comparison gcc/tree-ssa-ifcombine.c @ 0:a06113de4d67

first commit
author kent <kent@cr.ie.u-ryukyu.ac.jp>
date Fri, 17 Jul 2009 14:47:48 +0900
parents
children 855418dad1a3
comparison
equal deleted inserted replaced
-1:000000000000 0:a06113de4d67
1 /* Combining of if-expressions on trees.
2 Copyright (C) 2007, 2008 Free Software Foundation, Inc.
3 Contributed by Richard Guenther <rguenther@suse.de>
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "tree.h"
26 #include "basic-block.h"
27 #include "timevar.h"
28 #include "diagnostic.h"
29 #include "tree-flow.h"
30 #include "tree-pass.h"
31 #include "tree-dump.h"
32
33 /* This pass combines COND_EXPRs to simplify control flow. It
34 currently recognizes bit tests and comparisons in chains that
35 represent logical and or logical or of two COND_EXPRs.
36
37 It does so by walking basic blocks in a approximate reverse
38 post-dominator order and trying to match CFG patterns that
39 represent logical and or logical or of two COND_EXPRs.
40 Transformations are done if the COND_EXPR conditions match
41 either
42
43 1. two single bit tests X & (1 << Yn) (for logical and)
44
45 2. two bit tests X & Yn (for logical or)
46
47 3. two comparisons X OPn Y (for logical or)
48
49 To simplify this pass, removing basic blocks and dead code
50 is left to CFG cleanup and DCE. */
51
52
53 /* Recognize a if-then-else CFG pattern starting to match with the
54 COND_BB basic-block containing the COND_EXPR. The recognized
55 then end else blocks are stored to *THEN_BB and *ELSE_BB. If
56 *THEN_BB and/or *ELSE_BB are already set, they are required to
57 match the then and else basic-blocks to make the pattern match.
58 Returns true if the pattern matched, false otherwise. */
59
60 static bool
61 recognize_if_then_else (basic_block cond_bb,
62 basic_block *then_bb, basic_block *else_bb)
63 {
64 edge t, e;
65
66 if (EDGE_COUNT (cond_bb->succs) != 2)
67 return false;
68
69 /* Find the then/else edges. */
70 t = EDGE_SUCC (cond_bb, 0);
71 e = EDGE_SUCC (cond_bb, 1);
72 if (!(t->flags & EDGE_TRUE_VALUE))
73 {
74 edge tmp = t;
75 t = e;
76 e = tmp;
77 }
78 if (!(t->flags & EDGE_TRUE_VALUE)
79 || !(e->flags & EDGE_FALSE_VALUE))
80 return false;
81
82 /* Check if the edge destinations point to the required block. */
83 if (*then_bb
84 && t->dest != *then_bb)
85 return false;
86 if (*else_bb
87 && e->dest != *else_bb)
88 return false;
89
90 if (!*then_bb)
91 *then_bb = t->dest;
92 if (!*else_bb)
93 *else_bb = e->dest;
94
95 return true;
96 }
97
98 /* Verify if the basic block BB does not have side-effects. Return
99 true in this case, else false. */
100
101 static bool
102 bb_no_side_effects_p (basic_block bb)
103 {
104 gimple_stmt_iterator gsi;
105
106 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
107 {
108 gimple stmt = gsi_stmt (gsi);
109
110 if (gimple_has_volatile_ops (stmt)
111 || !ZERO_SSA_OPERANDS (stmt, SSA_OP_ALL_VIRTUALS))
112 return false;
113 }
114
115 return true;
116 }
117
118 /* Verify if all PHI node arguments in DEST for edges from BB1 or
