. All the statements feeding the
478 PHI node's arguments are always necessary. In aggressive mode,
479 we also consider the control dependent edges leading to the
480 predecessor block associated with each PHI alternative as
481 necessary. */
482 size_t k;
483
484 for (k = 0; k < gimple_phi_num_args (stmt); k++)
485 {
486 tree arg = PHI_ARG_DEF (stmt, k);
487 if (TREE_CODE (arg) == SSA_NAME)
488 mark_operand_necessary (arg);
489 }
490
491 if (aggressive)
492 {
493 for (k = 0; k < gimple_phi_num_args (stmt); k++)
494 {
495 basic_block arg_bb = gimple_phi_arg_edge (stmt, k)->src;
496 if (arg_bb != ENTRY_BLOCK_PTR
497 && ! TEST_BIT (visited_control_parents, arg_bb->index))
498 {
499 SET_BIT (visited_control_parents, arg_bb->index);
500 mark_control_dependent_edges_necessary (arg_bb, el);
501 }
502 }
503 }
504 }
505 else
506 {
507 /* Propagate through the operands. Examine all the USE, VUSE and
508 VDEF operands in this statement. Mark all the statements
509 which feed this statement's uses as necessary. The
510 operands of VDEF expressions are also needed as they
511 represent potential definitions that may reach this
512 statement (VDEF operands allow us to follow def-def
513 links). */
514 ssa_op_iter iter;
515 tree use;
516
517 FOR_EACH_SSA_TREE_OPERAND (use, stmt, iter, SSA_OP_ALL_USES)
518 mark_operand_necessary (use);
519 }
520 }
521 }
522
523
524 /* Remove dead PHI nodes from block BB. */
525
526 static bool
527 remove_dead_phis (basic_block bb)
528 {
529 bool something_changed = false;
530 gimple_seq phis;
531 gimple phi;
532 gimple_stmt_iterator gsi;
533 phis = phi_nodes (bb);
534
535 for (gsi = gsi_start (phis); !gsi_end_p (gsi);)
536 {
537 stats.total_phis++;
538 phi = gsi_stmt (gsi);
539
540 if (!gimple_plf (phi, STMT_NECESSARY))
541 {
542 something_changed = true;
543 if (dump_file && (dump_flags & TDF_DETAILS))
544 {
545 fprintf (dump_file, "Deleting : ");
546 print_gimple_stmt (dump_file, phi, 0, TDF_SLIM);
547 fprintf (dump_file, "\n");
548 }
549
550 remove_phi_node (&gsi, true);
551 stats.removed_phis++;
552 }
553 else
554 {
555 gsi_next (&gsi);
556 }
557 }
558 return something_changed;
559 }
560
561
562 /* Remove dead statement pointed to by iterator I. Receives the basic block BB
563 containing I so that we don't have to look it up. */
564
565 static void
566 remove_dead_stmt (gimple_stmt_iterator *i, basic_block bb)
567 {
568 gimple stmt = gsi_stmt (*i);
569
570 if (dump_file && (dump_flags & TDF_DETAILS))
571 {
572 fprintf (dump_file, "Deleting : ");
573 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
574 fprintf (dump_file, "\n");
575 }
576
577 stats.removed++;
578
579 /* If we have determined that a conditional branch statement contributes
580 nothing to the program, then we not only remove it, but we also change
581 the flow graph so that the current block will simply fall-thru to its
582 immediate post-dominator. The blocks we are circumventing will be
583 removed by cleanup_tree_cfg if this change in the flow graph makes them
584 unreachable. */
585 if (is_ctrl_stmt (stmt))
586 {
587 basic_block post_dom_bb;
588
589 /* The post dominance info has to be up-to-date. */
590 gcc_assert (dom_info_state (CDI_POST_DOMINATORS) == DOM_OK);
591 /* Get the immediate post dominator of bb. */
592 post_dom_bb = get_immediate_dominator (CDI_POST_DOMINATORS, bb);
593
594 /* There are three particularly problematical cases.
595
596 1. Blocks that do not have an immediate post dominator. This
597 can happen with infinite loops.