119 BB2 to DEST are the same. This makes the CFG merge point
120 free from side-effects. Return true in this case, else false. */
121
122 static bool
123 same_phi_args_p (basic_block bb1, basic_block bb2, basic_block dest)
124 {
125 edge e1 = find_edge (bb1, dest);
126 edge e2 = find_edge (bb2, dest);
127 gimple_stmt_iterator gsi;
128 gimple phi;
129
130 for (gsi = gsi_start_phis (dest); !gsi_end_p (gsi); gsi_next (&gsi))
131 {
132 phi = gsi_stmt (gsi);
133 if (!operand_equal_p (PHI_ARG_DEF_FROM_EDGE (phi, e1),
134 PHI_ARG_DEF_FROM_EDGE (phi, e2), 0))
135 return false;
136 }
137
138 return true;
139 }
140
141 /* Return the best representative SSA name for CANDIDATE which is used
142 in a bit test. */
143
144 static tree
145 get_name_for_bit_test (tree candidate)
146 {
147 /* Skip single-use names in favor of using the name from a
148 non-widening conversion definition. */
149 if (TREE_CODE (candidate) == SSA_NAME
150 && has_single_use (candidate))
151 {
152 gimple def_stmt = SSA_NAME_DEF_STMT (candidate);
153 if (is_gimple_assign (def_stmt)
154 && gimple_assign_cast_p (def_stmt))
155 {
156 if (TYPE_PRECISION (TREE_TYPE (candidate))
157 <= TYPE_PRECISION (TREE_TYPE (gimple_assign_rhs1 (def_stmt))))
158 return gimple_assign_rhs1 (def_stmt);
159 }
160 }
161
162 return candidate;
163 }
164
165 /* Helpers for recognize_single_bit_test defined mainly for source code
166 formating. */
167
168 static int
169 operand_precision (tree t)
170 {
171 return TYPE_PRECISION (TREE_TYPE (t));
172 }
173
174 static bool
175 integral_operand_p (tree t)
176 {
177 return INTEGRAL_TYPE_P (TREE_TYPE (t));
178 }
179
180 /* Recognize a single bit test pattern in GIMPLE_COND and its defining
181 statements. Store the name being tested in *NAME and the bit
182 in *BIT. The GIMPLE_COND computes *NAME & (1 << *BIT).
183 Returns true if the pattern matched, false otherwise. */
184
185 static bool
186 recognize_single_bit_test (gimple cond, tree *name, tree *bit)
187 {
188 gimple stmt;
189
190 /* Get at the definition of the result of the bit test. */
191 if (gimple_cond_code (cond) != NE_EXPR
192 || TREE_CODE (gimple_cond_lhs (cond)) != SSA_NAME
193 || !integer_zerop (gimple_cond_rhs (cond)))
194 return false;
195 stmt = SSA_NAME_DEF_STMT (gimple_cond_lhs (cond));
196 if (!is_gimple_assign (stmt))
197 return false;
198
199 /* Look at which bit is tested. One form to recognize is
200 D.1985_5 = state_3(D) >> control1_4(D);
201 D.1986_6 = (int) D.1985_5;
202 D.1987_7 = op0 & 1;
203 if (D.1987_7 != 0) */
204 if (gimple_assign_rhs_code (stmt) == BIT_AND_EXPR
205 && integer_onep (gimple_assign_rhs2 (stmt))
206 && TREE_CODE (gimple_assign_rhs1 (stmt)) == SSA_NAME)
207 {
208 tree orig_name = gimple_assign_rhs1 (stmt);
209
210 /* Look through copies and conversions to eventually
211 find the stmt that computes the shift. */
212 stmt = SSA_NAME_DEF_STMT (orig_name);
213
214 while (is_gimple_assign (stmt)
215 && (gimple_assign_ssa_name_copy_p (stmt)
216 || (gimple_assign_cast_p (stmt)
217 && integral_operand_p (gimple_assign_lhs (stmt))