598
599 2. Blocks that are only post dominated by the exit block. These
600 can also happen for infinite loops as we create fake edges
601 in the dominator tree.
602
603 3. If the post dominator has PHI nodes we may be able to compute
604 the right PHI args for them.
605
606 In each of these cases we must remove the control statement
607 as it may reference SSA_NAMEs which are going to be removed and
608 we remove all but one outgoing edge from the block. */
609 if (! post_dom_bb
610 || post_dom_bb == EXIT_BLOCK_PTR
611 || phi_nodes (post_dom_bb))
612 ;
613 else
614 {
615 /* Redirect the first edge out of BB to reach POST_DOM_BB. */
616 redirect_edge_and_branch (EDGE_SUCC (bb, 0), post_dom_bb);
617 PENDING_STMT (EDGE_SUCC (bb, 0)) = NULL;
618
619 /* It is not sufficient to set cfg_altered below during edge
620 removal, in case BB has two successors and one of them
621 is POST_DOM_BB. */
622 cfg_altered = true;
623 }
624 EDGE_SUCC (bb, 0)->probability = REG_BR_PROB_BASE;
625 EDGE_SUCC (bb, 0)->count = bb->count;
626
627 /* The edge is no longer associated with a conditional, so it does
628 not have TRUE/FALSE flags. */
629 EDGE_SUCC (bb, 0)->flags &= ~(EDGE_TRUE_VALUE | EDGE_FALSE_VALUE);
630
631 /* The lone outgoing edge from BB will be a fallthru edge. */
632 EDGE_SUCC (bb, 0)->flags |= EDGE_FALLTHRU;
633
634 /* Remove the remaining the outgoing edges. */
635 while (!single_succ_p (bb))
636 {
637 /* FIXME. When we remove the edge, we modify the CFG, which
638 in turn modifies the dominator and post-dominator tree.
639 Is it safe to postpone recomputing the dominator and
640 post-dominator tree until the end of this pass given that
641 the post-dominators are used above? */
642 cfg_altered = true;
643 remove_edge (EDGE_SUCC (bb, 1));
644 }
645 }
646
647 gsi_remove (i, true);
648 release_defs (stmt);
649 }
650
651
652 /* Eliminate unnecessary statements. Any instruction not marked as necessary
653 contributes nothing to the program, and can be deleted. */
654
655 static bool
656 eliminate_unnecessary_stmts (void)
657 {
658 bool something_changed = false;
659 basic_block bb;
660 gimple_stmt_iterator gsi;
661 gimple stmt;
662 tree call;
663
664 if (dump_file && (dump_flags & TDF_DETAILS))
665 fprintf (dump_file, "\nEliminating unnecessary statements:\n");
666
667 clear_special_calls ();
668 FOR_EACH_BB (bb)
669 {
670 /* Remove dead PHI nodes. */
671 something_changed |= remove_dead_phis (bb);
672 }
673
674 FOR_EACH_BB (bb)
675 {
676 /* Remove dead statements. */
677 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi);)
678 {
679 stmt = gsi_stmt (gsi);
680
681 stats.total++;
682
683 /* If GSI is not necessary then remove it. */
684 if (!gimple_plf (stmt, STMT_NECESSARY))
685 {
686 remove_dead_stmt (&gsi, bb);
687 something_changed = true;
688 }
689 else if (is_gimple_call (stmt))
690 {
691 call = gimple_call_fndecl (stmt);
692 if (call)
693 {
694 tree name;
695 gimple g;
696
697 /* When LHS of var = call (); is dead, simplify it into
698 call (); saving one operand. */
699 name = gimple_call_lhs (stmt);
700 if (name && TREE_CODE (name) == SSA_NAME
701 && !TEST_BIT (processed, SSA_NAME_VERSION (name)))
702 {
703 something_changed = true;
704 if (dump_file && (dump_flags & TDF_DETAILS))
705 {
706 fprintf (dump_file, "Deleting LHS of call: ");
707 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
708 fprintf (dump_file, "\n");
709 }
710
711 push_stmt_changes (gsi_stmt_ptr (&gsi));
712 g = gimple_copy (stmt);
713 gimple_call_set_lhs (g, NULL_TREE);
714 gsi_replace (&gsi, g, false);
715 maybe_clean_or_replace_eh_stmt (stmt, g);
716 mark_symbols_for_renaming (g);
717 pop_stmt_changes (gsi_stmt_ptr (&gsi));
718 release_ssa_name (name);
719 }
720 notice_special_calls (stmt);
721 }
722 gsi_next (&gsi);
723 }
724 else
725 {
726 gsi_next (&gsi);
727 }
728 }
729 }
730
731 return something_changed;
732 }
733
734
735 /* Print out removed statement statistics. */
736
737 static void
738 print_stats (void)
739 {
740 float percg;
741
742 percg = ((float) stats.removed / (float) stats.total) * 100;
743 fprintf (dump_file, "Removed %d of %d statements (%d%%)\n",
744 stats.removed, stats.total, (int) percg);
745
746 if (stats.total_phis == 0)
747 percg = 0;
748 else
749 percg = ((float) stats.removed_phis / (float) stats.total_phis) * 100;
750
751 fprintf (dump_file, "Removed %d of %d PHI nodes (%d%%)\n",
752 stats.removed_phis, stats.total_phis, (int) percg);
753 }
754
755 /* Initialization for this pass. Set up the used data structures. */
756
757 static void
758 tree_dce_init (bool aggressive)
759 {
760 memset ((void *) &stats, 0, sizeof (stats));
761
762 if (aggressive)
763 {
764 int i;
765
766 control_dependence_map = XNEWVEC (bitmap, last_basic_block);
767 for (i = 0; i < last_basic_block; ++i)
768 control_dependence_map[i] = BITMAP_ALLOC (NULL);
769
770 last_stmt_necessary = sbitmap_alloc (last_basic_block);
771 sbitmap_zero (last_stmt_necessary);
772 }
773
774 processed = sbitmap_alloc (num_ssa_names + 1);
775 sbitmap_zero (processed);
776
777 worklist = VEC_alloc (gimple, heap, 64);
778 cfg_altered = false;
779 }
780
781 /* Cleanup after this pass. */
782
783 static void
784 tree_dce_done (bool aggressive)
785 {
786 if (aggressive)
787 {
788 int i;
789
790 for (i = 0; i < last_basic_block; ++i)
791 BITMAP_FREE (control_dependence_map[i]);
792 free (control_dependence_map);
793
794 sbitmap_free (visited_control_parents);
795 sbitmap_free (last_stmt_necessary);
796 }
797
798 sbitmap_free (processed);
799
800 VEC_free (gimple, heap, worklist);
801 }
802
803 /* Main routine to eliminate dead code.
804
805 AGGRESSIVE controls the aggressiveness of the algorithm.
806 In conservative mode, we ignore control dependence and simply declare
807 all but the most trivially dead branches necessary. This mode is fast.
808 In aggressive mode, control dependences are taken into account, which
809 results in more dead code elimination, but at the cost of some time.