218 && integral_operand_p (gimple_assign_rhs1 (stmt))
219 && (operand_precision (gimple_assign_lhs (stmt))
220 <= operand_precision (gimple_assign_rhs1 (stmt))))))
221 {
222 stmt = SSA_NAME_DEF_STMT (gimple_assign_rhs1 (stmt));
223 }
224
225 /* If we found such, decompose it. */
226 if (is_gimple_assign (stmt)
227 && gimple_assign_rhs_code (stmt) == RSHIFT_EXPR)
228 {
229 /* op0 & (1 << op1) */
230 *bit = gimple_assign_rhs2 (stmt);
231 *name = gimple_assign_rhs1 (stmt);
232 }
233 else
234 {
235 /* t & 1 */
236 *bit = integer_zero_node;
237 *name = get_name_for_bit_test (orig_name);
238 }
239
240 return true;
241 }
242
243 /* Another form is
244 D.1987_7 = op0 & (1 << CST)
245 if (D.1987_7 != 0) */
246 if (gimple_assign_rhs_code (stmt) == BIT_AND_EXPR
247 && TREE_CODE (gimple_assign_rhs1 (stmt)) == SSA_NAME
248 && integer_pow2p (gimple_assign_rhs2 (stmt)))
249 {
250 *name = gimple_assign_rhs1 (stmt);
251 *bit = build_int_cst (integer_type_node,
252 tree_log2 (gimple_assign_rhs2 (stmt)));
253 return true;
254 }
255
256 /* Another form is
257 D.1986_6 = 1 << control1_4(D)
258 D.1987_7 = op0 & D.1986_6
259 if (D.1987_7 != 0) */
260 if (gimple_assign_rhs_code (stmt) == BIT_AND_EXPR
261 && TREE_CODE (gimple_assign_rhs1 (stmt)) == SSA_NAME
262 && TREE_CODE (gimple_assign_rhs2 (stmt)) == SSA_NAME)
263 {
264 gimple tmp;
265
266 /* Both arguments of the BIT_AND_EXPR can be the single-bit
267 specifying expression. */
268 tmp = SSA_NAME_DEF_STMT (gimple_assign_rhs1 (stmt));
269 if (is_gimple_assign (tmp)
270 && gimple_assign_rhs_code (tmp) == LSHIFT_EXPR
271 && integer_onep (gimple_assign_rhs1 (tmp)))
272 {
273 *name = gimple_assign_rhs2 (stmt);
274 *bit = gimple_assign_rhs2 (tmp);
275 return true;
276 }
277
278 tmp = SSA_NAME_DEF_STMT (gimple_assign_rhs2 (stmt));
279 if (is_gimple_assign (tmp)
280 && gimple_assign_rhs_code (tmp) == LSHIFT_EXPR
281 && integer_onep (gimple_assign_rhs1 (tmp)))
282 {
283 *name = gimple_assign_rhs1 (stmt);
284 *bit = gimple_assign_rhs2 (tmp);
285 return true;
286 }
287 }
288
289 return false;
290 }
291
292 /* Recognize a bit test pattern in a GIMPLE_COND and its defining
293 statements. Store the name being tested in *NAME and the bits
294 in *BITS. The COND_EXPR computes *NAME & *BITS.
295 Returns true if the pattern matched, false otherwise. */
296
297 static bool
298 recognize_bits_test (gimple cond, tree *name, tree *bits)
299 {
300 gimple stmt;
301
302 /* Get at the definition of the result of the bit test. */
303 if (gimple_cond_code (cond) != NE_EXPR
304 || TREE_CODE (gimple_cond_lhs (cond)) != SSA_NAME
305 || !integer_zerop (gimple_cond_rhs (cond)))
306 return false;
307 stmt = SSA_NAME_DEF_STMT (gimple_cond_lhs (cond));
308 if (!is_gimple_assign (stmt)
309 || gimple_assign_rhs_code (stmt) != BIT_AND_EXPR)
310 return false;
311
312 *name = get_name_for_bit_test (gimple_assign_rhs1 (stmt));
313 *bits = gimple_assign_rhs2 (stmt);
314
315 return true;
316 }
317
318 /* If-convert on a and pattern with a common else block. The inner
319 if is specified by its INNER_COND_BB, the outer by OUTER_COND_BB.