810
811 FIXME: Aggressive mode before PRE doesn't work currently because
812 the dominance info is not invalidated after DCE1. This is
813 not an issue right now because we only run aggressive DCE
814 as the last tree SSA pass, but keep this in mind when you
815 start experimenting with pass ordering. */
816
817 static unsigned int
818 perform_tree_ssa_dce (bool aggressive)
819 {
820 struct edge_list *el = NULL;
821 bool something_changed = 0;
822
823 tree_dce_init (aggressive);
824
825 if (aggressive)
826 {
827 /* Compute control dependence. */
828 timevar_push (TV_CONTROL_DEPENDENCES);
829 calculate_dominance_info (CDI_POST_DOMINATORS);
830 el = create_edge_list ();
831 find_all_control_dependences (el);
832 timevar_pop (TV_CONTROL_DEPENDENCES);
833
834 visited_control_parents = sbitmap_alloc (last_basic_block);
835 sbitmap_zero (visited_control_parents);
836
837 mark_dfs_back_edges ();
838 }
839
840 find_obviously_necessary_stmts (el);
841
842 propagate_necessity (el);
843
844 something_changed |= eliminate_unnecessary_stmts ();
845 something_changed |= cfg_altered;
846
847 /* We do not update postdominators, so free them unconditionally. */
848 free_dominance_info (CDI_POST_DOMINATORS);
849
850 /* If we removed paths in the CFG, then we need to update
851 dominators as well. I haven't investigated the possibility
852 of incrementally updating dominators. */
853 if (cfg_altered)
854 free_dominance_info (CDI_DOMINATORS);
855
856 statistics_counter_event (cfun, "Statements deleted", stats.removed);
857 statistics_counter_event (cfun, "PHI nodes deleted", stats.removed_phis);
858
859 /* Debugging dumps. */
860 if (dump_file && (dump_flags & (TDF_STATS|TDF_DETAILS)))
861 print_stats ();
862
863 tree_dce_done (aggressive);
864
865 free_edge_list (el);
866
867 if (something_changed)
868 return (TODO_update_ssa | TODO_cleanup_cfg | TODO_ggc_collect
869 | TODO_remove_unused_locals);
870 else
871 return 0;
872 }
873
874 /* Pass entry points. */
875 static unsigned int
876 tree_ssa_dce (void)
877 {
878 return perform_tree_ssa_dce (/*aggressive=*/false);
879 }
880
881 static unsigned int
882 tree_ssa_dce_loop (void)
883 {
884 unsigned int todo;
885 todo = perform_tree_ssa_dce (/*aggressive=*/false);
886 if (todo)
887 {
888 free_numbers_of_iterations_estimates ();
889 scev_reset ();
890 }
891 return todo;
892 }
893
894 static unsigned int
895 tree_ssa_cd_dce (void)
896 {
897 return perform_tree_ssa_dce (/*aggressive=*/optimize >= 2);
898 }
899
900 static bool
901 gate_dce (void)
902 {
903 return flag_tree_dce != 0;
904 }
905
906 struct gimple_opt_pass pass_dce =
907 {
908 {
909 GIMPLE_PASS,
910 "dce", /* name */
911 gate_dce, /* gate */
912 tree_ssa_dce, /* execute */
913 NULL, /* sub */
914 NULL, /* next */
915 0, /* static_pass_number */
916 TV_TREE_DCE, /* tv_id */
917 PROP_cfg | PROP_ssa, /* properties_required */
918 0, /* properties_provided */
919 0, /* properties_destroyed */
920 0, /* todo_flags_start */
921 TODO_dump_func | TODO_verify_ssa /* todo_flags_finish */
922 }
923 };
924
925 struct gimple_opt_pass pass_dce_loop =
926 {
927 {
928 GIMPLE_PASS,
929 "dceloop", /* name */
930 gate_dce, /* gate */
931 tree_ssa_dce_loop, /* execute */
932 NULL, /* sub */
933 NULL, /* next */
934 0, /* static_pass_number */
935 TV_TREE_DCE, /* tv_id */
936 PROP_cfg | PROP_ssa, /* properties_required */
937 0, /* properties_provided */
938 0, /* properties_destroyed */
939 0, /* todo_flags_start */
940 TODO_dump_func | TODO_verify_ssa /* todo_flags_finish */
941 }
942 };
943
944 struct gimple_opt_pass pass_cd_dce =
945 {
946 {
947 GIMPLE_PASS,
948 "cddce", /* name */
949 gate_dce, /* gate */
950 tree_ssa_cd_dce, /* execute */
951 NULL, /* sub */
952 NULL, /* next */
953 0, /* static_pass_number */
954 TV_TREE_CD_DCE, /* tv_id */
955 PROP_cfg | PROP_ssa, /* properties_required */
956 0, /* properties_provided */
957 0, /* properties_destroyed */
958 0, /* todo_flags_start */
959 TODO_dump_func | TODO_verify_ssa
960 | TODO_verify_flow /* todo_flags_finish */
961 }
962 };