320 Returns true if the edges to the common else basic-block were merged. */
321
322 static bool
323 ifcombine_ifandif (basic_block inner_cond_bb, basic_block outer_cond_bb)
324 {
325 gimple_stmt_iterator gsi;
326 gimple inner_cond, outer_cond;
327 tree name1, name2, bit1, bit2;
328
329 inner_cond = last_stmt (inner_cond_bb);
330 if (!inner_cond
331 || gimple_code (inner_cond) != GIMPLE_COND)
332 return false;
333
334 outer_cond = last_stmt (outer_cond_bb);
335 if (!outer_cond
336 || gimple_code (outer_cond) != GIMPLE_COND)
337 return false;
338
339 /* See if we test a single bit of the same name in both tests. In
340 that case remove the outer test, merging both else edges,
341 and change the inner one to test for
342 name & (bit1 | bit2) == (bit1 | bit2). */
343 if (recognize_single_bit_test (inner_cond, &name1, &bit1)
344 && recognize_single_bit_test (outer_cond, &name2, &bit2)
345 && name1 == name2)
346 {
347 tree t, t2;
348
349 /* Do it. */
350 gsi = gsi_for_stmt (inner_cond);
351 t = fold_build2 (LSHIFT_EXPR, TREE_TYPE (name1),
352 build_int_cst (TREE_TYPE (name1), 1), bit1);
353 t2 = fold_build2 (LSHIFT_EXPR, TREE_TYPE (name1),
354 build_int_cst (TREE_TYPE (name1), 1), bit2);
355 t = fold_build2 (BIT_IOR_EXPR, TREE_TYPE (name1), t, t2);
356 t = force_gimple_operand_gsi (&gsi, t, true, NULL_TREE,
357 true, GSI_SAME_STMT);
358 t2 = fold_build2 (BIT_AND_EXPR, TREE_TYPE (name1), name1, t);
359 t2 = force_gimple_operand_gsi (&gsi, t2, true, NULL_TREE,
360 true, GSI_SAME_STMT);
361 t = fold_build2 (EQ_EXPR, boolean_type_node, t2, t);
362 gimple_cond_set_condition_from_tree (inner_cond, t);
363 update_stmt (inner_cond);
364
365 /* Leave CFG optimization to cfg_cleanup. */
366 gimple_cond_set_condition_from_tree (outer_cond, boolean_true_node);
367 update_stmt (outer_cond);
368
369 if (dump_file)
370 {
371 fprintf (dump_file, "optimizing double bit test to ");
372 print_generic_expr (dump_file, name1, 0);
373 fprintf (dump_file, " & T == T\nwith temporary T = (1 << ");
374 print_generic_expr (dump_file, bit1, 0);
375 fprintf (dump_file, ") | (1 << ");
376 print_generic_expr (dump_file, bit2, 0);
377 fprintf (dump_file, ")\n");
378 }
379
380 return true;
381 }
382
383 return false;
384 }
385
386 /* If-convert on a or pattern with a common then block. The inner
387 if is specified by its INNER_COND_BB, the outer by OUTER_COND_BB.
388 Returns true, if the edges leading to the common then basic-block
389 were merged. */
390
391 static bool
392 ifcombine_iforif (basic_block inner_cond_bb, basic_block outer_cond_bb)
393 {
394 gimple inner_cond, outer_cond;
395 tree name1, name2, bits1, bits2;
396
397 inner_cond = last_stmt (inner_cond_bb);
398 if (!inner_cond
399 || gimple_code (inner_cond) != GIMPLE_COND)
400 return false;
401
402 outer_cond = last_stmt (outer_cond_bb);
403 if (!outer_cond
404 || gimple_code (outer_cond) != GIMPLE_COND)
405 return false;
406
407 /* See if we have two bit tests of the same name in both tests.
408 In that case remove the outer test and change the inner one to
409 test for name & (bits1 | bits2) != 0. */
410 if (recognize_bits_test (inner_cond, &name1, &bits1)
411 && recognize_bits_test (outer_cond, &name2, &bits2))
412 {
413 gimple_stmt_iterator gsi;
414 tree t;
415
416 /* Find the common name which is bit-tested. */
417 if (name1 == name2)
418 ;
419 else if (bits1 == bits2)
420 {
421 t = name2;
422 name2 = bits2;
423 bits2 = t;
424 t = name1;
425 name1 = bits1;
426 bits1 = t;
427 }
428 else if (name1 == bits2)
429 {
430 t = name2;
431 name2 = bits2;
432 bits2 = t;
433 }
434 else if (bits1 == name2)
435 {
436 t = name1;
437 name1 = bits1;
438 bits1 = t;
439 }
440 else
441 return false;
442
443 /* As we strip non-widening conversions in finding a common
444 name that is tested make sure to end up with an integral
445 type for building the bit operations. */
446 if (TYPE_PRECISION (TREE_TYPE (bits1))
447 >= TYPE_PRECISION (TREE_TYPE (bits2)))
448 {
449 bits1 = fold_convert (unsigned_type_for (TREE_TYPE (bits1)), bits1);
450 name1 = fold_convert (TREE_TYPE (bits1), name1);
451 bits2 = fold_convert (unsigned_type_for (TREE_TYPE (bits2)), bits2);
452 bits2 = fold_convert (TREE_TYPE (bits1), bits2);
453 }
454 else
455 {
456 bits2 = fold_convert (unsigned_type_for (TREE_TYPE (bits2)), bits2);
457 name1 = fold_convert (TREE_TYPE (bits2), name1);
458 bits1 = fold_convert (unsigned_type_for (TREE_TYPE (bits1)), bits1);
459 bits1 = fold_convert (TREE_TYPE (bits2), bits1);
460 }
461
462 /* Do it. */
463 gsi = gsi_for_stmt (inner_cond);
464 t = fold_build2 (BIT_IOR_EXPR, TREE_TYPE (name1), bits1, bits2);
465 t = force_gimple_operand_gsi (&gsi, t, true, NULL_TREE,
466 true, GSI_SAME_STMT);
467 t = fold_build2 (BIT_AND_EXPR, TREE_TYPE (name1), name1, t);
468 t = force_gimple_operand_gsi (&gsi, t, true, NULL_TREE,
469 true, GSI_SAME_STMT);
470 t = fold_build2 (NE_EXPR, boolean_type_node, t,
471 build_int_cst (TREE_TYPE (t), 0));
472 gimple_cond_set_condition_from_tree (inner_cond, t);
473 update_stmt (inner_cond);
474
475 /* Leave CFG optimization to cfg_cleanup. */
476 gimple_cond_set_condition_from_tree (outer_cond, boolean_false_node);
477 update_stmt (outer_cond);
478
479 if (dump_file)
480 {
481 fprintf (dump_file, "optimizing bits or bits test to ");
482 print_generic_expr (dump_file, name1, 0);
483 fprintf (dump_file, " & T != 0\nwith temporary T = ");
484 print_generic_expr (dump_file, bits1, 0);
485 fprintf (dump_file, " | ");
486 print_generic_expr (dump_file, bits2, 0);
487 fprintf (dump_file, "\n");
488 }
489
490 return true;
491 }
492
493 /* See if we have two comparisons that we can merge into one.
494 This happens for C++ operator overloading where for example
495 GE_EXPR is implemented as GT_EXPR || EQ_EXPR. */
496 else if (TREE_CODE_CLASS (gimple_cond_code (inner_cond)) == tcc_comparison
497 && TREE_CODE_CLASS (gimple_cond_code (outer_cond)) == tcc_comparison
498 && operand_equal_p (gimple_cond_lhs (inner_cond),
499 gimple_cond_lhs (outer_cond), 0)
500 && operand_equal_p (gimple_cond_rhs (inner_cond),
501 gimple_cond_rhs (outer_cond), 0))
502 {
503 enum tree_code code1 = gimple_cond_code (inner_cond);
504 enum tree_code code2 = gimple_cond_code (outer_cond);
505 enum tree_code code;
506 tree t;
507
508 #define CHK(a,b) ((code1 == a ## _EXPR && code2 == b ## _EXPR) \
509 || (code2 == a ## _EXPR && code1 == b ## _EXPR))
510 /* Merge the two condition codes if possible. */
511 if (code1 == code2)
512 code = code1;
513 else if (CHK (EQ, LT))
514 code = LE_EXPR;
515 else if (CHK (EQ, GT))
516 code = GE_EXPR;
517 else if (CHK (LT, LE))
518 code = LE_EXPR;
519 else if (CHK (GT, GE))
520 code = GE_EXPR;
521 else if (INTEGRAL_TYPE_P (TREE_TYPE (gimple_cond_lhs (inner_cond)))
522 || flag_unsafe_math_optimizations)
523 {
524 if (CHK (LT, GT))
525 code = NE_EXPR;
526 else if (CHK (LT, NE))
527 code = NE_EXPR;
528 else if (CHK (GT, NE))
529 code = NE_EXPR;
530 else
531 return false;
532 }
533 /* We could check for combinations leading to trivial true/false. */
534 else
535 return false;
536 #undef CHK
537
538 /* Do it. */
539 t = fold_build2 (code, boolean_type_node, gimple_cond_lhs (outer_cond),
540 gimple_cond_rhs (outer_cond));
541 t = canonicalize_cond_expr_cond (t);
542 if (!t)
543 return false;
544 gimple_cond_set_condition_from_tree (inner_cond, t);
545 update_stmt (inner_cond);
546
547 /* Leave CFG optimization to cfg_cleanup. */
548 gimple_cond_set_condition_from_tree (outer_cond, boolean_false_node);
549 update_stmt (outer_cond);
550
551 if (dump_file)
552 {
553 fprintf (dump_file, "optimizing two comparisons to ");
554 print_generic_expr (dump_file, t, 0);
555 fprintf (dump_file, "\n");
556 }
557
558 return true;
559 }
560
561 return false;
562 }
563
564 /* Recognize a CFG pattern and dispatch to the appropriate
565 if-conversion helper. We start with BB as the innermost
566 worker basic-block. Returns true if a transformation was done. */
567
568 static bool
569 tree_ssa_ifcombine_bb (basic_block inner_cond_bb)
570 {
571 basic_block then_bb = NULL, else_bb = NULL;
572
573 if (!recognize_if_then_else (inner_cond_bb, &then_bb, &else_bb))
574 return false;
575
576 /* Recognize && and || of two conditions with a common
577 then/else block which entry edges we can merge. That is:
578 if (a || b)
579 ;
580 and
581 if (a && b)
582 ;
583 This requires a single predecessor of the inner cond_bb. */
584 if (single_pred_p (inner_cond_bb))
585 {
586 basic_block outer_cond_bb = single_pred (inner_cond_bb);
587
588 /* The && form is characterized by a common else_bb with
589 the two edges leading to it mergable. The latter is
590 guaranteed by matching PHI arguments in the else_bb and
591 the inner cond_bb having no side-effects. */
592 if (recognize_if_then_else (outer_cond_bb, &inner_cond_bb, &else_bb)
593 && same_phi_args_p (outer_cond_bb, inner_cond_bb, else_bb)
594 && bb_no_side_effects_p (inner_cond_bb))
595 {
596 /* We have
597 <outer_cond_bb>
598 if (q) goto inner_cond_bb; else goto else_bb;
599 <inner_cond_bb>
600 if (p) goto ...; else goto else_bb;
601 ...
602 <else_bb>
603 ...
604 */
605 return ifcombine_ifandif (inner_cond_bb, outer_cond_bb);
606 }
607
608 /* The || form is characterized by a common then_bb with the
609 two edges leading to it mergable. The latter is guaranteed
610 by matching PHI arguments in the then_bb and the inner cond_bb
611 having no side-effects. */
612 if (recognize_if_then_else (outer_cond_bb, &then_bb, &inner_cond_bb)
613 && same_phi_args_p (outer_cond_bb, inner_cond_bb, then_bb)
614 && bb_no_side_effects_p (inner_cond_bb))
615 {
616 /* We have
617 <outer_cond_bb>
618 if (q) goto then_bb; else goto inner_cond_bb;
619 <inner_cond_bb>
620 if (q) goto then_bb; else goto ...;
621 <then_bb>
622 ...
623 */
624 return ifcombine_iforif (inner_cond_bb, outer_cond_bb);
625 }
626 }
627
628 return false;
629 }
630
631 /* Main entry for the tree if-conversion pass. */
632
633 static unsigned int
634 tree_ssa_ifcombine (void)
635 {
636 basic_block *bbs;
637 bool cfg_changed = false;
638 int i;
639
640 bbs = blocks_in_phiopt_order ();
641
642 for (i = 0; i < n_basic_blocks - NUM_FIXED_BLOCKS; ++i)
643 {
644 basic_block bb = bbs[i];
645 gimple stmt = last_stmt (bb);
646
647 if (stmt
648 && gimple_code (stmt) == GIMPLE_COND)
649 cfg_changed |= tree_ssa_ifcombine_bb (bb);
650 }
651
652 free (bbs);
653
654 return cfg_changed ? TODO_cleanup_cfg : 0;
655 }
656
657 static bool
658 gate_ifcombine (void)
659 {
660 return 1;
661 }
662
663 struct gimple_opt_pass pass_tree_ifcombine =
664 {
665 {
666 GIMPLE_PASS,
667 "ifcombine", /* name */
668 gate_ifcombine, /* gate */
669 tree_ssa_ifcombine, /* execute */
670 NULL, /* sub */
671 NULL, /* next */
672 0, /* static_pass_number */
673 TV_TREE_IFCOMBINE, /* tv_id */
674 PROP_cfg | PROP_ssa, /* properties_required */
675 0, /* properties_provided */
676 0, /* properties_destroyed */
677 0, /* todo_flags_start */
678 TODO_dump_func
679 | TODO_ggc_collect
680 | TODO_update_ssa
681 | TODO_verify_ssa /* todo_flags_finish */
682 }
683 };